Invite: A Multi-protocol Negotiation Platform

Ka Pong Law

A Thesis
In
The Department
Of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

September 2005

Library and
Archives Canada

Bibliotheque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10290-X
Our file Notre référence
ISBN: 0-494-10290-X
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Ka Pong Law

Entitled: Invite: A Multi-Protocol Negotiation Platform

and submitted in partial fulfillment of the requirements for the degree of
Master of Computer Science
complies with the regulations of this University and meets the accepted standards with
respect to originality and quality.
Signed by the final examining committee:

Chair

Examiner

Examiner

Co-supervisor

Co-supervisor

Approved

Chair of Department or Graduate Program Director

20

Dr. Nabil Esmail, Dean
Faculty of Engineering and Computer Science

Abstract

Invite: A Multi-Protocol Negotiation Platform

Ka Pong Law

Existing electronic negotiation systems implement a single, fixed negotiation protocol.
Therefore, their use is restricted to these types of negotiation problems and these kinds of
interactions which had been assumed a priori by designers. Recent research focuses on
software which can be configured to suit specific objectives of their designers and/or to
match particular styles and approaches of the negotiators. Such software also allows studying
the impact of different features of negotiation systems on the negotiation process and

outcome.

This thesis explores the design and implementation of Invite, a multi-protocol negotiation
platform. The platform is a flexible and customizable e-negotiation software platform
enabling negotiators to map negotiation activities to components and construct their own
protocols by creating sequence of layout programs. It allows for multiple different
negotiation protocols being run simultaneously under one system. A negotiation protocol is
used to configure Invite resources and construct a negotiation engine. The Invite negotiation

platform, two protocols, and two negotiation engines are presented in this document.

iii

Acknowledgments

I would like to thank those people gave input and support for the completion of this thesis. I am
indebted to my thesis supervisors, Dr. Kersten and Dr. Shiri for their valuable guidance, suggestion,

input during the entire process. Their motivation brought this thesis alive.

I thank the Social Science and Humanities Research Council, Natural Sciences and Engineering

Research Council, for their financial support for this research.

I would also like to express my gratitude to the entire e-negotiation group, especially to Stefan,

JinBaek, Norma, and Eva, for their valuable input.

Finally, T would like to thank my family, especially my parents, for their support. Without their

assistance and persistence, I wouldn’t have the opportunity to study in Canada.

v

Table of Contents

List of Figures viii
List of Tables x
1. Introduction 1
2. E-negotiation and ENSs 4
2.1 Classification of e-negotiations 4
2.2 E-negotiation process model 9
2.2.1 Planning 10
2.2.2 Agenda setting and exploring the field 12

2.2.3 Exchanging offers and arguments 13

2.2.4 Reaching an agreement 15

2.2.5 Concluding the negotiation 16

2.3 Review of ENSs and negotiation platforms 16
2.3.1 Inspire 16

232 WebNS 18

2.3.3 Negoisst 19

2.3.4 SimpleNS 19

2.4 ENS software platforms 20
24.1 SilkRoad 22

242 GNP 22

243 INSS 22

2.5 Summary 23

3. E-Negotiation Foundation 25
3.1 Process model mapping 25
3.2 Phases, ENS states, and activities 26
3.3 Sequence 28

34 Intervening event

4. State Diagram

5. Software Engineering Models

5.1 System development life cycle

5.2 ENS requirements analysis

53 Fusebox and FLIP

5.3.1 Wireframing

5.3.2 Front-end prototyping

5.3.3 Application architecting

5.3.4 Construction and coding

5.3.5 Unit testing

54 Model-View-Controller

5.5 Database modeling

6. Design and Implementation

6.1 Design and implementation challenge

6.2 System architecture

6.2.1 Components

6.2.2 Page composers

6.2.3 Negotiation controller

6.3 Protocol example

6.4 The database design

6.5 Protocol construction steps

6.6 Prototype

6.7 Invite ENSs

6.7.1 SimpleNS-like

6.7.2 SimpleNS protocol

6.7.3 SimpleNS database

6.7.4 SimpleNS-like components and page composers

6.8 Inspire-like ENS

vi

31

35

39

39

40

42
44
45
46
47
48

48

50

53

53

53
55
56
57

58
60
67
68

72
72
73
73
76

78

6.8.1 Inspire-like protocol 78

6.8.2 Inspire-like database 79

6.8.3 Inspire-like components and page composers 84

7. Example of Invite Negotiation 89
8. Conclusion and Future Work 98
8.1 Conclusion 98
8.2 Future work 98

References 104

vii

List of Figures

Figure 1. Bilateral REGOTIATIONcococevveuieiiiiiiiiieietecte e 6
Figure 2. Multi-bilateral NeGOLIQHION.cccovvvviviiiriieiiiiiiiciicciec e 7
Figure 3. Multilateral RegOtIQHIONcccovuiiiiiiiiiiiiiiiiiiiii s 7
Figure 4. The five-phase negotiation process model...............c.ccccooveaneiniencieiiininiiiinnins 10
Figure 5. AGreEMENT ZONEcccuveeueieiieiiiiiiiiiiiiic ittt 14
Figure 6. Phases, ENS states, activities, and CONSIFUCLESc.cccuviivviriiiiiniicciennieeinenes 28
Figure 7. An example of sequences and SIALEScooovivviiiiiniiinicniiiiiiiiceeecieeenes 30
Figure 8. Protocol without intervening infoOrmatioN..............c.coeeirvvineeciinnienineciinciesinenns 36
Figure 9. Protocol with intervening information...............cccoivvcivioniinieiniinieiiincneeennnes 37
Figure 10. Logical view Of FUSEDOXccccccevviiiniiiiniiiiciiiiiiiiiiiicnntsncscneses s 44
Figure 11. Wireframe example Of FegISIFALIONccocveeuiirieieiieiiecieeecee e 45
Figure 12. Front-end prototype of the registration example..............c.ccoccevvevcvecivericncennenns 46
Figure 13. FUSEDOCccocueeiciieiiiieiiie ettt sttt st 47
Figure 14. Invite MVC QrCRITECTUTE.c...occoveirieiririeieieeieeeeceteste ettt et eneens 49
Figure 15. E/R diQGYAML........c..cooveiieiiiiiieiiiii sttt 52
Figure 16. Prototype SyStem arCRITECIUTc.ococuiicueiieiieeceiecceeete ettt 54
Figure 17. COMPOREN, PAGE COMPOSELcocuveeiriiinriiiaiiiieieiiie st et eaniee et e s e nbene e 56
Figure 18. Invite data model...................ccccccocoumviiiiiiiniiiiicirieneee ettt 62
Figure 19. Send offer/message page COMPOSEFcuueevivireieieirieneeiniieneeneeie e seeneee e 70
Figure 20. Send message/offer pAge COMPOSEc.coeveeeviriienieenieniieseteeneee e 71
Figure 21 SimpleNS-like database.................ccccccviieiiiiriiiriiiiiiiieenieese st 74
Figure 22. Inspire-like database....................c.ccovviviiiiniiiiiiniiniiicicc ittt 80
Figure 23. Inspire-like database (CONL.)cccoovuiiiiiviiiiiiiiiiiiiiiriiic s 81
Figure 24. SImPleNS [OQIN PAGEcceooieiiiiiiiiiiiieiiie ettt s an e 89
Figure 25. SimpleNS negotiation SeleCtion PAZE..........ccccveeeveeeeeeieeeiirieieeeiieesieeceeesieeesveeeens 90
Figure 26. SIMPIENS SIAHUS PAGEcc.oeeiueiiiiiiiieiiiiteet s eeee et sve e sbae e 91
Figure 27. SimpleNS publicC CASE PAGEc..oovveveieiiiiiiiiieii st 92
Figure 28. SimpleNS private Case PAGE................ccouuvoiiiiiieiiiiiiiirieerieieieeseeie e 93

Figure 29. SimpleNS send offer and message PAGe............ccccoccveeivereecniiiiiineneecienrceneennns 94

Figure 30. SimpleNS send offer and message confirmation pagec.cccceceeveecrieeccncnnnn. 95
Figure 31. SimpleNS intervening @Vent Icccccceovieiinoiinoieiic et 96
Figure 32. SimpleNS iNtervening @VEnt 2c.cccvvcveriveriiniiriiieiriesniseesssesesssesssesssessessesnnes 96
Figure 33. TOrMINALIONccccueeieiiieeiie ettt ettt et st e e 97

List of Tables

Table 1. Example of a process model, activities, QRd STALES..........ovcveciireieieniieiirninescteesiseestisiaaseres s eteaseaesessees 26
Table 2. SIMPLENS PFOIOCOL..........ccoviioeiiieeieci ettt et ettt et e st e e e v e sree s teat e sabesteeassareaneeseea 59
Table 3. SimpleNS protocol (reproduction from SECtiONn 4.1).......cccocvumvveiiieiiceiiciieieeeie et eve e 73
Table 4. INSPIre PrOfOCOL..........cocoiovviiiiiieiiiiiiiici ettt et ettt et ettt aee e et en et et aneniesbennenenanns 79

1. Introduction

The evolution of using software to support negotiation processes began in late 1970s
[KM78]. In early eighties, researchers expanded decision support systems (DSS) to aid
negotiators. This led to the development of negotiation support systems (NSS)

[KMWZ86, JJS87, JF89].

NSSs are based on the modelling approaches coming from decision sciences and, since
the mid nineties, also from negotiation analysis. Other approaches used in the design of
NSSs come from computer science and artificial intelligence[JF89]. Recently, Internet
and computing technologies provided new opportunities for the design and development
of software capable of supporting negotiators in an electronic format. Internet allows
people to negotiate virtually from any place and at any time while browsers provide

uniform and easy to use interface.

Early NSSs used a stand-alone system in a local network. With the advance of
information and communication technology (ICT), recently developed NSSs support
various communication methods such as email, chat, and video-conferencing. The term e-
negotiation systems (ENSs) has also been used to describe software that employs Internet
technologies; ENSs are deployed on the web, and one capable of supporting, aiding or

replacing one or more negotiators, mediators, or facilitators .

Companies increasingly use internet in conducting business negotiations [RRM03]. With

the increase of the use of Internet, ENSs would replace some forms of face-to-face

negotiations in a near future. An example of such systems is eBay, where the marketplace

occurs on the Internet.

This thesis is organized into nine chapters. Following this introductory chapter, Chapter 2
provides an overview of E-negotiation, electronic negotiation system (ENS) and a review
of some existing ENSs. Chapter 3 presents the objectives of this thesis. Chapter 4
provides a foundation for building ENSs, and chapter 5 presents statechart as a formal
representation of this foundation. Chapter 6 describes the software engineering
methodology and database model used in the project. Chapter 7 presents the design and
implementation of the Invite platform and two complementary ENSs. Chapter 8
illustrates execution of an ENS running under Invite. Chapter 9 includes conclusion and

suggestions for future work.

Electronic negotiations are becoming an important research subject not only in the area of
electronic commerce but also in area such as cross-culture and dispute and resolution.
Researchers have built several electronic negotiation systems such as Inspire, SimpleNS,
WebNS, Negoisst and others. Each of them has different purpose of research study.
However, some software components they use are very similar. For example, existing
electronic negotiation system uses communication tools whether is text-based, real-time
chat or voice and video technology. Existing electronic negotiation systems are case- and
domain-dependent and limited to one single protocol. Every time researchers expand
their research studies, they build new software or redesign an existing one. If all
electronic negotiation systems are similar in some extend, why we don’t build a platform

that has a compilation of most of electronic negotiation system features. The approach is

2

to build negotiation platform software which is able to host many electronic negotiation
systems. Whenever negotiation software needs to be built, we just pick and choose

components and assemble them like playing Lego.

2. E-negotiation and ENSs

Negotiation support systems emerged from the field of decision sciences in an attempt to
construct systems that are capable to aid negotiators [KMWZ86]. With the developments
of negotiation analysis and ICTs, negotiation support systems gave rise to e-negotiation

systems. Kersten, Strecker and Law [KSL204] give the following definition of ENSs:

“E-negotiation system (ENS) defines software that employs Internet technologies,
is deployed on the web, and capable of supporting, aiding or replacing one or

more negotiators, mediators or facilitators”.

ENS can be classified into two categories: (1) Preparation and evaluation systems and (2)
Process support systems [MSKMS87]. A system of the first category includes a pre-
negotiation phase whose purpose is to study and organize the negotiation problem,
determine negotiation issues and assign preferences to each issue. A process support
system on the other hand helps users to communicate and exchange offers. Its purpose is
to maximize the outcome by providing electronic bargaining tables and tools for

assessment of the compromise efficiency [MSKMS87].
2.1 Classification of e-negotiations

Several attributes can be used to describe negotiations. Attributes that are relevant to the

construction of ENSs have been selected for the purpose of this thesis.

Distributive or integrative negotiations.

In a distributive negotiation, the gain of one party is the loss of the other party. In other
words, one party’s objective is to minimize the issue value while the other party’s
objective is to maximize this value. Distributive negotiation is often considered as a
single issue negotiation where the negotiation resembles a division of a fixed-size “pie”:
the bigger the portion of the pie one party gets, the smaller the portion for the other party
can get. For these reasons, distributive negotiations are also called win-lose negotiation

or, using the game theory concept, a zero-sum game [RWBW&9].

Integrative negotiations usually describe processes that involve multiple issues with the
possibility of one party not being interested in what the other party would like to get.
These processes are considered non-zero-sum games because not all negotiation parties
have mutually exclusive goals. The outcome of an integrative negotiation usually is a
win-win result [EHKO4]. Integrative negotiations demand exploration of negotiators’

interests and requirements with the purpose of expanding the “pie” [KNTOO].
Participants

The number of participants is a factor of choice of the negotiation protocol. We classify
negotiations as bilateral, multi-bilateral, and multilateral. Figure 1 shows a bilateral
negotiation. It refers to two parties negotiating with each other. Multi-bilateral refers to
multiple bilateral negotiations in which one party negotiates with two or more parties
over the same problem (set of issues). Figure 2 illustrates a multi-bilateral negotiation.

An example of this kind of negotiation is a car dealership where the seller negotiates with

several potential buyers. Another example is EBay where one seller negotiates with
multiple buyers in the auction. Figure 3 shows a multilateral negotiation which every
party negotiates with everybody at the same negotiation. Most existing ENSs are

bilateral. Auction systems are usually multi-bilateral.

Party B

Figure 1. Bilateral negotiation

Party B

Paty D

Figure 2. Multi-bilateral negotiation

@@

Party F Pary C

@@

Figure 3. Multilateral negotiation

Negotiation Protocol

A negotiation protocol determines which activities are permissible and specifies the order
in which they can be performed. Execution of the permissible activities moves the parties
from one ENS state of the negotiation process to another. An activity is a task for a
negotiator and an ENS state is the group of activities. Activity and state are defined in
Chapter 4. A negotiation protocol may include syntax and semantics as well as the timing
and sequence of offers . Protocols can be fixed prior to the negotiation with no changes
allowed, or they may be flexible so that activities which were not considered a priori can
be undertaken during the negotiation [BKS03]. Thus, fixed protocols do not allow the
negotiators to change the flow of the sequence of activities. Flexible protocols allow

negotiators change the sequences, that is, remove some activities and/or add new one.

Issues

This attribute refers to the number and flexibility of the subjects of the negotiations.
Negotiation 1ssues are attributes of the goods or services and terms of conditions of the
potential agreement (i.e. price, delivery date, date of payment). Single issue negotiations
are usually used in auction systems such as EBay where the only issue is price. However,
negotiation systems are often multi-issue, in that the parties are interested in more than
one attributes of the good and/or service. Flexible protocols allow users to modify the
number of issues by adding or removing them. A fixed protocol does not allow users to

modify the set of issues during the negotiation.

Technology

Information technology has created new opportunities for e-negotiation. Email-based
systems use email as the media for communication. Web-based systems employ a web
browser or client-side software which communicates with a negotiation server through

the Internet or intranet.

2.2 E-negotiation process model

A negotiation process model describes a structured set of phases. Each phase is broken
down into activities. The phases are not always in sequence. They can be omitted,

combined, or revisited during a negotiation.

In the negotiation literature, several process models have been suggested; the three-phase
process model which consists of pre-negotiation, conduct of negotiation, and post-
settlement [MPKT99]; an eight-phase model proposed by Gulliver [G79]. Gulliver
decomposed the negotiation process into a search for arena, agenda definition, exploring
field, narrowing differences, preliminaries to final bargaining, final bargaining,

ritualization of outcome, and execution of outcome.

In order to develop software capable of supporting and aiding negotiators, we need to
specify the activities that are undertaken by the negotiators and those performed by the
software. In negotiations, as in other processes that require interactions among people,
the activities are undertaken in certain order. Therefore, we need to take into account this

order when we design software. This would also allow us to include prescriptions coming

from behavioural studies regarding the activities that negotiators should undertake and

also regarding the ordering of the activities.

In this thesis, we use a five-phase model proposed by Kersten [KSL204]. The five-phase
model is based on the Gulliver’s model and it was adapted to model e-negotiations. These
five phases are (1) Planning, (2) Agenda setting and exploring the field, (3) Exchanging
offers and arguments, (4) Reaching agreement, and (5) Concluding the negotiation and

post negotiation. Figure 4 shows the phases of this process model.

ICondutﬁing the negoitation

| Renzhing agresesment lé——
s e P

[Exchanging offers and argumaents 3

I Agenda setting and explonng the fiesd F—————‘-——-—v

l Planning E(MW,M

Figure 4. The five-phase negotiation process model [KSL204]

In the following section, we explain the negotiation process through an example of
selling a used car. John would like to sell his red Toyota Corolla 2002 and Mary would

like to buy John’s car.

2.2.1 Planning

Planning is the phase prior to any interaction between negotiation parties. It involves
negotiation participants and their thoughtful considerations of the problems. The parties
need to consider what they want and what they can achieve. They also need to assess

their strengths and weaknesses.

10

Cost, time, and potential possible outcome are variables which the negotiator takes into
account before engaging into negotiation [KSL04]. A party decides to enter a negotiation

if it is possible to reach an agreement which is better than the current situation.

When parties decide to negotiate, each first identifies the negotiation issues to be
discussed and their associated ranges of values. They also identify the issues that cannot

be negotiated or issues that are interdependent.

The negotiators assess their strengths and weaknesses, possible negotiation styles and
negotiation strategies that might influence a desired outcome. They also identify their
issue preferences; which issues are more important than others, and which ones could be
traded off for a more favourable offer. The negotiators should also determine their Best
Alternative To the potential Negotiated Agreement (BATNA). BATNA is a break even
point from which a negotiator references whether to accept a negotiation settlement or
reject it. BATNA is an intricate part of the planning process, in that if a negotiator sets a

high value to BATNA then it is unlikely that she would engage in a negotiation [B04].

The negotiators try to get as much information as possible about their counterpart. This
information includes culture, values, custom, norms, practice, and an estimation of the
counterpart’s reservation value and aspirations levels. Reservation value is the amount at
which a negotiator is indifferent between reaching a deal and walking away; it is the
worst possible deal the negotiator is willing to accept. Aspiration level is an agreement
that can reasonably be achieved and one that satisfies the negotiator [K98]. The more a

party knows about her counterpart, including the counterpart’s aspiration and reservation

11

levels, the more advantage she has during the negotiation.

In our car example, both John and Mary might want to engage in a negotiation because
they might expect to be better-off buying directly from the owner or selling directly to the
buyer without an intermediary. The issues that could arise are the price, delivery charge,
condition, color, and mileage. However, condition, color, and mileage are not negotiable
between the two negotiators because neither of the negotiators has control over these
attributes. Also, delivery charge could be included in the price. John knows that red is
one of the favourite color among drivers but he also knows that his car has a factory
defect. His BATNA is to stay with the car for another year and save up more money to

buy a nicer car.

2.2.2 Agenda setting and exploring the field

Once the negotiators become aware of the negotiation problem, they decide on the time
and place to negotiate, and the agenda. In e-negotiations, the selection of place is setting-
up a marketplace. A disagreement might arise at this point. A negotiator might start
practicing her negotiation tactics by showing her toughness by not agreeing to the time or
place. They also need to decide on the communication mode which could be synchronous
or asynchronous. Depending on the negotiator’s personality, choosing the right

communication mode could take a competitive advantage over her counterpart [G79].

During the planning phase, the negotiators should decide on their own set of issues. The
selected issues may not agree with those selected by the counterpart. When a party

introduces an issue that the counterpart is not willing to expose, the negotiation stalls

12

until the parties reach some sort of agreement regarding the issues they wish to negotiate

about.

In the planning phase, the negotiation parties also estimate the strength of their opponent
and determine a strategy and initial tactics to use. They may discuss the terminology and
the specifics of issues to be negotiated. This preliminary discussion is critical for the
negotiation because it is used to gather information about the counterpart. Upon this
discussion, a party might change her initial strategy based on the attitude of the

counterpart’s attitude.

Following our car example, John might want to negotiate at his place whereas Mary
might want to meet in a restaurant. If John works at night and Mary works during the
day, then who would actually give up a day of work to satisfy the other party or they
might decide to negotiate by email. If during their first meeting, John finds that Mary
does not like red cars, he might want to soften his initial strategy and attempt to persuade

her to accept the color of his car.

2.2.3 Exchanging offers and arguments

In this phase, the parties formulate and present their offers and arguments. Their
proposals and also the questions they ask and clarifications they seek are for testing and

adjusting their assumptions about the other party.

Negotiators gather more information about their counterpart each time they exchange an

offer or argument. They try to find out their counterparts reservation levels and BATNA.

13

They make concessions to show that they are willing to make a progress in the process
and get closer to a compromise. Thus, after several rounds of offer exchange, the
negotiation -if successful- narrows to an agreement zone. Agreement zone is the set of all
feasible alternative solution for the negotiation problem that are preferred over BATNA.
The key point here for each negotiator is to try to minimize her counterpart’s demand and
to gain advantage over the agreement zone. It is also a good practice that an offer is

followed by an argument to support why an offer is good [KSL04] (see Figure 5).

There are two types of offers exchanged during the negotiation and they correspond to
closed negotiations and opened negotiations. In closed negotiations, the issues are fixed
and no additional issues can be added. In an opened negotiation, on the other hand,

parties might introduce new issues at any given point of time during the offer exchange.

Mary’s demand

» Agreement Zone

John’s gdemand

Mary’s reservation John’s reservation
value value

Figure 5. Agreement zone

In our example, John might demand $15,000 for his car knowing that his car is worth only $6,000

14

on the market. This offer allows Mary to determine John’s maximum demand, i.e., it is $15,000.
However, Mary would walk away if she knew the car is worth $6,000 because she might think
that John is not serious about selling it. If she decides to continue, then she sends a counter-offer,
e.g. $2,000, usually it is her maximum offer for the car. The offer exchanges, which are also
known as negotiation rounds, may continue for some time. At some point, Mary offers John
$6,000 to buy his car. John would agree if he realizes that Mary is not willing to pay more and his
reservation value is $5,800. This is because Mary’s offer is $200 more than his reservation

level.

Reaching an agreement

Reaching an agreement means that the parties realize that the negotiation is successful.
Having identified the critical issues, the parties may develop joint proposals or soften
their individual limitations. The parties may also identify a limited number of possible

compromises.

Sometimes, a negotiation can no longer continue because of the parties’ unwillingness to
make concession. There are several ways to circumvent such deadlocks including
coercive power to impose the other party to do what you want, try to compromise with
your counterpart, slow down the conversation and give each other more time to think

about reaching a solution [KSLO04].

In our car example, if John refuses to negotiate with Mary because he does not like her
tone in the negotiation, she might want to compromise and soften her tone in order for the

negotiation to continue.

15

2.2.4 Concluding the negotiation

The negotiation concludes when the negotiators reach an agreement. The parties may
evaluate the compromise they achieved and consider possible improvements. They may
also discuss additional issues which have no impact on the negotiation. If what is
achieved is inefficient, the parties may go back to re-negotiate until an efficient outcome
is reached. An inefficient agreement can be identified using analytical tools to measure

the efficiency for both parties [KSL04].

2.3 Review of ENSs and negotiation platforms

A number of ENSs have been designed, implemented, and applied to various negotiation

problems. In this section, a brief review of some existing ENSs is provided.

2.3.1 Inspire

Inspire is a bilateral ENS developed by the InterNeg group based on decision and
negotiation analysis [BKS03]. Its main purpose is to investigate cross-cultural
negotiations and to provide a teaching tool in negotiation courses [K98]. Inspire views a
negotiation as a process that occurs in a particular context. The system uses a simplified
3-stage process model: pre-negotiation analysis, conduct of negotiation, and post-

settlement analysis.

The pre-negotiation phase comprises planning and agenda setting phases of the five phase
model discussed in Section 2.2. It involves an analysis of the situation, problem and

opponent, specification of preferences, reservation levels, and strategy. An important

16

activity undertaken in these phases is preference elicitation and construction of a rating
function. The preference elicitation is a simplified utility which standardizes users’
preferences over attributes into one unit of measurement. The construction of rating
function is doﬁe in three steps. First, the user specifies her preferences over pre-defined
issues by distributing 100 points among issues. Once the user assigns preference over
issues, she proceeds to assign option' preferences. The next step of the pre-negotiation is
generation of packages” followed by the calculation of ratings for these packages and by
the user’s verification of these ratings. If the user changes the displayed rating values the

least-square procedure propagates these changes to all remaining ratings.

The negotiation phase involves exchange of messages and offers, evaluation of offers,
and the assessment of the progress of the negotiation. In support of the offer exchange
activity, the system presents a drop down menu for each issue, so that user can select for
each issue only one option. In this way the user constructs a complete package and
submits it as an offer. Inspire also provides a real time rating calculator. Once a package
offer has been constructed, the rating is displayed based on the rating function, earlier

constructed from user’s preferences.

The post-settlement phase involves the evaluation of the negotiation outcomes generated
by, and after, the negotiation activity [K98]. The system first determines the rating values

of the achieved compromise for both users. Then it runs an optimalization program to

' Option is one of the alternative values that an issue can take. For example, the issue "Tolerable product

failure rate" may have the options "3%", "5%", and "10%".
> Package is a particular combination of options that has been selected across all the issues.

17

find out whether the compromise is efficient (i.e., Pareto-optimal). If the compromise is
inefficient, that is, there is a package that can make at least one party better-off without
making another worse-off, the system searches for up to five efficient packages. These
packages are displayed to the users who have the possibility to re-negotiate and improve

inefficient compromises.

A negotiation is terminated when (1) an agreement has reached among both parties, (2)
one party terminates in any phase during the negotiation, or (3) the period allocated for

talk is expired.

2.3.2 WebNS

The WebNS system is a Java-based ENS developed at McMaster University in Hamilton
[YDRA99]. It focuses purely on the conduct of negotiation through the facilitation of

communication and it does not offer analytical negotiation support [YDRA99].

WebNS is based on a negotiation process model derived from Gulliver [KSLO04].It divides
the negotiation process into two main phases: preparation and offer exchange.
Preparation is supported by tools such as the session description and private notes. The
main support of WebNS is in providing a platform for users to engage in communication.
The system uses real-time chat and video conferencing to exchange offers and counter-
offers as well as short messages. The protocol underlying WebNS treats every issue

separately and, hence, does not explicitly support discussion of tradeoffs among the

issues [KNTOO].

18

2.3.3 Negoisst

The Negoisst system is an ENS developed by the Electronic Negotiation Group at RWTH
in Aachen [S02]. Its primary purpose is to enable complex dynamic negotiations between
human negotiators, to guide them through the complex negotiation process, and to

provide support rather than automation of negotiations.

Negoisst takes a document-oriented approach, as opposed to a communication-oriented
approach, towards negotiation support and uses speech act theory to model
communication between negotiators. The system architecture is a Java-based 3-tier
client/server architecture based on the DOC.COM framework [SQOO0]. The negotiation
protocol used in Negoisst distinguishes between different types of messages, e.g., a
question or clarification. The negotiation protocol of Negoisst is based on a deterministic

finite automaton with symmetric states and constraints on some states [S02].

2.3.4 SimpleNS

As a part of this research project, this researcher has developed the SimpleNS system
(http://mis.concordia.ca/SimpleNS). The system has been developed for teaching and
comparative studies on the use and effectiveness of different ENSs. It provides a virtual

negotiation table which allows users to exchange offers and messages.

SimpleNS system displays the negotiation case and other information required to conduct
the negotiation, presents a form in which users write messages and offers, and shows the

negotiation history in which all messages and offers are displayed in one table together

19

with the time they were made. SimpleNS is based on a three-stage process model similar
to Inspire. However, it does not offer analytical support to the negotiators. SimpleNS has
been used in teaching at the University of Ottawa, Concordia University, Vienna

University, Austria and National Sun-yat Sen University, and Taiwan.

This brief overview illustrates the breadth of approaches towards ENSs design. Some
systems are grounded in negotiation theory, some draw on one or more models from
negotiation research, and some do not have any methodological foundation at all.
However, most ENSs make very limited use of existing theories and are restricted to a
single negotiation protocol. Hence, the user can neither adapt the ENS to her needs nor

follows a consistent methodology.

2.4 ENS software platforms

Internet and intranet technologies have provided new opportunities for commercial and
other transactions. These include individual, and group decision making, auctions, and
negotiated decisions. Initially, systems supporting individual and group decisions and
negotiations have been designed for stand-alone and local area networks. These are now
ported to the Web. Emerging organizational models (e.g., used in e-commerce and e-
marketplaces) and the Internet technologies gave rise to the design and development of

new types of systems, including ENSs.

There are many types of negotiations, including single-issue and multi-issue, bilateral,

20

multi-bilateral and multilateral. Many simple, well structured and multi-bilateral
negotiations that involve a single issue or several issues which are known from the outset,
maybe replaced with on-line auctions. Multi-issue bilateral and multilateral negotiations

during which issues may be added, modified, or removed require ENSs.

Every specific ENS has a negotiation protocol built in either implicitly or explicitly. The
protocol guides the execution of the system. A negotiation protocol not only imposes
rules on permissible input and output generated by the system but it also allows for
communication between the system and its users. Currently, most of the existing ENSs
implement only one negotiation protocol and hence they can be used for a specific type
of negotiations. These systems are not adequate to support complex and evolving
negotiation processes in which the change of the protocol may be necessary. For
example, expansion of the process from two to several negotiators and heterogeneous
process which starts as an auction and after the selection of few counterparts is

transformed to a multi-bilateral negotiation.

Few systems allow multiple protocols. The SilkRoad platform is an example of a multi-
protocol system, but it was designed to support only auctions [S03]. Similarly GNP is an
auction-oriented system [BKOO]. INSS is the only system that was designed to support
several types of negotiations [K98]. This system, however, is not functional and its
protocols are not explicitly formulated, hence making its extensibility difficult. Below,

we give a brief description of the above mentioned platforms.

21

2.4.1 SilkRoad

SilkRoad is a platform which facilitates the design and implementation of ENSs [S03]. Its
design methodology is based on reusable negotiation support components, e.g., for
matching offers and mediating compromises. To set up a specific ENS, a negotiation
designer uses SilkRoad to define a negotiation (case, issues and options), and to define a
negotiation protocol. On the basis of a complete negotiation design, run-time
specifications are generated. These specifications are then deployed to a server running
the SilkRoad run-time environment. Through the activation of these run-time
specifications, the server is now customised to support an electronic negotiation among

agents in exactly the way specified by the negotiation designer.

2.4.2GNP

Generic negotiation platform (GNP) is proposed by Benyoucef [BKOO]. It supports
running combined negotiation. It is designed to negotiate two or more items as a bundle.
Negotiations that run on this system are based on auction type protocol in which

workflow management system is used to deal with interdependency.

2.4.3INSS

INSS was an attempt to improve Inspire [K98]. It is based on a “workbench” approach
which provides a limited number of tools to construct an ENS. The tools that it offers are
coming from decision and negotiation analysis, and experiences with the use of the

Inspire system [K98]. These tools include, parallel negotiations, sequential negotiations,

22

unstructured messages, BATNA and reservation levels specification, new values for

continuous and discrete issues, and new issues.

Parallel bilateral negotiation means that the two negotiators discuss about all issues at the
same time. This type of negotiation requires that the user submits a complete package as
an offer. A package is considered complete if it contains values for all negotiated issues.
In contrast, in the sequential negotiation, a user may submit an incomplete package, that
is, a value for one, two or more issues but not necessarily for all issues. In the sequential
negotiation process the negotiators present one or more issues at a time. When they reach
an agreement with the discussed issues, they proceed to deal with others. Unstructured
message allows users to send messages such as argument along with his offer or
counteroffer. INSS allows introduction of new issues at any point during the negotiation

but prior to achievement of an agreement [K98].

INSS follows a three-phase negotiation process approach. Preparation, in which users
study the negotiation problem and identify all issues and alternatives involved. The actual
conduct of negotiation takes place when negotiators exchange offers and arguments.
Once negotiators reach an agreement, the system analyses whether there is at least one
package that can optimize the utility for both negotiation parties. If that is the case, the

system allows negotiators to re-negotiate until they reach a better outcome [K98].

2.5 Summary

To summarise, because most ENSs deal only with specific negotiation types, i.e., single

user interface and support tools that cannot be selected by their users, their applicability

23

to different negotiation types and different user requirements is severely limited. These
systems are inflexible placing a major restriction on negotiation from both research and
practical perspectives. In order to expand the experimental studies of ENSs and provide
field studies with their potential users, we develop an ENS platform that is capable of

dealing with different protocols and user interfaces. The primary goal of this thesis is:

the design and implementation of a multi-protocol e-negotiation systems.

To achieve this goal, we have:

e Conducted a thorough study of related work on foundations of e-negotiation
development, integration, classification, and protocols, as well as methodologies for

flexible systems design.
e Developed of a multi-platform support system, that includes:
o protocols and protocol controller;
o platform schema;
o platform database; and
o complementary interfaces
In other words, our goal is to build a software application for e-negotiation which is
capable of hosting several types of negotiations, including auction or bargaining,

provides different user-interfaces, allows for negotiating multi-issue problems, and

supports single and multiple negotiators.

24

3. E-Negotiation Foundation

Any negotiation supported by an ENS requires that the software designers define
precisely the activities and the sequence of these activities. For this, a negotiation
protocol can be used. A protocol defines activities that are allowed in certain ENS state of
a negotiation. An ENS state is a set activity that a negotiator undertakes at a particular
moment during the use of an ENS. Protocols also state the flow of a negotiation and its

input and output requirements.
3.1 Process model mapping

The framework provided by the process model, discussed in section 2.2, is implemented
in the negotiation protocol, which is represented by a sequence of activities and rules
imposed on the execution of the sequence. Additionally, the execution of a protocol
depends on the context of a negotiation, or more precisely, depends on the current ENS
state of negotiation, which a user is currently involved in, and on the user’s earlier
actions in that negotiation. The process model reflects the progression of a negotiation as
it tracks the completion of phases and activities. An example of a process model,

including its phases and activities is given in Table 1.

25

Table 1. Example of a process model, activities, and states

Negotiation phase and activity

ENS State

1. Planning

- Negotiation problem

Description of negotiation case

- Preferences and rating

Utility construction

- Assessment of alternatives

Alternative construction

2. Exchanging offers and arguments

- Offer and/or message construction Offer message

- Counter-offer assessment Counterpart’s offer

3. Reaching agreement

- Agreement Agreement reached

Agrecment assessment

- Closing negotiation End

4. Concluding negotiation

- Agreement improvement Agreement improvement
- Offer and/or message Offer message

- Counter-offer assessment Counterpart’s offer

- Closing negotiation End

Each negotiation activity is associated with an ENS state (see Table 1). However, the
reverse is not true. For example, the system may be in a state that does not correspond to
any negotiation activity. The difference between a negotiation activity and ENS state is
that the former describes a user action, whereas the latter denotes a user and/or a system

action.

3.2 Phases, ENS states, and activities

A negotiation can be interpreted as a sequence of activities. Given a particular negotiation

26

protocol, some activities are mandatory and some are optional. For instance, in a protocol
used to conduct experiments reading about the negotiation problem is a mandatory
activity. In another protocol, the parties may be required to exchange offers in a
sequence, that is, after one party makes an offer, the second party has to either reply with
a counteroffer or accept the offer. In this protocol, making a counter offer after the offer
receipt and offer accept are two mandatory activities but displaying and reading earlier
offers are optional activities. Sending a support message along with an offer would
typically be an optional activity but it would be mandatory in protocols in which the users

are required to justify their offers.

A phase is a set of tasks in a negotiation process. Following Section 2.2, we assume that
the process comprises six phases. Each phase can be decomposed into a set of ENS
states. An ENS state consists of the information available at a particular time and the
activities that can be performed at this time. Reading an offer, and preparing and sending
a counteroffer are examples of activities. Some activities can be combined and some are

treated separately.

The output of an activity or a set of activities is a construct. An example of constructs
includes a package that the user considers, an offer sent to the counterpart, and a
message. The same constructs can be the output of the activities undertaken in different
phases, for example, an offer made before an agreement and an offer made after the

parties realized that the negotiated agreement is inefficient.

An activity can appear in more than one phase. For instance, reading a negotiation

27

problem can appear in the planning phase and also in exchanging offers and arguments
phase. This provides the negotiator an option to go back and review an activity; he has
done in the past. As stated earlier, an ENS state is a set of activities. A completion of an
ENS state allows negotiator to move to a next state. If a state is the last step of a phase,
the negotiator proceeds to the next phase. The sequence terminates when there is no
further state or sequence ahead. Figure 6 illustrates the relationship among phases, ENS

states, activities, and constructs.

Phase 1 Phase 2 External Decomposition
] sy

N N N VN Output,
State 1 State 2 State 3 State 4 _ State 5 Sequence
...aw«».

T
brarneswmanasdonsony

1]| e
(Cons\t:/ruct 1) é{Construct 2)(------------------- (Cons\t:;uctﬂ(--E [Cons\t:;uct 3)

- o
Activity 1 . o il ..
Ctivity ; I::Activity 5 88~ | Activity 3 5 Activity 3 : Activity 1

Figure 6. Phases, ENS states, activities, and constructs (KL05)

Some ENS states have to be undertaken and other may not. A state that appears in a
negotiation for the first time is often mandatory and the next time it appears is often
optional. This is because when the user undertakes one state, she should be able to access

results of the past stafes in order to refresh her memory.

3.3 Sequence

During the negotiation, the set of ENS states changes; when new information becomes

available at one state, it can be accessed at later states. This leads us to introduce

28

mandatory and optional ENS states. After all activities in the mandatory ENS state are
performed the user may undertake other activities. That is, the mandatory ENS state

directs the user to another ENS state which may be mandatory or optional.

We can distinguish the ENS states which are accessible at any given time and which the
user can visit many times prior to completing all activities associated with the mandatory
ENS state. This set together with the relationships between its ENS states is called a
sequence. A sequence includes an initial ENS state, which is the entry point of a
sequence, a mandatory ENS state which is the exit point to a sequence, and also, includes

zero or more optional ENS states.

When a user enters a sequence she may move from its initial ENS state to any optional or
mandatory ENS state. She can repeat the activities associated with the optional, initial
and mandatory ENS states until she decides to exit to another sequence. To exit from one

sequence and enter another, the user must first complete the activities of the mandatory

ENS state.

When the user is in a given sequence, she has to be able to move to at least one other
sequence. The sequences in which the user can move to are directly reachable with the
exception that when a mandatory ENS state concludes the negotiation. This means that
every sequence has to be connected to one or more sequences and all the ENS states

inside a sequence are also “interconnected” to each other. Figure 7 describe the sequence

properties.

29

| : '
| Sequence B State | @ State | Sequence C
Stat (initial) (initial) State
ate :
(optional) State St : (gptnonal)
(mandatory) (man:a?or).5.... \ State
State T Exit L = y ™ (optional)
(optional) Exit M%® = Xi
Exit State
Exit (optional)
Sequence D State r -
State [(nitial and State - sequence
: —# (initial and ' State
t | mandatory)
(optional) Exit mandatory) e-L_) (optional)

Figure 7. An example of sequences and states (KL05)

In this figure, the user first enters the initial state of sequence B, after completing
sequence A as indicated with the circle. While in sequence B, she may move to any other
optional or mandatory ENS states. If she chooses to move to another ENS state, she can
always go back to the initial ENS state. When the user moves to the mandatory ENS
state, there are two exit points, one of which directs the user to sequence C and the other
to sequence F. If the user decides to exit B and proceed to C, she immediately arrives at
the initial ENS state of sequence C. This process repeats until she reaches to the
mandatory ENS state and chooses to exit C and enters D. There are sequences, such as D,
in which the initial and mandatory ENS states are combined. When user enters sequence
D, she may exit to another state immediately right after its completion. In sequence D,
there is only one exit point, which leads to sequence E. User arrives at the initial ENS
state of sequence E. In that sequence, there are only one initial-mandatory and one

optional ENS state. The user may move back and forth between the two states. However,

30

the mandatory ENS state does not have an exit point. This means that the user has entered

a “completion” sequence.

Note that a termination sequence is different from a completion sequence (sequence E). A
termination sequence must exist in any negotiation protocol and any sequence can link to
it. This is because at any given point of time, the negotiators should be allowed to

terminate the negotiation in which they are currently involved.

Sequences may have hidden initial and mandatory ENS states. They can only be activated
by triggering intervening events. The concept and purpose of intervening event are

discussed in section 4.4,

3.4 Intervening Event

A negotiation protocol of one single negotiator can be constructed using sequences and
states. However, negotiations always involve two or more negotiators. At one point
during a negotiation, the negotiators’ activities must be synchronized. For example, if
negotiator A accepts negotiator B’s last offer, A moves to the Agreement state by
accepting the offer. However, B needs to be notified about A’s acceptance. At the same
time, B also needs to be moved to the Agreement state. However, this action is forced by
the system because after A’s acceptance, both negotiators should be synchronized to go
to the Agreement state. In order for the ENS to move B to the Agreement state, the ENS

needs an event to occur in order to identify and trigger the action. This event is called

31

intervening event. Intervening event defines as any events during an electronic
negotiation that is not controlled by the user. This event is often activated by the user’s
counterpart of the negotiation. The construction of the theory behind intervening event
was revised during the implementation of Invite. We found that the initial proposed

theory [KSL04] could not be implemented.

Intervening event is activated by an event that is external to the system and is controlled
by neither the user nor the system. If the user enters a sequence that has hidden
mandatory ENS state, the only way to move on to another sequence is to wait for an
intervening event to occur. The intervening event occurs when an activity is completed by
an external entity. The external entity could be the negotiator’s counterpart or an external
system component such as negotiation software agent. When the system acknowledges
the presence of external information, it immediately activates the intervening event for
the negotiator. Activation of the intervening even causes one of the following three

functions to take place:

1. One or more hidden ENS states become optional in the current sequence and

subsequent sequences, which could be an optional ENS state of the current

sequence.

2. A mandatory ENS state becomes visible in at least one of the sequences following

the given sequence; or

3. An ENS state becomes an initial and/or mandatory ENS state for the current

sequence.

32

To motivate and describe the functionalities of the intervening event, consider a

negotiator who begins the negotiation later than his counterpart.

Functionality 1 is illustrated as follow: While the user reads the negotiation problem
(planning phase), her counterpart sends a message. The system acknowledges the
message and activates the “message display” ENS state in the negotiator’s current
sequences and subsequent sequences. This allows negotiator to access her counterpart’s

message and its follow up messages.

To illustrate the functionality 2, consider the following scenario. When the negotiator
reads the negotiation problem, her counterpart sends an offer because in this particular
protocol she is not allowed to read an offer without completing the phases prior the
“Exchange offers and arguments” ENS state. Once the system receives the external
information, it proceeds to inform the negotiator that an offer is waiting to be read. It also
explains why she is not allowed to read the offer at this particular moment, by making a
hidden optional ENS state visible (“offer received remainder”) to every sequence prior

the “exchange offers and arguments” ENS state.

To illustrate the functionality 3, we follow the scenario of functionality 2 example. Once
the negotiator reaches to “exchange offers and arguments” sequence, the “offer display”
ENS state becomes initial and mandatory. This forces the negotiator to read her
counterpart’s offer as soon as she is permitted to do so. The intervening event forces an
ENS state to be mandatory because the negotiator has to either accept or reject the offer

sent by her counterpart before she can continue in the negotiation. Accepting the offer

33

moves the negotiator to the agreement phase.

The intervening event provides flexibility to the system by allowing dynamic changes in
the protocol instance at any point in time. However, it creates another level of complexity
to implement such flexibility into the protocol. Note that an intervening event consists of

a set of rules. The question is “how to store and use infervening event rules in an efficient

manner?”’

34

4. State Diagram

In the previous chapters, we reviewed research in negotiation process theory and process
transformation. Some have adopted the Finite State Machine (FSM) approach to describe
negotiation process [KS99]. The advantage of using statecharts to model negotiation
process is that existing tools such as Statemate [HLNP90] are available for simulation
and analysis to help validate and render the model. Figures 8 and 9 illustrate e-

negotiation process in statechart.

The high-level protocol description given in Figure 7 is decomposed into two parts to
describe the transformation to state diagram. A sequence can be viewed as a superstate.
Each superstate contains a set of states. An ENS state is the equivalent to a state in the
statechart, The transition from one state to another is either a user-action or an
intervening event. In ENSs, which are web-based applications, user-action means the user

clicks on a web-link. Intevening event transition is always triggered by the system (ENS).

Figure 8 illustrates the state diagram of a protocol without intervening event. When a user
enters superstate B, she goes directly to state 1 which is the initial state of that superstate.
From the state 1, users are allowed to navigate to any of the states inside the superstate.
However, when she decides to exit that superstate, she must go to State 4, which is the
equivalent to mandatory ENS state, causing the user exits from B and enter the superstate
C. Some superstates have states that contain both initial and mandatory. Superstate D is

an example of such superstate where a user can exit the superstate right after entering.

35

SuperState A

(Sequence A)

]

1

|

~: (o e D (Sommanaa T7

(supegstata (Sdquence B)) SuperState D {Sequence D)

State 1 Y — State2 }

(initial) K..__.._._. {optional)

h, | State 5

(optional)

State 6 \Q)
oo v (initial and R
| mandatory) | %

i -
L

"___——1

S o~ SuperState C i
1 ! {Sequence C} H
N : e B S §
. State 3)é 1. = > statesa Y ULl | !
(optional) ! 1 (mandatory) | ! oL !

1

1

E

User action/ H
iy . g0 PHGH
composer . . Superitate F I

___________ SupgrState E
{Bequence F} {Sequence E)

User astion?
..... ey ot
. sequance . -

Figure 8. Protocol without intervening information

Figure 9 illustrates a protocol that includes an intervening event. It describes scenarios
that could happen when an intervening event occurs. A user can exit superstate B by her
own action or by her counterpart’s action. The decision maker, shown by a diamond in
the figure, in the exit point of superstate B decides which state in superstate C should be
visible to the user based on the exit action. If it is triggered by the user, state 7 is visible.

However, if it is triggered by the user’s counterpart, then state § is visible to the user.

When a user is inside a superstate, she can be forwarded to another state by his
counterpart action. Suppose that a user is in state 8. If her counterpart triggers an

36

intervening event that affects the user flow in the protocol, the user is automatically

forwarded to state 5. From state 5, the user can either exit the current superstate into

superstate D by going though state 10, or by her counterpart triggering intervening event.

In another scenario, a user may exit from her current sequence to different sequences.

Suppose now that the user is in superstate B. She can exit this state and move into

superstate D. However, she can exit superstate B by the intervening action by her

counterpart. The counterpart’s action will trigger the ENS to forward the user to

superstate E.

SuperBtate B _
(Sequance B) ‘

SuperState C {Sequsnce £)

User actionf get
page composer

........... > User actionf
get sequence
Oppanent
ey actions forward
$BGUENCY OF
slate

JR—Y

Send ¢
external : State 10
information i
oo - >| State 8 k > :

SuparSiate 8 I
{Sequence BY ‘ ':
]

SuperState D
(Sequencs D}

i State 5 may be invisible. If it is invisible, then it becomes visible when user

1 receives of sends a particular external information that

Figure 9. Protocol with intervening information

37

makes i visible to the user.

(Sequence D}

38

5. Software Engineering Models

5.1 System development life cycle

System development life cycle (SDLC) is a widely used software development
methodology. SDLC is a process that consists of 4 phases [PO1}. SDLC has several
models to develop software systems. Some of these life cycle models includes: waterfall,
rapid application development (RAD), joint application development, prototyping,
incremental, synchronize-and-stabilize, and spiral models. In this thesis, the prototyping

model is used. The phases in this model and their key purpose are as follows.

e Requirements specification and analysis identifies the needs of the end users. To

identify the requirements, mock-ups and prototypes are used,;

Architectural design identifies the roadmap, resources, and plan for the system;

Coding and debugging creates the system; and

System testing evaluates the functionality and usability of the system.

Requirements analysis attempts to gather all the prerequisites and needs to build a
system. Once the requirements are gathered, they are organized into groups. A prototype
is built to clarify the requirements or design uncertainty. This organization helps
analyzing the requirements and filters these which are unrelated, ambiguous and

unnecessary for the system and its users. The requirement specification phase attempts to

39

describe the system to be constructed as complete as possible.

The architectural design phase identifies the resources (i.e. servers, databases, and
interfaces), followed by the concrete designs of the structure of the system. The main
characteristics of a good web design include simplicity, support, familiarity, clarity,
encouragement, satisfaction, availability, safety, versatility, personalization, and affinity
[K98&]. The user interface should be simple and straightforward; users must have control
by not restricting the sequence of the flow; system is build from past experience that
users are familiar with; figure of icons should represent the feature of its use; users
should feel comfortable in using the system; all objects should be available at all time;

the system must be bug-free; and allow users to customize the interface [BS00].

The coding and debugging phase involves mapping the requirements and design into
program codes and components. Also, the developers should have a clear understanding
of the system based on the client’s feedback of the prototype. Tools selection, coding
guidelines, development environment are parts of this phase. The final product of this

stage is a system that meets the clients’ requirements.

Once the code has been created, the internal and external features of the system are
tested. Internal testing makes sure that all the program statements function correctly and

the external testing deals with the usability of the system for the user [B04].

5.2 ENS Requirements analysis

The analysis phase is a critical step in the development of a system. The main purpose of

40

analysis is to determine the need and the requirement of a multi-protocol e-negotiation

platform that supports multiple ENSs.

Based on the observation in previous experience building ENSs (i.e. SimpleNS, Inspire),

the major requirements of a multi-platform ENSs are as follows:

Provide a wide variety of protocols

e Allow easy construction of user-define negotiation protocol

¢ Support managing activities undertaken by negotiators

e Support re-usable negotiation components

e Support easy customization of user-interface

A way to identify the main challenge is the architectural design. It addresses the issue of
discovering functionality of the system and the resources used. Compared to existing
ENSs, Invite delivers a wide range of functionality to improving usability and
performance. Invite introduces the concept of customizable, user-defined negotiation
protocols. It not only implements single, fixed negotiation protocol, but a set of pre-
defined components using which a negotiator can compose a desired negotiation
protocol, in addition to a set of pre-defined negotiation protocols already defined in

Invite.

Based on the requirement analysis, Invife is designed in two parts;

41

1. Invite platform which controls negotiation protocols and ENSs; and
2. Invite ENSs which contains different run-time ENS engines.

Invite platform consists of a negotiation controller that manages ENS engines and
negotiation users. The negotiation controller gets user and negotiation information from
the platform database. The user and negotiation information provides the negotiation
controller with each of the negotiation instance, the parties that are involved, the
negotiation case and the side of a case that a party is assigned to. ENS engines in Invite
refer to negotiation protocols which allow adding and removing components for activities
easily. Invite ENSs contains all necessary components to construct an ENS. Dividing

Invite into components makes the system modular and its components reusable.

In this work, we use the Fusebox Lifecycle Process (FLIP) as the software engineering
method to guide the development of the system in various stages. We thus give an

overview of Fusebox and FLIP in the next section.

5.3 Fusebox and FLIP

Fusebox provides a framework and methodology for creating web applications
[TKLC+03]. It divides a web application into components, called fuses. The framework

supplies a web application engine to link and manage fuses.

Fuses classify the components based on their tasks and assign each a prefix. Fuses whose
names have prefix gry_ are used to obtain some data from the database and create a

record set. Fuses whose name has prefix dsp_ display mostly HTML files including the

42

record set created by gry_ fuse. Fuses with prefix act_ process data input or perform file
processing. Fuses with prefix lay_ display the structure of a web interface layout that

would be used to assemble a web page.

Once the components are classified, they are registered in a circuit under a fuseaction. A
Fusebox circuit consists of a single directory file. It does a few related tasks. An analogy
of a circuit is any circuits in a house. Circuit for kitchen is separated from the circuit for
the living room. In other words, Fusebox circuits are sorted by the task they perform.
Inside a circuit, there is fuseaction, which puts all related fuses together. For example, to
display a search result, we need to include a gry_ fuse to get data from the database, a
dsp__ fuse to display the output and a lay fuse to organizing the layout of the data. Each
user request is interpreted as a fuseaction. It is passed to the server file index.cfm by a
URL variable. The index.cfm parses the fuseaction variable and triggers the action that
user has requested. Note that index.cfm is the manager file. Every request from the user

has to pass through this file in order to be processed (see Figure 10).

43

Fusebox
{Hub}

Figure 10. Logical view of Fusebox

Fusebox also provides a software development methodology called FLIP. It consists of
the following steps: (1) wireframing, (2) prototyping, (3) application architecting

construction and (4) coding.

5.3.1 Wireframing

Wireframing constructs mock-up prototypes using key activities only. It is the simplest
prototype using plain text. The result of the wireframing does not have the look of final
product but provides a logical view of the system for the software architect. Figure 11
shows a wireframe of a Registration form page. It shows what fields the page contains in
the page (i.e., firstname, lastname, date of birth, username and password), and the

“submit button” links to a validateData.cfm page, and a home link to index.cfm.

44

A Registration Form - Microsoft InternetExplorer
CEle Edt View Favorites Tools Hep
| 4=Rack v @ B 2| Dsearch EFavorites Pveda P, D S M v 5 2

Address I@_’] C:\Documents and Settingskplaw\Desktop'Registraton Form.htm _ﬂ Peo

Googlev | vl Besearch web v | 8 | T Bhioesblacked Baucti | Fdoptions #

Registration Form

Function:

Display textbox {
First Name
Last Name
Date of Birth
Username
Password

}

Links:
Submit button to validateData.cfin

Home to index.cfm

Blbore [T KBy Computer

Figure 11. Wireframe example of registration

5.3.2 Front-end prototyping

Fusebox Prototyping is a fully clickable end product of the system. However, it does not
have back-end to process user inputs. The purpose is to show the final layout of the
product to the client to apply changes in the earliest stage of the development. The
prototype is usually done in html, based on the wireframe specification. A prototype of

the registration based on wireframe example is illustrated in Figure 12.

45

A} Gr\Documents and Settings' kplaw'\Desktop'Registration Formihta - Microsoft Trik vl (o %)

Eile Edit) View Fgvorites Tools Hep l-
o v o+ v @ N) Asearch Wravortes Pveda FI B DY~ FH D
Agidress !@j C:\Documents and Settings\kplaw\Desktop\Registration Form.htm _‘:_} @Go
Gaoglew |] @seachwed v | @ Pt Bb1sestiocked Bautorl | Bdoptions #
-~
Registration Form -t
First Name]
Last Name: l
Date of Birth: l
Username ‘
Password: i
Cancel l Submit l
Home
=
4 @Done .W.,f, ,,,,,,,, i ,,,,,, _EMT o y

Figure 12. Front-end prototype of the registration example
5.3.3 Application architecting

This module constructs the back-end design and Fusebox schema. It identifies the system
required fuseactions and organizes them into circuits. Architecting also breaks down the
fuseactions into individual fuses based on their tasks. For each fuse a document called
FuseDoc is created. FuseDoc is an XML documentation for fuse prior its construction.
FuseDoc provides the developers the necessary information to code a fuse without any
information of where the fuse belongs to. It includes a general task of the fuse, all input

and output variables, display format, etc. Figure 13 displays an example of a FuseDoc.

46

#jMacromedia Dreamweaver Mx 2004 - [Desktop /REGIST~1HTMY]
Fle Edit yvew [nsert Modify Text Commands Site Window Help

Ee 8 stardard | Brpanded Jlavour {1 FR

| REGIST 1, HTM™ '

[szl Code | <5 spit | i Design| Tite:

s R

~ XFA.successfulValidation: a FUSEACTION
XFA.failedValidation: & FUSEACTION
firstname: a STRING
lastname: a STRING
dateofbirth: a STRING
userName: a STRING
password: a STRING

|| END FUSEDOC |]|--->
<p>Registration Form</p>

<p>&nhsp ; </ p>
ttable width="703" helght="376" huovder="0">

<td widih="101"~ <Jvd>

You have made changes to the code.

To edit selection properties, click Refresh or press FS.

¢ Refresh

Figure 13. FuseDoc

5.3.4 Construction and coding

A FuseDoc is a recipe for building a fuse. A programmer writes a fuse according to the

FuseDoc. Each fuse can be tested independently as there should be no dependency among

the fuses. Once all related fuses are coded, the Fusebox proceeds to assemble them

together in a circuit and tests them.

47

5.3.5 Unit testing

Fuses can be tested individually for correctness because each fuse is independent of
others. This allows many programmers to work on the same project concurrently. For
instance, a simple application that displays some data from the database to a web
browser, requires three fuses; a query fuse (gry_) that contains a SQL statement that
inserts data into a recordset variable, a display fuse (dsp_) that interprets the recordset to
html, and a layout fuse to provide the display structure of the data. Testing of query fuses
(gry_) does not depend on the display fuse because its input or output does not affect any
other fuse. It is true that the display fuse (dsp_) input is from a query fuse (gry_);
however, the task of the display page is to present a variable which is the output of a
query fuse and displays to the web browser. Because its input is a variable, the display
fuse does not need to be tested along with the query database. Its main task is the display

the data properly.

5.4 Model-View-Controller

The Model-View-Controller (MVC) concept is a programming design pattern invented
by Xerox PARC [TKLC+03]. It decomposes software into three types of objects; models,
views, and controllers. View objects manage the graphical output of an application.
Model objects manage the action and the data of the application domain. Controller
manages the interactions, including, a mouse and keyboard input from the user to the

system.

48

Web application server Database
(ColdFusion) (MySQL)

Graphic generation

Web
server Computation :
(“S) Negotiation system
Content query database
Page composer | ' \ : ‘

View

Protocol navigator

HARAEE AR MA I RACHART AR RGO RN

Page format

.
...

Figure 14. Invite MVC architecture

Figure 14 illustrates the MVC architecture of Invite. In Invite, the MVC controller
includes two parts: negotiation controller and page composer. MVC controller gets a
GET or POST HTTP request from users. A HTTP request includes a negotiation protocol
state number which a user would like to visit. Negotiation controller and page composer
takes the request and proceeds to select the appropriate model and view. Negotiation
controller commands the model to validate and update the users’ state using protocol
query against the negotiation platform database. It then pushes the output to the view to

display it to the users. The view for the negotiation controller consists of a protocol

49

layout which displays a customized layout according to the negotiation system a user

uses, and protocol navigator which displays states a user is allowed to visit.

On the other hand, page composer commands the model to execute the content of the
requested state. The content may include the need for using graph generation,
computation, content query and negotiation database. The output of the model is pushed

to the page format, which is the view for page composer, to display it to the user.

At the implementation level, we store the application files into three different folders, one
for each of the layers. Because Fusebox methodology already separates application files
into display, action, query and layout, it is straightforward to adapt Fusebox to the MVC
model. All display (dsp_) and layout (lay_) files are stored in the View folder, and all
action (act_) and query (gry_) files are stored in the Model folder. The controller folder

contains a circuit along with all fuseactions called by the users.

5.5 Database modeling

The process of designing a database starts with gathering and analysis of the data which
identifies the data as well as the relationships among data. A structure (schema) of a
database, that is, its schema, is identified during the modeling and normalization of the
data. Several database modeling approaches have been proposed. (i.e. ODL, network,
hierarchical, and E/R). The most widely used approach is the Entity-Relationship (E/R)

model which is a graphical language.

50

- An E/R diagram is a graphical representation of the structure of the database [U89]. It has
three main components: entity, relationship and attributes. The entity set component is a
set of entities (objects) with similar properties. Attributes describe the properties of entity
set. Relationships describe the type of the connection between entities. An example of
E/R diagram is presented in Figure 15. This diagram has two entity sets: UserInfo and
History. UserInfo has six attributes and History has three attributes. There i1s a
relationship that links these two entities together. The diamond at one end and the circle
at the other means there is a 1-to-many relationship from UserInfo to History. If both
ends have are diamond, the relationship is a 1-to-1. If both ends are circle, the

relationship is many-to-many.

The underlined attribute or set of attributes, in general, indicates the key of an entity.
Every entity set or relationship set has a unique primary key. However, an entity may
also have a foreign key used to relate its attributes to the attributes of an entity from
which the foreign key (FR) comes from. This situation is also illustrated in Figure 15.
The User_id attribute is the foreign key in entity History taken from entity UserInfo. This
foreign key may have repeated values in History and it takes place when there are many

“histories” for one user (uniquely identified with User_id).

51

Userlnfo h

W Firsthlame

< LastName
< DateOfBirth
< User_id

< UserMName
< Password_2

<

Figure 15. E/R diagram

52

History -

¥ History_id

< Userlnfo_FirstName (FK)
< User_id

@ AccessTime

& SessionSpent

6. Design and Implementation

6.1 Design and implementation challenge

The difficulty in the design and implementation of Invite is to translate from a high-level
negotiation process model described in Section 2.2 into a very concrete and detailed
negotiation protocol which is represented as a set of rules controlling the system
execution and interaction with its users. Although a framework for the construction
negotiation protocols have been proposed by Kersten, Strecker and Law [KSLO04;
KSL204], during the development a number of issues required further specification and
modification. In particular this work led to the revision of the concepts—discussed in the

chapter—of a controller, page composer and intervening event.

The interdependence of the negotiating parties requires synchronization of exchanged
messages and offers. This is a difficulty that has to be addressed. Even though this
prototype of Invite is not meant for real-time negotiation, the system has to deal with
situations in which both negotiation parties are logged in and are sending offers to their
counterpart at the same time. Another challenge is to keep track of the states of the users.
For instance, a user who was in state 4 right before she logged-out, should begin in state

4, once she logs in again. Yet another is to keep the system modular, so that components

can be reused in different protocols.

6.2 System architecture

Invite is a 5-tier web application that includes a web browser technology in the

53

presentation or the GUI tier, a web application server in the presentation logic, business

and data access tiers, and a database management component in the data tier.

Page composer Components

Negotiation —
T Platform
(= [/

N

<N

controller

Protocol instance ‘

. . : Extern
Presentation logic| Business l.te al
Presentation tier tier & data access tier applications Data tier
Browser Web application server oS DBMS

Figure 16. Prototype system architecture

Figure 16 illustrates the architecture of the Invite prototype developed for the purpose of
this thesis. The browser under the presentation tier displays HTML pages, formatted by
the presentation logic tier, to the user and receives user input which it passes to the web

application server.

Business tier is where we place all the custom business logic. It is divided into four parts:
negotiation controller (presented in Section 7.2.1), page composer (Section 7.2.2),
components (Section 7.2.3), and protocol instance. Negotiation controller and
components compose the business tier of the system. Negotiation controller uses
components to control the execution of negotiation protocol instances and executes
requests from page composers. Page composers compose the presentation logic tier that
delivers the output to the presentation tier. It gathers and formats the display layout of

components. The components contain business logic of the platform and ENSs which run

54

on the platform. Components also serve as the data access tier to communicate with the

data tier.

The DBMS is the data tier of the system manages two or more databases. One database is
dedicated for the Invite platform which different protocols reside and the other(s) are
complementary databases to store Invite application (negotiation engine). Because Invite
is a multi-protocol platform, it allows two or more different ENSs (e.g., SimpleNS-like,
Inspire-like) run at the same time. Each ENS stores its users’ data separately. This

facilitates the analysis and collection of data from negotiators.

6.2.1 Components

A component is the basic building block of Invite. Each component corresponds to an
activity described in Section 4.2. A component is a piece of code that receives input and

generates output. There are two categories of components in Invite;

1. The platform component which is associated with the general functionality of the
system, process model and its protocol translation (i.e. login component, user

update component, activate intervening event component), and

2. The Invite ENS component which is used to build negotiation engines. (i.e. send

message component, negotiation problem display)

A component is also an application interface. In this case, it connects Invite to external
programs, such as graphic generator and utility calculator. The flexibility obtained by

dividing the system into components makes the system extensible. In addition to using

55

the components provided by Invite, the system can also use components from other

applications.

6.2.2 Page composers

Page composers are used to gather and organize components for the purpose of
constructing a single web page. A page composer is a program that sets the layout and
defines the order of the execution of the components. Because components are reusable,
different page composers can invoke the same components. This contributes to

reusability and increases efficiency of the system maintenance.

The modular architecture of Invite and its reliance on protocols allow for the use of
protocols that differ in a few components and have slightly modified page composers.
This is useful in experimental studies. For example, one can study the impact of graphical
elements of the interface on the negotiation process and outcome. In one study, a page
composer may invoke a graphing component and in another it may not. This feature is
also useful for internationalization of the system. It allows using the same components

but in different language.

Page Component1 Application
Activityl g — — —P C1 output Page T

composer

i
C2 output Component2 H)(DataJ

Figure 17. Component page composer

Figure 17 illustrates components and page composers association. Components process

56

input and generate output. They also access and use data stored in the database.
Components are invoked by the page composer and the output they produce is inserted on
the web page which is sent to the user. Note that components do not always correspond to
a single activity. For example, in Figure 16, only component 1 could be a system
component that links to an activity. Component 2 could be a platform component, such as

footer or header.

' 6.2.3 Negotiation controller

The negotiation controller is an intermediary program that updates and executes protocol
instances. The negortiation controller runs a copy of an initial protocol, that is, a protocol
instance. This protocol instance is constructed prior to the negotiation and it is updated
dynamically to account for all activities of the negotiators, which are undertaken at any
given moment. The negotiation controller obtains information, such as the current
sequence and ENS state of the negotiation from the URL variables of a requested HTTP
protocol. Based on this information the negotiation controller invokes the proper page
composer for execution. Page composers are visible only to negotiation controller. They

can be added to the system without changing the implementation.

The design of the components/page composers/negotiation controller allows easy
expansion of negotiation systems. It does not impose coupling among the components.
Components can only be invoked by page composers, and page composers can only be
invoked by the negotiation controller. This design allows the system architect to

introduce new components or page composers at any time with minor modification to the

57

system. All components and page composers are indexed in the Fusebox circuit.

Negotiation controller also controls access to page composers. For example, suppose a
user logs into the system for the first time, so she is in the readPublicCase state under
sequence 1 shown in Table 2, and then the user logs out. Next time, when the user logs
into the system and tries to access the readPrivateCase page composer, the system
prevents her from accessing readPrivateCase because her last ENS state visited was
readPublicCase. The reason is that every HT'TP request is handled first by the application
server, which forwards the request to the negotiation controller, which in turn checks the
request against the current ENS state of the user in the database. Her attempt fails since
the record shows that she is still in sequence 1 while she is requesting to go to some ENS
state in sequence 2. The negotiation controller displays an error page to inform the user.
Another function of the negotiation controller is to get from the database all possible

states and exit points in a sequence and to interpret them in the user interface, represented

by links.

6.3 Protocol example

A simplified instance of the protocol representation in the database is shown in Table 2.
For simplicity, we assume that the initial ENS state is a mandatory state so that as soon as
the user enters a sequence, she is allowed to go to other sequences if there is an exit. Each

row in the table represents a sequence in the protocol. We have the sequence_id, the ENS

states, and exits.

Also in the database, we have an indexed pool of all available page composers. For

58

example, readPublicCase is a page composer which contains a text field component to
display a case. In the first sequence (sequence 1), the initial ENS state invokes
readPublicCase page composer. In that sequence, there is no other optional ENS state;
however, there are two exits, exiz_2 and exit_6. That means, the user can only exit to
sequence 2 or 6 and if she chooses to remain in the sequence 1, she can only see the page
composer readPublicCase. Suppose, she chooses exit_2, then she is moved immediately

from sequence 1 to sequence 2.

Table 2. SimpleNS protocol

User_id | Sequence_id | Initial State Optional_State Exit_point
1 1 readPublicCase N/A exit_2, exit_6
1 2 readPrivateCase readPublicCase exit_3, exit_6
1 3 sendOffer / Message readPublicCase, exit_4, exit_6
readPrivateCase
1 4 readOffer / Message readPublicCase, exit_3, exit_5,
readPrivateCase, exit_6
history,
agreement
1 5 Agreement readPublicCase,
readPrivateCase,
history
1 6 terminateNego readPublicCase,
readPrivateCase,
history

Because the initial ENS state of sequence 2 invokes readPrivateCase, the content
collected and formatted by the readPrivateCase composer is displayed to the user. From

here, she has an option to go to readPublicCase page composer or to go to sequence_3 or

59

sequence_6. Note that the readPublicCase in sequence_2 is not associated with the same
ENS state as readPublicCase in sequence_1 even though they are constructed by the
same page composer. The latter is readPublicCase state in sequence 1 whereas the
former is readPublicCase in sequence_2. Continuing the negotiation, the user chooses
exit_6 which terminates the negotiation. She is then moved to sequence_6, which has no
exit. This means that the user is forced to remain in the sequence and the negotiation

terminates there.

6.4 The database design

The data model of Invite platform is shown in the entity-relationship (E/R) diagram in
Figure 18, 19, and 20. There are twenty tables in the platform database to manage and
support the negotiation systems. The database contains users’ information, initial protocol
schemata, and the actual user protocol instance tables. For clarity of the presentation, we
omit the initial protocol tables. Initial protocol contains an original core model of a
protocol. As discussed in Section 7.2.3, the initial protocol is copied to the user protocol

instance tables when users request a negotiation.

At the beginning of a negotiation, the user protocol instance is an exact copy obtained
from the database, which is then modified and adapted during the negotiation based on

her interaction to suit the user.

The database does not contain any table related to specific negotiation. For example, the
table that stores a history of exchange offers between two negotiators is not stored in this

database. Each ENS has its own database to store such information. The platform

60

database is designed purely to support and control negotiation process model, protocols,

and protocol instances.

61

R

HRIPRAE DK Y

SRR
IR T

) alyes
wiar

crot ¢
PR S SF SN
T R B S
o - AR

B s

. SR
ity ¢

it ¥
ped e

M. wndairpngadinafass

T4 &

g e
e
s

" o

K prELEE PR+ T

e
XK AT
#IGE
Xaearre
= R

r

9 ¥

SR
Gk A
Mgt ol ¥

[& AT
% AV IRATL Y §
Fuadatd

L T

PEETENC OO

Figure 18. Invite data model

62

B C D

v ?actuallog - : -] e -
Yuserid | | actualog d fgsdeld 777 ¥ case_id
< festhame & user jd (o sideNarme 2 caseName
v lastName < negatistioninstance_id N sideHeader 4 caseHeader
W usSrname I seguenceiNumber 1% sidePrivatelnformation < casePublicInformation
- password < side_id i sideFooter i caseFooter
< emal I protocol_id
& userGroup 2 ENS d
@ wserPermission | @ stateNumber
Tm— 1S Ingtime

F H

Ll yaa:tn.:alrxlzau;;cutIa‘ci!:sriﬁ‘sst..:;z:.rs . far:tualENS
¢ attuauncamlnglntavmng |d ;\e actuaiNegotistionstatus jd | ¢ actusiNegotistioninstance _id] actuaENS
& informationType_id < logoutTime " negotiationName i @ actUaENSName
'@ informationTypePricrity < sequenceburmber % reachAgreementFlag w header
,v doneFlag w stateNumber 2 acceptedOffiorDate i footer
o logtime 2 interveningWatngFlag
4% acceptedFlag
@ terminationFlag
I J K
actualax;tpmnt B - lactualSequence v lactualoptional v
' exitSequenceNumber 'Y sequenceNumber ‘f _optionalStatehumber
v outgoinginformationType G intialState % optionaldutgoinglnformationType
% mandatoryState "% hiddentinkFlag

< intialSequenceDesaription

L M

lnfarmamnType . |availsblestate B -

¢ |rafo:rfét(anTvpe id ;‘o‘ avallableState_id

& informationTypeName
& informationTypeNotficationMessage
I~ irformationTypew atingMessane i
(¢ infarmationTypePrionty !u mappingToPageComposer
i descriptionPageCormposer
te hiddentinkFlag

Figure 19. Invite data model (cont’)

63

N 0] P Q

incominglnterveningForwarding ’outgoingAdditionalOptional *i potocd v incomingAdiitionalOptional v

@ protocol_jd & pratocol_id i protocol_id » protoced_id

< informationType _id < informationType_d % protocoame % infarmaonType, id

« Secuencelumber & outguingirdormationType v protocoDescrigtion 2 sequencebumber

i stateumber - suerceNumber & DSN 3 IncomirgaddtionalOptionalstate
% outgoingAdditionalOptionalState i outgoinginformationType

R S

‘incominglnterveninglritidhandatoryUpdate v JncomingPermissiblelntervening v
‘% protocol_id < protocol_id

% informationType_id & information Type_id

‘% sequencehumber A sequenceNurrber

i initigState @ parmitiedSequenceumber

' mandatoryState

T U V

intidOptiona v| intidSequence v} ntidBdtPont v
7 optionalStatehurmber 7 Sequencehumber | | ¥ extSequenceNurber |
" optiondlOutgoinginformatior Type |« initialState "% outgonginformation Type
S hiddenLinkFlag “ mandatoryState

< sequercelescription

Figure 20. Invite data model (cont’)

Every table in the database has a primary key (PK) define unique identifiers for the
records. Tables also contain foreign keys that relate them to other, tables. We next briefly

describe the data stored in the platform database tables is briefly discussed.

The Userlnfo table contains personal information such as username, last name, first

name, password, and email of all negotiators in the system. The primary key is user_id.

The ActualNegotiationlnstance table stores information about the assignment of
negotiation cases, side_case, protocol and ENS to users. The primary key of this table

includes the attributes actualNegotiationlnstance_id, and protocol_id. This is because a

64

negotiation instance is assigned to two or more users and they can be assigned to
different protocols. This table is linked to User table by the user_id. This table,
representing a relationship, also assigns a negotiation case and the side to a user. The
attribute dsn is used to identify the ENS that the negotiators are negotiating in. If a

negotiation is complete, an attribute end assumes value 1. Otherwise, its value is 0.

The actualNegotiationStatus table contains the run-time status of a side of negotiation.
Note that once a user is assigned to a negotiation case, she is referred by her side_id
rather than by her user_id. This facilitates future extension of the system to deal with
multi-bilateral negotiations in which a side has more than one user. Attributes side_id,
negotiation_instance_id, and protocolState_id form the key for this table.
sequenceNumber records the current negotiation sequence the user is in and the
stateNumber attributes records the current ENS state in this sequence. When Intervening
event occurs, InterveningWaitingFlag is assigned a number greater than 0. This number
is the sequence_id that the system should send the user to a particular sequence when she

is permitted.

Table actualSequencel 1s the main negotiation protocol instance table. It is decomposed
into the following tables after we normalized it, actualOoptional, and actualExitPoint
after normalization. The key includes the attributes side_id,
acutalNegotiationlinstance_id, sequenceNumber, and protocol_id. sequenceNumber
corresponds to a sequence in the process model theory. Each sequence has one initial
ENS state and one mandatory ENS state. Note that this table links to itself by the

mandatoryState_id. This occurs when a user exits one sequence to enter another.

65

Table Availablestates stores an index of all available page composers (see section 7.2.2).
Its primary key is generic. Table actualNegotiationStatus links to this table to get the
proper display page composer. Attribute stateName stores the name of the page
composer. The names should allow protocol designer to identify the content of the page

composer whereas the mappingToPageComposer attribute stores the actual fuseaction

names of the page composers.

Table actualOptional table stores the optional ENS states of sequences in protocols. This
table is the result of the normalization of relation actualSequence normalization. It uses

the set of side_id, actualNegotiatonlinstance_id and protocolState_id as its primary key.

Table actualExitPoint stores one type of the exit point (see section 4.3). It links to the
actualNegotiationStatus table to go from one sequence to another. The table primary key

is the combination of side_id, negotiaton_instance_id and protocolState_id.

Table Protocol table stores a list of available protocols. The attributes starting_state and
ending_state stores the starting and ending states of each protocol in the
UserInstanceProtocol table. Its primary key consists of the collection of attributes

side_id, negotiaton_instance_id and protocolState_id.

IncomingInterveningForwading, incomingiInterveninglnitialMandatoryUpdate,
incomingAdditioanlOptional, outgoingAdditional Optional, and
incomingPermissibleIntervening are lookup tables of intervening event. They indicate

when to trigger intervening event and what to trigger.

66

Table actualLog stores the history of a user protocol instance. It records every sequence
the user has got into during a negotiation in a chronological order. Its primary key is the
combination of side_id, negotiatonInstance_id, and actualNegotiationStatus_id. Attribute

accesstime stores a timestamp, with the obvious meaning.

6.5 Protocol construction steps

The protocol construction in Invite consists of the following four steps:
1. Identification of the negotiation stages;
2. Separation of the negotiation stages into activities;
3. Mapping of the activities to existing list of page composers, and
4. Population of the Invite database.

These four steps are briefly described below.

The first step in constructing protocols identifies the negotiation process and stages.
Recall that according to the adopted process model (see Section 2.2); all negotiations
follow a process which consists of 5 phases. Not these stages described in section 2.2 are
always used in a negotiation. To construct a negotiation protocol, the protocol designer

selects the stages needed for that protocol.
Step two separates negotiation stages into activities: negotiation process stages can be

67

divided into activities. Negotiation activities are the tangible components of a

negotiation, In Invite, these activities are represented in Invite by at least one component.

In step three, activities are mapped to list of existing page composers. Once the protocol
designer identifies all the components needed, the designer proceeds to map them to
existing page composers. A page composer is a set of components. The list of existing
page composers is an index of components in a particular page composer. If a component
needed in a protocol is not found in the list, new components and/or page composers can

be created and added to the list.

In the fourth step, the Invite database is populated. Once all page composers are
identified, the last step is to populate the database. The design of the database in Invite is
such that it supports the negotiation theory discussed in section 4. Each of the elements,
sequence, initial, mandatory and optional ENS states and exit points in Table 3, has its
corresponding table in the database. Initial, mandatory states link to their respective page

composer whereas exit points link to a sequence in the AvailableState table.

6.6 Prototype

In this section, we introduce the prototype system we have developed for Invite. Recall
that according to the FLIP development methodology, a prototype comprises only the
user interfaces. A full scale of the prototype with all functionalities was built after we
were satisfied with the user interface, the look and like of the system. In our
implementation, the user interface consists of web pages for which we have used

Macromedia Dreamweaver MX 2003. Dreamweaver is a web design software tool for the

68

development of graphical user interfaces. Figures 21 and 22 illustrate two different page
composers that include the same component. The snapshots show one of the benefits of a

page composer, namely the reusability of the components.

Figure 21 shows two Invite components: send offer component (on the left) and send
message component (on the right). The same two components are invoked by a different
page composer and therefore they are differently presented to the user. That is, the use of
two different page composers in Figure 21 and 22, respectively results in different page
layout. In Figure 21, as compared to Figure 21, the send message component is moved to

the left-hand-side and the send offer component is moved to the right-hand-side of the

screen.

69

View Favortes Tools Help

G
P E gwg - :iz i}’i"j v;‘l ’ ‘;:)Search f ' Favorites @Media {"% / o j

»{@ -
Send Offer and Message

You can counter-offer via INVITE with your counterpartin the current . . N N -
negetiation by constructing an offer below and pressing the "Send" You can communicate via INVITE with your counterpartin the current negotiation
button,

by entering a message below and pressing the "Send" button,

2l

Your utitlity values for this offeris: 0

Price($US) m
Quantity(unit) [200 =}
Delivery Time(day)]-1——:']
Warranty(day) 60 ~

Clear] Send l

i Issue ‘& ¢+t Negotiation Eﬂj i gw’"i it Send a f%&j 1t Package
i3

A : bt
History Questions ? Message

Links

f it Back to (2" 1t Make 4 ¥ Option
[& A E
the Case and Offer

3 e L
Rating Rating

WRating

_ K
18] Dore [T g My Computer 4

Figure 19. Send offer/message page composer

70

) INVITE: Send Message and Offer to Opponent . _,_]gj_g;j
Fle Edit ‘jew Favorkes Tools Help ff‘,&’
PR LR . I e, - : o Y [
%:g Back v §.0 -+ ij %@j f;} ; e J Search e Favarites @ Media @ *;32' v ‘f“gf’ A} LJ
Agdressl dsp_sendoffermessage.cfm :_1 Qo EGOGngv [”lﬁi -
Fs
Send Message and Offer
You can counter-offer via INVITE with vour
¥uu can communicate via INVITE with your counterpart in the current counterpart in the current negotiation by
negotiation by entering a message below and pressing the "Send" button. constructing an offer below and pressing the
"Send” button,
Your utility values for this offeris: 0
Price($US) !10 '[
Quantity{unit) ’400 '1
Delivery Time(day)]1 '[
Warranty(day) 60 -
hd
Clear Send l
. e, J M\'ﬁ N A g
fM ”} 1t Make | kY T; B & K !E@" it Send
“ - = Negotiation 4 ot Bac & o
and Offer Option Rating Issue Rating Hisgtory Questions ? a Message Package Rating _J
-
| &) bone ; [T [T4 vy Computer A

Figure 20. Send message/offer page composer

In the prototyping process, we realized that a page composer cannot have more than one
html form such as the one shown in Figures 23 and 24, because every form needs a
submit button to send user’s input to the system. Send offer and Send message
components have their own submit button. If they are shown on the same page composer,
only one input from the components can be submitted. To overcome this problem, we
divided a form file to contain three sections (files), the form header, form content, and

form footer. The form header section contains the opening state of a HTML form

71

(<FORM action="xx" name="xx">). The section form content stores the actual
component 1o be used such as send offer and send message components. The form footer
includes standard form buttons such as reset and submit. To construct a page composer
that contains two or more forms, we proceed to include the header file, the actual Invite
components, and then we close the form with the footer file. This way, we can include as

many forms in a page composer as required, rather easily.
6.7 Invite ENSs

Each ENS has its own database. The database stores negotiation cases in a particular ENS
and the data that are used solely by the ENS. For instance, a SimpleNS-like ENS database
contains tables such as Case, and Side_Case to store the negotiation cases, and tables
Offer and Message to store negotiation offers and arguments sent by users, in addition to
the Case, Side_Case, Offer, and Message, an Inspire-like ENS database includes,

User_issue_preference and User_option_preference tables.

In order to set up a negotiation instance, a negotiation protocol and a negotiation case are
assigned to the parties involved. Each of the ENSs in the Invite platform is assigned to a
particular protocol. For instance, a SimpleNS-like ENS protocol is different from an
Inspire-like ENS protocol. Moreover, each ENS has its own set of negotiation cases. This
is because the content of a negotiation case is often related to the features of the ENS. For
instance, a negotiation case that highly depends on an analytical tools component does

not work on an ENS that has no support for analytical tool such as SimpleNS.

6.7.1 SimpleNS-like

72

SimpleNS-like ENS is a replica of the SimpleNS system developed by the Interneg
Negocourse. Negocourse is an online negotiation course offered to students around the
world. SimpleNS is a simple ENS that has no analytical support. It provides only the

media to exchange offers and messages between negotiators.

6.7.2 SimpleNS protocol

The SimpleNS protocol described in Section 4.1 is produced below again for

convenience.

Table 3. SimpleNS protocol (reproduction from section 4.1)

Sequence_id Initial_State Optional_State Exit_point

1 Pre-questionnaire 2

2 readPublicCase N/A 3,7

3 readPrivateCase readPublicCase 4,7

4 sendOffer / Message readPublicCase, 5,7
readPrivateCase

5 readOffer / Message readPublicCase, 4,6,7
readPrivateCase,
history,
agreement

6 Agreement readPublicCase, 8
readPrivateCase,
history

7 terminateNego readPublicCase, 8
readPrivateCase,
history

8 Post-questionnaire

6.7.3 SimpleNS database

73

Figure 21 illustrates the SimpleNS database. The database is linked to the Invite’s
platform database through the attributes side_id, negotiation_instance_id, and user_id.
The region in white represents the database in SimpleNS engine database and the region

in dark represents the Invite platform database.

i
question_id
¢ user_id (FK) ¥
"% oftmternet 3 yearbor
1 difficulty < LastName +% gender)
1% dearness — G usEAME | e ‘3' occupation
1% featurelke < password) - born
'@ featurenolike % emal i v reside
i language % groups ; % longresided
"o msghelpful “¢ DErmissions (f othercountry
{4 bargan_1 - language
Ev bargan_2 Q partnercountry
14¢ bargain_3 \; patrtner:arne
i< 12 Interne
:z Ei:z::::; ! 9 oftintemet
@ satisfaction - v negoexperience
i= matchoutcome i usenss
i contol % difficuty
< calnego e agreement
% usersatisfaction ;@ warstoffer
| partnercountry —,‘—~~«——~—~- 2 expectation
¢ . : tion_instance M
T e |
i guesspartneridentity “¢ protocol d .
i partner_1 . ¢ user_lq (FK) | negotiation_case v
i partner.z - % negotiation_name e
q artner—a 1 accepted_offer_date 3 wser id (EKS
:w zartner_4 . — B i 9 sided : i< protocal_id (FK)
‘% partner S /% protocol id (FK) ;v systemdsn 79 negotiation_instance_id (FK)
i partner_6 % negotiation_nstance_jd (FK) ¢ end) | case_title
'% partner_7 @noofssues @ case d 1 introduction
i partner_8 =+¢ no_of_offers ° © 12 end_text
'% partner_9 i case_text_intro i
'« partner_10 1< case_text_body
, partner_11 & case_text_end
1w partner_12 < case_id
< suprise < side_name
i< suprise_what
. % workpartner .
;% interested R
| % leampartner i offer_issue_option_id
{i“ partnerprionty o e e ® I protocol_id (FK)
I negoskil User messages .Y !¢ negatiation_instance_jd (FK)
‘% negoprepare ¥ message_Id 1< user_id (FK)
1+ actualnego ‘¢ protocol_id (FK) % negotiation_id
1% usesystem « negotiation_instance_id (FK) % offer_id
< comment w user_id (FK) | & Issue_id
« hegotiation_id < option_id
*+ message_datetime 1< user_option_utlity_value
% message_text < offer_send_date
< Issue_id 1% reply_to_message
< opion_d i< reply_to_offer
% offer_id 14 efficiency_ndicator
< reply_to_message "% opponent_option_utlity_value
@ reply_to_offer " recipient_id
«~ recipent_id < message_id
v offermessage_id I3 offermessage_id
w side_id (o side id

Figure 21 SimpleNS-like database

74

Table Pre_questionnaire stores the pre-questionnaire filled by the user at the beginning
of a negotiation. The questionnaire is about user’s negotiation and internet experience. It

uses question_id and user_id as its primary key

Table Post_questionnaire stores the post-questionnaire filled by the user at the end of a
negotiation. This questionnaire is about user’s experience with the ENS. It uses

question_id and user_id as its primary key

Table Negotiation_Case stores the description of cases. Every negotiation instance is
assigned to a case. A case description contains public information for negotiators. This
information gives the negotiators a general background of the case. It is shared among all

participants. The primary key is case_id.

Table Side_Case stores the description of each side of the case. For instance, a bilateral
negotiation has two sides whereas a multi-lateral negotiation has n sides. Each side has its
own private information that affects their negotiation judgement of negotiators’
preferences. The primary key of this table is side_id. It is linked to attribute case_id in

table Negotiation_Case.

Table User_Message stores the messages during the exchange of offers and arguments
phase. It records the message sent, the id of the user who sent the message, and the time

that was sent. Its primary key is message_id.

Table User_Offer stores the offers during the exchange of offers and arguments phase. It

records the offer sent, the user who sent the message, and the time it was sent. This table

75

can store the offer as a text message or it can be linked to the option table which contains

a pre-defined set of options to choose from.

6.7.4 SimpleNS-like components and page composers

SimpleNS-like ENS is a simple ENS. It uses components such as pre-questionnaire, post-
questionnaire, send message, and send offer components. To organize the components,
we use the following page composers: readPublicCase, readPrivateCase, pre-

questionnaire, sendOffer-message post-questionnaire and history.

The ReadPublicCase page composer displays general information of a negotiation case

that is shared by all negotiation parties.

The ReadPrivateCase page composer displays private information of a negotiation case
that is given to a particular negotiation party. This information is not shared to other

negotiation parties.

The Pre-questionnaire page composer displays the content of a questionnaire in a form. It
then submits the user input to the verification component to check for errors. If an error is
detected, the system sends an error message to the user. If the input information is
validated, the system proceeds to insert it into the database. The output of this page
composer 1s the success or failure flag. This page composer uses the following
components, dsp_prequestionnaire, act_prequestionnaire, act_verifyprequestionaire and

qry_prequestionaire.

The SendOffer-message page composer displays two text boxes, one for composing

76

message and the other for composing offer. Once the message and/or offer are submitted,
it proceeds to verify whether the text is empty. If that is the case, it returns with an error.
If there is no error, it passes the data to a component which inserts it into the database.
The output of this page composer is the success or failure flag. This composer also uses
agreement and terminateNego components represented by buttons. The agreement is
triggered when either side of the negotiation accepts his counterpart offer or counter-
offer. Once the agreement button is pressed, the negotiation is terminated. At this point,
no other exchange of offers can be made. The teminateNego component is activated if
either of the negotiation parties terminates the negotiation without reaching an agreement.
This page uses the following components, dsp_formHeader, dsp_sendMessage,
dsp_sendOffer, dsp_formButton, dsp_formFooter, act_verifySendMessage,
act_verifySendOffer, qry_InsertMessageOffer, dsp_agreement, dsp_terminateNego,

act_agreement, and act_terminateNego.

The Post-questionnaire page composer displays the content of the post-questionnaire in a
form. It then submits the user input to the verification component to check for errors. If
an error occurs, the system sends an error message to the user. If the input information is
validated, the system proceeds to insert it into the database. The output of this page
composer is the success or failure flag. This page composer uses the following
components: dsp_postquestionnaire, act_postquestionnaire, act_verifypostquestionaire,

and gry_postquestionaire.

The History page composer displays the history of exchange messages and offers in the

chronological order. This page composer has the qry_history and dsp_history as its

77

COMpPONents.

6.8 Inspire-like ENS

Inspire is an advance version of SimpleNS. It not only includes the communication
support but also the analytical support. It offers a combined analytical tool to help
negotiators formulate preferences, reservation levels, and strategies. The combined
analytical tool is composed of four Invite components; (1) Issue rating, (2) Option rating,
(3) Package generation, and (4) Package rating. The analytical tool components are

discussed in section 7.8.3.

6.8.1 Inspire-like protocol

The Inspire-like ENS includes not only all negotiation sequences shown in SimpleNS

protocol but also the rating negotiation sequences. The Inspire-like protocol is shown in

Table 4.

78

Table 4. Inspire protocol

Sequence_id |Initial_state Optional_state Exit_point |Intervening (Intervening
event trigger |event
1 readPublicCase N/A 2,6
2 readPrivateCase readPublicCase 3,6
3 Issue rating readPublicCase, 4
readPrivateCase
4 Option rating readPublicCase, 5
readPrivateCase,
5 Package rating readPublicCase, 6
readPrivateCase,
history
6 sendOffer / Message readPublicCase, 7,8 6 6
readPrivateCase,
history
7 Agreement 9 7 7
8 Terminate negotiation 8 8
9 Post-settlement 10
10 Post-settlement sendOffer/ | readPublicCase, 11,8
Message readPrivateCase,
history
11 Agreement

6.8.2 Inspire-like database

Inspire-like ENS is illustrated in Figures 24 and 25. The database, as in SimpleNS, is

linked to the database in the Invite platform through the attributes side_id,

negotiation_instance_id, and user_id. The region in light represents the database in

SimpleNS ENS database and the region in dark represents the Invite platform database.

79

“nego_dance_graph ¢
g user_id (FK)

¥ negotiation_id

"% protocol_id (FK}

% negotiation_instance_id (FK)
« dance_graph

. oreation_date

fuser_utility

¢ utility_id

LQ protazul_'idm(“[:kw)wmm PR

% negottation_instance_id (FK)
- hegotiation_id

i user_id (FK)

‘g utiity_value

"+ option_id

. utilty_datel

‘% utley_date2

.4 Utility_date3

‘¢ negotiation_id

@ pratocol_id (FK)
% negotiation_instance_id (FK)

Y ariginal

+4s Creation_date

.

MC BGE;&;I’IHIE\;')

"¢ user_jd (FK)
¢ package_id
i opponent_id

"% protocol_id (FK)

CC R0 e G O

FirstName
Lasthame
username
password
email
groups
permissions

negoti

¥ user |

d (K

% negotiation_instance_id |

-

.@ negotiation_instance_id (FK)
i package_utlity_value

S efficiency_indicator

i% negotiation_d

‘user_issue_preference

+ @ issue_rating_id

% protocol_jd (FK)

! negotiation_instance_id (FK)
% user_id (FK)

(s issued

« issue_rating_value

{5 negotiation_id

i% issue_rating_date2

‘4 issue_rating_date3

<« issue_rating_datel

< side_id (FK)
“w systemdsn

¥ end
% case_id (FK)

FTETETE TS

,,,,,,,,,,,,,,,,,, < @ case_text_intro

reservation_values

¢ reservation_id

& protocol_id (FK)

@ negotiation_instance_id (FK)
% user_id (FK)

issue_id

option_d

reservation_value
reservation_date
negotiation_id

LS ol SR &

S

user_id (FK)

protocol_id (FK)
negotiation_nstance_id (FK}
side_id
1ssue_description_shart
no_of_issue_options
issue_value_type
issue_description_long

CRLL L OO G

| optians

. ¢ option_id

% user_id (FK)
| protocol_d (FK)

-4« negotiation_instance_id (FK)

1+ issue_id

! ¢ option_descriptior_short
| option_value

is} option_description_long

Eside_case
¥ side_id
< no_of_issues
% no_of_offers

-

«» case_text_body
case_text_end
case_id

@ side_name

negotistion_case v

Figure 22. Inspire-like database

Yraseld
< case_title
< introduction
@ end_text

80

. id
@ negotiation_instance_id {FK)
negotiation_id
post_time_date

after

ineasy

instructionseasy

msghelpful

utiityvalues

graphused

graphinform

graphinfime

graphinflass

psudedq

difforig

settlemechreal

agrsat

e e e e e 0w

disclid

cguess
krewopp
oppinformative
opppersuasive
opphonest
oppexploit
appcoop
surprised
workwopp
seeopp
predictopp
understoodopppriorities
practice
prepare

nego

caseund

1'% protocol_id (FK)

]

pre_guestionnaire_data

% negotiation_instance_id (FK)
user_id (FK)
negotiation_id
pre_time_date
yofb
gender
occupation
cborn
creside
firstlang
knewoppc
knewoppid
1acc

imore

nexp
nsshefare
caseund
expect

rev

efrndly
wigissues
wtgoptions
ofr

opp_ofr
ofrwmsg
opp_owmg
msg
opp_msg
agr

score

opt
ps_rchd
ps_used
opp_ps_u
ps_ofr
opp_ps_o
nego_len
opp_ng_|
opt_scr
dineexp
conf_user
meanofft_len
opp_mnal
meanmsg_len
opp_rmnmi
act_dine
off 1
opp_offl
off 2
opp_off2
off 4
opp_offd
off_al
time_dis

O R E LN VLN DOCLEDLEDOELOEL R OEEROEOOLELEDOUELOEROECLOCLCOE

user_offersmessages M

CHELLOL L O L OO %

negotiation_instance_d {FK)

user_id (FK)
negotiation_id
message_datetme
massage_text
1ssue_id

option_id

offer id
reply_to_message
reply_to_offer
recipient_id
offermessage_id

Figure 23. Inspire-like database (cont.)

81

% protocal_j

negotiation_instance_id (FK)
user_id {FK)

negotiation_id

offer_id

issue_id

option_id
user_option_utlity_value
offer_send_date
reply_to_message
reply_to_offer
efficency_indicator
opponent_option_utility_value
recipient_id

message_id
offermessage_id

i offermessage_id

- protocol_id (FK)

;@ negotiation_instance_id (FK)
<& isoffer

@ ismessage

% user_id (FK)
< offer_send_date

The tables: Pre-questionnaire, Post-questionnaire, Negotiation_Case, and Side_Case, are
reused from the database of SimpleNS. This is because SimpleNS and Inspire have similar

negotiation process.

Table User_Message stores the messages exchanged during the exchange of offers and
arguments phase. It includes the message sent, the user who sent the message and the

time it was sent. Its primary key is message_id.

Table User-Offer stores the offers given during in the exchange of offers and arguments
phase. It includes the offer sent, the user who offered, and the time it was done. The offer

is either stored as a text message in this table.

Table Issues stores pre-defined issues for a negotiation case. It includes attributes such as
issue_description_short, issue_description_long, issue_value_type, and
no_of_issue_options. Attributes issue_description_short and issue_description_long
record the short and long format of the issue description. Attribute issue_value_type
stores the type of the issue. An issue can be qualitative, categorical, or quantitative.
No_of issue_options stores the number of options in each issue. Its primary key is
issue_id, and the attributes side_id, protocol_id, and negotiation_instanca_id are foreign

keys.

Table Option stores pre-defined options for issues in a negotiation case. It includes
attributes such as option_description_short, option_description_long, and option_value.
Attributes option _description_short and option_description_long store the short and
long format of the option description. Option_value stores the value of the option. Its

82

primary key is option_id. Attributes issue_id, side_id, protocol_id,

negotiation_instanca_id are foreign keys.

Table User_Issue_Preference stores the user preference values over an issue in the issue
rating activity. It has three attributes, issue_rating datel, issue_rating_date2,

issue_rating_date3, to store the date of a change in issue preference value from the user.

Table User_Option_Preference stores the user preference values over an option in the
option rating activity. It has three attributes, option _rating_datel, option _rating_date?2,
option _rating_date3, to store the date of a change in option preference value from the

user.

Table Package_Utility stores the user preference value over a package in the package
rating activity. It has three fields, package_rating_datel, package_rating_date2,
package_rating_date3, to store the date of a change in package preference value from the

user.

Table Graph stores the directory path of the graph that shows the history of the exchange

of offer and counteroffer of a party.

Table Nego_Dance_Graph stores the directory path of the negotiation dance graph, a
graph which marks the changes in the rating accepted by each negotiator that shows the

history of the exchange of offer and counteroffer of both parties.

&3

6.8.3 Inspire-like components and page composers

Inspire-like page composers include not only all SimpleNS-like page composers but also

additional page composers that serve as analytical tools for the negotiators.

The ReadPublicCase page composer displays general information of a negotiation case

that is shared by all negotiation parties.

The ReadPrivateCase page composer displays private information of a negotiation case
that is given to a particular negotiation party. This information is not shared by other

negotiation parties.

The Issue rating page composer displays a table with pre-defined negotiation issues.
There is a textbox next to each issue that a user can use to input his preferred issue. The
negotiator has to distribute 100 points among all issues. Whenever a negotiation enters or
leaves an issue rating textbox, the distribution rating point calculator shows, at the bottom
of the rating table, the remaining points to be distributed. A submit button is located
below the rating table. Once the negotiator submits her rating, a JavaScript checks
whether the textbox fields are empty, negative, or include non-numeric values, and the
sum of all ratings is different than 100. If any of the above conditions is true, the page
displays an error message to the negotiator. The Javascript prevents negotiators to submit
faulty information. When the server receives the issue ratings from the user, it proceeds
to update the appropriate fields in the database. This page composer uses the following
components: dsp_issueRating, act_issueRating, dsp_distributionRatingCalculator, and

qry_issueRating.

84

The Option rating page composer displays a table with pre-defined negotiation options.
There is a textbox next to each option which a user can use to enter the value preferred
for that particular option. The negotiator has to distribute 100 points among all the
options related to an issue. Whenever a negotiation enters or leaves an option rating
textbox, the distribution rating point calculator shows, at the bottom of the rating table,
the remaining points to be distributed. A submit button is located below the rating table.
Once the negotiator submits her rating, a JavaScript checks whether the textbox fields are
empty, negative, or non-numeric values, and the sum of all the ratings is different from
100. If any of the conditions above is true, the page displays an error message to the
negotiator. When the server receives the option ratings from the user, it proceeds to
update the appropriate attributes in the database. This page composer uses the following
component: dsp_optionRating, act_optionRating, dsp_distributionRatingCalculator, and

gry_optionRating.

The Package rating page composer displays a selected set of packages. A package is a
combination of all options in an issue. The total number of all packages grows
exponentially in the number of issues and options. For that reason, only selected
packages are shown in the page. The selection of the packages is done by a java class.
The program represents the option with 1 and 0 in a matrix, where 1 means an option is
selected and O means otherwise. The program generates a square matrix in such a way
that the number of packages selected is equal to the sum of the number of options in all
the issues. For instance, if a negotiation case has 4 issues and each issue has 3 options,

the script generates 12 packages. A square matrix is required in order to compute the

85

hybrid conjoint analysis process that required using the least square method. The selected
packages are displayed along with their respective rating. This package rating displays
initially in the page composer is calculated by the sum of the option rating taken from the
issue and option rating. Then, the negotiator has an option to modify the initial rating of a
package. Once the negotiator submits her rating, a JavaScript checks whether the textbox
fields are empty, negative, or have non-numeric values. If any of these conditions is true,
the page displays an error message to the negotiator. When the server receives the
package ratings from the user, it proceeds to readjust the option rating based on the
hybrid conjoint analysis process and proceeds to update the appropriate attributes in the
database. This page composer uses the following components: dsp_packageRating,

act_packageRating, act_matrixGenerator, act_hybridAnalysis, and qry_packageRating.

The Pre-questionnaire page composer displays the content of a questionnaire in a form.
It then submits the user input to the verification component to check for errors. If an error
occurs, the system sends an error message to the user. If the input information is
validated, the system proceeds to insert it into the database. The output of this page
composer is the success or failure flag. This page composer uses the following
components: dsp_prequestionnaire, act_prequestionnaire, act_verifyprequestionaire and

qry_prequestionaire.

The Send offer-message page composer displays 2 text boxes, one for composing
messages and the other for composing offers. Once the message and/or offer are
submitted, it proceeds to verify whether the text is empty. If that is the case, it returns

with an error. If there is no error, it passes the data to a component that inserts the data

86

into the database. The output of this page composer is the success flag or the failure. This
composer also uses agreement and temrinateNego components shown as buttons. The
agreement is triggered when either side of the negotiation accepts the offer or counter-
offer by the counterpart. Once the agreement button is pressed, the negotiation is
terminated. At this point, no other offers can be exchanged. The teminateNego
component is activated if either negotiation party decides to terminate the negotiation
before reaching an agreement. This page uses the following components:
dsp_formHeader, dsp_sendMessage, dsp_sendOffer, dsp_formButton, dsp_formFooter,
act_verifySendMessage, act_verifySendOffer, qry_InsertMessageOffer, dsp_agreement,

dsp_terminateNego, act_agreement, and act_terminateNego

The Post-questionnaire page composer displays the content of the post-questionnaire in a
form. It then submits the user input to the verification component to check for errors. If
an error occurs, the system sends an error message to the user. If the input information is
validated, the system proceeds to insert it into the database. The output of this page
composer is the success or failure flag. This page composer uses the following
components: dsp_postquestionnaire, act_postquestionnaire, act_verifypostquestionaire,

and gry_postquestionaire.

The History page composer displays the history of exchange messages and offers in the
chronological order. Inspire-like history page composer has a graphical output of the
offers and counter-offers made by the negotiator. The graphical output has two-axis
charts: the vertical axis displays the user preference value of a package and the horizontal

axis displays the time it was submitted. The components of this page composer includes:

87

dsp_history, ac_ graph, dsp_graph, and gry_history.

88

7. Example of Invite Negotiation

In this chapter, we describe an example of SimpleNS-like ENS in Invite. Two users
negotiate for Millennium and Halcion. Millennium represents an insurance company and
Halcion represents an advertising company. Halcion is seeking compensation for the
losses of not being able to backup its clients’ data because Halcion’s server went down

for four days.

Halcion accesses Invite from the login page described in Figure 26. She inputs the pre-

assigned username and password.

Al Invite - Microsoft Internet Explorer = v Ve o Ll00X]
Fle Edit Yew Favortes Tools Help 5 b '
@Sack v ﬁm;‘l - B&] Lﬂ :3[’}i} Search 'ﬁ}:{t’avorltes QB t’ ::;» v y ﬁ

Address @ http:/fmis.concordia.cajprojectsfinvite 1 310findex.cfm :i Go ; Links ”i
Google » jmysq subquery l @searchwed - | 3 | Cherablocked B sl | Bl options & | [F] mysal [subguery :

-

Please login:
Username: I
Password: I
login l
smuin o ves o 62 interNeg irviteimeb.concordia.ca Powered by BEInvite ‘ﬂ
& Done i | 4D Internet p

Figure 24. SimpleNS login page

Once Halcion is authenticated to access Invite, the system acknowledges that she is using
SimpleNS as shown in Figure 27. If she has two or more negotiation instances currently
assigned to her, a list of assigned ENSs would be shown in the drop down menu.

&9

However, if she has no current negotiation instances, the system would not display any

ENS names in the drop-down menu.

«3 Invite - Microsolt Internet Explorer s ITEA T L =100

Ble Edit Yiew Favorites Jools Help ; :};

T

@Eack - ‘xj 4 Lf] L@ j:\I.fE Ssarch *gj}’Favorits {:ﬂé i"i' ’a;;, v ;wi «3

Address [@j http:{{mis.concordia.cafprojectsfinvite1 310findex. cfm?method=invite. selectNegotiationInstance&CFID=11171&CFTOKEN= 10004434 :j Go ELinks ”2

Google ~ lmysql subquery _ﬂ, £ Searchweb ~ | | Eherblocked f] avtort | @ options $ | () mysql subqﬁerv

BINVITE

g
GRS ot iavion s

We identified that you have more than ene negotiation instances running.
Please select one of them in the list and click the "submit” button to go to the negotiation.

]SimpIeNS1 vl
submit]

wuensin 2o 55 Y interNeg irvite@jmsb, concardia.ca Powered by BBlnvite

] pone P e temer

BN

Figure 25. SimpleNS negotiation selection page

After she selects the ENS, Invite presents to her the current negotiation status as shown in
Figure 28. The negotiation status describes the negotiation process. In SimpleNS, there
are three phases: Negotiation Preparation, Offer Exchange, and Agreement. Each phase
may also contain activities. For example, General Information and Private Information

are sub-tasks in the Negotiation Preparation phase.

90

~§ Invite - Microsoft Internet Explorer

File Edit Yiew Favorites Tools Help

@Back v 5«} - Eﬁ:{ @ :jj , ‘;;3 Search ;’1{ Favorites @1 gﬂ;- :i;r i - ‘ ''''' }j eﬁ

Addrecs]@j http:f{mis.concordia.cafprojectsfinvite1310findex. cfm?method=invite. processhegotiationInstance :} s Links ”g

-

Your NEGOTIATION_NAME negotiation with: millenium DEADLINE
HNovember 1, 2004

Instructions go here
land here. M
Simp}

Click here to proceed

Negotiation preparation
O General information
O Private Information

Offer exchange
O Make an offer

Agreement
erovia 0 Yoo ve Q) InterNeg invite®msb.concardia.ca Powered by BRLnyite
|
&1 bone [T [Tternet y;

Figure 26. SimpleNS status page

On the next screen, Halcion is presented the Public Case, the first ENS state in the
negotiation illustrated in Figure 29. Public Case presents the general information of the
current problem between the negotiators. This information is shared by both parties. On
the right-hand-side of the screen, links to other ENS state are shown. However, at this
moment, Halcion cannot send any offer to Millennium yet because according to the
protocol in SimpleNS, the negotiator needs to read the Public Case and the Private Case

before she can send an offer. Halcion now moves to Private Case.

91

Fle Edt View Favorites Tools Help B)’gﬁ;

/Z§ Invite - Microsoft Internet Explorer

Address l@ http:f{mis.concordia.ca/projectsfinvite 310findex.cFm?method=invite_pageComposer.ReadPublicCasefsequenceNumber=18CFID=111718¢ zj Go §Links »

| @WI Eherablocked fE] sutoril | [options #

i»

INVITE

B HELOGT TATION Uil e

Your HEGOTIATION_NAME nagotiation with: millenium DEADLINE
November 1, 2004
instructions go here
and here. N
Simpl
Read Public Case » Private information
s Terminate
Electronic Courthouse demo case ° Change Negatiation
instanoe
Public case: e Logout
illennium Public Relations LLP is a large European advertising agency headquartered in Dublin, Ireland. It purchased a mission-critical suite -
of online software from Halcion Software Inc., a mid-sized ASP located in Amherst, California. Last month, Halcion's server went down for
almost 4 days and, as it was then discovered, a number of their clients' data had not been properly backed up. Halcion's insurer had denied
coverage in these circumstances and Millennium was seeking compensation for its losses.
Mr. Robbins, Creative Director for Millennium Public Relations LLP and Mr. Suter, V,P, of Client Development for Halcion Software Inc.
represent their companies.
Jeremy Robbins is Millennium’s Creative Director. His budget and staff have really taken the hit at Millennium and the CEO has given him the
lead on getting the matter resolved. Jeremy does just about everything online these days and he advises Millennium's counsel that he wants
to arbitrate - online. Jeremy finds The Electronic Courthouse on the Web and his counsel checks it out, They are impressed by The Electronic
Courthouse's international Roster and wholly web-enabled sclution and decide to pursue this route. They suggest The Eilectronic Courthouse
to Halcion, Halzion's counsel is reluctant to agree to arbitration but the V.P, of Client Development, Ron Suter, insists. Ron can't afford to
lose Millennium as a client. Halcion knows it's going to take a big hit on this and is looking for & fair and informed assessment of the damages
and to move on. After researching the web site and service, Halcion agrees to use The Electronic Courthouse,
ot ca voi o G interNeg nvite@imsb.soncordia.ca Powered by BBlnvite o

& C T T e e 4

Figure 27. SimpleNS public case page

In the Private Case activity, private information of the problem, shown in Figure 30, is
presented to Halcion. This information is not shared with her counterpart, Millennium.
As Halcion moves to this ENS state, Invite adds two extra links to the menu: Send
Message or Offer, and View History. The generation of these links are triggered by the

protocol. Halcion moves to Send Message or Offer ENS state.

92

© Lloid
E3

£} Invite - Microsoft Internet Explorer

al;ﬂﬁdk Yiew Fgvortes Tools Help

Qe -1 J - [X] (@] | Dsewen Ggrwars @) (2 @) B

Address 1@ http: ffmis.concordia.cajprojectsfinvite1 310findex. cFm?method=invite, JJageComposar.ReadPrivateCase&sequenceNumber=3&CFID=111‘:“] EYGo Lisks ¥

-

0% %)
p‘,g.
{7 as)

INVITE

MEGST TATIEN Ly e

Your NEGOTIATIOM_MNAME negptiation with: millenium DEADLINE

Hovember 1, 2004
Instructions go here
land here. ‘
[simpaBl
Read Private Case o Genera
infarmation
Electronic Courthouse demo case ® Send Message or
Gffer
Private Case: Halcion * View History
e Terminate
Halcion places its highest premium on customer retention. It needs to keep the level of compensation in check, but hang on to its customers, * Chanee e
Its losses can be apportioned over its entire client base and some of the loss is insured. Halcion is wiling to cover Milennium's out-of-pocket Megvtiation instance
costs, provided that the claims for damage to reputation and similar amounts are dropped. * LogQut
Issues and options
Coverage of Milennium out-of-packet costs (31 million}: 0%; 29%; 50%; 60%; 75%; 80%; 90%; 100%
Millennium damage to reputation: Do nothing; Halcion private apology; Halcion apology to selected M. 55 Halcion public
apology
Halcion damage to reputation: Do nothing; Announcement of 99.99% reliability ; Millenium support; 99.99% reliability announcement
and Millennium support
pacount <o v v G interNeg irvite@jmsb.concorda,ca Powered by BRInyite
ArTIAL FMSMAME simnlaNS .‘J

&} Done 757777 4 intemet

3w

Figure 28. SimpleNS private case page

In the Send Message or Offer, shown in Figure 31, a form and two text areas, Message,
and Offer, are presented to Halcion. She introduces herself to Millennium in the Message,
text area on the left and constructs her first demand to Millennium in the Offer, text area
on the right. She submits the first message and offer. A confirmation of the submission is

displayed in Figure 32.

93

Invite - Microsoft Internet Explol

Fle Edt View Favortes Jools Help)]?p

@Back - @ - L’ﬂ L."":(j :;‘}{}?Seardx ‘&:fg’r‘avorites &4 ;”:v @, - j ‘i"

Address l_éi] http:ffmis.concordia.cafprojectsfinvite 1310/index.cfm?method=invite, JsageComposer.constructOfferMessage&sequenceNumber=3&CFID=]_'_] Go links

».

Goagle - lmysql subquery ﬂ’ B Search Wx’—l:l‘~ . @ ‘ Ehg74 blocked f} seosih l @Optiuns & I @ mysql subquery

S2INVITE

MELGE 1ATIDH S TEMY

I»

Your NEGOTIATION_NAME negotiation with: millenium DEADLINE
Hovember 1, 2004
Instructions go here
and here. X ¥
Simpl
There are two boxes here: a message box and an offer box. The message box is used for free form communication {e.g., ask questions, o Gomsral information
< Lo
present arguments and counter-arguments, complain or support). The offer box is used for exchange of offers {complete or partial); which N Fjri'u"a‘re infarmation
the counter-part may reject, ask for another offer, propose a counter-offer or accept. o View History
You do not need to write in both boxes; it is your choice to use only one of them or to use both, N 4
» Terminate
» Change Negotiation
Instance
» Log Gut
Hi Millennium, I demand 90% of :_j
I am Halcion, I the out of pocket
represent Halcion cost.
advertising
company.
= =
Submit
tasisn s vou w0 InterReg invite@msb, concardia,ca Powered by BRInvite

& Done T 7777 [#ntemet

Figure 29, SimpleNS send offer and message page

94

g =1 .31

Ztovite - Microsoft Internet Explorer

Fle Edt Yew Favortes Took Help e
Qo - -) B b e From @0 L B B |

Bddress l%} http:f{mis.concordia. cafprojectsfinvite1310findex. cfm :_1 Y so lLinks »
Google - [mysal subquery ~] @psearchweb - | B | Bhovebocked] st | options & | B mysat [T) subruery

-

| SBINVITE

HELGT AN BV e

DEADLINE

Your NEGOTIATION_NAME negotiation with: millenium

November 1. 2004
Instructions go here
jand here.
SimATERN
our message and offer have been successfully send.
Your Message is: Your offer is: o Generd
Hi #tillennium, | am Halcion, | represent | demand 90% of the out ireformation
Halcion advertising company. of pocket cost. o Prigate
information
e Send Message or
Offer
* ew History
e Termnate
» Change Megotiation
Instance
e Loz Qut
wnsior? i vox o 48 IberNeg inviteld jmsh.concordia,ca Powered by BRInyite =l
] [T T T T e toternet 4

Figure 30. SimpleNS send offer and message confirmation page

At this point, Millennium logs into Invite. Intervening event from Halcion is triggered
because Halcion sent an offer and message to Millennium. There are two scenarios which
could happen. (1) If Millennium is prior the Send Offer and Message ENS state, Invite
notifies Millennium that she received an offer and/or message from her counterpart;
however, she cannot read them before she completes the current ENS state. This is shown
in Figure 33. Millennium has to finish Public Case and Private Case before she can read
Halcion’s offer and message. (2) If Millennium is currently in the Send Offer and

Message activity, Invite presents to her Halcion’s offer and notifies her. This is shown in

Figure 34.

95

fle Edt Vew Favorkes Took kel K
G G) B] P Syreens @] L H B

Address [£)

= 2 [
cuments and Settlngs\,kplaw‘\Desktopunvtte htm _:_] Go | Links *

-

B INVITE

Mbieiad TATICN WYSTEMY

DEADLINE
Hovember 1, 2004 ..

Your HEGOTIATION_NAME negntiation with: halcion

Instructions go here

and here, . .
IS!mﬂ%ﬁl

IYou received one or more offers andfor messages.
However, you cannot read them before you complete the current activity.

Read Public Case

® Private Information

* Terminate
Electronic Courthouse demo case & Change Negotistion
Iristance
Public case: ¢ LogOut

Millennium Public Relations LLP is a large European advertising apency headquartered in Dublin, Ireland. it purchased a mission-

!g} Done E,W E,,.,,.._ [

ailL

Figure 31. SimpleNS intervening event 1

te - Microsoft Internet Explorer N
fle Edt Vew Favortes Tools Help : ; | &

@B&ck - Q u L} IJ}:‘) Search {‘Pavontes Q@] 2 ,: 5 G . j 3

ﬁ.gd'ess r@] http:{{mis.concordia.cafprojectsfinvite1310findex.cfm?method=invite_pageComposer, readoFFerMessage&sequenceNumber-B&CFID—1IITJ -] Go i tnks

]| @searchweb ~ | g8 | Eberablocked B sutori | B Options 9

TE

RFEQE TAVITN avTERS

Your NEGOTIATION_NAME negotiation with: halcion DEADLINE
November 1, 2004 __J

Instructions go here

| simgR]

You received one or more offers andjor messages.

Messages Offers e veneral nformation
From: halcion, To: milenium, When: 2005-03-15 07:14:56.0 * Private information
" e ” . #» Send Message or
Hi millerinium, § am Halcion, | represant Halcion advertising Offer

COMPAY,

e iew History

® Yiew agresment

* Terminats

quewgeq ® Change Negohation _ﬂ

] T T T T e nteret 4

From: halcion, To: millenium, When: 2005-02-11 11:50:26.0

Figure 32. SimpleNS intervening event 2

96

After Millennium reads Halcion’s offer. Millennium decides to terminate the negotiation.
Both negotiators are moved to the Termination ENS state shown in Figure 35.
Termination is intervening event. When Millennium triggers Termination, Invite

automatically moves Halcion to Termination ENS state as well.

ZjInvite - Microsoft Internet Explorer e g, =l00 X
Ble Edt Yew Favortes Iods Hslp 1 ‘ ¥

h e * = o b [
N { e vl m, Ty e 2
Qo -) - ¥ @] on| PDsewar yrewnes @) (1L W - B
Address Ié} http:{fmis.concordia.ca/projectsfinvite1 31 0findex. cfm?method=invite _pageComposer.Termination&sequenceNumber=999&CFID=11171&:'} Go ILinks »

Google ~]mysql subguery | @ searchweb | g3 | Bhevablocked] avomn | fJoptions & | B mysal [subquery

i»

A Henul tation Lrsiins

Your NEGOTIATION_NAME negotiation with: millenium DEADLINE

Hovember 1, 2004 ~

instructions go here
and here, .
Simpi :

The negatiation is terminated wr
& Show transcrpt

» Change Megotiation

interaction with the counter-part is not available any more.

Instance
o Logout
wueisa 30 1o o A ititerNeg nwite@ imsb.concordia.ca Powered by BEInyite ;}
€ T e ntemet 4

Figure 33. Termination

97

8. Conclusion and Future Work

8.1 Conclusion

In the conclusion of Chapter 1, a postulate was made that both real-life negotiations and
experimental studies require a software platform which would be capable of hosting
many ENSs so that whenever negotiation software needs to be built, we could pick and
choose components and assemble them like Lego blocks. The research described here is
an attempt to prove that such a concept is possible; that indeed one can build an ENS
from earlier constructed components. We have shown that building such a system
requires a detailed plan which describes the role and place of every component in the

negotiation process. This plan is the negotiation protocol.

In Chapter 2 on related work, we discussed the fact that the existing ENSs do not provide
enough flexibility. They have been proposed to mainly serve a single and fixed protocol.
When comparing different ENSs’ features, the use of multiple systems is not practical
because their different graphical user interfaces may disturb users’ perspectives on using
a particular feature. This makes it difficult to isolate a particular feature of different ENSs
to conduct a comparison. Our goal in this thesis has been to overcome those limitations,
and thus a multi-protocol negotiation platform Invite has been proposed. Invite is capable
of running multiple and different protocols concurrently. In addition, the components of

Invite can be easily reused in different protocols.

98

The main contributions of this thesis can be summarized as follows.

This research established a link between negotiation processes comprising phases and
activities and e-negotiation protocols. Negotiation process models are well known but ill-
defined. They identify main activities, which people undertake, and group them into
phases. The use of software and the division of labour between the negotiators and
software requires formal and detailed representation of all the activities and their

relationships.

The representation of negotiation processes has been achieved by breaking the process
into sequences, negotiation states and transitions between them. Through the decoupling
of individual ENS user activities we achieved higher degree of flexibility, because the
users do not need to coordinate their activities. This, however, required that the
coordination be undertaken by software. In effect we had to revise the theory behind the

interaction between negotiators by adding intervening events.

The high level representation of protocols was implemented as a set of rules into a
database schema. A prototype system was designed and implemented in MySQL
database. Apart from the platform database, each of the ENSs running under Invite has its

own database to store negotiators’ negotiation data. This approach makes addition of new

ENSs simpler.

Invite, a multi-protocol negotiation platform, was coded based on the database schema.
Both the content and flow, which governs the interaction between users and the system,

are database driven. The reuse of coding was carried out by taking advantage of Fusebox

99

framework and methodology of building web-based applications.

The replication of the two existing ENSs, Inspire and SimpleNS, under Invite was
developed as a proof of concept for the use of multi-protocol negotiation platform. These
systems have their own negotiation protocols, yet they share some of the components

they use.

In summary, this project involved:

1. Conceptualization of the principles of a software platform for e-negotiations;

2. Relating the structure of face-to-face negotiation processes and the interactions
between its components to the software requirements and interactions mediated

by software;

3. Formulating the principles of e-negotiation protocols and representing them as

database structures;

4. Proposing an e-negotiation platform architecture and specification page

composers, platform components and the Invite ENS components;

5. Implementing and testing the Invite platform;

6. Formulating two e-negotiation protocols based on SimpleNS and Inspire, and

designing and implementing the ENS components for these protocols; and

7. Testing the Invite platform with its two ENSs systems.

100

The result of this project is Invite, an experimental e-negotiation platform capable of
hosting many e-negotiations, which are based on different protocols. Recently, this
platform has been modified to support multiple e-negotiations processes conducted
simultaneously. The modifications also included setting-up negotiations, user
registration, and the consideration of privacy and security issues. While these changes are
necessary for the use of the Invite platform, the platform itself and its page composers
and components are being used in the experimental setting. The result of this work is now
being used by researchers. Issues discussed in the following sections will allow for the

platform to be tested in real-life e-negotiations.

8.2 Future work

Currently, Invite is limited to running bilateral negotiations only, and also restricted to
two ENSs running under it. In addition, it is a long and tedious process to set up
negotiation instances due to lack of platform administration features. The following

section will provide some suggestions for future work based on the current state of Invite.

1. Expand support to multilateral negotiations

In order to support more protocols and ENS, Invite needs to be able to support multi-
lateral and multi-bilateral negotiations. The design and implementation of Invite was

meant for running only bilateral negotiations. Our database model and the protocol

controller could be improved in several ways.

101

2. Adding new negotiation systems

While we incorporated two ENSs under Invite, more ENSs should be supported, in
general. A suggestion would be building an ENS with support of agents. In designing the
platform, we did not consider incorporation of intelligent agents to play a role into ENSs.
The role of an agent is a question should it be part of an ENS, or whether it is as a
mediator or purely a helper for a particular negotiation party only. It requires more work
to determine how these roles should be implemented in Invite to fit its existing platform

database and implementation.
3. Add administration page

Administration page is request in order for end-users to setup easily negotiation
instances. Currently, administrators need to manipulate directly the platform database to
setup a negotiation instances. This process consists of four steps: First, a record needs to
be input in the User table to register a new user in the platform. Second, the chosen
protocol for the negotiation instance needs to be copied from the repository tables:
initialOptional, initialExitPoint, and initialSequence to the actualExitPoint,
actualOptional, and actualSequence tables. Third, an entry needs to be inserted in the
actualNegotiationInstance to match negotiation parties involved in the instance. Finally, a
record needs to be inserted in the actualNegotiationStatus in order to keep track of the

negotiator progress.

Administration page will make the setup process faster and easier. It will contain a web

interface which can be used by administrators to create, delete, and modify users and

102

negotiation instances. After administrators input the required information, the setup
process can be done by running a SQL script which will automatically generate required

records in the database.

4. Tune database query

Our implementation uses MySQL version 4.0.2 which does not support sub-queries. It
requires a loop function in order to simulate a subquery which slows down the overall
execution time of the processes in the system. MySQL version 4.1 supports subqueries.
Once the development database server upgrades to version 4.1, we will rewrite current

queries, using loops to allow sub-queries

5. Improve the GUI

Invite’s GUI has basic functionalities; it requires more work to make the interface more
attractive and user friendly. We believe a “good” graphic design will make the users

interaction with the negotiation system a more pleasant experience.

6. Add more pre-fabricated page composers

Currently, we have built page composers for SimpleNS and Inspire. In order to expand
the use and creation of new ENSs under Invite, new page composers need to be built.
This will make the construction of new ENSs more flexible and convenient when users

want to create their own protocols.

103

References

[BS0O0] Ben-Natan, R. and O. Sasson, IBM Web Sphere Starter Kit. New York:
McGraw Hill, 2000.

[BKOO] Benyoucef, M. and R. K.Keller. Towards A Generic E-Negotiation
Platform. in Proc. of the Sixth Conf. on Re-Technologies for Information
Systems. 2000.

[BKSO03] Bichler, M., G. E. Kersten and S. Strecker. "Towards a Structured Design
of Electronic Negotiations." Group Decision and Negotiation, 12(4): pp.
311-335, 2003.

[B0O4] Burgess, G., International Online Training Program On Intractable
Conflict. Conflict Research Consortium, University of Colorado, USA,
2004.

[EHKO04] Ehtamo, H., R.P. Himilidinen, and V. Koskinen. An e-learning module on
negotiation analysis. in Hawaii International Conference on System
Sciences. Hawaii: IEEE Computer Society Press, 2004.

[G79] Gulliver, P.H., Disputes and Negotiations: A Cross-Cultural Perspective.
Orlando, FL: Academic Press, 1979.

[HLNP+90] Harel D., Lachover H., Naamad A., Pnueli A., Politi M., Sherman R.,
ShtullTrauring A., Trakhtenbrot M. STATEMATE: A Working
Environment for the Development of Complex Reactive Systems. IEEE
Trans. on Software Engineering, 16(4): pp. 403-414, 1990.

[KM78] Keen, P.G.W. and M.S.S. Morton, DSS: An Organizational Perspective.,
Reading: Addison-Wesley, 1978.

[K98] Kersten, G.E. Negotiation Support Systems and Negotiating Agents. in
Modeles et Systemes Multi-Agents pour la Gestion de I'Environement et
des Territoires, Cemagref, ENGREF. Clermont-Ferrand, France, 1998.

[K9§] Kersten, G.E., Negotiation Support Systems and Negotiation Agents.
Modeles et Systemes Multi-Agents pour la Gestion de I'Environement et
des Territoires Cemagref ENGREF, Clermont-Ferrand, France, pp. 307-
316, 1998.

[K93] Kersten, G.E., Rule-based Modeling of Negotiation Processes. Theory and
Decisions, 34(2), 1993,

104

[KLO5]

[KNTO0]

[KSLO04]

[KSL204]

[KMWZ86]

[KS99]

[JIS&7]

[JF89]

[LSMO97]

[MPKT99]

[MSKMS387]

Kersten, G.E. and H. Lai. Satisfiability and Completeness of Protocols for
Electronic Negotiations. InterNeg Research Paper INR 01/05. European Journal
of Operational Research (to appear).

Kersten, G., S.J. Noronha, and J. Teich. Are All E-Commerce
Negotiations Auctions? in COOP'2000: Fourth International Conference
on the Design of Cooperative Systems. Sophia-Antipolis, France; 2000.

Kersten, G., S. Strecker, and K.P. Law, A Software Platform for
Multiprotocol E-negotiation.
http://interneg.concordia.ca/enegotiation/resources/reports.html, 2004.

Kersten, G., S. Strecker, and K.P. Law, Pro_tocols for Electronic
Negotiation Systems: Theoretical Foundations and Design Issues. EC-
Web, pp. 106-115, 2004.

Korhonen, P., Moskowtz H., Wallenius J., and Zionts S. An Interactive
Approach to Multiple Criteria Optimization with Multiple Decision-
Makers. Naval Research Logistics Quarterly, 33: pp.589-602, 1986.

Kumar, M. and Stuart I. Feldman., Internet Auctions, in IBM Research
Division, T.J. Watson Research Center. 1999,

Jarke, M., M.T. Jelassi, and M.F. Shakun, MEDIATOR: Toward a
Negotiation Support System. European Journal of Operational Research,
31(3): pp- 314-334, 1987.

Jelassi, M.T. and A. Foroughi, Negotiation Support Systems: An
Overview of Design Issues and Existing Software. Decision Support
Systems, 5: pp. 167-181, 1989.

Lewicki, R.J., D.M. Saunders, and J.W. Minton, Essentials of
Negotiations. Boston, MA: McGraw-Hill, 1997.

Mahadevan, A., Ponnundurai K., Kersten G., Thomas R. Knowledge
Discovery in Databases for Decision Support, in Decision Support
Systems for Sustainable Development in Developing Countries, G.E.
Kersten, Z. Mikolajuk, and A. Yeh, Editors. Kluwer: Boston, 1999.

Matwin, S., Szpakowicz S., Kersten G., and Michalowski W. Logic-Based

System for Negotiation Support. in Proceedings of the Symposium on
Logic Programming. San Francisco: IEEE Computer Society Press, pp.

105

[PO1]

[RRMO3]

[RS97]

[RWBWSg9]

[S02]

[SQO0].

[SO3]

[S99]

[TKLC+03]

[U89]

[YDRA99]

499-506, 1987.

Pressman, R.S., Sofware Engineering. A Practitioner's Approach. 5t
edition Boston: McGraw Hill, 2001.

Raiffa, H., J. Richardson, and D. Metcalfe, Negotiation Analysis. The
Science and Art of Collaborative Decision Making. Cambridge: Harvard
University Press, 2003.

Rangaswamy, A. and G.R.Shell. Using Computers to Realize Joint Gains
in Negotiations: Toward an "Electronic Bargaining Table". Management
Science, 43(8): pp. 1147-1163, 1989.

Rangaswamy, A., Eliasberg J., Burke R., and Wind J. Developing
Marketing Expert Systems: An Application to International Negotiations.
Journal of Marketing, 53: pp. 24-39, 1989.

Schoop, M., Electronic Markets for Architects - The Architecture of
Electronic Markets. Information Systems Frontiers, 4(3), pp 285-302,
Kluwer, 2002.

Schoop, M. and C. Quix. Towards Effective Negotiation Support in
Electronic Marketplaces. in Tenth Annual Workshop on Information
Technologies & System (WITS), Brisbane, Australia, 2000.

Strobel, M., Engineering Electronic Negotiations. New York: Kluwer,
2003

Strobel, M., On Auctions as the Negotiation Paradigm of Electronic
Markets. IBM Zurich Research Laboratory: Ruschlikon. pp. 7, 1999.

Tivadar, J.Q., Kotek B., LeRouz B., Clark S., and Woodin P. Discovering
Fusebox 4 with Coldfusion. 2™ edition, Techspedition, 2003.

Ullman, J.D., Principles of database and knowledge-base systems, volume

2, volume 14 of Principles of Computer Science. Computer Science Press,
1989,

Yuan, Y., H. Ding, J. B. Rose, and Archer N. "Multi-party Interaction in a
Web-Based Negotiation Support System", WebNS, 1999,

https://ecomlab.mcmaster.ca/webns/papers/Interact.html, Accessed: April
23, 2004.

106

