NOTE TO USERS

This reproduction is the best copy available.

®

UMI

FAULT RECOVERY IN DISCRETE-EVENT SYSTEMS

USING OBSERVER-BASED SUPERVISORS

CHENHUAN WANG

A THESIS
IN
THE DEPARTMENT
OF

ELECTRICAL AND COMPUTER EGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF APPLIED SCIENCE AT
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

JUNE 2005

(© CHENHUAN WANG, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10253-5
Our file Notre référence
ISBN: 0-494-10253-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Fault Recovery in Discrete-Event Systems using Observer-Based

Supervisors

Chenhuan Wang

Fault recovery is one of the crucial tasks of supervisors of mission-critical and safety-
critical systems. In this thesis, we study the synthesis of recovery procedures using

discrete-event models.

It is assumed that the plant can be modeled as a finite-state automaton describing
both normal and faulty behaviors. The faults are assumed permanent. Furthermore,
it is assumed that a diagnosis system is available which can detect and isolate the
faults with a bounded delay. No other assumptions are made about the diagnosis
system and in fact, it may be designed based on any technique (continuous-variable
or discrete-event). The combination of the plant and diagnosis system is the system
to be controlled. This system has three modes: normal (when the plant operates
with no faults), transient (when a fault has occurred but not detected by the diag-
nosis system) and recovery (when the fauls is diagnosed and appropriate actions for

recovery may be taken).

We solve the supervisory design problem using a state-based approach. It is as-
sumed that design specifications are given for normal, transient and recovery modes

iii

in terms of legal (safe) states. The system under supervision is also required to be

nonblocking in normal and recovery modes.

Following a modular switching approach, we propose supervisory schemes in which
separate supervisor modules are designed for normal, transient and recovery modes.
We consider failure accommodation in cases where recovery to normal operation is not
possible and also recovery in cases in which it is possible to resume normal operation.
For each case, we provide two solutions, one in which the recovery supervisor is in the
feedback loop when the system is started in its normal mode, and another solution in
which the recovery supervisor is engaged only when a fault is detected and isolated.
The latter approach is less computationally complex to implément. We investigate

supervisor admissibility and nonblocking property of the system under supervision.

All of the supervisor modules are observer-based. In our opinion, the use of
observer-based supervisors results in a more transparent solution and simplifies the
analysis in our switching scheme when one supervisor replaces another in the feedback
loop. In this thesis, in the process of our study of fault recovery, we also propose a

systematic method for designing observer-based supervisors using normal languages.

v

Acknowledgments

I sincerely appreciate the help and financial support of my supervisor, Dr. Shahin
Hashtrudi Zad, who has guided me very patiently along since the very beginning. I
would also like to thank all the professors and staff members as well as my colleagues
in Concordia University’s Electrical and Computer Engineering, who taught or helped

me during this research.

Contents

List of Figures

List of Tables

1 Introduction

1.1

Introduction

2 Background Review

2.1

2.2

Languages and Automata

Supervisory Control

3 Observer-Based Supervisors

3.1

3.2

3.3

3.4

Introduction to Observer-Based Supervisors
Procedure For Designing Observer-Based Supervisors Using Normal
Languages o
Conjunction of Observer-Based Supervisors

Merging Observer-Based Supervisors

vi

ix

xii

11

11

16

22

4 Problem Formulation
4.1 Introduction
4.2 Plant Model
4.3 Diagnoser e
4.4 System to be Controlled
4.5 Fault Recovery Problem,

4.6 Modeling Example: Manufacturing Cell L

5 Fault Recovery Problem and Synthesis Procedures
5.1 Failure Accommodation Problems (No Recovery to Normal Mode) . .
51.1 First Approach
5.1.2 Second Approach
5.2 Problems Involving Recovery to Normal Mode
5.2.1 Third Approach
5.2.2 Fourth Approach

5.3 Conclusions

6 Example: A Small Factory
6.1 Plant Model of The Small Factory
6.2 Diagnoser
6.3 System to be Controlled

6.4 Controller Design

7 Conclusion and Future Work

vii

40

40

42

43

47

48

49

55

96

57

66

73

74

78

84

86

36

38

38

89

94

7.1 Conclusion .

7.2 Future Work

Bibliography

viil

98

List of Figures

2.1 Traditional control loop 17
3.1 Controlloop, 28
3.2 Control loop 29
3.3 Example 3.1: G 32
34 Example 3.1: PG 32
3.5 Example 3.1: TGg, 33
3.6 Example 3.1: supervisor S’ and its projection PS" 33
3.7 Example 3.1: /G 33
3.8 Example 3.1: meet(PS"PG), 34
3.9 Example 3.1: OBS S 34
3.10 Example 3.1: S/G 34
3.11 Conjunction of two supervisors 36
3.12 Example 3.2: merging two OBS supervisors 39

4.1 Modified control loop (G: plant, D: diagnosis system, S: supervisor) 41
4.2 State transition diagram of the system to be controlled 42

4.3 Plant with 2 failure modes 44

ix

4.4

4.5

4.6

4.7

4.8

4.9

4.10

5.1

0.2

5.3

5.4

9.5

5.6

5.7

5.8

5.9

5.10

5.11

0.12

5.13

5.14

5.15

Diagnoser modelo oo 45

State partition 47
The manufacturing cell 50
The automata models of machines and conveyors 51
SFES o1
SPECN11 « « o o o 53
SPECNI | <« o 53
Plant model for failure accommodation problems 56
Supervisors involved in the first approach 57
GD . .. 60
Sy, Stand Sgp 61
GD under supervision of SN ASTASgr . . . L. 62
Supervisors used in the second approach 67
GD . . 71
OBS supervisors Sy,Srand Sg 72
GD under supervision of Sy ASrand Sp. 73
Plant model in the case of recovery to normal mode 74
Supervisors Involved 75
Supervisors Involved 78
GD . . . 81
Supervisors Sy 0,970 and Spoo 81
OBS supervisors Sy and Sqy - . ..o 82

5.16 Supervisors Sy and St after merging 83

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Small factory 86
MACH: automaton model of the machine 87
BUF: FSM Model of the Buffer 88
Diagnoser model 89
The system GD where recovery to normal is impossible 90
Controller Sy, S7, Syrand Sg 91
The system under supervision 92
meet(Sn, St) . .. 92
SR 93

x1

List of Tables

5.1 Third approach: OBS design steps

5.2 Supervisor design steps

X11

Chapter 1

Introduction

1.1 Introduction

In control systems, component failures such as sensor failures could degrade the sys-
tem performance and reduce the controller’s ability to perform effective control action.
Therefore, performing fault recovery is very important for safety and performance
considerations. A well designed supervisor should be able to take appropriate actions
(such as control system reconfiguration) to accommodate failures. In this thesis, we

study fault recovery in systems that can be modeled as discrete-event systems (DES).

The rapid evolution of computing and communication technologies has resulted
in the design of highly complex control systems for which differential and difference
equations have become inadequate and inappropriate to be employed in modeling and

control. In order to better study the behavior of these complex, discrete-event models

are used. Discrete-event models are encountered in a variety of application domains
such as manufacturing systems, communication networks, traffic control systems and
information systems. A framework for the control of discrete-event systems was in-
troduced by P.J.Ramadge and W.M.Wonham (RW) in 1982 ([15]). They developed
a new set of modeling, analysis and design techniques suitable for the general logic

principles of the operation of control systems at a higher level of abstraction.

In the RW theory, an uncontrolled plant is modeled as an automaton describing the
structure and behavior of the plant. A control logic, supervisor, is designed to disable
or enable certain (controllable) events in an appropriate way in order to prevent the
system from exhibiting undesirable behavior. Moreover, “liveness” property (in the

sense of avoiding deadlocks and livelocks) is also studied and taken into consideration.

Any malfunction of a component in a system is called fault or failure. We will
not differentiate between fault and failure in this thesis. There are two kinds of fail-
ures: permanent and nonpermanent. We assume that faults are permanent in our
framework. A failure is permanent if the system stays in this faulty condition unless
some recovery procedures are involved, while nonpermanent failures do not persist
and disappear after some time. For example, ground connection in the high-voltage
transmission system because of storm may be permanent or nonpermanent. Failures
can also be classified into two categories according to whether the system can recover

to normal mode or not (in case of failure).

In literature, fault recovery has been studied in various types of control systems
including DES-based [3],{5],[12]. In [3], a failure analysis technique is proposed using
discrete-event models, and then a fault-tolerant supervisor is synthesized. Fault and
failure are considered to be different kinds of events according to the degree of the
degradation in the system performance. Fault represents the malfunction of a compo-
nent and is tolerable, while a failure causes the breakdown of a system’s component.
An event sequence is said to be “tolerant” if it can lead to a marked state from the
initial state upon the occurrence of faults. A fault-tolerant supervisor is then con-
structed based on all fault-tolerant event sequences in the system. The system under
supervision is fault-tolerant if it is nonblocking. In this framework, the specification
after a fault occurs does not change. Moreover, no alternative solution is provided if

no tolerable event sequence can be found.

In [5], a learning and repair algorithm is proposed for dealing with a group of
robots with modeling uncertainty. It is assumed that robots may switch offline due
to failures or commands, that is, the number of units in a robot team may decrease.
Therefore, the supervisor must be able to reconfigure itself and propose effective con-
trol in order to preserve the desired properties. When a unit switches offine, the
learning method deletes the events which belong to the failed component alone from
the previous supervisor, and then the repair algorithm is employed in order to restore

the fractured automaton. This approach provides a practical design method for the

adaptive supervisory control problem. However, it can only handle the case in which
some units switch offline and the solution seems to be suitable for the specific problem

considered.

In [12], fault recovery problem is explored in discrete-event systems following lin-
guistic approach. It is assumed that a diagnoser which can detect and isolate failures
with bounded delays is available. They assume that the diagnosis system can be
designed using any diagnosis technique, as long as the bounds for diagnosis delay are
available. Thus, an abstract model of the diagnosis system is used. In this framework,
the control problem and the diagnosis technidue are almost separated, a feature which
increases the flexibility of design. The specifications for the faulty mode are, in gen-
eral, different from the specifications for the normal condition. A modular switching
supervisory control mechanism is proposed. Both the nonblocking issue and admissi-
bility property are studied. Moreover, the problem regarding multiple failures is also
studied. In the case of multiple failures, the supervisory control problem may become
computationally complex since all recovery supervisors must be in the feedback loop

when the system starts even if no failure occurs.

In this thesis, we extend the results of [12] in two directions. First we propose
a switching supervisory scheme in which the recovery supervisors are engaged only
when a failure is diagnosed. This reduces the computational complexity (both time

and space) of supervisor implementation during normal operation and the transient

mode when a failure has occurred but not diagnosed yet. Second, in this thesis, we
study fault recovery problems in which recovery to normal operation may be possible.

This issue was not addressed in [12].

In order to examine the above topic, similar to [12] we use the RW theory. How-
ever, instead of the linguistic approach (in which design specifications are given in
terms of legal event sequences), we have decided to use the state-based approach (in
which design specifications are given in terms of legal states). Both approaches are
essentially equivalent. However, in our opinion, solutions based on state-based ap-
proach are more transparent and easier to interpret. This is particularly important

in handling switching from one supervisor to another supervisor.

In the following, we briefly review the work on state-based supervisory control.

In [14],]9], the general control theory of Ramadge and Wonham is specialized to the
vector discrete-event systems (VDES) in which the system state can be represented
by a set of integer components. The concept of predicates and predicate transformers
play an important role in the control of VDES. A static state-feedback controller,
which implements control policy based on the current state, not based on the history
(event sequence) of a plant, is proposed for VDES. Moreover, controllability, observ-
ability and modular control are investigated in the state-feedback control of VDES.

Static state-feedback control can also be extended to dynamic state-feedback control

of VDES in which control specifications are given in terms of event sequences by
adding memories. A systematic method on how to construct a memory is introduced.
Further extension can be found in [8] and [18]. In [8], the design of “observer-based
controllers” (supervisors) have been explored as a solution to the state-based super-

visory control problems.

In [19], a model-based programming method is provided to track system state,
diagnose fault, and perform reconfiguration. An earlier version of this work has been
demonstrated in space on the NASA Deep Space One (DS-1) probe. Here the con-
trol system has a “model-based executive” (called Titan) which at any given time
estimates the most likely state of the plant and generates a sequence of control ac-
tions to move the plant from the current state to the desired state (satisfying the
design specifications). Another feature of this approach is a “Reactive Model-Based
Programming Language” (RMPL) which allows the engineer to design and program
the control system at a higher level, leaving tasks involving reasoning through system

interactions to the language compiler and the executive (Titan).

Observer-based supervisors (OBS) used in DES problems are very similar to those
used in modern control theory. In [6], OBS are used as solutions for supervisory con-
trol problems. Specifically, a standard procedure for supervisor design for problems

of control under partial observation is proposed by modifying supervisors designed for

full observation. Using the proposed procedure, an optimal full-observation supervi-
sor which generates the supremal controllable sublanguage according to RW theory
can be converted to an observer-based supervisor which is at least as efficient (min-
imally restrictive) as the supervisor that generates the supremal controllable normal
sublanguage. This procedure can be implemented on-line. Since no marking issue is

considered, the modified supervisor is not guaranteed to be nonblocking.

In this thesis, we study the design of observer-based supervisors to solve fault
recovery problems in discrete-event systems. An overview of the thesis is given in the

next section.

1.2 Thesis Outline

In this thesis, we extend the work in [12] using a state-based approach to supervisory

control.

In Chapter 2, we briefly review the automata theory and the RW supervisory
control theory. The focus in this chapter will be on state-based supervisory control.
However, the concepts of controllability, observability and normality used in linguistic

approach are also discussed.

In Chapter 3, we present observer-based supervisory control. We assume that

an observer which can generate a state estimates based on the observed events is
available, and the control action is based on the state estimate provided by the su-
pervisor. The supervisor designed is thus called an Observer-Based Supervisor (OBS).
A procedure for designing observer-based supervisors using normal languages is in-
troduced. In the last section of this chapter, a merging scheme for multiple OBS
supervisors, which will be used later in the supervisor design for fault recovery, is
discussed. While OBS have been studied in literature in modern control and DES,
the aforementioned design procedure for OBS using normal language and the merging

operation are among the contributions of this thesis.

In Chapter 4, we formulate the fault recovery problem studied in this thesis. The
plant is modeled as an automaton. Similar to [12], we assume that the diagnosis sys-
tem can detect and isolate failures with a bounded delay, and we use an abstract model
for the diagnosis system in the form of a finite-state automaton. The diagnoser may
be constructed based on any technique, continuous-variable or discrete-event (e.g.,
[10],[16],[17],[22],[7],[13]) as long as the bounds for diagnosis are available. The ben-
efit of separating the diagnosis and control problems is that the supervisor design

problem becomes simplified.

The combined model of the plant and the diagnoser forms the system to be con-
trolled. The system is considered to have three modes : normal, transient and recov-

ery. In the normal mode, the system is working properly. Once a failure occurs in the

plant, the system is in the transient mode before the fault is diagnosed and isolated.

Upon the failure detection, the system enters its recovery mode.

The specifications corresponding to each mode are given in terms of legal (safe)
states, that is, the set of states for which a supervisor should enforce these specifica-
tions. In addition to these specifications, we would also like the supervised system to

be nonblocking in both normal and recovery modes.

In Chapter 5, we present four design approaches to solve the supervisory control
problem for fault recovery. We discuss the cases of failure accommodation (non-
recovery to normal mode) and recovery to normal mode separately. The control
problems including both cases are considered next. For fault recovery problem in
each category, we provide two approaches to solve the control problem. The case
in which the system has one failure mode is considered first, and then extension to

multiple failures is discussed.

A modular switching scheme is adopted in the supervisory control for fault re-
covery problem. Using modular approach can simplify the design procedure, allow
easy modification and upgrading of the supervisor when a component changes. It is
also easy to synthesize. The supervisors designed are observer-based. Examples are

provided to illustrate the proposed procedures.

Chapter 6 provides an illustrative example of the application of proposed method-
ology to a simplified manufacturing system. Finally, we will summarize our conclu-

sions and discuss future work in Chapter 7.

10

Chapter 2

Background Review

In this chapter, we briefly review topics from the automata theory and the supervisory
control theory of discrete-event systems which are relevant to our discussion in future
chapters. The focus of our discussion of supervisory control will be on the “state-based

approach”.

2.1 Languages and Automata

Let be an alphabet. For a language L € %*, L denotes the prefiz-closure (or sim-
ply closure) of L. L is closed if L = L. For two languages L, M C ¥*, L is called

M-closed if L=LNM.

The natural projection is an operation on two event sets where one set is a subset

of the other, which erases all events in the larger event set that are not included in the

11

smaller set. Let ¥; C X,. The natural projection, P : ¥} — X7, is defined according

to

a, if o€ Xy
e, ifoedy—23.
P(so) = P(s)P(0), for s € &}, 0 € 5,.
Where € is the empty string. The inverse function of P is a map P~' : 37 — 3%
defined as

PYt)={s€=i| P(s) = t).

Consider a plant modeled as a deterministic finite-state automaton G =(Q, %,
8, Go, @Qm), where @ and ¥ represent the state set and the event set, respectively.
d 1 @ x X — (@ is the partial state transition function, and ¢y and @,, denote the
initial state and the set of marked states, respectively. For g € @), o € X, we write

d(q,0)! if 0(q,0) is defined.

L(G) and L,,(G) represent the closed and marked behavior of G, and are defined

according to:
LG)={s€%|3¢€Q, ¢=0(q,5)}

Lin(G) ={s € L(G) | 6(q0, 5) € Qm}-

Namely, L(G) contains the set of event sequences which can take G from the initial

state go to some state in @). Note that L(G) is closed (i.e., L(G) = L(G)). Ln(G)

12

contains all the event sequences that can take G from the initial state gy to some
marked state in Q. A plant G is said to be nonblocking if L,,(G) = L(G), that is,

for any string s € L(G), there exists s’ such that ss’ € L, (G).

Let R(G) be the set of states of G reachable from the initial state go. In other

words,
R(G)={q€Q|3s € L(G), ¢=0(qo,5)}-

The set of coreachable states of GG is defined according to
CR(G) = {q|3s € L7, d(q,s) € Qm}.

Thus G is nonblocking if and only if R(G) C CR(G).

The following operations on automata are useful in the analysis of discrete-event

systems [20],2].

1. Product

The product of two automata G; and G with event sets ¥; and X, is an
automaton that synchronizes on common events (X, N Xs), that is, 0 € £1 N X9
occurs in the product if and only if it can occur in both G and G,. Specifically,
let G1 = (Q1, X1, 61, Qoy, Qm,y) and Gz = (Qa, X2, d2, o,, @m,)- The product is

an automaton Gy X Go =(Q, Z, 8, qo, Qm) With Q@ = Q1 X Q2, Qm = Qmy X Qums,

do = (9o,,90,), & = %1 N Xy. The state transition function 6 : Q@ x X — @ is

13

defined according to:

_ (61(q1,0),02(qe, 7)), if 81(qr,0)! and d3(qa, 0)!;
5(((]1,(]2),0’) =

undefined, otherwise.

Let G =meet(G1, Gy) denote the reachable part of Gy x Gb.

. Synchronous Product (Parallel Composition)

In the synchronous product of Gy = (Q1, Z1, 01, Go,, @m,) and Gz = (Q2, 1o,
02, Gogs Qmy)y & transifion with a common event ¢ € ¥; N Xy is defined if it is
defined in both automata. Private events (events in (X1 — X2) and (X3 — 1))
can be executed without synchronization. The parallel composition is denoted
by G =sync(G1,G»). Thus G is the reachable part of the automaton G = (Q,
2, 8, qo, Q) With @ = Q1 X Qz, Qm = Qmy X Qmy, 90 = (9o, 0,), & = L1 U Do,

and 0 : Q@ x ¥ — @ defined as:

;

(61(q170)762<q270)), 1f (51((]1,0’)! and 52(q2,0')!;
(51(611;0)7(]2), ifUEEl—EQ and (51((11,0”)!;
5((Q1aq2)70> =
(q1,02(q2,0)), if 0 € Ty — 31 and d2(go, 0);
\ undefined, otherwise.

. Trim

Trim is the reachable and coreachable part of an automaton. In other words,
for G = (Q, 2, 0, qo, Qm), we define Trim(G)=(Q;, X, 0, qo, @m,) Where
Q; = CR(R(G)), Qum, = CR(R(G)) N Qr, and &, is the restriction of § to
Q; x . Note that if ¢gg ¢ CR(R(G)), @+ will be the empty automaton.

14

4. Project

Consider G = (Q, %, 4, qo, Q). Let I, C . PG =project(G,X — %,) is
the reachable deterministic finite-state automaton PG =(Z, ,, &, 2o, Zn,) with
ZC2 Zn={2€2]2NQn#0}, 20={q|3s€(E—-%)": ¢=0(qo0,5)}.

Furthermore, £ : Z x ¥, — Z is defined according to
Zpa1 = E(zm, 0%) = {q | A(s,8) € (B-%,)",¢ € 2z : ¢=0(¢, sops)}, for k > 1.
Here the events in ¥, are treated as unobservable (or silent) and are removed
from automaton model of the plant. Thus we have

L(PG) = PL(G),

L, (PG) = PL,(G),
where P : ¥* — ¥ is the natural projection. Note PG can also be regarded as

observer with 2 C @ as the estimate of the state of G after o} € %, is observed.

5. Self-loop

Consider G = (Q, &, 4, qo, Qm). Let ¥’ be a set of events with ¥’ NE = 0.
The self-loop operation on G with event set ¥/, denoted by G’ =selfloop(G, '),
adds transitions ¢ — ¢ for all ¢ € ¥’ and ¢ € Q. Thus L(G") = P} L(G)) and

Ly (G") = PY(L,(G)) where P is the natural projection P: (XU X')* — ¥*.

15

2.2 Supervisory Control

Consider a plant G = (Q, %, 8, qo, Q). It is assumed that the event set ¥ can be
partitioned into controllable and uncontrollable events, i.e., ¥ = Y.UZ,.. Control-
lable events can be disabled or enabled. Not all events may be observable, and thus
the event set is also partitioned into ¥ = ¥,U%,,, where ¥, and ¥,, denote the set

of observable and unobservable events, respectively.

Let E C @ denote the set of “legal” (safe) states of the plant G. In supervisory
control theory, we want to design a supervisor .S to ensure that the plant never leaves
E, and the plant under supervision is nonblocking. A supervisor monitors the se-
quence of observable events generated by the plant and restricts the behavior of the

plant to the “legal” states by disabling and enabling of controllable events.

The assumption that the specification is given in terms of “legal” (safe) states
is not limiting. Problems involving “legal event sequences” can be transformed into
equivalent problems involving “legal” states as specifications by adding suitable au-

tomata to capture the “history” of event sequences [9].

Let P : ¥* — ¥ be the projection map that removes the unobservable events
from each event sequence s € X*. For s = g1---0; € X" generated by the plant

(under supervision), Ps is the sequence observed by the supervisor. The supervisor

16

can be defined as a map S : X3 — 2% with S(Ps) being the set of controllable
events disabled by the supervisor. S interacts with G to form the closed-loop system.
The traditional control loop in DES is shown in Fig.2.1. Note that S only disables
controllable events. A supervisor that never disables uncontrollable events is called

admissible (controllable).

Plant G |—— 292"

P(s)

A

Supervisor S

Figure 2.1: Traditional control loop

Let L(S/G) be the language generated by the plant G' under supervision of S
(S/G), and L, (S/G) be the marked behavior. The closed behavior L(S/G) is defined

inductively as follows [20],[2]:
e c € L(S/G)
o If s € L(S/G), o ¢ S(Ps), and so € L(G), then so € L(S/G)
e No other strings belong to L(S/G).

We then have L(S/G) C L(G), and according to the above definition, L(S/G) is

closed. The marked behavior of S/G is defined as

Lon(S/G) = L(S/G) O Lin(G).

17

Thus L, (S/G) consists of sequences in the marked behavior that can be generated
in system under supervision. Note that in S/G, marking is still determined by the

plant G.

Abusing the notation, we let R(S/G) and CR(S/G) be the reachable and core-

achable states of the plant under supervision:

R(S/G) ={q€Q|3s € L(S/G) : ¢=b(q,5)}

CR(S/G) ={qe Q| 3s,5 : s € L(S/G),ss' € L(S/G),q = 6(qo,s) and d(q,s") € Qn}.

In the supervisory control problem, the objective is to find an admissible supervisor
S such that
(1) R(S/G) C E;
(i) R(S/G) € CR(S/G).
The former condition confines G stay inside the set of desirable states, and the latter

ensures that S/G is nonblocking.

Note that we have assumed that the plant has a single initial state. If a plant
has multiple initial states (and that may be the case in the problems studied in this
thesis), then we can convert the problem to an equivalent problem with single initial
state as explained in the following. Suppose the plant is G = (Q, Z, 0, Qo, @m)
where Qo = {qo,," " ,qo,} is the set of initial states. Now consider G' = (Q U {qo},

SU{oy, -+ ,0,}, ¢, qo, Q) which is obtained by adding a fictitious state go to and

18

considering gy as the initial state. We also add unobservable, uncontrollable transi-
tions go —= qo,. The rest of the transitions in G’ are identical to those of G. We also
replace the design specification F with E'U {go}. Now any solution for supervisory

control of G’ is a solution for supervision of G and vice versa.

In the next chapter, we discuss a class of solutions to the above problem known

as observer-based supervisors.

A supervisor S is mazimally permissive (optimal) if it only disables an event when
it has to. Note that in the case of full observation (¥ = ¥,), we can always construct
an optimal supervisor [9]. However, an optimal supervisor may not exist for the case

of control under partial observation [11],[4].

The supervisory control problem discussed earlier is referred to as a “state-based”
supervisory control problem since the design specification is given in terms of safe
(legal) states (E). An alternative, equivalent formulation of the supervisory control
problem follows a linguistic approach in which the design specification is given in

terms of a legal language (i.e., legal event sequences).

The solutions to the linguistic supervisory control problem can be characterized

in terms of controllable, observable and L,,(G)-closed languages.

19

Definition 2.2.1. ([15]) A language K is called controllable with respect to the plant
G if
KSNL(G)C K

Definition 2.2.2. ([11],[4]) A language K C L(G) is said to be (L(G), P)-observable
if

V(s,s) €T oey; [€ K&so € L(G)&so € K& Ps=Ps] = socK.

Let E C Ln(G) be the legal language (design specification). The supervisory
control under partial observation is to find an admissible supervisor such that
Ln(S/G)CE (S/G satisfies E)
L (S/G) = L(S/G) (nonblocking condition).
It can be shown that [11],[4] for K C E, there exists an admissible supervisor S such
that
(i) L (S/G) =K
(i) Lm(S/G) = L(S/G)
if and only if
K is controllable, observable and L, (G)-closed.
Thus the class of controllable, observable and L,,(G)-closed languages characterizes

the set of solutions to the supervisory control problem.

Since the property of “observability” is not closed under union, instead of ob-
servable languages, one may use a subclass of observable languages, called normal

20

languages, that is more mathematically well-behaved (i.e., closed under the union

operation).

Definition 2.2.3. ([11],[4]) A language K C L(G) is (L(G), P)-normal if

K =L(G)NnP'PK.

A normal language is observable but not vice versa. However, when all control-

lable events are observable (X, C X,), a controllable, observable language will be

normal as well.

Finally, if S is a supervisor designed based on controllable, normal languages (i.e.,

L(S/G) is normal and controllable), then S never disables controllable events that

are unobservable [20].

21

Chapter 3

Observer-Based Supervisors

In this chapter, we are going to discuss supervisory control policies that are based
on state estimates (of the plant) provided by an observer. A supervisor designed
through an observer is thus called an obser?er—based supervisor (OBS). In Section
3.1, we discuss the structure of observer- based supervisors. A procedure for design-
ing observer-based supervisor using normal languages is introduced in Section 3.2.
Sections 3.3 and 3.4 discuss operations conjunction and merging of OBS supervisors,

which will be used later in supervisor design for fault recovery.

Observer-based supervisors have been used in modern control theory. They have
also been studied in the supervisory control of discrete-event systems (e.g. [6], [8]).
Thus sections 3.1 and 3.3 are essentially background material. The material in sec-

tions 3.2 and 3.4, however, are among the contributions of this thesis.

22

3.1 Introduction to Observer-Based Supervisors

In a control problem with full event observation in which the objective is to keep the
plant states out of forbidden (unsafe) states while ensuring the plant under supervi-
sion is nonblocking, an optimal (maximally permissive) control policy regarding the
enabling and disablement of controllable events can be found that depends only on

the current plant state, and not on the past event sequence generated by the plant [9].

Motivated by the above fact, in a control problem similar to the above-mentioned
except with partial observation, we may seek to find supervisory control policies
that rely on the current state estimate of the plant. We assume that the required
state estimate is obtained using an observer. Thus the resulting supervisors will be
“observer-based supervisors” (OBS). In this thesis, we focus our study on the design
of observer-based supervisors. This is not very limiting. We can show that if S’
is an admissible nonblocking supervisor that solves the control problem of avoiding
forbidden states, and S’ is designed based on normal languages (i.e., L, (5'/G) is
normal), then we can find an admissible nonblocking OBS S such that L,,(S'/G) C
L,(S/G) and G under supervision of S never enters forbidden states. The main
advantage of using OBS supervisors is the simplicity of their control policy which is
particularly useful in switching control schemes that we would like to develop in this

thesis for fault recovery problems.

23

Given a plant G, an observer-based supervisor S can be implemented by a gen-
erator S = (Z,%,,&, 20, f). The 4-tuple (Z,%,,€, 20) is an observer. Z C 2% is the
state set of the observer (supervisor) corresponding to the set of state estimates, 2o
is the initial state of the observer (supervisor), and £ : Z x ¥, — Z represents the
partial state transition function. f : Z — 2% is an output map such that for each
state estimate z € Z, f(z) is the set of observable events that are disabled by the
supervisor at the current state z. Note that S is admissible if and only if f(z2) C X,
for z € Z. We assume that all states of S are marked and therefore, do not include
the marked states Z,, = Z in the description of the supervisor S. The proposed
supervisor S regulates the plant behavior based only on the current state estimate.

Throughout this thesis, we make the following assumption:

Assumption: Only controllable events that are also observable may be
disabled by the supervisor S, and thus unobservable controllable events are

treated as uncontrollable.

Note that this assumption applies to all supervisors that are designed based on con-
trollable normal languages (i.e. cases in which the marked behavior of the plant under
supervision is controllable and normal). For the purpose of our work, we do not make
any other assumptions on the OBS designed. As mentioned earlier, an approach for

designing OBS based on normal languages will be discussed in the next section.

2 is the initial state estimate with which the observer (and the supervisor) is

24

initialized. If the plant G and supervisor S are initialized together then

z0={q|3Is €%, ¢=0(q,s)} (1)

Note that in the switching supervisory scheme proposed in this thesis, a supervisor
module may be initialized and put in the feedback loop while the plant is already in
operation in which case zy may be different from that given in (1). We will discuss
the issue of supervisor initialization later in Chapter 5 when we present our switching
modular scheme. The state transition function £ is defined as follows. For 2z, € Z,
or € Bo, if £(2y,0%) is defined and zxi1 = &(zk,0k), then 2zp41 can be calculated

according to:

z ={q] 3¢ €z &3s,s" € Xy, g=0(¢,soxs)}, k= 1. (2)

It should be noted that by assumption, unobservable controllable events are not
disabled by the supervisor, and therefore, in the above update law (2), the event

sequences s and s’ may include unobservable controllable events.

Of course a necessary condition for &(zx, o) to be defined is that the set

D(2p,01)={q| 3¢ € % &Is,5 €5, q=0(¢,s015)} (3)

is nonempty. If ®(zx,0x) is nonempty and &(zx, 0x) is not defined, then we consider

event oy to be disabled by the supervisor. Therefore,

flzx) = {0 € &y | ®(2x,0) # 0 & noté(z, o)}

25

The OBS supervisor is admissible if and only if f(z;) € 2.. The plant under super-

vision S/G can be represented by meet(G, selfloop(S, £,0)).

Note that the function f is defined in terms of the transition functions £ and 4,
and therefore it does not provide extra information to what is already available from
the plant’s model and the 4-tuple observer (Z,%, £, 25). Thus, we may remove f from
the 5-tuple S describing the supervisor. However, in some cases (for example, the
study of the conjunction of supervisors), it is convenient to have a function to provide
the list of disabled events and thus, we will keep f as part of the description of the

supervisor and use the 5-tuple S = (Z,5,,¢, 2o, f) to characterize OBS supervisors.

3.2 Procedure For Designing Observer-Based Su-

pervisors Using Normal Languages

In this section, we introduce a procedure for designing OBS using normal languages.
Let G = (Q,%, 6, qo, @m) be the plant and E C @ be the set of legal (safe) states.
We would like to design an OBS S such that

(i) R(S/G) C E;

(il) R(S/G) CCR(S/G).
We show that if an admissible nonblocking supervisor S’ (not necessarily observer-

based) exists such that R(S'/G) C E and R(S'/G) C CR(S'/G), and L,,(S'/G) is

26

controllable and normal (i.e., S’ solves the control problem and 5" can be characterized
in terms of a controllable, normal language), then we can construct an admissible
nonblocking OBS S such that

()R(S'/G) CR(S/G) CE

()R(S/G) C CR(S/G).

Let G denote the subgenerator of G corresponding to states in E(C (). Further-
more, let TG g =Trim(Gg). Thus, L, (TGg) = L,(GE) = L(GE)N Ly, (G), which im-
plies that Ly (TGEg) is Ly (G)-closed (L (TGg) = Lin(TGg) N Lin(G)). Lin(TGg) is
the legal language for the supervisory control problem. Now let S" = (X', X, 7/, zy, X”)
be a nonblocking admissible supervisor such that L,,(S'/G) is an L,,(G)-closed, con-
trollable, normal sublanguage of L,,(T'Gg). At any state 2’ € X', let I's:(2) denote

the set of events enabled by supervisor S at z’:
Po(a!) = {o € | (&, o)),

Since L,,(S’/@) is controllable and normal, unobservable controllable events are not

disabled by 5’.

Supervisor S’ enables and disables controllable events based on the observed event
sequences. In other words, for strings (s,s’) € £, if Ps = Ps’, then the supervisory

action must be the same, that is,

Ly (n'(z5,8)) = T (0 (x5, 5)). (4)

27

Here P :X* — X7 is the natural projection.

Given the above discussion and Eq.(4), if we define PS’ =Project(S’, Eu,) =
Y.Y,, 0, %, Y), then we can see that the two control loops in Fig.3.1 will have the
P

same marked and closed behaviors.

PS'

(b)

Figure 3.1: Control loop

Furthermore, for ¢ € 3%, we have I'ps/(np(yo,t)) = Ts/(n'(zf,s)) N E, for any
s € Pt N L(S"), where P~! : 3% — ¥* is the inverse projection map. Now let
PG =Project(G,Xy,) = (Z',%,,¢, 2, Z!) be the projection of G. Thus Z' C 29,

2y ={q|3s € £:,,6(qo,s) = ¢}, and L,,,(PG) = PL,,(G), L(PG) = PL(G).

uo?

28

In Fig.3.1(b), PS’ works on the observable event sequence generated by the plant.
Now if PS’ is replaced with S” =meet(PS’, PG), then the closed-loop behavior will

remain the same.

meet(PS',PG)

Figure 3.2: Control loop

For any state (y,2) (y € Y, z € Z') of S”, I's#((y,2)) is the set of controllable
events enabled by the supervisor S”. Note that in general, for two states (y1, 2),
(ys,2) of S” corresponding to the same state estimate z (provided by PG), the con-
trol decision T'g#((y1,2)) and I'gv((ye,2)) are not necessarily the same. However,
we intuitively expect that all controllable events enabled at (y1,z) can be allowed
to happen at (i, 2) too (and vice versa) since for the control problem considered
here, we expect that the control decision can depend only on state estimate (which
is identical for both (y1, z) and (2, z)). This motivates the construction of the OBS:

S =(Z,%,,€, 20, f5), where Z is the set of state estimates generated by S”, i.e.,

Z={z1]3(y,2) € R(S")}.

Also,

2=2,=1{q|3Fs €3, g=0(q,s)}

29

The transitions defined at z € Z are given by

Ls(z) = H{Tsr((y,2)) | (y,2) € R(S")}-

In other words, 2’ = £(z,0) is defined if and only if for some 3,7’ € Y, the transition
(y,2) — (y', ') is defined in S”. Clearly, at any state estimate z, a controllable event
is disabled if it is disabled at all (y,z) € R(S"). Obviously, R(S"/G) € R(S/G) and

CR(S'/G) C CR(S/G).

The state estimate function is of course defined according to
zpq1 = E(zw,00) ={q | 3¢ € 2, & Fs, 8" € & : q=0(¢,s015")}, for k> 1,

where zp, 21,1 € Z and oy € 2.

Proposition 3.2.1. With S as defined above, we have

R(S/G) C F and R(S/G) CCR(S/G).

Proof. In order to prove the above proposition, we show that for all state estimates
2, generated by S, we have z; C F and all states in z are coreachable. Since zj is
the set of states where the state of G can possibly be, we can conclude R(S/G) C E
and R(S/G) C CR(S/G).

We show the above mentioned statement by induction on k. For £ = 0, obviously,

zp satisfies zo € E and all states in zg are coreachable. Otherwise, the supervisory

30

control problem would not have a solution based on controllable normal languages.
Now if zp41 = &(2x,0%), then oy € T's(z) , and thus o € I's/((y, zx)) for some y with
(y,21) € R(S”). Also, in S”, we have a transition (y, zx) —> (¥, 241) for some y'
with (v, zke1) € R(S”). Since S (thus S”) solves the supervisory control problem,
then 2.1 € E and 2,4, is coreachable in S”/G. Coreachability of zxyy in S”/G
implies that for any ¢ € z, there exists a sequence “s” in §”/G and ¢’ € @, such
that ¢ —— ¢. Since L(S”/G) C L(S/G), the sequence “s” causing transition ¢ — ¢’

is also possible in S/G. Therefore, all states in z;,; are coreachable in S/G.

Example 3.1:

We illustrate the above design procedure using a simple example. The plant is
shown in Fig.3.3 with ¥, = {a,0,p}, &, = {«,0,p,0,7}. In the figure, transitions
corresponding to controllable events are shown with —. Also, unobservable transi-
tions are shown with dashed lines. State 5 is the forbidden state in this example, i.e.,
E = @Q—{5}. The projected plant PG and T'Gg (representing the legal language) are
displayed in Fig.3.4 and Fig.3.5, respectively. Observe that L,,(T'Gg) is not normal.
To show this, we note that string aayBa € L,(T'Gg) and aafya ¢ L,(TGg), and
P(aayfa) = Plaafya) = aafa, but aafya € L(G); therefore, L, (T'Gg) is not
normal.

Now consider supervisor S’ shown in Fig.3.6(a). The plant under supervision
(formed by computing meet(G, S")) is depicted in Fig.3.7. We can verify that S’ is
admissible, §'/G is nonblocking, L,,(S’/G) is normal language , and R(S'/G) C E.

31

{0,2}

Figure 3.4: Example 3.1: PG

Next, we compute the product of PS5 and PG (i.e., meet(PS’,PG)). The result is
shown in Fig.3.8. Finally, the OBS S shown in Fig.3.9 is computed. The plant under
supervision S/G which can be obtained from meet(G, selfloop(.S, £,,)) is depicted in

Fig.3.10.

32

(b) PS’

Figure 3.6: Example 3.1: supervisor S’ and its projection P.S’

Figure 3.7: Example 3.1: S'/G

33

Figure 3.8: Example 3.1: meet(PS’,PG)

Figure 3.9: Example 3.1: OBS S

Figure 3.10: Example 3.1: S/G

34

3.3 Conjunction of Observer-Based Supervisors

In this thesis, we propose a modular switching supervisory scheme for fault recovery.
The conjunction of supervisor modules are defined as in [21],[20],[2]. In this section,
we discuss the mathematical representation of the conjunction of observer-based su-

pervisors.

Suppose S1 = (Z1,%0,&1, 20, f1) and Sy = (Z,, Xy, &, 20, f2) are two supervisors
designed for two partial specifications F; and E, of a plant G, and thus R(S;/G) C E,
and R(S,/G) C E,. Fig.3.11 shows the conjunction of the two supervisors, denoted
by S = 51 A S, in the feedback loop. The supervisors monitor the sequence of ob-
servable events generated by the plant G and each computes a state estimate (2%
and z(® respectively). We define the set of controllable events disabled by S to be
FEDYU fo(2@). In other words, S disables the events that are disabled by either
Sy or Sy. Since S7 and S, are designed for the same plant model and have the same
initial state zp, for a common observed sequence o105 - - -0y € X, we have z,gl) = z,(f)

(Note that the observer update law (2) does not depend on the map f). The con-

junction of more than two supervisors is defined similarly.

Note that we can think of the conjunction S = S; A S; as an OBS S = (Z, %, &,

35

S =010 "

G
!
P
L) S, P(s)
/(2) J
20y |

Figure 3.11: Conjunction of two supervisors

z0, f) with Z C Zy N Zy, € defined according to

(s, 0) = £1(z,0) =&(z,0), if &(z,0)! and &(z,0);

undefined, otherwise.

and f: Z — 2% with f(z) = f1(2) U fo(2).

In the féult recovery problem considered in this thesis, in some cases, the plant
models used for designing supervisor modules are different for each supervisor module.
Therefore, for the same observable event sequence, the state estimates obtained by the
supervisor modules may be different, i.e, z]il) # 2,22). In these cases, some adjustments

to the above definition are required. We will elaborate on this issue in Chapter 5.

3.4 Merging Observer-Based Supervisors

In Chapter 5, we will propose a modular switching supervisory control scheme for
recovery from faults. In this approach, various modules in the form of observer-
based supervisors for meeting specific design objectives are designed and put into

36

the feedback loop. For example, one OBS module may be designed to ensure safety
requirements during recovery from a particular fault. In this case, the initial condi-
tion (zp) with which the OBS is initialized may vary and in general, will depend on
the time the fault occurs and the time the fault is diagnosed. Therefore, we have to
design several versions of an OBS module for the same plant and design specification.
Obviously, the number of the various versions of the OBS (corresponding to different
initial conditions) could be large. In order to efficiently store the OBS in computer
memory, we can merge the various versions into a single supervisor with multiple
initial conditions. For brevity, we discuss the merging procedure for two supervisors.

Extension to larger numbers of supervisors is straightforward.

Suppose S1 = (Z1,%,&1, 210, f1), So = (Z2,%,,&, 220, fo) are two admissible
nonblocking OBS supervisors designed for a plant G to enforce a specification E.
The merger of S} and Sy, which we denote by S =merge(51,.5;), is a 5-tuple S =
(Z,%0,&, 20, f). Here Z = 7Z,UZy, and zo = {210,220}. The transition function

£: 7 x ¥, — Z is defined as follows:

&i(zr, on), if &z, 0k) is defined either for i = 1 or for ¢ = 2;
zip1 = &(zk, 0) =
not defined, otherwise.

Note that the above definition is well defined, since if both & (2, k) and & (zx, o%)
are defined then we must have & (z, o) = &2(2k, 0k). As a result of the merger, any

37

transition that is defined in one OBS, say 57, and not defined in Sy, will be defined
in the merger. In other words, if 2 7 2 is defined in S; not in Sy, in the merged
supervisor S, z; — 2, is allowed. Thus we have

4

fl(Z), ifZEZl—ZQ;

f2) =1 falz2), if z € Zo— Zy;

f1<Z) N fQ(Z), lf z € Z1 M ZQ,

The idea behind this is that since both S; and S, are observer-based, if at state
21 of S1, event ¢ is enabled and thus acceptable, it must be acceptable (not violating
the specifications) even if the supervisor S was initialized with z50. Let S(z;) denote

S initialized with z;o. Then we have the following proposition.

Proposition 3.4.1. S(z;0) (¢ =1,2) is a nonblocking supervisor and
R(S:/G) S R(5(20)/G) C E.

Proof. In order to prove the above proposition, we show that for all state estimates
2, generated by S;, we have z, € R(S(20)); and for all states 2, € R(S(20)), we
have z;, C E. Since z; and z; , are the set of states where the state of G can possibly
be, we can conclude R(S;/G) € R(S(zi0)/G) C E.

The first set inclusion, i.e., zx € R(S(z0)), is straightforward by the definition
of merger and definition of the transition function £. If an event is not disabled at a
state of 5;, it will not be disabled by S(z;0) either.

We show the second set inclusion by induction on k. For ¢ = 1 and k = O,
obviously, z; g satisfies z;0 € E. Otherwise, the supervisory control problem would

38

not have a solution. Now if 27 j11 = &(21 4, 0%), then oy, € fi(z1,) N f2(214), and not
disabled by both S; and Sy, thus z1 441 € R(S1) or z1441 € R(S2). Since S; and
S, solve the supervisory control problem, then z; 441 € E. For ¢ = 2, the proof is

similar.

Example 3.2:

Fig.3.12(a),3.12(b) shows two OBS supervisors S; and Sy. S =merge(5;, Ss) is
depicted in Fig.3.12(c). Note that transition {5,6} — {7,10} is not defined in S
whereas in S, if S is initialized with z, o = {3,4}, the transition {5,6} — {7,10} is

defined and possible.

(¢) § =merge(S1, S2)

Figure 3.12: Example 3.2: merging two OBS supervisors

39

Chapter 4

Problem Formulation

In this chapter, we formulate the fault recovery problem examined in this thesis. The
models of the plant and the diagnosis system (assumed available) will be discussed in
Sections 4.2 and 4.3. The combined model of the plant and the diagnoser is formed
in Section 4.4 as the system to be controlled. We classify failures into two categories
based on whether recovery to normal mode is possible or not, and discuss the control
objectives (design specifications) in Section 4.5. An example of modeling is provided

in Section 4.6.

4.1 Introduction

In control systems, component failures could occur unexpectedly and reduce the su-
pervisor’s capability to observe the system’s behavior and perform effective control

action. Therefore, a reliable supervisor should be able to perform fault recovery if a

40

failure occurs in the system.

We assume that the plant G can be modeled as a finite-state automaton. The
plant model includes both the normal and the faulty behaviors. The event set of the
plant contains normal operation events, failure or fault events and possibly recovery
events. The fault events are assumed to be uncontrollable and unobservable. In or-
der to detect and isolate a failure, a diagnoser D with bounded delays is assumed
to be available. The diagnosis system could be constructed based on any diagnosis
technique as long as bounds for diagnosis are available. The system to be controlled
is the combined model of the plant and the diagnosis system. The modified control

loop is depicted in Fig.4.1. Here S is the supervisor.

Figure 4.1: Modified control loop (G: plant, D: diagnosis system, S: supervisor)

The system therefore operates in three modes: normal, transient and recovery.
Initially, the system operates in the normal condition. Once a fault or failure occurs,
the system enters its transient mode through unobservable transitions. Upon failure
detection, the system enters its recovery mode. The system’s state transition graph

is shown below.

41

fault detection

Figure 4.2: State transition diagram of the system to be controlled

The set of specifications are given in terms of the safe (legal) states in each mode.
For example, the specifications for temperature control in a large room could be: (a)
Normal: the states in which the temperature is between 20 and 24; (b) Transient:
the temperature must be between 17 and 27; (c) Recovery: the temperature must
be between 15 and 30. In general, the transient and recovery specifications are less

restrictive than the normal specification.

4.2 Plant Model

We assume that the plant can be modeled as a finite-state automaton: G = (Q,
Ya, 0c, Go, @Qm). Both the normal and faulty behaviors are included in this model.
The event set X can be partitioned into controllable and uncontrollable events, i.e.
Yo = g UXgue The event set g can also be expressed as the disjoint union of
three subsets, ¥¢ = ZpUX,US,, where ¥y = {f1,---, f,} (p = 1) represents the
set of failure events which are assumed to be uncontrollable and unobservable in our
framework, X, denotes the set of recovery events that can lead the plant back to one
of its normal states, and Xp includes the rest of plant events. If recovery to normal

42

operation is not possible, then &, = 0.

We assume that the failures are permanent. Therefore, if a failure event f;
(¢ =1,---,p) occurs, the plant will enter a faulty mode F; and will remain in this
mode unless a recovery event occurs. Failures can be divided into two categories in
terms of system’s behavior during fault recovery. One category represents failures
from which recovery to normal mode is not possible. Another kind of failure is the

one for which recovery to normal operation is possible.

The set of states can be divided into two blocks: states that correspond to normal
mode @y, and states that correspond to faulty mode Q)r. As mentioned, the plant
has p failure modes F3, - - -, F},. We assume that no more than one failure mode occurs
at any time in the plant. This is referred to as “single failure scenario”. Accordingly,
the set of states QJr can further be partitioned into p blocks: Qp, -+ ,QF,. An
abstraction of the plant model with p = 2 failure modes is shown in Fig.4.3. Note
that in this example, recovery to normal mode is possible in F} mode, but not in £y

mode.

4.3 Diagnoser

We assume that a diagnosis system is available to detect and isolate failures and to

notify the supervisor. Furthermore, it is assumed that the diagnoser can detect and

43

fi, for fault events

71: recovery event

Figure 4.3: Plant with 2 failure modes

isolate each failure within a bounded delay (expressed in terms of events). Note that
the diagnoser can be designed using any technique based on continuous-variable or
discrete-event models, as long as the bounds for diagnosis are available. These bounds
depend on the type of fault, plant dynamics, and the diagnosis technique used. We

use an abstraction of the diagnosis system in our framework.

We model the diagnoser by a finite-state automaton D = (X, Xp,dp, zg, Xin),
where Lp = LgUE, with ¥, denoting the set of detection events. Detection events
are observable and uncontrollable and notify the supervisor that a failure has oc-
curred in the plant and has been diagnosed. Instead of giving a general formula for
the diagnoser model, we use an example to illustrate the structure of the diagnoser

model.

Fig.4.4 depicts a diagnosis system that can diagnose two failures f; and f5 in a
plant. The diagnosis delay is 1 to 2 events for fi, and 0 to 2 events for f,. Here r

denotes the recovery event, Y represents the set of the plant events. The detection

44

Yo —{f1, f2}

Figure 4.4: Diagnoser model

events d; and dy correspond to f; and fs, respectively. The diagnoser and the plant
are initialized together, and thus the initial state 0 corresponds to the set of states of
the plant in normal operation. Once a failure f; (resp., fo) occurs in the system, the
diagnoser enters its intermediate states, state 1, 2, 3 (resp., state 5, 6, 7) before the
fault is diagnosed and the detection event d; (resp., do) is generated. The number of
intermediate states depends on the diagnosis delay. The plant will continue to gener-
ate events in X before the detection of failure. If a detection event “dy” (resp., “dy”)
is generated, the diagnoser enters state 4 (resp., state 8) announcing the diagnosis of
failure fi (resp., fo). In the case of failure fi, the system can recover to the normal
condition, and the diagnoser can reinitialize itself after recovery (transition from state
4 back to the initial state 0). When recovery to normal mode is possible, the state
after detection is not marked, and only the initial state is marked. When recovery to

normal mode is not possible (e.g., for f), we mark the state after failure detection

45

(state 8 in Fig.4.4), resulting in a set of marked states in the recovery mode of GD.
The intermediate states (1,2,3,5,6,7) correspond to the transient mode of GD and are
not marked. Diagnoser models for any other number of failures and diagnosis delays

can be constructed similarly.

The diagnoser model is an abstraction of the adopted diagnosis system. Using an
abstraction leads to the separation of the diagnosis problem and the control problem,
which provides us with a simplified design procedure. Of course, the bounds for di-
agnosis delay have to be computed based on the characteristics of the plant and the
diagnosis system. Since we use an abstract model of the diagnosis system, we may
end up with a more conservative control policy . For instance, in a certain cycle of
operation, the diagnosis delay may be smaller than the maximum delay considered

for the diagnoser. This could in turn result in a conservative control.

We assume that the diagnoser can diagnose a failure (with bounded delay). This
implies that the system generates the minimum number of events corresponding to
minimum diagnosis delay. This assumption may not always hold. For example, if the
system can only generate 2 events after a failure event and no more events can be
further generated while the minimum diagnosis delay is 3 events. In this case, the
fault may never be detected. This is a modeling issue which must be considered when
diagnosis delays are computed. Our assumption on the generation of minimum events

holds if the lower bound of diagnosis delay is zero or in the case of “live” systems, that

46

is, the systems will never reach a state where no events could be generated. In timed

DES, this assumption is always true since the clock keeps generating tick events.

4.4 System to be Controlled

The synchronous product of the plant and the diagnoser GD =sync(G, D) is consid-
ered as the system to be controlled. The new feedback loop is shown in Fig.4.1. The
system has three operation modes: normal, transient and recovery. When the system
is working properly, it is considered to be in the normal mode. Once a failure occurs
in the plant and not diagnosed, the system enters its transient mode. Upon the oc-
currence of the detection event, the system enters its recovery mode. Accordingly, the
set of states of the controlled system can be partitioned as QP = Q§PUQTPUQEP.
Q%P and Q%P can further be partitioned into p blocks related to the p failure modes

(see Fig.4.5).

Figure 4.5: State partition

47

4.5 Fault Recovery Problem

As mentioned, failures are classified into two categories according to whether recovery
to normal mode is possible or not. The fault recovery problem is discussed separately
for these two categories. We first consider cases when all faults belong to one cat-
egory. Extension to cases when faults from both categories are present in a system

will be discussed later.

The set, of specifications are given in terms of “legal” subset of the state set Q%P.
Let En, Er and Eg, (i =1,---,p) denote the specifications in normal, transient and
recovery modes respectively. Thus we have Iy C Q%P , Er C Q%P and Eg, C Q%D :

Note that for each failure mode, different recovery specification may be adopted.

We would like to design an admissible supervisor S to prevent the system from
entering the illegal states. Assuming that S is the proposed supervisor, we would like
the system under supervision (S/GD) to meet the specifications of normal, transient,
recovery modes, and to be nonblocking in both normal and recovery modes. That
is, we want the following condition to be satisfied. The design specifications are the
same for both aforementioned categories of failures:

(1a) R(S/GDn) C Ep;
(1b) R(S/GDn) CCR(S/GDn);

48

(3&) R(‘S/GDNTlRi) N Q?LD < ERi;

(3b) R(S/GDwr.r) CCR(S/GDnrr).

4.6 Modeling Example: Manufacturing Cell

In order to demonstrate our modeling procedure, we give an example of a manufac-
turing cell adapted from [1]. The manufacturing cell is described in [1] using timed

discrete-event models. Our discussion here is limited to an untimed model.

The manufacturing system considered consists of two machines (MACH1 and
MACH?2) and two conveyors (CONV1 and CONV2) as shown in Fig.4.6. CONV1
works as an input conveyor with infinite source, and CONV2 is used as an output
device with infinite sink. Two types of workpieces, partl and part2, are picked up
from CONV1, processed by the two machines, and then dropped in CONV2. For
simplicity, the transfer of workpieces within the machines is assumed to be part of

the working process of the machines. The machines can be repaired after break down.

The automata model of the machines and conveyors are displayed in Fig.4.7. Both

conveyors are turned on and off simultaneously; thus one model is provided.

The list of events in the above figure are explained in the following:

a0 MACH, starts working on party;

49

MACH2

Figure 4.6: The manufacturing cell

Bi;: M ACH, finishes working on party;
fi: MACH, breaks down;

ri: MACH; is repaired;

on: Conveyors are turned on;

off: Conveyors are turned off.

The set of controllable and observable events are: ¥, = {ay,mi,on,0ff}, X, =

{Oéijﬂz'j,?“i,(m,(?ff}-

In the manufacturing cell, “single failure scenario” is assumed. We capture this

assumption in our model using the automaton SF'S shown in Fig.4.8.

The closed-loop behavior of the manufacturing cell should satisfy the following
specifications in the normal mode:
(N1) A part can only be processed by one machine at a time;

(N2) Partl must be processed by MACHI first, and then by MACHZ;

50

(8) MACH;, i =1,2

on

oo

off
(b) CONV

Figure 4.7: The automata models of machines and conveyors

Yo~ {f2}

Yo - {f1, f2}

Figure 4.8: SFS

(N3) Part2 must be processed by MACH?2 first, and then by MACHI;

(N4) In each production cycle, one partl and one part2 must be processed;

(N5) The conveyors must be turned on before the machines start.
The transient specifications (which in this case are the same as these of the normal
mode) are:

(T1) A part can only be processed by one machine at a time;

(T2) Partl must be processed by MACHI first, and then by MACH?2;

(T3) Part2 must be processed by MACH2 first, and then by MACHT;

51

(T4) In each production cycle, one partl and one part2 must be processed;

(T5) The conveyors must be turned on before the machines start.
The recovery specifications are:

(R1) A part can only be processed by one machine at a time;

(R2) Partl must be processed by MACHI1 first, and then by MACH?2;

(R3) Part2 must be processed by MACH2 first, and then by MACHI,;

(R4) In each production cycle, one partl and one part2 must be processed;

(R5) The conveyors must be turned on before the machines start;

(R6) After a failure is detected and isolated in a machine, first the conveyors must
be turned off, next the machine must be repaired, and then the production cycle must

be resumed and completed.

We use specification (N1) as an example to explain how a specification can be
represented in the state-based framework in terms of safe (legal) states. First, an
automaton model is constructed based on the natural language description of the
specification to represent the specification (Fig.4.9). This model describes the admis-
sible event sequences for the process of partl. Next, we convert this automaton to
a model that includes a forbidden state reachable only through the illegal event se-
quences. Fig.4.10 is the specification model used for our supervisor design. According
to the design specification, if MACH1 starts working on partl (ay;), then MACH2
is not allowed to work on partl until MACHI1 finishes working on it. Therefore, an

event o following agq; leads to the forbidden state B;. Similarly, the event sequence

52

g1 aqp leads to Bj.

11 Qo

11 Qg1

P11 B
Figure 4.9: SPECnN1

Figure 4.10: SPEC),

Models similar to SPEC},) can be constructed for the rest of design specifica-
tions. The plant G can be formed by the synchronous product of the machine and

conveyor models, SFS; and all of the modified specification models:
G=sync(MACH1, MACH2,CONV,SFS,SPECYy, ,,--- ,SPECk).

We assume that the diagnosis system can detect failures with a delay of 0 to 2 events.
We do not give the state transition graph of the diagnoser for brevity. The com-
bined model of the plant G and the diagnoser D forms the system to be controlled,

GD =sync(G, D).

The states of GD can be represented by the tuples (., ,Tmg T s, TN11, T RETD)-
Thus any state of GD for which one of components zx1 1, - -, Zps is a forbidden state

53

(for example, By) is considered forbidden (unsafe) for GD.

In the following chapter, we will discuss procedures for designing modular switch-

ing supervisors to solve the fault recovery problem.

o4

Chapter 5

Fault Recovery Problem and

Synthesis Procedures

In this chapter, we present our solutions for the fault recovery problem. We first
discuss the cases where recovery to normal mode is not possible. We refer to this
case as “failure accommodation”. Next we consider the cases in which recovery to
normal mode is possible. Following this, we examine problems involving both of the
above scenarios. For fault recovery problem related to each category, we provide
two approaches. All solutions provided follow a modular switching scheme to the
supervisory control problem. Using a modular approach can simplify the design
procedure, facilitate modification and upgrading of the supervisor when a component

or a specification changes.

55

5.1 Failure Accommodation Problems (No Recov-

ery to Normal Mode)

We first discuss the case of one failure mode. The control problem dealing with
multiple failure modes will be discussed next. The system to be controlled is shown
in Fig.5.1. Initially, the system starts in normal condition. Once a failure event f
occurs, the system enters its transient mode and will remain in this mode until the
fault is detected. It is assumed that the failure can be detected with a finite delay.
Once the detection event d is generated, the system is in the recovery mode and will
stay in this mode afterwards. During the recovery period, the system may operate
under less restrictive (compared to normal operation) requirements. We will solve
this type of problem using two strategies introduced below. In both approaches, a

modular switching supervisory mechanism is used.

GD NTR

GD;

GDy

‘/1;1\\ f \/,D d @ f : failure event
_/

N4 d : detection event

Figure 5.1: Plant model for failure accommodation problems

56

5.1.1 First Approach
5.1.1.1 Supervisor Design

We assume that three nonblocking OBS supervisors Sy, St, Sg have been designed
to enforce En, Er and Eg respectively, based on the plant models GDy, GDyr and
GDwnTr. Therefore,

(la) R(Sy/GDy) C Ey;

(1b) R(Sn/GDn) CCR(Sn/GDw);

(2) R(Sr/GDnT) N QEP C Br;

(3a) R(Sr/GDnrr) N QSP C Eg;

(3b) R(Sr/GDnrr) CCR(Sr/GDnNTR).
As indicated, Sy and Sg are nonblocking supervisors for GDy and GDyrg, re-
spectively. Let Sy = (Zn, So,6n, 25,), St = (Znr,So,r, 25", fr), and Sp =
(ZnTr, Eo,ﬁg,z(()R),fR). Fig.5.2 shows how the three controllers are used from the

normal to recovery mode.

Sn SN Sk
St St
Sk Sk .
| ‘ time
normal transient | recovery

Figure 5.2: Supervisors involved in the first approach

During the normal mode, the conjunction of Sy, Sr and Sgr controls the plant

initially. Once a failure occurs, the system will be in the transient mode. Since fault

o7

events are unobservable, a supervisor can not differentiate normal mode from tran-
sient mode. Therefore, the conjunction of Sy, Sr and Sg will continue to control
the system until a detection event is generated. Upon the detection of the failure,
the system enters the recovery mode and starts to perform recovery action. During
the recovery period, Sg will control the system alone. Here Sg is used from the
beginning in order to ensure that the recovery requirements can be met later during
recovery. In most of the cases, Sg only follows the control action performed by Sy
and St during the normal and transient modes. While in other cases, Sg may have
to restrict the behavior of the plant during the normal and transient modes so that

later the recovery specifications are not violated.

Since Sy, S7 and Sg are designed to restrict the plant behavior GDy, GDy7 and
G Dyrr respectively, the plant models for these three controllers are not the same.
Therefore, we have to make some adjustment to the definition of the conjunction of

supervisors to be able to represent the joint operation of Sy, Sr and Sg.

In the following, we describe the operation of the conjunction of Sy, Sr and Sg.
Three different observers are used by the OBS supervisors Sy, Sy and Sg. Let us
discuss the relations among the state estimates of Sy, Sy and Sg. Initially, by as-
sumption, we have zéN) = z((JT) N Q%P and zéT) = zéR). Let z,(CN), z,gT) and z,gR) be
the state estimates by three supervisors following the observation of the sequence

s = o0, € % (before the detection event d occurs). We can easily see that

58

z](CT) = zliR) and z,(CN) = z,(CT> N Q$P. At this point, the set of events disabled by the

conjunction of Sy, Sy and Sk will be fN(z,gN)) U fT(z,(CT)) U fR(z,gR)).

Note that we can think of Sy A Sy A Sg as an OBS S = (Z,%,,&, 2, f) with

Z C Pwr(Q%E), € defined as:

fT(Z,U>, if £N(Z n Q%D>O—)! and gT(zaU)! and éR('Z’OM;
£(z,0) =

undefined, otherwise.

and f(z) = fwv(zNQFP) U fr(2) U fr(2).

After “d” occurs, Sy and St are taken out of the control loop and Sg takes sole
control of the system. The events disabled will be fr(2(f)). Note that after the de-

tection event “d” is generated, z(®) C Q&P.

The design procedure is easy to extend to the case of multiple failure modes.
For p > 2, Sy and Sy as before, are assumed to be OBS supervisors to enforce Ey
and Er. Moreover, p recovery supervisors Sg,, S Sg, are designed to enforce the
recovery specifications Eg,, ---, Eg,, respectively, and to satisfy the nonblocking re-
quirements. We define Sg = ASg, (1 = 1,---,p). Accordingly, in the normal and
transient modes, the conjunction of Sy, St and Sk controls the plant. Once a failure,

say f;, is detected, the corresponding recovery supervisor Sp, takes sole control of the

plant during recovery.

99

We illustrate our design procedure by an example. Fig.5.3 is the system to be
controlled (GD) with ¥ = {«, 8,7, f,d}, . = {&, 8,7}, and B, = {, B,v,d}. The
plant states in each mode are Q§” = {0,1,2,3}, QP = {4,5,6,10,11}, Q%" =
{7,8,9,12}, and Q,, = {0,1,8,9}. The set of forbidden (unsafe) states are state
1, 6, 9, 12. Unsafe states are depicted in bold circles in Fig.5.3. Thus we have

Ey = {0,2,3}, Er = {4,5,10,11}, Ep = {7,8}.

Figure 5.3: GD

In order to enforce the set of specifications, three OBS supervisors Sy, St and
Sg shown in Fig.5.4 are proposed. Note that Sy and Sk are nonblocking supervisors
for GDy and GDyrr, respectively. Sy disables v at state {0} to prevent GDy from
entering state 1. Event v is disabled by St at state {2,4}, and supervisor Sg disables
3 at state {0} and {0,5} to prevent GD from entering state 12 (using the uncontrol-
lable sequence 3fd from state 0), and also disables 3 at {8} to prevent the system

from entering state 9.

60

Figure 5.4: Sy,Sr and Sy

The system under supervision of Sy A Sy A Sg (i.e., meet(GD selfloop(Sy A St A
Sr,{f}))) is displayed in Fig.5.5. We can observe that the conjunction of Sy, Sy and
Sg disables event v and 3 at state {0} since Sg has to disable § at state {0} to ensure
that the system will not enter the forbidden state 12 during recovery (even though Sy
and St allow 3 at state {0}). Moreover, the system under supervision is nonblocking

in the normal and recovery modes. No uncontrollable events are disabled in any mode.

61

Figure 5.5: GD under supervision of Sy A St A Sk

In the following, we discuss the issues of nonblocking property of the system under

supervision and supervisor admissibility.

5.1.1.2 Supervisor Admissibility

The OBS supervisors Sy, St and Sg are admissible with respect to their respective
plant models GDy, GDyr and GDyrg. Sy is designed for GDy. However, it is also
in the feedback loop during the transient mode, and it may attempt to disable some
uncontrollable transitions in this mode. Being unaware of the occurrence of a failure
in the plant, the observer for normal mode keeps generating state estimates while
the plant is in transient mode. Sy may attempt to disable uncontrollable transitions
which can take place in the transient mode only. Since St is designed for GDyr, it

never disables any uncontrollable event in the normal and transient modes.

In order to solve the above-mentioned admissibility issue, we can employ a similar

procedure to that in [12]: (1) Add a marked state z; to Sy; (2) For any state z,(CN)

(z,(em # z4) of Sy, attach a transition z,iN) > 24, where 0 € ¥, is an observable but

uncontrollable event, and ¢ is not defined at z,(CN) in Sy (ie., notﬁN(z,(cN), a)l); (3) Add

62

selfloops z; — zg for all o € Yap,0; Where Lgp , denotes the set of observable events
of GD. Obviously, the modified supervisor, which we call Sy, will never disable an
uncontrollable event during the transient mode. The transitions added in the above
procedure never happen in the normal mode, and may occur only in the transient
mode. When Sy, enters z4, the supervisor knows that a failure has occurred and
the system is in the transient mode. After this, Sy is effectively out of the control
loop. During the normal operation, Sy and Sy behave similarly. Therefore, the

system under supervision of Sy (Sy/GDy) and Sy (Svy/GDy) are the same.

For the case of multiple failures, since each recovery supervisor Sg, is designed for
GDnryg,, we employ the same procedure to Sk, to make it admissible during other

transient modes (i.e., T}, j #).

5.1.1.3 Nonblocking Property

In addition to the design specifications, we would also like the system under super-
vision to satisfy the nonblocking property during the normal and recovery modes.
No nonblocking requirement is set for the transient mode, since by assumption, the
system enters the recovery mode with a bounded delay. It is assumed that Sy and Sg
are nonblocking supervisors for GDy and GDyrg, respectively. However, the system
under supervision of the conjunction of Sy, Sr and Sr may not be nonblocking in

the normal and the recovery modes.

63

To formulate the nonblocking property, we construct a supervisor which in terms
of supervisory action is identical to our modular switching supervisor. Note that
this procedure will not be implemented in practice, it is only employed here in order
to formally define the nonblocking property. First, Sy is constructed by modifying
Sy We construct S’N by adding a new marked state z; to Syp. Then we attach a
tfansition z,gN) <, 2l at every state z,gN) of Sn. Moreover, we add selfloops at state
2, for all 0 € Xgp,. After applying the modifications, S ~ behaves similarly to Sy
in the normal and transient modes, and once “d” occurs, Sy stops disabling events
and is out of the feedback loop. Therefore, the system under supervision of Sy in the
normal mode is the same as the system under supervision of Sy. Similarly, we apply
the same procedure to Sy to get ST. ST has the same effect as St during the normal
and transient modes, and is taken out of the control loop upon failure detection. Let
S =meet(Sy, S, Sr). Then S can be thought of as the supervisor which controls the

system from normal to recovery mode. Therefore, the nonblocking condition for the

recovery mode is that
R(S/GDnrr) C CR(S/GDNTR)

The following proposition states that if the supervisor modules do not conflict during
normal mode (i.e., the conjunction is a nonblocking supervisor), then the plant under

supervision will be nonblocking during recovery as well.

Proposition 5.1.1. Assume Sy and Sgr are nonblocking supervisors for GDy and

64

GDyrg, respectively, and R(S/GDy) # 0. If the system under supervision of
Sy ASyASg (or S) is nonblocking in normal mode, i.e., R{S/GDy) CCR(S/GDy),
then the system GDnrr under supervision of S will be nonblocking during recovery,

that iS, R(S/GDNTR) Q CR(S/GDNTR)

Proof. We have to show that in the system under supervision, the set of marked states
are reachable from every reachable state.

I. States in normal mode: Since we assume that the system under supervi-
sion in normal mode (S/GDy) is nonblocking, it is obvious that from every state
q €R(S/GDy), there exist some marked states which can be reached from gq.

II. In transient mode, a failure event has occurred in the system, and the plant
is in some transient state. Since it is assumed that a failure can be detected within
finite delays, from every ¢ €R(S/GDnr), there is a sequence of events leading to
some state ¢’ € Q%Y. Under the assumption that Sg is a nonblocking controller wrt
G Dyrg, there exist a marked state ¢” € Q%P which can be reached from ¢’. Thus g
is coreachable.

III: Let ¢ be a state in recovery mode reached under the supervision of S. There-
fore, ¢ €R(S/GDnrr) and q € Q%Y. Since R(S/GDnrr)CR(Sr/GDyrr) implies
q €R(Sr/GDn7r), and by assumption, Sy is a nonblocking supervisor for GDyrg,
the controlled system could eventually reach some marked state ¢ € Q4" from q.

O

65

For the case of multiple failures, specifically for the jth failure mode, we ap-
ply a similar procedure to Sy, Sr and Sg, (i = 1---p,i # j) by attaching d;
transitions to new added states and construct Sy, Sr and S’Ri’s (1 # j). Let
SNTR; :meet(SN,ST,gRl, e ,gRj71,§Rj+1, e ,SRP,SRJ,). The nonblocking condi-

tion for the recovery mode R; is that
R(Snrr,/GDn1yr,;) € CR(SNTR;/GDNT,R,) (5)
Then we have the following proposition.

Proposition 5.1.2. Assume that Sg; is a nonblocking supervisor for GDyr;r, (1 <
J<p) If SN ANSpANSg, A---ASr, is a nonblocking supervisor for GDy, then Snrr,

is a nonblocking supervisor for GDnt;g; -

If the nonblocking condition (5) holds for all failure modes (j = 1,--- ,p), then

the fault recovery supervisor is a nonblocking supervisor.

5.1.2 Second Approach

In the first approach, Sg ((and Sy A St) is initialized with the plant, and the conjunc-
tion of Sy A St and Sg controls the plant during the normal and transient modes. In
some cases, Sk may not disable any event in addition to those disabled by Sy ASy. In
these situations, Sk simply tracks the plant under supervision of Sy A St during nor-
mal and transient modes, and only it is in the recovery mode where Sgi really affects
the plant behavior. This motivates the second approach in this section in which Sy is
designed to be used in the feedback loop after the fault is diagnosed. In other words,

66

during the normal and transient modes, the system is supervised by Sy A St. Once
a fault is diagnosed, Sg is initialized and put into the feedback loop, and Sy A St is

removed (Fig.5.6).

.........

{q) {q |
; Sn | Snr Syl Swr Sg
| ! i !
| St | St
time
normal transient recovery

Figure 5.6: Supervisors used in the second approach

This second approach is easier to implement (requiring less computations) since
during the normal and transient modes, Sg is not active. This advantage becomes

more important in system with large number faults (and thus the recovery supervisors

Skr,).

The main drawback is that we wait till detection event occurs before we engage
the recovery supervisor and in some cases, this may be too late. In other words,
in some cases, to ensure recovery specification Fr can be met, we have to limit the
plant behavior in normal and transient modes. Note that the solutions provided by
the second approach in which the set of events disabled by Sg is a subset of events
disabled by Sy A St during the normal and transient modes can be considered as a

subset of the solutions of the first approach.

67

In the following, we discuss the design procedure following the second approach.

As in the first approach, we first discuss the single failure case (p = 1).

We assume that Sy and Sy are OBS supervisors designed for GDy and GDyr to
enforce Ey and Fr, respectively, and the following conditions are satisfied:
(1a) R(Sny/GDn) C En;
(1b) R(Sn/GDnN) CCR(Sn/GDy);
(2) R(Sr/GDnr) N QFP C Er.
Suppose Sy and Sr are represented by Sy = (ZN7EO,£N,z(()N),fN), and Sy =
(ZNT,ZO,fT,zéT),fT). The conjunction of Sy and St, denoted by Sy, will con-
trol the system during the normal and transient modes.
After failure detection, we need to switch to the recovery controller Sg. Let zfrz
be the last state estimate provided by Sy A Sp right before the detection event is

generated. Then the state estimate supplied to Sy as initial state estimate will be:

z(()R) ={¢|3q € z](c? & 3s,s' € q=0(q,sds)}.

n

Obviously the state of the system G D immediately after “d” occurs must belong to

Q%P ={q|3q ¢ Z;Q, seXt q=0(¢, sd)}.

Suppose zg, € QF5. Let Qfg) denote the set of states in QP reachable from

TR, We define GDg(zg,) = (f}g y 26D, Ozp, s TR, QmﬂQflg) as the automaton with

68

initial state xg,, and containing states in Q%P reachable from zp, and the transitions
among them. Therefore, d,, is the restriction of § to Qf}g. Let Sk be an OBS
supervisor designed such that for all zp, € Qgﬁ , |

R(Sr/GDg(xr,)) C Erg;

R(Sr/GDg(xr,)) C CR(Sg/GDr(zg,)).
If an Sk as defined above exists, then after detection event “d” occurs, the supervi-
sory control can switch from Sy A St to Sg, and Sg will enforce specification Fr and

guarantee nonblocking property during the recovery mode.

Of course, z}rﬂz depends on the time that the fault occurs and the time that the
fault is diagnosed (event “d” is generated). Therefore, the recovery supervisor may

be initialized with different initial states. In order to find the different values of Z;Q

and thus the initial states z(()R), we can use the following procedure.

Let Sy be the controllable, normal supervisor obtained by modifying Sy as
described in Section 5.1.1.2 (“Supervisor Admissibility”). Let Syp7 =meet(Sn s, St)

and Zypyr be the set of state estimates provided by the observer in Sp:
Zyur ={z |32 (#,2) is a state of Syyr}.

Finally, the set of all final states Z}ZTTB can be obtained as those state estimates con-

taining states in Q%P from which Q%P is reachable through event sequences sd with

69

s being a sequence of unobservable events:

Z0) ={2 € Zyur | Ja €2 d €QFP, s€ XL, ¢ =0(q,sd)}.

Therefore, based on each initial state estimate z(()), a recovery supervisor is de-

signed. Assuming that for all possible initial state estimates, recovery supervisors
can be designed, let Sk, -, S& denote the different versions of recovery supervisors.
Now following the merging procedure described in Chapter 3, we can merge all of
these supervisors into a single OBS with multiple initial states. We shall denote the

resulting supervisor as Sg.

We demonstrate the design procedure using an example. The system to be
controlled GD is shown in Fig.5.7. The set of events are ¥ = {o, 8,7, 7, f,d},
Y. ={a,8,7}, and &, = {a, 3,7,d}. The system states in each mode are QP =
{0,1,2,3}, QFP = {4,5,6,10,11}, Q%P = {7,8,9,12,13}, and Q%P = {0,1,8,9}.
The set of forbidden (unsafe) states are state 1, 6, 9, and are depicted in bold circles

in Fig.5.7. Thus we have Ey = {0,2,3}, Er = {4,5,10,11}, Ex = {7,8,12,13}.

In order to enforce the set of specifications, three OBS supervisors Sy, Sr and
Sk are designed and shown in Fig.5.8. Sy disables v at statc {0} to prevent GD,y
from entering state 1. Event v is disabled by St at state {2,4} to prevent GD from

entering state 6. The possible initial state estimates of Sp, zéR), are {12} and {7,8} as

70

Figure 5.7: GD

seen in Fig.5.8(b). States {12} and {7, 8} are reached through a d transition that are
shown with double headed arrow. Two OBS supervisors Sj and S% are designed and
initialized with {12} and {7,8}, respectively. After merging S} and S%, we obtain
Sgr (Fig.5.8(e)). To prevent GD from entering state 9 during recovery, supervisor Sp
disables o at state {12} (since 7 is unobservable, thus uncontrollable), and disables

0 at state {7,8}.

The system under supervision of Sy A Sy and Sg is displayed in Fig.5.9. We can
observe that the conjunction of Sy, Sy will disable event v at state 0, 2 and 4, and
Sp disables « at state 12 and disables § at state 8. Moreover, the system under su-
pervision is nonblocking in the normal and recovery modes. No uncontrollable events

are disabled in each mode.

The system under supervision should satisfy the nonblocking property during the

normal and recovery modes. Let us assume that the recovery supervisor has been

71

Figure 5.8: OBS supervisors Sy,Sr and Sy

designed following the procedure outlined in this subsection. This would guarantee
nonblocking propérty during the recovery mode. Thus in this case, we only have
to be concerned with nonblocking property in the normal mode as explained in the
following proposition. The proof is similar to the proof of Proposition 5.1.1 and is

not provided for brevity.

Proposition 5.1.3. Assume Sy is a nonblocking supervisor for GDy, and Sp can be
designed as outlined in this subsection. Thus if Sy A St is a nonblocking supervisor

72

Figure 5.9: GD under supervision of Sy A Sy and Sk

for GDy, then the system under supervision will be nonblocking in both normal and

recovery modes.

For the case of multiple failure modes (p > 2), Sy and Sy are designed as before to
enforce Fy and Er, respectively. Moreover, p OBS recovery supervisors Sg,, - -+, Sg ,
are designed to enforce the recovery specifications Eg,, -+, Eg,, respectively, and
satisfy the nonblocking requirement. Accordingly, in the normal and transient mode,
the conjunction of Sy and Sz controls the plant. Once a failure, say f;, is detected (d;

generated), S7 passes the initial state estimates to the appropriate recovery supervisor

Sr,, and Sg, takes sole control of the plant during recovery.

5.2 Problems Involving Recovery to Normal Mode

In this section, we consider problems in which recovery to normal is possible. In
other words, after fault diagnosis, the faulty component (or system) is repaired and
the system resumes its normal operation. Fig. 5.10 shows the system to be controlled

in the case of single failure (p = 1).

73

Following a discussion parallel to that of section 5.1, we propose two approaches:
one in which the recovery supervisor is engaged when the system starts and is kept
active afterwards (third approach); and another approach in which the recovery su-
pervisor is only engaged during the recovery mode (fourth approach). Compared
with the former approach (i.e., third approach), the latter (fourth approach) has the
advantage that it is computationally less complex to implement since during the nor-

mal and transient modes, the recovery supervisor is not engaged in the feedback loop.

GD

NTR

Figure 5.10: Plant model in the case of recovery to normal mode

5.2.1 Third Approach

Fig.5.11 shows the supervisors involved in each mode. As in the first approach, the
conjunction of Sy, St and Sk controls the system in the normal and transient modes,
and Sk supervises the system during recovery. Sg is put into the feedback loop ini-
tially when the system starts so that during recovery, the system’s behavior does not

violate the design specifications. After the failure is detected and isolated, Sy A St

74

will be disabled, and Sg alone controls the system. After recovery, the normal and
transient supervisors are once again put into the feedback loop. The recovery supervi-
sor also remains active. After recovery, the system resumes its normal operation, and
the supervisors Sy and Sr are initialized with the state estimates obtained through
the observer of the recovery supervisor (to be explained in the following). Therefore,
Snv and Sp are initialized with new state estimates each time the system recovers to
normal condition (following a failure) which in turn may lead to new states for Sy and
Sr. As a result, Sy and Sr may not be designed in one step as in the first approach
and in fact, the design will be iterative. But as we will see, the design procedure will
terminate in a finite number of steps. If the system always goes back to its initial
state after recovery, the design procedure converges in one step and thus is the same

as in the first approach.

r
!._A-L.-_\. f P \ |
E SN% """""" > ' Sy E """ d* Sk
Sr) S
Sk Sg
‘ . time
normal transient ' recovery

Figure 5.11: Supervisors Involved

The supervisor Sy, Sr and Sgr are designed following the steps in Table 5.1. The

details are given in the following.

75

Table 5.1: Third approach: OBS design steps

Step | Sy Sr Sn
O SN,O ST,O SR
1 SN71 :merge(SN’o, S]lV,l? cee ST,l :n’mrge(STp7 5711’1’ cee SR
k k
51\11,1) Sti1)
n* | Sypr =merge(Sypr-1, Szlv,n* STne =merge(Stp_1, S%’n*’ Sk
e Skl L Skl)
’ ! N,n*> H] T,’I’L*

Step 0: Sy, St and Sy are designed to enforce Ey, Ep and Ep respectively
as in the first approach, that is,
(la) R(Sno/GDy) C Ey;
(1b) R(Sno/GDn) CCR(Sno/GDy);
(2) R(S70/GDnr) N QFP C Ery
(3a) R(Sr/GDnrr) N Q%P C Ep;

(3b) R(Sk/GDyrr) CCR(Sr/GDxrr).

Step 1: Next, Sy and St; are designed to enforce normal and transient spec-
ifications after a failure is detected and the system recovers for the first time. The
design procedure is as follows. Let zj(f;) be the last state estimate provided by Sg
right before the recovery event “r” is generated the first time. Then the state esti-

mate supplied to the normal and transient supervisors as initial state estimates will
be:

zéi’l) ={q|3dq € Z](cﬁz &3s,s e, q=168(q,srs)}.

76

and

T1 ap
8,1)QQN :

zé{\{’l) =z

Note that zéﬁ’l) is identical to the state estimate of Sy after recovery.
Depending on the time a fault occurs, the time it is diagnosed and the time recov-
ery event occurs, the state estimates supplied to the normal and transient supervisors

could vary. Let us denote these initial state estimates by zé{\ll’l), A zéf\,i’ll) and z((ﬂ’l),

. zé?,;’f). Based on these initial state estimates, a set of OBS supervisors Szlv,u e
S]]f,‘yl and Sq,, -+, Sécfl are designed to enforce Exn and FEr, respectively. Next we
merge these supervisors with Sy and S, that is, Sy 1 =merge(Sy, S}VJ, e ,S]Ii,"l)
and St =merge(Sy,0, 574, - ,Sf}fl). Note that Sg is not changed because it is de-

signed based on the states of the entire plant GDyrr and as explained before, the

state estimate after recovery is one of the states of Sg. Thus no states or transitions

need to be added to Sg.

Step n: Repeat the above procedure until no new states or transitions are added
to the normal and transient supervisors, i.e., Syn = Svn-1, Srn = Sr, 1. This
procedure will converge in a finite number of steps, say n*. The reason is that the
number of states and transitions of Sy; and Sr; form non-decreasing sequences and
these sequences are bounded from above by 2/9°”l and 219°71 x |20

Finally, we have Sy = Sy, S = Sy e

For p > 2, the design procedure is similar. Sy and Srg are designed as above.

77

Moreover, Sg,, -+, Sg, are designed for the p recovery modes. After the recovery
events ry, - - -, 1, Occurs, a set of new supervisors are obtained and merged with Sy

and St, respectively. The process is repeated till it terminates.

The discussion of nonblocking property is similar to the fourth approach (to be
discussed in the next subsection). The design procedure for the fourth approach
is also iterative. Here for brevity, we will only provide an example for the fourth

approach.

5.2.2 Fourth Approach

Asseen in Fig.5.12, the supervisor design would be the combination of the second and
the third approach. The conjunction of Sy and Sr, denoted by Syr = Sy A Sp, is
used to supervise the system during the normal and transient modes, and S is active
while the system performs recovery. Sy , S and Sg are supervisors with multiple
initial states. As in the second approach, Sy A St supplies the initial states for Sg.
Similarly, upon recovery, Sr provides the initial states for Sy and Sp. The details

are given in the following.

PR

time

normal transient recovery

Figure 5.12: Supervisors Involved

78

The design procedures of Syr and Sg are summarized in Table 5.2. The proce-

dures are as follows.

Table 5.2: Supervisor design steps

Step | Sv Sr SR
0 | Swo St Sryo =merge(Sh o, ,Sko
1 | Svi =merge(Sno,Sy,, | ST1 =merge(S10,57,, | Sk =merge(Sro,Sh
""Sjli/],l) "'75?1) ""521,1)
n* | Snne =merge(Snn-—1, | ST =merge(Stn=—1, | SRnx =merge(Spp-_1,
Sjlv,n*, T vS]]ifl,n*) S%”,n*? e ’Séc%n*) Sll%,n’” e 7‘912::n*)

Step 0: Sy, St and S are designed to enforce By, Ep and Eg, respectively,
as in the second approach. Note that Spg is obtained by merging Sk, -+, Sk
which are a set of OBS designed for different initial states of the recovery supervisor.
Sno also satisfies the nonblocking property, i.e. R(Sno/GDy) CCR(Sno/GDy).
Note that in general, recovery (“r” transition) may not be possible from all states
q € QFP. Let Q%? C Q%P denote the set of states at which the recévery event r
is defined (6(q,r)! for ¢ € QFL). Sgo must be designed such that during recovery,

the set ng is reachable, in other words, the plant under supervision is nonblocking

during recovery and here states in Q42 are considered as the marked states.

Step 1: Si, and S}, are designed following the same procedure explained in
step 1 of the third approach based on the initial states supplied by Sy A Sto A Sko.

Then let Sy, =merge(Swy,0, Sy, - 751}%1,1% St =merge(Sro, Sp,- ,S%l). Once

79

Sy, and S are obtained, a new set of initial state estimates following the failure
detection are determined and used to design Sg;; and Sk is designed based on the

same procedure used for Sgy in step 0.

Step n: Repeat the above procedure until no new supervisors can be obtained,
ie. Snvn = Svn-1, S1n = Srn—1 and Sg, = Sr,_1. Termination occurs in a finite
number of steps, say n*, since the number of states and transitions of Sy, Sy; and
Sg, in each step form non-decreasing sequences and these sequences are bounded by
21991 (for the number of states) and 219”1 x || (for the number of transitions).

Finally Sy = Snn+, S7 = Stn+, Sp = Sk~

We provide an example to illustrate our design method. The system to be con-
trolled GD is shown in Fig.5.13. The set of events are ¥ = {a,f8,v,7, f,d,r},
Y. = {a,ﬁ;%r}, and ¥, = {«a,0,v,d,r}. The plant states in each mode are

P =1{0,1,2}, Q%P = {4,5,6}, Q%P = {7,8,9}, and Q., = {0,1,8,9}. The set of
forbidden (unsafe) states are state 1, 6, 9. Then we have Ey = {0,2}, Er = {4,5},

Er={7,8}.

The three OBS supervisors Sy, Sto and Sgo are shown in Fig.5.14. As shown
in Fig.5.14(b), the state estimate supplied to Sgg by Sno A St is {7,8}. Also, Sgg
provides state estimate {0, 2,4} for Sy and Sr;. Thus the initial conditions of Sy ;

and St are {0,2} (= {0,2,4}NQKP) and {0, 2, 4}, respectively. Supervisors Si; and

80

Figure 5.13: GD

871“,1 after recovery are displayed in Fig.5.15. After merging, Sy and Sp are obtained
as shown in Fig.5.16. Next, Sg is designed and it turns out that Sg; and Sgo are
identical, and therefore the design procedure terminates. Note that Sy, Sy and Sg

can have multiple initial states (corresponding to different initial state estimates).

ol
LI (supplied to
~. normal supervisor)
I'\ S

(supplied to transient
supervisor)
(c) Srpo

Figure 5.14: Supervisors Sy ,570 and Sk

To study the nonblocking property of the system under supervision, similar to

31

Figure 5.15: OBS supervisors Sy, and S

the method used for the first approach, we find a nonswitching supervisor which
in terms of supervisory action is identical to the modular switching supervisor de-
signed in this subsection. Let Swyj be obtained from Sy following a procedure
similar to that given in the first approach to ensure Sy does not disable uncon-
trollable events in the transient mode. Let Syyr = Syy X Sr . We intend to
construct a single generator for the equivalent supervisor and this generator is ob-
tained by connecting the states of Syur and Sg, thus combining their state transi-
tion graphs. For a state pair (21,2) of Snyr and 2] of Sk, we attach a transition
(31,21) -5 2if 2y ={q| 3¢ € n & Is,5 € I, : q = (¢, sds")}. For a

state 2, of Sk and state pair (Zs, 2z2) of Sy, we add a transition 2, — (25, 25) if

z={q| 3¢ €z, (s,8) € =, ¢q=06(¢,srs")}. Thus Syyr and Sg are connected

IThe product of Sy and St has multiple initial states. In our work, it is the state transitions
in the product that is our main concern.

82

(a) SN =
Sn,1 =merge(Sn o, S}\,,l)

(b) Sp = S7,; =merge(Sr0, St)

Figure 5.16: Supervisors Sy and Sy after merging

using d and r transitions. We denote the resulting supervisor as S. We take the initial
state of S to be (%, zp) where Z, 2o are the initial states of Sy and S7o. S can be
thought of as the supervisor that controls the system the entire time. Sy controls
the system initially. Once a failure is detected, Syar is disabled and we switch to
Sgr. If r is generated, Sy will be in control. The nonblocking property of GDy

and GDyrr under S can now be easily verified.

The design method can be easily extend to the cases of multiple failure modes.
We will not provide the details for brevity. In the following , we discuss the cases

when recovery to normal mode and failure accommodation (non recovery to normal)

arc combined together.

We consider the case when p = 2, and recovery to normal mode is possible in the

83

failure mode F} but not in F,. We assume that the third approach for the design
of Sg, and the first approach for the design of Sk, are used. Design based on other
combinations of approaches is very similar. If recovery supervisors are in the feedback
loop during the normal and transient modes, we assume that as mentioned, Sy and Sp
are designed for GDy and G Dy, respectively, to enforce £y and Ep. Two recovery
supervisors Sg, and Sg, are designed for GDyr g, and GDyr,p,, respectively. If ry
occurs, the system can resume its normal operation and Sk, may supply new initial
states for Sy and Sp. As in the third approach, new supervisors which are designed
to enforce En and E7 after recovery are obtained and merged with Sy and Sp,
respectively. This process is repeated till Sy and Sy do not change. The conjunction
of Sg,, Sg,, and Sy and Sr will be in the feedback loop in the normal and the

transient modes, and Sg,, or Sg,, will take sole control in the recovery mode.

5.3 Conclusions

In this chapter, we discussed two scenarios. In the first case, recovery to normal
mode is not possible. This includes cases in which the recovery actions are either
to shut down the system, or to reconfigure it to function with limited functionality.
It may always cover cases, where the faulty component or system has been replaced
with a spare part (but the faulty component is still considered part of the system,
albeit not active). Two design procedures were provided. The first method covers a

larger set of solutions. Thus, in some problems, the second approach may not yield

84

a solution while the first approach may be applicable. However, the first approach is
computationally more complex (both time and space) to implement. The application

of these approaches to a small factory will be discussed in the next chapter.

The second category of problems studied were those in which recovery to normal
operation is possible. This could be the case where repair or replacement with a spare
component is possible. For those problems, two design procedures were provided with
the first representing a larger set of solutions, but with the drawback of being more

computationally complex (both time and space) to implement.

85

Chapter 6

Example: A Small Factory

In this chapter, we illustrate our design procedures using a simplified industrial ex-
ample. Here, all design computations are done by hand. Therefore, we have chosen
a simplified problem as opposed to a more complex problem (such as the example of

manufacturing cell given in Chapter 4).

6.1 Plant Model of The Small Factory

The small factory consists of a machine and a buffer. An abstraction of the manu-

facturing process is shown in Fig.6.1.

" e P

Figure 6.1: Small factory

86

The machine in the above figure takes a workpiece (event «) from some input
device, processes it and then drops it (event) in the buffer. We assume that there is
a sensor which can signal the deposit of a workpiece in the buffer. It is also assumed
that as a result of failure, the machine does not drop the finished workpiece in the
buffer and thus no deposit is registered by the sensor (i.e., v is unobservable). The
sensor may also fail in which case even if the workpiece is dropped in the buffer, it will
not be registered (v unobservable). Event “f” models the above-mentioned failures.
If “f” occurs, the machine may still work, but the exact number of workpieces in
the buffer will be unknown. Fig.6.2 shows the finite state machine model of MACH.
States I and W correspond to the state of the machine in normal idle and working
states respectively, and states I’ and W' denote the idle and working state of the
machine in the presence of failure. Event r represents the replacement of the failed
sensor or corrective measure to ensure proper deposit of workpieces in buffer. In our

plant model, &, = {a,r}, and &, = {«, 3,7}

Figure 6.2: MACH: automaton model of the machine

It is assumed that the buffer in our problem has a capacity of 3. Fig.6.3 shows an

87

automaton to capture the requirement that the number of workpieces in the bufter
must not exceed 3. Whenever an event [(deposit) or v (possible deposit) occurs in
the plant, the state of BUF will change. State B represents the forbidden state that

BUF will enter when it overflows.

Figure 6.3: BUF: FSM Model of the Buffer

The synchronous product of M ACH and BUF, given by G =sync(M ACH, BUF),

represents the plant.

6.2 Diagnoser

In this example, we assume that our diagnosis system can detect the failure with a de-
lay of 0 to 3 events. We model the diagnoser using an automaton D = (Y, Xp,6p, Yo, Yi,)

shown in Fig.6.4.

6.3 System to be Controlled

The system to be controlled in normal, transient and recovery modes is the combined

model of G and D, i.e. GD =sync(G, D) (Fig.6.5).

88

Figure 6.4: Diagnoser model

We allow 2 workpieces in the buffer during the normal mode, and 3 workpieces
in the transient and recovery modes. The set of safe states (the specifications in
each mode) Fy, Er and Fpg are also shown in the diagram. We want to design an
admissible supervisor to enforce the specifications. We would also like the system
under supervision to be nonblocking in both the normal and the recovery modes.

Solutions based on the first and second approach are given in the next section.

6.4 Controller Design

I. First Approach

According to the design procedure, three OBS supervisors Sy, Sp and Sy are
computed. Since the example is simple, the supervisors have been designed intu-
itively. In cases involving large plants, a computer programme should be developed
to implement the systematic design procedures such as the one proposed in section
3.2 based on normal languages. Sy, St and Si are shown in Fig.6.6. To simplify the

graphs, the state estimates (associated with supervisor states) are not shown in the

89

Figure 6.5: The system G D where recovery to normal is impossible

graphs.

Accordingly, the conjunction of Sy, St and Sg is used to control the system in
both the normal and the transient modes. It can be seen that Sy limits the number
of the workpieces in the buffer during the normal operation to two (two pairs of o’s
and (’s are permitted). Sr limits the number of a’s to three. This can be justified

in the following way. The number of workpieces in the buffer is less than or equal to

90

Figure 6.6: Controller Sy, Sz, Syt and Sg

the number of 3’s plus the number of 7’s and thus in turn is less than or equal to
the number of o’s. In the worst case, the number of workpieces in the buffer could
be exactly equal to the number of a’s observed. Thus St limits the number of «’s to
three to prevent overflow. Sk behaves similarly by always limiting the number of a’s
to three. Sg controls the system during recovery. In this case, Sg, during normal and
transient modes, does not disable any controllable event that has not been disabled
by Sy or St, and thus follows the control actions of Sy and Sr. The system under

supervision is shown in Fig.6.7. We can check that the system under supervision is

91

nonblocking in normal and recovery modes.

O
",
O

Figure 6.7: The system under supervision

I1. Second Approach

In this set up, the supervisor Sy and Sy are the same as the ones we designed in
the first approach. Sy A Sy is the supervisor that controls the system during normal
and transient modes. The conjunction of Sy and Sy is shown in Fig.6.8 with the

initial state estimates supplied to Sk being included.

Figure 6.8: meet(Sy, St)

92

Sg is designed according to the procedure explained. The diagram of Sg is shown
in Figure6.9. We can see in Fig.6.9 that Sr contains 5 initial states {(I’,0,5)},

{(W',0,5), (I' 1,5}, {(I',1,5)}, {(W’,1,5),(I',2,5)} and {(I',2,5)}.

Figure 6.9: Sp

As far as the control action after failure detection is concerned, Sg designed in the
second approach performs the same control as Sy designed in the first approach. The
only difference is that the first Si tracks the system’s behavior from the beginning,
while the second one does not; the second Sf is initialized after failure detection. We
can easily verify that the normal plant under the supervision of Sy A St is nonblock-

ing, and Sy is also a nonblocking supervisor during recovery.

93

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, fault recovery problem is studied using discrete-event models. We first
discuss the design of observer-based supervisors in which the control decisions are
made based on the current state estimate rather than the history of events generated
by the plant. Then four approaches using observer-based supervisors are proposed to

solve the supervisory control problem associated with fault recovery.

We assume that the plant can be modeled as an automaton describing the plant
behavior in both normal and faulty modes. The faults are assumed permanent. It
is also assumed that the plant is equipped with a diagnoser which can detect and
isolate failures with bounded delays. After the fault is detected, a detection event is

generated to signal the occurrence of a failure to the supervisor so that the supervisor

94

can implement proper control action to recover from fault. The diagnoser is modeled
as an automaton which is an abstract model of the diagnosis system. We assume
that the diagnoser can be constructed based on any diagnosis technique, continuous-
variable or discrete-event model. Thus the diagnosis and control problems are almost

separated and as a result the supervisor design is simplified.

The combined model of the plant and the diagnosis system forms the system
to be controlled, which is slightly different from the plant in the traditional control
feedback loop. The system to be controlled has three modes: normal, transient and
recovery. The set of specifications corresponding to each mode are given in terms of
legal states. Following a modular switching supervisory control approach, (observer-
based) supervisors are designed to enforce the specifications in each mode. These
observer-based supervisors are designed and coordinated in different ways according
to the four design procedures. Moreover, the issues of nonblocking property and su-

pervisor admissibility are studied.

The faults can be classified into two categories according to whether recovery to
normal mode is possible or not. We develop two approaches in each category. In one
approach which covers a larger set of solutions, the recovery supervisor is put in the
feedback loop when the system is initialized in its normal mode. In the second ap-

proach, however, the recovery supervisor is engaged only when a failure is diagnosed.

95

Obviously, the second approach has less computational complexity for implementa-
tion. The fault recovery problem is first solved in the case of single failure mode, then
the result is extended to multiple failure modes. First, we consider systems with all
faults belonging to one category, and then systems with faults from both categories

are discussed.

The benefit of using modular switching approach is that when a subtask of the
overall system is changed, we do not need to modify the whole supervisor. Therefore,
easy modification and upgrading are allowed in large systems. Furthermore, modular

designs-are easier (less computationally complex) to implement.

The supervisor studied in this thesis are observer-based. In this thesis, we have

proposed a new method for designing OBS based on normal languages.

7.2 Future Work

The current research can be continued in the following areas.

e In this thesis, we solve the supervisory control problem for fault recovery using

untimed discrete-event model. We can extend our recovery framework to timed

discrete-event systems.

e The worst-case size of the state set of OBS supervisors is exponential in the

96

number of open-loop system states. It would be useful to develop a method for
minimizing the number of the states of OBS supervisors without changing the

supervisory action.

In this thesis, “single failure scenario” is assumed throughout the design. How-
ever, in general, simultaneous failures can occur in DES. Using our design re-
covery framework, we may solve the control problem involving simultaneous
failures. However, the number of supervisor modules increase rapidly with the
number of simultaneous faults in a system and the control solution could be-
come very complex. Another systematic way has to be developed to deal with

simultaneous failures.

It would be useful to develop a software to implement the design and analysis
procedures for the OBS supervisors so that the recovery procedure developed

in this thesis can be applied to large DES.

In this thesis, we assume that only observable controllable events can be dis-
abled, and unobservable events are all considered to be uncontrollable. However,
in general, some unobservable events can be controllable, thus can be disabled
by the supervisor. It would be interesting to extend our recovery framework to

the cases involving unobservable controllable events.

In our framework, we assume that faults are permanent. Dealing with transient

faults is another challenge.

97

Bibliography

[1]

[4]

B. A Brandin, W. M. Wonham, and B. Benhabib. Manufacturing cell super-
visory control - a modular timed discrete-event system approach. IEEE Trans.

Robotics and Automation, 1:846-851, 1993.

C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.

Kluwer Academic Publishers, 1999.

K. H. Cho and J. T. Lim. Synthesis of fault-tolerant supervisor for automated
manufacturing systems: A case study on photolithographic process. IEEE Trans.

on Robotics and Automation, 14(2):348-351, April 1998.

R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. Supervisory control of
discrete-event processes with partial observation. IEEE Trans. on Automatic

Control, 33:249-260, 1988.

D. Gordon and K. Kiriakidis. Reconfigurable robot teams: Modeling and su-
pervisory control. IEEE Trans. on Control Systems Technology, 12(5):763-769,

Sept. 2004.

98

[6]

[10]

[11]

[12]

[13]

M. Heymann and F. Lin. On-line control of partially observed discrete event

systems. Discrete Event Dynamic Systems, 4:221-236, 1994.

R. Isermann. Supervision, fault-detection and fault-diagnosis methods- an intro-

duction. Control Engineering Practice, 5:639-652, 1997.

R. Kumar, V. Garg, and S. I. Marcus. Predicates and predicate transformers
for supervisory control of discrete event dynamical systems. IFEEE Trans. on

Automatic Control, 38(2):232-247, Feb. 1993.

Y. Li and W. M. Wonham. Control of vector discrete-event systems I - the base

model. IEEE Trans. on Automatic Control, 38(8):1214-1227, 1993.

F. Lin. Diagnosability of discrete event systems and its application. Discrete

Event Dynamic Systems, 4:197-212, 1994.

F. Lin and W. M. Wonham. On observability of discrete event systems. Infor-

mation Sciences, 44:173-198, 1988.

M. Moosaei and S. Hashtrudi Zad. Fault recovery in control systems: A modular

discrete-event approach. Intern. Conf. on Electrical and Electronics Engineering

(CINVESTAV / IEEE), pages 445-450, 2004.

G. Provan and Y-L Chen. Model-based fault-tolerant control reconfiguration for
general network topologies. IEEE Conf. Control Applications, pages 473-478,

Sept. 2000.

99

[14]

[15]

[16]

(18]

[20]

[21]

P. J. Ramadge and W. M. Wonham. Modular feedback logic for discrete-event

systmes. SIAM Journal on Control and Optimization, 25:1202-1218, 1987.

P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete

event processes. SIAM Journal on Control and Optimization, 25:206-230, 1987.

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis.
Diagnosability of discrete event systems. [EEE Trans. on Automatic Control,

40:1555-1575, 1995.

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneket-
zis. Failure diagnosis using discrete-event models. IEEE Trans. Control System

Technology, 4:105-124, 1996.

S. Takai, T. Ushio, and S. Kodama. Static-state feedback control of discrete-
event systems under partial observation. IEEE Trans. on Automatic Control,

40:1950-1954, 1995.

B. C. Williams, M. D. Ingham, S. H. Chung, and P. H. Elliott. Model-based
progamming of intelligent embedded systems and robotic space explorers. Proc.

of the IEEE, 91:212-237, 2003.

W. M. Wonham. Supervisory control of discrete-event systems. [Online] Avail-

able: http://www.control.utoronto.ca/DES.

W. M. Wonham and P. J. Ramadge. Modular supervisory control of discrete-
event systems. Maths. of Control, Signals and System, 1:13-30, 1988.

100

[22] S. Hashtrudi Zad, R. H. Kwong, and W. M. Wonham. Fault diagnosis in discrete-
event systems: Framework and model reduction. IEEE Trans. on Automatic

Control, 48:1199-1212, 2003.

101

