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Abstract

The electromagnetic scattering problem of normal incident waves on an elliptic
chiral cylinder is considered. The cylinder is assumed to be homogeneous and isotropic
and extends infinitely long in the z direction. An exact boundary value solution for the
scattering problem of the TM wave by the elliptic chiral cylinder is analyzed and
presented. The solution is based on the separation of variable technique in the elliptic
cylinder coordinates system, and expressed in terms of Mathieu and modified Mathieu
functions. The incident, transmitted and scattered electromagnetic waves are expressed in
terms of an infinite series of wave functions. The matrix forms of the expansion
coefficients are found by applying the boundary conditions and orthogonality of the
Mathieu functions. The expression of the radar cross section (RCS) per unit length or
echo width of electromagnetic wave scattering by elliptic chiral cylinder for co- and
cross-polarized waves are derived by using the asymptotic expansions for modified
Mathieu functions. Validation of the developed formulation and computer program are
investigated by considering many limiting cases such as circular dielectric, circular
perfect conducting, and circular chiral cylinders, as well as elliptic dielectric and elliptic
perfect conducting cylinders. Numerical results of the forward and back scattered echo
. widths for both co- and cross-polarized waves for various cases are presented and
discussed. The numerical results show the co- and cross-polarized bistatic and monostatic
echo widths depend on the frequency and incidence angle of the incident wave,
constitutive parameters and geometry of the elliptic chiral cylinder. In general, the echo
widths decrease by increasing the chirality admittance, and increase by increasing the

axes of the elliptic chiral cylinder.
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1. Introduction

1.1 Motivations

Chiral media is a subclass of the more general bi-anisotropic media and contains an
additional electrical material parameter besides the permitivity and permeability. This
media is a reciprocal medium characterized by different phase velocities for right and left
circularly polarized waves. Considerable attention has been given to chiral media in the
recent years because of its unique properties in affecting the behavior of electromagnetic
fields. Electromagnetic chirality and chiral materials have been investigated for a variety
of potential applications, e.g. scattering and waveguides. Chiral media is used to control
electromagnetic scattered fields due to its additional electrical material parameter which
is an advantage for some applications. This is 'becyz.ause chiral media responds with both
electric and magnetic polarization to either electric or magnetic excitation. Also extensive
research have been carried out for scattering by non-chiral media of elliptical cross-
section. Elliptical cylinders have one more degree of freedom compared to circulaf
cylinders. | |

The solution of the problem of electromagnetic scattering by an elliptic chiral
cylinder can be used to represent six kinds of cylinders by choosing appropriate
parameters. Examples include circular non-chiral cylinders (perfect conducting and
dielectric cylinders), circular chiral cylinders, elliptic non-chiral cylinders (perfect
conducting and dielectric cylinders), and elliptic chiral cylinders. This is a motivating
reason that we are interested to find a solution for the electromagnetic scattering wave by

an elliptic chiral cylinder.



2. Objectives

The main objective of this thesis is to develop an exact solution for the
electromagnetic wave scattering by an elliptic chiral cylinder. The focus on the
development of exact closed form solution for the transverse magnetic (TM) polarized
electromagnetic scattering case. To achieve such objective, the elliptic cylinder
coordinates system, and solution of the wave equations in this system using the
separation of variables technique are introduced. Expressions of the wave equation in
chiral media using elliptic coordinates and expressions of incident, transmitted and
scattered electromagnetic waves in terms of an infinite series of wave functions are
derived. The expansion coefficients are found by applying the boundary conditions and
the orthogonality of the Mathieu functions. The expressions of echo widths for co- and
cross-polarized are presented. Another objective of this work is to present numerical
results of the bistatic (forward scattering) and monostatic (back-scattered) echo widths
for co- and cross-polarized for a variety of cases by changing the incidence angle, the size

of cylinders, and the constitutive parameters of the elliptic chiral cylinder.

1.3 Literature Review

1.3.1 Scattering by Chiral Media

An integral equation and method of moments solution to the problem of scattering
by an inhomogeneous chiral material of arbitrary cross section and its numerical results,
including echo width and internal fields, for the scattering by chiral slabs and circular
cylinders were presented in [1]. An efficient recursive eigenfunction solution for the

problem of scattering by a multilayer chiral circular cylinder, with or without a surface



impedance center cylinder, for a transverse magnetic (TM) and transverse electric (TE)
incident plane wave, and numerical results, including echo width and internal fields, were
presented in [2]. Two sets of integral equations for electromagnetic scattering by
isotropic two-dimensional chiral bodies embedded in free space which can be attached to
a perfect electric conducting body were obtained in [3]. A simple moment solution was
presented in [4] for the problem of TE and TM electromagnetic scattering from a
homogeneous chiral cylinder of arbitrary cross section. A formal exact full-wave solution
for the problem of scattering at a nonchiral-chiral interface in a coaxial waveguide and its
numerical results were presented in [5]. The analytic representation of two-dimensional
dyadic Green’s function of a perfectly conducting cylinder coated with one-layered chiral
medium was derived and expanded in terms of the normalized cylindrical vector wave
functions, and the integral equation for the current on the loaded strip was formulated in
[6]. The electromagnetic scattering by an infinite regular array of thin planar chiral
structures disposed on grounded or ungrounded dielectric slabs together with
experimental results concerning co-polarized and cross-polarized reflection coefficients
from both grounded and ungrounded finite grids of novel planar chiral particles were
reported in [7]. Angular scattering from radially stratified spherical chiral objects using a
matrix Riccati equation to examine basic scattering properties of spherical chiral
structures with radial inhomogeneous in permittivity, permeability, and chirality was
formulated in [8]. A TM polarization plane wave scattered by various multiple strip-
loaded cylindrical chiral objects, and two-dimensional electric dyadic Green’s functions
in multi-layered cylindrical chiral media were derived according to the scattering

superposition principle in [9-10]. In [11], the back scattering of electromagnetic waves
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was investigated for a thin hollow chiral anisotropic conducting cylinder with a
longitudinal slot. The measurement results were presented for the radar back-scattering
cross section in the microwave band. A semi-analytical solution was presented to the
problem of electromagnetic scattering from a collection of parallel chiral cylinder of a
circular cross section for a TE and TM incident plane wave in [12]. A conceptual idea for
a reciprocal phase shifting using chiral materials was discussed in [13]. In [14],
constitutive relations which include electric quadrupole terms, in addition to electric and
magnetic dipole terms, were used to describe the optical activity, in particular the circular
birefringence of an anisotropic chiral medium. The propagation behavior of a cylindrical
waveguide loaded centrally by a coaxial chiral rod was investigated by a boundary value
procedure in [15]. A procedure to extract all three constitutive parameters of chiral

material from waveguide measurements was presented in [16].

1.3.2 Scattering by Non-Chiral Elliptic Structures

An elliptic cylinder has one extra degree of freedom compared to a circular one
which represents an advantage. The TE and TM electromagnetic scattering waves by
elliptic cylindrical structures were considered for four configurations, conducting elliptic
cylinders, homogeneous elliptic cylinders, dielectric coated conducting elliptic cylinders,
and confocal dielectric-coated dielectric elliptic cylinders, and their numerical results
were presented in [17]. The problem of electromagnetic scattering from a homogeneous
elliptic cylinder coated with a dielectric or magnetic material, and its solutions in terms of
elliptical harmonics, i.e. Mathieu and modified Mathieu functions were presented in [18-

19]. Near field analysis and coupling of a perfectly conducting slotted elliptic cylinder



excited by an electric line source placed inside or outside the cylinder, and their solutions
using separation of variables technique in terms of Mathieu and modified Mathieu
functions were presented in [20]. A solution to the boundary value problem of TE
multiple scattering by M parallel perfectly conducting elliptic cylinders and its numerical
results for the forward and back scattered fields by two cylinders were presented in [21].
In [22], the scattering properties of an impedance elliptic cylinder coated with a
homogeneous material were investigated analytically and the method of separation of
variables was used to determine the field distributions in each region for both the TM and
TE excitations. An exact solution to the electromagnetic scattering by a dielectric
multilayer infinite cylinder of elliptic cross section using an efficient recursive procedure
for the computation of fields and radar cross sections per unit length under a TM
illamination was presented in [23]. A low frequency analysis of current carring elliptic
conductors using the point matching method in the elliptic coordinate system was
presented in [24]. The scattering of an electromagnetic plane wave by a conducting strip
coated with a multilayer elliptic dielectric and its solution by implementing an efficient
procedure for the “treatment” of the boundary conditions were presented in [25]. An
analytical solution to the electromagnetic scattering by multilayer elliptic cylinders was
derived for the case of isorefractive materials, and for these materials, a recursive

solution similar to the solution for the multilayer circular cylinder was presented in [26].

1.4 Overview of the Thesis

In Chapter 2, the properties of chiral media and the propagation of electromagnetic

waves inside a chiral media are discussed. This includes chiral and chirality, behavior of



electromagnetic fields in chiral media, and chiral wave equation. Chapter 3 reviews the
wave equation in elliptic cylinder coordinates. In this chapter the elliptic cylinder
coordinates system, and the solution of the wave equations in this system using the
separation of variables technique are introduced. Separated wave equations in the elliptic
coordinates are named the Mathieu equations and their solutions are the Mathieu and
modified Mathieu functions. In Chapter 4 the theoretical solution of .TM polarized
electromagnetic scattering by a chiral elliptic cylinder is developed. Expression of the
wave equation in elliptic coordinates and chiral media, and expression of incident,
transmitted and scattered electromagnetic wave are derived. In this chapter the expansion
coefficients are found by applying the boundary conditions and the orthogonality of the
Mathieu functions. Also the expressions of echo width for co- and cross-polarized are
presented. In Chapter 5 validation investigations of the numerical results are presented
for several special cases. The numerical results of the bistatic (forward scattering) and
monostatic (back-scattered) echo widths for co- and cross-polarized for a variety of cases
by changing the incidence angle, the siZ‘e.of cylinders, and the constitutive parameters of
the elliptic chiral cylinder are presented and discussed. In Chapter 6, summary,
conclusions and suggested future work are presented. Details of the calculation of
Mathieu and modified Mathieu functions, such as recurrence relations for the Fourier
coefficients, methods of the characteristic value computation and convergence of the

Fourier coefficients are given in an appendix.



2. Chiral Media and Electromagnetic Waves

2.1 Chiral and Chirality

The term “chiral” is a Greek’s word and means “hand”’. The following are some
concept definitions of chiral [27-31]:
¢ Material with either a left or right handed helical arrangement.
e Having different left-handed and right-handed forms, not mirror symmetric.
e A chiral or asymmetric molecule is one that can be distinguished from its mirror
image.
e An object whose mirror image is not the same as itself. Compounds with four
different substituents on a carbon atom are chiral.
¢ Any molecule that is not superimposable on its mirror image.
Molecules can be chiral if they contain one or more chiral centers. For the purposes of
introductory organic chemistry, a chiral center can be defined as a hybridized carbon that
is bonded to four different groups. On the other hand chiral molecule has a carbon atom
with four different groups attached. A chiral molecule is not superimposable with its
mirror image. Like left and right hands (that have a thumb, fingers in the same order, but
are mirror images and not the same), chiral molecules have the same things attached in
the same order, but are mirror images and not the same (Figure 2.1). The best definition
for chiral molecule maybe is one that, “The necessary and sufficient condition for a chiral
molecule is one that is not superimposable on its mirror image” [32]. For example, you
cannot place your right hand on your left and have all hand parts in the same place. They

are related to each other as mirror images in three-dimensional space, and as such they



can not be superimposed on top of each other. All the other description about asymmetric
carbon atoms or four different groups, applies only with certain constraints. An object
that is not chiral is said to be achiral (or non-chiral). Thus all objects are either chiral or

achiral.

Flape of Symmetry  Ho Plane of Symmetry
|

oA
AL
Mizmateh
Br gHS i
Hom Sl Hy N2
& g CH
Figure 2.1 — Hands and Chiral Molecules [32] Figure 2.2 — Molecule with 2 & 4 groups [34]
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Figure 2.3 — Even after rotation of a chiral molecule, it remains different form [35]



The term “chirality” is also Greek’s word and refers to the property of “handness”.
Chirality is an important chemical concept. For example the active ingredients in caraway
seeds and spearmint demonstrate the concept. Though they have identical molecular
structures, the two substances taste differently because they are opposite in chirality [33].
Chirality, resulting from the presence of four different groups around a carbon results
from an asymmetry in the molecule. This can be seen by examining the molecules shown
in figure 2.2, when two 1dentical groups are on one carbon, there is an internal mirror
plane passing through the molecule; when four groups are present, there is no internal
mirror plane (no symmetry) and hence the carbon is chiral. Whether or not a molecule or
crystal is chiral is determined by its symmetry. Chirality is a special case of asymmetry.
Even after rotating one of the molecules it remains different from its stereoisomer and
they are not superimposable (Figure 2.3). Chiral molecules are also called dissymmetric.
They are not necessarily asymmetric (i.e. without symmetry), because they can have
other types of symmetry [32]. However, all amino acids (except glycine) and many
sugars are indeed a_symmetric as well as dissymmetric. Non-superimposability on the
mirror image is a necessary and sufficient condition for chirality, no exception has ever
been found. The non-superimposability can come about in a number of ways, and need
not involve a chiral centre or even organic molecules at all [36]. A tertiary amine and its

apparently non-superimposable mirror image are shown in figure 2.4.

Figure 2.4 - Tertiary Amine {32}



Among the Archimedean solids we find two chiral forms, one turning to the right
and the other to the left, respectively. They called snub polyhedron (Figure 2.5). The
double helix is also chiral form (Figure 2.6). Louis Pasteur discovered the chirality of

artaric acid in 1860 (Figure 2.7). Figure 2.8 shows a model of chiral crystalline structure.

Figure 2.5 — Snub Polyhedron [37]

Figure 2.6 - Double Helix [37] Figure 2.7 - Artaric Acid [37]

10



A chiral molecule has the property of rotating the plane of polarization of plane-
polarized monochromatic light that is passed through it. This phenomenon is called
optical activity. The light usually used for the determination of optical activity is sodium
light. The rotation will be different, may be zero, and may even reverse in direction

compared with the rotation given with sodium light.

Figure 8 - Model of Chiral Crystalline Structure [37]
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Many important molecules required for life exist in two forms. These two forms are
non-superimposable mirror images of each other and are called “enantiomers” (from the
Greek word for opposite) or “optical isomers”, because they rotate plane-polarized light
either to the right or to the left. Nearly all of the biological polymers must be homochiral
(all its component monomers having the same handedness or 100 % optically active) to
function. All amino acids in proteins are left-handed, while all sugars in DNA and RNA
are right-handed [38]. Life on Earth is made of left-handed amino acids, almost
exclusively. No one knows why but some of the amino acids that fall to earth from space
are more left than right. Thus, it is known that radiation can also exist in left and right
handed forms. There is a theory called the Bonner hypothesis, that proposes that left
handed radiation in space (from a rotating neutron star for example) could lead to left
handed amino acids in space, which would explain the left handed amino acids in
meteorites [39].

Many biological and natural molecules are chiral, such as e.g. amino acids,
carbohydrates, nucleic acids, sugars, proteins, hormones, glycine, tertiary amine, artaric
acid, snub polyhedron, DNA, and RNA. Some man made chiral objects are irregular
tetrahedron, stringed instruments, double helix and hand gloves.

A recent practical work, on chiral materials have been carried out by Gerald Busse,
Jens Reinert and Arne F. Jacob [40]. They produced 4.0-mm diameter circular chiral
objects by winding a 0.2-mm-diameter copper wire to form right-handed three-turn
helices. For electrical insulation and to allow random orientation, each helix was
embedded in a 6.0-mm dielectric foam sphere using an injection molding process. To this

end, the helices were dispersed in Teflon molds that were injected with conventional two
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components polyurethane foam. During each run, 8400 produced chiral objects were
enough to fill on average 0.79 m of a circular waveguide with 50-mm diameter used in
the experiments. The material was diluted by adding foam spheres randomly, without
chiral inclusion. The shape of the chiral slab within the waveguide was fixed by two 7.5-
mm thick polystyrene foam plugs. Because of the short length and a low permittivity,
&=1.03-j1.28x1 0'4, as determined from resonator measurements, their influence on the
measured response was neglected. In these experiments some preliminary investigations
were presented, delivering important information about homogeneity, chirality, and

especially, the resonant behavior of the chiral material.

2.2 Behavior of Electromagnetic fields in Chiral Media

The chiral media is a reciprocal medium characterized by different phase velocities
for right and left circularly polarized waves. These are the same properties as an isotropic
optically active media, therefore the same constitutive relationships are used. Chiral
media responds with both electric and magnetic polarization to either electric or magnetic
excitation, and chiral objects can generate both co- and cross-polarized scattered fields. In
a lossless chiral medium, any linearly polarized wave undergoes a rotation of its
polarization as it propagates. For a chiral cylinder, the chirality results in a coupling
between the TM; and TEz scattering waves. Therefore, the solution of the scattering
problem involving chiral medium is more complicated compared to scattering by achiral
medium.

An isotropic chiral medium is a macroscopically continuous medium composed of

equivalent chiral objects that are uniformly distributed and randomly oriented. The theory
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of electromagnetic wave propagation in isotropic chiral media differs from the more
common aspects of isotropic achiral media. From the technical point of view, an isotropic
chiral medium is characterized by three parameters, in counterpoint to achiral media
characterized by two parameters only (the dielectric constant and the magnetic
permeability). The new extra parameter, the so-called chirality admittance, is responsible
for optical activity. Also the electromagnetic chirality is known as optical activity in the
optical regime.

Interaction of electromagnetic waves with bi-anisotropic media offers some novel
promising applications in microwave and millimeter-wave technology. The bi-anisotropic
medium 1s a generalization of the well-known isotropic chiral medium and it is described
in the general case by four dyadic constitutive parameters and a special type of this
medium is the uniaxial bi-anisotropic chiral medium, where the constitutive parameter

dyadics are uniaxial.

2.3 The Chiral Wave Equation

This section presents the procedure for transforming the coupled wave equations for
chiral media to a set of uncoupled wave equations so that classical eigenfunction
techniques can be used [2]. The constitutive relationships for a chiral medium can be

wriften as

D=¢E-jyB (2.1)
H=—B-jyE (2.2)
U
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- -

where D,B,E, and H are the electric flux density, magnetic flux density, electric field,

and magnetic field, respectively. Also ¢ is the permittivity, x4 is the permeability, and y is
the chiral admittance of the medium. If i, ¢, or y is complex the media is lossy. If y = 0,
then (2.1) and (2.2) reduce to the constitutive for an achiral medium. To simplify

Equations (2.1) and (2.2) can be rewritten as
D=¢g, E-juyH (2.3)
B=uH+ juy £ (2.4)

where &, = ¢ + uy? is the effective permittivity of the chiral medium.

In a chiral media with electric volume current density J and electric charge density

p, the matrix form of Maxwell’s equations can be written as

E E| |o
Vx| =[K] T+ | (2.5)
H H) \J
E 1
v =£( j (2.6)
H E\—JY
where
[K]=[a.)w ﬁjwﬂ, 2.7)
Jjwg, ouy
_Jv.7
and p=-=V-J. (2.8)
[

15



Using (2.5) and (2.6), the source-free wave equation in chiral media, in terms of (E, H ),

1S

vi T+ [kF] T |=o0. (2.9)

Ty =l
v e

The coupling caused by [K ] in the wave equation can be removed by diagonalizing [K ]

such that

g 0 }
, (2.10)

where

[A]{ 1 : } (2.11)

Jjin, —jln,

and the chiral wave impedance and wave numbers are given by

.= £ , (2.12)
g(?
Ky =oJue, +ouy , (2.13)
K, =w\ue, —ouy . (2.14)
We define (£, E, ) by
E E
- 1=l4] f , (2.15)
H E.

16



where E, and E, are the electric fields of right and left circularly polarized waves with

propagation constants Kz and K;, respectively. Substituting (2.15) into (2.5) and (2.6)

results in a set of uncoupled equations for chiral media

E K,E S in (-1
vx| flsl TR +JJZC(1J (2.16)
EL -K,EL
E 1-
and v "t =2 7T (2.17)
> 26 \1+7n.y

Then the uncoupled source-free wave equation in chiral media is

E.| |K2E
41 e I R ) (2.18)
EL K} EL

2.4 Conclusion

In this chapter, we review the properties and wave equation of chiral media. The
term “chiral” and “chirality” are Greek’s words and mean “hand” and “handness”,
respectively. All objects are either chiral or achiral. Many biological and natural
molecules are chiral. Some man made chiral objects are irregular tetrahedron, stringed
instruments, double helix and hand gloves. Some waveguide experiments on chiral
materials as a practical work is explained. The chiral media is a reciprocal medium

characterized by different phase velocities for right and left hand circularly polarized

17



waves. These are the same properties as an isotropic optically active media, therefore the
same constitutive relationships are used. The procedure for transforming the coupled

wave equations for chiral media to a set of uncoupled wave equations are also presented.

18



3. Wave Equation in Elliptic Coordinates

The solution of the problem of electromagnetic scattering wave by an elliptic chiral
cylinder should be expressed in terms of elliptic coordinates. That is convenient to find
the wave equation and its solutions in the elliptic coordinate system. Thus in this chapter
we introduce the elliptic coordinates system and review the wave equation and its

solutions in this system.

3.1 Elliptic Cylinder Coordinates System

Consider an elliptical cylinder as shown figure 3.1 with its cross section in the (x, y)

plane [41]. The semi-focal distance fis given by f* = a - b* where 2a is the largest, and

Figure 3.1- Elliptic Coordinates System [41]
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2b is the smallest axis of the ellipse. The elliptic coordinates system (&#,z) is defined
according to the transformation x + j y = f cosh(¢ + j y). By equating the real and the
imaginary parts of each side [42], in Cartesian coordinates system (x, y, z), we obtain

x = fcosh & cos n, y = fsinh siny, z =z, 3.1
where ¢ works as a radial coordinate, 0 < ¢ <o, and # works as a angular coordinate, 0 <
n<2r.

The surface ¢ = ¢ reduces to the elliptic cylinder

X ) y ’ 2 -2
+ =cos“n+smn =1 3.2
( fcoshfoJ ( fsmhgoj s G-2)

with semi-major axis a = f cosh & and semi-minor axis b = f sinh &. The surface n = 7,

reduces to the hyperbolic cylinder

X ’ y ’ 2 - 12
— =cosh” & —sinh~ & =1, 3.3
(fcosnoj [fsinnoj sh” ¢ —sinh”¢ (3-3)

which crosses the x-axis at + f cos n, and has asymptotes y = = x tan n,. The

corresponding scale factors in the elliptic coordinates system are

h. = fycosh® & —cos’ny h, :f\/%(cosh2§—c0527y) , and h,=1. (3.4)

3.2 Wave Equations in Elliptic Coordinates

In general the scalar wave equation can be written as

, 1 8*
{V“——7 7}U(r,t):0, (3.5)
v ot”
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where v? = l/ue for electromagnetic fields. By assuming a solution of the form U7, ¢) =

U(r) T(¢t) and replacing it into (3.5) we obtain

{i;kzvz}m) =0, (3.6)
dt

V2 i |uen) =o, 3.7)

where -k? is the separation constant. The solutions of the harmonic Equation (3.6) are
T() = e"/®. Equation (3.7) is three-dimensional Helmholtz equation. For cylindrical

systems by using the Laplacian operator and assuming a spatial solution we can separate

Equation (3.7) as

vV =V24+02 /8, (3.8)
U(r)=U,(r)Z(2), (3.9)
{2—;1{3}2(2) =0, (3.10)
vz +52]u,¢) =0, (3.11)
kP =k>—k’. (3.12)

The solutions of Equation (3.10) are Z(z) = e*/**. For (3.11) by replacing the elliptic
coordinates scale factors (3.4) into the transverse Laplacian, and taking r, = (¢, ), we

can write

21



2 2
v; =;117aa ; +h%—~aa 5 s (3.13)
& é’: n 77

h, = f\/cosh2 E—cos’n (3.14)

h, = f\/é—(cosh 2& —cos2n) , (3.15)
62 62 k2 2

[652 + - + { (coshZf—cosZry)}U(f,n) =0. (3.16)

Equation (3.16) is the two-dimensional Helmholtz equation in elliptic coordinates. We
assume a solution of the form U(¢& n) = R(E) S(n). Substitution of U(¢, ) into Equation

(3.16) yields

;2

d . +(a—2qcosZn)}S(ry)=O, (3.17)
Ldn

d; —(a~2qcosh2§)}R(§):O, qg=(kf) /4, (3.18)

where a is the separation constant, and ¢ is a dimensionless parameter related to the
transverse propagation constant &;.

Equations (3.17) and (3.18) are known in physics and engineering as the angular
Mathieu equation, and radial (or modified) Mathieu equation respectively. Their solutions
are the angular Mathieu functions and the radial (or modified) Mathieu functions

respectively.
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3.3 Solution of the Angular Mathieu Equation

Based on physical considerations, the angular Mathieu equation has periodic
solution with period 7 or 2z. The values of o which satisfy these conditions are known as
characteristic values or eigenvalues. When the solutions S(y) are even with respect to
n=0, the characteristic values are denoted as a,,(q) where m=0,1,2,3, ..., whereas for odd
solutions they are represented as f,,(q) where m=1,2,3,... . They generate an infinite set
of real values that have the property oy < £, < a; < 7 <ay; <.... Since the characteristic
values define the stability of the solutions, they play an important role in the accuracy of
these functions.

The periodic solutions of the angular Mathieu equation which are named angular

Mathieu functions, are given [42-44] by using the Fourier series

S,,.,(n,q)= ZAz,‘ (q) cos2rn even solution with even char. num. («,,)  (3.19)

r=0

S, (1,q) = ZAM(CI) cos(2r +1)n even solution with odd char. num. («,,, ) (3.20)

r=0

S, 22 (1.9) = ZBmz (q) sm(2r +2)n odd solution with even char. num.(f3,,,,) (3.21)

r=0

S, (m.q)= ZBM, (q) sin(2r +1)n  odd solution with odd char. num. (f3,,.,) (3.22)

+r=0

where A and B are Fourier coefficients and depend on the parameter ¢ in (3.18). The

derivative of the angular Mathieu functions (3.19)-(3.22) are



d 2 .
S0, (1.9)] = ~>"2rd,, sin2rny , (3.23)
7

r=0

d @ i .
%[SG o] = —Z(2r +1)4,,,, sin(2r + 7y , (3.24)
r=0
d @ .
d—n[so (1)) = Z (2r +2)B,,,, cos(2r +2)n , (3.25)
r=0
d @ N
%[SU 2n+1 (777 Q)] = Z (2r + 1)B2r+l COS(Zr + ]')77 . (‘)26)
r=0

3.4 Solution of the Radial (Modified) Mathieu Equation

The radial Mathieu equation, in elliptic coordinates plays a similar role as the
Bessel equation, in circular coordinates. So, for each kind of Bessel function, there exists
a pair of even and odd version of radial Mathieu function. Then, there are eight radial

Mathieu functions for four kinds of Bessel functions.

3.4.1 First kind solutions of the Radial Mathieu Equation
First kind solutions of the radial Mathieu equation for ¢ > 0, are named J-Bessel
type of the radial Mathieu functions. The expressions for the four types of cxpansion are

given [44], by using the Fourier series



Je,, (q,$) = <\/7r /2] 4, )i D" 4a,,J, ), v,), (3.27)

n=0

Je,,.1(4,$) = (V w214, )i(—l)""" Ayl O (1) + T, (), ()], (3.28)

J0s,,,(4,6) = (V 7w/2/B, )i(_l)nﬁm By, oL, (v, (V) = (), (v,)] (3.29)

n=0

Joy @) = (N7 121 B> (-1 By [T, 00 (v2) = a0, ()] (3.30)

where v, =\/ge’§, and v, :\/ge":.

The derivatives of functions (3.27)-(3.30) are

d _ {7 gy =S, I () = S (V)]
E‘]ez’"(q’f)”( ”/2/2/1“);( Y AZ"{+sz,,<vl)[J,,-.<v2>—J,,H(vz)]}’ G0

VW, () =, ()]

d - - + V,J” (Vl )[Jn (VZ ) - Jn+2 (VZ )]
= Jey, (0,6 =—WNrl2/24 N (-4, T , (332
dgﬁ e“’”+ (q f) ( i )g( ) i _vlJn(vz)[Jn(vl)_JIHZ(VI)] ( ’ )

+ v, WO, () =0 (0,)]

“vJ o WI ) =, ()]

d % - +v,J, (VI (V) =, (0)]
—J =—\Jz/2/2B - .
dé: OZ”HIZ (q7 5) ( 4 ? )g( ) B2”+2 -+ V]Jn (Vz )[Jn+l (V1 ) - Jn+3 (Vl )] ’ (3 33)

vyl (WL, (ve) =T (V)]

S I ) =S, ()]

d L R S A WA U BN R
—J = /2/2B -H)""B - . .
7 0@ =R B By T A A N

=V, JIV) 0 (vy) = 7,0 (v,)]

3.4.2 Second kind solutions of the Radial Mathieu Equation
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Second kind solutions of the radial Mathieu equation for ¢ > 0, are named Y-Bessel
type of the radial Mathieu functions. The expressions for the four types of expansion and

their derivatives are given [44], by using the Fourier series

Ye, (q,&) = (\/7[/ 2/ A4, )Z -D""4,,J,v)Y,(v,). (3.35)
n=0
Ye2m+] (q3 (:E) = (V T / 2 / Al )Z (—1)"_”1 A2n+1 [Jn (Vl )KIH (VZ ) + ‘]n+l (Vl ))/n (VZ )]’ (336)
n=0

Y0,,,,(¢,$) = (Wr /2/B, )i(—l)"*'" By o[, ()Y, (vy) =, ()Y, (0,)] (3.37)

n=0

Yo,,,(¢,$) = («/”/7- /B, )i(*l)"f'" Byl V)Y, (vy) = I, )Y, (v,)], (3.38)

n=0

where v, = \/ge"‘f, and v, = ﬁe":.

d _ c oy -V Yn (Vz )[J;,Al (V1 ) - J,,+1 (V1 )] "
@D =224 e, {+ o (T, ) = Y, 0, )]}’ )

~vY ), (), ()]

d — C _1yim +v2Jn(vl)[Yn(v2)_.Yn+2(v2)]
o @0 =LA g NN [ O

+v,J Y, (vy) — Y, ()]

=Y ), () -J,, ()]

d 2 _ +V7J (V1)[Y 1(V?)_Y 3(V7)]
— Y 2m+2 \Y> :_\/—/_2—/237 -1 ! mB? +2 o " - " - N 3.41
27 10 @:9) (r )z< Bt Y oot ooy [ O

v WY, (v,) = Y, (0,)]

-V Yn+1 (Vz )[Jn—x (v1 ) - Jn+] (V1 )]

d — C _1\m +v2Jn(Vl)[Yn(v2)_Y;HZ(Vz)]
g Toma @O =R 2B ) S N e [ 69

-v,JIv)IY, (v,)) =Y, ,(v,)]
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3.4.3 The Third and Fourth Kind Solutions of the Radial Mathieu Equation
The third and fourth kind solutions of the radial Mathieu equation are named the
Mathieu-Hankel functions. These functions are used to represent incoming and outgoing
waves In propagation problems. They can express by the first and second kind of the
radial Mathieu functions. Then,
Third kind solution = H; (First kind Hankel) = (J-Bessel) + j (Y-Bessel),  (3.43)
Fourth kind solution = H; (Second kind Hankel) = (J-Bessel) — j (Y-Bessel). (3.44)
So we can obtain both even and odd functions for each kind.
Equations (3.19)-(3.42) depend on Fourier coefficients 4 and B. To finding 4 or B,
we have to calculate characteristic value a or f respectively. a and f depend on parameter
g which also depends on the wave number k£ and semi focal length f. More details of these

calculations are given in the appendix.

3.5 Conclusion

Elliptic coordinates system and the corresponding wave equation in this system are
presented. The solution of the wave equation is expressed in terms of Mathieu and
modified Mathieu functions. Expressions for these functions are given. Details of their

numerical calculations are given in Appendix A.

27



4. Scattering by Elliptic Chiral Cylinder

In this chapter the theoretical solution of TM polarized electromagnetic scattering
by an elliptic chiral cylinder is developed. Expression of the wave equation in chiral
media using elliptic coordinates and expressions of incident, transmitted and scattered
electromagnetic waves are derived. Expansion coefficients are found by applying the
boundary conditions and the orthogonality of the Mathieu functions. Finally the

expressions of echo widths for co- and cross-polarized cases are presented.

4.1 Wave Equation

The general form of the wave equation for a chiral media is given in Section 2.3
while the wave equation in elliptic coordinate system for a non-chiral media is given in
Section 3.2. In this section we combine the two formulations to express the wave
equation for a chiral media in elliptic coordinates system. We start with the two-

dimensional Helmholtz scalar equation in elliptic coordinates,

aZ 82 k2f2 B B
{652 +6772 +— (cosh2& cosZry)}U(@n)—O. (4.1

Assuming a separation solution of the form U(& n) = R(&) S(n) and substituting it into

Equation (4.1) yields

{ d 2, +{a - 2q cos 277)J S(n) =0, (4.2)
dn”
[j; ~ (@ —2gcosh 2«;)] R(&) =0, (4.3)
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where a is the separation constant, and ¢ is a dimensionless parameter related to the wave
number k& and semi-focal length / by ¢ = (k 1)’/ 4 . Equations (4.2) and (4.3) are the
angular and radial (or modified) Mathieu equation respectively. Their solutions are the
angular and radial (or modified) Mathieu functions. More details of Mathieu functions
were given in Chapter 3.

The constitutive relationships for a chiral medium can be written as

D=¢g E-juyH (4.4)

B=puH+ juyE (4.5)

- -

where D,B,E, and H are the electric flux density, magnetic flux density, electric field,

and magnetic field respectively. Also €. = ¢ + uy? is the effective permittivity of the
chiral medium, y is the permeability, ¢ is the permittivity, and y is the chiral admittance of
the medium. If i, ¢ or y are complex the media is lossy. If y = 0, then (4.4) and (4.5)
reduce to the constitutive relations for an achiral medium. The chiral wave impedance

and wave numbers are given by

{
n =4, (4.6)
gC

K, =wus, +ouy , 4.7)

K, =o\us, —ouy . (4.8)
Wedeﬁne(li:;, E, )by

[ 1 ]| Ex 49)
ime =il || | ‘
E;.
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where £, and E, are the electric fields of right and left circularly polafized waves with

propagation constants Kz and K; respectively. Substituting (4.9) into the matrix form of
Maxwell’s Equations (2.5) and (2.6) results in a set of uncoupled equations for chiral

media

E K. E 5 in (1
21 +Jj;7”(1) (4.10)
E -K,E.
E -
and v |22 T (4.11)
2 2e\l+n.y
E. :

Then the uncoupled source-free wave equation in chiral media is

Ex| [K2E
21 B Y R B ) (4.12)
EL K;EL

4.2 The Eigenfunction Expansion

Consider an elliptic chiral cylinder with permeability y,, permittivity &,, and chiral
admittance y. The geometry of this cylinder with TMz uniform plane wave incident on it

is shown in Figure 4.1. The external fields of the cylinder may be expanded as an infinite

sum of vector wave functions, ]V7 , and ]\7 . [2], which are related by
VXNu=kMn, (4.13)

Vs Mn =k N (4.14)
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These vector wave functions are solutions to

VxVxé—kzé:O,

and V-0=0,

where Q= M, or N, . According to (4.1) and its separation solution U(¢, #)
in elliptical coordinates, using (4.13) M, and N, can be written as

NP (R)=1: U, (6.1) = s R0 (6,6) S5, (e1)
- 1 - ~ R
M@ (k) =;Vx NP (k) =u. M, +u, M,

n 1/1—772 e e
=y — i R (c,E)S om(c,n)
k\ED -7

iy Y LR o5t e

am

(4.15)

 (4.16)

= R(&) S(n)

(4.17)

(4.18)

H' |

-00

Figure 4.1 —~ TMz uniform plane wave incident on an elliptic chiral cylinder
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where p=1,...,4, ¢ = k’f*/4, k is the wave number, fis the semi focal length, 0 < ¢ < oo,
0<n<2nS.mand S, , are even and odd angular Mathieu functions, R, ,, and R, ,, are
even and odd radial (modified) Mathieu functions, and the prim indicates the derivative

with respect to the argument.

4.2.1 Incident Wave
In the case of a Transverse Magnetic (TMz) plane wave normally incident from &,

the incident electric field, with unit amplitude may be written [17] in the form
E'=u.e” =Y NPk =u. Y A, RVon(cy, )85, (0,1 (4.19)

where A7, =87 j" S5, (¢,,c084') I N2, (¢,), and N¢,(co) = [[S2, (o[ dn.  (4.20)

Ao and A, ,, are the coefficients for a plane wave that is impinging at angle @' with
respect to the x-axis, N. » and N, , are even and odd normalized constants. The

corresponding magnetic field is given by

H' =ity e = LS MO (k,)
N Mo 'm

" J 1-7° e pMe e
U A R om\Cp, Som Cy,
ot E =g 2 AR onCn DS onero)

" J 52 -1 e ()¢ e '
— U , Ay R om(cy,8)S,,.(co>m) (4.21)
’ noko S ‘fz ‘772 g o °
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4.2.2 Transmitted Wave

In the chiral cylinder, the eigenfunction expansion must account for the rotation of
polarization inherent to chiral media. In a z-independent problem, these result in a
coupling between the TMz and TE; fields, which prevents the eigenfunction expansion
from being written as a simple superposition of TM; and TEz fields. However, the

eigenfunction expansion can be written as a superposition of right and left circularly

polarized fields. This is done by combining the vector wave functions M, and N, , to

form right and left circularly polarized vector wave function

EP =NP Uk )+MP(k,), (4.22)
ER) = NP (k) -MP (k) , (4.23)

which satisfy the wave Equation (4.10)-(4.12) in a source-free chiral region. Then the

electric field in the elliptic chiral cylinder may be represented as

— - -

E® = B4+ Ef
= ZCﬁm[an”(kR) +Mf,f)(kk)}+zd§m{N§f’(kL)—Mi”(kL)}

= u: chmR“’im@R,f)Sfm(cR,n)+stmR‘”iucL,f)s,f,,xcum}

A [ 1 } 1—772 e e
+ U — Ce R<1)0m Cp, S om{Cp,
S(—ka 52 _772 ; om ( R é:) ( R 77)
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1 e e
e R(l)om C 5 S om{C 5
k f _ ,7 Z om ( L 5) ( L 77):}

I 1 g i
— Un| —— om\Cp, S;m Cp,
u 7l>ka é: _ Z Om ( R g) ( R 77)

1 [ &1
S 2 2 Olll O"I(C ’é)Som (C ’77) ° (424)
ka é— _—77_ m ¢ g

where ¢, m, Co m de m, and d, , are unknown expansion coefficients. The corresponding

magnetic field can be written as

- -

H=H{+H{

:L{Z o,,,{N,‘,,”(k )+ MOk, )} Zdo,,,[Nf,})(k )Mk, >ﬂ

¢ m m

m

= U ;LI:Z Cst“)i'” (CR ’é:)S(fm (CR777) - Zd:mR“)z’” (C1,7§)S§/u (CL 777)}

m

+ ;y ! 1 Z (me(])O'”(CR’é:)S'z’”(CR777)
kef
1 stmR(l)om(CL’é:)Syz”’(CL777)
f m

AR e .
- Uy om 0’"(C ’f)Som(c 7’7)
7 770 [ka 5 - ; f *
1 )e .
+ k f Z om 0'“(CL’§)SGIH(CL’77):{ : (425)



4.2.3 Scattered Wave

Due to elliptic chiral cylinder the scattered fields will have TM; and TEz

components, therefore, the scattered fields are expanded as

ES = Zajm N (k) +b:, MY (k,)

m

= uz p.al, RWon(cy, S, (1)

+u;— Zb RW5u(cy, E)S om(cy,n)
Ty f Zbe R0 (ce,E)Ssnlcosn) (4.26)
H® :Lza;ﬁm Mr(n4)(k0)+b§m N,E,4)(ko)
Mo ‘=

= J Zbe R(4)zm(co9§)S§m(C0”7)

'70 m
" J e (4)2 e
+ R em(cy, Som(c,,
U ko f Z (¢o58) (¢o.1)
R K T Tk e, O, 4.27)
My of

where a. m, @o m, bem and b, , are unknown expansion coefficients.
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4.3 Boundary Conditions

We have 4 unknown expansion coefficients, a,, b, ¢, and d, for both even and
odd modes. In order to compute them, we have to apply the boundary conditions at &=¢.
We know that the tangential components of the electric field across an interface between
two media with no impressed magnetic current densities along the boundary of the
interface are continuous. Also, the tangential components of the magnetic field across an
interface between two media, neither of which is a perfect conductor, are continuous [45].
Thus at &=¢&, the tangential components of the electric field and the tangential

components of the magnetic field are continuous and we can write

E!+E =Ef, (4.28)
E; =E; , (4.29)
H:=H', (4.30)
H,+H =H; . (4.31)

By applying the boundary conditions (4.28)-(4.31) we have
Ei+E; =Ef
D AR on (€4 E0)S o (osm) + D5 Ron (00, £,)S5, (c001)

= et RYon (e, E)S5 (coom) D d RV on (e, E,)SE, (e, um) (4.32)
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s _ e
E =E,

L e .
k—.zbomR (4)0’” (CO’é:O)Som (00’77)

0 m

1w . e . 1 e .
:;—ZcomR(l)o"’(CR7§O)S0m(CR’U)—k—zdamR(1)0’”(CL7§0)Som(CL977)7 (433)

R m L m

H=H°

1 e e e
7 Z bOI)'R(4)0m (CO > 50 )Som (CO 2 77)
Q m

{ e e e l e e e
B 77*.Z:C‘DHZR(I)D’" (CR JQZO)Som (CR ’ 77) B —];—ZdOITIR(I)OI” (CL ’é:() )Som (CL ’77) 3 (434)

i s c
H,] +H,] _H,]

1 e (ne e 1 ¢ (4)¢ e
ZAOMR(1)0"’(00350)50/11(60’77)+TZGOI'!R(4)0’”(Coaf())Som(CO’n)

kO’70 m 0’70 m

1 e ‘ 4 e 1 e ! e e
- ZcomR(1)0’"(CR’§O)Som(CR’77)+ ZdomR(l)o'”(cL7é:O)Som (CL’U) ‘ (435)
kRnc m kan m

Multiplying both sides of (4.32)-(4.35) by S.(cp 1) and applying the orthogonality of
Mathieu functions, the terms involving even functions decouple completely from those of

odd functions. Thus from (4.32) we have

[4,7,(c,)+a,H,(c)IN (c,)

n n

= Z [Cm‘/m (CR )an (CO ’ CR ) + dem (CL )an (CO ’ cl‘ )]’ (436)

m

where



J(c)=J (e)=RV0u(c,,4,), (4.37)

on

H,(c,)=H: (c,)=RY.(c.,&,), (4.38)
N,(e)=Nee) = [I8e, e dn, (4.39)
an (ci ? Cj ) = Mjmn (Ci 4 Cj ) = f” S;Zm (Ci 4 U)Sjn (cj 4 77)d77 4 (440)

forn =10, 1, 2, ... and also for even and odd coefficients. Similarly from (4.33)-(4.35) we

can write

anr’z (CO )Nn (CO )

k k ,
= —k—o ZC))ZJHI (CR )Mmu (CO 4 CR ) - .k_o_ Z dm']m (CL )an (CO > CL ) 2 (441)

Rom L m

ann (CO )Nn (CO)

= %)— Z Cm Jm (CR )an (CO > CR ) - —Zp— Z dm Jm (CL )an (CO ’ CL ) 2 (442)

[A”J;’ (CO) + a, Hn (CO )].N” (co)

k , & '
== k_oﬂﬁ_zc J (CR )Mm/z (C()aCR)'l-v.kOnO de'“]m (CL )an (CO’CL) . (443)

m fn

R 77( m L 77( m

Now multiplying both sides of (4.32)-(4.35) by S,(ck, 1) and applying the orthogonality

of Mathieu functions, then we have



z [Am']m (CO ) + am [{m (CO )]an (CR 2 CO )

m

= Cn‘]n (CR )Nn (CR) + Z dm‘]m (CL )an (CR ’CL) > (444)

Z bm H/‘n (CO )Mm/v (CR 2 CO )

m

n* n
R L m

k ' k :
= kic J,(¢o)IN, (CR)_%&de‘]m(cl,)an (crscr) s (4.45)

Z bm Hm (CO )an (CR H CO )

m

= ZO_C J (CR )Nn (CR) - ZQ‘ZCim‘]m (CL )M (CR ’CL) ’ (446)

" n nin

77 4 77 ¢ m

Z [Am S, (o) +a,H,(c )]Mnm (€rsco)

th

= k0770 CﬂJn(CR)Nn (CR)+ kOUO det]m(C[,)M,“”(CR,CL) . (447)
R'l¢

C Life m

Equations (4.36) and (4.41)-(4.47) may be used to solve for the unknown expansion

coefflicients.

4.4 Finding the Expansion Coefficients

The expansion coetficients a,, b, ¢ and d,, either even or odd can be written in a

matrix form using (4.36) and (4.41)-(4.47). From (4.41) we have



b, 1=, 1c, I+ 72,114, ] (4.48)

where
- EQ_J;n (CR )an (CO’CR) (449)
" ky  H,(cy)N,(c,)
and
Iznm :___]f(_)"]m(c'L)an(CO’cL)‘ (450)
kL Hn (CO )Nn (CO)
From (4.42) we have
6,1=1[1,,]lc, |+[22,,]l4,] (4.51)
where
Llnm — 77_0‘]m (CR )an (CO’CR) (452)
770 Hn (CO)Nn (CO)
and
12,, =10 Tl Mm (0, 6,) (4.53)
n, H,(c,)N,(c,)
From (4.44) we have
[cm ] = [Glmk ][Ak ]+ [szk ][ak ]+ [lek ][dk ] (4.54)
where
Gl ___Jk(CO)Mkm(cR’CO) (4.55)
mk 3 .
J o (cp)N, (cp)
szk = Hk(CO)Mkm(CR:‘CO) (456)
o (C)N, (cp)
and
p1,, =260 w(Carc) (4.57)
J(cr)IN, (cp)

By substituting (4.54) for ¢, into (4.48) and (4.51), we have
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([, -T2, -2, DL )
= 1, =2, e ]+ 1] (4.58)
where
1= ([, -1z, DIt (4.59)
2, 1=, ]- 21, D62, ] (4.60)
. 1= ([, -l DIPL e 122, 1= b2, ) (4.61)

From (4.44) and (4.47) we have

[e.]

1= 1F1 4+ [r2, e ) (P2, ]l

[Glnk ][Ak ]+ [Gznk ][ak ] +v[P1nk ][dk ]

i

([Glnk]”[Flnk])[Ak]: —([Gznk]“[ank])[ak]+([Pznk]“[Plnk])[dk]

= [Ulnk ][Ak ] = ”[Uznk ][ak ]+ [Wnk ][dk ] (4.62)

where
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_ anR ']/‘L (CO)M/(H (CR 700)
Mok, J;: (cp)N, (cp)

Fl, = (4.63)

_77ck1e HIL(CO)Mkn(CR’CO)

F2, = ,
Moo J,(cx)N,(cp)

.

(4.64)

J (c M, (c,,c
N R AUMONS s
kL Jn (CR )Nn (CR)

o1, ]=61,]-[F1,.] (4.66)
[Uznk]: [Gznk]_[ank] (4.67)
[Wnk]: [Pznk]‘[Plnk]- (4.68)

From (4.62) we can find dj

la.]=lw, ] (v, 4]+ [v2,Jla]) (4.69)
By substituting (4.69) into (4.58) we have
4 l=-z, o+ [T o4+ A o2, e ]
= fo = (w2, 172,]) (-0 o la] - @70
To finding c,,, substitute (4.69} into (4.54), then we have

[Cm ] = [Glmk ][Ak ]+ [szk ][ak ]+ [lek ][Wnk ]_l ( [Ulnk ][Ak ]+ [Uznk ][ak ]) (4.71)

We can find b, by substituting (4.69) and (4.71) into (4.48),
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b= [, )60, )+ 11, ] [62,4
el e on )+ o, e, o, 02,0,
2,091 01,4, )+ 12,109, T 2,0 ], )

= ([, (61 )+ [P ] 00 ) (2 7, T 00,0 )4

([ l[o2, + P o2, ) iz, 7, T o2, la)  @72)

Consequently in summary we have the following expressions for the unknown expansion

coefficients;
la 1= (7 007, T 2, -2, 0T (1, - [, 0, T o] (4.73)

b, 1= ({11, ([, 1+ [P 07 P 01, )+ 12,0 )0, 01,

sl o2 s P w22, w2, )] @
[Cm ] = [Glmk ][Ak ]+ [szk ][ak ]+ [lek ][Wnk ]—l ([Ulnk ][Ak ]"’ [Uznk ][ak ]) (4.75)
[dk]: [Wnk ]_l([Ulnk ][Ak]+[U2nk ][ak])- (4.76)

The obtained coefficients can be either even or odd. All matrixes in the right hand side of

(4.73)-(4.76) are given by Equations (4.20) and (4.49) - (4.68).

4.5 Echo Width

An important parameter in the electromagnetic scattering by a target is usually

represented by its echo area or radar cross section (RCS), ¢. The echo area or RCS per
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unit length is defined as the area intercepting the amount of power that, when scattered

1sotropically, produces at the receiver a density that is equal to the density scattered by

the actual target. For a two-dimensional target the scattering parameter is referred to as

the scattering width (SW) or alternatively as the radar cross section per unit length. The

equation for the scattering width and the radar cross section, ¢ of a target takes the form

[45],

lim

P>

Iim

P>

Iim

P>

3-D

lim

r—>®0

lim

r—>c

lim

>0

«

(4.77)

where 0, p is scattering width for two-dimensional target, o;.p is radar cross section for

three-dimensional target, p and r are distance from target to observation point, S * and S *

are scattered and incident power densities, £° and E' are scattered and incident electric

fields, and H° and H' are scattered and incident magnetic fields. For normal incidence the

two- and three-dimensional fields and scattering width and radar cross section for a target

of length / are related by

le/'/‘r/-/t

E, = (Ez-u ] ; (4.78)
AP .

o, =0, , 2/11 i (4.79)
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The unit of the two-dimensional scattering width is length (meter in the MKS
system) whereas that of the three-dimensional radar cross section is area (meter squared
in the MKS system).

When the transmitter and receiver are at the same location, the radar cross section is
usually referred to as monostatic (or backscattered) and it is referred to as bistatic when
the two are at different locations. Observations made toward directions that satisfy
Snell’s law of reflection are usually referred to as specular. Therefore the radar cross
section of a target is a very important parameter which characterizes its scattering
properties. The definitions of ¢ indicate that the scattering width SW and radar cross
section RCS of a target are defined under plane wave illumination. In practice that can
only be approximated when the target is placed in the far field of the source (at least
2D%) where D is the largest dimension of the target.

To finding echo width for co-polarized in elliptical coordinate we have

2
E’
o =lim| 2zp—-|. (4.80)

2

p—>o ’El

z

It is useful to use asymptotic expansions for modified Mathieu functions [44]. Then

R (¢, &)= H, () = IS (¢4,E) Y] (), (4.81)

V3
§—large 1 COS‘: 2 QCOShf —E‘(M-l-l/Z):l

R, m(cy, &) =

2 g cosh¢ ~jsin[,/2 qcoshf—%(M+1/2)]

T .
. (M +1/2
1 ~jkop MR

=———¢e " S —l (4.82)

Vkop vkop
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2m for even order,

where k,p=k,fcoshé =2,/gcoshs, and M =
' 0P =kof d \/6; d {2m+1 for odd order,

ik
e JEoP

then Ef = Zj'"aijjm (cyom) and
kyp =
1 2 2
o= 272;0;; > jralSe (co.m)| =ADj"al,S: (co.m)| (4.83)
(¢} nt m
2
o om
or I: ZJ [aemSem(c0777)+aamSom (00’77)} . (484)
To finding echo width for cross-polarized in elliptical coordinate we have
2
. E,
o = lim| 27p —— (4.85)
S

For asymptotic expansion of derivative of modified Mathieu function, we use (4.82), then

(48 dR™ dp im0 .
R on(co.&) = =4 — jkolp -

1
dp a’coshf— \/Eovp ﬁ)f

E—>Large k .
= f e, (4.86)
ye,

2

27", S5 (eou)

m

k z_
then o =27p f* -~ 21 - i 12
p ko f\E" -1

2

=1 , (4.87)

DI A S A )

"
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where

52 _1 &> Large
o) =0
2

S " BunS o (Cosm) + By Sy ()| - (4.88)

m

=

g
A

Equations (4.84) and (4.88) are used to finding numerical results of the echo width in

Chapter 5.

4.6 Conclusion

The theoretical solution of TM polarized electromagnetic scattering by elliptic
chiral cylinder is developed. The solution of the wave equation in chiral media using
elliptic coordinates together with expressions of incident, transmitted and scattered
electromagnetic waves are derived. Unknown expansion coefficients for the transmitted
and scattered waves are found by applying the boundary conditions and the orthogonality
of Mathieu functions. Expressions of the echo widths for co- and cross-polarized are also

presented.
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5. Numerical Results

5.1 Introduction

In this chapter selected numerical results are presented for the computed far field
and for a variety of geometrical and material parameters. In each case, the infinite series
is terminated to include only N terms of both the even and odd functions, where N, in
general, is a suitable truncation number proportional to the structure’s electrical size and
shape. Accuracy of the characteristic values and convergence of the Fourier coefficients
are very important for numerical values of the Mathieu functions. The designated
software program for this project is able to control the accuracy of computations. For
example the developed program checks the accuracy of the Wronskian relation for the
radial (modified) Mathieu functions.

To generate numerical results we consider a solid elliptic chiral cylinder with
permeability u (or relative permeability u,), permitivity € (or relative permitivity ¢,), and
chirality admittance y. a is the semi-major axis and b is the semi-minor axis of the ellipse,
and a/b is their ratio. We need the incident angle of the plane wave at the given frequency
(or \vavelength) to compute the echo widths.

These values are necessary to find other parameters to calculate co- and cross-
polarized echo widths (4.84) and (4.88). The calculations of echo widths need numerical
values of Mathieu functions. Since the Mathieu functions (3.19)-(3.42) use Fourier
coefficients 4 or B we should calculate the characteristic values a or f respectively. The
key parameter to finding the characteristic values a or f is g (= sz ?/4), where k is the

wave number, and f'1s the semi-focal length of the ellipse. Depending on the location i.e.,
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inside or outside the elliptical cylinder, there are three wave numbers. K is the wave
number in free space (outside the elliptical cylinder), Ky is the wave number for the right-
hand circularity polarized, and K; is the wave number for the left-hand circularity
‘polarized of the chiral media (inside the elliptical cylinder).

In the following sections some numerical results of the forward and back scattering
echo widths for both co- and cross-polarized waves with a TM polarized incident field
are presented and discussed. For an elliptic cylinder with incident angle @' = mx or @' =

(2m+1)n/2 (where m=0,1,2,...) we have a symmetry of 180 degrees.

5.2 Validation

Although the designated software program for this thesis is internally able to
control the accuracy of computations, more validation of the theoretical formulation and
accuracy of the software program, is investigated. In this section we consider many
special cases for which other solutions are available. For example a circular cylinder is a
limiting case of the present geometry when a/b=I/. Also a non-chiral (or dielectric)

cylinder corresponds to y=0 while perfect conducting cylinders can be simulated when |
y=0, ur—-0, and &r - . The following figures in this section show these special cases.

The co-polarized bistatic echo widths with incident angle @'=0 degree, a=0.08 m,
A=1 m, ur=2, er=4, y=0 and a/b=1.001, as a circular dielectric cylinder are shown in
Figure 5.1. Also are shown the echo widths for the co- and cross-polarized bistatic with
incident angle &'=0 degree, a=0.1 m, A=1 m, ur-=4, &=1.5, y=0.0005 and a/b=1.001, as

a circular chiral cylinder. The ratio (a/b=1.001) shows the elliptic cylinder is approaching

a circular cylinder. Thus the results should be the same as the results of circular dielectric
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or circular chiral cylinder (with this size and material). The results in Figure 5.1 are in
excellent agreement with the results obtained by others, i.e. [1], [3] and [4].

The co-polarized bistatic echo widths when @'=0 degree, y=0, A=1 m, a/b=1.001,
and for various a values as circular perfect conducting cylinders are shown in Figure 5.2.
These results are in excellent agreement with the results obtained by Balanis in [45].

The co-polarized bistatic echo widths for the elliptic dielectric cylinders when
@'=90 degrees, y=0, A= m, ur=1, &=5, a/b=2, and for various ka are shown in Figure
5.3. These results are in good agreement with the results obtained by Sebak and Shafai in
[17].

The co-polarized bistatic echo widths for the elliptic perfect conducting cylinders
with incident angle @'=0 and 90 degrees, y=0, A=I m, a/b=2, and various ka are shown
in Figure 5.4. These results are in excellent agreement with the results obtained by Sebak
and Shafai in [17].

Figure 5.5 shows the results of another investigation. The cross-polarized echo
width for a non-chiral media, i.e. dielectric or perfect conducting cylinders is zero. The
cross-polarized bistatic echo widths with incident angle '=0 degrees, y=0, A=1 m, and
for four kinds of cylinders (dielectric and perfect conducting for both circular and elliptic
cylinders) are shown in Figure 5.5. The cross-polarized echo widths for these cylinders
are almost zero. The results shown in Figure 5.5 verify that the cross-polarized fields are
zero for non-chiral media.

Therefore, these validation investigations confirm the accuracy of the theoretical

formulation and the associated software program.
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Figure 5.1 — The co- and cross-polarized bistatic (forward scattering) echo widths for the

elliptic cylinders approaching circular cylinders. Curves with ‘O O O’ are the results

given in [1], [3] and [4].
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Figure 5.2 — The co-polarized bistatic (forward scattering) echo widths for the elliptic
perfect conducting cylinders approaching circular perfect conducting cylinders. Curves

with ‘O O O’ are the results given in [45].
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Figure 5.3 — The co-polarized bistatic (forward scattering) echo widths for the elliptic
dielectric cylinders. Curve with “* * ** (for ka=3) and curve with ‘O O O’ (for ka=7) are

the results given in [17].
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Figure 5.4 — The co-polarized bistatic (forward scattering) echo widths for the elliptic

perfect conducting cylinders. Curves with ‘O O O’ are the results given in [17].
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Figure 5.5 — The cross-polarized bistatic (forward scattering) echo widths for the circular

and elliptic non-chiral (dielectric and perfect conducting) cylinders.



5.3 Effect of Geometrical and Material Parameters

The validation investigations of five kinds of cylinders in Section 5.2 verify both
the theoretical formulation and accuracy of the associated software program. In this
section we consider the case of elliptic chiral cylinder that is the main purpose of this
thesis. Before discussing the numerical results of the echo widths, i.e. in the far field
region, for the elliptic chiral cylinder, the numerical results of the transmitted wave due to

an incident wave with @'=0 and A=/ m into the elliptic chiral cylinder with /=0.5 m, &=1,
Mr=2, &r=3, and y=0.001 are computed. Figure 5.6 shows the strength of the near electric

field inside the cylinder. For this material the strength of the electric field is up to 70 V/m,
around the center of the ellipse however around of the major and minor axes it has a
small value. And also in the right side of the ellipse (side of the incident wave), the
strength of the electric field is higher than the left side. In the first region of the ellipse
(for @<60 degrees), there are some high values for the electric field.

Numerical results of the forward and back scattering echo widths for both co- and
cross-polarized waves with a TM polarized incident field for different geometrical and
electrical parameters are discussed in the following paragraphs.

Figures 5.7, 5.8 and 5.9, show co-polarized bistatic echo widths with incident
angles ¢'=0, 45, 90 degrees respectively, and Figure 5.10 shows the co-polarized

monostatic echo width, for a=0.2 m, A=1 m, a/b=2, yr=2, &=3, and for various y values.

The chirality admittance y=0, indicates results for a non-chiral (dielectric) cylinder. For
the selected materials these figures show at =90 degrees, the echo width of a chiral
media is less than the echo width of a non-chiral media. Also at this angle, a chiral media

with higher chirality, has lower echo width. Generally these properties are true for almost
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other angles of the monostatic (back-scattered) echo widths in Figure 5.10, however they
are not true for the bistatic (forward scattering) echo widths. For example, the bistatic
echo width of a non-chiral media in Figures 5.7-5.9 is still higher than the echo width of a
chiral media with low chirality (y=0.005). But at =180 degrees in these figures, as well
as =0 degree in Figure 5.9, the echo width of a chiral media with high chirality
(y=0.025), is higher than the echo widths of both a non-chiral media and a chiral media
with low chiralty. Also at #=0 degree in Figure 5.8, the echo width of a chiral media with
high chirality (y=0.025), is higher than the echo width of a chiral media with low
chirality, and it is lower than the echo width of a non-chiral media.

Figures 5.11, 5.12 and 5.13 show the cross-polarized bistatic echo widths for

incident angles @'=0, 45, 90 degrees, respectively. Figure 5.14 shows the cross-polarized
monostatic echo width. These results correspond a=0.24 m, A=I1 m, a/b=3, ur=1, &r=2.5,

and for various y values. In these figures we notice a trend that, in general, the echo width
decreases by increasing the chirality admittance y.
Figures 5.15 and 5.16 show the co-polarized bistatic echo widths for incident angle

¢'=0, and 90 degrees, respectively. Figure 5.17 shows the co-polarized monostatic echo
width. These results correspond a=0.1 m, A=1 m, (=4, &=1.5, y= 0.0005, and for

various values of the ratio (a/b). In these figures the echo width decreases by increasing
the axial ratio. Since a is fixed, b decreases as the ratio is increasing and the ellipse
becomes narrower. In Figure 5.15, the result for a/b=1.001 1s the same as that for a
circular chiral cylinder.

Figures 5.18 and 5.19 show the cross-polarized bistatic echo widths for incident

angle @'=0, and 90 degrees, respectively. Figure 5.20 shows the cross-polarized
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monostatic echo width. These results correspond a=0.1 m, A=1 m, ur=4, =135, y=

0.0005, and for various values of the ratio (a/b). In these figures the echo width decreases
by increasing the ratio. Since a is fixed, b decreases and the ellipse becomes narrower by
increasing the ratio.

Figure 5.21 shows the co-polarized bistatic echo width for incident angle &'=0
degree. Figure 5.22 shows co-polarized monostatic echo width. These results correspond
A=1m, a/b=2, ur=I1, &=35, y= 0.03, and for various semi-major axis (). In these figures
the echo width increases by increasing a. Since the ratio (a/b) is fixed, b increases with a
and the cylinder size becomes larger.

Figure 5.23 shows the cross-polarized bistatic echo width for incident angle @'=0
degree, A=1 m, a/b=2, ur=1, er=>35, y= 0.03, and for various values of the semi-major axis
(a). In this figure the echo width increases by increasing a. Since the ratio (a/b) is fixed, b

increases with « and the cylinder size becomes larger.

5.4 Conclusion

All numerical results show that both co- and cross-polarized echo widths can be
controlled by changing the frequency of the incident wave, the incidence angle, the axes
ratio of the cylinder, and the constitutive parameters of the elliptic chiral cylinder. In the
cases for co-polarized monostatic, generally, the echo width of a chiral media is less than
the echo width of a non-chiral media, and a chiral media with higher chirality, has lower
echo width. The cross—polarized bistatic and monostatic echo widths decrease by
increasing the chirality admittance y. The co- and cross-polarized bistatic echo widths

decrease by increasing the axial ratio a/b (for fixed a), however, they increase by
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increasing the semi-major axis a (for fixed a/b). These properties are also true for co- and

cross-polarized monstatic echo widths.

$=0° %=1 m, and Elliptic Cylinderwith =05 m, &1, ug-"z', =3, y=0.001
08 : G

0B

Figure 5.6 - The strength of the electric field inside of the elliptic chiral cylinder.
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Figure 5.7 - The co-polarized bistatic (forward scattering) echo widths with incident

angle ¢'=0 degree, and various chirality admittance y.
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Figure 5.8 - The co-polarized bistatic (forward scattering) echo widths with incident

angle ¢'=45 degrees, and various chirality admittance y.
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Figure 5.9 - The co-polarized bistatic (forward scattering) echo widths with incident

angle ¢'=90 degrees, and various chirality admittance y.
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Figure 5.10 - The co-polarized monostatic (back-scattered) echo widths for various

chirality admittance y.
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Figure 5.11 - The cross-polarized bistatic (forward scattering) echo widths with incident

angle ¢'=0 degree, and various chirality admittance y.
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Figure 5.12 - The cross-polarized bistatic (forward scattering) echo widths with incident

angle @'=45 degrees, and various chirality admittance .
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Figure 5.13 - The cross-polarized bistatic (forward scattering) echo widths with incident

angle @'=90 degrees, and various chirality admittance y.
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Figure 5.14 - The cross-polarized monostatic (back-scattered) echo widths for various

chirality admittance y.
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Figure 5.15 - The co-polarized bistatic (forward scattering) echo widths with incident

angle ¢'=0 degree, and various ratio (a/b).
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Figure 5.16 - The co-polarized bistatic (forward scattering) echo widths with incident

angle ¢'=90 degrees, and various ratio (a/b).
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Figure 5.17 - The co-polarized monostatic (back-scattered) echo widths for various ratio

(a/b).

70



a=0.7m, d=Tm; ¢i:U, [,L';‘—‘-ﬂ, Er=1.5, =0.0005 and vatious® a/b

-8 T T T T T T T T
E‘““——x_&x Cross-Folarized Bistatic
A0k
‘12 _- --------------- Naaxwa
A4t
ﬂti 16+
B AR ——
-20
alh
...... 1 800
- 2.000
24 e 2500
3,000
76 ' L : :

1 ] | i
d 20 40 60 ao 100 120 140 160 180
$(Degrees)

Figure 5.18 - The cross-polarized bistatic (forward scattering) echo widths with incident

angle ¢'=0 degree, and various ratio (a/b).
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Figure 5.19 - The cross-polarized bistatic (forward scattering) echo widths with incident

angle ¢'=90 degrees, and various ratio (a/b).
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Figure 5.20 - The cross-polarized monostatic (back-scattered) echo widths for various

ratio (a/b).
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Figure 5.21 - The co-polarized bistatic (forward scattering) echo widths with incident
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Figure 5.22 - The co-polarized monosatic (back-scattered) echo widths for various a.

75

=t m, ath=2 p},=1, er=5, 4=0.03 and various a
Co-Polarized Monostatic
vﬂ«ev”“w'%ww”‘w“
T /‘ﬁ %”%, S«w“’”“”“mmm“m'ww
%”mwfj k%mwf%ﬁ
w’fﬂF—
»
/#
P
& -
¥
'
I. i 1 i i L 1 |
20 40 Bl an 106 120 140 160 180



=1 m, atb=2, cbi:{], pf’! : er‘=5, =003 and various a
'15 T T T T T T T T
Crass-Folarized Bistatic e

~20F o, £ . .

25 -

-30F o [

= - ~ ",e-"'
e " b -

. S35+ "\, e \\ /” N
[II-‘ \_ /f \\ ,-;
£ 5\ P % / .
e A0 \\. 7 \ 7 P i
™ Sl 1'&“'; kY !( e
£ ‘m"'w. . - ) _,f"/

A5 I e =

\“r., . ,.-'"/
S
S0k . L _
~, o
5, “f”__f
5+ a A - 4
w05 i‘-‘x‘ /
BOH --- 03 , B
- 0.1 . v :
_55 H i 1 ! I L | 1
0 20 40 510 an 160 120 140 180 180

& (Degrees)
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6. Summary and Conclusions

The problem of electromagnetic scattering by elliptic chiral cylinder has been
analyzed and investigated theoretically for TM polarized waves. This problem has been
solved as an exact boundary value problem using the separation of variables method.

The chiral media contains an additional material parameter y, that is an advantage
for practical designs. However analysis of this media needs very complicated
mathematics. In chiral media, both co- and cross-polarized waves are supported. In
Chapter 2 properties of chiral media were discussed and wave equations in this media
were presented.

The scattering by elliptic cylinders is more complicated compared to scattering by
circular cases and also offers more parameters in controlling the scattering properties of
cylindrical objects. The elliptic chiral cylinder geometry is more general and can be used
to study the effect of different material and geometrical parameters on the scattering
properties of different objects. In Chaptevr'3 the wave equation in elliptical coordinates
system were presented. In this system the solution is based on the separation of variables
technique, and expressed in terms of Mathieu and modified Mathieu functions. The
accuracy of characteristic values and convergence of Fourier coefficients for Mathieu
functions are very important. Expreésion for the angular and radial (modified) Mathieu
functions and their derivatives were also given.

In Chapter 4, TM polarized electromagnetic wave scattering by elliptic chiral
cylinder was developed using an exact boundary value problem approach. The solution is

based on the separation of variable technique in elliptic cylindrical coordinates system.
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The incident, transmitted and scattered electromagnetic waves are expressed in terms of
infinite wave functions with expansion coefficients. The matrix forms of the expansion
coefficients are found by enforcing the boundary conditions and applying the
orthogonality of the Mathieu functions through a lengthy complicated process. The radar
cross section (RCS) per unit length or echo width of electromagnetic scattering by elliptic
chiral cylinder for co- and cross-polarized waves were computed using the asymptotic
expansions for modified Mathieu functions.

Very long computer program were developed and used to generate numerical
results. The numerical results of the bistatic (forward scattering) and monostatic (back-
scattered) echo widths for co- and cross-polarized and a variety of cases were discussed
in Chapter 5. Validation of the developed formulation and computer program were
carried out by considering many limiting cases such as circular dielectric, circular perfect
conducting, and circular chiral cylinders, as well as elliptic dielectric and elliptic perfect
conducting cylinders. These numerical results agreed well with published results, for
these special cases.

Based on the numerical results we can note the following conclusions:

e In the case of fixed ellipse axes a, b and various chirality admittance y, in many cases
for co-polarized bistatic field and in general case for co-polarized monstatic field, the
echo width decreased by increasing the chirality admittance. And also the echo width
of a chiral media was less than the echo width of a non-chiral media.

e In the case of fixed ellipse axes and various chirality admittance, in general, the echo
width decreased by increasing the chirality admittance for the cross-polarized

component.
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In the case of fixed material parameters and major axis, the echo width decreased by
increasing of ratio (or decreasing the minor axis) for both co- and cross-polarized
cases. That means when the ellipse becomes narrower (by increase of ratio and fixed
major axis), the echo width decreases.

In the case of fixed material parameters and axial ratio, the echo width increased by
increasing the major axis for co- and cross-polarized. Since the ratio is fixed, then the
minor axis increases with major axis. Consequently the echo width increases by
increasing of cylinder size.

All numerical results show that both co- and cross-polarized echo widths can be
controlled by changing the frequency (or wavelength) of incident wave, the incidence
angle, the axes (a, b, or ratio) of the cylinder, and the constitutive parameters of the
elliptic chiral cylinder. Furthermore the results illustrate that the echo widths are
greatly influenced by chirality parameter which may enhance or reduce the echo
width.

To control the echo width, the elliptic chiral cylinder has one extra degree of freedom
compared to a circular chiral cylinder, i.e. the two semi-axes a and b compared to the
circular radius r.

In future work, the analysis of the electromagnetic scattering problem by elliptic

chiral cylinders could be further studied. For example, the theoretical development in this

thesis could be extended to study the electromagnetic scattering by two parallel elliptic

chiral cylinders. The separation distance is d and the medium of the surrounding

cylinders is free space. The incident, transmitted and scattered waves can be expressed

with respect to the elliptic cylinder coordinates system of one of them. A translation
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theorem can then be used to express field expressions in the local coordinates of each

cylinder.
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Appendix

A. Details of Mathieu Functions

Mathieu equations and Mathieu functions are given in Chapter 3. Equations (3.19)-
(3.42) depend on Fourior coefficients 4 and B. To finding 4 or B, we have to calculate
characteristic value a or [ respectively. @ and £ depend on parameter ¢ which also
depends on the wave number & and semi focal length f. More details of these calculations

are given in this appendix.

A.1 Recurrence Relations for the Coefficients

In the expressions of the Sections 3.3 and 3.4, the Fourier coefficients 4 and B are

used. We can find recurrence relations for the Fourier coefficients for a given

characteristic value a,, or 3, by substituting Equations (3.9)-(3.12) into (3.7). Then

o4, —q4, =0
(o _4)A2 _CI(2A0 + A4) =0 fOI’ Se 2n (77,(1)’ (4.1)
(o "4”2)Azr —q(4,, ,+4,,,,)=0, rz2

(a—1)A, —q(A4, - A4,)=0
) o Jor 8¢ 10 (1,9, (42)
la=Q@2r+1)°14,,,, —q(4,, ., + 4,,,5) =0,

(p—-4)B, —qB, =0

>

or 84202 (11:9), A3

(ﬂ'—4l"2)82r~q(B2r_2+Bzr+2)__.0’ F>0 f o2n 2(77 q) ( )
>

j
(B-1)B, —q(B1-B;)=0

S .q)- A4
[B-Qr +1)2]B2r+l —q4(B,,, +B,,5,)=0, r } Jor 8,2 (1:9) (A4.4)

1
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These relations are linear difference equations, and their convergence is important

for numerical purposes, since it determines the accuracy of the Fourier coefficients.

A.2 Calculation of the Characteristic Values a,, and f,,

For each ¢ and order m we have a value for o or . Since the Mathieu functions can
be even or odd, and depend on order m which can also be even or odd, we have totally

following four kinds characteristic values.

a,, for even Mathieu functios and even order m (m =0, 2, 4, ...),
a,,., for even Mathieu functios and odd order m (m=1,3,5,...),
B, for odd Mathieu functios and even order m (m =2, 4,6, ...),
Lo, for odd Mathieu functios and odd order m (m =1, 3,5, ...).

To finding a;, from the second formula of (A.1) we have

(@-4A, - q(4, +24,)=0. (A.5)

Writing
Vo=A,14,, V,=A4,/4,, then VV,=A4,/A4,.
Dividing (A.5) by 4y and making these substitutions gives
@-a)V,+qV,y,+2)=0,

lq/[l—%(a—qu)].

—V0=2

In the same way from the third formula of (A.1) with
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V2r-2 = A2r /AZr—27 VZr = A2r+2 /A2r9

we get (4r* —a)V,,, +qV,, .V, +1)=0,

for r>1 =V, ,=(q/4)[1-1/4r*)a-qV,,)], (4.6)
_ 2

or v, - a—4r" 1

' q Virea '
Substituting » =2 in (A.6) yields

v, = (q/16>/[1~%(a—qm>],

1 1 1
th V. ==qg/{l——a—(q*16D)/[l ——(a —qgV,)]}.
en 0 2q{ 4a (q ) 16(0t qVol}

Now putting r =3 in (A.6) we can obtain a formula for V7,

q/36

V= .
[1—1~6*(0€~qV4)]

4

Continuing this process we get the infinite continued fraction

L
2
-V, = )
—q
L 64
4 wl_qz
L, 576
16 1,
1 2304
l-—a -
36 1 g*/16r*(r—1)°
l——a—..
64 1—c/4r? -,
11, 1, 1,
27 et st 2304? Pnerr-y A7)
1—10:— I—La— 1—La— 1—~1—a— I-a/dr -
4 16 36 64
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From the first formula of (A.1) and (A.7) we have

P T U
Lo 2" @ 576 p0a? g nere-ny’
1~10!— 1—La— 1—~1—a— l——1~aﬁ l-a/dr” ~

4 16 36 64

which 1s characteristic value for az,,.

To finding a;,+; from the first formula of (A.2) we have

(a-1-q)4, —q4, =0.

Writing

a-l-q a-1_
q q
then VW, =45/ A,.

V,= A,/ 4, = 1

2

From the second formula of (A.2) with

V2r»l = A2r+1 /AZr—l’ V2r+l = A2r+3 /A2r+l’
we get [ = Qr+ 1) Wy, = q(Vy Vs, +1) =0,
for r>0 -V, =[q/2r+1)’1/{1-[L/Q2r+1)*Wa-qV,,,)},
2
or - _a Q2r+1) B 1 ‘
q Vi

Substituting r =1, 2, and 3 in (A.11) yields

1 1
~V, ==q/Ml-=(a—qV;)l,
1 =g li-gla—ah)]
V=g l- @ g1)]
3 25‘] 5 qvs)i
1

__VS—-

1
- M ——(ax—qV,)].
49q[ 49(a qV)]
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Continuing this process we get the infinite continued fraction

o4
v - 9

R
1 2251
Ly
L 12257
25 L q> [2r =1’ 2r +1)?]
49 7 1-al/@r+)? -
of 5"  msT  gner-nersnl
PRV UV TS SOV 1—a/2r +1)* -
9 25 49

(4.12)

From (A.10) and (A.12) we have

l 2 1 2 1 2
9q 225 1 1225 1 g’ N[Q2r+1)72r —=1)?]
5
l—la— I—La_ 1——1*0:— l-a/Qr+1)° —
9 25 49

a=1+q- (4.13)

which is characteristic value for a,+;.

To finding f3,,,+, from the second formula of (A.13) we have

(B-4)B,—¢B, =0. (4.14)

Writing

V,=B,/B,=(f-4)/q, (4.15)
then V,V, =B,/B,.

From the second formula of (A.3) with
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V,,=8,/B,,. V,y =B,,0,/ By,
we get (B—4r*W,, , —qVy, ,V,, +1) =0,
for r>1 =V, , =(q/4r) 1=/ 4r*) B ~qV,,)],
2
or VZr:’B 1 .
q V2r—2
Substituting » =2, 3, and 4 in (A.16) yields
V=g (B -qT,))
TR T A
V=g M= (B,
T
Ty =g/ (f - qP)]
e A

Continuing this process we get the infinite continued fraction

Ly
v = 16
. 0
oLy 5767
16 1 qz
1—Lﬂ— 2304
36 I—Lﬂ— g’ /1677 (r —1)°
64" T 1-pBl4r —..
1 RIS
_ 167 s76? 2304?16 -1y?
1 1 1 IS Y JU VLI
l-—f-1-——p— 1l——f—
167" 367 6a”
From (A.15) and (A.17) we have
LI S S
pog167 5767 s’ glerG-Y

1 1 1 =Bl -
l-—B-1-—pB— 1-—f-
6" 36" o4’
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which is characteristic value for £,,+,.

To finding f2q+: from the first formula of (A.4) we have

(B—-1+q)B, —qB; = 0.

Writing

y,=p,/B =P 1*a_B71
g q

then ViV, =B/B,.

From the second formula of (A.4) with

Vo =B, /BZr~l’ V2r+l =B, /Bzr+1’

2r-1

[B—Qr+1)* W, —q(Vs, Vo +1D) =0,

we get
for r>0 =V, =[q/2r + )" V{1-[1/Q2r+1)’WB - qVs.)}
. 2
or - p-Qr+1)?* 1 .
q VZr‘l

Substituting » =/, 2, and 3 in (A.21) yields
= call- o (f-q7)]
1 96] 9 qvs)ls
V=gl (f-qV)]
TR Y 170

1 1
Vs =ggali-5(h=avs)l

Continuing this process we get the infinite continued fraction
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—q
v, = 9
L
Ly 225
9 1 .
-t g 1225
B : 2 2
25 1-Lﬁ— g [2r-1*Q2r+1)?]
497 T 1=-B/2r+1)? —...
1 SR TP T S
__ot s st gner-n’eren’) (422)
=— 1 1 gl .
I-—f-1-—f—- 1-—p—
9 25 49
From (A.20) and (A.22) we have
PR N
_ 97 2257 st e+ nier-1l
f=1-q- et (4.23)
1_lﬁ_ 1_ng_ 1__1_13_ 1-p/1@2r+1)" -
9 25 49

which is characteristic value for f£;,;.
Since a, f# and ¢ are finite, the denominator of the general term of the Equations
(A.8), (A.13), (A.18), and (A.23) approach unity as » goes to infinite, while the numerator

of them tends to zero. Hence (A.8), (A.13), (A.18), and (A.23) are convergent.

A.3 Calculation of the Fourier Coefficients 4 and B

Calculation of the Fourier coefficients is more complicate than the computation of
the characteristic values. Since convergence of the series is very important. Once the
characteristic values a or § have been determined, the recurrence relations (A.1)-(A.4)
can be applied to calculate the Fourier coefficients 4 or B.

Now assume the characteristic value a computed for a given ¢ and even order m. To

calculate Fourier coefficient 4, we can use recurrence relation (A.1) and get
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Vo=A4,14,=alq, and V, =4,/ 4, =(a—-4)/q-2q/, then
V, = Ayl Ay =(@—r*)q=11V,,, Jor r>1. (4.24)

In practice, r in (A.24) for calculations is limited and can not be infinite. To finding the
maximum value of ¥ we have to consider convergence of the series. For do that from the
third relation of (A.1) writing (r+1) for r, we have

[a - 4(1" + 1)2 ]A2r+2 - q(AZr - A2r+4) = O’
or [a - 4(”' + 1)2 ]V2r - q(V2rV2r+2 + 1) = O’ Where V2r = A2r+2 /A

2r°

50 V2H2+VL:[05—4(r+1)2]/q.

2r

1
Then V, ,+——> - as r —> +o0,
2r

it is evident that V), can not oscillate boundedly, and can not tend to a unique finite limit
other than zero. For convergence of the series representing S, 2, (1, q), A2—0 as r—+wx,
so V5, must also tend to zero. Consequently, as »—+o0, one solution tends to zero, and
other to infinity. Thus for control of the convergence of series, the maximum value of 7 in
(A.24) must indicate when V), tend to zero. Then, in practice we must put a condition in
(A.24) and find r_max while V5, approach to zero. So in the following formulas r_max is
the maximum value of » such that the obtained coefficients with this » will converge the

series.
Take Gy,=A4,/4,=V,, and G,=A4,14,=V,V,, then

G, =4, ,14, =V, V,,, .. V,V,, for 2<r<r_max. (4.25)

By (A.25) we have the relation of all coefficients 4 to Ay, but we can not obtain them
since A, is unknown. Another knowledge about the coefficients is normalization. We can

normalize the series S, , (7, g) by the condition that
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r_max

2z
% fo 2 (1, @)dn = 245 + D45, =1, (A.26)
0 r=1

for all real values of ¢. So from (A.25) and (A.26) we have

r_max
2
sum =12+ ZGzr,

r=0

Ay = |—— and A,,=G, A, for0<r<r_max. (4.27)

Thus (A.27) is coefficients A for a known characteristic value a, which computed with a

given value g and even order m.
The same way we can find Fourier coefficients A for a known characteristic value

o, which computed with a given value ¢ and odd order m. So from (A.2) we have

V=414 =(a-1/q-1,

Viyn =45, 14, =la—Q2r+ D1/ q -1/V,,, for 1<r<r_ max,
G, =4,/4,=V,
Gy =Ay A =V, V5 o VAV, for 1<r<r_ max. (A4.28)

We can normalize the series Se 2,+/ (7, ¢) by the condition that

r_max

1 27 .
= fo A = D A5 =1, (4.29)
0 r=0

for all real values of ¢. So from (A.28) and (A.29) we have

r _max
2
sum =1+ Zsza

r=0

A, for 0<r<r_max. (A4.30)

2r+l

4, = L and A, =G
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Thus (A.30) is coefficients 4 for a known characteristic value a, which computed with a
given value ¢ and odd order m.

To finding the Fourier coefficients B for a known characteristic value f, which
computed with a given value g and even order m, from (A.3) we have

V,=B,/B, =(-4)/q,

V, =B, /B, =(B-4r*)/q-1/V,,  for 2<r<r max,

G,=B,/B,=V,,
G, =B,,.,/B,=V,V,_, ..V}, for 2<r<r max. (4.31)

2r

We can normalize the series S, 2,+2 (17, ¢) by the condition that

r_max

1 2z
; _‘-SjZn+2(77,Q)d77 = ZBzzm.z =17 (A32)
0

r=0

for all real values of ¢. So from (A.31) and (A.32) we have

7 _max
2
sum =1+ Zsz

r=1

B, = —1—, and B, ,,=G,B,, forl<r<r_max. (A.33)
sum

Thus (A.33) is coefficients B for a known characteristic value 5, which computed with a
given value ¢ and even order m.
Finally for finding the Fourier coefficients B for a known characteristic value f,

which computed with a given value g and odd order m, from (A.4) we have

Vi=By/B =(f-D/q+],

Vipir = Boyis [ By =[B~Qr+1)’Vg~1/V,, for 1<r<r_max,
G, =B,/B, =V,
G,u=8,,/B =V, Vs .. ViV, for 1<r<r_max. (4.34)
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We can normalize the series S, 2.+7 (¥, q) by the condition that

r_max

1 2r ,
; J.S(;Znﬂ (77’ Q)dr] = ZB;rH :1’ (A35)
0 r=0

for all real values of g. So from (A.34) and (A.35) we have

r_max

sum =1+ ZG;W

r=0

B, = ! , and B, ., =G, B,, for0<r<r_ max. (4.36)

sum

Thus (A.36) is coefficients B for a known characteristic value £, which computed with a

given value ¢ and odd order m.
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