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Abstract

Collocation Methods for the Numerical Bifurcation Analysis of
Systems of Nonlinear Partial Differential Equations

Hamid Sharifi, Ph.D.
Concordia University, 2005

The study of nonlinear phenomena has been an important endeavor for scien-
tists. Some nonlinear phenomena can be modeled mathematically as nonlinear partial
differential equations (PDEs). There are no analytical solutions for most nonlinear
PDEs. Therefore, an appropriate numerical method must be used in order to compute

an adequate approximate solution.

A new class of numerical methods, called Finite Element Collocation Methods
with Discontinuous Piecewise Polynomials, has recently been proposed for solving
nonlinear elliptic PDE. In this thesis, this method has been generalized for solving
nonlinear elliptic PDE systems using an alternative nested dissection solution pro-
cedure. Using a modified formulation of the pseudo-arclength continuation method,
we have used this method in continuation studies and in the numerical bifurcation
analysis of nonlinear PDE systems. In the thesis the method is introduced gradually,
starting with the simplest case, linear ODE BVPs, followed by nonlinear ODE BVPs,
linear scalar PDEs, nonlinear scalar PDEs, continuation problems in nonlinear scalar

PDEs, and, finally, continuation problems for systems of nonlinear PDEs.

AUTO has probably been the most widely used continuation software package
for ODE problems. The collocation method introduced in this thesis, as well as the
numerical method used to solve the resulting systems of nonlinear equations, can be
viewed as a generalization to PDEs of the robust and powerful techniques for ODE
BVPs that have made AUTO so widely used in computations and as a model for

other continuation software projects.

i



As a part of the research toward the construction of an AUTO-like software
package for PDE problems, prototype software has been developed for the numeri-
cal bifurcation analysis of nonlinear elliptic PDE systems in two-dimensional space
(2D). The UML (The Unified Modelling Language) notation is used to present the

implementation algorithms and our object-oriented prototype software.

We consider several test problems, as well as some practical applications, such as
the Bratu-Gelfand problem, the Brusselator system, and the streamfunction-vorticity
formulation of the Navier-Stokes equations for a two-dimensional incompressible fluid
flow problem. These examples demonstrate the capabilities and the strength of the
collocation method with discontinuous elements for solving substantial PDEs contin-

uation problems.
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Chapter 1

Introduction

1.1 Motivation

For more than a century, solving systems of nonlinear partial differential equa-
tions has received special attention in science and in engineering, and research on
nonlinear phenomena has been an important endeavor for scientists. We encounter
nonlinear behaviour in Physics, Chemistry, Biology, Engineering, Social Science, and
so on. Some nonlinear phenomena can be modeled mathematically as nonlinear par-
tial differential equations (PDEs). For example, fluid flow can be modeled mathemati-
cally as a system of nonlinear PDEs, known as the Navier-Stokes equations. Turbulent
vortex motion, Taylor-vortex flow and vibrations of columnar vortices are examples
of fluid flow problems, which can be represented by partial differential equations that

are special cases of the Navier-Stokes equations.

Analytical solutions can generally be found only for simple forms of PDEs,
defined over simple geometrical domains. There are no analytical solutions for most
nonlinear PDEs. As a result, an appropriate computational or numerical method

must be found in order to compute an adequate approximate solution. Progressive



development of more and more powerful computers has made numerical methods
omnipresent. There exist several classes of numerical methods for solving PDEs. In
particular, finite difference methods, finite element methods, and boundary element

methods are used extensively for solving linear and nonlinear PDEs.

Collocation methods, although not as widely used as methods mentioned above,
are another class of numerical methods. A class of collocation methods, called Piece-
wise Polynomial Collocation, is widely used for solving Boundary Value Problems
(BVPs) in Ordinary Differential Equations (ODEs). This type of collocation method
has the advantages of high accuracy, known mesh adaptation strategies, and efficient
solution procedures for the associated linear systems. For difficult ODE problems,
the collocation method is considered as the method of choice, for example, see [44] for
some representative applications. COLSYS and its subsequent version COLNEW are
well-known computer programs for scientific and engineering computations based on
the collocation method. They solve multi-point boundary value problems for mixed
order systems of ordinary differential equations. We will show in this thesis that the

piecewise polynomial collocation method is also an appropriate method for solving
PDEs.

An important aspect of ODE or PDE analysis is the prediction of solutions as
system parameters change. Variation of these parameters, sometimes called control
parameters, results in the variation of the behaviour of system. For example a control
parameter could be the Reynolds number, or the temperature or the density, in fluid
flow problems. If a control parameter changes, then we often find a unique continuous
solution family. However, sometimes the solution changes suddenly and dramatically
when a control parameter passes through a critical value. For example, a rod under
compression load will buckle when the load passes a critical value. These types of
problems are often called bifurcation problems. In a bifurcation analysis, we study
the behaviour of solutions, their stability, and changes of other properties, as one or

more control parameters of the system are varied.

Continuation methods are commonly used in a numerical bifurcation analysis.
Continuation of solutions, also called path following, is an important algorithm in
the numerical analysis of nonlinear equations. Some important critical points along

solution families are folds (or limit points), bifurcation points (or branch points) and



Hopf bifurcation points. They lead to qualitative change in the solution behaviour,

and it is therefore important to locate such points in a bifurcation analysis.

There are several continuation software packages available, for example, AUTO,
CONTENT, DDE-BIFTOOL, PDECONT, MULTIFARIO, LOCA and MATCONT
(see Section 2.3.2). AUTO has probably been the most widely used continuation soft-
ware package for ODE problems. Several other ODE continuation software packages
are based on AUTO, although AUTO remains, by far, the most efficient. The AUTO
package, originally developed by E. J. Doedel, is based on the piecewise polynomial
collocation method, and is capable of doing a bifurcation analysis for systems of

ordinary differential equations (ODEs), subject to boundary and integral constraints.

As PDEs appear in many engineering and scientific problems, there is a need to
construct an AUTO-like software capable of numerical bifurcation analysis of PDE
systems. Developing such continuation software package for nonlinear PDEs problems
has been the objective of several researchers in the past thirty years. E. J. Doedel
has presented some interesting results for the solution of elliptic partial differential
equations by the method of collocation with discontinuous piecewise polynomials. The
present thesis is the continuation of this work for the bifurcation analysis of nonlinear

elliptic PDEs system.

When the complexity of a software package is considerable, a powerful mod-
eling technique is crucial. An acceptable modeling language must contain: model
elements (fundamental modeling concepts and semantics), notation (visual presenta-
tion of model elements) and guidelines (idioms of usage within the context). As a
bifurcation software is complex software, we have used an object-oriented modeling
language in this thesis to present our implementation algorithms and our prototype
software. We have selected the UML (The Unified Modeling Language) , as our object-
oriented modeling language. UML is considered as a standard notation for specifying,

visualizing, constructing, and documenting an object-oriented model.

1.2 Objectives of the thesis

In the literature, we can find much work on the finite element method and on

object oriented software packages for PDEs. For example, we mention papers written



by Dubois-Pélerin, Zimmermann and Bomme [59, 153], Forde et al. [70], Kong and
Chen [90], Menétry and Zimmermann [101], Quézel, Fafard and Fortin [116], Scholz
[131] and Zeglinkski, Han and Aitchison [154], Sharifi and Gakwaya [135], as well
as the master’s thesis of Sharifi [134]. Corresponding literature and object oriented

software for collocation methods is much more limited.

The work by Doedel [45] on elliptic PDEs shows that collocation with discon-
tinuous piecewise polynomials is an viable technique for solving nonlinear PDEs.
Further development of this work can be found in an article by Doedel and Sharifi
[55], where the method is used for continuation problems in nonlinear elliptic PDEs.
This thesis is the continuation of this work, extending it to the numerical bifurca-
tion analysis of systems of nonlinear elliptic PDEs. The main objective of the thesis
is to present the collocation method as an excellent technique for solving nonlinear
PDE Systems; Another important objective of this thesis is to develop a prototype
AUTO-like continuation package for systems of PDEs.

In the thesis, we will restrict attention to the numerical analysis of nonlinear
elliptic PDEs in two-dimensional space (2D). Our method can also be applied to
3D problems, but as the final discrete system is large, iterative methods need to
be used. Although an important topic, iterative techniques (apart from the Newton
method) will not be considered in this thesis. For investigating the applicability and
efficiency of the method, we consider various applications, including the Navier-Stokes
equations. In the case of the Navier-Stokes equations, the classical finite difference
method is difficult to apply and the solution of the system that results from this type

of discretisation requires much execution time!.

Specifically, the main objectives of the thesis are:

o Generalization of the method of ” collocation with discontinuous piecewise poly-
nomials” to cover the solution of systems of nonlinear elliptic PDEs. We develop

an algorithm that can be used to solve PDE systems such as the Navier-Stokes

In the case of simple (low order) finite differences, a fine mesh is needed that eventually gives
a large system of equations. In case of higher order finite differences we encounter the problem of
how to apply boundary conditions.



equations. As boundary conditions, Dirichlet, Neumann, periodic or a combi-

nation of these types are considered.

Development of numerical continuation and bifurcation methods in conjunction
with the collocation method for the bifurcation analysis of systems of PDEs.
Use of Keller’s pseudo-arclength equation [87, 47, 49, 50] is fundamental in this
method. Part of this work was already presented in a paper by Doedel and
Sharifi [55].

Construction of a modified formulation of the pseudo-arclength equation. In
this formulation the step size and the direction vector can be adjusted in each
Newton’s iteration. The original algorithm has problems to detect bifurcation

points when boundary conditions depend on a control parameter.

An alternative formulation of the nested dissection method for constructing the
global system from the elementary equations of each element. The original
algorithm presented in [45] cannot be used in general, as there are cases in
which it fails. Specifically, there are cases where one of key matrices (E in

Equation (3.37)) can be singular, for example, at folds and branch points.

Presentation of an object-oriented modelling of the above method, including the
definition of classes, correctness conditions, etc., using UML notation. This
makes the method more understandable, and it also makes further development

of the software easier.

Use of object-oriented programming with C++ to develop a software package

for the bifurcation analysis of systems of nonlinear elliptic PDEs.

Application of the algorithms presented in the thesis and implemented in the
software to problems including

— the Bratu-Gelfand problem,

— the Brusselator problem, used in biochemical reaction models,

— the steady state Navier-Stokes equations, which arise in fluid flow prob-

lems.



Convergence and numerical stability is examined for linear ODE problems, but
will not be emphasized for PDEs in this thesis. We want to demonstrate the practical
feasibility of the new method for PDE systems, leaving its complete theoretical treat-
ment for future studies. Nevertheless, for PDEs, we present some stability results,

and we demonstrate the accuracy of the method for specific applications.

1.3  Qutline of the thesis

Background material is given in Chapter 2, including a brief introduction to the
finite difference method, the finite element method, and the collocation method, as
well as a short presentation of continuation and bifurcation methods, and software.
Use of UML notation to present an object-oriented model is also discussed in this

chapter.

In Chapter 3, in preparation for the more complicated case of nonlinear PDEs,
we consider the finite element collocation method for linear ODEs. We discuss various
aspects of the piecewise polynomial collocation method. We explain the original
nested dissection solution procedure, and a simple mesh generation procedure which
is suitable for this method. The finite difference equivalence of the collocation method,
basis functions, complexity, as well as the stability and the convergence theory, are

covered in this chapter.

In Chapter 4, we consider the collocation method for nonlinear BVP ODEs.
We present essentially the same topics as in Chapter 3, but we present them for
the nonlinear case. We explain how we can construct our global linearized system
and how we can solve it using Newton’s method. A modified version of the nested

dissection method is also introduced here.

In Chapter 5, we present the collocation method for solving a linear elliptic
PDE boundary value problem. We present the collocation method with discontinuous
piecewise polynomials and its finite difference formulation, passing through similar
steps as in the linear ODEs case. We also consider the stability of our collocation

method, using tools from linear algebra.

The collocation method for solving a nonlinear elliptic PDE boundary value

problem is presented in Chapter 6. Having already considered the linear and the



nonlinear ODE cases as well as the linear PDE case, we consider the collocation
method for the nonlinear PDE case. In particular, we extend the solution procedure

of Chapter 4, to cover the PDE case.

General concepts related to the numerical continuation of solutions are presented
in Chapter 7. We consider parametric and pseudo-arclength continuation. The def-
inition of a fold and a branch point, as well as procedures which are used to detect
them, are discussed. We consider the computation of bifurcation direction vectors,
and the branch switching procedure. The modifications which we have made in the

original pseudo-arclength method are also discussed in this chapter.

In Chapter 8, we show how our collocation method can be used for continuation
problems in nonlinear elliptic PDEs. Having presented collocation with discontinuous
piecewise polynomials for solving nonlinear elliptic PDEs in Chapter 6, we now use

this method for continuation problem.

Chapter 9 is the generalization of the procedure of Chapter 8 to the case of
systems of nonlinear PDEs. In this chapter, we describe the modifications that are

necessary in the algorithm of the preceding chapter.

In Chapter 10, we consider Object-oriented modelling and implementation of
our prototype software. We use different UML models and diagrams, such as use case,
packages, classes, interaction, states and activities diagrams, to present our object-
oriented model for the bifurcation analysis of systems of nonlinear elliptic PDEs. We

present our prototype software in the C++ language.

Chapter 11 is dedicated to numerical applications of our prototype software.
After presenting test applications, ¢.e., PDEs with known exact solutions, we con-
sider applications such as the Bratu-Gelfand problem, the Brusselator system, and
the streamfunction-vorticity formulation of the Navier-Stokes equations for a two-
dimensional incompressible fluid flow problem. These examples demonstrate the ca-
pabilities and the strength of the collocation method with discontinuous elements for

solving PDEs continuation problems.

In Chapter 12, we give some final conclusions.



1.4 On the organization of this thesis

The finite element collocation method introduced in this thesis applies, in prin-
ciple, to systems of elliptic PDEs in very general domains in any space dimension.
It applies, also in principle, to finite elements Qf any shape. The solution algorithm,
namely the nested dissection method, is suggested by the equivalence of the colloca-
tion method to a generalized finite difference method for the case of linear problems.
The nested dissection procedure can also be used, in principle, for very general elliptic
equations. In fact, it would have been possible to present the method immediately
in its most general form. Instead, however, the decision was taken to introduce the
method gradually, starting with the simplest case, linear ODE BVPs, followed by non-
linear ODE BVPs, linear scalar PDEs, nonlinear scalar PDEs, continuation problems

in nonlinear scalar PDEs, and, finally, continuation problems for systems of nonlinear
PDEs. |

The decision to introduce the methods gradually, has resulted in a longer doc-
ument than would have been the case otherwise. The reasons behind the particular

organization of this thesis are, however, multiple, as explained below.

First, it is interesting to see the remarkable unity of the method, by reconsidering

the ODE BVP case in a new light.

Second, it is important to treat the linear case separately, emphasizing its equiv-
alence to a generalized finite difference method, as the latter suggests the use of nested
dissection in a very natural way. Thereafter, the algorithmic approach for the nonlin-
ear case will be more easily understood; in particular the nested dissection algorithm

will appear less “magical” in this case.

Third, the application to continuation and bifurcations problems in elliptic
PDEs introduces various subtle difficulties, that may not be appreciated by a reader
who is mainly interested in the basic ideas of the algorithms for the case of PDEs.
On the other hand, it is important to specify how these difficulties can be effectively
addressed, in particular for the benefit of researchers and developers who wish to
develop "production” bifurcation software, e.g., using adaptive triangulations, based

on our collocation method.



Similarly, the application of the method of collocation with discontinuous el-
ements to the continuation and bifurcation analysis of systems of nonlinear PDEs
introduces a new level of complexity at the implementation level, that we have cho-

sen to describe separately.

In view of the organization of this thesis, as explained above, the following

reading paths can be suggested:

e The main ideas only: Chapters 3, 5.

e A new view of collocation for ODE BVPs, and its extension to simple PDEs:
Chapters 2, 3, 4, 5.

For experts in numerical methods for PDEs, with an introduction to continua-

tion and bifurcation methods: Chapters 5, 6, 7, 8.

For experts, who wish to create production software for the continuation and
bifurcation analysis of general systems of nonlinear elliptic PDEs: Chapters 5,
6, 7,9, 10.



Chapter 2

Background Material

2.1 Discretization methods

Most numerical methods have been invented in response to the need for solving
physical problems in engineering and science. Specifically, methods have been devel-
oped for problems for which we do not have analytical solutions. For example, the
fAow of a fluid can be modeled mathematically by a system of nonlinear partial dif-
ferential equations (PDEs), known as Navier-Stokes equations [16, 67], for which an
analytical solution has not been found in the general case. Turbulent vortex motion
7], Taylor-vortex flow [105, 146], and vibrations of columnar vortices [89, 150, 152]
are examples of interesting fluid flow problems, for which scientists would like to have

an appropriate numerical solutions.

There exist several classes of numerical methods that can be used for solving
differential equations. Finite difference methods, finite element methods, boundary
element methods, and collocation methods, are some of the numerical methods used
in engineering and science. Below, we briefly discuss some of these numerical methods

for solving ODEs and PDEs.
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2.1.1 The finite difference method

The finite difference method is a classical method for solving differential equa-
tions. There are numerous publications that consider finite difference approximations;
for example, the books of Collatz [32], Keller [83, 85], Gear [72], and Ascher, Mattheij
and Russell [12]. The general theory of difference methods for boundary value prob-
lems in ODE is contained in articles by Grigorieff [76] and Kreiss [91]. Construction
of generalized finite difference methods has been considered by Birkhoff and Gu-
lati [19], Swartz [145], Keller and Pereya [88], Osborne [111, 112, 113], and Doedel
[17, 40, 41, 42, 53, 54, 63, 64].

Basic finite difference approximations can be derived easily for ODEs and PDEs.
As an example, consider a PDE operator that acts on a function u(z) defined over
a domain (2, with given boundary conditions. To determine an approximation to
the solution u(x), the domain of problem must be replaced by a suitable grid (or
mesh). We write the PDE at each mesh point of the grid, and each term of the PDE
containing u or its derivatives is replaced by a finite difference approximation term
that contains the values of u at that point and at neighboring grid points. In other
words, a finite difference equation is obtained by substitution of approximated terms
into the PDE. In the case of time-dependent PDEs, the finite difference approximation

can be used for the time variable or for both, space and time variables [108].

Let u(z) represent a function of one variable. Assume u(z) is sufficiently smooth,
i.e., we can differentiate it several times, and each derivative is a well-defined, con-
tinuous function in an interval containing a particular point of interest zy. u can be
approximated by the following equation, using the values of u at zy and z; (a point

near zo at distance h).

!

u (:L,O) ~ u/($0)+ _ u(xO + h) _ U(xo)

h

(2.1)

The Equation (2.1) is a one-sided approximation to «". Another one-sided approxi-
mation to u is

(a0)- = )=z = 1), (2:2)

Equations (2.1) and (2.2) are first order accurate approximations to v, written O(h),

!

' (x) & u

i.e. the value of the error is proportional to A. A second order accurate formula is

11



the centered approximation:

) w(zg+h) —u(zg—h) 1

u (20) = v (20)e = o7 =3 (ul(xo)_ +u (x0)+> X (2.3)

Here, the error u'(zq). — u (z0) is O(h?), as can be shown easily by Taylor expansion
of u(zg + h) and u(zg — h). A third order accurate approximation (O(h?)) is given
by [96]:

' 2u(zg + h) + 3u(zg) — 6u(zo — h) + u(zo — 2h)
w(wo) ~ 6h

. (2.4)

A general method to derive a finite difference approximation is based on poly-
nomial interpolation. We interpolate the function u(z) by a polynomial p(z) and
then we use p () to approximate u'(zo). To find the polynomial coefficients, we
interpolate u(x) at some mesh points. For example, interpolate u(z) using a third
order polynomial p(z) = ag + a1z + axz?, with interpolation points zo, o + h and

g + 2h. We have

u(zo) = ap + a1Tp + az13,
u(zo + h) = ag + a1 (zo + h) + az(zo + h)?,
u(zo + 2h) = ap + a1(zo + 2h) + az(zo + 2h)?,

u(xo) 1 To T3 ao
u(.’Eo + h) =11 xzo+h (1‘0 + h)2 a
u(zo + 2h) 1 zo+2h (xo+ 2h)? as

or

We can solve for ag, a1, as in terms of u(zg), u(zo + h), u(zo + 2h), which gives

1 (2 + 3z0h + 2h%)uy  mo(mo + 2h)ur  xo(xo + h)ug

G = 3 02 et o @9
1 (QIO + 3h)u0 2(330 + h)u1 1 (2$0 + h)UQ
a; = —5 h,2 + h,2 - 5 h2 ) (26)
1 U (25} U9
as = iﬁ—ﬁ+%§ (27)

Evaluating p (z,), we have

P/(lfo) = a; + 2a3%g,
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or

1 (21‘0 + Bh)UQ 2(1’0 + h)u1 1 (QIO + h)’U,g

plw) = =5 YT Ty
1U0 (751 Ug
RCTER BT
from which
/ 3 2 1
p(To) = —=+up + —u1 — =7 Us.

2h h 2h

This elementary example contains the idea of a relation between the finite difference
and the collocation method (cf. Section 2.1.3). We will consider this relation in detail
in Section 3.7, for ODEs, and in Section 5.4, for PDEs.

Second order derivatives can be approximated in the same manner. For example,

the well-known central approximation, which is O(h?), is given by

" —h)—2 h
e

. (2.8)

2.1.2 The finite element method

The Finite Element Method (FEM) is perhaps the most widely used numerical
method for solving PDEs. There are a large number of publications related to this
method and its various applications in different engineering problems. For example,
we mention the books of Zienkiewicz [155], Batoz and Dhatt [15], Dhatt and Touzot
[36], Segerlind [132] and Ciarlet [31]. The use of this method in scientific computation
is so extensive that several research groups work on the construction of the object
oriented modeling and the software development of this method for use in different
fields. See, for example, the papers by Dubois-Pélerin, Zimmermann and Bomme
[59, 153], Forde et al. [70], Kong and Chen [90], Menétry and Zimmermann [101],
Quézel, Fafard and Fortin [116], Scholz [131] and Zeglinkski, Han and Aitchison [154].

Consider a PDE that involves a function u(z) defined for all z in a domain
subject to certain boundary conditions. The objective of the FEM is to obtain an
approximation to the function u(z). Like the finite difference method, the FEM needs
a discretisation of the domain, namely, the domain is subdivided into sub-regions or

cells, called elements. As an example, a two-dimensional domain can be divided into a
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set of triangles or quadrilateral elements. The function u(z) is approximated on each
element. For example, u(z) can be approximated by a linear function on each triangle
or rectangle. The FEM formulation can be summarized as follows: ”Projection of the

variational form of the differential equation into a finite-dimensional function space”

([155] or [100}). Consider the following elliptic PDE
Lu=—-V-(aVu)+bu+c=0, a,b,c,u e, (2.9)

where 2 is a bounded domain and a, b, ¢ are sufficiently smooth functions. We can

consider, for example, the following boundary conditions :

e Dirichlet: u = e on the boundary 62,
o Generalized Neumann: T - (aVu) + du = e on 09,

e Mixed: a combination of Dirichlet, over 62y, and generalized Neumann, over
082y, 62 U682 = 692,

where 7 is the outward unit normal, and d, e are smooth functions on the boundary

192

Assume that u is the solution of the differential equation. We can construct
the weak form by multiplying Equation (2.9) by an arbitrary test function v, and

integrating over ().

/Q — V- (aVu)v + buv + cv dz = 0. (2.10)

We integrate by parts, i.e. we use Green’s formula, to have
/( (aVu) - Vv + buv dz — /5 o - (aVu)v ds + / cv dx = 0. (2.11)

2 Q Q

The boundary integral can be replaced using the boundary condition. For example,

using the Generalized Neumann condition above, we have

/Q(aVu) -V + buv dz. — / (—du + e)v ds + /ch dr = 0. (2.12)

a0

The original problem can now be replaced by the following problem: Find u
such that

/Q(aVu) -Vu+buv+cv doe — /m(—du +ewds=0 Yo (2.13)
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This equation is called the variational or weak form of the differential equation. Any
solution of the differential equation is also a solution of the variational problem. The
solution of the variational problem is also called the weak solution of the differential

equation.

Assume that the solution u and the test functions v belong to a function space
V. We select an N-dimensional subspace Viy C V. Projecting the variational form
of the differential equation onto a finite-dimensional function space means finding
v and v in Vy instead of V. If the space Vi tends to V as N goes to oo, the
approximate solution is expected to converge toward the exact solution. As the
differential operator is linear here, we satisfy the variational equation for N linearly
independent test-functions ®; € Viy (the basis of Vy), i.e.,
/Q(aVu) V®; + bud; + cd; dr — /m(—du Y )b ds=0 i=1,---,N. (2.14)

Expressing the solution u in terms of the test-functions of Vi
u(e) = BV, U;0,(x), (2.15)
we find the following system of equations

=N (fo(aV®)) - VP, 4 bD;®; da + [5,dD;®; ds) U;

(2.16)
= —[qc®; dz — [50e®; ds, i=1,---,N.
Taking:
Kij = [q(aV®;)-V®; dx, (Stiffness matrix)
M, ; = [ob®;®; dx, (Mass matrix)
Fij = [50d®;®; ds, (2.17)
F; = —[qc®; dz,
H; = [50e®; ds,
we can write the system 2.16 in the form
(K+M+ P)U =F +H. (2.18)

or more compactly,

AU = B.

Here A=K+ M+ P and B= F + H, where K, M and P are N by N matrices,

and F' and H are N-dimensional vectors.
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For a self-adjoint problem, the matrix A is symmetric and positive definite.
This is characteristic for many elliptic problems in engineering and applied science;

specifically for those problems that can be considered as minimization problems.

In the finite element procedure, after the discretization of the domain, Equation
(2.16) is written for each element, called the elementary equations. These equations

are assembled in a global system, which then must be solved.

The interpolation of the solution inside each element is done in terms of nodal
values. There are several choices of the test-function space, and selecting a suitable
space is an important task. The space of continuous polynomials is the most common
test-function space (Viy). A usual basis for Vy is the set of functions ®; which are
linear on each element and take the value 0 at all nodes z;, except one, say x;. The

property ®;(z;) = 1 guarantees that

As the elementary equations are in terms of nodal values, upon solving the global
FEM system we obtain the nodal values of the approximate solution. The basis
function ®; of an element, say [, is zero on all other elements and it does not need
to be considered in the calculation of elementary equations of other elements. As a
result, in the integration of K;;, M, ;, P;;, F; and H; of an element [, we need only
compute the integral over the element [. Thus K;; and M, ; are zero except when x;
and z; are belong to the same element. Therefore K and M are banded matrices.

The bandwidth of the matrix structure depends on the numbering of mesh points.

In the assembling procedure, the contributions of each element (elementary
equations) are added to the global FEM system. After finding the elementary matri-
ces, one adds their components to the corresponding positions in the global matrices
or vectors, using the connectivity data of the mesh. The connectivity data is usually
stored in a matrix structure that for each element gives its global nodal point in-
dices. As an example, for a triangular element ¢ takes the values 1,2,3, and a matrix
Elemil, ) can be used for storing the information. Here [ is the index of the element,
and i is the local element node number. Then the elementary matrix k& of an element

I can be added to the global matrix K using the following equation.
KElem[l,m],Elem[l,n] = KElem[l,m],Elem[l,n] + km,nv m,n =1, 2,3.
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Finally, one can find the nodal values (the vector U) by solving the overall system

AU = B, also using the boundary conditions.

2.1.3 The collocation method

Consider a general linear homogeneous elliptic differential equation
L{u) =0, in domain €2, (2.19)
with boundary condition
S(u)=0  on 6, (2.20)

where €2 is the boundary of the domain €. In a global collocation method, we assume
that the solution u is approximately equal to a linear combination of certain linearly

independent basis functions ¢;, (i =1,2,---, N).
U~ a1y + oy + azdz + -+ anon, (2.21)

where a;, i = 1,2, -+, N are unknown coefficients, which are determined by requiring

the differential equation to be satisfied at M collocation points over the domain,

N
=1

and, in addition, the boundary conditions must be satisfied at a discrete set of points

on the boundary.

In the finite element collocation method, we discretise the domain €2 into ele-
ments. Over each element, we assume that the variable u is approximately equal
to a linear combination of certain linearly independent basis functions v;;, (j =
1,2,---,n), that locally satisfy certain continuity requirements between adjacent el-

ements. For an element i, we have

u; ~ Biui + Bioiz + Bistis + - - + BinWin, (2.22)

where (;;, j = 1,2,---,n are unknown coefficients of the element 7. In the finite
clement collocation method (or piecewise polynomial collocation method), the un-

known coefficients 8;; (1 =1,2,---,Ng, j =1,2,---,n) are determined by requiring
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the differential equation to be satisfied at m local collocation points for each element.

Here N is the number of elements.
L(uzk) = L(Z ﬁij¢ij(xik)) =0, i=1,2,---,Ng, k=1,2,---,m.
j=1

To obtain a square system (i.e., with the same number of equations and unknowns)
, we must add domain boundary conditions and continuity requirements between ad-
jacent elements. For example, consider the one-dimensional domain [a, b], subdivided

into Ng intervals (elements),
a=29<zy<--<ZIn,=>b
For each interval [z;_1, z;] (element i), we can have m collocation points
1
Tik = 5((331'—1 + xz) + (% - xi—l)gk)a k=1,2,---,m, (2-23)

where, the & are distinct value in (—1,1). The number of collocation points in each
element, which is usually the same for all elements, is chosen so that it matches
the number of unknowns, also taking into account the continuity conditions at the

boundaries of the element.

The finite element collocation method is at the heart of this thesis, and its differ-

ent forms and applications will be explored in much detail in the following chapters.

2.2 Historical notes on collocation methods
2.2.1 Collocation for ODEs

The piecewise polynomial collocation method for ODEs was originally proposed
by Russell and Shampine [126]. They developed and analyzed collocation methods
for solving systems of first order boundary value problems for ordinary differential
equations (ODE BVP) [124, 127]. As already mentioned, the piecewise polynomial
collocation method uses a polynomial approximation for each element, where the
polynomial satisfies the ODE exactly at a specific number of collocation points. This
method is widely used for solving boundary value problems in ODEs. For exam-
ple, it is the basic discretisation method in the software packages COLSYS [10, 9],
COLDAE [13], and AUTO [48, 56]. Its advantages are high accuracy [35], known
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mesh adaptation strategies [125] , and there are efficient solution procedures for solv-
ing the associated linear systems [12]. If Gauss points are chosen as collocation points
then the approximate piecewise polynomial solution has super-convergence character-
istics, as analyzed for BVPs in ODEs by de Boor and Swartz [35]. More precisely, in
this method, the m parameters &, k = 1,---,m in Equation (2.23) for an element 1
(interval [z;_1,z;]) are taken to be the roots of the orthogonal polynomial of degree
m in the interval (—1,1). Other locations of the collocation points have also been
proposed by some authors; for example, Lanczos [94] proposed the use of Chebyshev
points for global collocation methods. These points can also be used for piecewise
polynomial collocation. The error at a point z of an element 4 having m collocation

point approximation is proportional to
e(z) = [[(z — z),
k=1

where ||e||oo is minimized when we choose Chebyshev points.

Osborne [113] presented the relationship between finite difference methods and
certain collocation methods. The equivalence of collocation to a discrete Galerkin
method was considered by Russell and Varah [129]. One advantage of collocation
methods over finite element Galerkin methods is the calculation of coefficient matrices,
as there is no integral to be evaluated. The work of Russell and Shampine on piecewise
polynomial collocation for ODE BVPs was continued by several authors; for example,

Ascher, Christiansen and Russell [10] use it for solving mixed order ODE BVPs.

Several authors have studied piecewise polynomial collocation methods for the
numerical solutions of singular two-point boundary value problems; for example, we
mention the papers by Reddien [117], Reddien and Schumaker [118], Brabston and
Keller [21], de Hoog and Weiss [79], Doedel and Reddien [53].

Ascher and Bader [8] considered the enhanced stability of piecewise polynomial
collocation methods. Stability considerations sometimes suggest the employment of
non-symmetric collocation points instead of Gauss points. Ringhofer [121] studied the
stability of a class of quasilinear singular perturbed boundary value problems, using
spline collocation with specified nonsymmetric collocation points. A noncompact

scheme for the reduced equation of such singular perturbation problems for boundary
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value problems was proposed by Mahmood and Osborne [98]. They show that this

scheme is stable when certain nonsymmetric collocation points are used.

Huang and Sloan [81] considered spectral collocation approximations and some
upwinding features for pseudospectral collocation methods. They show that the main
feature of an upwinding scheme is that the eigenvalues of the first-order differentiation
matrix are located in the left-half plane. Houstis, Christara and Rice [80] presented
a collocation method based on quadratic piecewise polynomials (splines) for second
order two point boundary value problems. They obtained O(h*~7) global error esti-
mate for the jth derivative of the error. The standard collocation at midpoints gives
O(h*79) error bounds. Christara and Smith [30] developed and analyzed multigrid
methods for quadratic spline collocation equations arising from the discretisation of

one-dimensional second-order differential equations (ODEs).

2.2.2 Collocation for PDEs

Collocation methods for parabolic equations in a single space variable were
studied by Douglas and Dupont [57, 58]. Cavendish [22] and Ito [82] used a bicubic
spline collocation method for solving elliptic differential equations to get an O(h?)
method, where h is the mesh size. They used the knots of the bicubic splines as
collocation points. Prenter and Russell [115] used collocation methods for solving
elliptic differential equations on a unit square. They use Gauss points as collocation
points and bicubic Hermite functions as basis functions. They argue that under

certain smoothness conditions this method is of O(h?).

An improved C! finite element collocation method for elliptic equations was
considered by Percell and Wheeler [114]. They used collocation at Gauss points as
a means of determining a C! finite element approximation. They removed some
hypotheses used by Prenter and Russell, such as the assumption of existence and
uniqueness of the piecewise polynomial solution and the assumption that the colloca-
tion approximation satisfies certain bounds. Allen and Pinder [2] proposed colloca-
tion methods with upwinding features for a convection-dispersion transport equations.
They used Hermite cubic piecewise polynomial (spline) collocation with some nonsym-
metric collocation points. They have shown that this method produces oscillation-free

solutions for linear problems.
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Other smooth piecewise polynomial collocation methods, called spline colloca-
tion methods are considered by several researchers, for example, Bialecki [18], Chris-
tara [25] and Sun [140, 139]. A solution procedure for second order elliptic boundary
value problems using a quadratic spline collocation discretisation scheme on rectan-
gles was considered by Houstis, Christara and Rice [28]. They studied the partitioning
and mapping of computations on a parallel computer, the NCUBE/7 (128 processors),

having a hypercube architecture.

A disadvantage of the spline collocation method is that point iterative solvers
like ITPACK [1] do not converge, even for simple problems [14, 61, 144]. As a result,
Gauss elimination with scaling and full or partial pivoting is often used for solving
the collocation system. Nevertheless, Dyksen [60] used a tensor product generalized
ADI (Alternating Direction Implicit) method for separable elliptic problems to solve
the collocation system. Sun [144, 138] used a FFT algorithm to solve the tensor
product collocation equations. In another paper, Sun [140] used cyclic reduction and
FARC algorithms, a combination of cyclic reduction and Fourier analysis, for solving
a Hermite cubic spline collocation system. An algorithm for solving a class of high-
order spline collocation systems, which arise from discretising the Poisson equation
on a rectangular domain with Dirichlet boundary conditions, was given by the same
author [141]. He also considered an eigenvalue analysis of the first-order Hermite cubic
spline collocation differentiation matrices with arbitrary collocation points [142]. He
also proposed a class of spline collocation methods with upwind features for solving

singular perturbation problems.

Russell and Sun [128] analyzed spline collocation differentiation matrices that
arise when solving PDEs with periodic boundary conditions. The error analysis of
parabolic and hyperbolic partial integro-differential equations is considered by Fair-
weather [68] for orthogonal spline collocation and for a modified spline collocation

method.

Christara [26] worked on Quadratic Spline Collocation (QSC) methods for linear
second order elliptic PDEs. In her work, the collocation points were chosen to be the
midpoints of uniform grids. She has demonstrated that this method has optimal
order of convergence. Several solvers for spline collocation equations arising from the

discretisation of elliptic PDEs were studied in her work. She also implemented the
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QSC methods on parallel machines [27]. Constas [34] studied Fast Fourier Transforms
(FFTs) for the QSC method. Christara and Sun Ng [29, 106] extend QSC to systems
of two coupled linear second-order PDEs in two dimensions. They treated the PDEs

system as one entity, and no decoupling was applied.

Discontinuous piecewise polynomial collocation for PDEs was introduced by
Doedel [45]. One of the advantages of this method is its generality for solving a wide
range of problems, ODEs as well as PDEs. This collocation method represents a type

of unified method, and is the root of the methods presented in this thesis.

2.3 Continuation and bifurcation

2.3.1 Basic concepts

Nonlinear phenomena are important in engineering and science. For example,
in Physics, Chemistry, Biology, Engineering, Social Science and even our daily life,
we encounter nonlinear behavior. Some of these phenomena can be modeled mathe-

matically as a nonlinear equation of the form
G(u, A) =0, (2.24)

where G is a smooth function, and where X represents system control parameters.
For example A could be Reynolds number, or a temperature or density in a fluid flow
problem. If a control parameter is changed, then usually we find a unigue continuous
solution curve; often called a solution branch or a solution family. However, sometimes
the nature of the solution changes dramatically when a control parameter passes
through a critical value. For example, a rod under compression load will buckle
and the stability of the system will be lost when the load passes a critical value.
Such a phenomenon is called a bifurcation. When there is a bifurcation, the linear
stability theory fails and it does not give us valuable information on the behaviour of
our nonlinear system. As a result, we need bifurcation analysis and a more general
stability theory. In a numerical bifurcation analysis, we normally use a continuation
method and we study the behaviour of the solutions, their stability and variation of

other properties as one or more parameters of the system change.

Folds (or limit points), bifurcation points (or branch points) (Figure 2.1) and
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Figure 2.1: Folds and bifurcation points

Hopf bifurcation points may be found in the numerical bifurcation analysis of a sys-
tem. They result in the qualitative change of behaviour of solutions. Such points can

be detected during continuation of solutions.

Numerical continuation of solution families, or path following, is the subject
of many books, for example those written by Garcia and Zangwill [71], Gould and
Tolle [74], Keller [87], Rheinboldt [119], Seydel [133], Todd [148], and Allgower and
Georg [4, 5, 6]. The principle of continuation methods is to compute solutions near
a known solution, then adding the new solution to the known solution set, and to
repeat this process. As a result, we must choose a method to compute a new solution
near a known solution. In this regard, continuation methods can be divided into two

categories, namely simplicial continuation methods and predictor-corrector methods.

In simplicial continuation methods, we follow a piecewise linear curve that ap-
proximates a branch of solutions. If G maps from R" to R"*, we generally expect
u to lie on a n — k dimensional linear subspace, or on a n — k dimensional face of a
simplex in R" [77]. In other words, in simplicial continuation we represent u; as the
intersection of a manifold with a n — k dimensional simplex ¢;. Allgower and Georg

used simplicial continuation methods for approximation of fixed points and solutions
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to systems of equations [3]. Dobkin et al. [39] have used this method for tracing a

curve that is represented as the contour of a function.

Predictor-corrector methods consist of two steps:

e The predictor step: an approximate point along the curve is computed, usually

in the direction of the tangent at a known point of the solution curve.

e The corrector step: bring the predicted point to the solution curve using one or

more iterations.

The most popular predictor-corrector continuation method is pseudo-arclength contin-
uation, introduced by Keller [86], which is also the basic method used for continuation

in this thesis.

2.3.2 Continuation and bifurcation software

There are several continuation software packages available, for example

o AUTO [56, 48, 52, 23, 51, 43] is a software package for continuation and bifur-
cation problems in ODE BVP,

e CONTENT 93, 92] is a multi-platform interactive environment to study dy-
namical systems. Part of this software is based on a C translation of a version

of the AUTO package written in Fortran 77.

e DDE-BIFTOOL [62, 66, 65] is a Matlab package for the numerical bifurcation
analysis of delay differential equations with several fixed discrete delays. It
allows the computation, continuation and stability analysis of steady state so-
lutions, and compute Hopf and Fold bifurcations and periodic solutions. DDE-
BIFTOOL is also based on the piecewise polynomial collocation discretisation

method.

e MULTIFARIO [78] is a set of subroutines and data structures for computing

multidimensional solution manifolds.

e PDECONT [122, 97] is a Newton-Picard single shooting software. It implements
the Newton-Picard single shooting algorithm for the continuation of periodic

solutions of large-scale problems.
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e LOCA [130] is a library of continuation algorithms that enables the tracking of
solution branches as a function of system parameters, and the direct tracking
of bifurcation points. Algorithms are chosen to work for large scale problems,

and to run on distributed memory parallel machines.

e MATCONT (38, 37] is a Matlab implementation of a number of algorithms
from AUTO and CONTENT, with additional capabilities, for the interactive

numerical bifurcation analysis of ODE dynamical systems.

e ELLPACK [120] is a software for solving elliptic boundary value problems. It
can use Hermite bicubic collocation methods for solving elliptic boundary value

problems.

AUTO has probably been the most widely used continuation software package
for ODE problems; its use has been cited in thousands of articles in the literature.
Several other ODE BVP continuation software packages are based on AUTO, but
AUTO remains, by far, the most efficient.

2.4 Using UML to present the object-oriented model

The complexity of software increases day by day. As a result, the necessity of
having a rigorous modeling technique becomes more and more evident. Using a pow-
erful modeling language standard is considered as one of essential factors for project
success. Model elements (fundamental modeling concepts and semantics), notation
(visual presentation of model elements), and guidelines (rules of usage within the
context), are important elements of a modeling language, without which a modeling

language cannot be considered as an acceptable one.

The Unified Modeling Language (UML) notation [104, 75, 151] is used increas-
ingly in object-oriented modeling. The UML is a standard notation for specifying,
visualizing, constructing, and documenting the object-oriented model. It is a set of
successful skills for the modeling of large, complicated systems. Major parts of the
UML language are constructed from the development and unification of Booch [20],
OMT [123] (Object Modeling Technique) and OOSE (Object Oriented Software En-

gineering) notations. The UML notation has been widely accepted, and it is used as
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modeling language in different domains. We have chosen this notation to present our

model.

A fundamental idea behind the development of the UML has been to integrate
the best practices in the industry, gathering widely varying views based on levels of
abstraction, domains, architectures, life cycle stages, implementation technologies,
etc. [110]. The UML has a well-designed architectural structure. Model elements
are organized by packages. In each package (using the UML class diagram, Object
Constraint Language expression and precise text), model element are explained in
terms of abstract syntax, well-formedness rules , and semantics. Using the UML
expressive visual modeling language, users can understand and exchange their models
easily. Extensibility and specialization mechanisms of the UML permit extending the
core concepts and using it in a new situation. Thus, for every specific domain, it
is expected that the UML can be adapted as new requirements emerge. The UML
is independent of any programming language and development procedures, and it
can support every programming language. The UML provides a standard basis for
understanding the modeling language. The UML also has higher-level development
concepts such as collaborations, frameworks, patterns, and components. The UML
can also be used for the modeling of concurrent and distributed systems. The UML

has several models for illustrating a system:

e The Class model shows the static structure of the system,

The state model represents the dynamic behavior of objects inside the system,

The use case model specifies requirements of the user,

e The interaction model describes the scenarios and messages flows,

The implementation model shows working units,

The deployment model describes details related to the process allocation.

The UML has nine different diagrams. They are graphical notations that present
different views of UML models. They are:

e Class diagrams (the static structure of the system in terms of classes and rela-

tionships),
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e Sequence diagrams (the temporal representation of objects and their interac-

tions),

e Collaboration diagrams (the spatial representation of objects, links and inter-

actions),
e Object diagrams (objects and their relationships),
e Statechart diagrams (the behavior of a class in terms of states),
e Activity diagrams (the behavior of an operation as a set of actions),
e Use case diagrams (functions of a system from the user’s point of view),
e Component diagrams (physical components of an application),

e Deployment diagrams (the deployment of components on particular pieces of

hardware).

In this thesis, we have selected the UML notation as our object-oriented mod-
eling language for the development of our PDE bifurcation software. Rational Rose
software is a powerful tool that can be used for object-oriented modeling with the
UML [109]. Unfortunately, Rational rose is a commercial software. Therefore we
used the open source software ArgoUML [107]. Using the UML language, we present
our prototype software structure, as well as an activity diagram and a statechart
diagram of our bifurcation analysis of systems of nonlinear PDEs. This simplifies

understanding the behavior of our system.
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Chapter 3

The Finite Element Collocation
Method for Linear ODE BVP

3.1 Introduction

As mentioned in Section 1.2, one of the objectives of this thesis, is the bifurcation
analysis of PDE systems. We have chosen to use the finite element collocation method
with piecewise polynomials to reach this goal. This method can also be used for the
solution of ordinary differential equations (ODEs). In fact, one of advantages of this
method is its generality; it can be used for a wide range of problems, and represents
a type of unified method. In this chapter, as a first step toward the finite element
collocation method for PDEs, we discuss finite element collocation methods with
piecewise polynomials for BVP in second order ODEs. This is the method introduced
originally by Russell and Shampine [126]. However, our presentation of the method
is different, in order to prepare the reader for the technically more complicated case
of the discontinuous piecewise polynomial collocation method for PDEs. The main

characteristics of the ODE collocation method are:

28



e high order of accuracy is possible by increasing the number of collocation points,

e the piecewise polynomial solution is globally continuous, in fact smooth, for the

case of second order ODEs. (However it is discontinous for the case of PDEs.)

e the linear systems that arise after discretisation can be solved efficiently by the
method of nested dissection (This fact is not important for ODEs; but it will

be important for PDEs, as it reduces the computational complexity),

e there are known mesh selection strategies.

The method gives us the high order accuracy that is typically required in numeri-
cal bifurcation studies. For this reason a subclass of the method has been used in
COLSYS[11] and AUTO [48]. To have a robust solution procedure for solving the
final equations, we have chosen to use a direct method. The tree structure of our do-
main decomposition is suitable for the use of the method of nested dissection. Using
the nested dissection method for the case of ODEs does not reduce the computational
complexity, as it does for PDEs. However, as will be see later, this method has advan-
tages for bifurcation analysis, for ODEs as well as PDEs. Moreover, using the nested
dissection method for ODEs will highlight the remarkable unity of the collocation
method for ODEs and PDEs. For linear ODEs the collocation method can be defined
equivalently as a type of generalized finite difference method. This approach will be
described in detail in this chapter. We also give a local basis construction, which
reduces computational cost for uniform and semi-uniform meshes. We will see that
the finite difference formulation leads in a very natural way to the nested dissection

procedure for solving the discretized equations.

3.2 Definition of the problem

As a model ODE problem, we consider the following second order linear ODE:

Lu = (z) + a(x)u (z) + b(z)u(z) = f(z), 0<z<1. (3.1)
where a{x), b(x), f(x),u(z) € R are sufficiently smooth functions. As boundary con-
dition, we take

u(0) = u(1) = 0. (3.2)



Third Subdivision

Second Subdivision

First Subdivision

Figure 3.1: The recursive subdivision and the finite difference mesh

Although the procedure discussed in this chapter is for simple boundary conditions,

it is also possible to treat this equation with more general boundary conditions.

3.3 Mesh generation

Consider the domain Q) , for simplicity a line segment 0 < z < 1 in Figure
3.1. A binary tree data structure can keep the characteristics of our geometrical
domain and help to have an efficient solution procedure, namely, a nested dissection
method. The mesh generation is done as follows: initially the domain is subdivided
into two subdomains or regions. Each subdomain may be subdivided into two smaller
subdomains. This procedure is continued recursively until a desired level of refinement
is achieved. The smallest regions are finite elements. These elements correspond to
leaf nodes in the binary recursion tree. The recursion tree is not really necessary for
the mesh generation, but this type of data structure is useful in the nested dissection
algorithm and the local mesh refinement procedure. It is important to note that the
final mesh need not be uniform, ¢.e., the sizes of the mesh intervals need not be the

same.
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3.4 The finite difference formulation

Here we look at the finite difference formulation before the presentation of the
equivalent collocation formulation. The finite difference formulation is especially use-
ful in the nested dissection procedure. Consider any finite element €2; (Figure 3.2).
Formally, if u(x) is known on §€); (boundary points of element €2;) and if €); is suffi-
ciently small then, under certain mild conditions, the solution u(z) is defined in .

Equations (3.1) can be written as the following first order system:

(3.3)
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where 0 < £ < 1. As a finite difference approximation, one can use a mid-point finite

difference formulation, the Boz scheme of Keller [84], as follows:

(u; — wui—1)/hs = %(Uz +vi1),
(vi —vi1)/hs = %(fz + fic1) — %ai~1/2(vi + V1) — %bi—l/Q(ui +ui—1),

3.4
i=1,2--,N (3:4)

’

ug = uy = 0.

Here N is the number of finite elements and u; denotes the approximate solution on
a boundary point of the finite element, that is u; ~ u(z;). Similarly, v; denotes the
derivative of u at z;, i.e., v; ~ u'(x;), and h; is equal to | z; — z;_; |. The points
x;, 1 =1,---, N —1, will be identified in Section 3.8 as matching points. Using Taylor
expansions, one can show that this approximation is of order O(h?), (cf. [12]). We

can solve above Equations (3.4) for v; and v;_; in terms of u;, u;—;, f; and fi4

bi—1/2hi — 2a;_1/2 bi_1/2hi + 2a,_1/2 h; h;

1 1
vier = | 1 —E)Uz 1+ ( 1 E) Zf 4fz 1
20,02 = bisaphs 1 bi—1ohi +2a; 12 1 h h;
Vi = ( 4 hl)uz 1 ( 4 hz) 4fz+ 4f1 1,
1= 17 27 . 7N7
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Figure 3.2: A finite element of €2

More generally, for any finite element €);, one can consider the following discretisation

of Equation (3.1):

Vi1 = i1+ A+ 30 B f(2),

| | | | (3.5)
Ui = Ay Uit + ot + 2T B3, f (245), i=1,---,N,

where m is the number of evaluation points z;; inside €2;, which are identified in Sec-
tion 3.7 as collocation points. (From now on, we drop the indices i, for simplicity
of notation.) Thus, for each finite element of ) there is a discrete equation corre-
sponding to each of the two boundary points of the finite element. The coefficients
Q11, Qa, Q21, @21, £ and [, in Equations (3.5) can be determined by requiring Equa-
tions (3.5) to be satisfied exactly for a basic set of equations with known solutions.
These test problems are of the form of Equation (3.1), with f = L¢, where ¢ is a poly-
nomial, for which an obvious solution is u = ¢. More precisely, let P2 be the space
of polynomials of degree m + 1 (order m + 2) or less, P12 = Span{¢1, -, dmi2}-

Then we require that

¢ (zio1) = and(ziy) + ar2(x;) + ity BiiLé(z;),

¢ (2:) = an@(xio1) + cnag(zi) + 7y Bo; Lo(z;), 30
for all ¢ € Py Let
u= (w1, )7,
v = (vi-1,0:)",
f=U=)-, fz),
and take
= (o o) 2= ) 7
Then Equation (3.5) can be written as
v= Au+ Bf. (3.8)
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If we define

¢1(37if1) ) (lz) Loy (Zl) s LCbl(Zm)
o = : ; , Ly = : : , (3.9)
Pmia(Ti-1) Pmr2(Ts) L¢m+2(21) oo Lomia(2m)

and , /
¢1(Ti1) b1 ()
Re = o o , (3.10)
¢m+2($¢f1) ¢m+2(fﬂi)

then Equations (3.6) can be written as

(@1 Ls) ( fr ) = Fo (3.11)

For the finite difference approximation to be well defined, the matrix (® | Ly ) must
be nonsingular. (A related condition is analyzed in [40].) Although this condition is
not automatically satisfied, there are many possible schemes for choosing the points
z; so that this condition is satisfied. One such scheme is given in Section 3.6, see
Theorem 3.6.1. Note that if the coefficient functions a(z) and b(z) in Equation (3.1)
are constant and if all finite elements are identical then Equation (3.11) only needs
to be solved only once. This observation is further developed in Section 3.11.1. Of
course, in addition to the finite difference Equations (3.5), the boundary conditions
must be satisfied, i.e.,

3.5 Example

Consider the simple linear operator L = d/dz*. We take a line segment element
as in Figure 3.3. For simplicity assume that it is centered at x = 0 and has length
h. Let m = 1 and take the collocation point z; to be the center of the segment.
Corresponding to the matching points z_p /2, 5,2 the finite difference approximation,
Equation (3.5), takes the form

VU_p/2 = 01U_pj2 + Q12Up 2 + Bif(z1), (3.13)

Vnjz = Qi U_pja + Qaatny2 + Bof(21).

As basis of P,,, = P; we choose polynomials {1,z,2°}. The coefficients a;; and 5;
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Figure 3.3: A 1D element

are obtained by solving Equation (3.11), which here becomes

1 1 0 a1 Qo1 0 0
—-h/2 h/2 0 Q12 Q2 = 1 1
hija K24 2)\ B B ~h h

Upon solving this system one finds that “finite difference” equations are given by

V_nj2 = (Unj2 — U_ns2)/h — hf(21)/2,
Vnj2 = (Unja — U—nj2)/h + hf(21)/2.

3.6 Lagrange basis functions

The system (3.11) must be solved for coeflicients o;; and Bi;, for each finite
element. In this section, we show how these coefficients can be computed using

Lagrange basis functions. We also investigate the singularity of the system (3.11).

We divide the basis of P, into two groups, namely {¢1, #2} and {¢1, - -, ¥m }.
For ¢;, i = 1,2 and ¢, j = 1,---,m, we use a Lagrange basis corresponding to the

set of points {z;_1,z;} U{z1, - -, zn} such that:

¢ =1 atz,_y, ¢ =0 at {@i, 21, -, Zm},
po=1 atzy, ¢2=0 at{wi_1,21, ", 2%m},

and

Pr=1 atz, =0 at {zi_1,2, 2, ", Zm},

¢2:1 at 22, ¢2:0 at {xi—hxiazhz&"')zm}a
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Ym =1 at 2m, Un =0 at {z,_1,2; 21, "

'7zm—1}'

Then the matrices ®, Ly and Rg in the preceding section can be rewritten as

] ¢1(2i-1)
¢ = <$> = | 1(zi-1)

(i)
Ga(wi1)  Palw:)
Y1 ()

(z;

3

(2

¢m (2132'41) wm(xz)

L¢1221§

~ Lo(z1

Lo = (éji) = L¢1:(Z1)
me(zl)

and

Lo1(2m)
L¢2 (Zm)
L’(/}l (Zm)

L (22n)

e g
o\ Ti-1 o\ T
Ro= (o) = | wila) oile)

!

As a result, Equation (3.11) now becomes

1

Vo (Tiz1) wmkxi)

(3 1) ()= (5e)-

Evaluating ® and ¥, this system becomes

(6 13) ()= (ab):

which can be solved efficiently in two stages, namely
LyB" = Ry,

AT = Ry — LgB”.

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Tt is clear that Equation (3.11) is nonsingular if Ly in Equation (3.19) is nonsingular.

Theorem: 3.6.1 If h; > 0 is sufficiently small and the points z; are distinct and

chosen according to a template then the above finite difference construction s well

defined. (i.e., Ly is nonsingular )

35



PROOF.

If we take

and

then we have

Lu= L*u+ L'u + L'u.

Ly in Equation (3.15) can be written as:

Ly =L} + Ly + Ly, (3.21)
where
bz)bi(z1) -+ b(zm)¥1(2m)
L, = | Plauta) bamkbalzn) | (3.22)
b(zl)"v[)m(zl) b(zm)¢m(zm)
aa)yz) o (o)l ()
L‘lll _ a(Zl)sz(Zl) U CL(Zm)wQ(Zm) : (323)
a(21)¥,,(21) a(Zm )y (2m)
W) o U (en)
3= | ¥ (:’Zl) v (:Zm) . (3.24)
P (21) Urn(2m)

First we prove that L? is not singular. If, on the contrary, L% is singular, then

we can find a vector ¢ # 0 such that

Wy (21)
LéTc = ( :
'lell (Zm)

?p;n(zl) C1
: ) ( : ) = 0. (3.25)
Y (Zm) Cm,

If we define q(x) = Y7, cx¥x(2) then, using the above equation, we have

H

q (Z]) =0,

j=1,---,m. (3.26)

However, ¢ € Ppio, and ¢ € P, (space of polynomials of degree m-1) hence we must

have that ¢' = 0 everywhere inside the element. On the other hand, all of the 1, k =
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1,---,m, are zero at the boundaries of the element, i.e., we have g(x; 1) = q(z;) = 0.
As a result, we conclude that ¢ = 0 inside the element. Therefore the vector ¢ must

be the zero vector which contradicts the assumption. Thus L3 cannot be singular.

Equation (3.21) can be written as:
Ly = L3(I + [L3] (Ly + LY)).- (3.27)

Each term of LY is b(z) multiplied by a Lagrange basis function of order m + 1
(Lagrange basis for two end points plus m — 1 points 2;). If we consider x;_; as 2o
and z; as zn41, then a typical Lagrange basis can be written as

() = (x_ZO)"'(-T_Zi—l)(x'_Zi+1)"'(l'—zm+1)
\Ijz( ) (Zi - ZO) .. (Zi —_ Zi—l)(zi — Zi-l—l) cen (Zi _ Zm+1)

(3.28)

For an element of size h, each term of numerator |z — 2| is smaller than A and if
we write the smallest factor of denominator (smallest |z; — zx|) as rh, where r is a

constant (0 < 7 < 1), we have
10, ()| < B/ (rh)™+! = r=(™+D (3 constant).

By assumption, b(z) and a(z) are bounded. As a result, in Equation (3.27), || LY ||,
is of order O(1). If we take the first and the second derivative of ¥; in Equation
(3.28) we have

\Pl(x) — (x—zl)-.-(l"—zm+1)+~--+(x_z0)...($_zm)
i (zi — 20) - - (zi — zim1) (% — 2zip1) (2 — Zma1) )
. m—+1 m+1
\Ill(x) = 20 #in:O ki, k#j(x — 2x)
l H;cn;)lk#(zi — 2x) ’
and m+1 ma1 1
U (z) = 2j=0 j#izlzo 1, 125110 koti, kst k#(a: — 2x)
Z T2 e (20 — ) '
As a result
I\I’xl')l < (m + l)hm/(Th)m+1 — (m 4 1)7"_(m+1)/h,
and

107 ()] < m(m + DB/ (rh)™ T = m(m + 1)~ /n?,

Therefore || LY, ||, is of order O(1/h), and || L% ||, is of order O(1/h?). As Lg is
not singular we have that || [L3]7Y(LY, + LY) ||, is of order O(h). As a result, if we
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chose h sufficiently small then ||[L%] (LY + L), < 1. Using Banach lemma [46],

”OO

we conclude that I + [L2]71(L} + LY) is not singular. Therefore, Ly in Equation

(3.27) is not singular.

3.7 The collocation formulation

If (® | Ly ) in Equation (3.11) is nonsingular then the finite difference scheme
is equivalent to a collocation scheme. To show this, we construct a collocation for-

mulation as follows:

First, we associate a polynomial p(z) € P2 (space of polynomials of order

m + 2) to each finite element.

Second, for any two adjacent finite elements, we require that at the point z; on

the common boundary we have :

> the same values of the neighboring polynomials,
and (3.29)
> the same values of the derivatives of the neighboring polynomials.

e Third, each polynomial must satisfy the collocation equations
Lp(z) = f(zk), k=1,---,m, (3.30)

at all collocation points z; of the corresponding finite element.

Finally the boundary conditions must be satisfied, i.e., for each boundary ad-

jacent element we have

p(xz) = 0 at the points ¢ = 0 and x = 1. (3.31)

The precise meaning of equivalence of the finite difference scheme and the collocation

scheme is given in the following theorem.

Theorem: 3.7.1 For each finite element §; let the matriz (® | Ls ) be nonsingular
and let the matrices A and B be defined by Equation (3.11). Suppose we have a
solution of the collocation scheme, Equations (3.29-3.31). If for each finite element

the local polynomial is evaluated at the points x; then the resulting values satisfy the
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finite difference Equation (3.8). Conversely, suppose we have a solution to the coupled
system of all finite difference Equations, i.e., Equation (8.8) and the boundary condi-
tions Equation (3.12). Then, locally, for each element, we can interpolate the finite
difference solution by a polynomial p(x) € Ppo that satisfies the differential equation
at the collocation points. These polynomials exist, and collectively they satisfy the

continuity properties in (3.29).

PROOF.

Take p(z) = Y42 ¢;d;(x), where Span{¢1, -, dmi2} = Pmi2. Then the col-
location Equations (3.30) can be written as 7% c;L¢i(zx) = f(zx). Using the
definitions of Lg, ® and R, Equations (3.9) and (3.10), we can write

T, __
L@C—f,
h = T and
where ¢ = (¢1,- -+, Cmy2)’, an
u=®"c, v=Ric

Defining A and B as the solution of Equation (3.11), then the variables u and v satisfy
the finite difference Equation (3.8), because

v— Au— Bf = RLc— A®Tc— Bf
= [c"(Re —@AT))" - B,

and, using Equation (3.11),

v—Au— Bf = ["(LesBY)]" — Bf
= BLYc— Bf = B(Lic— f)=0.

Conversely let (u, v) be a solution of the finite difference Equation (3.8). Define ¢ by
T

(Z;) c= (;ﬁ) , and set p(x) = Y752 c;¢i (). Thus c satisfies ®Tc = u, and Lic = f

(i.e., the collocation equations are satisfied). Neighboring polynomials are continuous

at the matching points z;, because (p(x;_1), p(:vi))T = ®T¢ = u. The continuity of p

is also satisfied because
P(ﬂfz‘—l)/> T T T\T
/! VJ=Rie = (PA' +LsB ) ¢
( p(l’z‘) ¢ ( * )
= A®Tc+ BLLc
= Au+ Bf =w.
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Figure 3.4: Two adjacent elements

3.8 Nested dissection

The nested dissection technique is valuable for PDEs; here we illustrate this
method for ODEs in preparation for the PDE case. The nested dissection proce-
dure consists of recursive elimination of unknowns u and v on boundaries separating
adjacent regions. Here ”adjacent” means two subdomains that result from the subdi-
vision of the larger domain formed by their union, i.e., these two regions correspond
to descendant nodes of a common parent node in the binary tree. ”Recursion” means
that the elimination starts at the leaves and terminates at the root of the tree. This
procedure results in the elimination of all interior unknowns. One is left with one
equation for each z; on 89 (the boundary of the domain). Boundary conditions can
then be used to determine the values of u and v at the z; on 6€2. Thereafter, a recur-
sive back-substitution gives the values of u (and v) at each interior matching point

(separators of adjacent regions).

3.8.1 Local elimination

Consider two arbitrary adjacent regions ; and €2, as in Figure 3.4. It is
not necessary that these regions be finite elements, i.e., they can correspond to any
neighboring nodes in the recursion tree. The elimination of the unknowns v and v on
the common boundary is done in the opposite direction of the domain decomposition
procedure i.e., upwards in the binary tree. The common boundary of the two adjacent
regions will be called §¢2;, (see Figure 3.4), and the remaining parts of the boundaries
of Q; and Qy will be called §9; and ), respectively. The vector u in the finite
difference Equation (3.8) is split accordingly into uis and u, for region €2, and uxn
(= u1) and u, for region 2. The vector v is similarly split into two parts. Thus for

region Q, Equations (3.8) can be written in the form

vy = A}lul + Abul? + g1, (332)
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vig = Ayuy + Aptz + gi2, (3.33)
while for £, they have the form

vy = A2jug + Alyus + ga, (3.34)

vy = A%y + Adtsr + g (3.35)

The superscript represent the region number. Above ( gg ! ) and <992 ) correspond to
12 21
the term B f in Equation (3.8) for region §); and 2, respectively. From the continuity

relations (3.29) we have
Uiz = Un, (3.36)
V12 = V2.
From Equations ( 3.33), ( 3.35), and (3.36) it follows that
Uy = —FE YAy uy — ASjuz + g12 — go1), (3.37)

where FE is defined as:
E= AL, — A%, (3.38)

Substituting (3.38) into (3.32) and (3.34), and again using (3.36), one obtains

U1 = Ahul - A%zE_l(Aélul - A%1U2 + g12 — go1) + G,
Vg = A%l'U/Q — A%QE_l(Aélul — A%l’llz + g1z — 921) -+ gz, (339)

which is of the form
v; = Cnug + Craug + G, (3.40)
vy = Corty + Caatia + Ga,

where

Cn = A%l _AiQE_lA%u
Cra = ALE 1AL,

Cy = —A%LETAL
Cpn= A}, +ALE A},
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and

g1 =01 — A%QE_l(gIQ —g21),
G2 = ga2 — A%QE_l(QIZ — ga1).

Equation (3.40) represents the discrete equation for the enlarged region, that is, for
the union of €; and €y, after the elimination of common boundary unknowns w2 and
v12. These new equations are again of the same form as Equation (3.8). Therefore
one can carry out the same procedure for the next higher level in the recursion tree,
and again we obtain an equation of the form of Equation (3.40). Recursively, one can

continue this procedure until the root of our binary tree.

While the nested dissection procedure for ODEs, as described above, has no
advantage in terms of computational complexity, it is used in the AUTO software
package [48, 52, 51, 56], since it allows to extract the so-called Floquet multipliers,

which are important in a bifurcation analysis.

3.8.2 Complexity

For one-dimensional (1D) problems, i.e., for ODEs, each step of the nested
dissection procedure has the same number of operations. For our model problem,
Equation (3.1), we have, in each step one subtraction and one division for evaluating
E~!, 8 multiplications, one addition and one subtraction for evaluating C1; to Ca
and 4 subtractions and 4 multiplications for evaluating ¢; and gs. As a result, we
have a total of 20 basic mathematical operations. This number of operations does
not depend on the position of the region in the binary tree and it is always the same.
Therefore, the order of complexity of the nested dissection method for 1D problems
only depends on the number of interior nodes of the binary tree. For a domain with N
elements, we must construct a binary tree with N — 1 interior nodes. As a result, the
number of operations is 20 x (IV — 1). Thus, the order of nested dissection procedure

for 1D problems is O(N).

3.9 Stability and convergence theory

In this section, we show that if the differential equation has a unique solution,

then the collocation system has also a unique solution, for sufficiently small h, and
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the discretized solution converges to the analytical solution as the mesh size tends to

Zero.

Much work has already been done on the stability and convergence theory of
the collocation method in ODE BVP; for example, we can mention the paper by
Russell and Shampine [126], the book by Ascher, Mattheij and Russell [12], and the
work of de Boor and Swartz [35] who prove the superconvergence for the case of local
Gauss collocation points, which has made collocation for BVP ODEs so powerful and
widely used, e.g., in AUTO [43, 51, 23, 48, 52]. In this section, we use a different
technique for proving stability and convergence of the collocation method for ODE
BVP, adapted from a paper by Doedel [42], which may also be applicable to the
case of PDEs. Certain stability results for some modified versions of our methods
for PDEs are reported in the thesis by Goldliicke [73]; however, the precise methods

considered there do not quite correspond to the ones considered in this thesis.
Consider mesh points {zg, 21, -,y } over a domain [0, 1] with zp = 0, zy = 1.
Define
hi:xi—l'i_l, H—_—{hl,hg,"',h]\[}, lhl: max hi.

1<i<N

Define the following space of piecewise polynomials over the domain:

Pl={p,:pn € C'[0,1], pa

lzieg,m] = Di € Pk7 ph(O) = ph(l) = 0}7

meaning, each member p;, of the space has a C' continuity over the domain, and each
segment of py,, for example, p; defined over the interval [x;_1,x;] belongs to the space
of polynomials of degree k — 1 (order k), i.e., P,. The boundary conditions must also
be satisfied, i.e., pp(0) = pr(1) = 0. Also define

- () N
Ipn llm= max max max [p”],  0<m<k-—1,

where p(j )

7 is the j* derivative of p;.

Lemma: 3.9.1 Let {h*}2, be a sequence of meshes with | b |— 0 as v — oo, with
corresponding {pp Y ,, pwEPY  and || pu||; is bounded. Then there exists a
subsequence of {pn}52;, also denoted by {pw }%;, and a function P € C'[0,1] such
that:

| pow—P ||;— 0 as v — 0.
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Proof: This follows from the Arzela-Ascoli theorem [95, 99].

Theorem: 3.9.1 Assume that the following ODE BVP has only u = 0 as a solution.
Lu =0, with boundary conditions u(0) =0, u(l) =0,

with L as in Equation (3.1), and a, b, f € C[0, 1]. Assume that for each element
the collocation points are placed according to a fized template. Then for all meshes

hY, with | h” | sufficiently small, the collocation equations
LpY(z) = f(25), i=1,--- N, j=1L-,m  p;€ Pnys,
pr(0) =pw(1) =0, PwEPLs  Phlissz) =P
where pY is a segment of the polynomial prv over the element i,
e first: has a unique solution pn,

o second: || pull, < K || f |, where K does not depends on h.

Proof of the first part: The collocation equations constitute a linear system of

N*(m+2) equations and N*(m+2) unknown coefficients; namely,

e N*m collocation equations
o 2(N-1) matching conditions between adjacent elements

e 2 boundary conditions.

If, in contradiction to the first part of the theorem, we do not have a unique solution
for all small | A” |, then there must be a sequence of meshes {h”}52,, with | h” [— 0
as v — 00, for which there exists a sequence of piecewise polynomials {pn} .-, such

that || pnv||s = I, that satisfies collocation equations
Lpf(25) =0, i=1,--,N, j=1,---;m, p(0)=py(1)=0.
For each mesh h* we have
fio=f"(zi;) =0and || f¥|lo= 0.
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Since p? € Ppiy we have p/” € P,. Thus p?"(x) is completely determined by
" (z) = pw L1, and therefore we can write p¢" in terms of Lagrange basis func-

tions for lj; € P, lij(2;) = 6;;
Z )P -

As the collocation points (z;;) are chosen according to a template, the [;;(z) are

bounded, i.e., l;;(x) < K (a constant), and we can write

max | p/ (z)| = mfclelw 2)pl | (3.41)

z€[xi_1,24)
< mKimax | f*(z;) - a(zig)p! (2i5) = b(zig)P} (235) | -
Since p!'(2;;) and pY(z;) are bounded quantities, and f*(z;;) = 0, we have
xefg?iz,-] | p”"(z) |< K (a constant).

From Lemma (3.9.1) we conclude that there exist a subsequence of {pnv};2; and a

function p € C'[0, 1] such that:
| pw—p ||li— 0 as v — oo.

Choose an arbitrary point s € [0,1] inside an element i, i.e., s € [z;_1,%;]. We can

write

Y (s) + a(s)py (s) + b(s)py (s) = Ty L)l + als)py (s) + b(s)pi (s) =
ST L) (215) — alig)py (2i3) — blz)pk (2ig)} + als)py () + b(s)pf (s),

which will tend to zero as v — oo, because

(3.42)

fV(Zz'j) =0,
il ZZ] pz (Zij) — a(s)pz"/(8>

]:

—

and
Z b(2i5)pi (2i5) — b(s)p; (s)-

As a result, if we integrate the above equation over [0, s] we have
[ 1Ph(2) + a(@)pye (@) + b(@)pu ()} dr =
Die(5) — Phe(0) + [ {a(@)P (2) + b(e)pre ()} .
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When v — oo the above expression goes to zero, and ppv(z) tends to p(z). Therefore,

we can write

P (s) =5 (0)— [{al@)p (@) + b(@)p(e)}da.
From Lemma (3.9.1) we know that p € C'[0,1]. In addition, since the right hand
side of this equation is differentiable, it follows that p € C?[0,1]. Thus p’ exists. By

taking the derivative we find

p (s)+ a(s)p/(s) +b(s)p(s) = 0.

Using the boundary conditions, we have pn(0) = pnr(1) = 0, as a result when
v — oo, we have also p(0) = p(1) = 0. From the assumption in the statement of
the theorem we conclude that p = 0, which can be shown to contradict the fact that

| puvlls = 1.

Proof of the second part: This will also be done by contradiction, similar to the
proof of the first part. Suppose, on the contrary, that the second part of the theorem
does not hold.

By Part 1, the collocation system, which is a linear system of N*(m+2) unknown
coefficients and N*(m-+2) equations, for all small | h” | has a unique solution. As a
result, we can find a sequence of meshes {h*}2;, with | i |— 0 as v — oo, and for

each mesh h” quantities f” with || /¥ ||o— 0, such that the corresponding unique

solution pn» of the collocation equations
Lp:(zl]) = fy(zij)a 1= 17' ’ '7N7 .] = 17“ T, M, plll(o) :py\f(l) = 07
where, as before, p is a part of the piecewise polynomial ppv, satisfies || pn-||, = 1

For each mesh h¥ as v — oo, we have
= f"(zi;) — 0 and || f* [le— 0.

As p¥ € Pnyo we have p! € P,. Again, pl’-’"( ) is completely determined by
{pY" (25) = pw 7L, and therefore we can write p¢" in terms of Lagrange basis func-

tions for l;; € P, lij(2) = 65
Z )P
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The collocation points (z;) are chosen according to a template. As a result, the l;;(z)

are bounded (I;;(z) < K (a constant)), and we can write

max Ip;’”(:r) | = max| Zlij(x)pf;' (3.43)

xe[xi_l,zi]
< mimax | f*(2i) — alag)py (2) = b2y () |
As f¥(z;) — 0, and also p¥ (z;;) and pY(z;) are bounded quantities, we have

| p"(z) |< K (a constant).

xe[z, 1 x,]
From Lemma (3.9.1) we conclude that there exist a subsequence of {pn-},_, and a

function p € C*[0,1] such that:
| pnw—p |li;— 0 as v — oo.

Take an arbitrary point s € [0, 1] inside an element i, (s € [z;-1, z;]). We can write
Py (s) + a(s)pY (s) + b(s)p (s) = St lig ()P +als)pt () + bls)pi (s) =
S L (){ £ (z5) — alzig)pY (715) — blzig)pt (2:5)} + als)py () + b(s)py (s).
The above expression will tend to zero as v — oo, because 327, lij(s)a(zi)pY (2i) —

a(s)p? (s), Y L (8)b(2i5)p% (265) — b(s)p?(s), and f¥(z;;) — 0. If we integrate this

equation over [0, s] we have

(3.44)

Pro (8) = Py (0 +/ {a(z)pyy(2) + b(7)pw ()} dz.

Therefore, when v — 0o we have

p(s)=p(0) - /O fa(2)p (x) + bz)p(@) d.

From Lemma (3.9.1) we have p € C1[0,1]. Since the right hand side of this equation
is differentiable, it follows that p € C?[0, 1], so that p’ exists. By taking the derivative

we have

H

p'(s) +a(s)p (s) + b(s)p(s) = 0.
Using the boundary conditions, we have p(0) = p(1) = 0. As in Part 1, from the

assumption in the statement of the theorem we conclude that p = 0, which can be

shown to contradict the fact that || pnv||; = 1.
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3.10 Summary of the complete collocation algorithm

The complete algorithm of the finite element collocation method for linear ODEs

is as follows:

e Mesh generation:

— Recursive subdivision of the domain until the desired mesh size is achieved.

— Construction of the binary tree to be used in the nested dissection proce-

dure.
e Loop over all elements

— Compute ®, Ly and Rg, using Equations (3.9) and (3.10).

— Solve Equation (3.11) to find A and B for each element.

e Construct Equation (3.8) for the root node of the binary tree, using the nested

dissection procedure described in Section 3.8.

e Use the boundary conditions, together with Equation (3.8) for the root node,

to solve for the unknowns on the boundary of the domain.

e Determine the unknowns at the interior mesh points using the recursive back-

substitution, as mentioned in Section 3.8.

3.10.1 Stability of the solution algorithm

The stability of the collocation method as established in Section 3.9 for lin-
ear model problems, does not take into account the algorithm used for solving the
resulting linear equations. In fact, in the analysis we implicitly assume that the lin-
ear systems, which are shown to be nonsingular, are set up and solved ezactly. In
practice, the arithmetic is inexact, and moreover the actual algorithm used to set up
and solve the linear systems may introduce instabilities. In this section we discuss
certain aspects of this fact. The numerical stability of the solution algorithm depends
on the stability of the nested dissection procedure. As an example, in Figure 3.5 a
simple mesh and its binary tree is shown. The domain is subdivided into two sub-

domains and each subdomain is subdivided into two elements. The unknowns are
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w1, vi, ---, Us, vs. If we write all collocation equations, together with the match-
ing conditions between adjacent elements without, the insertion of global boundary

conditions, we have the following form of linear system:

Ia) v T x z )
Ib) Vg T x x
Uy
I1a) Vg T T x
U
I1b) Vs Tz x
I1la) | ws r z x
Uy
I11b) Vs T x x
Us
IVa) Vg T T
IVb) U5 T T T

Here the ”z”s denote elements that are generally nonzero in the global system. Equa-
tions (I,---, IV) represent Equations (3.8) for each element. For solving this system,
using the nested dissection method, we eliminate uy from Equations (Ia) and (//b)
using Equations (Ib), (IIa) and the matching conditions between elements 3 and
4. We also eliminate u4 from Equations (I1Ia) and (IV'b), using Equations (I11b),

(IVa) and the matching conditions between elements 3 and 4. Therefore the system

G o o o )

ulvl u2V2 U3V3 U4V4 u5V5

Figure 3.5: A simple mesh with its binary tree
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(3.45) changes to the following system:

I'a) Uy x Y x
I'b) Uy T T T
' U1
ITa) Vg T x T
11'b) v x e x
, S I u |+ . (3.46)
111 a) U3 T Y x
, Ug
I11'D) Uy T T T
' Us
IV a) Uy T x x
IV'b) Us Y x x

Here the ”y”s are new filled elements in the system. Now, eliminate u3 from Equations
(I'a) and (IV'b) using Equations (II'b), (111 a) and the matching conditions between
subdomains 1 and 2. Then the system (3.46) changes to the following system:

I"a) vy z z T
I'b) Uy T T x
" Lt
Il a) Vg r x z
11"b) v x “ x
) S I us |+ L (347)
Il a) U3 x Y x
" Uy
I11'D) Vg T T x
" Us
IV a) Uy T x x
IV'b) Us 2 x x

Here the ”2”s are new filled elements in the system. The Equations (I"a) and (IV"b)

can be solved with global boundary conditions over the whole domain.

As one can see, the stability of this procedure depends on the elimination of
common variables in two adjacent regions. We must be able to set up Equations
(3.39) and (3.37). Therefore the matrix £ must not be singular. Often this matrix
is diagonally dominant and invertible. If it is singular, then we can use a Gauss
elimination algorithm with a full pivoting strategy, as explained in detail in the next

chapter.

Consider the result of the above elimination for two adjacent elements, as shown

in Figure 3.6. The global system for these two elements, using Example 3.5, is
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| 5 @ @
u v u v u v
1 1 2 2 33

m —1 1 C
11 “

— C

1 =1/h w |+ |, (3.48)

’1]2 _1 1 03
Us

Vs -1 1 Cq

where ¢;, ---, ¢4 are right hand side coefficients. We have

E=1/h— (~1/h) = 2/h.

Therefore, we can solve this system using equation (3.39). After elimination of uz we

have
(%} -5 0 ) ¢+ D
1 1 0 “
v — c
> | =1/h uy | +h ? : (3.49)
(% 0 -1 1 Cs3
Ug
U3 -5 0 5 cg—.D¢é

where ¢ = c3 — ¢

3.10.2 Example

As another example, consider the following simple second order linear ODE
Lu=u"(z) + Mu(z) = f(z), 0<z<1 (3.50)

As boundary conditions take
u(0) =u(l) =0. (3.51)

Consider a line segment element as shown in Figure 3.7. The element is centered at xg
and has a length h. Let m = 1 and take the collocation point z to be at the center of
the element, i.e., z = zo. Corresponding to the matching points (zg — h/2, zg + h/2)

the approximation in Equations (3.5) takes the form

Uzg—h/2 = 011 Ugy—h/2 T Q12Ugg+h/2 + Blf(zl)a (3 52)

Vgoth/2 = Q21Uzg—h/2 + Q22Ugg4h/2 T+ Baf(z1).
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an element

"" 4

1

Ee
-
4

Figure 3.7: A 2D element with center at zg

As basis of Py, = P; choose polynomials {1, z,2?}. The coefficients ay; and S; are

obtained by solving Equation (3.11), which is

1 1 A 11 G971 0 0
To — h/2 To + h/2 )\LEO 12 (99 = 1 1 .
(o — h/2)% (zo+h/2)% 2+ Azf B B 29 —h 2z +h
Upon solving this system, we find:

A=

1 <8—3)\h2 —8—)\h2>’ 4h <1> (3.53)

% — 8h \8+3\R2  —8 4 3)\K2 B=~—s\a

Take f(z) = 0. For two adjacent elements in the nested dissection procedure we have:

Uy 8 —3M2 —8 — \h?
U
s 1 8+ 3AhE —8+ 3\h2 !
= 5 5 , ) wy | . (3.54)
Vs 8 —3\h —8—\h
U3 8 +3\h2  —8 4 3\h?
‘We have

84 3AR2— (8—3M\h2)  —16+ 6AR?
B Ah3 — 8h - AR —8h
Now note that if A = 8/(3h?) then E = 0, and we cannot solve this system using

E

the nested dissection method as described in Section 3.8. In this case the system
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becomes:

U1 0 —32/3

Uy
Va 3 32/3 0
Vs 16A 0 —32/3

us
Vs 32/3 0

Nevertheless, with proper boundary condition, this system is solvable. To avoid cases
like this, we will use a modified nested dissection method with a pivoting strategy,

that we will present in the next chapter.

3.11 Special basis functions

3.11.1 Selection of the basis functions

For each finite element, the system (3.11) must be solved for the coefficients a;;
and (3;; . If the basis functions are chosen properly, then this procedure can be done
efficiently. Special basis functions help us to change the above system into a form
that can be solved easily. In Section 3.6 we have used Lagrange basis functions, and
we divided the basis of P, into two groups, namely, {¢1, ¢2} and {91, -, ¥m}. As
a result Equation (3.11) changes to Equation (3.17) or

(i fi)(éﬂ%ﬁj) (3.55)

where now the ~ has be omitted for simplicity of notation. Evaluating ® and ¥, we

(6 2) () - ().

which can be solved efficiently using Equations (3.19) and (3.20).

have

In many particular cases one can construct basis functions such that

(359 =

This is a special case of the system (3.55), namely, when L = d*/dz?, in which case
the system has the explicit solution A = RT and B = Rj,. If we construct special
basis functions that satisfy Equation (3.56), then we can easily evaluate coefficients

of Ly and Ly in the general case because ¢; (z;) = 0 and ; (z;) = ;. In this case

17

(Lol = Lou(z;) = ;(25) + a(z;),(25) + b(z;) ()
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= a(z)¢i(2z) + b(z) (), (3.57)
(Ll = Ls(z) = ¥; () + alz)¥(z;) + b(z;)¥i(2;)
= b5+ alz)¥;(2) + b(2))¥i(z5). (3.58)

where §;; denotes the Kronecker delta function.

3.11.2 Evaluation of the weights

Using the special basis functions satisfying Equation (3.56), the coefficients «;
and B;;, i.¢., the matrices A and B, can be obtained from Equations (3.19) and (3.20).
This requires evaluation of Lg, Ly, Re and Ry, i.e., we need the values of ¢;, qﬁ;,
;, and z,b; at the collocation points z;, and the values of qb; and v, at the matching
~ points z;. These quantities will be called weights. Note that second derivatives are
not needed. If the discretization is uniform then each finite element has the same
set of weights. Even if the discretization is not uniform, then the weights of finite
elements are related by a scaling factor (when the collocation points are chosen using

a template). Thus, in these cases, the weights can be pre-computed.

We now show in detail how to pre-compute the weights ¢;(z;) and ¥;(z;). Let
0;,i=1,---,m+ 2, denote the monomial basis of F,,,o. For example, we can take
P; = Span{l,z,z*}. Monomials and their derivatives can be evaluated efficiently.

We can write

m-+2 m+2

¢i(x) = z_: cabr(z) and Y(z) = Z_: di O (),

for certain constants ¢;; and d;;. Using Equation (3.56) we have
¢i(x;) =8y, ¢;(2) =0,
bi(zs) =0, Wi () = 0,
that is,
S cabi(zy) = 0y, SR ety (z5) =0, (3.59)
P2 dibi () = 0, i dubi(25) = iy

We define

( 01 (z;—1) 61 (x;) ) ( 9;’(21) T Hlll(zm) )
0= : : , Ag = : : ,
Omr2(Tiz1)  Omia(Ts) 9;+2(21) T Q;In+2(zm)
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and

Cl1 - Clmaz di - dimeo
C = (c . ot > , D= : : )
21 " Com+2
dml e dm,m+2

Then Equation(3.59) can be written as

(&)@ 10m=(5 7).

Thus S
or\ -
CT|DT)= : :
(e 10" = (ar) (3.60)
To evaluate ¢;(z;) and v¥;(z;) we have
m+2 m—+2
¢i(zj) = Z Cikgk(zj), and wi(zj) = Z di;ﬁk(zj). (361)
k=1 k=1
Defining
e ), ()
w 2o Ym(z1) - Um(2m)
and

( 01(z1) - Oi(zm) )
0, = : : )
Omi2(z1) - Omya(zm)

we can write Equation (3.61) as

or

(@ | ¥T) =0, (CT|D").

Now, using Equation (3.60), it follows that

T~ —1
(o7 19y =t (3)

A
from which
(@7 [ ¥7) <®T> =07
z z Ag z
or
D,
(@|A9)<\p):@z. (3.62)
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Thus the weights ¢;(z;) and ¢;(z;) can be computed by solving the n +m by n +m
System (3.62) for ®, and V,.

Other weights, namely, ¢; and 1;, evaluated at the collocation points z; and at
the matching points z;, can be computed similarly, using the same m + 2 by m + 2
matrix. Thus only one LU-decomposition is needed. Furthermore, as mentioned

earlier, weights for similar finite elements can be obtained by scaling.
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Chapter 4

The Collocation Method for
Nonlinear ODE BVP

4.1 Introduction

In preparation for the case of nonlinear PDEs, we consider in this section the
finite element collocation method for nonlinear BVP ODEs. The finite difference
approach, as described in Section 3.4, cannot be used for nonlinear problems, because
there is no linear relation of the form Equation (3.5), or, equivalently, Equation (3.8),
between the variable u and its derivative v at the boundary points (matching points)
of an element. Instead, the collocation formulation, described in Section 3.7 for the
linear case, is the appropriate approach for the nonlinear case. Nevertheless, the
nested dissection procedure, which in the linear case was suggested by the finite
difference formulation, can be generalized to the nonlinear case, as will be explained

below, namely, in the solution of the linearized Newton systems.
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Figure 4.1: Recursive subdivision and a finite element mesh

4.2 Collocation with continuous piecewise polynomials

Consider the second order nonlinear ODE
Nu:u"(a:)Jrf(x,u,ul):O, 0<z <1, (4.1)
where f(.),u{z) € R. As boundary conditions, take
u(0) =u(l) =0. (4.2)

As in the previous chapter, this example uses simple boundary conditions, but it
is possible to treat more general boundary conditions. For simplicity and ease of
presentation of the method, we choose the line segment 0 < z < 1 in Figure 4.1 as
the domain € of the problem. We construct a mesh using recursive subdivision of the
domain, as already presented in the preceding chapter. The domain, which is the root
region, is recursively subdivided into two sub-regions. This subdivision procedure is
continued until a desired level of mesh has been achieved. The smallest regions are

the finite elements, which correspond to leaf nodes in the binary recursion tree.

4.3 The finite element collocation formulation

Consider any finite element €;, as illustrated in Figure 4.1. We choose col-
location points zy, k = 1,---,m inside this element. A polynomial p(z) € Pnia,

associated to each finite element, is required to satisfy the collocation equations
Np(z) =0, k=1,---,m.

(For notational simplicity, the index ¢ from the above equation is dropped.) For any
two adjacent elements, the values and the derivatives of the neighboring polynomials

are required to match at their boundary (matching) point.
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For each finite element the local polynomial has the form

m—+2

plz) = Z cigi()

=1

where Span{dy, -, ¢mi2} = Pni2. The collocation equations are
m+2
N(>_ cgi(z)) =0, k=1---,m. (4.3)

i=1
To impose the continuity requiremen’ts, unique variables u; and v; are associated to
each matching point x; on the common boundary points, namely,

p(l‘l) = Ui,

p(xz) = ;.

Using the notation of the previous chapter, we can write

u—®Tec=0,
(4.4)
v— REc=0.
where
u = (Ui-1, ui)Tv v = (-1, Ui)Tv
and
d1(xiz1) ¢1(x;) ¢1(zi-1) ¢ ()
o = : ; , Re= : : : (4.5)
Gmia(Tio1)  Pmra(Ti) ¢;n+2(xi—1) ¢;n+2(xi)

4.4 Newton’s method

Equations (4.3) and (4.4), together with the discrete boundary conditions, con-
stitute the discretization. The unknowns are ¢ € R™*2, for each finite element; and
the u; and v; associated with the points z; on inter-element boundaries (the end points
of the elements). To solve Equations (4.3) and (4.4) for u, v, and ¢, we use Newton’s

method. Omitting iteration indices, it can be written as

LY 6c = —ry, (4.6)
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a) du— ®Téc=—r,,

b) §v — REéc = —r,. (4.7
with
( Lip(z1)g1(z1) -+~ Lip(21))dmr2(21) )
L = . : , (4.8)
L[p(zm)]qbl(zm) T L[p(zm)]¢m+2(zm)

where L is the linearization of N, i.e., L[p]¢(z) is the linearization of N about p

acting on ¢ at z. More precisely, we can write

+

LIplé(z) = 6" (2) + Daf (2,p(2),p (2))$(2) + Daf (z,0(2), 0 ()" ¢ (2).

Here, Dof(z,u,u ) is the derivative of f with respect to v and Dsf (z,u,u) is the

derivative of f with respect to u’. Further we define

50:( 5101 ), er(Np:(ZI)), 5u=<5:;1:1>, 51}:(6:;;;1), (4.9)

5cm+2 Np(zm)
and

ro =u—®Te, rvzv—Rgc.

Equations (4.6) and (4.7a) can be written

<§>5c=(5“+“>. (4.10)

Using Equation (4.10) to eliminate dc in Equation (4.7b) one obtains

T\ fu+r
5v = RY ( ) ( ") 7.
@ Lrg —TN
Define A and B precisely as in the previous chapter,
A:(Om 0412)’ B=<511 6lm>’
Q12 Qa2 Bor 0 Pom
which are the solutions of the following linear system

(@1 20) (1 ) = R (a.11)

The above expression for dv can be rewritten as

TN [T\ (Sutry
=4 0 () (7)) ("50) -
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that is,
ov = Adu — Bry — 1y + Ary,. (4.12)

It is important to note that this equation has the same form as Equation (3.8) of
the previous chapter. As a result, the nested dissection procedure used for linear
ODEs can also be used here. As mentioned in Section 3.10.1, the original nested
dissection procedure, as described in Section 3.8, can fail due to possible singularity
of the matrix E in Equation (3.37). In the next section, we introduce a variation on

the nested dissection method.

4.4.1 Modified nested dissection

We use a nested dissection procedure to eliminate the unknowns du and év on
boundaries separating adjacent regions. The procedure results in the elimination of
all interior unknowns. One is left with one equation for each z; on 62 (the end points
of the domain). Subsequently the boundary conditions can be used to determine the
values of du and dv at the boundaries. Thereafter, a recursive back-substitution gives

the values of du (and hence dv) at each interior point common to adjacent regions.

Consider two adjacent regions £y and €, as in Figure 3.4. The elimination of
unknowns du and dv on the common boundary is done as in the domain decomposi-
tion. The common boundary is called 6215, and the remaining parts of the boundaries
of ©; and €, are called 6, and 62y respectively. The vector du in the collocation
formulation (4.12) is split accordingly into du; and du for region €y and into duy

(= duy2) and duy for region §y. Vector év , ry, 7, and ry are similarly split.

To prevent the problem mentioned in Section 3.10.1 (the nested dissection pro-
cedure can fail due to singularity of the matrix E in Equation (3.37)), we present a
modified procedure. First, to have a more flexible system, we rewrite Equation (4.12)
in the form

Dév = Adu + g, (4.13)

where

g=—Bry —r,+ Ar,.

Matrix D is the identity matrix at the element level (at leaves of the binary tree), but

it is not necessary the identity matrix at the interior nodes of the binary tree, during

61



the execution of the method. Equation (4.13) can be written in the split form as

Dy D ) A A )
( 11 12)( (%1 >:< 11 12)( Uy >+( g1 ) <4.14)
Dy Doy 012 Ay Ago 012 g12

Matrices D and A have been split into four parts, according to the dimensions of u;

and u15. Equation (4.12) for region €2, can be written as

() () ( ) () () e
D%l D%z 0v12 A%l A%z du1p 9%2

where
1_ 1.1 1 1
g1 = =By — To1 + ApyTun + AfaTus,
1 1.1 1 1
912 = _BQTN — Ty12 + A21Tu1 + A227ﬁu12-

For region 2,, we have
D% D? v A2, A2 ou 2
( 11 12)( 2):< 11 12)( 2>+(92>’ (4.16)
D%l D%2 dva1 A§1 A%z dug 9%1
where
gg = —Bfr?\, — T2 + A%ITUQ + A?2ru21,

2 2.2 2 2
g1 = —BQT'N — Tyo1 + A21Tu2 + A22ru21-

The superscript represents the region number. As the values and the derivatives of

the neighboring polynomials must match (continuity relations), we have

5U12 = 5U21, (417)
5’012 = 5’1121.

As a result, Equations (4.15), and (4.16) together can be written as follows:

D %1 0 D %2 A%l 0 Ab g}
2 2 0V 2 2 o 2
0 D Di _ 0 An An 92
1 1 5'1)2 = 1 1 5U2 —+ 1 5
Dy 0 Dy Ay 0 Ay 912
2 2 01y 2 2 012 2
0 Dy Dy 0 A3 A 921

(4.18)
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or

dv1o
Dy, —Aj Dy —Ay 0 0 ura 9i»
D3, —A3 0 0 D3, —A% vy _ 9% . (4.19)
Dy, —Ai, Dn —A; 0 0 dug 91
D, —AL 0 0 DY ~ A% vy g
dus

Now, we use a row and column pivoting strategy over the first and the second columns
of System (4.19) to eliminate all coefficients in rows three and four, and columns one
and two. We also transform the square matrices D3, and —A3, to identity matrices
(I), and eliminate all coefficients in D3, and AL,. Note that, in our scalar ODE case,
DL,, A%,, D%, and A}, are scalars and we must transform D3, and —A3, to 1 and D},
and A}, to 0. (As we shall see in later chapters, in case of PDEs, DL, A2, Dj, and

AL, are square matrices.) This elimination changes System (4.19) into the following

form:
dv12
I 0 Dy Ay Dy Ap du1o J12
0 I Dy Ay Dy A Sv 0
21 21 22 22 1 _ QAzl . (4.20)
0 0 D3y Ciu Dip Cro ouy g1
0 0 Dy Cy Dy Cp dvy 92
5“2
From Equation (4.20),we can write
01z = Jo1 — (15215?)1 + Ay 6uy + Dogbuy + A225U2), (4.21)
dviz = G2 — ([)1151]1 + Apduy + Digduy + A125u2), (4.22)
and
(5’1)1
Dy Cy Dy C ou J
( 11 11 12 12 ) 1 _ < !{1 ) (4'23)
Doy Cy Doy Coy 0V, g2
5’11,2

Equation (4.23) represents the discrete equations for the enlarged region, that is, for
the union of € and s, after the elimination of common boundary unknowns du;2

and 6vy.. Note that these new equations are again of the form Equation (4.13).
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4.4.2 Complexity

Since for the case of scalar ODEs the coefficients of System (4.19) are scalars,
we need approximately the same number of operations in each nested dissection step.
Differences in the number of operations are due to the pivoting strategy to transform
System (4.19) to System (4.20), i.e., the number of operations depends on the values
of coefficients stored in the system. We can consider the maximum possible number of
operations, or an average number of operations, needed in each step. These numbers
are constant and they do not depend in the position of the node (region) in the binary
tree. They depend on the dimension of System (4.19), which, for ODEs, is the same in
each step of the nested dissection. Therefore, the complexity of the nested dissection
algorithm for ODEs depends only on the number of interior nodes of the binary tree.
For a mesh of N elements, we must construct a binary tree with N —1 interior nodes.

As a result, the complexity of the nested dissection algorithm for an ODE pfoblem is
O(N).

4.5 Special basis functions

For each finite element, System (4.11) must be solved for the coefficients
and (3;; . This procedure can be done efficiently if we use special basis functions.
If the discretization is uniform or if there are many similar finite elements then the
Lagrange basis functions defined in Section 3.6 can also be used in the nonlinear case
to reduce the number of operations. Using the notation of the previous chapter we

can write ,

pla) =Y cdi(z) + ) dapi(z).
i=1 i=1

We divide the basis of P, into two groups, namely {¢1, ¢2} and {11, - -, ¥ }. If we
rewrite the matrices ®, Ly and Rg defined in Equations (4.5) and (4.8) as presented

in Sections 3.6, and 3.11.1, then Equation (4.10) can be written as
o7 \I/T><5c> (5u+r )
= “, 4.24
(o 1g) Ga) = (2 (4:20)
where ® = I and ¥ = O. Thus

dc = du+ 1y,

(4.25)
LY6d = —ry — Lide.
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Equation (4.11) becomes
(o 1) (o) = (i)
O Ly/\BY) \Ry/)
From this equation, we have,

Ly BT = Ry,
AT = Ry — Lo BT.

As a result the form of Equation (4.12) remains unchanged:

ov = Adu — Bry — 1, + Ary,

but now we have

= (3) (§) e

T
Ty = v—(R(P) <C>:v—Rgc—R€d.

Ry d

4.6 Summary of the collocation algorithm

(4.26)

(4.27)

(4.28)

(4.29)

The algorithm of the finite element collocation method for nonlinear ODEs can

be summarized as follows:

e Mesh generation as presented in Section 3.10.

e Given current approximations to u, v, and ¢

e Do Newton’s iterations until the error criteria are satisfied.

— Loop over all elements

+ Compute the matrices ®, Ly and Rg using Equations (4.5) and (4.8).

* Solve Equation (4.11) to find A and B for each element.

+ Compute r,, 7, and ry, and write Equations (4.13) for each element.

— Solve the global system.

* Construct System (4.13) for the root node of the binary tree, using

the nested dissection procedure described in Section 4.4.1.
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x Use the Newton equations corresponding to boundary conditions to-
gether with the above system to solve for the unknowns, du and dv on

the boundary of the domain.

x Find the unknowns at the interior matching points of the binary tree,

using the recursive back-substitution described in Section 4.4.1.
— For each finite element compute dc using Equation (4.10).
— Update : v — u+ du, v — v+ dv, and ¢ — c+ dc.

— Find the relative errors in the calculation of u, v and c.

e Save the results.

Note that for any given finite element the matrix on the left hand side of (4.10)
is the transpose of the matrix on the left hand side of (4.11). Thus only one LU-

decomposition is required per finite element.

If Lagrange basis functions are used, the above algorithm is modified as follows:

e Mesh generation as presented in Section 3.10.
e Given current approximations to u, v, ¢ and d.
e Do Newton’s iterations until the error criteria are satisfied.

— Loop over all elements

+ Compute the matrices Ly, Ly, Ry and R, using Equations (4.5) and
(4.8).
+ Solve Equation (4.26) to find A and B for each element.

+ Compute 7, 7, and 7y, using Equations (4.28), (4.29) and (4.9), and

write Equations (4.13) for each element.

— Solve the global system for the unknowns, du and dv, as presented in the

previous algorithm in this section.
— For each finite element compute dc and dd using Equation (4.25).
— Update : u — u+6u, v — v+ dv, ¢ = ¢+ dc, and d — d + dd.

— Compute the relative errors in the calculation of u, v, ¢ and d.
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e Save the results.

Again, in Equations (4.26) and (4.25) only one LU-decomposition of the matrix Ly

is needed per finite element.

4.6.1 Stability of the solution algorithm

As in the previous chapter, the stability of the solution depends on the stability
of the solution algorithm for solving the linearized Newton equation globally. Here,
we consider how the system of equations is solved in each Newton’s iteration, using
the modified nested dissection method presented in Section 4.4.1. For clarity, the
simple mesh and its binary tree as presented in Figure 4.2 are considered. The
domain is subdivided into two sub-domains and each sub-domain is subdivided into
two elements. The overall unknowns are du,, dvy, ---, dus, dvs. If we write all the
collocation equations together, and apply the matching conditions between adjacent
elements, without yet taking into account the global boundary conditions, then we

have the schematic representation of the global linear system shown in Equation
(4.30)

G o © S )

Figure 4.2: A simple mesh with its binary tree
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Ia) x
Ib) x
I1a)
11b)
I1la)
111b)
IVa)
IVc)

Here the 72”s are generally nonzero elements in the global system.

(4.30)

Equations (I, -- -,

IV) represent Equation (4.13), or its equivalent (4.23), for the elements 1, 2, 3, and

4, respectively. Using the modified nested dissection algorithm, we first eliminate du,

and dv, from Equations (IT), using Equations (/) and full pivoting over columns 3

and 4. Then we eliminate dus and dv, from Equations (IV'), using Equations (I11)

and full pivoting over columns 7 and 8. As a result the system (4.30) changes into

the following form:

!

I'a) x
I'b) x
IT'a) Y
1I'b) y
IIT a)
IIT'D)
IV'a)
IV'D)

8

8

(51141
6’1)1

5’1,62

, (4.31)

where the 7y”s are newly filled elements in the system. Now, we eliminate duz and

Svs from Equations (IV"), using Equations (I1') and full pivoting over columns 5 and
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@ @ @
u v uv u_v
1 1 2 2 33

Figure 4.3: Two adjacent 2D elements

6 of Equations (I1') and (IV'). As a result, System (4.31) changes to the form:

duq
I"a) x z 1 oy T
I'b) T x 1 Sy x
II"a) Yy 10 02 x
Ill;b) y oy 0 1 dus ] (4.32)
III a) z x 1 dv3 x
III”b) T 1 OUs T
IV"a) z z T x 0vy x
IV'b) z z T x dug x
Ovs

Here the ”2”s are newly filled elements in the system. Equations (1 V") can be solved,
after adding the global boundary conditions for the whole domain. As one can see,
the stability of this procedure depends on the elimination of common variables in
two adjacent regions. We must be able to determine Equations (4.20), using the
elimination process with the full pivoting strategy, for otherwise we cannot express

Su and dv in terms of their neighboring values.

Here, we consider a simple example, in order to see the result of the procedure
for two adjacent elements, as shown in Figure 4.3, (This is the same example as in

Section 3.10.1). The system for these two elements is

ouq
1 A -1 0 oy c
1/h 1 0 -1 h duy _| e ’ (4.33)
1 h -1 0 0vy c3
1 0 -1 h dus C4
Ovs
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where c¢;, ---, ¢4 are the right hand side coeflicients. After elimination of usz and wvs

we have
duq
-1 —h 10 o c,
0 -1 01 duy | _ c, | (434)
1/h 2 —1/h 0 0v2 cs
1/h 1 —1/h 1 dus c
0v3

The two last equations of the system (4.34) can be easily solved with proper boundary

conditions.

4.6.2 Example

Reconsider the special example in the preceding chapter, namely, Example
3.10.2, for which we have shown that the original nested dissection method, as pre-
sented in the previous chapter fails. Consider the second order scalar linear ODE of

the previous chapter

Lu=u (z) + Au(x) = f(z), 0<z<L1 (4.35)

u(0) = u(1) = 0. (4.36)

Consider again an element, a line segment, as shown in Figure 3.7. It is centered at
xg, has a length h, and one collocation point (z) at the center of the segment. The
matching points are at zg — h/2 and xo + h/2. As basis functions of the polynomial

space P9 = P3, we choose {1, z,z?}.

The matrices A and B are obtained by solving System (3.11) or (4.11), which is

1 1 A o1 Qo 0 0
xo— h/2 xo+ h/2 AZo Qs Qoo | = 1 1 )
(170 - h/2)2 (.1,'0 + h/2)2 2+ )\Ll?g ,81 ﬁz 21,'0 —h 21’0 + h

Upon solving this system, we find:

A= 1 <8——3/\h2 —8—)\h2> 4h <1)

AR — 8h \8 4+ 3AR?  —8 + 3\K? Yiog (4.37)
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Take f(z) = 0. Using the modified nested dissection method, we have:

~1/y 8=3l 0 —8—1
0 843 —1/y —8+3
0 0 —1/y 8—3
0 0 0 843l

0 0

0 0

0 —8—1
—1/y —8+3I

n
Uy
Cp)
Uz
Us

Uus

=0,  (4.38)

where v = 1/(A\h® — 8h) and [ = Ah%. If we take \ = 8/(3h?) then the value of E in
Equation (3.38) is zero, and as a result, we cannot solve this system using the original

nested dissection in Section 3.8. Now, System (4.38) with A = 8/(3h?) is given by:

16h/3 0 0 32/3
3 0 —32/3 168/3 0
60| ¢ 0  16h/3 O
0 0 0

0
0
0

0
0
32/3

—32/3 16h/3 0

(%}
Uy
)
U2
U3

Us

=0.  (4.39)

Eliminating of vy and uy from the first and the second lines of System (4.39), using

the third and the forth lines of this system, and full pivoting, we obtain the following

system:
U1
16h/3 0 0 0 16h/3 0 Uy
3 0 -32/3 0 0 0 —32/3 v
- / / =0 (4.40)
16h 0 0 16h/3 0 0 32/3 Uy
0 0 0 —32/3 16h/3 0 U3
Ug
Using the first and the second lines of the above system, we can write
U1
3 16h/3 0 16h/3 0 u
. / / fl=o. (4.41)
16h 0 —32/3 0 —32/3 Vs
Us
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This system is again of the form Equation (4.23), but for the enlarged region (two
adjacent elements together). We see that the modified nested dissection algorithm

does not fail for this example, in contrast to the original algorithm.
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Chapter 5

The Collocation Method for Linear
Elliptic PDE BVP

5.1 Introduction

In this chapter, we consider algorithmic aspects of a class of finite element collo-
cation methods for the approximate numerical solution of linear PDEs. As mentioned
in Section 3.1, the finite element collocation method with discontinuous piecewise
polynomials can be used for the solution of ODE BVPs as well as PDEs. One of the
advantages of the method is, in fact, that it can be used for a wide range of problems.
It can be considered as a unified method for solving ODE BVPs and elliptic PDEs.
In this chapter, we extend the method described in Chapter 3 for ODEs to PDEs.

Important characteristics of the collocation method for PDEs are:

e high order of accuracy is possible,

e the piecewise polynomial solutions are not globally continuous,
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e the linear systems that arise can be solved efficiently by the method of nested
dissection,

and

e the possibility to use different types of elements, including rectangles and tri-

angles.

In this thesis, we consider only rectangular elements. Locally, for each finite element,
the approximate solution is a polynomial. Although polynomials corresponding to ad-
jacent elements don’t need to match continuously, their values and normal derivatives
must match at a discrete set of points on the common boundary. High order accu-
racy can be attained by increasing the number of matching points and the number of
collocation points for each finite element. As in Chapter 3, collocation methods can
be defined equivalently as generalized finite difference methods. The linear equations
that arise from the discretisation lend themselves well to solution by the method of

nested dissection.

5.2 Collocation with discontinuous piecewise polynomials

Consider the following second order linear elliptic PDE
Lu = Au+ a(z)TVu + b(z)u = f(z), reNC R (5.1)

where A is Laplace’s operator, Vu is the gradient of u, a(z) € R?, b(z), f(z),u(z) € R,

and T denotes transpose. As boundary condition take
u(z) = up(z), x € 6. (5.2)

We shall assume throughout that the coefficient functions a and b, and the
inhomogeneous term f are sufficiently smooth. We shall also assume that Equations
(5.1) and (5.2) has a unique solution. Consider the domain 2, for simplicity a square’,
in Figure 5.1a. Initially Q is subdivided into two subdomains or regions, Figure 5.1b.

Thereafter, each of these regions is subdivided again into two parts, as in Figure

1The domain € can in principle be quite general. It is also possible to treat elliptic systems with
more general boundary conditions than we study in this section.
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A finite element
|

d) e)

Figure 5.1: Recursive subdivision

5.1c. This procedure is continued recursively until a desired level of refinement is
achieved, Figure 5.1e. The smallest regions are the finite elements. These elements
are leaf nodes in the binary recursion tree. The recursion is not really necessary for

the discretisation, but it is useful for the nested dissection algorithm.

5.3 The finite difference formulation

Intuitively, for any finite element, for example, €, if u(z) is known on €2, and
if Q is sufficiently small then the solution u(x) is defined in €. As a result, u/0n,
the derivative of u in the direction of the outward normal 7 to the boundary 6€2,, will
be defined along any smooth part of the boundary. This relation defines a mapping
from 0€2 to 6§2,. This mapping is linear in u and f. The finite difference method is
based on a discrete version of this basic observation. For any finite element €, (refer
to Figure 5.2), the above idea leads to the following finite difference discretisation

formula for Equation (5.1):

vi =Y aguy+ oy Bf(z),  i=1-n (5.3)
j=1 j=1
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Figure 5.2: A finite element of {2

Here m is the number of collocation points, n is the number of matching points, and
u; denote the approximate solution at point z;, (¢ = 1,---,n) on the boundary of
the finite element, that is, u; ~ wu(z;). Similarly v; denotes the normal derivative at
z;, b.e., v; =~ Vu(z;)Tn;, where 7; is the unit exterior normal to the finite element

boundary at x;. The points z; lie normally inside €2,.

Thus, for each finite element of €2, there is a discrete equation corresponding
to each z; on the boundary of the finite element. The coefficients «;; and f;; in
Equation (5.3) are determined by requiring (5.3) to be satisfied exactly for a basic set
of equations with known solutions. These test problems are of the form (5.1), with
f = L¢ where ¢ is a polynomial, and with obvious solution u = ¢. More precisely,
let P,,. be a polynomial space of dimension n + m. Then we require that

Vo(z:) ' = Z aip(x;) + Z Bii Lo (z;), i=1,---,n, V€ Pryp. (5.4)
=1

=1
Let u= (ula s ;un)T7 v = <U17 " 'avn)T7 f= (f(zl)a e '7f(2m))T7 and

G113 0 Qip 511 Tt Blm
A= : : B = : :
(0791 o Qpp ﬁnl T /Bnm

Then Equation (5.3) can be written as
v = Au+ Bf. (5.5)

Furthermore, if one defines

() o di(za)
Q= : : , (5.6)
¢n+m(x1) T (ﬁn—l—m('rn)
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Loy (z) -+ Lou(zm)

Lq> = . : (57)
L¢n+m(21) T L¢n+m(z7n)
and
V¢1($1)T771 T V¢1($n)T77n
R:;p = : : 5 (58)
v¢n+m(x1)T771 U v¢n+m (xn)T’r]n

where Span{¢1, -+, dnym} = Pnim, then Equations (5.4) can be written as
AT
(®1Le) (r ) = Re. (5.9

As was the case for ODEs in Section 3.4, for the finite difference approximation
to be well defined, the matrix (® | L ) must be nonsingular. Although this condition
is not automatically satisfied, there are many possible schemes for choosing the z;, z;,
and the space P, ,,, so that it is satisfied. Two such schemes are given in Section 5.6.1.
Note that if the coefficient functions a(z) and b(x) in Equation (5.1) are constant and
if all finite elements are identical then Equation (5.9) needs only be solved once. This

observation is further developed in Section 5.6.1.

Of course, in addition to the finite difference Equations (5.3), boundary condi-

tions must be satisfied, i.e.,

u; = ug(x;) at points z; that lie on 4€2. (5.10)

5.4 The collocation formulation

If (& | Lg) is nonsingular for each finite element, then the finite difference
scheme is equivalent to the following collocation scheme (cf. [45]). Associate a poly-
nomial p(z) € P,im to each finite element. For any two adjacent finite elements,

require that at each point z; on the common boundary:

> the values of neighboring polynomials match,

and (5.11)
> the normal derivatives of neighboring polynomials match.

Furthermore, each polynomial must satisfy the collocation equations

Lp(z) = f(zk), k=1,---,m, (5.12)
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at all collocation points z; of the corresponding finite element. Finally, the boundary

conditions must be satisfied, i.e., for each boundary adjacent element we have
p(z;) = up(x;) at the points z; that lie on 62 (5.13)

The equivalence of the finite difference scheme and the collocation scheme is presented

in the following theorem.

Theorem: 5.4.1 Assume for any finite element €y the matriz (® | Lg ) is nonsin-
gular and the matrices A and B are defined by Equation (5.9). If we find a solution
of the collocation scheme, Equations (5.11) to (5.13), and if for each finite element,
we evaluate the local collocation polynomial at the points x; then the resulting values

satisfy the finite difference Equations (5.5).

Conversely, if we have a solution to the system of all finite difference Equations (5.5)
and boundary conditions (5.10), then, for each element, we can locally interpolate
the finite difference solution by a polynomial p(x) € P,..,, that satisfies the differ-
ential equation at the collocation points. Furthermore, this polynomial satisfies the

continuity conditions in (5.11).

Proof : Take p(z) = S cipi(z). Then the collocation Equations (5.12) can be

written as
n+m

Z c;Loi(zr) = f(z).

=1
Using the definition of Lg, we have

Lo f,
where ¢ = (¢1,-+*, Cnym) T - Take
u = ®T¢,
v = Rlc

Then the pair (u,v) satisfies the finite difference Equation (5.5), because

v—Au— Bf = Rlc— A®Tc— Bf
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= ["(Re — @A) — Bf
= [T(LeBT))" — Bf (using Equation (5.9))

= BLIc—Bf=B(Lic—f)=0.

Conversely, let (u,v) be a solution of the finite difference Fquations (5.5). We can
find ¢ by solving the follounng system

()= (5)

n+m

p(z) = Z cipi(T).

1=1

Take

As a result, the vector ¢ satisfies ®Tc = u, and the collocation equations, as we have
LIc=7f. (5.14)
Neighboring polynomials are also continuous at the points x;, because

(p(z1), -, p(z,))" = ®Tc = u.

To prove the continuity of VpTn note that

Vp(xl)Tﬁl
: = Rge
VP(xn)Tnn

= (®AT + LeBT) ¢ (using Equation (5.9))
= A®Tc+ BLic

= Au+ Bf =w. (Equation (5.5)

5.5 Example

In this example, we choose the Laplace operator as the differential operator,
L = A. A square element as in Figure 5.3 is considered. Assume this element

is centered at (0,0), and each side has the length 2h. We take 4 matching points
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X, =(0,h)

x;=(-h,0) ® ° ® x, =(h0)
2=(0,0)

-
x4 =(0,-h)

Figure 5.3: A finite element with one collocation point

(n = 4), and we assume that these matching points are located at the midpoints of
~ the four edges. One collocation point (z) is considered (m = 1), and we choose it
at the center of the square element. For each matching point x; the finite difference

approximation (5.3) takes the form
4
v; = ZaijUj + Bif(z).
7=1

As a basis of P,y,, = Ps, we choose the polynomials {1,z,y,z% y*}. The

coeflicients «;; and [3; are obtained by solving Equation (5.9), which are

1 1 1 1 0 y1 Qo (31 Qg 0 O 0 0
h 0 -h 0 0 Q19 Q9o Q3o Qo 1 0 —1 0
0 h 0 —h 0 13 (g3 (33 (Y43 = 0 1 0 -1
h2 0 h2 0 2 Qg Qoq i34 Qiyq 2h 0 2h 0
0 B 0 K 2/\8 B B B 0 2 0 2h

Solving this system we find that the finite difference equations are:

v = (2u; —uy —u)/2h + hf(2)/2,
vo = (2ug —uy —u3z)/2h + hf(2)/2,
vz = (2uz —up —uqg)/2h + hf(2)/2,
vy = (2ug —uy —u3z)/2h + hf(2)/2.
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5.6 Special basis functions

5.6.1 Selection of the basis functions

For each finite element, System (5.9) must be solved for the coeflicients «;;
and ;. As in Section 3.11.1 for ODEs, this procedure can be performed efficiently
for PDEs, if we divide the basis of P, into two groups, namely {¢1, --,¢,} and
{1, -, ¥m}. The matrices ®, Ls and Re in Section 3.11.1 (Equations (5.6)-(5.8))

can be rewritten as

¢r(z1) 0 ¢ (f’?n)
_(® ¢n(x1) e Cbn(xn)
¢ = (‘I’> B Yi(z1) - i(Ta)

Ym(z1) -+ wm(xn)
L¢1(Z1) L¢1(Zm)

C(Le) | Léw(m) o Lén(zm)
L¢~< >— Lipi(z) -+ Lpi(zm) |

Lm(z1) - Lipm(zm)

and . .
Vor(@)'m - Vou(@a) na
Rq> — (R‘i)) — V¢n(1'1)T771 e v(bn(xn)Tnn
Ry le(l’l)Tﬂl Tt V%(xn)Tnn
Vlﬁm(ﬂfl)Tﬁl e V¢m($n)TUn
From now on, we omit the ~ for notational simplicity. Equation (5.9) takes the
following form .
® Le\ (A [Re
(v ) (5) = (&) (515)

Let Ag and Ay represent the matrices Lo and Ly, respectively, for the special case
where L = A, the Laplace operator. As in the case of ODEs (Section 3.11.1), for

many particular PDEs, one can construct the basis such that it satisfies the following

(3 2)-(5 %) s

In such cases, where L = A, the equation (5.15) has the explicit solution

equation

A = Ry,
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B = RI.

Selecting the same special basis for the case of the more general operator L in Equation

(6.1), System (5.15) can be written as
(0 1) (5r)=(72)
O Ly)\BT) \Ry/’
This system can be solved efficiently in two following steps

i) LyBT = Ry,

(5.17)
it) AT = Ry — LoBT.
The entries in Le and Lyg also simplify because Ag;(z;) = 0 and Ay;(z;) = 6;;. Thus

[Laliy = Léi(z) = alz)"Vi(z;) + b(2))di(2)),
[Lli; = Lpi(z;) = 055 + a(2)TViabi(zg) + b(25)8i(2).

Above §,; denotes the Kronecker delta function.

(5.18)

5.6.2 Evaluation of the weights

Using the special basis, for each finite element the coeflicients o;; and 3,5, .e.,
the matrices A and B, can be obtained from System (5.17). As a result, we must
evaluate Lg, Ly, Rs and Ry, i.e., using Equations (5.18), we need the values of
s, Vi, 1;, and V1, at the collocation points and the values of V¢; and V; at the
matching points. These quantities, as in Section 3.11.2, are called weights. Note that,
as in the ODE case, second derivatives are not needed. For the uniform discretization
(mesh) each finite element has the same set of weights. Even if the discretization is
not uniform then the weights of similar finite elements are related by a scaling factor.
In these cases, the weights can be pre-computed. In other cases, when elements are
not similar, it may not be beneficial to pre-compute the weights or even to use the

special basis, and one would compute the «;; and §;; using Equation (5.9).

For completeness we now show in detail how to pre-compute the weights ¢;(z;)
and 1;(z;). The procedure is similar to that for ODEs (Section 3.11.2). Let 6,
1=1,---,n+ m denote a monomial basis of P, ,,,. For example, one can take P5 =
Span{l,z,y,z? y?}. Monomials and their derivatives can be evaluated efficiently.

We have

n+m n+m

¢l($) = z Cikek(l‘) and ’Lﬁ,(l’) = Z dlkgk(l),
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To satisfy Equation (5.16), we must have

¢i(z;) = bij, Adi(z;) =0,
Pi(z;) =0, Ai(z;) = bij,
that is,
n+m
> cnbi(z;) = bij, St ciAbk(z;) = 0,
k=1
n+m
Z d,ka(xJ) == 0, ZZ:T dikAGk(zj) = 5,7 (519)
k=1
Define

91(1‘1) s 91(xn) A91 (21) L AHl(zm)
0= : : , Ne=1}| : ,
en-l—m(xl) e v9n+m(xn) Aen—}»m(zl) T A0’n—1—m<zm)

and

11 " Clntm dy - dl,n+m

C=] : : : D = : : :

Cn1 "' Coptm dml e dm,n+m

then Equation (5.19) can be written as

(&)@ 129=(6 7).

Thus
T | pT ory\™!
(e 10" = (ar) - (520)
o
To evaluate ¢;(z;) and 1;(z;) we have
n+m n+m
(]SZ(Z]) = Z Cikgk(zj)a and wi(zj) = Z dika(zj), (521)
k=1 k=1

Defining
(¢1(21) <Z>1(Zm)) (Wa) ¢1(Zm)>
b, = : : , v, = : :
¢n(zl) T ¢n(zm) Pm(z1) - Vm(2m)
( 01(21) et 91(Zm) )
@z = : . )
gn—i—m(zl) o 9n+m(zm)
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one can write Equation (5.21) as

or
(o7 | ¥7) =67 (CT| D).

Now using Equation (5.20) it follows that
oT\™!
ol |9T) =07 (ur)
from which

(a7 [T () =6,
A@

or

(O A@)@z) — 0. (5.22)

Thus the weights ¢;(2;) and ;(z;) can be computed by solving the n +m by n +m
System (5.22) for @, and V,.

The other weights, namely, V¢, and Vi), at the collocation points z; and at the
matching points z;, can be computed similarly using the same n+m by n-+m matrix.
Thus only one LU-decomposition is needed. Furthermore, as mentioned earlier, the

weights for similar finite elements can be obtained by scaling.

5.7 Nested dissection

As Equation (5.5) is similar to Equations (3.8) and (4.12), we can use the nested
dissection procedure, described in Section 3.8 or Section 4.4.1 for ODEs, to eliminate
the unknowns u and v on boundaries separating adjacent regions. As before, this
procedure results in the elimination of all interior unknowns. One is left with one
equation for each x; on 6€2. Thereafter, the boundary conditions can be used to
determine the values of u and v at the points x; on 6{2. Finally, a recursive back-
substitution gives the values of u (and hence v) at the matching points on each interior

boundary.

In Figure (5.4), two adjacent regions €; and 2, for a two-dimensional problem

are shown. As before, the elimination of the unknowns u and v on the common
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Figure 5.4: Two adjacent elements in a 2D domain

boundary is done as in domain decomposition. The common boundary is called §€2;s,
and the remaining parts of the boundaries of €2; and (), are called 6{2; and 6
respectively. (As one can see, in contrast to the case of ODEs, here the common
boundary and other boundaries are line segments.) The vector u in the collocation
formulation Equation (5.5) is split accordingly into uy2 and wu; for region € and ug
(= u12) and us for region . The vector v is split similarly. To prevent the problem
mentioned in Section 3.10.1 (the original nested dissection procedure can fail due
to possible singularity of the matrix F in Equation (3.37)), we use the modified
procedure presented in Section 4.4.1. For this more flexible procedure, we rewrite
Equation (5.5) as

Dv = Au-+y, (5.23)
where ¢ = Bf in Equation (5.5). As for the ODE case, the matrix D is the identity
matrix at the element level but it is not necessarily an identity matrix at the interior

nodes of the binary tree during the nested dissection. Thus for region {}; Equations

(5.5) can be written as

DY D! ) Al Al U 1
Dy D%Q V12 A%1 A%z U12 9112

and for €y, we have

D% D? ) A2 A2 U 2
D3, Dy, V21 Ay A U2y 951

1 2
Above <511 ) and < ggzg ) correspond to the term g for region €2; and (), respectively.
12 21

The superscript represents the region number. From the continuity relations (5.11),
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we can write

Urs = Usai,
v (5.26)

V12 = —V21.
Since v is the outward normal to the boundary at the matching point, the direction
of vy9 is opposite to the direction of vy;. As result, we have v = —v9;. The full

system for two adjacent regions can, as in Section 4.4.1, be written as

V12
Dy —As; Dy —Ay 0 0 U12 912
D3, —A3 0 0 D3 —A% U1 _ 95 ' (5.27)
D, —Aj, D, -4y O 0 Uz 5
—-Di, —AL 0 0 Dy, —A%L U2 95
. .

Using the full pivoting strategy described in Section 4.4.1, we obtain the following

system:
V12
I 0 Dy Ay Dy Ay Ui g12
0 I Dy Ay Do A v 7
21 21 22 22 1 _ 9A21 _ (5.28)
0 0 Diu Cuu Dy Cho Uy G
00 D21 CQl D22 022 V2 92
Ug
From Equation (5.28), we can write
Uiz = o1 — (D21U1 -+ A21U1 + b22’02 + A22U2), (5.29)
V12 = Q12 — (D11’U1 + A11U1 + D12712 + A12U2)a (5.30)
and
U1
( Dy Cii D2 Chz ) Uy _ ( {71 ) (5.31)
Dy Co1 Day Cy (! 92
Ug

Equation (5.31) represents the discrete equations for the enlarged region, that is, for

the union of €2y and €2, after the elimination of the common boundary unknowns
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13 and vi. It is important to note that these new equations are again of the form

Equation (5.23).

The number of arithmetic operations required by the above nested dissection
method can be shown to be O(N®) for a N by N mesh (with N? elements). This
compares favorably with the O(N*) required by a standard band-solver. See [45] for

more details.

5.8 Summary of the complete collocation algorithm

The algorithm of the finite element collocation method for linear PDEs is similar

to the algorithm presented in Section 3.10 for ODEs:

Mesh generation of 2D domain:

— Recursive subdivision of the domain in x and y direction until a desired

mesh size is reached.

— Construction of a binary tree to be used in the nested dissection procedure.
e Loop over all elements

— Compute the matrices ®, Lg, and Re using Equations (5.6), (5.7), and
(5.8).

— Solve Equation (5.9) to find A and B for each element.

e Determine Equation (5.5) for the root node of the binary tree, using the modified

nested dissection procedure described in Section 5.7.

e Use the boundary conditions, together with Equation (5.5) for the root node,

to solve for the unknowns on the boundary of the full domain 2.

e Determine the unknowns at the interior mesh points using the recursive back-

substitution, using Equations (5.29) and (5.30).

As one can see, we follow the same steps as in the one-dimensional case, but here we

apply them to a two-dimensional problem.
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5.9 Stability of the solution algorithm

As before for the ODE case, the stability of the solution algorithm depends on
the stability of the modified nested dissection method in the above algorithm. We
have used the same nested dissection method as Section 4.6.1, and therefore the same

arguments that we used in Section 4.6.1 are applicable here.

5.10 Linear algebra stability considerations

In this section, we consider certain aspects of the stability of the collocation
method with discontinuous piecewise polynomials for solving linear PDEs, using linear
algebra. This type of investigation has also been considered by Sun and Wu [143]. To
be able to consider our method in general form, ¢.e., without considering the solution
procedure, we write Equation (5.5) for each finite element mesh and we consider the
solvability of the entire system for all "u”s and "v”s at the matching points. This
system is much bigger than the final system that arises from the nested dissection

solution procedure. If such system is stable, one can conclude that the method is

stable. (Of course, the solution procedure could still be unstable).

The second line of Equations (5.24) and (5.25) can be written as
viz = Abjur + Ajpuiz + g, (5.32)
and
v = Afjus + Ajyun + g3, (5.33)

Note that DI, and D2 are the Null matrices, and D), and D2, are the identity
matrices at the element level. To have a final system only in terms of "u”s, we

eliminate "v” at each matching point between two adjacent elements, and combine

Equations (5.32), (5.33), and (5.26) to find the following equation:
A;lul + A%ﬂig + (Agz + A52)U12 + g%z + ggl =0. (534)

Note that as vy5 is equal to —vy; we have vio + v2; = 0, which yields an equation
only in term of the "u”s. Every common boundary is between two adjacent elements,

either on vertical edges (left and right) or horizontal edges (top and bottom). If we
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collect the above equation for all the matching points, without considering how we
construct the binary recursion tree, together with the domain boundary conditions,

then we obtain a square system, to be solved for all "u”s.

As an example, consider the following PDE
Lu = Au = f(z), z €QC R (5.35)
where A is the Laplace operator and f(z),u(z) € R. As boundary condition we take
u(z) =0, z € 05D (5.36)

If we write Equation (5.5) for a square finite element, having sides of length "h”, with

one collocation point (similar to Figure 5.3), we find

oht —pt 0 —pt]

A= . (5.37)
0 —h1 2p7t —p?

—ht 0 —h' 2K

One fact about this matrix is that for any element a;;, ¢ # 7, we have a;; <0, a;; > 0,
and the sum of off-diagonal terms is exactly equal to the negative value of the diagonal

term,
A — — Z Aij. (538)

=1,
We have, n = 4 for the matrix of Equation (5.37). Such a matrix is called diagonally

dominant, which is nonsingular if it is also irreducible.

Consider two elements, corresponding to a 2 by 1 mesh in Figure 5.5, with
one collocation point. For the matching point between these two elements, Equation

(5.34) can be written as

4 4
Z a;u; + Z a;ujrg + (a + a)uip = —912 — G5, (5.39)
i=1,i%k j=1,j#

where, a;, i = 1,---,4, (line 4 of the matrix A in Equation (5.37)) are the coefficients

of uy, - -+, uq of the first element, a;, j=1,---,4, (line 2 of the matrix A in Equation

3

(5.37)) are the coefficients of us, - - -, ug of the second element, while a, is the coefficient
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Figure 5.5: A 2 by 1 mesh in a 2D domain

of uys (= u4), and a;, is the coefficient of uy, (= ug). Here, we use the superscript """
to denote the second element. As ay = AL, and a; = A2, are diagonal terms, using

Equation (5.38), we can write

4
ap = — Z as,

i=1,itk
and
7 4 7
J=1,j#l
Thus, the sum of a; + a; which is the coeflicient of u15 (= ug1) is equal to the negative

value of the sum of other terms, 1.e.,

4

4
agta=— Y a- Y. a,. (5.40)

i=1,i#k j=14#

In the current example we have
4h'=—~(-h'—-h ' =0-h""=h"t-0). (5.41)

The same procedure can be used for four elements, corresponding to a 2 by 2 mesh
with one collocation point, or any general M by N mesh. In any such case, for the
matching point between any two adjacent elements, we can write Equation (5.34),
simply by adding v12+v9; and find an equation which only depends on "u” coefficients.
The coefficient of w2, which equals ax +a;, is equal to the negative value of the sum of

other off-diagonal coeflicients, i.e., Equation (5.40) is valid. As a result, if we collect
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this equation for every interior (matching) points of the mesh, then we have a system
of equations only in terms of "u”s. For a grand total of M interior matching points of
all elements and N total boundary and interior matching points, we obtain a system
of the following form

AmnUna = Fapa (5.42)

This system is not square. For solving System (5.42), we need to add the boundary
condition (Equations (5.36)). For each boundary point i, M < i < N, we add a line
to the above system such that a;; = 0if ¢ # 7, a;; = 1 and f; = 0. As a result, we
have a N x N system that satisfies

N
lag |2 > lag|. (5.43)

=1,
Inequality is for the case of the boundary condition equations. As one can see, this

system is diagonally dominant (cf. [149]). The system (5.42) can also be written as

A}VI*MU]%/I*I + A?\/I*(N»M)U(zN—M)*l = FM*l’

or
Al UL = Fppq — A2 U2 = F! (5.44)
MxMYMx1 M1 Mx(N—M)V(N—M)*1 ) .

1

m*Tm

where U (2n—m)*1 are the known boundary values. The matrix A,,, ., of the above system
still satisfies the following condition

M

lai 1> D> ayl, (5.45)

=1,
because, for 1 < i < M, if we eliminate some a;;, ¢ # j, which are the boundary
value coefficients, from Equation (5.43) the inequality is still valid. This system is also
irreducible, because apart from the case of a 2 by 1 mesh, for which we do not have
off-diagonal terms (the matrix A},,,, is 1 by 1, and has only one coefficient), each
row of the matrix A}, ., has at least one off-diagonal term. As a result, the graph
defined by the matrix A},,,, is strongly connected. Therefore, it is irreducible and

diagonally dominant, and we can conclude that System (5.44) is nonsingular [149].

The case of one collocation point per element (Equation (5.41)) gives an equation
which is the same as the classical five-point approximation finite difference schema.

The coefficient of the common matching point w2 is equal to the negative value of the
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sum of coeflicients of four nearest matching points. At first look, the positions of the
matching points seem different from the finite difference mesh points, but if we turn
the finite difference mesh 45 degree with respect to the collocation mesh, then we
have identical positions (Figure 5.6). The differences between these two approaches

are:

e First, the positions where we evaluate the function f (Equation (5.35)) are not
the same. In the finite difference scheme f is evaluated at the center point,
but in the collocation method f is evaluated at the center of each of the two

adjacent elements (Figure 5.7), and we have
91a + o1 = (h/4) fr2 + (h/4) for = B fr2 + f)/4.

e Second, the mesh sizes are different. As one can see, the size of finite difference

mesh is ? times the size of collocation method mesh (h).

Now consider a 1 by 2 mesh with 4 collocation points (Figure 5.8). We place the

collocation points at the Gauss positions . In this case, for each element, the matrix
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Finite difference center point
Collocation Mesh

Collocation points Finite difference Mesh

Figure 5.7: Evaluation points of the collocation and the finite difference methods

A in Equation (5.5) is given by

_ 4% —%% —i% 0 o 0 0 ¢ |

—§l 4 — 0 —11 0 Cy C1 0
4 h 4 h

—211—% 0 4% —%% 0 a1 Ca 0
o LB
T |
0 Cy 1 0 —Z% 4l 0 —i%
T £ N 1

o 0 0w o 1131 ,L1

with ¢; = —222\/5 and ¢y = %———_22\/3. As for the case of one collocation

point, the matrix A is diagonally dominant. For any coefficient a;;, ¢ # j, we have
a;; < 0 and a; > 0. The sum of off-diagonal terms is exactly equal to the negative

value of the diagonal term and, Equation (5.38) is valid (with n = 8). As before,
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Figure 5.8: A 1 by 2 mesh with 4 collocation points per element

we can collect Equation (5.34) for every common matching points between adjacent
elements. Adding the equations corresponding to the common matching points, one
obtains an equation in terms of the "u”s only. Here, the common side between two
adjacent elements has 2 matching points. Denoting, as before, a; as a matching
point coefficient, of first element, and a; as the corresponding coefficient of the second
element, we have

8 8
ap +a, = — >oai— >, a;-. (5.46)

i=1,ik j=1,j#l
Writing Equation (5.34) for two adjacent elements, using the indices shown in Figure

5.8, we have
——1((6 +3v3)ug + (6 +3vV3)us + (6 —3v3)us + (6 — 3v3)ug +

4h
_3+V3
96

+(V3=2)fs— 2+ Vs + A4 V3—T)fs — fr+ (V3—2)fs)h =0,

Ug — 32 U1 + 6U12 + U13) ((4 \/g - 7)f1 — (2 + \/g)fg — f4 (547)

and
71—%((6 —3V3)us + (6 — 3V3)ug + (6 +3vV3)ug + (6 + 3V3)uzr + uyg
6w — 32ur + un) — +92\/§ (AVE—Dfi+ (V3-Dfa— fo—fr  (548)

+(15v3 —26)fs+ (V3 —2)fs + (4 V3 —T)fs + (156v/3 — 26) fs)h = 0.

The coefficients of u;, ¢ = 1,---, 14 for the first matching point are
32+4V3 32+4V8 3-24+V3

O=3— w1 5 %3 h
0§—2+\/§ 11 1 31 110
"4 b 4R K 2R 4R |
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and for the second matching point they are given by

8-24+v3  3-2+V3 - 324V

4 b 774 R T 4 R
2 1

324V8 11 31 1 1)
4 h AR 2R KT 4h

The common matching point coefficient in each of above lines is 8 h™1, which is equal
to the negative value of the sum of the remaining terms. The same procedure can
be applied to any M by N mesh with four collocation points per element. For any
matching point between any two adjacent elements, Equation (5.46) is valid. If we
write Equation (5.34) for all interior matching points of the mesh, we construct a
system in terms of the "u”s only. For a total of M interior matching points of all
elements and N boundary and interior matching points, we can write a system of
the form of Equation (5.42) or Equation (5.44). To complete this system, we need
to add the boundary condition equations. As for the case of one collocation point
per element, the condition (5.43) or (5.45) is valid. Each line of the matrix A},,,,
has at least one off-diagonal term. As a result, the system is irreducible, diagonally
dominant, from which it follows that this system is nonsingular and has a unique

solution [149].

Unfortunately, the above diagonally dominant conclusion is not valid for any
number or any position of collocation points, because, in the general case, the condi-
tions 7a;; <0, ¢ # 7 and a; > 07 may not be satisfied. In the case of four collocation
points per element, one can use a parameter « to define the following positions of the

collocation points
Pa = ( ah, ah),
P2 = ( ah, (1 — a)h),
Pz = ((1—a)h, ah),
Per = ((1—a)h,(1—-a)h),
and the matching points

Pm1 = ( ahv 0)7



Pm2

Pms3

Pma

Pms

Dmse

Pm7

Pms

= ((1=a)h,0),

= ( h, ah),
= (h, (1 —a)h),
= ((1-a)h,h),
= (ah, h),
— (0,1~ a)h),
= (0, ah).

The range of a which satisfies the above diagonally dominant condition is from
a = 0.14675h until o =
ing points (o = 0.25), instead of Gauss points (o = 0.211324865), then the matrix

0.21925h. For example, if we equally space the match-

A, in Equation (5.49), is not diagonally dominant.

11/3
—2/3
~1/3

0

| =

_5/2
~1/6

1/6

~1/6

—9/3
11/3
0
~1/3
1/6
~1/6
—5/2

~1/6

~1/3
0
11/3
~2/3
~1/6
—5/2
~1/6

1/6

0
~1/3
—2/3
11/3
~1/6
1/6
~1/6

—5/2

—5/2
~1/6
1/6
~1/6
11/3
—2/3
~1/3

0

1/6
~1/6
~5/2
~1/6
~2/3
11/3

0

~1/3

~1/6
—5/2
~1/6
1/6
~1/3
0
11/3

—9/3

~1/6
1/6
~1/6
—5/2
0
~1/3
—2/3

11/3

(5.49)

Although, the sum of off-diagonal terms is exactly equal to the negative value of

the diagonal term, we do not have a;; < 0 for any coefficient a;;, 7 # j. For example,

there is a positive off-diagonal term 1/6 A1

For a 3 by 3 collocation scheme we

have not found a placement scheme that satisfies the diagonally dominant condition.

As a result, we can not use the same proof. This does not mean that the system is

singular, as, for example, the matrix A in Equation (5.49) is nonsingular. Another

type of proof will be required for these situations.
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For a 2 by 2 collocation scheme with equal spacing, Equation (5.34) can still
be used, and Equation (5.46) is also valid. The coefficients of u;, i = 1,---,14, (see
Figure 5.8) for the first matching point are

1 ) 5 1 1 1 1 1 1 22 4 1

e | e
[6h’ 2k’ 2h’6R° 6h° 6h’ 6h’ 6h’ 3h773h’ 3h’ Sh’o]’

and for the second matching point they are

SRS WS S W NN TN SRR SRR O B
6h’ 6h’ 6h’ 6h’6R° 2R’ 2h’6R° 7 3h’ 3h’3h’7 3k

The term 22/3h in each of the above lists is the coeflicient of the common matching

point. Note that the sum of the other terms also equals —22/3h, but we have a
positive a;;, i # j, term 1/6h.

Reconsider Equations (5.47) and (5.48), for the case of 4 collocation points per
element, where the collocation points are placed at Gauss positions. We can apply
Taylor series expansion of each term on the left hand side of these two equations to
find the error term of our approximation. Expansions are done with respect to a
common point on the line separating adjacent elements; for example, we can use the
upper end point of this line (zg = h and yo = h). As the right hand sides of these
equations are equal to zero, the sum of left hand side terms give us the error terms.
These errors, for the points 11 and 12 of Figure 5.8, are found to be

S 5

5 %
a6 = @h( (V3 — 30)@10(11  h) + h(30 + 15v/3) =—— iy w(h, h) (5.50)
0" 0" s
and
—1 5 5
@ = o (30+f) “w(h, h) + h(15v/3 — 30)83:48 w(h,h) (5.51)

4

—60 ﬁ{w(h h) + 60 — 0

By 5 w(h, h)) + O(h°).

Here, we use w to present the exact value and u to present the approximate solution.
If two adjacent elements are above each other, as in Figure 5.9, these errors for the

points 3 and 4 are
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Figure 5.9: A 2 by 1 mesh with 4 collocation points per element

- o
@h( (V3 - 30)

+60 aa—;w(h h) — 60 aa—;w
and
€ = _—1h3( (30+\/_)
8640
—60 %w(h h) + 60 aa;
Therefore, in either case, if we take

Pw, Pw , Pw

“w(h, h) + h(30 +15v/3) ——

~w(h, k) + h(15V3 — 30) 5=

Ow

max(|

then the maximum error satisfies
1 w 84wl N 1
oy? 4320

If we define

BN
|

98

Ox® | OyP ; I@y‘*@x" [3x48y| )

(73 +30) B'M + O(h?),

(617627"'

(wlawZa o

5

Syipsh) (6:52)

(h,h)) + O(h%),

5

P w(h, h) (5.53)

w(h, h)) + O(R®).

<M, (zy)edn, (5.54)

(z,y) € 002. (5.55)

aeN) )

','lUN) 3



U = (ul’uQ’...,uN)T,

Fo= (f17f2>"'7fN)T7

where N is the number of matching and boundary points over the whole regain, then

we can write error terms for all matching points, and present them in the matrix form
AW =F —&. (5.56)

From Equation (5.42), after adding the boundary conditions, we have
AU = F, (5.57)

and thus
AW = U) = —¢. (5.58)

From the previous discussion we know that A is nonsingular. Thus we can solve

the above system for the error terms @ = W — U. Here w; = w; — u; and W =

(wi,ws, -+ wn)T. As w=u =0 on 99, we have w; = 0 for z; € . As a result we
can write
lwi — | = |wi < @i (5.59)
where p;, ¢ = 1,---, N, are quantities determined by the equation
Ap = -5,

where s; > |e;|. Here © = (1,02, -,0n)T and S = (51,89, -,8n). ¢; can be
obtained by solving the equation A¢ = —1, and setting @ = € * ¢. The value of € is
defined by Equation (5.55).

If we can find a set @5, @ = (41, Pa, -+ -, ¥n )T such that

A =1,

©l

where @ = (ay, a9, -+, an)T, so that all c; > 0, for all 4, then we do not need to solve

the system Ap = —1 (cf. [32]), because we can write

lwi] < @; = €;/ min (). (5.60)

1<i<N

For our problem, Equation (5.35), if we take
Y = (331 + h)27
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where z; is the local coordinate of the matching point 4, i.e., in Figure 5.8 we choose
the left bottom corner as the center of the local coordinate system, then all a; except
at domain boundary points, will be equal to h. As an example, a; corresponding to

Equation (5.47) is equal to

-1
———((6 + 3\/§>(U2 -+ U3) + (6 — 3\/5)(’&5 + Ug) +UQ — 32’U11 + GU12 + U13),

4h
1 3+v3 ., 3—v3 .,
T (643V3)((h+ =0+ (2h+ =0 +
(6 —3v3)((h + ; _6‘/_?;11)2 + (2h + 3 +6\/§h)2) +

(h+02—=32(h+h)*+6(h+h)?+(h+2R)?*) = h.

For each row of the matrix A corresponding to a boundary point x;, as mentioned
before, all a;;, with 7 # j, are equal to 0 except a;; which is equal to 1. Therefore,
the corresponding o is equal to ¢; = (x; + h)% At boundary points o; = (z; + h)?
is always positive. The minimum value of q; is equal to h* (when z; = 0). The
maximum value of ¢; is equal to (h + 2h)? = 9h? (when x; = 2h). Therefore we can

write
€(3h)?
L2

lwi] < s < = Qe. (5.61)
Using Equations (5.55) and (5.59), we have

h_?’ |84w B 64wl N 73+ 30
144920 ~ 9yt 1320

lw; — ug] < 9( R*M + O(R%)), (z,y) € 092, (5.62)

or
R 0w w,  TV3+30
|wi_ui|§#| 4 4|+
16 'Oz Oy 480
We see that as h — 0 the solution converges to the exact solution, with error of order

O(h3). Moreover, if we have

WM+ O,  (z,y) €990  (5.63)

dw  O'w 0

ozt Oyt ’
or its equivalent

2f 0%f _

a2 oy

which is satisfied for symmetric f, where f is the right hand of Equation (5.35), then
we have convergence order of O(h?). Numerical results in Chapter 11, Sections 11.1

and 11.2 confirm this order.
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Chapter 6

The Collocation Method for
Nonlinear Elliptic PDE BVP

6.1 Introduction

As mentioned in Section 4.1 for ODE BVPs, the finite difference approach can-
not be used for nonlinear problems, as a linear relation of the form Equation (5.3)
does not exist between the variable u and its derivative v at boundary points of an
element. However, the collocation formulation described in Section 5.4 for the linear
PDEs can be used for nonlinear PDEs. Although, we are considering nonlinear PDEs,

the main features of the procedure stay the same as for linear PDEs.

6.2 Collocation with discontinuous piecewise polynomials

Consider the second order nonlinear PDE

Nu= Au+ f(r,u,Vu) =0, z €QC R (6.1)
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Figure 6.1: A 2D region {2, its recursive subdivision, and a finite element mesh

where A is the Laplace operator, Vu is the gradient of u and f(x,u, Vu),u(z) € R.

As the boundary condition we take
u(z) =0, z € 05 (6.2)

As in the previous chapter, the implementation is for a simple boundary condition,
but we can use more general boundary conditions, as presented in Chapter 11. In
the mesh generation step, as in Chapter 5, the domain 2 is recursively subdivided. A
polynomial p(z) € P, is associated to each finite element, where m is the number
of collocation points, and n is the number of matching points for an element. The

polynomial p(z), first must satisfy the collocation equations
Np(z.) =0, k=1,---,m.

Second, for any two adjacent finite elements, and for any point z; at the common
boundary between these two elements, the value and normal derivative of the neigh-

boring polynomials must match.

For a finite element the local polynomial has the form p(z) = S0 ¢;¢i(z),

where Span{¢1, - -, dn+m} = Pntm-. The collocation equations are
n+m
N(Z Ci¢i(zk)) :0, k= ]_,"',m. (63)

i=1
To satisfy the continuity requirements between adjacent elements, unique variables u;
and v; are associated to each matching point z; such that p(z;) = u; and Vp(z;)Tn; =

v;. We assume that for any given z; the outward normal 7; has a unique orientation.
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Using the notation of the previous chapter, we have

u—®Tc=0,
(6.4)
v— REc=0.
where
r(z1) 0 dilwn) )
¢ = : : , (6.5)
¢n+m(-r1) o ¢n+m(xn)
Voér(z)™m - Vou(za) na )
Ry = ; : . (6.6)
V¢n+m(iﬂ1)T771 T v¢n+m (xn)Tnn

6.3 Newton’s method

Equations (6.3) and (6.4) of all elements together with the discrete boundary
conditions constitute the discretization. The unknowns are ¢ € R"*™ for each finite
element, and the u; and v; associated with the points z; on the inter-element bound-
aries. As in Section 4.4, to solve (6.3),(6.4) for u, v, and ¢, we use Newton’s method.

Omitting iteration indices, we have

LY 6c= —ry, (6.7)

a) ou — ®Téc = —r,,
(6.8)

b) év — REdc = —r,,

which
( Lip(z0))¢r(z) -+ Llp(z1)l¢nim(21) )
LT = : : , (6.9)
Llp(zm)lr(zm) - Llp(2m))dnim(2m)

where L is the linearization of N, i.e.; Lip|¢(z) is the linearization of N about p

acting on ¢ at z, more precisely,

L[pl¢(z) = Ag(2) + Daf(z,p(2), Vp(2))d(2) + Dsf(z,p(2), Vp(2))" V(2).

Further we define

501 Np(Zl) 5’lL1 5’1)1
dc = : , TN = : , du=1| : |, dv=]| : |, (6.10)
dCntm Np(zn) dun vy,
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and

Ty = U — <I>Tc, Ty = U — Rgc.

Equations (6.7) and (6.8a) can be written

@2) S = (&L_;rN”““) . (6.11)

Using (6.11) to eliminate dc in (6.8b) one obtains

T\ fSu+r,
5U:R£<L£) < . )—rv.

Define A and B precisely as in the previous chapter,

Q11 - Qap B - ﬂlm
A= : : B = : :

Qny R 6 799 /Bnl Tt ﬁnm

which are the solutions of the following linear system

(¢] Le) (g?) = Ro. (6.12)

Then, the above expression for dv can be rewritten as
OTN (BTN ' [ du+ 7,
=4 B () (7g) (") -

ov = Adu — Bry — 1, + Ar,. (6.13)

that is,

This equation has the same form of Equation (5.5) of the previous chapter.

6.4 Nested dissection

Equation (6.13) is similar to Equations (5.5), (4.12) and (3.8). Therefore, we can
use the nested dissection method described in Sections 4.4.1 and 5.7 to eliminate the
unknowns du and dv on boundaries separating adjacent regions. In this procedure,
all the interior unknowns will be eliminated. One is left with one equation for each
x; on 0§). Afterward, the boundary conditions are used to determine the values of du
and dv on 0§). A recursive back-substitution gives the values of du and dv on each

interior matching point. As this procedure has already been described in the previous
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chapter for linear PDEs, we mention only briefly the equivalent steps and equations

for nonlinear PDEs.

Equation (6.13) is rewritten as follow:
Dév = Adu + g, (6.14)
where
g=—Bry—r1,+ Ar,.

The 0u and dv are vectors here. Matrix D is an identity matrix at the element level,
but it is not necessary an identity matrix at the interior nodes of the binary tree
during the execution of the algorithm. Equation (6.14) can be written in the split

form for regions §2; and Q5. (refer to Figure 5.4)
Dy Dy, Ov12 Ay Ay Otz 912
D% D? v A2 A2 Su 2
D3 D3, dv21 A3 A3, duz 931

where
gi = —Biry — Ty + Al Tu + AlgTur2,
giz = —B21T11V — Tvi2 + A%ﬁ“ul + Aézmu,
g5 = —Bir% — o+ A Tus + Adyruon,
931 = —BST?V — Ty21 + Agﬂ"w + A§2ru21~

The superscript represents the region number. From the continuity relations, the
values and the derivatives of the neighboring polynomials must match, therefore we

can write
Otyg = O,
12 21 (6.17)
5’1)12 = —5’1)21.
Because dv is an outward normal to the boundary at the matching point, the direction

of dvyy is opposite to the direction of dvg;. As result, we have dvyo = —dvy;. The
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above system can also be written as:

dv19
Dy —Ap Dy —Ay 0 0 Ounz 1o
D3, —A3, O 0 D% — A3, ovy _ 9 . (6.18)
Di, —Ap Dnp -4y 0 0 ou 91
-D}, —A}, O 0 Dy —AY vy 95
dus

Now, we use a full pivoting strategy, as described in Section 5.7 and Section 4.4.1, to

obtain the following system.

dv12
I 0 Dy Ay Dy A 0uso g12
0 I Dy Ay Dy A S 7
21 21 22 22 1 _ gAQl _ (6.19)
0 0 Dyy Ciy D1y Chg duy [} '
0 0 Dy Cy Diyy Co dvy 92
6“2
From Equation (6.19), we can write
U1z = go1 — (D215U1 + A215U1 + ﬁ225’02 + A225U2)7 (6.20)
12 = Gio — (D11501 + An(sul + 13125712 + 1211251/&)7 (6.21)
and
5’01
Dy Cy Dy C ou 7
( 11 11 12 12 ) 1 _ ( ?1 ) (6.22)
Dy Cy Dyy Oy dv9 g2
(511,2

Equation (6.22) represents the discrete equations for the enlarged region, i.e., for the
union of €; and {25, after the elimination of the common boundary unknowns duqs

and 0v1. These new equations are again of the form Equation (6.14).

6.5 Special basis functions

The special basis functions described in Section 6.5 can also be used to solve

the system (6.12) efficiently. If the discretization is uniform, or if there are many

106



similar finite elements, there is an advantage to employ the special basis to reduce
the number of operations.

The polynomial p(z) can be rewritten as
i=1 i=1
We divide the basis of P, into two groups, namely {¢;,---,¢,} and {11, -, ¥ }.
Rewriting the matrices ®, Ly and Rg defined in Equations (6.5), (6.6) and (6.9) in

matrix form as presented in Section 5.6.1, Equation (6.11) can be written as

<q>T \I!T><5c)_(5u+ru>
LT LT)\sd) \ —-ry J°

This is the same equation as Equation (4.24) in Section 4.5. Selecting the special
basis such that ® = [ and ¥ = O, for example using the Lagrange basis functions
presented in Section 3.6, we find exactly the same equations as Equations (4.25),
(4.26) and (4.27).

6.6 Summary of the collocation algorithm

The algorithm of the finite collocation method for nonlinear PDEs is similar to

the algorithms presented in Section 4.6 and Section 5.8.

e Mesh generation of 2D domain as presented in Section 5.8.
e Given current approximations to u, v, and ¢

e Do Newton’s iterations until desired the relative errors are smaller than the user

prescribed value.

— Loop over all elements

* Compute ®, Ls and Rg matrices using Equations (6.5), (6.6) and
(6.9).
* Solve Equation (6.12) to find A and B for each element.
« Find ry, 7, and ry, and write Equations (6.14) for each element.
— Solve the global set of Equation (6.22) for ju and dv. This can be done by

the nested dissection algorithm described in the Section 6.4. The itemized

steps of this part are presented in Section 4.6.
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— For each finite element compute dc using Equation (6.11).
— Update : u — u+ du, v — v+ dv, and ¢ — ¢+ dc.

— Calculate the relative errors in the calculation of u, v and c.

e save the results.

Using the Lagrange basis functions as mentioned in Section 6.5, the algorithm

of the finite collocation method for nonlinear PDEs changes as follow:

e Mesh generation of 2D domain as presented in Section 5.8.
e Given current approximations to u, v, ¢ and d.
e Do Newton’s iterations until desired relative error is achieved.

— Loop over all elements

* Compute Ls, Ly, Ry and R matrices using Equations (6.6) and
(6.9).

* Solve Equation (4.26) to find A and B for each element.

* Find r,, r,, and ry, using Equations (4.28), (4.29) and (6.10), and

write Equations (6.14) for each element.

— Solve the global set of Equation (6.22) for ju and dv. This can be done by
the nested dissection algorithm described in the Section 6.4. The itemized

steps of this part are presented in Section 4.6.
— For each finite element compute dc and dd using Equation (4.25).
— Update : u — u+d0u, v — v+ v, c— c+dc, and d — d + dd.

— Calculate the relative errors in the calculation of u, v, ¢ and d.

e save the results.

Note that as in previous chapters, only one LU-decomposition of the matrix on
the left hand side of (6.11), or the matrix Ly in case of using special basis functions,

is needed per finite element.
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6.7 Stability of the solution algorithm

As the stability of the solution algorithm depends on the stability of the nested
dissection mathod, and we use the same nested dissection method as in Section 4.6.1

of Chapter 4, the same arguments in that section are also valid here.
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Chapter 7

Continuation of Solutions

Before using the method of finite element collocation with discontinuous piece-
wise polynomials for continuation problems, we need some general definitions and
theorems about continuation problems. In this chapter, we present the continuation

of solutions of a nonlinear partial differential equation®.

Consider the following nonlinear equation
N(u, \) =0, u, N(-,-) € R", M€ R, (7.1)

where A is a control parameter, for example it could be the Reynolds number in a
discretized model of a fluid flow problem. In continuation problems, we consider the
behavior of solutions as the control parameter changes. If we take z = (u, A), for a

shorter notation, the above equation can be rewritten as

N(z)=0, N:R"" —R" (7.2)

!Sections 7.1 to 7.8 of this chapter are based on reference [47].
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Figure 7.1: Folds on a solution branch

7.1 Regular solutions

A solution zg of Equation 7.2 is called a regular solution, if N2 = N,(z,) has
maximal rank, i.e.,

Rank(N?) = n.
In the parameter formulation, Equation 7.1, N? is a n * (n + 1) matrix,
Rank(N?) = Rank(N? | NY) = n,
if and only if either
(4) N? is nonsingular,

or,
(i1) dim N(NJ) = 1, and Ny & R(N?).
where A (.) is the null space and dim N(.) is the dimension of the null space. Case

(1) in the above condition is the case of a simple fold (see Figure 7.1).

Theorem: 7.1.1 Tuke xo = (up, o) as a regular solution of N(z) = 0. Then, near
Ty, there exists a unique one-dimensional continuum of solutions x(s) with £(0) = x,.

Proof : Refer to reference [47].

7.2 Parameter continuation

Suppose we have a solution (ug, Ag) of the nonlinear Equation (7.1), as well

as the direction vector 7y, where & = du/dA. In the parameter continuation, the
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Figure 7.2: Parameter continuation

parameter A is changed and the solution u; at A; = A+ A\ is computed. Figure 7.2

presents the graphical representation of this procedure.

As the equation is a nonlinear one, we use the Newton method.

N, \) Al = —N(u$) ) Ay),

=012, (7.3)
U§U+1) _ ugl/) + Augu)’

where N, = dN/du. As a starting point, we can take u{ = ug + A\ 5. According to
the convergence theory of Newton’s method these iterations converge, if N,(uj, A1) is

nonsingular and A\ is sufficiently small.

To find the new direction u,, the equation N(u(\), A) = 0 is differentiated with
respect to A at A = Aq.

du
dA

U=uy,A=A1

Nu —I—N)\(Ul,)\l) = (.

As a result, after the convergence of Newton’s method, the new direction %, can be

obtained by solving the following equation
Ny(u1, M)y = —Ny(ug, ).

As the left hand side of this system is the same as the Newton system, by replacing
Au; by 1, in Equation (7.3), the calculation of @; can be done without any additional
LU factorization of Ny(uq, Ay).

As parameter continuation cannot pass a fold (see Figure 7.3), we do not use it

in this thesis.
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Figure 7.3: Parameter continuation cannot pass a fold

7.3 Keller’s pseudo-arclength continuation

To overcome the problem of continuation of solutions past a fold, one can use the
pseudo-arclength continuation method introduced by Keller [86]. Suppose we have
a solution (ug, Ag) of Equation (7.1), as well as the direction vector at the solution
point (g, /.\0). The pseudo-arclength continuation method consists of introducing a

new continuation parameter s and solving the following system for (uq, A;):

a) N(Ul,/\l) :0,
| (7.4
b) (u1 - Uo)T?lo + ()\1 - Ao)AO —As= O,
where © = du/ds and A\ = d\/ds. A graphical interpretation of these equations is
presented in Figure 7.4. Actually, Equation (7.4b) represent a step of size As in
the direction (i, Ag) from the point (ug, Ao) to reach the solution point (uy,\;). Of
course, the new solution must satisfy nonlinear Equation (7.4a). To solve the above

nonlinear system, we use the Newton method
16 (N6 ,
(V)Y (VY) ( Aut?

uf Ao

NG A) -
N [ 7.5
AN ) i . i ' ’
! (ud? — ug)Tig — (A — Ao)Ao — As
where 7 is the index of Newton’s iteration. After solving the above system the new

direction vector can be found by differentiating System (7.4) with respect to s:

N} NI\ . 0
| (3“): . (7.6)
wl Ao ! 1

The new direction vector is rescaled, so that || 4, ||> +A? = 1.
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Figure 7.4: Pseudo-arclength continuation

The new direction vector (7, }\1) can be calculated with just one extra back-
substitution of the Newton system with the new right hand side of Equation (7.6).

The orientation of the branch is also preserved if As is sufficiently small.

Theorem: 7.3.1 The Jacobian of the pseudo-arclength system is nonsingular at a

reqular solution point.

Proof : Refer to reference [47].

7.4 Simple folds

The solution point (ug, Ag) of Equation (7.1) is called a simple fold, if we have
N(N?) = Span{¢},

N(NO") = Span{y},

and

Ny & R(NY),
where N = Ny(ug, Xo), and [|¢] = l|¥]| = 1.

In other word, a regular solution xzy = (ug, Ag) of Equation (7.1) is called a
simple fold, if
dim N(N?) =1,

and

N} & R(N,).

114



If we differentiate N(u(s), A(s)) = 0 with respect to the continuation parameter

s we have

No(u(s), M(s))a(s) + Nx(u(s), A(s))A(s) = 0, (7.7)

where @ = du/ds and A = d\/ds. This equation can be written for the point (ug, Ag)
as

N2ig = —XoNy .
At a fold N? & R(N?), thus Ay = 0. As a result
Nig = 0.

Since dim N(N?) = 1, we have

N(N?) = Span{1g}.
Differentiate Equation (7.7) for the second time, we have

NDiig + N + N2 tigiig + 2Ny ip g + Ny Ao = 0. (7.8)

Take ¢ = 1y, then at a simple fold (up, A\g) we can write

N (Ny) = Span{¢},

and

N((N,)") = Span{y}.
Multiply Equation (7.8) by ¢ and use the facts that Ay = 0 and 4 L R(N?) we find
YT N0 + 97 N, d = 0.
Here 9T NY # 0 since N? ¢ R(N?). Thus

T

If the curvature Ag # 0, then (ug, Ao) is called a simple quadratic fold.
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7.5 Simple singular points

Suppose zg = (ug, Ag) is a solution of nonlinear Equation (7.1) or (7.2). The

point ¢ is called a simple singular point if we have
N(N?) = Span{¢y, ¢}, N(NZ') = Span{y}. (7.9)

This is a singular case that, in practice, occurs along a solution branch for many non-
linear equations. Typically, this case corresponds to intersecting solution branches,
i.e., a bifurcation. The linear operator N? is a matrix with n rows and n+1 columns.
The rank of such matrix is at most n. The above condition means that the rank of

this matrix is n — 1.

In the parameter formulation, where N2 = (N2 | NY), we have zy = (ug, \o) is

a simple singular point if and only if
o dim N(N?) =1, NY € R(ND),
or
o dim N(N°) =2,  NO¢gR(NO).
Suppose we have a solution branch z(s) of N(z) = 0, where s is some parametrization.

Assume xy = (ug, \g) is a simple singular point. Then we must have

N(z(s)) = 0,

NO = N(CE()) = 0,

N, (a(s))i(s) = 0,

Ng.’]?g = Nx(wo)xo = O,
Nos(2(s))2(s)i(s) + No(2(s))E(s) = 0,

Take &g = ag; + B¢, for some o, B € R, then we can write
VTN (ady + Bea)(ady + Bpa) + p" Niig = 0.
As T NO = 0, we have
(YT Npp1¢1)a® + 2(T N drdho) o + (T N, hap2) 52 = 0. (7.10)
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7L0
Figure 7.5: A branch point zy on a solution branch

Equation (7.10) is called the Algebraic Bifurcation Fquation (ABE). We must solve
this equation for («, 3) pairs without both a and § equal to zero. Take

%DTN21¢1¢1 = C11,

DT N 12 = cra,
and

¢TN£m¢2¢2 = C22,
then Equation (7.10) can be written as

011()é2 + 26120{,8 -+ C22B2 = 0. (711)

If the discriminant

A =cly— ey > 0, (7.12)

then the ABE has two distinct real nontrivial solution pairs (g, 1) and (as, 52),
which are unique up to scaling. In such case we have a bifurcation, (or branch point)
1.e., two distinct branches pass through xy. A graphical interpretation is presented

in Figure 7.5.

7.6 Computing the bifurcation direction
For a bifurcating branch, the equation of the direction vector can be written as
To = a1 + Bea,
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where (o, 3) is a root of the algebraic bifurcation equation (7.11). At the branch
point, assume ¢; is the direction of the current branch, i.e., ¢1 = Z(. Therefore

(a1, £1) = (1,0) must be one of roots of Equation (7.11). As a result, we have
Ci1 = 0.

Assuming A > 0, thus we have ¢;2 # 0. Then the second root must satisfy the

following equation
CYQ//BQ = ~'022/2612-

The null vectors of the system can be found as follow

¢, : Already selected as ¢ = o.

0
¢2 : As we have ¢y L ¢;. Then ¢, is a null vector of F? = (];% ) .
0

P <1é) is a simple null vector of (F2)T = (N7 | &).

F? is the Jacobian of the extended pseudo-arclength system at zo (see Section 7.3).
We need this null vectors to evaluate ¢;» and cz;. The null space of F? is 1D as will

be shown in Section 7.82.

Thus the direction vector of the bifurcating branch is

Ty = oty + Padho.

We scale the direction vector after determining the coefficients as and (35 such that

| 25 [I= 1.

7.7 Switching branches

Using Keller’s pseudo-arclength continuation, Section 7.3, the first solution point

z; on the bifurcating branch can be computed as follow

(7.13)

2Left and right null vectors of a matrix can be computed at little extra cost once the matrix has
been LU decomposed.
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Figure 7.6: Switching branches using the correct bifurcation direction

where z is the branch point, and xj, is the direction of the bifurcating branch. We

can use the following initial approximation to the point z;
20 = 2o+ As .

Figure 7.6 presents a graphical interpretation of the procedure. From Section 7.6, one

conclude that for the computation of zj, the evaluation of N2, is needed.

A simplified branch switching procedure is also possible. To find the first solu-
tion point on the bifurcating branch, instead of solving System (7.13), we can solve
the following equations

N(z;) =0,
(r1 — 20)Thy — As = 0.

where ¢, is the second null vector of N°. As mentioned in Section 7.6, we have

¢2 L(bl;

where ¢1 = zy. Figure 7.7 shows a graphical interpretation of this method.

We can possibly find situations where this method fails, but it works well in
almost all practical applications. Using this method, we do not need to evaluate the
second derivatives of N (i.e., N2, ) as needed in the original method. We implemented

this simplified branch switching procedure in our prototype software.
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Figure 7.7: Switching branches using the orthogonal direction

7.8 Detection of bifurcation points

The pseudo-arclength equation (7.4) of Section 7.3 can be written as

N(z)
F(z;s) = (( ) . (7.14)

1 — x9) g — As

If xq is a simple singular point. Then we have

Ny
F? = Fy(xo;50) = Fp(20) = ( . ) : (7.15)

Using the discussion of Section 7.6, we can take ¢; = &g as the first null vector of N?.

Ny
@:( ). (7.16)
¢7

For the second null vector of N2, we choose ¢, such that ¢Z¢; = 0. Then ¢, is also a

Equation (7.15) can be written as

null vector of F?, but ¢ is not. As a result, F° has a 1D null space. Since 1 is the

null vector of NQT, we have that FfT has the following the null vector
_ "¢>
v=(1).
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Theorem: 7.8.1 Let o = z(sg) be a simple singular point on a smooth solution
branch z(s) of N(z) = 0. Let F(x;s) defined by Equation (7.14). Assume that the
discriminant A defined by Equation (7.12) is positive, and Fquation (7.15) has 0 as

an algebraically simple eigenvalue. Then the determinant of F, changes sign at xg.

Proof : Consider the following eigenvalue problem

Fa(z(s)) ¢(s) = r(s) &), (7.17)
where k(s) and ¢(s) are smooth near sg, and

K(s0) =0 and ¢(0) = ¢z,

i.e., the pair (k(s), @(s)) is the continuation of (0,ds). This can be done because we
have assumed that 0 is an algebraically simple eigenvalue. We differentiate Equation

(7.17), and we evaluate it at so, using x(0) = 0, &9 = ¢y and $(0) = ¢o. This gives
Frat1$2 + Fod(s0) = Fods.

If we multiply the above equation on the left by ¥, we find

NP,
Ko = qung¢1¢2 o (wT,O) ( 0 >¢1¢2 o wTNg(E)zqslng . C12
T 9Ty, T, T Wy, WT,

Note that the left and right null vectors cannot be orthogonal, i.e.,

U7y # 0.

Now c¢i9 is a coefficient of the ABE, and as we assume that A # 0, it follows that
cio # 0. Thus ko # 0.

The following theorem, which we present without proof?, states that there must
be a bifurcation point at xzg if the determinant of the pseudo-arclength Jacobian

matrix changes sign.

3This theorem can be proven by degree theory.
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Theorem: 7.8.2 Consider z(s) be a smooth solution branch of
F(z;s) =0,

where

F:R" x R— R"",

with a C! continuity. Assume that the determinant of F,(z(s);s) changes sign at
s = sg. Then z(sq) is a bifurcation point, i.e., every open neigborhood of xy contains

a solution of F(x;s) =0 that does not lie on z(s).

In our software, the detection of simple singular points is related to the above
theorem. One monitors the sign of the determinant of the pseudo-arclength Jaco-
bian matrix, Equation (7.5), in each continuation step. If the sign changes between
two solution points then an iterative method such as the Regula-Falsi, the bisection
method or Miiller’s method (with bracketing) can be used to accurately locate the
singular point. The Regula-Falsi and the bisection methods are implemented in our

software.

As we use the modified nested dissection method, where at each interior node
of the binary tree a pivoting strategy is used for the union of two subregions, a sign
change of the determinant can occur without passing a branch point. Therefore, we
actually monitor the absolute value of the determinant. If in an interval this value
decreases and then increases, or it increases and then decreases, we fix the pivoting,
and we monitor the sign change of the determinant on that interval. In large systems,

to avoid overflow, one can compute a scaled determinant.

7.9 Modified pseudo-arclength continuation

When the nonlinear system (7.1) strongly depends on a control parameter, for
example, systems such as the Brusselator system (see Section 11.6), where boundary
conditions depend on the control parameter, it is difficult to detect, and to locate,
branch points using the Newton system (7.5). In this case the locating algorithm,
based on the Regula-Falsi or the bisection method, converges slowly or it does not
locate the branch point at all. This problem is due to the way that one proceeds from

point Xy to X;. When the Newton method converges at point X; the determinant of
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Figure 7.8: Modified pseudo-arclength with a variable direction vector

System (7.5) does not present correctly the system at point X7, because the direction
vector is belong to the point X,. The determinant of this system is not suitable for

detecting and locating the bifurcation point between Xy and X;.

More precisely, in the first Newton’s iteration, using the point Xy as a first guess
to the solution, after solving System (7.5) one finds AX = (Au, AX), which identifies
the point Xg; = Xo + AX (see Figure 7.8). Note that System (7.5) is evaluated for
the point X not Xg;. First, because the direction vector is not the same at these two
points. Second, the determinant of the system is evaluated at X, but we are at Xy,
i.e., we are at point Xy but the information belongs to a different point. To overcome

this problem we propose some modifications to the original pseudo-arclength method.

First, we must reduce As after each Newton’s iteration, such that the point X,
is approached during the Newton’s iteration. Second, we update the direction vector
in each Newton’s iteration. Figure 7.8 illustrates this procedure. As one can see,
after each iteration, we reduce As. For example, after the first iteration with step
size equal to Asg, we reach the point Xy, at distance As{f from Xo (on the line of
the direction vector). Thus, for the second iteration we have As; = Asp — Asff. For

iteration 1 we can write

R
ASi = ASi_l — Asi—l‘
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Figure 7.9: Modified pseudo-arclength with a constant direction vector

Then Equation (7.5) changes as follows

(NH® (N ( At) N(u?, M)

! . (7.18)

. b)=-1 . .
where 7 is the index of Newton’s iteration. Usually changing the step size As in
each Newton’s iteration is enough, and converge is better for some applications. The
graphical representation of continuation without changing the direction vector is pre-
sented in Figure 7.9. As one can see, after each Newton’s iteration As changes, but

the direction vector stays the same.
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Chapter 8

The Collocation Method for
Continuation Problems in
Nonlinear Elliptic PDEs

8.1 Introduction

In this chapter, we use the collocation method presented in Chapters (5) and
(6), i.e., the discontinuous piecewise polynomial collocation method, for the numerical

continuation of solutions in nonlinear elliptic PDEs.

8.2 Collocation with discontinuous piecewise polynomials

Consider the following scalar parameter-dependent nonlinear elliptic PDE
Nu(z) = Au(z) + f(u(z),\) =0, for z €, (8.1)
with the boundary condition
u(z) =0, for xz €09, (8.2)
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where A is the Laplace operator, Q2 the unit square in R?, A € R, © = (1, 22)7, the

superscript 7 denotes the transpose operator, and f(u(z), \),u(z) € R.

In the continuation algorithm for parameter-dependent problems, in addition to
u(-), we also treat A as unknown. For using the Keller’s pseudo-arclength continuation

method presented in Chapter 7, we add an integral constraint of the form

/Qq(ac,u(:c), A) =0, (8.3)
where ¢(+) € R.

As mentioned before, our collocation method and the nested dissection proce-
dure can be generalized to problems with x € R™. Furthermore, the domain need
not be a square, and more general elements are possible. More general boundary
conditions and multiple integral constraints can also be treated. However, in order
to keep the technical presentation simple, we restrict attention in this chapter to the

problem presented in Equations (8.1) to (8.3).

To generate a suitable mesh, as in Chapter 6, the square domain 2 is recursively
subdivided into 2M finite elements, where M is the level of subdivision in the binary
tree, refer to Figure 5.1. For each finite element, we select appropriate boundary
matching points z;, ¢ = 1,-- -, n, and interior collocation points z;, 1 =1,---,m. For
an example see Figure 5.2. As before, the two sets of matching points on the common
boundary of two adjacent elements must coincide. A polynomial p(z) € P4y, is
associated with each finite element, where P, ., is an appropriate (n+m)-dimensional
polynomial space. At the matching points the values of the neighboring polynomials
u; are required to match. The normal derivatives of the neighboring polynomials v;
are also required to match at these points. Further, for each element, the associated

polynomial must satisty the collocation equations
Np(z) = Ap(z) + f(p(z:),A) =0, i=1,---,m. (8.4)

We suppress the index of the element, for notational simplicity. Finally, discrete,
boundary conditions are imposed at points x; on the domain boundary 0f). For
each finite element the local polynomial has the form p(z) = Y2 c;d;(x), where
Span{¢1, e ¢n+m} = P,im. Then the collocation equations are

n+m n+m

Np(z) = > algi(a) + F( D cidi(z),A) =0, k=1,---,m. (8.5)

=1 1=1
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As in previous chapters, to impose the continuity requirements, we associate unique
variables u; and v; to each matching point z;, namely, we require that p(x;) = u; and

Vp(z;)Tn; = v;. We assume that for any given z; the outward normal 7; has a unique

orientation. Take u = (uy,- -+, u,)7, v = (v1,---,v,)7, and
or(z) o dulza)
d = : : ,
¢n+¢n(x1) T ¢n+4n(xn)
Vor(z)™m - Vgu(@n)
Rq> = . .
vqﬁn—}—m(xl)Tf’h T V¢n+m(xn)T77n
Then we can write
u—®Te=0, (8.6)
v— Ric=0. (8.7)

The integral constraint (8.3) is applied to the union of all local polynomials. This

equation can be written as

%__‘, /m ¢(z, p(x), ))dQ2 = 0, (8.8)

where {2, denotes the ¢th finite element of (). As an example, we can integrate over
each element by an appropriate quadrature formula that uses the collocation points
2, with weights wy. In such case we have

oM

wkq(zk,p(zk), )\) =0. (8.9)

=1 k=1

8.3 Newton’s method

Equations (8.5), (8.6), (8.7) and (8.8), together with the discrete boundary
conditions, constitute the discretization. The unknowns are ¢ € R**™ for each finite
element, the u; and v; associated with the points x; on the inter-element boundaries,
and the control parameter A\. To solve these equations, we use Newton’s method.

Omitting iteration indices, it can now be written as
LY dc+ 68X fr = —ry, (8.10)
Su— ®"sc = —r,, (8.11)
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ov — Rgéc = —7,. (8.12)

and
2M

Z{qg dc+ 0N g + Tq} = 0. (8.13)

Above
o (L[pul)_]qbl(zl) L[p<zl>]¢n+m<zl>)

LlpGn)|o1(zn) -+ Llplzm)] dnm(zm)

where, as before, L is the linearization of N, i.e., Lip(z)]#(z) is the linearization of

N about p acting on ¢ at z, or,

L{p(2)l6(2) = A(2) + D1 f(p(2), \)¢(2).

D, f(.,.) is the derivative with respect to the first argument and D, f(.,.) is the deriva-

tive with respect to the second argument. Further, we have defined

( 561 ) ( Np(ZI) )
oc = : , TN = : ,
5Cn+m Np(zm)
5u1 (5111
ou = ( : ) , O0v= ( : ) ,
OU, OUn

re = u— ®Tc, rv:v—Rgc,

Dyq{z p( ) ¢ (x )

“\ Dog(z, p(), \) g (2

and

x —/ D3Q<51? (), )‘>dQ

—/ q(z,p(z), A)ds2.

Using an appropriate quadrature formula, we have

( dohey WkD2Q(Zk:p(Zk)a)‘)¢l(zk) )
qQu = . s
Z;cnzl ka2Q(zk7p(Zk)a >‘) ¢n+m(zk)
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Q= f: WkD3Q<Zkap(Zk)a /\),

k=1

Tq = i wk‘](Zk,p(Zk), )\).

k=1
Equations (8.10) and (8.11) can be written as

<(I>T>5 _( ou+ 71y )
L)% \ery = 0N )
Using Equation (8.14) to eliminate dc in Equation (8.12) one obtains
T\ Su+r
_ pT u __
ov="e (L%g) (—m - fm) v

Define A and B, as in Section 6.3,

(<I>|Lq>)<g:;):R¢.

Then the above expression for dv can be rewritten as
TN\ (®T\ '/ Su+r
wo=a 5 (1) (1g) (L) =
( oz ) \x —ry— X T

§v = ASu — 6AB fy — Bry — 7y + Ara.

that is,

This equation is of the form
ov=Abu+ oAb+,

where

r=—Bry —r, + Ar,, b= —Bf,.

Using Equation (8.14) and Equation (8.13), we can write

oM -1
oT ou+r
T u _
;{qu <L£> (_TN_fA6)\>+5)\qA+7’q}—O.

Take d € R", de R™, to be the solution of

(@120)(§) =

Then Equation (8.17) can be written as

oM

Z{dT(du 1) +d (—rn — FAON) 0N gn + Tq} =0,
=1
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which is of the form
2M

S {d"6u+e dA+s} =0, (8.19)

=1

where
e=qy—d' fx,

§=14+ dTry —dlry.

The Newton equations for the boundary conditions, to be applied at the points

on the exterior boundary 6¢2, can be written as
ou = —u. (8.20)

We can exclude the boundary unknowns in case of explicit boundary conditions for
u. However, including Equation (8.20) in the solution algorithm has an advantage for

the treatment of more general boundary conditions.

8.4 Nested dissection

In this section, we consider the application of the nested dissection method
presented in Sections 6.4 to the solution of the global set of Equations (8.16) and
(8.19). The algorithm, as before, consists of a backward recursive elimination of the
unknowns éu and dv on boundaries separating adjacent regions. Note again that the
backward recursion means the elimination starts at the leaves and terminates at the
root of the binary tree. This procedure results in the elimination of all the du’s and
0v’s in the interior of the domain 2. One is left with one equation corresponding
to the matching point on the exterior boundary 0§2. Then, the discrete boundary
conditions and the transformed integral constraint, Equation (8.19), can be used to
determine o\ and the values of du, dv at the points z; on Q2. Thereafter a recursive

back-substitution gives the values of du and dv on each interior matching point.

Take
g=06Ab+r, (8.21)

then Equation (8.16) can be written in the form of Equation (6.14), namely

Dév = Adu + g, (8.22)
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As in Section 6.4 the matrix D is an identity matrix at the element level. Take two
adjacent regions 7 and Q5 as in Figure 5.4. Equation (8.22) can be written in the

split form for regions {2, and €2s.
Dy, Di ovy \ Al Ap 0
Dy Diy 0V Ay Ap du
D3, D3, 0V gy A% Oty 9

where

+
TN
Q .
Sl
~———

—~

1%

[N}

W

g

gi = 0\ by + 1},
g1z = 0N byy + 1y,
g = 0A by + 13,
93 = 0N by + 13-

The superscript represents the region number. Equations (8.23) and (8.24) are the
same as Equations (6.15) and (6.16), and matching conditions between adjacent re-
gions are also the same as in Chapter 6. Thus the elimination of the unknowns du
and dv on the common boundary, based on Equation (8.16) or its equivalent Equation
(8.22), is the same as the procedure described in Section 6.4, and we omit repeating

the details here.

Equation (8.19) can be written as

oM
S {d"6u+tT6v+e SA+ s} =0, (8.25)
=1

where t is a zero vector at the element level, but not necessary zero at the interior
nodes of the binary tree. Using Equations (6.20) and (6.21), one can also eliminate
the unknown du’s and dv’s in the interior of €2 from the discrete integral constraint
(8.25). Consider all adjacent regions € and {2, at the K'th level in the recursion tree,

and pairwise combine their contribution to the total sum. Then (8.25) can be written

2K71

Z {d{élﬁ + d{25U12 + d§15U21 + dgéUQ + t1T5v1 + t{z(svlg

=1

+ t1 8vpy + t6vs + (61 + €3) IX + 51 + 85} =0, (8.26)
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where the splitting of d, ¢t du, and dv is done as in Chapters 5 and 6, c¢f. Figure 5.4.
Using Equations (6.21), (6.20) and (6.17), we can rewrite Equation (8.26) as

2K~1
Z {d{5ul + (d’{g + déﬁ)(?}m — Dy1dvy — Agduy — Dagdvy — A225U2) + dg(SUQ
=1

—|—t,{51)1 + (t,{Q - tgl)(§12 - f)115’01 — Anéul - ]_512(5’02 — Auéﬂg) + tg(S'UQ
—|—(€1 + 62) oA + 51+ 82} =0. (827)

Using Equation (8.21), we have g5 = 0A 312 + 719, and gg; = O\ 1321 + T91, where §yo
and go1 (and so 312, 1321, 712 and 791) are found from System (6.19). Equation (8.27)

can be written as

9K -1

=1

where
di = di —(dfy+d}) Ay — (t], — t3,)An,
dy = dj — (df; +d}y)Asy — (], — 13,) A,
i = i = (dfy +d5) Do — (to — 15,) D,
t; = t5 = (df; + d5) Do — (], — 15,) Dio,
§ = s1+ sy + (diy +df))Par + (t — t5))F1o,
é = er+ep+ (dly+di)bo + (t, — t3)bra
Note that Equation (8.28) is still of the same form as Equation (8.25), but the sum

is now over half the number of regions, each of which is the union of two descendant

regions in the recursive division of 2.

The procedure is repeated recursively, and in synchrony with the eliminations
that yield Equation (6.22). The final stage results in equations of the form (8.16),
(8.25) (with M = 0), and (8.20), corresponding to the exterior boundary 6. These
equations can be solved for 6\ and for du and dv on 6£2. A recursive back-substitution

process then gives the values of du and év in the interior of 2.
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8.5 Summary of the collocation algorithm

The algorithm of the finite collocation method for nonlinear PDEs with a free
parameter, and with a parameter-dependent integral and boundary conditions, is very

similar to that presented in Sections 5.8 and 6.6 :

e Mesh generation of 2D domain as presented in Section 5.8.
e Given current approximations to u, v, ¢, and A
e Do Newton’s iteration until desired relative error are achieved.

— Loop over all elements

« Using Equations (6.5), (6.6) and (6.9), compute the matrices ®, Lo
and Re.
* Solve Equation (8.15) for A and B.

* Find ry, 7y, *n, fi, and write Equation (8.16) and its equivalent Equa-

tion (8.22) for each element.
+ Find qu, ¢, € and s, and compute d and d using Equation (8.18).
— Solve the global system.

« Construct set of Equations (8.22), (8.25), and (8.20) for the root node
of the binary tree. Using the nested dissection procedure described in

Section 8.4.

x Solve the above system for §A and the unknowns du and év on the

boundary of the domain.

* Find the unknowns at the interior matching points of the binary tree

using the recursive back-substitution, as described in Section 6.4.
— For each finite element compute dc using Equation (8.14).
— Update: u = u+du, v —v+0év,c—c+docand A — A+ oA\

— Compute the relative errors in the calculation of u, v and c.

e save the results.
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As in previous chapters, for any given finite element, the matrix on the left
hand side of Equation (8.14) is the transpose of the matrix on the left hand side of
Equations (8.15) and (8.18). Thus only one LU-decomposition is required per a finite

element.

8.6 Continuation

In continuous form, the pseudo-arclength equation is given by
/Q (@) — uo(@) )ito() A2+ (A — M)A — As =0,

where (ug(+), Ag) denotes a given solution, and (tg(-), \g) is the direction vector of
the solution branch at (ug(-), Ag), i.e., the normalized rate of change of the solution
(u(-), A) with respect to As. The problem formulation in Section 8.2 includes the
integral constraint (8.3). Since € is the unit square, with area 1, one can rewrite the

continuous pseudo-arclength equations as

/Q((U(iﬂ) — () )ilo(2) + (A — Ao)A — As) d2 =0,

which is of the form Equation (8.3), with
gz, u(z),\) = (w(z) = uo(x) )ito(x) + (A — Ao)ho — As.

This makes it possible to use the pseudo-arclength continuation method described in
Sections 7.3 and 7.9 for computing solution families for varying A\. The discretization
and the solution procedure are as described in the preceding sections. In particular,
the discretized integral constraint (8.8) becomes

21\/1

> /Q Z{(p(x) —po(@))Po(@) + (A — o) Ao — As}d = 0. (8.29)

and the coefficients in the Newton equation (8.13) are now given by

50(2)é1 (2) |
qu = /Qz ( : )) dQ, gr = /Qg /\0 dQ, (830)

pO ($)¢n+m (IB
and

ry = QZ{(p(gc) ~po(@))Po(x) + (A = Ao)Ao — As}d2.
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Using a quadrature formula, Equation (8.9) can be written as

oM

>0 wk{(p(zk) - po(zk))ﬁo(zk) + (A= Xo)Ao — As} =0.

{=1k=1

We also have

ka1 WrPo (Zk)¢1(zk) m .
u = i , I = Y Wk Ao, (8.31)
Z}?:l wkﬁO(zk)an-l—m(zk) k=1
and -
r = > wef (p(2) = Po(20))Bo(26) + (A = M)A — As}.
k=1

Above, pg denotes the restriction of a given piecewise polynomial solution to the ¢th el-
ement, and py is its derivative with respect to As. We can write p(z) = 747" é¢:6(x).
The coefficients ¢; can be determined by one extra back solve in the solution process.
To see this, note that differentiating Equations (8.5), (8.6), (8.7), and (8.8) with

respect to As gives

LY ¢+ A fL=0,
w—®Te=0,

v — Rpé = 0.

and

2M

S{al e+ ia} =1,

=1

i.e., the same left hand sides as in Equations (8.10)-(8.13), with ¢, and g, given by
Equation (8.30). Thus the linear equation solution procedure of Sections 8.4 and 8.5

can be used to compute the u, ¥, and A. Thereafter the ¢ can be computed from

(31:)2)"::(—%0'
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Chapter 9

The Collocation Method for
Continuation Problems in Systems
of Nonlinear Elliptic PDEs

9.1 Introduction

The discontinuous piecewise polynomial collocation method can also be used
for the numerical continuation of solutions of a system of nonlinear elliptic PDEs. In
this chapter, we follow the steps in Chapter 8, extending our work to the system of
nonlinear elliptic PDEs. In fact the algorithm in this chapter is the one that has been

implemented in our prototype software.

9.2 Collocation with discontinuous piecewise polynomials

Consider the following system of parameter-dependent nonlinear elliptic PDE

on a unit square domain 2 € R?
Nyu(z) = Aug(z) + fr(u(z),A) =0, for z€Q, k=1,---,ns (9.1
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with boundary conditions
ug(z) = constant, for z €0, k=1,--- ny, (9.2)

and integral constraint
/Q g(z, u(x), \) = 0, (9.3)
where
z = (21,22)",  ul@) = (w(z), us(@), -, tny ()"

In the above equations ny is the number of solution components, or the number of
fields, k is the index of solution components, A is the Laplace operator, {2 is an unit
square in B2, X € R is the control parameter, 6§ is the boundary of 2, T denotes
the transpose operation, u(z) € R*, andgq € R, fy € R, k= 1,---,n; are smooth
functions. Equation (9.3) is an integral condition over the whole domain, for example,

the pseudo-arclength equation (see Section 9.6).

As mentioned in the previous chapter, our collocation method and the nested
dissection algorithm can be applied for problems with x € R", the domain need not
have a simple square shape and more general elements can be used. More general
boundary conditions and multiple integral constraints can be treated as well. How-
ever, for simplicity of the presentation, we consider the problem corresponding to

Equations (9.1) to (9.3).

The outline of our collocation method can be summarized as follows: First, a
suitable mesh must be generated. For ease of calculation, programming and to be
able to use the nested dissection method, as in previous chapters, the whole region
is subdivided into two regions, then each region is subdivided into two subregions.
This process is continued recursively until the desired mesh refinement is achieved.
If we take M as the desired level of discretization of the region, or the depth of the
mesh, the domain is divided into 2™ elements. In each element, we choose matching
and collocation points. Matching points are points in common between two elements
or between an element and the boundary of the domain. Collocation points, on the
other hand, lie inside the element. Assume that we select m collocation points and
n matching points per element. In each element, a polynomial of order n + m is

associated to each component (field) of the solution.
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For each matching point, across the element boundary, we require the continu-
ity of the solution components and the value of their normal derivatives. At each
collocation point, the collocation equation must be satisfied. The discrete form of the
integral constraint, Equation (9.3), is also imposed. If we add the discrete boundary

conditions to the above equations we have a total number of
2 s (m+n)+1

equations. This nonlinear system must be solved for the m + n unknown coefficients

of every approximation polynomial of every solution components, and the parameter
A

In our solution algorithm, instead of solving the above system in general form,
we solve it using the nested dissection method to reduce computational cost. For a
given element, we denote the matching points by z;, 2 = 1,---,n and the collocation
points by z;, i = 1,---,m. A polynomial p(x) € P,y can be used to approximate
the k' solution component of an element. Here, P,.,, is an appropriate n + m-
dimensional polynomial space. Define h(z) = (pi(z), p2(x),--- ,pnf)T. Then the

collocation equations can be written as
Niep(z) = Ape(z:) + fi (h(zi), )\) =0, i=1---,m, k=1,---,n;. (9.4)

Since for each element, we have ns solution components, we can use the following

vector basis functions to represent all of n; polynomials together

?1 0 0
0 ¢1 0
Y1 = . ) Y2 = : ) U San = : 3
0 0 b1
b2 0 0
0 (o3 0
= s b = e o)
0 0 b2
¢n+m 0
0 0
Prg(ntm-1)+1 = ) T o Pnglntm) = :
0 ¢n+m
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Here ¢;, i = 1,---,n + m, are basis functions of the polynomial space P, ..
Define a polynomial vector h(zx) as

ny(ntm)

h(z) = Z cipi(T), (9.6)

i=1
or

hz) = z (o),

where
n+m

hi(z) = Y ¢jpi(z), and j=(i—1)ns+k.

=1
We can write
P = YE" ¢i0(x)

0 .
h, = . , j:(z—l)nf+1,

hy = , j:(l—l)nf+2,

hnf: . ) ]:(2_1)nf+nf
Pny = Z?;Im Cjéj(x)

Then the collocation equation can be written as

n+m ny(n+tm)
Nih(zi) = Y cGtm+nDPG-1yn,+k(2:) + fk( > cjgoj(zi),)\) =0,
=1 =1
i=1,---,m, k=1,--- ns. (9.7)

We can impose the continuity conditions by associating the unique vector variables

u; and T; to each matching point x;. Define
h(.T@) = ﬂi,
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and .
Vpl(xz')Tﬁi
V ZT; i
Vhiz)p = P2(_ )’
Vn, ()7
where 7); is the outward normal vector to the boundary at the matching point z;.

Take

u= (ﬂ{, T 7EZ)T’
V= (@{7 T 767:’;)717
o1 (1) - ol (za)
® = : : : (9.8)
SDZf(ner) (z1) - szf(n—i—m) (@)
and . .
Vi (z1)'m S Vor(zn)' M
Ry = : : : (9.9)
vspnf(n—f—m) (Il)Tnl T v@nf(n—i—m) (xn)Tnn
where
0 T
Vi) = | Voi(z) | m=(0 - Vi)™ --- 0),

0
here j = ¢ mod ny, where mod is the modulus operator. If j = 0 then we take j = ny.

Note that in the Vy; vector only the line j has a nonzero value, which is equal to
V¢;(x). We can write

i—®Te=0, (9.10)
?— RIe=0. (9.11)
Above
¢=(c1,cp, - ,cnf(n+m))T.

The integral constraint (9.3) can be discretized over the domain, as in Section 8.2,

and it can be written as

2M
x, h(x), A)dS2, = 0, 9.12
> |, almhte) N)ds (9.12)
where €}, is the /th finite element of domain ().
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Equations (9.7), (9.10), (9.11), and (9.12) with the discrete boundary conditions

must be solved for

e ¢ € R of each element,

e 7; and 7; of each matching point, and

e the parameter \.

9.3 Newton’s method

Equations (9.7), (9.10), (9.11), and (9.12) together with the discrete boundary

conditions constitute the discretization. To solve these equations, we use Newton’s

method. Omitting iteration indices, we can write

ou — @T(Sa = Ty,
60 — RI6¢ = —r,.
and
2M
S {af 2+ 0X gy +1,} = 0.
=1
where
5éT (01, -+, 06Cn tntm))s
s’ (oal, - -, oul),
55T (07, - -+, 6L,
oul (6uy,-- -, dun,),
57 (v, -, dun, ),
Tu a - (I)TE7
Tv U - R:"};a
vo= (Nih(2), oo, Naghzr), Nib(z),

Lg 5E+ oA f,\ = —TNnN,

(9.13)

(9.14)

(9.15)

(9.16)



and

Li=)]ei(z)  Lih(z)]ea(zn) - L|h(@)|onsmim(2)
T = L[h(@)._%(zz) L[h(@).]%(zz) L[h(zz)}%f(nm)(za) 017
Llh(zm)] @r(zm)  L[aGm)]@a(zm) - L[h(z0)|@nsinsm(2m)

Dy fr (h(Z1)> /\)

D2fnf (h(zl)a A)
D f (h(22) /\>

Dy foy (h(2m), M)
Above L is the linearization of N, i.e., L[h(z)]p(z) is the linearization of N about h

h=

acting on ¢ at z. More precisely,

1 (2) Ai(2) + Difi(h(z), \)n(2)
L[h(z)}so(z):L[h(z)]( : ) :
¢nf(z)

Ay (2) + D fu, (B(2), N6y (2)

Further we have

Qu =

( Joop D2 (2, h(z), ) 1 (2)dD2 )

Jo DzQ(:E, h{zx), )\) Dty () S

o= /Qg Diq(w, h(z), A)dS2,
Ty = /Qe q(x, h(z), )\)dQ.

The reminder of this section is very similar to Section 8.3. Equations (9.13) and

(9.14) can be written

dTN OU + 7y
<L£> o= ( i’ fm> ' (9.18)
Equation (9.18) can be used to eliminate ¢ from Equation (9.15)
dT\ ! u+r
~ _ pl u _
00 = Ry (L%;) (-TN B f,\5)\) Ty (9.19)
Define A and B as
AT
(® | L¢)<BT) — Ra. (9.20)
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Then Equation (9.19) can be rewritten as
. TN (®T\ '/ Su+ry,
= o) () (1g) (L Fa) =

0v = Adu — 0AB f)\ — BTN — Ty + A?"u.

or

If we define
r=—Bry —_TU+ATU’ and b= —Bf’\’

we can write

00 = A0+ A b+ .
This equation is of the form of Equation (8.16).

If we use Equation (9.18) in Equation (9.16), we have

2 T (pT -1 67’1«\"" Tu
> {d (Zr) (L Tis)+ormsn}=o
=1

Let d € R™™, d € R™™ be the solution of

(@1 Lo) () = a

Then Equation (9.22) can be written
oM

D {d7 (60 + ) + d7(~ri = f260) + X ga+ 10} =0,

=1

which is of the form of Equation (8.19)

oM
> {dT6u+e oA+ s} =0,

=1
if we take

e=qy+ —d" fx,

s:rq+dTru—JTrN.

(9.21)

(9.22)

(9.23)

(9.24)

As in Section 8.3, the Newton equations for the boundary conditions can be

written as

ou = —u,

(9.25)

where du and u are ny component vectors. This allows treating more general boundary

conditions.
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9.4 Nested dissection

The nested dissection method described in Section 8.4 can be applied to the
global set of Equations (9.21) and (9.24). The algorithm consists of backward re-
cursive elimination of the unknowns 6% and év on boundaries separating adjacent
regions. Having used this procedure, we find the equations of the form Equation
(9.21) corresponding to the matching points on the exterior boundary 6¢2. The dis-
crete boundary conditions can be used to determine dA and the values of éu, v at
the points x; on 0f). Thereafter a recursive back-substitution gives the values of éu

(and hence §v) on each interior boundary point.

If we replace éu by 60U and dv by 60U, we can use the procedure described in
Section 8.4. Consequently, we do not repeat it here. Note that éu and 6v are vectors

of ny components, for each matching point.

9.5 Summary of the collocation algorithm

The algorithm of the finite element collocation method for systems of nonlinear
PDEs with a parameter-dependent integral boundary condition is very similar to the

algorithm in Section (8.5):

e Mesh generation of 2D domain as presented in Section 5.8.

e Given current approximations to @, ¥, ¢ and A\. (@ and © are vectors of ny

elements.)
e Do Newton’s iterations until the desired relative errors are achieved.

— Loop over all elements

* Compute ®, Lg and Re matrices using Equations (9.8), (9.9) and
(9.17).
* Solve Equation (9.20) to find A and B.

* Find ry, 7, rn, fo as described in Section 9.3, and write Equation

(9.21) and its equivalent Equation (8.22) for each element.

x Find q,, q», € and s, and compute d and d using Equation (9.23).
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— Solve the global system.
* Set up Equations (8.22), (8.25), (9.25) for the root node of the binary
tree.
* Use the nested dissection procedure described in Sections 8.4 and 9.4.

% Solve the above system for )\ and the unknowns 44, 6% on the bound-

ary of the domain.

* Find the unknowns at the interior matching points of the binary tree

using the recursive back-substitution, as described in Section 6.4.
— For each finite element compute ¢ using (9.18).
— Update: 4 —u+90u, v > v+6v,¢— ¢+ d¢cand A\ — X+ A

— Calculate the relative errors in the calculation of 4, v and €.

e save the results.

For any finite element, the matrix on the left hand side of (9.18) is the trans-
pose of the matrix on the left hand side of (9.20) and (9.23). Thus only one LU-

decomposition is required per finite element.

9.6 Continuation

The pseudo-arclength continuation method presented in Sections 7.3 and 7.9 can
also be used for the path following problems in systems of nonlinear elliptic PDEs
with control parameters. The nonlinear system (9.1) can be presented in the following

compact form
G(u(z), A) =0, u,G € R, A€ R, (9.26)

here @(z) is a function vector of ny components and A is a system control parameter.

The pseudo-arclength continuation equations can be formulated as
G(u(s), A(s)) =0, (9.27)

/Q (a(z) — @(@)) * dolz) d2+ (A — o)A — As = 0, (9.28)

where s is a parameterisation, * denotes dot product, (ug(-), Ag) denotes a given

solution, and (4g(-), Ao) is the direction vector of the solution branch at (u(-), Ao).
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Using h(x), defined in Equation (9.6), as an approximation to 4, Equation (9.28) can

be written as
/Q (ha(z) — ho(x)) * ho(2)d + (M — Xo)ho — As = 0. (9.29)

To find the new solution point (h1, A;) from the known solution point (hg, Ag), the

following equations must be solved
G(h1, A1) =0,

[ (hs(@) = ho(@)) * hof)d02 + (O = o) — As =0,

As 2 is a unit square, with area 1, one can rewrite the pseudo-arclength equation
(9.29) as
/Q {(h(x) — ho(z)) * ho(z) + (A — Ao)ho — As}dQ = 0. (9.30)

This equation is of the form of Equation (9.3), where
q(z, u(x), A) = (h(x) - ho(x)) * 50(93) +(A— /\0)/.\0 — As.

We can apply the pseudo-arclength equation as an integral constraint and we can
use the discretization method presented in Section 9.2 and 9.3. The procedure is
almost the same as in Section 8.6. Our nonlinear system comprises Equations (9.7),
(9.10), (9.11), the boundary conditions, and the discretized pseudo-arclength integral

constraint. The later equation can be written as

oM

2. / {(h(@) = ho(x)) * ho(x) + (A = Xo)Ao — As}dQ = 0.

=175

The coefficients of Equation (9.16) are

( Jo, ho(x)$1(2)d2
qu =

. : ) ; ax :/ ).\0 ds?, (9‘31)
Ja, o(@)bn, (nmy(2)dS2 Q

and
r, = / {(he) — ho(@)) * (k) + (A — Xo) Ao — As}ds2.
Qg
We remark that hy denotes the restriction of a given piecewise polynomial solution
to the £th element, and hy is its derivative with respect to As. We can write
ny(n+m)

h(:v): Z cipi(x).

i=1
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The next direction vector (hy, A;) is defined by
Gih+ Gl = 0,
/ by x hodQ 4+ Aghy = 1. (normalisation)
Q

As mentioned in Section 8.6, the coefficients ¢;, and therefore the vector (hl, 5\1), can
be determined by one extra back solve in the solution process. We must also rescale

the direction vector, such that
IR(s)* + A(s)* = 1,

where

I = [ h@)* h(e)g.
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Chapter 10

Implementation

10.1 Implementation considerations

There is no doubt that for the modelling and the implementation of a complex
software package, such as one for bifurcation analysis, a good modelling technique is
essential. Object-oriented modelling of the bifurcation analysis of systems of nonlinear
PDEs using discontinuous piecewise polynomial collocation, gives us the opportunity
to present the collocation and the continuation method clear and in a convenient
way. Such modelling is a useful tool to present the geometrical components of the
collocation model as well as the mathematical relations between these components.
Object-oriented modelling shows how different components communicate to construct
the collocation system, and how this system is used in pseudo-arclength continuation.
It shows visually the continuation algorithm, and how folds and branch points can
be detected. An object-oriented model is not only useful for software construction,
but it also is a valuable tool for understanding a complicated procedure such as path

following.
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There are many factors in a project’s success, and among them having a rigor-
ous modelling language standard is fundamental. A good modelling language must
include: model elements (fundamental modelling concepts and semantics), notation
(visual presentation of model elements) and guidelines (idioms of usage within the
context). In this thesis, we have selected the UML (Unified Modelling Language)
notation as our object-oriented modelling language. The Rational Rose software is
a powerful tool that can be used for the object-oriented modelling with UML [109].
Unfortunately, the Rational Rose software package is a commercial software package,
as a result, we have used a student version of this software (version 4.0), and also the

open source ArgoUML [107] which is valuable software as well.

We have used the UML notation, based on OMG Unified Modelling Language
Specification Version 1.5 [110], in the presentation of our prototype software structure.

We present our object-oriented model using

e Class diagrams for the presentation of the static structure of our model in terms

of classes and their associations (relationships),

e Sequence diagrams for the temporal representation of the activity of the objects

of our model, and the interactions among these objects,

e Collaboration diagrams for the spatial representation of the collaborating ob-

jects, their links, and their interactions,

e Object diagrams for the presentation of the objects of our model and their

relationships,

e Statechart diagrams for the presentation of the behavior of the classes in terms

of states,

e Activity diagrams for the presentation of the behavior of a given operation as a

set of actions,

e Use case diagrams for the presentation of functions of our system from the user’s

view point,

e Component diagrams for the presentation of the physical components of our

prototype software.
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o Deployment diagrams for the presentation of the deployment of the components

of software on the given hardware.

Using these diagrams make understanding the structure of the software and the be-

havior of our system clear.

10.2 Choice of programming language

We need an object-oriented programming language advanced enough to be able
to handle our data structure. We need to generate and to manipulate the objects
dynamically. Such a language must enable us to carry out the basic mathematical
operations efficiently, having acceptable input/output functionalities, and let us to
build a portable program that can be executed in different operating systems. The
produced software must also be compatible with other popular software packages
available in the domain of scientific computation, especially ones use in the numerical
bifurcation analysis, such as AUTO. These considerations led us to select the C++

language.

Besides the object-oriented advantages of C++, one of the principal forces of
this language is its capacity to handle pointers (heritage of C). So we can write efficient
low level subroutines. It allows to allocate (and to release) memory dynamically. This
will enable us to manage very naturally the lists, the tables, the trees, the containers
and the objects which successively appear, evolve and then possibly disappear in the

course of execution of program.

Another important point is the link to the available linear algebra software
packages, such as LAPACK++, to perform mathematical operations or the use of
the standard classes to execute certain tree structure operations that may improve
the performance of our software. Utilization and links to these packages are possible

easily when we use C++ as the programming language.

The C++ language allows freedoms which would make most compilers quiver.
It authorizes some powerful instructions that must be used carefully. Moreover, with
an aim of generating the most effective possible code, the C and C++ languages have

certain syntactic turning which, in addition to being of a delicate use, make the source
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Bifurcation analysis of PDE systems

User

Figure 10.1: Use case diagram of the entire system

code less readable and thus more difficult to understand. The places where one uses

these forms must be well documented.

10.3 Use Case model of the system

A use case model presents relationships and message exchanges between users
of the program which are called actors and the functionalities of the program which
are called use cases. In this model, the functionalities of the system are represented
as appear for external users of the system. A use case diagram is a graph of actors,
a set of use cases enclosed by the system boundary, communication (participation)
associations between the actors and the use cases, and generalizations among the use
cases. Bach use case, shown as an ”ellipse” containing the name of the use case,
consider as a unit of functionality provided by a system. An actor is a role of object
(or objects) outside of the system that is in interaction with the system, i.e. the use
cases of the system. The standard stereotype icon for an actor is the ”stick man”

figure with the name of actor below it.

In our system, a system for bifurcation analysis of PDE systems, the whole
system can be considered as a use case, which is in the interaction with a user, who
can be a person or even a program. This overall utilization of the system is shown
in the use case diagram of Figure 10.1. The link between the user and the use case

represents the messages exchange between them.

If we want to look at the system in more detail, we can break the use case
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Figure 10.2: Detailed use case diagram of the system

”Bifurcation analysis of PDE systems” into several use cases then, the interactions
between an actor and these use cases can be shown. The detail use case diagram is
presented in Figure 10.2 As shown in this diagram, the user communicates with 10
Interface” (input output interface) use case asking for an analysis. "IO Interface”
provides some functionalities to the user to enable him to inter the domain speci-
fications, the system of elliptic PDEs, the boundary conditions and also the mesh
specification. The result of calculations is also sent to this use case. Therefore, 10
Interface” is also responsible to prepare an appropriate output, and to communicate
it to the user via data sheets or different diagrams. The "IO Interface” use case
after collecting the input data send a message to "Path following” use case asking
for the execution of the continuation algorithm. The ”Path following” use case must
construct the collocation system, add pseudo-arclength equation to it, and solve the
nonlinear system. These three steps can be shown as three use cases, which include in
"Path following” use case. As a result, ”Collocation System”, ”Pseudo-Arclength”,
and ”Nonlinear Solver” use cases are added to the diagram and there is an include
relation between ”Path following” and each of these three use cases. ”Collocation
System”, ”Pseudo-Arclength” and ” Nonlinear Solver” use cases use ” Linear Algebra”
use case in their calculation but ”Linear Algebra” use case cannot be considered as

part of these use cases.
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Figure 10.3: Package diagram of the system

The link between 10 Interface” use case and ”Collocation System” use case
shows a situation when the user only wants to solve a PDE system without doing a
bifurcation analysis. In this case, 710 Interface” only communicates with ” Collocation
System”. ”Collocation System” and ”Pseudo-Arclength” use cases need geometrical
and mesh information of the domain. Such information is store in ”Binary tree” use

case.

10.4 Static structure of the model
10.4.1 Packages

Model elements such as objects and classes can be organized using packages. In
our model, we can use a single package to keep our developed model elements, which
are called ”PDEs Bifurcation Analysis”. In case of using external numerical analysis
software packages, for example, linear and nonlinear solvers, we can put them in a
”Numerical Analysis” package as shown in Figure 10.3. As ”PDEs Bifurcation Anal-
ysis” uses the ”Numerical Analysis” package, there is a ”"use” relationship between

these two packages.

10.4.2 Classes

A class symbolizes a set of objects with similar data structure, behavior, and
relationships to other elements. A class can represent a concept within the system.
For each class a list of attributes and a list of operations (methods) must be declared.
Class diagrams show the static structure of the system, i.e. the elements that define
for the overall life time of a program, such as classes, their internal structure, and

their relationships to each other.

The following classes are declared in our object-oriented model:
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e "User Interface”: This class is the realization of 710 Interface” use case. It

creates an environment for a user to inter the system of PDEs, the domain
specification, the boundary conditions and also the mesh specification. This

class must also communicate the result of calculations to the user.

?Element”: This class generates the elementary system of equations for each
element, as describes in the previous chapters. The objects created from this

class form the leaves of the binary tree data structure of the problem.

"Region”: In our binary tree data structure, a region is an interior node of
the tree. Geometrically, each region is a domain constructed from the union
of two subregions originally formed from the division of it, ¢.e., in the mesh
generation procedure. Using the class ”Region”, we can create the binary tree
structure. In this class, we must have the methods for assembling the equations
of its subregions to find the system of equations of the region, using the nested
dissection method. Therefore, when a region is the root of the binary tree, we
can have the linearized system of equations for the whole domain. As elements
are the smallest subregions of the domain, they can also be considered as regions.
As a matter of fact, the class ”element” is a specialization of the class "region”
and there is a generalization relationship between them, as shown in Figure

10.4. Note, we have only shown a few methods of these classes in this figure.

"Node”: Class Node models a point of the domain. This point could be a mesh
point, a matching point or a collocation point. Using the class Node, we can
create geometric points (nodes), and for each point, we can store its coordinates,

its type and other properties associated to a point.

”Bifurcation Analyzer”: This class provides attributes and operations to per-
form a bifurcation analysis of a PDE system. There is a link from this class
to the User Interface class, see Figure 10.5. This link shows the possibility of
data transfer between these two classes. As a result the PDE system defined
in the User Interface class is accessible from the ”Bifurcation Analyzer” class.
The result of analysis can also be transferred to the User Interface class to com-

municate it to the user. Another link from the Bifurcation Analyzer class to
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Figure 10.4: Region and element classes

the Region class permits this class to have access to the linearized system of

equations of the root region.

”Pseudo-Arclength”: This class is responsible for forming the pseudo-arclength
equation. The Pseudo-Arclength class has access to the methods defined in the

Bifurcation Analyzer and the Element classes in the process of its calculation.

”Linear Solver”: We use this class, when we need to solve a linear system of
equations. This class uses the LU decomposition method to solve the linear

system, and it takes Matrix and Vector objects as the input arguments.

”Nonlinear Solver”: This class uses the Newton method for solving a nonlinear
system of equations. As in each iteration of the Newton method, we need to

solve a linear system, this class has access to the Linear Solver class.

"Matrix” : This class provides attributes and methods to store and to execute

different operations on a matrix structure.

”Vector”: In this class, we define different attributes and methods to store a
vector and to execute different operations on it. As a vector is an special case of
a matrix, there is a generalization relationship between these two classes, i.e.,

the Vector class is a child of the Matrix class.
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Figure 10.5: General class diagram of the system

e "SubMatrix”: As in our calculation, especially in the nested dissection method,
we need to work with a part of a matrix, we define this class. A SubMatrix
class is defined over a Matrix. As a result, we work on a partition of the original
matrix the same as we work on a real matrix. As we work on the same storage

space the modification on the SubMatrix is passed to the original matrix.

The general class diagram of our object oriented model is shown in Figure 10.5.
A region can associate with several nodes, and a node can also belong to several
regions, as a result, as shown in the diagram, there is a 1.* association between the
Region and the Node classes. A Bifurcation Analyzer needs to communicate with a
User Interface, Regions, a Pseudo-Arclength and a Nonlinear Solver to construct the
system of equations and to solve it. Therefore the links shown in Figure 10.5 exists
between these classes. We consider the possibility that a Bifurcation Analyzer can
use different Nonlinear Solvers, so there is the multiplicity 1..* in the Nonlinear Solver
side of the link connecting these two classes. A Nonlinear Solver can also use different
Linear Solvers, therefore, we have 1..x multiplicity on the Linear Solve side of the link
between them. A Linear Solver can also relate to several Nonlinear Solvers but it is
not necessary for a Linear Solver to relate to any Nonlinear Solver, as a result, we

have 0.x multiplicity on the Nonlinear Solver side of the link between these classes.
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Figure 10.6: Class diagram of the linear solver

The link between Region and Linear Solver classes shows a Region has access to a
Linear Solver for its internal calculation. A Pseudo-Arclenth can also communicate

with Regions to collect the necessary data for its calculation.

Figure 10.6 shows relationships between SubMatrix, Matrix, Vector and Linear
Solver classes. As one can see, a matrix is a component of a submatrix and a vector
is a child of a Matrix. A linear solver can relate to a matrix or a submatrix but a

matrix or a submatrix can be used in several linear solvers.

10.5 Interaction among objects in the bifurcation analysis

The bifurcation analysis can be implemented by sets of objects that exchange
messages, cf. to Figure 10.7. Before examining this figure, several definitions are
reviewed. A communication between two or several objects is called a message. A
message contains the information that the sender transfers with the hope that an
action can take place. The reception of a message is an event. An object represents
a particular instance of a class. It has a name, and it stores values of its attributes.
The object notation comes from the class notation, to show the presence of an object

in a particular instance of a class; the syntax: objectname: classname is used. A
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Figure 10.7: Collaboration diagram of the bifurcation analysis

multi-objects is shown as several rectangles; some rectangles are shifted slightly ver-
tically and horizontally to present a stack of rectangles. The dynamic behavior of
the message sequences exchanged among objects to perform a specific purpose, such
as a bifurcation analysis, is an interaction. The structure of objects playing roles in
an interaction and their relationships is a collaboration. A collaboration diagram is a
graph of objects and their links with message flows attached to the links. In our case,
this diagram can present the objects involve in the continuation procedure, including

objects indirectly involved or accessed during the operations.

Figure 10.7 presents the collaboration diagram of the bifurcation analysis. It

demonstrates the relationships between the objects, and an interaction organized
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around them to perform a bifurcation analysis. As shown in this figure, the interac-
tion is started when a user sends a message ”do analysis” to the object ”U. interface”
of type Class User Interface. The object ”U. interface” sends the message ”bifurca-
tion analysis” to the object ”B. analyzer” of type Class Bifurcation Analyser. This
object, to find the root node linearized system of equations at each step of the con-
tinuation method, sends messages ”find system” to the objects ”system generator”
of type Class Region and ”find pseudo-arclength equation” to the object "P. A. E.
generator” of type Class Pseudo-Arclength. The object ”B. analyzer”, after receiving
the requested equations, constructs the root node system and sends it via the message
”solve nonlinear system” to the object "N. L. solver” of type Class Nonlinear Solver
to find the solution. The object "N. L. solver” uses the Newton method to solve the
nonlinear system and at each iteration of the Newton method sends a linear system
via the message ”"solve linear system” to the object "L. solver” of type Class Linear

Solver to find the solution.

The objects "system generator” are really the binary tree of the system. The
message ”find system” is sent to the root of the binary tree and the root sends the
message " find sub-system” to each of its children. Each child sends the same message
to its children until one level before the leaves of the tree, where each object sends
the message ”elementary equations” to its associated leaves of the tree. Leaves of the
tree are the objects ”elements” of type Class Element. The ”system generator” and
the ”elements” objects need the mesh points, the collocation points and the matching
points properties. These properties are stored in the objects "nodes” of type Class
Node. Therefore, the "system generator” and the ”elements” objects send the message
”node property” to the "nodes” objects. The "P. A. E. generator” object also needs
the elements properties, as a result, it sends the message ”element property” to the

”elements” objects .

In the collaboration diagram, the sequence of messages is shown using an or-
der number written before each message. To see the explicit sequence of messages
in time, we can use the sequence diagram presented in Figure 10.8. The sequence
diagram shows the same interaction, but it is arranged in time sequence. It shows the
objects participating in the interaction by their lifelines and the messages that they

exchange within a collaboration to produce a bifurcation analysis. This diagram has
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two dimensions: the vertical dimension represents time and the horizontal dimension
represents different objects. An object role is shown as a vertical dashed line called
the lifeline. The lifeline represents the existence of an object at a particular time.
An activation shows the period during which an object is performing an action. The
activation is shown as a tall thin rectangle whose top is aligned with its initiation
time and whose bottom is aligned with its completion time. A message is shown as a
horizontal solid arrow from the lifeline of one object to the lifeline of another object.
In case of a message from an object to itself, the arrow may start and finish on the

same object lifeline.

As one can see, the user activates the ”U. interface” object when it sends the
message ”do analysis” to it. The "U. interface” activates "B. analyzer”. The "B.
analyzer” object activates the ”system generator”, the ”pseudo-arclength” and the
"N. L. solver” objects. In this diagram, we only present the sequential calculation

of the model, therefore the ”pseudo-arclength” is activated after the execution of the
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"system generator”. In a parallel calculation the ”system generator” and the ” pseudo-
arclength” objects can be activated at the same time. The ”"N. L. solver” object must
be activated after the execution of the ”system generator” and the ” pseudo-arclength”
objects. The "system generator” objects have recursive call. They also activate the
"nodes” and the "elements” objects. The ”L. solver” is also activated via the "N. L.

solver” object.

The above interaction diagrams present one step of the continuation procedure.
Such collaboration and interaction must be repeated for every step, as we can store

the result of the repeated calculations, the fist step takes more time than others.

10.6 Different states of the bifurcation analysis

As the principal job in a bifurcation analysis is done by an object of type Class
Bifurcation Analysis, and this object control the others, in this section we consider
the sequences of states, which such object could have during its life. Note, a state is
a situation during the life of an object, which it satisfies some conditions, performs
some actions, or waits for some events. Here, an event is a notable situation. An
event may trigger a state transition in the state diagrams. In our modelling, we have
used the statechart diagram to present the different states of a Bifurcation Analysis

object in reply to a request of doing an analysis, refer to Figure 10.9.

In the UML, a state is represented by a state symbol, which is a rectangle with
rounded corners. Arrows connecting the state symbols represent the transitions. A
state symbol may have one or more compartments. Name compartment contains the
name of the state. Internal transition compartment contains a list of internal actions
or activities performed in response to the received events during which the object is
in the state, without changing its state. An initial (pseudo) state is presented by a
small solid filled circle. A final (pseudo) state is shown by a circle that enveloped a
small solid filled circle (a bull’s eye). The trigger for a transition between states is

the occurrence of the event labelling the transition.

The Bifurcation Analysis object, when triggered, constructs the binary tree data
structure of the domain, then it searches for the starting point of the continuation,

which is generally a travail solution of the problem. We call this state ” Initialization”.
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Figure 10.9: Statechart diagram of the bifurcation analysis object
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After the Initialization state, the Bifurcation Analysis object goes to the ” Continua-

tion” state. In this state the following actions will be performed:

e choosing the step size of arclength continuation,
e finding the linearized system, and

e solving the system.

As we use the pseudo-arclength continuation method, first we must choose an ar-
clength step (As). In the first action the size of As must be selected. The value
of As depends on its initial value, the previous step size, the convergence condition,
and the number of Newton’s iterations of the previous step for solving the system.
The second action is finding the linearized system of equations. This system has two
parts. First part is formed by assembling of the elementary equations of all domain
elements, which we have used the modified nested dissection method as described in
the previous chapters. The seconds part is the pseudo-arclength equation, which is
written for the whole domain. The third action of this state is solving the system
using the Newton method. Each of the above actions can be presented in a statechart
or in an activity diagram. We present the third action in an activity diagram in the

next section. After solving the system the following events could be happened:

e the system does not converge,

e the system converges and the limit of continuation on this branch has not been

reached (number of steps on this branch is less than the given value),
e there is a fold,
e there is a branch point,

e end of the current branch, the limit of continuation on this branch has been

reached

e the continuation step size, As, is too small.
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If the system does not converge, then the Bifurcation Analysis object must stay
in its current state, and it selects a smaller continuation step size, for example it
can choose As; 1 = As;/2. Therefore, for this event, we have a self transaction. If
the system converges, and the given continuation limit on this branch has not been
reached, then it must also stay in its current state, and it goes one step forward on

the branch. As a result, we have another self transaction event.

If there is a fold on the branch, detected by an orientation change of the direction
vector, we need to find its position. Here, the Bifurcation Analysis object changes
state from the ”Continuation” to the "Fold”. In the Fold state, it uses the Regula-
Falsi or the bisection method to locate the fold point with the precision that has
been requested by the user. After finding the fold point, it returns back to the
”Continuation” state, and it continues to step forward from the fold point on the

current branch.

If there is a branch point, detected by the sign change of the determinant of the
linearized system, then the Bifurcation Analysis object goes to the ”Branch point”
state to find the position of this point with the desired precision. After finding the
location of the branch point, it stores its coordinates, the solution of the unknowns
at this point, and the direction vectors associated to this point in the list of switch
branching. This information, together with each of the direction vectors associated
to the branch point, represent a branch of solution that can be used in the contin-
uation method to find all the solution branches. Thereafter, it returns back to the
”Continuation” state, and it continues to step forward from the branch point on the

current branch.

If the limit of the continuation on the current branch has been reached, there
is no need to go further on the current solution branch, and the Bifurcation Analysis
object changes state to the ”"Switch branching” state. In the ”"Switch branch” state,
it searches for a new branch point from the list of switch branching. If found, it loads
the new branch point information, and it returns back to the ” Continuation” state
to do continuation on the new branch. If the new branch point is not found on the

switch branching list, it goes to the final state.

If the "too small continuation step size” event occurs, then there must be an

error in the program or in the input data. Therefore, an error signal arises, and the
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Figure 10.10: Activity diagram of the nonlinear solver object

Bifurcation Analysis object goes to the final state.

10.7 Different activities of solving a nonlinear system

In Section 9.5, an algorithm of the finite elements collocation method for systems
of nonlinear elliptic PDE with a parameter-dependent integral boundary condition
is given. Using this algorithm, we present different activities of the action ”solving
the system” of the ”Continuation” state, presented in Section 10.6. These activities
are demonstrated in the activity diagram of Figure 10.10. Note, an activity diagram

is a specific case of a state diagram in which all (or at least most) of the states are
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action states, and in which all (or at least most) of the transitions are triggered by
completion of the previous actions. The aim of this diagram is to focus on flows of
internal processing (contrary to external events). An action state is a state with an
internal action and at least one outflow transition indicating the event of completing
the internal action. In this diagram activities are the performance of operations and

the transitions are motivated by the completion of the operations.

As shown in Figure 10.10, the first activity is the initialization of the unknowns,
i.e., initialization of u, ¥, ¢ and A of the mentioned algorithm, for a given value of
the arclength parameter s and the step size As. The second activity is finding the
elementary equations of each element, i.e., finding A, B, d and d of Algorithm 9.5.
The third activity is using the nested dissection method to constructing the system
of equations of the root node of binary tree from the elementary equations. In the
fourth activity the pseudo-arclength equation, Equation (9.24), and the boundary
conditions, Equation (9.25), are added to the system. Finally in the fifth activity, the
system must be solved for Newton’s increments. In the next activity, the solutions
must be updated, and the relative error must be found. If the error is less than the
acceptable precision requested by the user we go to the final activity, if not we return

back to the second activity.

10.8 Structure of the software

In this section, we consider some implementation aspects, including the source
code structure and the run-time implementation structure. We use implementation
diagrams to present these aspects. The implementation diagrams are in two forms:
the component diagrams that show the structure of the code and the deployment
diagrams that show the structure of the run-time system. A component diagram is a
graph of components connected by dependency relationships. A deployment diagram
is used to present the configuration of run-time processing elements and software
components, the processes, and the objects that execute on them. A component is

shown as a rectangle with two small rectangles protruding from its side.

In the component diagram of Figure 10.11 the dependencies among software
components are presented. The executable component " PDEs Bifurcation Analysis”

needs the following components: ”Linear Algebra Library”, ”Other .obj files”, and
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”User_interface.obj”. In our prototype software, the PDEs system is written in the
file "PDE _system.cpp”. This file must be added to the file ”User interface.cpp” and
”User _interface.cpp” must be compiled to make " User_interface.obj”. As one can see,
there is a dependency between "PDE _system.cpp” and ”User_interface.obj”. The
object file " User_interface.obj” must link to the other objects and libraries to make

the executable.

The library component ”Other .obj files” is a home made library, which con-
structed from the object files of our defined classes, i.e., classes such as ”Region”,
"Element”, ” Pseudo-Arclength” and so on. The links between the component ” Other
.obj files” and the interface of the component ”Linear Algebra Library” shows the
utilization of the linear algebra operations by the component ”Other .obj files”.
Similarly, the link between the component ”Other .obj files” and the interface of
”User_interface.obj” shows that .obj files of the component ”Other .obj files” can

access to the information store in the component ” User_interface.obj”.

The component ”Linear Algebra Library” can be linked at the run-time to the
executable component. Therefore, it can be placed on another node, for example on
the sever computer. Note here, a node is a run-time physical object that represents
a processing resource. This situation is shown on the deployment diagram of Figure
10.12. As it is shown in the figure the component "PDE Bifurcation analysis” is
executed on the node ”PDE Bifurcation Analysis PC”. This component can use the
DLL library, which is placed on another computer, here, the library ” Linear Algebra
Library”, which is on the node ”Linear Algebra Library PC”.
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Chapter 11

Numerical Applications

11.1 A simple PDE with known solution

First, we use our collocation method for solving a PDE with a known analytical

solution. Consider the following PDE
Au = (222 + 22%y + 22y° — 6wy)e™™¥ for (z,9) € Q C R?,

u=0 on 60,

where A is the Laplace operator, the domain (£2) is a unit square, and (62) denotes

the boundary of 2. The analytical solution is

u(z,y) = z(z — y(y — e ™.

We do not consider the continuation of solutions in this example. Our objective is to
compare the numerical solution, found with our method, with the analytical solution.
Figure 11.1 represents the analytical solution of the above PDE. The approximate
numerical solutions of this PDE, for different mesh sizes and collocation points, are

shown in Figures 11.2 to 11.5. It is clear from these figures that the approximate
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Figure 11.1: The function u(z,y) = z(z — 1)y(y — 1)e**¥

solution converges to the exact solution when the mesh size is reduced, or when the
number of collocation points per element increases. As one can see, in Figure 11.2a,
for a 2 by 2 mesh and only one collocation point per element, there are gaps between
element boundaries. Nevertheless, the boundary lines are connected to each other
at the matching points. We have the same solution value at these points, due to
the matching conditions between adjacent elements. The gaps are reduced in size
by increasing the number of matching points, see Figure 11.3, or by increasing the

number of elements, see Figures 11.4 and 11.5.

Table 11.1 presents the maximum error at the matching points for different
meshes, and different number of collocation points per element. The collocation and
matching points are chosen at the Gauss points. The convergence rates between
consecutive values in each column are shown in parentheses. As one can see, for
2 % 2 (= 4) collocation points per element, by reducing the mesh size we approach

O(h*) convergence, as predicted in Section 5.9.
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Figure 11.2: A 2 by 2 mesh with one collocation point per element. a) The approxi-
mate solution, b) Comparing the approximate solution with the actual solution

Figure 11.3: A 2 by 2 mesh with 4 collocation points per element. a) The approximate
solution, b) Comparing the approximate solution with the actual solution
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Figure 11.4: A 4 by 4 mesh with 4 collocation points per element. a) The approximate
solution, b) Comparing the approximate solution with the actual solution

Figure 11.5: An 8 by 8 mesh with 4 collocation points per element. a) The approxi-
mate solution, b) Comparing the approximate solution with the actual solution
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# col. 1 2% 2 3%3 4x4
mesh mazx. error (0) | mazx. error (0) | max. error (o) | maz. error (o)
2% 2 8.84¢* 4.54¢* 2.09¢75 4.04e~7
Ax4 | 2.80e7% (1.66) | 5.18¢7° (3.13) | 7.64e7 (4.78) | 7.40e~° (5.77)
8%8 | 7.21e~* (1.96) | 4.30e° (3.59) | 2.72¢~% (4.81) | 1.32¢~10 (5.81)
16 %16 | 1.81e~4 (1.99) | 3.02¢77 (3.83) | 8.84e71° (4.95) | 2.14e~'2 (5.95)
32 %32 | 4.54e75 (2.00) | 1.99¢~® (3.92) | 2.81¢~ 1 (4.97) | 3.40¢ (5.98)
64 %64 | 1.14e75 (2.00) | 1.28¢79 (3.96) | 8.87¢~13 (4.98) | 5.55¢™16 (5.94)

Table 11.1: The maximum error, and the order of convergence at the matching points

11.2 The Bratu-Gelfand Problem

The Bratu-Gelfand problem in 2D is an interesting nonlinear PDE problem,
where the location of its fold, for higher-dimensional problems and more general

domains, is still a subject of investigation [69, 24]. This problem can be written as

Au+ e =0 for (z,y) €, (11.1)

u=0 on 4,
where the domain {2 is a unit square and A is the continuation parameter.

The above nonlinear PDE is solved using our prototype software. Table 11.2
presents the location of the fold for various choices of the mesh sizes and the collo-
cation points. Using this table, the exact location of the fold is assumed to be the
best value found in the table, i.e., A = 6.808124423. Table 11.3 shows the maximum
error of the fold position, with respect to the assumed position, for different mesh
sizes and collocation points. Between parentheses, the convergence rate with respect
to the previous value is given. As in the previous example in Section 11.1, we have
O(h?) convergence for 1 collocation point per element, and O(h*) convergence for 4

collocation points per element.

Figure 11.6 presents the solution surfaces at the fold position for different meshes
and collocation points. Figure 11.7 shows the bifurcation diagram of the Bratu-
Gelfand problem. There is only one fold in the 2D Bratu-Gelfand problem. Continu-

ing the solution family, the norm of the solutions goes to infinity as \ approaches to
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# col. 1 2 %2 3*3 4 x4
mesh A A A A

1x1 | 5.886071059 | 8.829106588 | 6.468997582 | 6.896291085

2% 2 | 7.848094745 | 6.657615709 | 6.819161991 | 6.807812085

4x4 | 6.861418190 | 6.805822324 | 6.808174115 | 6.808122960

8x8 | 6.820207335 | 6.808016922 | 6.808124690 | 6.808124424
16 %16 | 6.811079454 | 6.808117899 | 6.808124427 | 6.808124423
32 %32 | 6.808859009 | 6.808124018 | 6.808124423 | 6.808124423
64 % 64 | 6.808307808 | 6.808124397 | 6.808124423 | 6.808124423

Table 11.2: The location of the fold in the Bratu-Gelfand problem

# nb.col. 1 2 %2 3%3 4 x4
mesh maz. error (0) | max. error (o) | maz. error (o) | max. error (o)
1x1 9.22¢71 2.02 3.39¢7! 8.82¢72
2 %2 1.04  (0.17) | 1517 (3.75) | 1.10e2 (4.94) | 3.12¢7 (8.14)
4%4 | 5.33¢72(4.29) | 2.30e7% (6.03) | 4.97e (7.80) | 1.46¢6 (7.74)
88 | 1.21e72 (2.14) | 1.08¢~* (4.42) | 2.67¢™7 (7.54) | 1.00e=° (10.5)
16%16 | 2.96e~3 (2.03) | 6.52¢75 (4.04) | 4.00e~ (6.06)
32432 | 7.35¢* (2.01) | 4.05¢77 (4.01)
6464 | 1.83¢= (2.00) | 2.60e~® (3.96)

Table 11.3: Maximum error at the matching points in the Bratu-Gelfand problem
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zero. Figure 11.8 shows solutions of the Bratu-Gelfand problem for different values
of continuation parameter A. The solutions before the fold, at the fold, and the after

the fold point, drawn on the same scale, are presented in this figure.

11.3 Bifurcation example 1

In this section, we consider a simple linear PDE, having known bifurcation
branches, namely those that correspond to eigenvalues. This is useful to check the
branch point detection functionality, and the branch switching capability of the pro-
totype software. Consider the following PDE

Au+du=0 for (z,y)€q, (11.2)

u=0 on 8,
where the domain ) is a unit square and \ is the continuation parameter.

This equation corresponds to an eigenvalue problem, which has nontrivial solu-

tions at A = 2k?w?, where k is a positive integer. The nontrivial solutions are
u(z,y) = sin(rkz) sin(rky).

The first branch point is located at 27% = 19.73920880. Figure 11.9 shows the bifur-
cation diagram with the first bifurcating branch, as found by our prototype software,
using a 4 by 4 mesh and 4 collocation points per element. Table 11.4 illustrates
the location the first branch point (eigenvalue) in this problem for various choices of
meshes and collocation points. Table 11.5 presents the maximum error in the detec-
tion of the first branch point location. As before, the convergence rates between two
consecutive values are given in parenthesis. Figure 11.10 shows several solutions

(eigenfunctions) on the vertical bifurcation branch.
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Figure 11.6: Solution of the Bratu-Gelfand problem at the fold, for different mesh
sizes and collocation points per element
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Figure 11.7: Bifurcation diagram of the Bratu-Gelfand problem

# col. 1 2% 2 3%3 4%x4
mesh A A A A
2x2 | 21.33333333 | 19.78370023 | 19.73985662 | 19.73921407
4x4 | 20.22619483 | 19.74251591 | 19.73921994 | 19.73920882
8 % 8 19.86487048 | 19.73942347 | 19.73920898 | 19.73920880
16 % 16 | 19.77084568 | 19.73922234 | 19.73920880 | 19.73920880
32%32 | 19.74713151 | 19.73920965 | 19.73920880 | 19.73920880

Table 11.4: The location of the first branch point of Au + Au =0
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AN = AKOKR (At the Fnld)

e) A=6.34 (after the fold) f) X =4.75 (after the fold)

Figure 11.8: Solution of the Bratu-Gelfand problem for different values of A, using a
4 by 4 mesh and 4 collocation points per element
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# col. 1 2%2 3%3 4 %4

mesh max. error (0) | maz. error (o) | maz. error (o) | maz. error (o)
2 % 2 1.59 4.45¢72 6.48¢™* 5.27¢™5
4x4 | 4.87e7t (1.71) | 3.31e72 (3.75) | 1.11e7® (5.87) | 2.00e8 (8.04)
8x8 | 1.26e7! (1.95) | 2.15¢* (3.94) | 1.80e™" (5.95) 0

16 %16 | 3.16e72 (2.00) | 1.35¢7% (3.99) 0 0

3232 | 7.92¢73 (2.00) | 8.50e7 (3.99) 0 0

Table 11.5: Error and order of convergence in the calculation of the first branch

point of Au+ Au =0
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Figure 11.9: Bifurcation diagram of Au+ Au =0

Branch point
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¢) As =—2.0 d) As =—4.0

Figure 11.10: Solutions along the vertical branch of Au-+Au = 0 at A = 19.73920880.
The mesh is 4 by 4, with 4 collocation points per element. As is the distance from
the trivial solution
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11.4 Bifurcation example 2

In this section, we consider a bifurcation problem, which has curved bifurcating

branches. Consider the following PDE
Au+ Asin(u) =0 for (z,y) € Q, (11.3)

u=10 on ),
where the domain €2 is a unit square and A is the continuation parameter.

Figure 11.11 shows the bifurcation diagram with the first bifurcating branch, as
computed by our software, using a 4 by 4 mesh and 4 collocation points per element.
As one can see, the first branch point is located at A = 19.73920880. This is the same
value that we found in Section 11.3, because Equation (11.2) is the linearization of
Equation (11.3) about u = 0. Therefore the location of the branch points along the
trivial solution of the equation Awu + Asin(u) = 0 are the same as for the equation
Au + Au = 0. Figure 11.12 shows a solution surfaces on the upper and on the lower

solution branches, namely, at A = 43.0849 and A = 55.0672 respectively.

11.5 Bifurcation example 3

In this example, we consider a more complicated PDE, namely, a PDE with
bifurcating solution branches, as well as folds on the solution branches. Consider the
following PDE

Au+ A(u(l —sin(u) +u*) =0 for (z,y) € Q, (11.4)

u=0 on 60,

where the domain (2 is the unit square and A is the continuation parameter. This

example is also investigated in a paper by Chien, Jeng and Li [24].

This problem is easily solved by our prototype software. Figure 11.13 shows the
bifurcation diagram of the first bifurcating branch of this problem, using a 8 by 8
mesh and 1 collocation point per element. As one can see, the first branch point is
located at A = 19.73920880. This is the same value that we found in Sections 11.3
and 11.4, as Equation (11.2) is also the linearization of Equation (11.4) about u = 0,
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Figure 11.12:  Two solutions of Au + Asin(u) = 0: a) at A = 43.0849 on the lower
branch; and b) at A = 55.0672 on the upper branch. The mesh is 4 by 4, with 4
collocation points per element
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and u© — u? + u® ~ u when u — 0. As a result, the position of the bifurcation points

from the trivial solution are the same as in Examples 11.3 and 11.4.

Our software detects a fold on the upper solution branch of the above equation.
This fold is located at A =~ 25.15, which is the same result as in previous work on this
problem. Figure 11.14 presents the solution surface at the fold for different number
of collocation points per element, using the same elements. As one can see, there
are gaps between the solution patches for one collocation point per element, but the
solution patches are connected at the matching points. Using this figure, we can not
see the gaps in case of four collocation points per elements, although these gaps still
exist. Figure 11.15 shows a solution surface on the lower, and on the upper solution

branches, namely, at A = 5.99 and A = 5.877, respectively.

11.6 The 2D Brusselator system

Reaction-diffusion systems and, in particular, the Brusselator system, arise in
the study of chemical and biological phenomena. The dynamics of the Brusselator
systems has been the subject of much research activity over the past decades [136,
147]. The Brusselator system is an example of an autocatalytic, oscillating chemical
reaction. An autocatalytic reaction is one in which a species acts to increase the rate
of its producing reaction. In many autocatalytic systems complex dynamics are seen,

including multiple steady-states and periodic orbits.

In this section, we consider the 2D Brusselator system. This is a good example
to test our prototype software for a system having 2 solution components. Consider

the following PDE system

d/PAu+ A+ Du+v’v+a = 0 for (z,9) €9,
do/PAv+du—v*v = 0 (11.5)

u=a,v=2>Aa on §Q,

where the domain €2 is a unit square, A is the continuation parameter, u and v
represent the first and the second components of the solution. We consider the case,

where
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Figure 11.13: Bifurcation diagram of Au + A(u(l — sin(u) + u3) =0
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a) 1 collocation point b) 4 collocation points

Figure 11.14: Solution at the fold of Au+ A(u(1 —sin(u) + u®) = 0. Computed with
mesh size a) 4 by 4, with 1 collocation point; and b) 4 by 4, with 4 collocation points
per element

a) A = 5.99 b) A = 5.877

on lower branch on upper branch

Figure 11.15: Two solutions of Au + A(u(1 — sin(u) + u®) = 0 at: a) A = 5.99, on
the lower branch; and b) A = 5.877, on the upper branch. Mesh size is 4 by 4, with
4 collocation points per element
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[ = 1,
a = 4. (11.6)

This example is also considered in a paper by Fedoseyev, Friedman and Kansa [69].

Solving this problem, using a 4 by 4 mesh, and 4 collocation point per element,
we detect the first bifurcation point at A = 29.144, which is close to the exact value,
i.e., A & 29.144494. Of course, with increasing the number of elements, and increasing
the number of collocation points, we can approximate the exact solution with desired
precision. Figure 11.16 presents the bifurcation diagram with the first bifurcation
point. In this figure the two components of solution are shown in the same diagram.
Figures 11.17 and 11.18 present the bifurcation diagram with the individual solution
components. As one can see, there is a fold on the upper solution branch, namely, at
A~ 26.59.

Figures 11.19, 11.20 and 11.21 present the basic solution, the upper solution
branch, and the lower solution branch, respectively. Figure 11.22 presents several
solution surfaces on the basic solution branch, using a 2 by 2 mesh, and 4 collocation
points per element. The pictures ¢ and d of this figure show the branch point solutions.
Figures 11.23 and 11.24 show solutions on the upper and on the lower branches,
respectively. The fold point solution is presented in the pictures ¢ and d of Figure
11.23. As we continue the bifurcating branches, the shape of the solutions changes.
To be able to resolve the solution variations, we have used a 4 by 4 mesh, and
4 collocation points per element. Figures 11.25 and 11.26 present some of these
solutions, for the upper and the lower branches, respectively. To continue further on
the upper solution branch, and to satisfy the boundary condition at the corners of

the solutions, as presented in pictures e and f of Figure 11.25, we need a finer mesh.
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Figure 11.16: Bifurcation diagram of the Brusselator system
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Figure 11.17: Bifurcation diagram showing the first component of the Brusselator
system
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Figure 11.18: Bifurcation diagram showing the second component of the Brusselator
system
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Figure 11.19: The basic solution of the Brusselator system
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Figure 11.20: The upper solution branch of the Brusselator system. There is a fold
at A = 26.59 on this branch
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Figure 11.21: The lower solution branch of the Brusselator system

11.7 The Navier-Stokes equations

In this section we demonstrate the utility of the finite element collocation with
discontinuous piecewise polynomials method, and the capability of our prototype
PDEs continuation software, for solving difficult PDEs problems. As an application,

we here consider the famous Navier-Stokes equations.

Generally, finite difference methods are used for solving simple cases of the
Navier-Stokes equations. The pure finite difference method is difficult to apply, and
the solution of the final system resulting from such discretization takes much execution
time. In the case of using simple (low order) finite differences, a fine mesh is needed,
that results in a large system of equations. In the case of higher order finite differences
we encounter the problem of how to apply the boundary conditions. Hybrid methods
are also considered by some authors. For example, Meyer Spasche [102, 103] has
used a combination of finite differences and finite Fourier decomposition to solve the
axisymmetric steady state Navier-Stokes equations that arise in the Taylor problem.
Conley [33] used a combination of finite differences and Chebychev polynomials for

computing the flow between two infinite parallel rotating plates.
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e For X = 90144 ( Rranch nointy  dY o for X = 90 144 ( Rranch naint)

e) u for A =43.86 f)v for A =43.86

Figure 11.22: Solution of the Brusselator problem, for different values of A on the
basic solution branch, using a 2 by 2 mesh, and 4 collocation points per element. c)
and d) present the solution at the branch point
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e) u for A = 36.80 f) v for A =36.80

Figure 11.23: Solution of the Brusselator problem, for different values of A on the
upper solution branch, using a 2 by 2 mesh, and 4 collocation points per element. c)
and d) present the solution at the fold point
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Figure 11.24: Solution of the Brusselator problem for different values of A on the
lower solution branch, using a 2 by 2 mesh, and 4 collocation points per element
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a) u for A =55 b v for A =55

cu for \=175

e) u for A =100 f) v for A =100

Figure 11.25: Solution of the Brusselator problem, for different values of A on the
upper solution branch, using a 4 by 4 mesh, and 4 collocation points per element

194



b) v for A =55

¢ u for A =100 d) v for A =100

e) u for A =240 f) v for A =240

Figure 11.26:  Solution of the Brusselator problem, for different values of A on the
lower solution branch, using a 4 by 4 mesh, and 4 collocation points per element
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Several authors have used the streamfunction-vorticity formulation of the Navier-
Stokes equations for solving two-dimensional incompressible fluid low problems. The
driven cavity flow can be solved using such formulation. One can consult the pa-
per by Spotz [137], who compared different fourth-order compact finite difference
discretizations of the streamfunction-vorticity equations for solving the driven cav-
ity problem. He also presented different formulations for handling the no-slip wall

boundary conditions.

We have used our prototype software to solve the two-dimensional (2D) in-
compressible Navier-Stokes equations in a square domain with a periodic boundary
condition. The relations between the streamfunction (¢), the vorticity () and the
velocity of a fluid in the steady state 2D incompressible fluid flow, can be presented

as follows:

oy

oY
Jv  Ou
(= 9z By’ (11.9)

where u and v are components of the velocity of the fluid in z and y directions. Using
the above relations, the 2D steady state incompressible Navier-Stokes equations can

be written as

A — (=0,
v Cauav du v (11'10)
AC+ Re(za5 — v as) =0,

where R, is the Reynolds number. On an unit square domain Q (0 <z <1, 0<y <

1), see Figure 11.27, the following boundary conditions are considered

u(z,0) = % = sin(2/1x) (side 1),

v(z,0) = ~-%£ =0 (side 1), (11.11)
u(z,1) =0, v(z,1) = (side 3),

u(0,y) = u(1,y), v(0,y) =v(l,y) (side 2 and 4).
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Side 3: u=0, v=0.

Side 4 Side 2

Side 1: u=sin(2I1x), v=0.

Figure 11.27: A square domain, with periodic boundary condition in the z direction
(side 2 and side 4)

The equivalence boundary conditions in terms of ¢ and ( are

%ﬁ’o) = sin(21lx) (side 1),
Y(z,0) =0 (side 1), (11.12)
WD) — 0, y(z,1) =0 (side 3),

¥(0,9) = ¥(1,y), ¢(0,y) = ((1,y) (side 2 and 4),

where n is the outward normal to the boundary. System (11.10) with boundary
condition (11.12) is solved using our prototype software. Figure 11.28 presents the
bifurcation diagram of the above problem until R, = 800. In this figure, both v (the
first component) and ¢ (the second component) are shown. Figures 11.29 and 11.30

show the variation of each component with respect to R., separately.

Figures 11.31, 11.32, 11.33 and 11.34 show the solutions %, (, v and v for
different R, using an 8 by 8 mesh and 9 collocation points per element. Figures
11.35, 11.36, 11.37 and 11.38 show the solutions ¢, (, v and v for different R,., using

a 16 by 16 mesh, and 9 collocation points per element.
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Figure 11.28: Bifurcation diagram of a 2D steady state incompressible fluid flow
with periodic boundary conditions

0.1

0.0§
= 0.09 ///
a ]
5 4
B
= 0.04

0.03

0T T——T 0T T T T T T T T T T T T T T T T
0 200 400 600 800

Reynolds number

Figure 11.29: Bifurcation diagram showing the first component (¢) of a 2D steady
state incompressible fluid flow with periodic boundary conditions
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Figure 11.30: Bifurcation diagram showing the second component (¢) of a 2D steady
state incompressible fluid flow with periodic boundary conditions
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e) ¢ for R, =650 f) v for R, =790

Figure 11.31: The solution ¢ of a 2D steady state incompressible fluid flow with
periodic boundary conditions, for different values of R,; using an 8 by 8 mesh, and 9
collocation points per element
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Figure 11.32:

for different values of R,; using an 8 by 8 mesh, and 9

1

periodic boundary conditions

collocation points per element

201



e) u for Re = 650 f)u for Re =790

Figure 11.33: The velocity u of a 2D steady state incompressible fluid flow with
periodic boundary conditions, for different values of R,; using an 8 by 8 mesh, and 9
collocation points per element
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b v for R. =150

cYv for R. = 300 dYv for R, = 500

e)v for R, =650 f) v for R =T90

Figure 11.34: The velocity v of a 2D steady state incompressible fluid flow with
periodic boundary conditions, for different values of R.; using an 8 by 8 mesh, and 9
collocation points per element
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e) ¥ for R, =450 f) ¥ for R, = 500

Figure 11.35: The solution ¢ of a 2D steady state incompressible fluid flow with
periodic boundary conditions, for different values of R.; using a 16 by 16 mesh, and
9 collocation points per element
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Figure 11.36: The solution ¢ of a 2D steady state incompressible fluid flow with
periodic boundary conditions, for different values of R,; using a 16 by 16 mesh, and
9 collocation points per element
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c)u for R, =250 d) v for R. = 350

e) u for R, =450 f) u for R, =500

Figure 11.37:  The velocity u of a 2D steady state incompressible fluid flow with
periodic boundary conditions; for different values of R.; using a 16 by 16 mesh, and
9 collocation points per element
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c¢)v for R, =250 d) v for R. = 350

e)v for R, =450

Figure 11.38: The velocity v of a 2D steady state incompressible fluid flow with
periodic boundary conditions; for different values of R.; using a 16 by 16 mesh, and
9 collocation points per element
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Chapter 12

Conclusion

12.1 Concluding remarks

In this thesis, we have aimed to demonstrate that the piecewise polynomial col-
location method is not only a valuable technique for solving boundary value problems
in ordinary differential equations, but that it is also an excellent numerical method
for solving nonlinear elliptic partial differential equation systems. Various aspects of
the finite element piecewise polynomial collocation methods for linear and nonlinear
ODEs and PDEs have been discussed in this thesis, and the remarkable unity of the

method and the associated solution algorithm, for ODEs and PDEs, were emphasized.

A simple mesh generation procedure was used to produce a suitable mesh. This
procedure is based on the recursive subdivision of the domain into two sub-domains,
so as to construct a binary tree data structure. This type of domain decomposition is
useful in the local mesh refinement process, and also in the robust nested dissection

solution algorithm.

For linear ODEs and PDEs, the collocation method was defined equivalently as

a type of generalized finite difference method. This finite difference formulation leads
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in a very natural way to the nested dissection procedure for solving the discretized
equations. For nonlinear ODEs and PDEs, it was explained how the global linearized
system is constructed, and how it can be solved using Newton’s method and the
nested dissection algorithm. Although, the nested dissection method for the case of
ODEs does not reduce the computational complexity, as it does for PDEs, it has

advantages for bifurcation analysis, for ODEs as well as PDEs.

We have shown that the main characteristics of the discontinuous finite element

collocation method are:

e High order of accuracy is possible by increasing the number of collocation and
matching points. In fact, the method allows the high order accuracy that is

typically required in numerical bifurcation studies.

e For the case of ODEs, the piecewise polynomial solution is globally continuous.
However, for the case of PDEs, the piecewise polynomial solutions are not glob-
ally continuous. Polynomials corresponding to adjacent elements don’t need to
match continuously, but their values and normal derivatives match at a discrete

set of points on the common boundary.

e The linear systems that arise after discretisation can be solved efficiently by the

method of nested dissection.

e Special selection of the local basis functions can reduce the computational cost

for uniform and semi-uniform meshes.

For BVPs in linear ODEs we presented a general stability theory, recovering the
results of Russell and Shampine [126] and de Boor and Swartz [35], using an alternate
method of proof, adapted from Doedel [42], which may also be applicable to the case
of PDEs. For certain PDEs, we showed that using 2 by 2 Gauss collocation points,
we can reach O(h*) convergence, where h is the mesh size. This result is supported

by numerical applications.

An important aspect of ODE or PDE analysis is the investigation investigation
of solutions as system parameters change. In this thesis, Keller’s pseudo-arclength

continuation method was used in conjunction with the discontinuous finite element
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collocation method for the bifurcation analysis of systems of nonlinear elliptic PDEs.
The detection of folds and branch points, the computation of bifurcating direction

vectors, and a branch switching procedure were also considered.

We also introduced an alternative formulation of the nested dissection method
for constructing the global system from the elementary equations, resolving cases
where the original algorithm fails. Specifically, at folds and branch points, one of key
matrices in the original nested dissection algorithm may be singular. Furthermore, a
modified formulation of the pseudo-arclength equation, in which the step size and the
direction vector can be adjusted in each Newton iteration, resolves problems of the
original algorithm in the detection of bifurcation points, especially when the boundary

conditions depend on a control parameter.

As a bifurcation software package is complex software, object-oriented program-
ming with C++ was used to develop a prototype continuation software package for
systems of PDEs. As the object-oriented modelling language to present the imple-
mentation algorithms and the prototype software, the UML notation was used. This
makes our object-oriented model more understandable, and it also makes further

development of the software easier.

For investigating the applicability and efficiency of the method, various appli-
cations were considered. These include test applications, i.e., PDEs with known so-
lutions, the Bratu-Gelfand problem, the Brusselator system, and the streamfunction-
vorticity formulation of the Navier-Stokes equations for a two-dimensional incom-
pressible fluid flow problem. As boundary conditions, Dirichlet, Neumann, periodic,
or a combination of these types were considered. These examples demonstrate the
capabilities and the strength of the collocation method with discontinuous elements,

and the prototype software, for solving substantial PDEs continuation problems.

12.2 Future work

The suggested further work on the theoretical aspects of the method presented
in this thesis, and the improvement of the prototype software can be summarized as

follows
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Solving more examples to test the prototype software, to find its possible weak-

nesses, and to remove them.

Constructing an acceptable graphical user interface for the software, so that
the user be able to enter the PDE systems and the boundaries conditions, to

control the continuation process, and to visualize the results easily.

Integrate the validated software into the AUTO package to provide an AUTO

functionality for bifurcation analysis of PDE systems.

Developing a comprehensive stability and convergence theory for the piecewise

polynomial collocation method for nonlinear PDE BVP systems.
Developing an algorithm to detect and to locate Hopf bifurcations.

Using triangular elements in place of rectangular elements, and comparing the

results.

Constructing a suitable mesh adaptation strategy, for the rectangular as well

as the triangular elements.

Using more general 2D domain, of any shape.
Applying more general boundary conditions.
Applying multiple integral constraints.

developing a parallel implementation of the software.

Extending this work to the 3D domains.
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