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Abstract

We investigate the chargino sector of the left-right supersymmetric model. We con-
sider the most general mass and mixing parameters, including all C P-violating phase.
We present a consistent procedure for the calculation of the analytical expressions for
the chargino mass eigenstates and eigenvectors.

We then follow with the analysis of the cross section for chargino pair production
ete™ — )Z:r)z; and its dependence of the (' P-violating phases was done. We explore

also different possible experimental scenarios and signatures.
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Chapter 1

Introduction

Symmetries, or invariances, are very important in modern physics, since they give
a simple and consistent way to construct Lagrangians from which the equations of
motion can be found for the fields or particles of interest.

The Standard Model[1]-[3] has been the accepted theoretical picture of funda-
mental particles and forces during the last century. Using this model, the scientific
community has succeeded in explaining most experimental phenomena about the el-
ementary particles. The Standard Model has certain problems which prevent it from
being the definitive theory of particle physics; going to higher energies new physics
must emerge.

One of the most interesting uses of supersymmetry in present-day physics is as a
means of extending the Standard Model. The Supersymmetry theories|[4] predict a

number of hypothetical particles that might exist in the energy range accessible at



the New Linear Collider NLC(under construction).
The discovery of SUSY particles could be even more important than finding a
Higgs boson, which would only confirm existing ideas about the Standard Model and

not extend them.

1.1 The Standard Model

The Standard Model of Strong and Electroweak Interactions[5]-[6] includes all avail-
able present knowledge of the fundamental constituents of matter and their interac-
tions.

The Standard Model is based on relativistic quantum gauge field theory. The
relativistic quantum field theory applied to Maxwell equations opened new possibili-
ties in physics. The Maxwell equations possess a special local symmetry called gauge
invariance: under a local transformation (¢(z) — €**(®(z)) whereby the photon

field(vector potential), transforms as

A,(2) = A,(2) — 8,0(a). (1.1)
For field strength we have
Fu(x) = 0,4, () — 0,Au(x), (1.2)
the action
S = —%/d‘le“"(x)FW(x), (1.3)

3



and the physical observable are not changed.

The symmetry group of the Standard Model is SU(3)¢ x SU(2), x U(1)y[7, 8].
The SU(3)¢ symmetry is that of the strong (colour) interaction; electromagnetism
and the weak nuclear force (or electroweak sector) are mixed together in an overall
SU(2) xU(1)y gauge symmetry[1, 4]. We believe that SU(3)¢ of colour is unbroken,
but the symmetry of the electroweak sector is broken, resulting in the physical massive
W# and Z bosons and massless photon.

The model considers the elementary particles grouped into bosons with spin that
is either 0, 1 or 2 (particles that transmit forces) and fermions with spin 1/2 (particles
that make up matter).

The fermions are three generations of leptons and three generations of quarks.
All those particles interact by means of the exchange of virtual spin-one bosons. An
explanation for why there are three generations of particles that make up matter has
not been found yet. Perhaps string theory could answer it.

Since the weak nuclear force is a short range force, behaving as if the gauge bosons
are heavy, in order to make a gauge invariant theory work for the weak nuclear force,
theorists had to come up with a way to make heavy gauge bosons in a way that
wouldn’t destroy the consistency of the quantum theory. The method they came up
with is called spontaneous symmetry breaking, where massless gauge bosons acquire
mass by interacting with a scalar field called the Higgs field. The resulting theory has

massive gauge bosons but still retains the nice properties of a fully gauge invariant



theory where the gauge bosons would normally be massless.

Spontaneous symmetry breaking is invoked to explain massive vector bosons and
the massless photon. The prediction of the W* and Z bosons sprang from symmetry
considerations. The discovery of these bosons was one of the greatest triumphs of
modern particle physics and it was achieved in 1983 by experiments at the particle
accelerator in Geneva. The three weak interaction gauge bosons have the following
masses in GeV: (W W=, Z% = (80,80, 91).

== The particles of the Standard Model come in 3 families:

e Leptons: 1-) electron and electron neutrino, 2-) muon and muon neutrino, 3-)
tau and tau neutrino.

e Quarks: 1-) d (down) and u (up), 2-) s (strange), ¢ (charm) and 3-)b (bottom),
t (top).

The matter is made of protons (each a u-u-d quark triplet), neutrons (each a u-d-d
quark triplet), and electrons. Quarks cannot exist singly (or so it appears), so the
particles created in accelerator collisions include mesons (combinations of a quark
and an anti-quark), baryons (combinations of three quarks), and leptons.

e The intermediate vector bosons are: 1-) gluon (nuclear force), 2-) photon (elec-
tromagnetic force) and 3-) W and Z bosons (weak force).

The Standard Model has been a partial triumph from the point of view experimental
data. Unfortunately, the SM is not completely confirmed, leaving important inter-

rogant in general about the validity of the theory. For example the detection of the



Higgs sector which contains scalar particles with spin-0 is missing.

1.2 Mathematics of the Standard Model

The first implication of the Abelian U(1) gauge symmetry is that the massless vector
bosons (photons) mediating electromagnetic interactions are a necessary consequence
of the theory. A local U(1) symmetry means that the field equations involved, i.e. of
the Lagrangian, are invariant under the local transformations shown above.

In order for the Dirac Lagrangian of a free electron

L = P()(iy"9, — m)y(a), (1.4)

to be invariant under the U(1) transformation, we must take into account a gauge
field A, which transforms as Eq.(1.1).

The SU(2) symmetry of the Standard Model is a non-Abelian gauge theory. To
study this theory[9, 10|, let us first look at the internal symmetry transformations.

The internal symmetry transforms states interpreted as different particles, i.e.
the transformation changes label of the particle without transforming the coordinate
system. An example is the isospin group of transformations taking up-quarks into
down-quarks. Isospin is represented by the SU(2) group of 2-dimensional unitary

matrices with det = +1 acting on the two-vector representations of the up-and down



quarks:

u= and d= (1.5)

Under a local SU(2) transformation, the a doublet ¥ (z) transform as follows:

Y(@) = (@) = e T y(x)

= U(0)y(z), (1.6)
where 7 are the Pauli matrices, such as
T Tj i T Lo
5] :zeijkg, ik =1,2,3, (1.7)

and 6(z) are the SU(2) transformation parameters.

Since we need the free particle Lagrangian Eq.(1.4) to be invariant under local
SU(2) transformation, we must introduce the gauge fields A, = Ai, (t=1,2,3) and
taking into account the form of the covariant derivative D, = 0, — ig(7 - A,)/2, we

arrive to expression of the field strength

T‘—?W - %(DMDV - D,Dy,)
R (18)
where we have used the following transformation property for A,
T — U EU0) - U010, (19)
transforming like
7-F W =U0) (7 - Fu)U'(6). (1.10)



The kinetic invariant energy can be written as

1 1 Ty
Lxp = —7FLF". (1.11)

1.2.1 Unbroken symmetry theory

The SU(2) x U(1) (for example see {7, 8]) is broken through a mechanism called the
Higgs phenomenon, giving rise to the masses of the W+ and Z bosons as well as the
mass splitting between the left-handed electron state and the neutrino, in contrast to
the massless bosons and fermions of the unbroken theory.

The left-handed fields, and the Higgs field, are ordered in SU(2) doublets, while
the right-handed fields are SU(2) singlets. This is done because in the Standard
Model, the neutrino only exists in the left-handed form.

The unbroken SU(2), x U(1)y theory has the following particle content:

e Field: g = (ur, dr)7, Spin: (1/2), Mass: 0.

e Field: ug, Spin: (1/2), Mass: 0.

e Field: dg, Spin: (1/2), Mass: 0.

e Field: eg, Spin: (1/2), Mass: 0.

o Field: I, = (ver e1)7, Spin: (1/2), Mass: 0.

o Field: ® = (¢+ ¢°)T, Spin: 0, Mass: Finite.

The gauge bosons of the unbroken SU(2) x U(1)y theory are given by

e Field: A7, Spin: 1, Mass:0.

e Field: B, Spin: 1, Mass:0. (This is the Higgs boson)



The Lagrangian density of the unbroken theory can be written as
L=L+ Lo+ L+ Ly (1.12)
The kinetic energy of the vector gauge fields are

1. 1
Ew ™ = 1Guw G, (1.13)

£1=—4 uv

where F},, = 0,A!, — 8,A} + ge?* Al A}, (i =1,2,3) and G, 0,B, — 8,B,.

On the other hand,
L2 = $iv* Dy, (1.14)

represents the fermionic kinetic energy, where D,y = (0, —igT A, —ig'(Y/2)B,)¥ is
the relevant covariant derivative, T are the SU(2) generators, and ¥ = I, eg, q1, Ug, dg.

The Lagrangian which represents the Higgs bosons is
L3 = (D,®)(D*®) — V(®), (1.15)
where V(@) = —pud®T® + A\(®1®)%. Finally,
Ly =[Ol ®eg + f@q,Pur + f P ®dg + h.c, (1.16)

where f(®, a = e,u,d, are called the Yukawa couplings and & = ir,®* is the Higgs

isodoublet which has hypercharge Y(ti’) =—1.

1.2.2 Broken symmetry theory

To study the symmetry breaking, let us start with a U(1) invariant Klein-Gordon
Lagrangian for a complex scalar field ¢ with the the self-interaction potential U(¢) =

9



A(#'¢)?%, under local transformation of ¥(z) and A,(z),

£ = ~(D,9) (D*9) + W19 — N@'6) = 1 Fu ™.

Assuming p? > 0 we have a minimum in the potential energy for

V(g) = —1*Ig]” + Algl*.

Solving the equation for ¢, we get that,

2
|¢|=L and v = 'u—.

vk 2

(1.17)

(1.18)

(1.19)

The non-zero vacuum expectation value (VEV) of the field ¢ is < ¢ >o= v/v/2. The

symmetry is broken when a certain direction is chosen for the VEV. The complex

field in its real and imaginary parts can be written as

b= —15<¢1+i¢2),

and then let

< ¢1 >0= v, and < ¢2 >o=0.

Let us shift the field into new fields having VEVs equal to zero,
¢Il = ¢1 -, and ¢/2 = ¢27
arriving to
]‘ / < !
¢ = \7—5(” + @1 +idy).

10
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(1.21)

(1.22)

(1.23)



After this shift of the vacuum the symmetry is broken. The kinetic part of the

Lagrangian becomes

1Dl = (8 — igAu)gf*

]' 7 / 1 I /
= 5(%(]51 + QAM¢2)2 -+ §(au¢2 + gAHq51)2

2,,2

1 v
— AP (9u0h — gA) + T A4,

(1.24)

We have a gauge field with mass: the last term of the expression. To analyze the rest

of the terms we must make a different choice for the direction of the VEV. Comparing

with Eq.(1.20), we can express ¢ as

(v +7(x))e =/

-5

= —(v+n(z)+i&(z)+..),

N

(1.25)

where the real scalar fields n(z) and £(z) have vanishing VEVs and from the last

expression we can associate both scalar fields with ¢} and ¢}, respectively.

Taking into account the form of the gauge local transformation shown before, we

can fix the gauge to the unitary gauge, then

Then,

N —e"i’””:c:iv z
¢'(z) = e @g(a) 7+ @),

Sy
E\
&

Il

Auz) - gi £(2).

D = e (0,0 —igB.¢")
_ _\}_ie—if/v(aun — igB,(v+n(z))

11
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The Lagrangian reads

1 . 2 A 1 v
L = 3|0 —igBuv+ ml* + %(v +1n)? - T+ m?* - 7w F"

= Lo+ L, » (1.29)
where F,, = 0,B, — 0,B,, and

1 1 1
Ly = '2'(5u77)(<9”77) — pPn® - ZFWFW + '2‘(90)23;43“

1 1
L, = -égQBuB”n(ZU +n) — vnp® — Z)\n“. (1.30)

Ly is the Lagrangian (density) of a real scalar field n and a massive vector field
B,, with mass gv.

To break the symmetry of a non-Abelian group SU(2), let us write the Lagrangian

L= (D, ®)(D'®) + )*®'® — A\(DT®)? - iFguFW, (1.31)

where ® = (¢ ¢2)T. For y? > 0 we obtain the minimum of the potential at ®'® =
v?/2 and the vew for the field:< ®'® >=v2/2 and v = 1/p?/\.

| We must choose a certain direction for the VEV, thereby breaking the gauge sym-
metry. Since the vacuum must be neutral, we give the neutral component of the
doublet a non-vanishing VEV, keeping the expectation value of the charged compo-

nent zero:

1
<P >p= % (132)

12



We can write ®(z) as

‘I)(:E) = U_I(C) ’ ) U(C) = ei((z)'r/v’ (133)
(v +n(2))/vV2

and the vector ¢ = ({1, (2, (3) as well as  has vanishing VEVs. Assuming the unitary

gauge,

P'(z) = U()®
0
= . (1.34)
(v+1(2))/V2
Since all fields of the Standard Model are of the same gauge, we have to transform

the fermionic SU(2) doublet fields and the SU(2) gauge bosons as well as the Higgs

doublet, giving

l/L = U(C)IL
qlL = U(C)QL
T-Al, T-A, 1 1
T = U0 - RO, (1.35)

while the SU(2) singlets. i.e. the right-handed fields, and the U(1) vector field B,
are left unchanged by the transformation. Notice that the Lagrangians £, and £, do
not change, since they are both gauge-invariant and do not contain any VEVs. On

the other hand, L3 becomes as follows

A
L3 = (D, @) (D*®') — (un)® + dvn® + 2774’ (1.36)

13



0
where D)@' = (8, — 3igT - A’ — 3ig'B’,)

(v +n(2)/v2

and L4 takes the form,

X _
Ly, = ( 2) [f9erer + f@arugr + fDdLdg]

NE

+ [f(e)éLeR -+ f(u)’ﬁL'U,R + f(d)d_LdR] + h.c. (137)

Sl s

We can read off the mass terms for the Higgs bosons and the fermion fields,

my, = vy,

me = fOu/V2,

m, = f®u/Ve,

mg = fDu/V2. (1.38)

The mass of the e and d fields are obtained through the interaction with ® and the
mass term for u can be obtained by the interaction of ® (charge-conjugate isodoublet).

To study the mass term of the gauge vectors fields, we must use the Eq.(1.36),
then

2 /
Ly = 3’2—(0 1)(§7-A'ﬂ+9—3

N g .,
5 u)(ET-A’”—i-EB“)(O T

1
= MW w4 §M§Z#Z“, (1.39)

from where we have the following associations Wy = (A’; F z'A'Z) /V2 and ME, =

14



g*v?/4. On the other hand, we have for the neutral vector bosons,

Uz 13 1 N\2 1 M% 0 z¥ 1 2 m
SWAL =B = 5(Z.4.) = 5M32,2", (140)

0 0 A
where the A, gauge boson remains massless.
To diagonalize the mass matrix in the last equation, we have used the orthogonal

transformation

Z, = cos GWALS — sin 6w B,,

A, = sinfwA,’ — cosby B, (1.41)

here the mass of the Z boson is M% = v?(¢? 4+ ¢"*)/4 and the angle 6y (Weinberg
angle) is defined by tanfy = ¢'/g.

The broken SU(2), symmetric Standard Model has the following particle content

e Field: w, Spin: (1/2), Mass: m,,

e Field: d, Spin: (1/2), Mass: mg,

e Field: e, Spin: (1/2), Mass: m,,

e Field: v,, Spin: (1/2), Mass:0,

o Field: », Spin: 0, Mass: m,,.

On the other hand, for the gauge bosons of the broken SU(2);, we have that,

e Field: Wlf, Spin: 1, Mass: Wiy

e Field: 7, Spin: 1, Mass: W3.

o Field: A,, Spin: 1, Mass: 0.

15



Until now, we have working on a simplification (so-called one-family approxima-
tion) of the fermionic structure. For the particle spectrum of the theory to correspond
to the empirically found spectrum, the fermionic structure must in fact be tripled,

making the following substitutions:

e—eéey = (e, 7)

vy = (1))

u—p, = (W, d,t)

d—ny = (d,§,V), (1.42)

where the p, v, c and s particles are called the second-generation particles and 7, v,,t

and b are called the third-generation particles. The SU(2) doublets can be written as

Va Da
lar = y qAL = ~ (1.43)
€4 ny
L L
Neither the gauge field structure or the Higgs structure is affected by this change.
The L, is augmented by the new fields and the interaction Lagrangian £, gains a

family index matrix structure
Ly = flar®eyn + [P Blar®ppn + f9qar®nl, + huc. (1.44)

The Yukawa coupling constants must be replaced by coupling matrices in the family
index space.

The fields lap, €4g, qar, P4r and n's5 are gauge eigenfields (they transform as

16



singlets or doublets under SU(2) gauge transformations). The £, takes the form

ne €) - n) -
Ly = *\(7—2—)[f beareor + FE3PAPar + [SgRarnsn]
L (e) = / () = / (n) — h 1.45
+ \/'Z'[fABeALeBR + faBParPpr + faghaLnsr] + h.c., (1.45)
now we have a family index matrix of mass terms of the form Mé; = —(1/V2wfigs, (i =

e,p,n).

1.3 The fine tuning problem

Most of the Standard Model[1]-[3] has been tested in detail by experiment; those
quantities which have been measured to this date have been in excellent agreement
with the existing data. There remain, however, some untested aspects of the model.

The spontaneous breaking of the electroweak symmetry by the Higgs mechanism
is one of the remaining untested parts of the Standard Model. The Higgs scalar
which is responsible for most of the 19 arbitrary parameters in the theory, is the most
unsatisfactory part of the model[3, 4]. There is no definite experimental evidence of
the Higgs particles to this date as was explained above.

The Large Hadron Collider (LHC) under construction at the European Centre for
Nuclear Research (CERN) in Switzerland becomes operational in 2007 and will be
the world’s most powerful particle accelerator. If the Higgs boson exists, it will be
detected at the LHC.

But the weakest part of the SM is its theoretical self-consistency.

17



In any quantum field theory involving interacting fundamental scalars, such as
the Higgs bosons, one finds that radiative corrections to scalar mass dmy produce a
quadratic divergence in that mass.

This divergence is unphysical because the theory is not applicable for infinite
momentum; it breaks down for momenta P that approach the mass scalar M 1o, at
which new interactions or new particles, not in the model, become important.

The scale My q1qr 1s actually a cutoff, since physics not contained in the Standard
Model becomes important above that scale. At least one such scale, namely, the
Planck scale, M,.q,, = O(10'%) GeV, at which gravitation becomes relevant, must
be present in any theory[4, 8].

Despite the presence of natural cutoff M.y, the quadratic divergence of the ele-
mentary scale mass still remains a problem. This problem arises because quadratically

divergent radiative corrections try to push the Higgs mass to the Planck scale,

qu = —m] + 9* M scatar, (1.46)

where my is the bare Higgs mass parameter and g is a dimensionless coupling param-
eter. The value of my is known to be of the order of the electroweak scale, O(10?)
GeV.

The above expression states that if M, q.- is as large as the Planck scale, and if ¢
is of the order unity, then mg must be tuned to incredible precision in order to keep
myg of the correct order of magnitude. While this is not impossible, it is an ad — hoc

feature of the Standard Model. Furthermore, the tuning must be performed a new

18



for each order in perturbation theory.
The most elegant solution to this problem (until now) is to introduce a new sym-

metry that forces the cancelation of divergences without fine-tuning.

19



Chapter 2

Supersymmetry

Supersymmetry(SUSY) is a symmetry that connects bosons and fermions. It intro-
duces a fermionic counterpart for every boson (and vice-versa) identical in all others
quantum numbers. The difference would be only in the spins (differs by half a unit)
and in obeying different statistics. The connection between bosons and fermions is
unique to supersymmetry[4, 5, 6]. Supersymmetry cannot be an unbroken symmetry
in the real world. If SUSY were not broken, the partners would have the same mass,
which contradicts experimental evidence.

One reason for introducing to supersymmetry is that it can protect the masses of
elementary scalars from quadratic divergences through the association of a fermion
with an elementary scalar. In an unbroken SUSY theory, for each diagram in any
calculation (such as that of the mass of the Higgs) containing a scalar loop there is a

corresponding diagram containing a fermion loop.

20



Because the couplings of a particle and its superpartner (sparticle) are related by
supersymmetry, the boson and fermion contributions cancel exactly order by order in
perturbation theory. No tuning parameter is required.

Supersymmetry express bosons and fermions into multiplets. This remove the
distinction between matter and interaction. The particle and its superpartner can
be considered to be carriers of force. The fermions must satisfy the Pauli’s exclusion
principle and as a result, cannot contribute to coherent potentials.

The distinction of matter from forces is phenomenological and it is due to the
fact that no two identical fermions may have the same quantum numbers, then they
manifest themselves as physical particles, while the classical fields which arise from
superposition of bosons, yield an impression of the presence of forces. These parti-
cles were related by a symmetry transformation (Wess and Zumino renormalization
model) [6], thus they can be placed in the same multiplet.

The generators of supersymmetry @) (operators that converts fermions into bosons
and conversely) commute with the Hamiltonian of the system, then they are conserved
quantities, and named as the so-called supercharges.

The supercharges with 1/2-spin are denoted as @,. Thus a left-handed Weyl
spinor transforms as a (1/2,0) representation under Lorentz transformations. The
operator which transforms as (0,1/2) is the Hermitian adjoint and will be denoted
by Qp.

It 1s known that anticommutator of the generator @, of the supersymmetry trans-
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formation satisfies

{QmQB} = ZUZBPM (2.1)

where P* are the generators of the Poincaré group (i.e. the energy momentum
operator P, = i0") and o* are the Dirac matrices. The anti-commutator relation in
Eq.(2.1) is a 2 x 2 matrix that transforms as (1/2,1/2) under Lorentz transformations.

In the case of pp = 0, [Qq, Po] commutes. All non-zero energy states are paired
by the action of @ and since @ is fermionic by definition, then all supersymmetric
multiplets contain one degree of bosonic freedom for every degree of fermionic freedom.
Thus, these partners must have equal masses.

If take into account the expression ag‘ﬂa,‘j‘ﬂ = 2g" on the commutation relation

between @), and Py we have the following equation

H =Py = (1/4)(Q1Q1 + @101 + Q2Q2 + Q2Q2) ~ QQ'. (2.2)

Thus H > 0, the vacuum is well defined. For an unbroken SUSY model, the

vacuum energy is given by
Eyoe =< 0|H|0 >= 0. (2.3)

On the other hand, if the theory is spontaneously broken E,.. # 0. We have that the
fermionic state Q|0 >= | >= 0, therefore there will be a particle with mass equal
zero: the Goldstone fermion or Goldstino[11]-[14]. This particle is the candidate
(must be found in the experiments) to couple to every particle and its superpartner.
In supersymmetry, the fermions partners of the gauge bosons are called gauginos.
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We have charged gauginos (the winos Wf) and correspondingly the neutral gauginos
(the photino ¥ and the zinos Z ). These gauginos have the same quantum numbers

as the fermionic partners of the Higgs bosons (the higgsinos), thus they mix.

2.1 The Minimal Supersymmetric Standard Model

Most searches for supersymmetry are performed in the context of the Minimal Super-
symmetry Standard Model(MSSM)[7]. This model is minimal in the sense of based on
the Standard SU(3)¢c x SU(2), x U(1)y group symmetry, being the supersymmetric
extension of the Standard Model which has the fewest particles added.

The MSSM is a low energy limit of several more fundamental theories, for instance
supergravity Grand Unified Theories or String-inspired supersymmetric models. The
MSSM adds additional Higgs scalars and the suerpsymmetric partners of all normal
particles to the Standard Model spectrum[15, 16]. The gauge interactions of the
Minimal Supersymmetric Standard Model Langragian allow for the definition of a
new multiplicative quantum number called R-parity. R-parity distinguishes between
normal particles and superparticles; R-parity may be chosen to be +1 for normal
particles and —1 for supersymmetric particles.

It is also possible to define R-parity as
R = (_1)3(B—L)+2S , (24)

where B is the bayron number, L is the lepton number, and S is the spin of the
particle. R-parity may or may not be conserved. Although it is possible to construct
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models in which R is not conserved, any R-violating terms in the Langragian also
violate lepton or bayron number conservation and are thus severely restricted.

In the Minimal Supersymmetric Standard Model, R is a conserved quantum num-
ber, with the result that R = —1 particles (the sparticles) must always be a pair
produced, and that the lightest supersymmetric particle (LSP) is absolutely stable.

Furthermore, the decay products of each supersymmetric particle must include
an odd number of supersymmetric particles, and all decay chains must end with one
LSP.

The LSP has to be electrically and colour neutral. Since the LSP may interact
only weakly or gravitationally and therefore escape any detection, the basic signature
for production of supersymmetric particles at high-energy colliders is missing energy
carried by LSPs.

With the inclusion of only a few extra parameters, beyond those of the Stan-
dard Model, all processes in the model are calculated through standard perturbation
theory. This includes masses, cross-sections for production, and the decay modes
of the various particles. Thus supersymmetry provides us a plausible example of a
theory with complex signatures and with calculable production and decay rates. Its

predictions can be confronted with experiment.
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2.2 Left-Right Symmetry

The Left-Right symmetric model[5] is based on the group SU(2), xSU(2)gxU(1)p_r.
In the model the right-handed and left-handed fermion components both transform
as doublets under a right-handed group SU(2)g or SU(2), respectively.

For the leptons and quarks, assuming the existence too of right-handed neutrinos,

the doublets are

14 14 U v
LL - ) LR = ) QL = s QR = . (25)

e e d e
L R L R

The L-R symmety can be broken in three steps:
1-) Parity symmetry can be breaking the equality between g and gg.
2-) Breaking SU(2)g. This is chosen to break at the same scale as the parity sym-
metry.
3-)By the non-zero expectation of a Higgs bi-doublet.

This model has several attractive features, one of which is that by allowing for
the existence of a right-handed neutrino.

In the SM as well the MSSM, left and right matter fields are treated differently.
This rise immediate questions: why and how do we explain parity violations or charge-

parity (CP) violation?
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Chapter 3

Charge-Parity (CP) violation

3.1 Introduction

The Greek philosophers of the antiquity always had seen that the Nature would be
regie by unchanging rules and independents of the man actions. This perception of
the universe was due to the regularly behavior of the objects in our visual universe,
where it seems that a systematic movement can be described by a Law and gives the
possibility to predict by extrapolation part of the future behavior. The perception of
the symmetry comes together with the concept of harmony, balance and periodicity.

Under certain transformations, the objects of the Physics preserve their propri-
eties, this is what we name symmetry.

Depending of the nature of these transformations we can define groups of symme-

tries, i.e.,
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1-) The continuous symmetries of the group of Poincare: the translations in the
space-time, the rotations and the Lorentz transformations of the restricted relativity.
2-) Symmetries discrete: the conjugation of the charge, C, the parity, P, and the

reversal of time, T

3.2 Symmetries P, C, and T

The Parity P

We can express parity as the space inversion: the reflection in the origin of the space
coordinates of a particle or particle system; i.e., the three space dimensions z, y,
and z become, respectively, —z, —y, and —z. The operation P is called: the mirror
transformation since it is equivalent to a 7 rotation for the coordinate axes.

Parity conservation means that right and left and down and up are impossible to
differentiate in the way that the nucleus of an atom throws off decay products up
as often as down and left as often as right. The parity transformation operator P is

hermitic and unitary.

The Conjugation of the charge, C

The charge conjugation is a mathematical operation that transforms a particle into
an antiparticle, i.e., changing the sign of the charge. This means that to a charged

particle corresponds an oppositely charged antiparticle. The transformation operator
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C is hermitic and unitary.

Inversion of time, T’

The inversion of time T is to change the sign of the parameter ¢ of the physics.
From the point of view the mathematical operation of the time inversion is easy

but physically is impossible. In physics we consider two reciprocal reactions: A+ B 2

E + F as a conjugates of T one respect to the other. The associated operator T is

hermitic and anti-unitary.

3.2.1 (C and P violation

The idea, according to which Nature would support neither right-hand side nor left
was called into question in 1956 by Tsung-Dao Lee and Chen Ning Yang [17]. The
inflection point came with the study of the nature of two particles with a quite singular
behavior: The 6 and 7.

The two strange particles of same mass, of same parities, but lifespan intrinsically
different taking into account their respective decay products, it means two pions for
@ (parity of +1) and three pions for 7 (parity -1).

The authors arrived to the conclusion that it could be a question of only one
particle, called Kaon. This particle should have two different ways of disintegration,
in which case the parity will not be conserved during the weak interactions. The

theory was confirmed experimentally by C.S. Wu [18]. She studied the direction of
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the electrons emissions during the 4 disintegration in a sample of Cobalt 60.

The spins in the sample were oriented by an external magnetic field at low tem-
peratures. During the experiment it was showed that the emitted electrons were
mainly in the opposite direction of the spin inside the Cobalt 60. The image in a
mirror of this experiment shows that on the contrary the particles are emitted in the
same direction as the moment magnetic of the nucleus, which is incompatible with
the observation. Then the parity is not necessarily conserved by the weak interaction.

The C violation is the non conservation of the law associated with charge conju-
gation and on the other hand, P violation is, similarly to the case of the charge C,

the no conservation of the law associated with the parity (P).

3.3 C(CP Violation

The violation of the combined the conservation laws associated with C' and P in the
weak nuclear force results in the so-called C'P violation, i.e., the neutrino has an left
helicity, it means that the particle spins in the opposite direction to its movement
but the antineutrino has right helicity.

Now, if we apply the parity operation on the left-handed neutrino we have a
right-handed neutrino (the spin is in the same direction of the movement) and this
is something never seen in the nature. On the other hand for the charge conjugation
operation applied on the left neutrino gives an impossible experimental result, the

left-handed antineutrino. But for the product of those transformations (C'P) we
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get a right-handed antineutrino(experimental fact). The transformation CP was

considered as a fundamental symmetry until 1964.

Christensen, Cronin, Fitch et Turlay’s experiment

The proof of the C'P violation came in 1964 by Christensen, Cronin, Fitch et Turlay

[19] in the kaons K neutrals system during the realization of an experiment which

had as a primordial goal testing the C'P invariance of the weak interaction. Ironically

the result proved the converse was true.

The mathematical formalism to prove that the C'P is a unitary transformation

can be developed as follows: for the vectors: |a > and |8 >, we have

CPla >= |agp >, and CP|B >= |fcp > .

They satisfy the relation
< acpl|fBop >=< a|f >,
i.e.
[< a|(CP)Y|CP|3 >=< a|[(CP)ICP|B >] =< a|f >,
from where we get that

(CP)I[CP=1.

(3.1)

(3.2)

(3.4)

CP violation implied nonconservation of T', provided that the long-held CPT

theorem was valid. In this theorem, regarded as one of the basic principles of quan-

tum field theory, charge conjugation, parity, and time reversal are applied together.
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As a combination, these symmetries constitute an exact symmetry of all types of

fundamental interactions.

3.4 The Standard model and the C P violation

In the context of the Standard Model, the C'P violation is introduced by taking into
account a complex coupling in the matrix CKM (Cabibbo-Kobayashi-Maskawa)[20,
21]. This CKM quark mixing matrix connects the electroweak eigenvectors (d’, s', ')
of the quarks down, strange and beauty to eigenvalues de masse (d, s,b) by the fol-

lowing unitary transformation,

d Vud Vus Vub d d
s’ T Vea Vs Vo | X | s =Voxm | s . (3.5)
v ‘/td ‘/ts ‘/tb b b

The elements of the matrix describe the couplings of the charged currents.

The complex phases are currently assumed to be in the furthest off-diagonal ele-
ments V,; and Viy. Three angles angles and a complex phase are necessary in order
to parameterize the matrix CK M. The complex phase permits take into account the
CP violation in the Standard Model.

There exist different forms of parametrization for the matrix. One of them is the

Standard parametrization. This is the product of three successive rotations in the
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space states of the quarks down :

1 0 0 C13 0 8136_”’
VC’KM - 0 Cog So3 X 0 1 0 X
0 —s23 cCo3 —s13€" 0 3
C12C13 512C13

i i
—812Co3 — €12523513€"7  C12C23 — §12823513€"F
— o — e
S812C23 — C12523513€ C12823 — 812523513€

or in more compact form

D ViV = o and > VWi
? J

where d...y is the Kroner delta function.

cr2 Si2 0

—512 ¢2 0
0 0 1
8136_W’
§23C13 (3'6)
C23C13
= ik, (3.7)

The parameter ¢ represents the phase, necessary to take into account the CP

violation and it can take values from zero to 27. But experimental measurements in

the for the C'P violation in the case of the K particles, limit the interval between

zero and 7. The ¢;; = cosd;; and s;; = sinf;; can be chosen to be positives.

3.4.1 Final remarks

No completely satisfactory explanation of CP violation has yet been devised. The

size of the effect, only about two parts per thousand, has prompted a theory that

invokes a new force, called the "superweak” force, to explain the phenomenon.
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This force, much weaker than the nuclear weak force, is thought to be observable
only in the K-meson system or in the neutron’s electric dipole moment, which mea-
sures the average size and direction of the separation between charged constituents.
Another theory, named the Kobayashi-Maskawa model after its inventors, ascribes
certain quantum mechanical effects in the weak force between quarks as the cause of
CP violation.

The attractive aspect of the superweak model is that it uses only one variable, the
size of the force, to explain everything. Furthermore, the model is consistent with all
measurements of CP violation and its properties. The Kobayashi-Maskawa model is
more complicated, but it does explain C'P violation in terms of known forces.

CP violation has important theoretical consequences. The violation of CP sym-
metry, taken as a kind of proof of the CPT theorem, enables physicists to make an
absolute distinction between matter and antimatter. The distinction between matter
and antimatter may have profound implications for cosmology.

One of the unsolved theoretical questions in physics is why the universe is made
chiefly of matter. With a series of debatable but plausible assumptions, it can be
demonstrated that the observed matter-antimatter ratio may have been produced by
the occurrence of CP violation in the first seconds after the "big bang,” the violent
explosion that is thought to have resulted in the formation of the univefse.

However, due to the large uncertainties in evaluating the effect of hadronic inter-

actions for some processes and limited number of measurements of C'P violation, we
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cannot exclude a possibility that physics beyond the Standard Model makes a sizable
contribution to C'P violation in elementary particle physics.

The current lower limit of the Higgs particle mass is already too high respects to
the the small value predicted in the CP violation (Standard Model) to explain the
observed matter-antimatter asymmetry in the universe[22]. This provides a strong
motivation to search for effects of new physics in C'P violation by introducing addi-

tional sources of C'P violation.
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Chapter 4

The Left-Right Supersymmetric

Model (LRSUSY)

4.1 A brief description of the model

The motivation for the extension of the minimal supersymmetric standard model to
include left-right symmetry was to investigate possible mechanisms for parity viola-
tion in weak interactions. This model provides a framerwork in which weak inter-
actions obey all space-time symmetries, along with the strong, electromagnetic and
gravitational interactions.

In the L-R supersymmetric model[8, 22, 25] which is described by the group
SU(2)p, x SU(2)g x U(1)p—r, where B — L is a quantum number (bayron number

minus lepton number). The triplet vector boson (W*, W) r and their superpart-
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ners (A*, \%) . r are assigned to the gauge groups SU(2)r g; the singlet gauge boson
V and its superpartner Ay is assigned to the gauge group U(l)s_r; gr,9r and gy
are the gauge coupling constants corresponding to the groups SU(2)., SU(2)g and
U(1)p—_r, respectively.

The superpotential of the model can be written as

W = Y§QTmdmQ® + YPLTr®m L +iY a(LTmALL + LT mARLe)

+ MLR[TT(AL(SL + AR5R)] + MijTT(TQ@?TQ@]‘) + WNR, (41)

thre Wyg are the non-renormalizable terms coming from higher scale physics or
Plank scale effects [26]. The Y and Y are the Yukawa couplings for the quarks
and leptons with bidoublets Higgs bosons, respectively, and Y g is the coupling for
the leptons and triplet Higgs bosons.

The Left-Right symmetry requires all Y-matrices to be Hermitian in the genera-
tion space and Y matrix to be symmetric: Y5, = Y3 and Yz = Yi 1.

Supersymmetry is responsible for doubling in the number of Higgs fields; ®, and
®, are needed in order to give masses to both the up and down quarks. This sector

(Higgs) contains two bi-doublet fields,

¢ ¢f
¢u,d= = (

110 ) . (4.2)
¢

u,d

In order to give masses to all quarks, the spontaneous breaking of SU(2)r X

U(1)g-r to U(1)y can be arranged by introducing the four Higgs triplet fields,
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A+ AtT
Apr=| " (4.3)
A0 — 1A+
\/i L R
L= g
Sor=| "? . (4.4)
. 1 o—
6~

LR

The Higgs d;, g transform as (1,0,2) and (0, 1,2) respectively. The triplet Higgs
dr, r which transform as (1,0, —2) and (0, 1, —2) respectively, are introduced to cancel
anomalies in the fermionic sector that would otherwise happen.

The process of the breaking symmetry is done in three steps[23]

SU(2)L X SU(2)R X U(l)B_L x P > Mp SU(Q)L X SU(Q)R X U(l)B_L,
SU(Q)L X SU(Q)R X U(l)B_L '_)MWR SU(Q)L X U(].)y,

SUQ2)L x U(D)y ¥ aty, U(Dem- (4.5)

During the first step, the parity symmetry is broken (Mp is the mass scale at which
this breaking occurs; no gauge boson of that mass is produced). Then we have that
9., # gr and leaves W, p massless.

The second stage breaks the SU(2)g x U(1)p-r to U(1l)y into the gauge group
U(1)em. This is possible by considering < Ag ># 0.

The Higgs multiplets can be chosen in such a way that the parity symmetry and
SU(2)r are broken at the same scale, i.e., Mp = Mw,[23]. The third and last stage
of breaking can be done considering < ® >z 0 and < Ay ># 0.
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In order to maintain the U(1)e, unbroken, we must consider the neutral Higgs

fields with nonzero VEV’s. These quantities take the values,

0 0 k., 0 0 0

(Ap) = (0r,r) = 0,(AR) =  (bu) =  (fa) = (4.6)
v 0 0 0 0 ky

Here k, 4 are the VEV’s of the doublet Higgs ¢, 4 of order of the electroweak scale.

The full Lagrangian of the model can be written as follows
L= Ega,uge + Ematter + EY -V + 'Csoft'

The Lggyge is given by

1

4VWV"”

1 , 1o 1 v s _
['gauge = ZW,LL“, . WILL =+ 5)\LU}LD£)\L — ZWfV . WA}; + EARUHDf’)\R -
1-
+ 5)\‘/5',_08#)\\/. (4.7)

This Lagrangian is related to the gauge fields and contains the kinetic energy and

the self-interaction terms for the vector fields and the Dirac Lagrangian of the gaugino

fields.
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For the Lagrangian L, auer we have the expression

Lonatter = }a“[au—’gL WL—Zg—VV]QL—I—QRO’“[ "QTRT‘WS
= Zg—VV:IQR+LLJ,L[ —%T-Wﬁ Z%VVJLL—FLRJH[a WTR
x T WE_ Z%VV}LR%—TT{(T AL)15,[0, ’gL WLJ_QXV]
x T.AL]+Tr[(T.SL)faM[M—%£ WL - “’GV N]T.SL}
+ Tr -(T-AR)TaM[aM—"“’?RT-Wg ZQGVV]T AR]
+ Tr r(T.éR)Tzfﬂ[ “—W—R WR—’Q—VV]T.SR}

+ Tr|®.5 [a—w—L WL - 1923 WR]<I>J

+ Tr|®45,00, - sz WL YR, WR]@d}

2
o [[o g wi- o |[a- e we - 2u]o
. 2 2
; H__g_ W - QV}LL +Hu_zgﬂ .wa_ﬂv]

. . 2
gL YR
+ Tr|0u®u - 77 Wid, + Dy wWF

2
+ Tr aN@d—ZgL wL<I>d+<I>d’9R WE

2 2

+ Tr [ M_ZQTLT'Wﬁ“igVVu:IT‘AL +1r [5'#— %%ET'W/T_Z'QVVH:IT"SL
2 2
+ Tr {au—’g; WR—lgvV}T Ag| +Tr [a - WE - igVVMJT-(SR
At 9L 10t 9r
+ A +h.c +1 =r. T\ + h.c.
QL[\/’ 3\/—7— V]QL C. QR[\/'Q‘T 3\/_ V]QR
1 = 7~
+ o L(grm - AL — gvAv) Ly + hee. + TL R(9RT - Ar — gvAv) LR + h.c.
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+ iV2Ir[(r - AL (grT - AL+ 20vAv)T - AL] + hec.
+ 2Tr(r - 6.) (g7 - AL — 2gv Ay - OL] + hec
+ i\/ETT‘{(T AR (grT - Mg + 29y A\v)T - Ag] + hec.
A+ iV2Tr[(r - 8r) (grT - AR — 29y Av)T - 8R] + huc.
+ iV2Tr[®L(grm - AL+ grT - AR)®u] + hic.
+ V2Tr[®l(grm - AL + grT - Ar)®Bd] + hec. (4.8)
The Yukawa Lagrangian concerns the self-interaction of the matter multiplets,
Ly = hL(L}®,Lg)+hi(LL04Lr) + hS(Q}@.QR) + hF(QL24QR)
+ h(LL®uLr) + hG(LL®aLr) + hE(QL®uQr) + 13 (QLPuQR)
+ hﬁ(f,}f%éuLL) + hg(ikédLL) + hs(@}{&)uQL) + th(Q}}@dQL)
+ Trlp (@) @] + Trus(r - AL)(m - 6)] + Trlus(r - Ag)(r - 6)]
+ her(LImr ALy + LEmT - AgLg)
+ hLR(E}CnT “ApLp+ EETlT . ARLR) + h.c. (4.9)
The scalar potential can be written as follows
V = [FP+ 51D + Viop (4.10)
where

|F|? \hEQLQr + hELLLg* + |h3QLQr + hELLLg|* + |hYD,QrhG QR

Il

+ |h20,QL + hY®uQ L + |RE B Ly + hEDyL g + 2hppT - ApLy)?
+ |hE®, Ly + hi®4Lp + 2hprT - ARLg|* + h.c. (4.11)
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The term D is given by

IDP =g | D AT AP +gr ) | Y AlrAP +gv Y | YAVAP, (412)
L A L A L A

where A = Qr,Qgr, L1, Lr, ®y, ®y, A, Ag, 61, and 8g, and 71, 7r, and V are the

generators of the gauge groups:

Viee = m, ({hsc}L@uQR +h§QL0uQr + hEL} @ Ly + RELL ®4lr
+ hLR(z/leT : ALEL + 527'17' : ARIIR) + TT[Ml(qu)uTl)T‘I’d]}
+ Tripe(r - AL)(r-60)] + Trips(rt - Ag)(7 - r)] + h.c.)

+ mirQkQr+mi LY L, +mipLhLp. (4.13)
Finally, the soft-breaking Lagrangian L,y is given by
Esoft = m[,()\%/\% + S\aL;\aL) + mR( ?{)\QR + XGRE\%) + mv()\v)\v -+ j\v;\v)(4l4)

By means of L, it is possible to give Majorana mass to the gauginos.

In order to study the gauge boson-chargino cross section we must find the mass
eigenstates from the diagonalization of the vector bosons associated mass matrix.

In the LR-SUSY model the generation of boson masses is split in two steps given
the fact that the values of the VEV’s chosen for the Higgs fields allows us to distinguish
left and right breaking scales (vg >> ky, kq and ki, k; = v, = 0).

The first breaking step has (Ag) generating masses for Wi, W3 and V. Subse-
quently, the mixing of the two neutral states W3 and V give rise to the physical fields

Zpr and 3.
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The next step involves @, 4, a field which couples to both left and right-handed
components. This is responsible for mixing W and Wg, but to such a small degree
that it warrants the treatment of right-handed fields as ”effectively decoupled” at this
energy.

Thus, it is only WLi, W2 and B which acquire masses at this level. The neutral
fields W) and B mix and give rise to the Z;, and A, bosons which are familiar from
the Standard Model.

The Lagrangian to be considered in the first stage of boson mass generation is[11,

1]
+Tr|(—z'g§r WE —igy V)7 Agf (4.15)

from where we can get the fields

_ grWj —2gvV

Ip = "F"—r— 4.16
T 1)
with the mass
1
MZR = %VR(Q% + 4912/)1/2) (417)
and
2 0
_ 98V +29v Wi (4.18)
(97 + 4g9)'/*
with
Mg = 0. (4.19)



The massless eigenstate B, is the gauge boson of the symmetry group U(1)y, which
survives the breaking of SU(2)g x U(1)p_. The eigenstates Wi and Zg decouple
from the low-energy theory leaving B, as the only field which will be taken into
account in the next stage process of symmetry breaking [12].
For left-handed vectors bosons, the Lagrangian terms to be considered in the
second stage of symmetry breaking are:
+ 70,0, — i T WD, + @ui%’* T WE?

+ Tr|aﬂq>d—¢€’2£7-w5¢>d+cbd%’% CWER, (4.20)

Here the terms containing the charged gauge bosons Wi and Zy are neglected.
We will consider only the neutral boson W, which is given by[10]

o _ 9rZr+2g9vB

= (4.21)
T gk + Ag)M?
where the gauge coupling constant g’ of U(1)y can be written as
/ 9rgv
SO £ A S— 4.22
I g7, (422)
in order to get the neutral mass eigenstates as
g Wl+2¢B
=< L 77 4.23
Y (gf g (429)
of mass
1 19, 1/2
My, = 75 [+ KD (g +44)] (4:24)
For the VVLfE the expressions for the masses are given by:
1 2 2y1/2

V2
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Finally the massless photon is

_ 2g'W? +2¢'B

=Ly 4.26
Yo+ 49 (420
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Chapter 5

Charged Gauginos and Higgsinos

(Charginos)

5.1 Introduction

In this chapter we obtain the chargino masses and the chargino mixing matrix in
terms of analytic expressions. The method is developed in the context of the left-right
supersymmetric model. We also provide a comparison with the numerical solutions
previously published.

If the collider energy is sufficient to produce the two chargino states in pairs, the
underlaying fundamental LRSUSY parameters, such as u,tan 3, My and Mg, can be
extracted from the chargino masses foz,i =1,..,4.

Finding the physical chargino states is a quite complicated task given the fact that
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it involves the diagonalization of 4 x 4 matrix, which determines the chagino masses
and mixing, and thereby the various couplings.

An important step in the development of the LRSUSY model was in Ref.[27],
where approximated analytical expressions and numerical solutions for chargino and
neutralino masses were determined.

The goal of this chapter is to give the exact expressions for the chargino masses
and their corresponding mixing matrix for the left-right supersymmetric (LRSY SU)
model.

Higgsinos are the fermionic superpartners of the Higgs bosons while the gauginos
are the fermionic superpartners of the gauge bosons v, WL“—L, Wﬁ, Zp and Zpg.

Since the higgsinos and gauginos have some identical quantum numbers, it is
possible for these to mix. After gauge symmetries breaking, we obtain the physical
states that, in the case of charged particles, are called charginos.

The terms of the Lagrangian £ (see Eq.4.7) that are relevant to the mixing of

chargino and higgsinos are

Egh = Z\/—Z—T’I" [(T . AL)T(gLT . )\L + ZQvAv)T . ZSL] + h.c

+ i\/2—TT [(T . AR)(gRT - Agp + 2_9\/)\{/)7' . AR] + h.c

iIr -
+ ——[cb T AL+ 200\ <1>]+h.c

7 algrT - AL +29vAv) Py

iTr

E [@u(gLT . )\L -+ 2gv)\v)(i)u] + h.c
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+ ML + XA + Mr(ASAS + A& AR
+ My(wv + XvAv) + Tr(p[rigen) T @q)

+ Tr [MQ(T CAL)(r SL)] +Tr [M(T AR)(r- SR)] . (5.1)

In order to get the expressions for the charged gaugino-higgsino mixing Lagrangian

we must substitute in Eq.(5.1) the VEVs given by Eq.(4.6), then it yields

Ec.m.

Il

[z’)\,}(\/EQR ve AL+ grkad]) +igLka AL
+ igrkudy A +ignkudy A+ MLAL AL

+ MaXAR+pdsdg +ud, of| +He (5.2)

Then the two stages of symmetry breaking are considered separately. First,
charged fermions combine into four component Dirac spinors from the Ly part of

the Lagrangian
Ly = (z'\/igRI/R))\EA}; + h.c, (5.3)

At this stage supersymmetry is unbroken and the mass of W,‘{ . V2ggvR is the same
as that of W . The particles produced at this stage are very massive and decouple
from the low-energy theory.

At the next step the remaining terms in the Lagrangian will be analyzed in the

next section.
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5.2 Chargino masses

The mass eigenstates are identified by finding and diagonalizing the mass matrix M¢

defined by
] 0 MCT ot
Lo = —5 | vty + H.c.
M€ 0 W~
where
1/}+ = (—i /\Za —i A}‘sa ~:7 gz)T 3

W= (—iAL—iAR 6y 67)T
The mass matrix is read directly off the Langrangian and is given by
M, O 0 grkq
0 Mg 0 grka

ar ku dr ku 0 —H

0 0 -—u 0

(5.5)

(5.6)

where we have taken, for simplification, p;; = p. Since M© is an asymmetric matrix,

we require two unitary matrices U and V to diagonalize M©, that can be expressed

as U* M V™! = Mp. The diagonalizing procedure results in the physical chargino

states given by
X:' - ‘/ij ;_7 Xz_ = Uzﬂ/’fa (7'7.7 = 1774)
whose masses are the positive square roots of

M=V MMV =U"M° Mt (U
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The values of V, U and Mp are unknown and have been determined applying,
until now, a numerical or perturbative analysis by assuming values for the gauge
boson masses, the couplings and through variation of the higgsino mass parameter u

shown in the next section.

5.3 Recent developments for Chargino masses

In Ref.[27], the authors have shown the numerical results of the chargino masses. The
Fig.(5.1) shows the behavior of the four chargino masses as a function of p.

On the other hand, the same paper, by means of a perturbative analysis, presents
analytical expressions for the chargino masses by assuming for large Mg, My, i, that
|Mpp| > M2, sin® 0, M2, cos? 0y and |Mpu| > M2 sin® 0y, MZ, cos? 0. The physical

masses are defined to be positive and by convention,
M+ >Mz>M+>M . (5.9)

The Fig.(5.2) shows the plot of the chargino masses following the analytical ex-
pressions obtained from Ref.[22, 27]. Notice the difference with the Fig.(5.1). The
fact that the explicit formulation of the masses was obtained under asymptotic con-

siderations is the explanation to the mismatch between both graphs.
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The chargino mass expressions obtained in Refs.[22, 27] were

N D+ M}(MEA + B) —2M8(p® + 2M2,) — MM

ME ~ M
- 2M, (M} — ME)(Mf - p) ’

X1

_ MEMEB + MED + Mp(MPA — My(p® + 2My,) — MjMj)

ME ~ M
R OMEMp(MZ — M2) (M2 — 14)

X2

MEMB (2 + 2M3,) — MEMS,
2MEM (M — ME) (M — 1)

MEp® + MEMEL?(W° + 2ME) — D + 4p* Mg, + p® — 1B
ApP(ME — u?)(M3 — u?)

pH(A + 2MF, M)

App (M} — p2)(ME — p2)’

ME ~ u+

X3

MEp® + MEME® (42 + 2M3y) + D + 4p* M, + 34° — p°B

ME ~ +
: 4u3(M + (%) (MR + 12)

X4

pH A+ 2MEME) + 2ME S

+ , 5.10
00 + B (ME+ 1) (510
where
A = cd—ad*+ f2—ab+ (e + p)(c+d) + pe,
B = —(e+p*)(cd+ f*) —epP(c+d) + a®(u® + ) + ab(p® + d),
D = p?e(f?+ cd) — ap®(ac + bd), (5.11)
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Figure 5.1: Chargino masses versus the higgsino mass parameter. The graph was

obtained using the expressions of Ref.(27). Mg = 300 GeV, M = 50 GeV, My = 80

GeV and tan 8, = 1.6.
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Chargino masses versus the higgsino mass parameter. The graph was obtained
using numerical computation. Mgr = 300 GeV, My = 50 GeV, My = 80 GeV and

tan 6,=1.6
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and

a = V2My (Mgcosby — psinby),b=v2My (M cos 6y — psinby),
c = Mz+2ME sin 0y, d = M7 + 2M3, sin® 6y,

e = u®+4My, cos® by, f = 2ME, sin® ;. (5.12)

5.4 Analytic expressions for Chargino masses

Here, we will present a method to obtain the analytic expressions for the masses
mentioned above. Specifically, the equations for the chargino masses and the matrix
V are given. To find the elements of the U the same procedure is valid.

Since the matrix V is unitary (V = V1), it is not difficult to see from Eq.(5.8)

that the following relation holds
V(MO MY - MAV =0. (5.13)
Equating the elements of the ith row of Eq.(5.13), it yields
[Mir — (M3)s] Vit + Moy Vi + May Vis + M Viy = 0,
My Vir + [May — (MP)ii| Via + My Vis + My Vig = 0,
Mz Viy 4+ My Vig + [Mag — (MP)ii )| Vis+ My Ve = 0,
My, Viy + Moy Vig + My Vi + [Mag — (MB)i | Via = 0. (5.14)

The ith system of homogeneous linear equations contains only the ith row of V and

one of the masses. The chargino masses can be determined by solving the eigenvalue
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equation

Substituting the corresponding expressions for the M;; we get

M12
M13

M14

(Mp)i; —

My — (M3)s

M21

Myy — (M3)s

Mo

Moy

MSl

M32

Mss - (Mj%)u‘

M34

1M33 - (Ml%)zz

In the general form we have the following expressions,

M43

M12

M44

a =

Mll

M31

Tr M, d = Det M,
M13 Mll M14 M22
+
M33 M41 M44 MSQ

54

M41
M42

Mz

a(MB)} +b(Mp)s, + ¢ (Mp)ii +d = 0.

M23

M33

M22

M42

=0.

Moy

M44

(5.15)

(5.16)

(5.17)

(5.18)



M42

M33

M43

My

M33

M3y

May

My

| Man

My

Mo

M22

My

Moy

Mg

M3,

M33

My

My

(5.19)

For our specific problem we have that,

Q.
Il

(Mg + M3z + Mgy + Miy),

<M33 M44 + M33 Mll + M44 Mll - M12 M21 - M14 M41 - M24 M42

Moo [M33 + Mg + M11]>,

(M24 M3z Mys + Mg [Mag Myy + Msz Myy — Moy Mayz] — Moy Msg Myy

M [_M24 My + Mgy [Mss + M44]]

(5.20)

Moy Mss My1 + Mog My M1y — Mag Myg My — M3z My Mu),

(M33 [MM [~ Mag Myy + Moy Myo) + Mo [May My — Moy M)

My [—May Myg + Moy M44]] ) .

55



Solving la Eq.(5.16), the charginos exact masses analytic formulas are given by

Mg = R
Mg = ®
Mg = R
Mgz = ®

A
f-w- o
Y

“ 4o

A
£"w+5

A
§—w+a

where R represents the value real value of the function and

a =

2

VEriTE), p=t-2

(b*+3ac+12d), § = (2b° +9abc+27¢* +27a°d — 72bd),

|

6+ V)3, n=(-49"+46%),
23 )

3_4 _ E(

(a ab—8c), v P

a2  4b

|:?_—§'~V:|a S—(é._w_/\)a

£

323
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1
2

[N

(SR

(ST

(5.21)

(5.22)

(5.23)

(5.24)



5.5 Analytic eigenvectors expressions (Matrices V/
and U*)

To find the matrix V' we must use the system of equations Eq.(5.14). Dividing the
four equations by V;1, where it is assumed that V}; # 0, the system becomes

Vi Vi Vi

M Wj + M V_:l + My A = —[M1 = (Mbp)a),
[Maz — (Mp)ii) % + M3y —‘V{S + My % = —Ma,
Moy % + [Msz — (Mp)ii] % + Mys “i—i = —Mjys,
Moy % + My % + [ Mg — (Mp)ii] % = —My. (5.25)

Solving these system of equations and taking into account the unitary relation
VitVe+Vi+Vi=1, (5-26)

where the Vj; matrix’s component are given by

Vij = 4] : (5.27)
VIAG? + [Ag; 2] + [ Ass 2] 4 [Ags)?
Ay 1A

Vi =

(5.28)

A 1A+ AP+ [Ag, 2] + [Agy [P

for i = 2, 3,4, and

My — (M[2))jj Mo My,
Aj= M3, Mz — (M), M4
Myp Mgz Myg — (MDP),;
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and the Aj;s, (1 = 2,3,4) are formed from A; by substituting the (¢ — 1)th column

Mgy
for | M ).
Ma
The V;; matrix’s component can be written as

1
2

2(42 9 ~ 9 9
93(93 b1 + (phy — kgMg)(M? — M, +))? + I
Vi = |14 9RULN ( dAR)( L~ M) | 5.9
Mi
G2(g% by + (—ptky + kM) (ME — WL 2))? 4+ h2] 7
Vig= |1+ A : , (5.30)
M2
i
293 2 _ N 24 2H2]72
9%(93 h1 + (phy — kaMg) (M} — M, +))? + g} H
WF1+ML1( d;ML )+ 9L H; | (5.31)
My

where

hy = kgki(Mp — Mg),
hi = gpka(—M7 + M) + (g2K% + M7 = M2 ) (= M7 + M, 2),
Hy = [gphi+ (—pk+ ke Mp)(ME ~ Mx;f)])

Ary = 97 [9hb1 + (—phy + kaMp)(—=MF + M),

Ay, = gnlotha + (phy — kaMp)(M} + M, )],

Ay = ghkul(=ML —Myz) + (giky + M} — My ) (= MF + M, 2))”.

The components V3 have been determined by means of the Eq.(5.26) as well as
the elements of the matrix U* but following the procedure used to find V.
The graph of the chargino masses using the exact expressions obtained in this

work is identical to Fig.(5.2).
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We have checked our results not only by the graphical way but computing nu-

merically the matrices with experimental values and found they coincide. We have

assumed Mg = 250GeV, My = 50GeV, My = 80GeV, tan by = 2 and pu = 0.

For V we have that

1. —1.52-10714 —8.1878.1071% —3.5882.1071°
2.0605 - 10~12 1. —1.5071-107* —3.5882. 10713
V.vTl= 5.32)
0 8.8817 - 10716 1. 0
1.3642-1072 1.3722-10"1% —7.460-10"% 1.
and for the matrix U* we have got
1. 6.2196 - 1071 4.4408 - 10~'* —1.9378 - 1076
—3.552- 1071 1. 1.3322- 107 —2.1995-10~"7
U Ut = 5.33)
—1.59872-101* 1.71104 - 10~ 1. —2.8717 - 10716
0 0 0 1.

Finally, it is important to say that we have eliminated in the process to find the

chargino masses (diagonalization), the so-called mixed angles.
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5.6 Study of the Phase contribution to chargino

masses

The soft-supersymmety breaking part of the Lagrangian £ (see Eq.4.7) involves a
large number of arbitrary parameters[22]. Many of these parameters may be in general
complex, adding new sources of C'P violation with respect to the Standard Model.

It well known that supersymmetric theories contain many new sources of C'P
violation[28]-[35]. The effects of these new C'P violations are expected to be probed
in the near-future colliders.

Since My, Mg and p are assumed complex, with nontrivial phases £;, &, and 6, re-
spectively, then C'P can be violated in the chargino sector. Diagonalizing the chargino
mass matrix is more complicated than in the MSSM model, but it is possible, as will

be shown through this section[36]-[40].
ML = |MLIeZ‘£1; MR = |MR|ei§27 = “J‘|ei9“7 (534)

and recalling the chargino mass term in the LRSUSY Lagrangian, let us write down
the chargino mass matrix M¢ with the most general allowed set of C'P violating

phases
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]ML|ei51 0 0 gr, kde‘im
0 ’MR|6i52 0 9dr k‘deim
Me = , (5.35)
gL kue™™ gpk,emX1 0 — || e®m
0 0 —|p|e*n 0

where the phase angles (i.e. |cosé,| < 1) are in the interval [0,27]. The results
in the CP— conserving limit, may be obtained by simple taking the values 0 or 7, in
the before-mentioned matrix.

By using the transformation

M= PL M P, (5.36)
where
e/z 0 0 0
0 e/ 0 0
Py = , (5.37)
0 0 e—H&1/24+x1) 0
0 0 0 e—i62/2+x1)

Then the matrix Mt can be written as

| M| 0 0 g kae ™A
0 | M| 0 grkq
M = , (5.38)
grke grk.A9) 0 —|ple®
0 0 —|ule® 0
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where we have defined ¢ = (§; +&2)/2+ 6, + x1 + x2 and A€ = (& — &). The linear
dependence with respect two angles is now clear. The complex phase 6, and A{ are
the new source of C'P violation, which can vary in the range 0 < 6, A§ < 27,

Now for the matrix M we can write the following transformation
Y [(M*)M*] Y™ = diag(M,+, M2, M &, M, +) = M}, (5.39)

Notice that the transformation matrix Y is a function only of 8 and A¢/2. Eq.(5.39)

can be rewritten as
Y [(M™*)IM*] - MpY =0, (5.40)
or
YM—-MYY =0 (5.41)
Equating the elements of the ith row of the above equation, we get
[Mu — (M3)i) Ya + My Yig + M3y Yig+ My Yy = 0,
MYy + [Ma — (M) Yia + My Yig + My Yy = 0,

M3 Yii + Moy Yo + [Maz — (M3)ii] Yis + Mu Y = 0,
Mg Yiy + Moy Yig + My Yig + [Mag — (MB)ii]Yia = 0, (5.42)
where the Y;;’s represent the components of Y. Actually, the explicit elements of

the matrix Y here are not known and are not necessary in order to solve the mass

problem.
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The chargino masses can be determined by solving the eigenvalue equation

[Myy — (M3)s] My M My
My, [Mag — (M3)i:] Ms, My,
— 0. (5.43)
M3 Mo, [Ms3 — (M3)i:] My
My My M3 [Myg — (M3)ii]

Substituting the corresponding expressions for the Mij we get the exact analytic

expressions for the chargino masses as functions of the CP angles, i.e.,

Mg = Mg(6,A6/2), (5.44)
Mg = Ma(6,4¢/2), (5.45)
Mgz = Ma(0,46/2), (5.46)
Mgs = Mga(0,A6/2), (5.47)

The orthogonal matrices Y and B*, which are similar to V and U* respectively, can

be found by recalling the expression

Y [(M*)IM*] - MpY =0, (5.48)
as well as the expression
M3 = B* [(M*=*)IM=*] (B*)™, (5.49)

for the matrix B*.
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The following graphs show the influence of the CP angles on the chargino masses.
The most significant variation can be observed in the two lightest charginos (Mxli, szi)’

with a prominent and remarkable influence of the phase angles in the 1\7IX1¢.
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Figure 5.2: Chargino masses versus the higgsino mass parameter.The graph was ob-
tained for the values of the C'P phases # = 90 degrees, A¢ = 90 degrees. Mp = 300

GeV, My =50 GeV, My = 80 GeV and tan#,=1.6
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Figure 5.3: Chargino masses versus the higgsino mass parameter. The graph was
obtained for the values of the C'P phases 6/ = 150 degrees, A = 50 degrees. My =

300 GeV, My =50 GeV, My = 80 GeV and tanf,=1.6
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Figure 5.4: Chargino masses versus the higgsino mass parameter. The graph was

obtained for the values of the C P phases 6’ = 70 degrees, A¢ = 80 degrees. Mg = 300

GeV, My =50 GeV, My, = 80 GeV and tan0;,=1.6
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Chapter 6

Total cross section for eTe™ — Xi X;

6.1 Chargino-Gauge Field Interaction

One of the challenging problems in high energy physics is to predict and to understand
the experimental results from the new generations of high-energy accelerators by the
study of the cross section in the e™e™ collosions.

Chargino production in high-energy e*e™ collisions has already been studied in
depth for the LRSUSY in Refs.[22]-[24]. We extended that calculation by including
the effects of the allowed C P-violating phases. As an intermediated step in developing
the expressions for the cross section for ete™ — xTx~ calculation, in this chapter we
present some results(see Ref.[24]) for the fundamental interactions of supersymmetric

particles with other known particles. Notice the C' Pangles-implicit dependence of the

quantities shown in the Chapter 3.
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The first step in developing cross section calculations for chargino production in
electron-positron collisions is to determine the contributions to the chargino gauge
field Lagrangian Loynz. It should be noted that these fields will contribute directly
to these interactions only after mixing.

The Lagrangian terms are

Lenz = Tr [éuﬁu(—%gm ‘ WHL — %gRT- Wf)(i)u] + h.c.

= ) 1 ~
+ Tr }:q)da'#(—%g[ﬂ‘ . Wlf - igRT' Wf)@d] + h.c.

1 < i <
+ —égLALéLTaGZ)\L + §gR/\R5'LTaGZ)\R. (61)
The expansion of each term with its Hermitian conjugate yields explicit two-spinor
expressions for the Lagrangian.
Here we develop these contributions, one term at a time. The expression

)

+Tr @uﬁﬂ(—%gm’ . Wf ~ 59RT Wf‘)éu + h.c (6.2)
where
:0 .:._
~ u ¢ U
S R (6.3)
$lu B

can be written in an expanded form after some algebra:

1 =, - = o~
- EgL [WSL(_¢2u0M¢;u + ¢2u0#«¢3_u

+ Ohoubt, + ¢;uau¢;u>] (6.4)
the Hermitian conjugate term having been evaluated in the same manner, and ne-

glecting those in W and W™, since they couple to neutralinos and charginos only.
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In the same way, the expression
Tr | &o(~ - p_ ! g, | + h
+1r dO'M(-§gLTWH - igRTWM )(I)d + h.c. (65)

gives rise to similar contributions, with u — d.

Next, the left-hand gauge field contribution is considered
i -
§9L)\L5LTaGZ/\L, (6.6)

where the T, are (1/2) times the regular Pauli matrices 7,.

The expanded form yields the two-spinor terms
i . T
+§9LWBL(AZUM)‘JE — ALGuAL)- (6.7)

were the terms in W* and W~ have been ignored as before. We obtain a similar
term for Ag. The conversion to chargino mass states requires the conversion to four-
component notation and the recognition that weak interaction eigenstates can be

represented in terms of the mass eigenstates

_ S0 I 2 | AL
Flu = _ ’ F2u = - ) WL = s
D1 Pau AL
+ ++
. a | - baa
Fy = B JFau=s | ) (6.8)
d14 P24
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Then we can write (Ref.[12])

(ALTuAL = ALouAL) = VT/L’Y”PLWL + ﬁ/L’YHPRWLa
(QEQua-llﬂ(p;-u + é;ua-#qs;u) - FZUV#PLFQU - FQu’YHPRFQU)

(67,04t + $1.0u01.) = Fruy*Prbi — Fuy*PrFy. (6.9)
Then the expression for the chargino interaction Lagrangian is given by

!
Lc = —1 (gLZf—%—eAM—Fgg—g—ZR)
1%

X ("ﬁlu’Y”PLFm + Fry"Pry, + Fouy P Fy, — Fyuy" Prf,

- ﬁld')’MPLpld + By PrFra + Foy" Py — ﬁzd'YNPRFZd)

+ eA,,(V:VLfy"PLWL + ﬁ/L'y"PRWL + I/T/Rfy"PLWR + V:VR’y"PRWR)

+ (gLCOSew(VT/L’)/MPLWL + ﬁ/Lv“PRWL) - g'sinQW(V:VRv“PLWR + Vf/R'y“PRWR)>

! = ~ = ~
+ ZR‘(];;g(WRW"PLWR + Wry* PRWg) (6.10)
14

Now, taking into account the expressions

XT = =iV — Vg + Visdy + Viad,

X; —iUa AL — iUAg + Uiady + Uudy, (6.11)

where i = 1, ..., 4.

We can express the right-hand projection of Wy, as
PrWy, = Pp(Upnx1 + UnXz + UsiXar + UnXa)- (6.12)

In a similar way, the expressions of the Lagrangian contribution can be written as
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(Ref.[11]).

Wiy Py
PLWp
Wiv"Pr
PaWag
ﬁ/R'Y#PL
P Wy
Wy Pg
ﬁlu’YMPR
PLR,
iluV“PL
PrEy,
Fouy" Pr
Py Py
Foy" Py

Prlyy

(Vi1X1 + ViaXz + VisXs + ViaXa)v*Pr
Pr(Vitxa + Vaixe + Vaixs + ViiXa)
(Ufix1 + UiaXz + UfaXs + UigXa)7* Pr
Pr(Ui2%1 + Uz2Xa + UsaXs + Us2Xa)
(VarX1 + Vazxa + VasXs + VaaXa) V" Pr
Pr(Viskn + Voo Xe + Vb X + VisXa)
(U;ﬁ:(l + U2*2>:(2 + U2*3)§3 + U2*4)24)’Y“PR
(UsiX1 + UspXa + UszXs + U3y Xa)v" Pr
Pr(VisX: + Ve + VasXas + ViXa)
(VarX1 + VazXa + VasXs + Vaaxa) v PL
Pr(Us1x1 + Us2X2 + UssXs + UsaXa)
Uiixa + UpXz + UjsXs + UjgXa)7" Pr
Pr(Vigks + VagXe + VigXas + Vigxa)
(VX1 + VazXe + VisXs + VaaXa) V" Pr

Pr(UraX1 + UsaXz + Usaxs + UsaXa)-
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Finally,

cos 20w - . y y . N
Le = ZZ{%e—W—WXW‘ [(Visng + ViV Pr + (UUjs + Ui4Uj4)PR] X5

+ greosOw Zivuxy (VaViPL+ UaUj PR)XT — ¢ sinOw Z4v,x7

X

!
(VaVia Py + UﬂU;PR);z;} + Zg{g—;—v-’im“ {(Vizvj’; + VisV + ViV Pr

J

+ (UUjy + UUjs + Ui4U’.“4)PR] )U} + A”{edijijfy“ [(Vlﬂ/f1 + VeV,

7

+ VisVi5 + VidVi) Pr + (UaUj, + UUpy + UisUsy + Ui4U>'k4)PR>~(j] } (6.14)

We can define the following matrices

/

O:JL = cos? Ow Vi Vi1 — E‘ZZ sin 20y ViV, + cos 20w (VisVis + Via Vi),

/
O:f = cos? QWUilU;‘kl — 5%; sin 2ewU1‘2U;2 + cos 29W(Ui3U;3 + Ui4U;4),
L= VieVip + VsV + ViV,

J

QL = UnUj + UnUl + UnUs,

1 1
O:;L — ——2—3233:3 + —2'Bi4B;4’
oif = —op. o

Taking into account the above expressions we can write the Lagrangian

1 = () alevomeomar] e
and

Zr cos 20w . L A i

Lt = cos By 9rZp | X Y QyPL + O PR)X |- (6.17)
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6.2 Total cross section

At the future Linear Collinder one will be able to determine the masses of charginos
and the pair production cross section to high accuracies.

In this part, we recalculate and illustrate the chargino pair production in the
complex framework with non-trivial phases. The case without CP-violation phases
was analyzed in the past in order to get the total cross section(see Ref.[22] and [27]).

Scattering experiments involve directing a beam of particles at a target and ob-
serving how the incident particles become scattered by the target. The quantity
measured in such experiments is called the scattering cross section and has units of
area. The most likely means of gaining experimental evidence of supersymmetry will
be through scattering experiments.

Since the quantum mechanics theory is based on a probabilistic approach, the
quantum mechanical cross section is calculated by evaluating the transition proba-
bility per particle into final states within the range of momentum uncertainty of the
measuring apparatus.

We have reproduced the graphs of the cross section obtained in Ref.[22] and [27]
using the analytic expressions for the chargino masses and the respective eigenvectors.

On the other hand, the CP-violation effects on the total cross section or is studied
by taking into account the implicit phase dependences of those quantities. This is an
important remark since the mathematical equations for o7 were taken from Ref.[27] in

which the authors published the most general expressions (valid for CP conservation
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and CP violation phase) in order to compute the Cross section.
Let us start by assuming the calculation be performed in the center of mass frame,
the expression for the cross section is given by

do 1 A(s,m2, m
dQon 327ms \| M(s,m},m

‘E) |M(s,t)]?, (6.18)

where A(s, m?, m3) = [s—(m;+m;)?*|[s—(m;—m;)?] denotes the normalization volume,
m; is the mass of the particles in general and M(s,¢) is the invariant amplitude of

the collition process. We have introduced the following variables

s = (ql + Q2)2,
t = (g —p)?,
u = (q—p)?, (6.19)

where the momenta of the incoming particles are represented by ¢, ¢; and the mo-
menta of the outgoing particles by py, p;. We define k% = (g1 + ¢2)2 = (p1 + p2)*.
Here we have followed the mathematical treatment developed by[24] for the specific
process ete” — Zp — X X; in order to show how to go through the cross section
computation. The left-handed intermediate-state equivalent will be omitted since it

only requires minor modifications. The other intermediate state process given by

+ +

e'e — ﬂL,R - X:X; y € e — i S )ZZL&_, (620)
will be taken into account by their final expressions of the respective Cross sections.
The vertices are defined for ete™ — Zp — X:F)ZJ‘ by the following expressions

1]
-9 Q. + QP) (6:21)
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for the Zr — X X; vertex and

. 9R
— v - , 6.22
toost (cv —cavs) (6.22)
for the ete™ — Zg vertex. In the above expressions ¢y = —16 + 15sin?8y and

ca = —3sin? Oy .

In Refs.[22]and [24] the invariant amplitude M for ete™ — X X; is written as
M = MlDZRM-?n (623)

where

= ;9B = wolp Ep \y.
M= (i T fm Q.+ Qo

-1 k.k
Dy = [—t Vg, — ulty ,
2 <k2 —MZ, + ie) 9 = 320 - %, 50
. 9rR
= e y” 24
My = [i= 2oy + carehu (6:29

where Dy, is the so-called Zg-propagator]].

The terms in k,k, — 0 given that k, = p,, — p1, and using the Dirac equation

po i =0, and p,4=0.

The Eq.(6.23) can be rewritten as

M - M]_MQ, (625)
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where

My = (i) D, () 52 Qfy Pl 1)
X ¥ (ev + cavys)i,
M, = ( 72 )l K)1%, (g2, 520 Q@ Pralas, 1)
gy cos Oy J
X V(cy + cas)a. (6.26)

Knowing that |[M|> = M M, the average square of the invariant amplitude is

defined by

M oerage = (1/4) UM + MM | + [MoMF + M), (6.27)

spins

where

The expression for |M;|?, |Ma|?, |M; M, |? and |[M,M;"|? are given by

= a2 B0 oy a0

g% cos? Oy

x {(C?z + (a2 p2)(q1 - p1) + (@2 p1)(q1 - p2)]

b G- p)ap) - (@ p)a ~p2>1},

(2L )iQsrDm

M,y* =
|24, g% cos? Oy

32
» {(c% T+ )l(g2 - p)(as - p1) + (g2 p1)(gs - pa)
(& = &)[(g2 - p2)(@r - 1) — (2 - P (e 'pm},

g g *
M = a2 R QLQI PP ()G + ) ),

Mt = 2 QL QR U P+ ) 2. (625)

where we have defined cg = ¢y — ¢4 and ¢;, = cy — ¢4.
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2

average

Then, the expression of |M| for a process evaluated in the center-of -mass

frame reference yields,

4 12 (C?%-}_C%)
Moy = ( 329k ) < )Q{Q%MQZQ)

1
4+ [s* = 28(M;, + M)@) -+ (M;f:h + M;T)ﬂ cos? QCM]
3 T ¥l 7

+ (050% + OZOZ*)(SM;;M;?)}. (6.29)

The differential cross section for two body scattering of non-identical particles is

given by

do ld| 1

/
dQCM q 64m2s

|M (s, )|, (6.30)

where

9 [8 - (Me+ + Me—)Q][S - (Me+ - Me—)Q]

T 4s
(6.31)
P [s = (My+ + Mz-)?|[s — (Mygs — M- )]
q- = 1 ,
s
and assuming the approximation Me"’a Me— — 0, we have that
As, My, My-) 2002 2 L 2 \271/2
\/WTM—);) = [1 = (Mg + MZs) + (Mg — M )Y (6.32)
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Then, we can arrive to the partially integrated differential cross section as
do - ! 29?%9/2 (C%chi), =20 4oz
d(cos Ocar) 256m \ gy cos? Oy J s(s — M7 +ic)? st X Xi
1
s

< {C1@be 108 1 - a2, - 122,

1/2
(M2 _M2 )2 /
X x5

+ [s? —2s( M;j_ + M;Jr) + (Mij_ + M%r)Q] cos® Oon]
j 45

+ (050 + OFO)( 45M>2i+M).<j_)}. (6.33)

This will yield og, corresponding to Zg intermediate state. The total cross section is

obtained by integrating over the angle 8y, 1t yields
OTotal = Oy + 0zL,R + Oy + OyzL,R + Oyp + 021,k + OZL,R (6.34)

where the partial cross sections are obtained in a similar way to og.

e 2 1 1
_ " S5 = (= - /2
oy 167755” [1 (y —2)° + 3)\(1,y,z) +4X])\ (L,y, z), (6.35)
4 2
9 2 2 1 (y —2) -1/2
5 Ual71U; - —4A Ly,
1287rsI e {[(cﬂ-lﬂ) (a? — b?) (Ly,2)
a+b 2ab a, _a+b a? 12
<ln(a — b) — b2> +4<1 - Zln(a — b) + o b2>] })\ (1,y,2),
(6.36)
_ 9 s RelD Ok + O
NI = omeaszay i RelDzels)l(en 4 er) (O + O)
X [—(y—22+ %)\(1, v, 2) + AX]N2(1,y, 2), (6.37)
e?g? /L IR
OvZg _*__—_3271' cosZ By cos 20W6¢jRe[DZR(s)](cL + CR)(Oij -+ Oij )
x 1—(y—2)*+ l)\(l,y, z) + 4X])\1/2(1,y, z), (6.38)
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e’g 1 a+b
ro = =8 |U,j|25w[[1—< y— 27+ X7~ (2 a1+ a)

x (2 -2 ln(z “_L Z))J AV2(1,y, 2), (6.39)

4

—g !
OzZyp = M(UﬂUﬂ)Re(DZL){OiL'<[1 - (y - )2]— ln(

a+b

)—4(1+a)

< Rt ot Ly (6.40)

4

g
UZRD = m COS 29WcL(Ui1Uj1)R6(DZR){QiI3 ([1 - (y - 2)2]

- D -0+ @k - Fud ) - optt
a+b

< wCED b2, (6.41)

4
~ it (cos 2w Rel Dz () Dan(9)(E + )

(OQF+ 0 + - (=2 + A2

OZrr

X

+ AX(05QIF + 0 QR A2 (1,y, 2), (6.42)

4
_ g-s 2/ 2 2 L2 IR|2
R 2y p— H'W"IDZL(SN (cz + cr) (0 [ + |051%)

1
X [1=(y— 2"+ ALy, 2)] +8X0; 05N (1, 2),

(6.44)

4 2
g*s cos® 20y - , . .
= ——|D R
e 647TCOS20W| 20(5)*(c} + &) { (105 + |OF)

1
X [1—(y—z)2+g)\(l,y,z)]—|-4XOiLjOg})\l/2(1,y,z), (6.45)
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Here, we have taken a = —(1—y—2)/2— M?/s and b = (1/2)A\Y3(1,y, 2); DzL p(s) =

(s — M2+ iMzFZz)Z’II%- The triangle function X is given by
M2(1,y,2) =14y + 22 — 2y — 22 — 2uz, (6.46)
where the variables z,y, z are given by
r = (MxiiMin)/s,

y = (Mg)¥/s,

e = (Ms)/s. (6.47)

6.2.1 Numerical study

In this section we show the total cross section for charginos plotted as functions as
a function of the center of mass energy /s = 2TeV. In order to show the accuracy
of the method developed in this thesis we have used the cases of ete™ — x7x7,
ete™ — xTxz, ete™ — XTx; and ete™ — x5x;. The consideration of others
different chargino combinations is straightforward. The CP conservation case showed
in Ref.[27] is reproduced in the simulations and compared with the present results.
In Fig.(6.1) we show an example of the numerical study related to combinations
of different processes, i.e. efe™ — ¥ %1, ete™ — X%y and efe™ — (F¥v,. As
expected, there is a pick shift in the direction of the c.m. energy increment when
the masses of the particles increase as well as the Cross section energy when the the
process’s particles masses diminish. A similar behavior is corroborated in Fig.(6.2)

when we have changed some parameters in the simulation.
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As mentioned in the introduction of this chapter, we have studied the cross section
or by taking into account the effects of the CP-violation phases. The graphs show a
distinctive variation of o when compared with the CP-conservation case.

From Figs. (6.3) to (6.8) the study of the influence of the C'P angles have been
done for the value of characteristic angles 0, 90 and 180 degrees. It is important to
remark that for the 0 degree we reproduce the C'P conservative case and even if we
have obtained in all graphs a mayor value of the Cross section for 180 degrees it does
not mean that this is the maximum condition (extremum). In order to study under
which conditions (angle values ) the Cross section rich its maximum we must apply
the theory of variational calculus.

From the mathematical point of view we can explain these differences by recalling
that the consideration of phases in the mass matrix it is in fact a multiplication by

factors which take values between -1 to 1.
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Figure 6.1: Total Cross section of the process ete™ — x7x;, eTe
eTe™ — X4 x, versus the center of mass energy 1/s. The graph was obtained for the

values of the C'P phases cero degrees, Mg = 300 GeV, M, = 50 GeV, My = 50

GeV, tanf,=1.6, p = —100, Mxli=80 GeV, Mx§:120 GeV and sti:].’io GeV
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Figure 6.2: Total Cross section of the process efe™ — %y, efe™ — ¥{%; and

ete™ — X3 X5 versus the center of mass energy +/s. The graph was obtained for the

values of the C'P phases ¢ = 70 degrees, A¢ = 80 degrees, Mg = 300 GeV, My, = 50

GeV, My = 80 GeV, tanf,=10, p = —200, Mxli=180 GeV, MX§:24O GeV and

M, £=370 GeV
3
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Figure 6.3: Total Cross section of the process ete™ — X7 %] versus the center of mass
= 180 degrees,

energy /5. The graph was obtained for the values of the C'P phases ¢’
300 GeV, My = 50 GeV, My = 50 GeV, tan,=1.6,

A¢ = 180 degrees, Mg

p = —100, M,+=80 GeV.
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Figure 6.4: Total Cross section of the process e*e™ — x7X; versus the center of
= 90

mass energy 1/s. The graph was obtained for the values of the CP phases ¢
degrees, A€ = 90 degrees, Mg = 500 GeV, My = 100 GeV, My = 50 GeV, tan 8,=2,

p=—100 and M, +=80 GeV.

87



Cross section (pb)

10t 110
[
| 1
b
AN
0.1 ,"s; \E\\\\\ Cross Section with CP conservation 0.1
NS h
0.01} / . T 0.01
i Cross Section with CP-violation
i
"
0.001} / l0.001
',f
500 1000 1500 2000

0
c.m. energy (GeV)

Figure 6.5: Total Cross section of the process ete™ — x7x, versus the center of

mass energy +/s. The graph was obtained for the values of the C'P phases 6/ = 180
500 GeV, My 100 GeV, My = 50 GeV,

degrees, A = 180 degrees, My
tan 6;=2, 4 = —100 and M,+=80 GeV and M,+=120 GeV.
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Figure 6.6: Total Cross section of the process ete™ — ¥7x, versus the center of

mass energy /s. The graph was obtained for the values of the C'P phases 8 = 90

degrees, A¢ = 90 degrees, Mz = 500 GeV, My = 100 GeV, My = 50 GeV, tan 6,=2,

© = —100, Mxli=80 GeV and MX§=120 GeV.
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mass energy +/s. The graph was obtained for the values of the CP phases 6/ = 180
100 GeV, My = 50 GeV,

degrees, A¢ = 180 degrees, Mg = 500 GeV, My
tan 6=2, p = —100, M, +=80 GeV and Mﬁ:wo GeV
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Figure 6.8: Total Cross section of the process ete~ — xix; versus the center of

mass energy /5. The graph was obtained for the values of the C'P phases 6/ = 90
degrees, A& = 90 degrees, My = 500 GeV, My, = 100 GeV, My = 50 GeV, tan 6,=2,

p = —100, Mxlizlzo GeV and MXsi:wo GeV.
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Chapter 7

Conclusion

This thesis is concerned with the study of the process ete™ — xtx~ in the left-
right supersymmetric model (LRSUSY), in the presence of CP violating phases in
the chargino sector.

In this thesis, we have obtained the chargino masses and the chargino mixing
matrix in terms of analytic expressions. We also have proved the excellent agreement
between our results with the numerical solutions previously published.

One step forward in the theory was achieved by considering the CP violation
phase angle effects on the analytical expressions mentioned above. The chargino
mass matrix was considered in the most general by taking the parameters as complex
parameters. By means of the linear dependence property we have reduced to only
two angles the CP violating phases to be take into account to describe our problem.

Of special importance is the study of the total cross section o7 under the effect
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of the CP effects. We have performed the analysis for different values of the phase
angles obtaining in all cases a variation in the cross section respect to the curve of
the cross section with non CP phase angles.

The study of chargino production present an important step towards determining
the parameters My, Mg, u, tan § as well as the CP violating angles in supersymmetry.

The impact of these angles is demonstrated here.
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Appendix A

The metric is defined to be

G = diag(1, -1, -1, -1). (7.1)
The momentum four vector is P* = (E, P).

ot =(1,8),07" = (1,-4), (7.2)

denotes the Pauli matrices. The Dirac equation transform in two-component notation
is
(@uP")Pes = mp®

(0uP") 70 = mia, (7.3)

where &,, s are two-component spinors.

A four-component spinor satisfies
(P* —m) = o. (7.4)

It follows that
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%,
o | = 2 7 (7.5)
,'7](1 MU——D“B 0
L
vs = 70yl
-1 0
= ’ (7.6)
0 1
where
wf Low s v —pep
0" = (05407 = 05s07H)
- l(g—uaaa_u_ — VB _ g‘”é‘o‘g“.) (7 7)
4 1 af o’ '

This is called the chiral representation of the y-matrices. The four-component spinors

()3
%= , (7.8)

YR
where 91 g = Pr gt, and the left and right-handed projection operators are given by

1
PL,R: 5(1:{:’)’5> (79)

The charge conjugated spinor in terms of the charge conjugation operator C can be

expressed as

¢ = CyT; C = —iy?*4°. (7.10)
The antisymmetric tensor (¢*? = —e?),
eab’ — _Eﬁa
0 1
= iy’ = : (7.11)
-1 0
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By means of the tensor €,5 we can write

€=, & =epaba

In terms of the chiral representation we get, (e = —€°®),
€8a 0
C=—iy’y" = ,
0 EB@
and
o= |
&
W = e
2

For a four-component Majorana spinor we get,
I
&
In the four-components framework we have
Y1 = méa + b
D115t = —méa + TR
Viv*he = £5"& — ot m
D1y st = —£10%& — Gt m
1. o
Fio™ e = ma™e — 20,
where the numbers 1 and 2 label two different four-component spinors.
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Appendix B

In this appendix we give in a more explicit form the Particle content of the LRSUSY

model.

Field Comp. fields Quant. number Name
Matter
QL (u d)t 303 left-handed up(down) quark
Qr (u d)f 031 3 right-handed up(down) quark
Ly (ve)t 101 left-handed neutrino(electron)
Lg (v e)k 0 3 —1 right-handed neutrino(electron)
QL (i d)T 303 left-handed up(down) quark
R (@ )% 03 3 right-handed up(down) quark
Ly (v e)t 10 -1 left-handed s neutrino(s electron)
Lr (7 &)L 0 3 -1 right-handed s neutrino(s electron)
Gouge
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Wy Wi Wi, Wo

Wg Wg, W};, Wg
1% 1%
AL AL AL AL
AR )\};, Ams )\%
Ay Av
Higgs
¢ ¢F
¢u,d
¢r ¢
u,d
LA+ ATt
Ay v
1
AO _ﬁ A+
A AT ATt
Ar V2
0 1
A -5 AY
g 89
51 v
__ 1 -
) -7 )

triplet singlet singlet
singlet triplet singlet
singlet singlet singlet
triplet singlet singlet
singlet triplet singlet

singlet singlet singlet

: 3z 0
10 2
L
0 1 2
R
10 =2
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