NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Handling Feature Interactions

In the SIP Serviet Context

Lu Yang

A Thesis
In
The Department
Of

Electrical and Computer Engineering

Presented as Part of the Requirements
For the Degree of Master of Applied Science at
Concordia University

Montreal, Quebec, Canada
June 2005

© Lu Yang, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10257-8
Our file Notre référence
ISBN: 0-494-10257-8
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Handling Feature Interactions in the

SIP Servlet Context

Lu Yang

Session Initiation Protocol (SIP) and Servlet technology introduce new ways of
delivering telephony services over IP networks. The richness and flexibility of
these new protocols make it faster and easier for service providers to develop
and deploy new services. This flexibility, however, is offset by the challenge of
managing the feature interaction problem, which can prove to be quite severe.

This thesis proposes a modified SIP Servlet architecture and introduces a logical
entity, the Feature Interaction Handler (FIH), to address the feature interaction
problem for telephony services. The approach addresses offline and online
feature interaction detection, the former occurring when the user registers to a
feature and the latter occurring during feature runtime execution. For offline
feature interaction detection, a behaviour mapping approach is introduced to
reduce the interaction matrix table. For online feature interaction detection, two

mechanisms are proposed — “forward detection” and “backward detection”.

Forward detection extends the originating side user profile when sending the
message, such that the terminating side can use it for detection. In contrast,
backward detection correlates the SIP session “request” message with the
“response” message belonging to the same session in order to determine if the
resulting service behaviour is acceptable.

To validate the new feature interaction detection approach, an offline feature
interaction detection tool and online feature interaction detection unit FIH have
been implemented. The feature interaction benchmark is applied on both the tool
and the FIH, the result proves to be successful.

The feature interaction detection approach proposed in this thesis proves to be a

viable solution in the context of SIP servlet service environment.

Acknowledgements

| would like to take this opportunity to express my great respect and sincere
thanks to my supervisor, Dr. Ferhat Khendek, without his professional guidance

and encouragement this research would not have been possible.

| also wish to thank all my colleagues at Ericsson and friends in the Concordia

University for the help they have provided during the course of this project.

Most important of all, my deepest gratitude to my dear wife Yvonne for her

support and advice. This thesis is dedicated to our son Patrick.

|

TABLE OF CONTENTS

— LIST OF FIGURES. ..ottt oo ix

— LIST OF TABLES . .o e i, X

— LIS OF ACRON Y M S e e X1
INTRODUCTION ...ttt e 1
1.1 Evolution Of Telecommunication NetWorksScoovvvveeevvieieiei, |
1.2 Feature Interaction Problemoovveiieiiiie e 4
1.3 Contributions Of ThiS TRESIS...cceeoueeeeeee oo 6
1.4 Organization Of The ThesiS.......ccvovueiiiiiieiiieeeeeeeee e, 7
FEATURE INTERACTIONS IN IN AND IP NETWORKS ..oovooo 8
2.1 INEEOAUCTION. . ..oiiiiiii e e e 8
2.2 Categories Of Feature Interaction..............coo.oecuvoiieeie oo 10
2.3 Feature Interaction In Intelligent Networksccooeevvevvooeevneneinn, 12
23] DCIECHON ..o 16
2.3.2 RESOIULTON. ..o 18
2.3.3 Prevemtionc.cooueemeee e 20
234 Management.cc.coccuiiiiiiiiiieiiiie e 20
24 Feature Interaction In IP NetWoOrkKS...oooovoeeeeeieeee e 21
241 Architectural MOelccooeeeeeeeeeee e 22
2.4.2 Difference Between PSTN And IN......................coocovioveeieeeaeae . 24
2.4.3 Application Of Existing Feature Interaction Techniques................. 27
2.5 Chapter SUMMATYcc.cocoviriiiinieiecee e, 28
SIP AND SIP SERVLET ARCHITECTURE ..o 29
3.1 INETOAUCION. ..ot e e 29
3.2 Session Initiation ProtoCol.........ovv e v v 30
32,1 SIP SESSION ..o 31
3.2.2 SIP Message Format And Parametercc..cccvevuverii... 33
3.2.3 Request MeSSAQEccoociiiiviaieiiii e 35
3.2.4 ReSponse MeSSAZe.cccceooeeeiioieiieieee e 37
325 Header Fieldooommmmeeeeeeeeeeeee e 39
33 SITP SIVIETS ..o e 44
3.3.1 SIP Serviet OVerView.ccecmieeeeeeeeeeeee e 46
3.3.2 SIP Serviet API Architectureccoveeeeeooeeeeeeee 47

\Y

3.3.3 Serviet ENGINecccoooioiiiiiiiiiii e 49

3.3 4 USEF AGENL. ... 49
34 Chapter SUMIMATYc.coooiieiiieiiecie ettt ettt eeeae e 50
4 FEATURE INTERACTION DETECTION IN A SIP SERVLET
ENVIRONMENT ...t e 51
4.1 INErOAUCTION. ..ottt ettt 51
4.2 General Service Architecture.........coocevviiiiiiiiniiiiiieee e 52
43 Offline Detection Technique..........cccvvvviieiiiiieiiieceiecee e, 55
431 MAPPING ..ot 57
432 ARGLYSIS ..o 58
43.2.1 Forwarding and Delay...........ccocoooiiiiiniiiiic 59
4322 Delay and Multi-party........cccceeeecivereiiiiesieeeeeee e 59
4323 Feature Category Interactions MatriX.........ccc.ooevieeevierennnnnne. 60
4.3.3 RESOIULION. ..., 61
4.4 Applying Feature Category Interactions Matrix To Two Users............ 61
4.4.1 Forwarding And Authentication...............cc..cccooovveveevceeieeieneenn.. 62
4.4.2 Modified Feature Category Interactions Matrix 63
4.5 Online Detection Techniquecccccoeeiiiiiiiiiiiiiieee e, 63
4.5.1 Enhanced SIP Servlet Architecturecc...cocoveeeiiiiiiciieeeiaeni 64
4.5.2 Backward Detectionccccccuveuiiiiieicneiiiiieeeeeeeeia 66
45.2.1 Overview of Backward Detection Technique........................ 66
4522 Algorithm for Backward Detection Technique...................... 68
4523 Example of Authentication vs. Forwarding........................... 70
4524 Example of Delay vs. Delayccccoeeviiiiiiiiiiiiciece 74
4.5.3 Forward DetecCtionc.ccoooeveueiieiiieieiseciieeeiee e 76
4.53.1 Overview of Forward Detection Technique............................ 76
453.2 Forward Detection Header Info Onlyc....ooooocoil 77
4533 Example of Delay vs. Forwardingccoooovviiioiiiii. 81
4534 Example of Multi-party vs. Forwardingc............. 82
4535 Forward Detection Header Info and Incoming Leg................ 83
4.53.6 Example of Forwarding vs. Authentication........................... 86
4.6 Chapter SUMMATYc..oiiiiiiiie e 87
5 IMPLEMENTATION. ... oottt 88
5.1 INtrOdUCHION ...t 88
5.2 Implementation Architecturecccceevviiiiiiiieiic e 88
53 Online Feature Interaction Detection Architecture...........cccoooooeinl, 92
5.3.1 Interface DeSCHIPHONccccoveiii it 93
3.3.2 Function DeSCrIPHONcccoiiiiiiiiiiiiii e 94

vii

5.3.3 FLH StFUCTUFC......coo oo e 95

5.3.3.1 Transaction Manager............cocvoevevieriirieiinieeiie e, 97

5332 Call LeZ .ottt 99

5333 User Profile ..o 100

5334 Feature Category Interactions MatriXccccoveeeevvierennnn, 100

5335 FIH Class Structure........ccoocvvvieieneeiieeeieieee e 101

534 Feature Servietccccoeeiuieieiiiieiee e 102

54 Offline Tool ArchiteCture.........c..cocvviviiiecieeiie et 104
5.4.1 Offline Tool Class StrucCtureccccoooeeiieieeieeeieeiceeee 104

5.5 Programming Environmentc.cccoeoveiiiieeiiiieivieeeciee e 105
5.6 APPICALION. ...ttt 106
5.6.1 Bellcore Benchmarkccccoooviiiiiiiiiiiiiieieeeeeee 106

5.6.2 European Benchmark................cccc.cooooviiiiiiiioiiiiieeiiiiieeeee 107

5.6.3 FIH ApplicAtion...............c...cccocuimeiiiiiiiiiiciiieeeee e 107

5.6.4 Offline Tool Demonstration..............cc.occoeeeeeeeereeceeeeeiiieeeeee . 112

5.5 Chapter SUMIMATYooiiiiiieeeieee e 115

6 CONCLUSTON ...ttt ettt e e eaeean 116
6.1 Main COntITDULIONSeeeiieieeiie ettt ettt ens 116
6.2 Main Advantages Of Our Approachccccooevveeviiiecieeiiiiiieeieeee 117
6.3 Potential Extensions And Future Work............cccoooiiiiiiiiiiiiiii, 118
REFERENCESttt eaae e aee e 120

viii

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

LIST OF FIGURES

Categorization of approaches to address FI........................ 14
Classification of Approachesccccoovviiviiiiiiiiii 16
SIP Servlet API Architecture...............oocoveiiveiiiiiiiiiie 48
Service Architecture Without FIH 53
Service Architecture With FIH.. 54
Enhanced SIP Servlet Architecture..................c.....oooeee .. 65
Backward Detection Algorithmcccocooiieiiiinnn, 69
SIP Call Forwarding Signal Flowo.... 71
SIPARCANd ACB FIOW ...ooooiiiiiiiiece e, 75
Forward Detection Header Info Only ...l 80
Forward Detection — Camp On And CFOB........................ 81
Forward Detection — Forking And Voice Mail 83
Forward Detection Header Info And Incoming Leg........... 85
PROXY Stack.....c.ooovveeiiiieeiiiieeeeeee e, 89
End-to-End Call Flow Stack View.................c....cooeen.. 90
PROXY Stack With FIHccoooiiiiiii 91
End-to-End Call Flow Stack View With FIH 92
FIH Structure ..o 96
FIH Class Structurecocooeeeeoiiiiiiieieeeeeeeee 101
Servlet Structure ... 103
Offline Tool Class Structure..............cccooooeiiiiiiieiiee 105
Offline Toolcoovviiiiiie e 113
Offline Tool Dialogueccooovviiieiiiiii e, 114
Offline Tool Usage Example.........cc.cccooeiiviiiiiiiii, 114

LIST OF TABLES

Table 1 SIP Message Header Field
Table 2 Feature Interaction Category Matrix

.......................................

.......................................

Table 3 Modified Feature Interactions Category Matrix.....................

LIST OF ACRONYMS

3GPP 3" Generation Partnership Project

API Application Programming Interface

Cw Call Waiting

CFOB Call Forwarding On Busy

CFON Call Forwarding On No-reply

CFU Call Forwarding Unconditional

CaGil Common Gateway Interface

CPL Call Processing Language

cw Call Waiting

Fl Feature Interaction

FIH Feature Interaction Handler

GUI Graphical User Interface

HTML Hyper Text Marking Language

HTTP Hyper Text Transfer Protocol

IETF Internet Engineering Task Force

IN Intelligent Network

IP Internet Protocol

ISDN Integrated Service Digital Network

ISO International Organisation for Standardization
ITU-T International Telecom Union Telecommunication Sector

JVM JAVA Virtual Machine

Xi

NNI

OCSs

PSTN

RTP

SCTP

SDP

SIP

TCP

TCS

UA

UAC

UAS

UDP

UMTS

UNI

URI

URL

UTF

Network Network Interface
Outgoing Call Screening

Public Switch Telephone Network
Real-Time Transport Protocol
Stream Control Transmission Protocol
Session Description Protocol
Session Initiation Protocol
Transport Control Protocol
Terminating Call Screening

User Agent

User Agent Client

User Agent Server

User Datagram Protocol
Universal Mobile Telecom System
User Network Interface

Uniform Resource Identifiers
Uniform Resource Locator

UCS Transformation Format

Xii

Chapter 1

INTRODUCTION

1.1 Evolution Of Telecommunication Networks

With the development of modern telecommunications and the introduction of
stored program control exchanges, value added services and features have
become increasingly important to both individuals and business users. Some
typical examples, such as call forwarding or call waiting, are widely used features
today.

Features offered by the Public Switched Telephone Network (PSTN) have
traditionally been implemented using vendor-proprietary solutions in a closed
environment. This has resulted in a very long lead-time for feature deployment
and has also sometimes resulted in similar features having very different
behaviours. The Intelligent Network (IN) concept of service and feature
development evolved as a means to solve this problem.

An IN is a service-independent telecommunications network. Its basic premise
involves removing the intelligence from the switch and placing it instead in
computer nodes distributed throughout the network. Because the functional
behaviour and interfaces are standardized, new capabilities can be rapidly

introduced into the network, providing the network operator with an efficient

means of developing and controlling services. Once introduced, services can
also easily be customized to meet individual customers' needs [1].
The key benefits of Intelligent Network solutions include [2]:

e A wide range of feature-rich services;

e Fast implementation of revenue-generating solutions;

e An easy-to-use Service Design Environment (SDE); and

e High capacity.
In the late 90’s, with the deployment of World Wide Web and data services, many
service providers started considering the use of their IP networks for transporting
voice as well as data. Internet Telephony emerged. For service providers, one
of the main objectives was to ensure that all the features supported by modern
telephony systems could also be supported using Internet Telephony.
The architectural model of Internet Telephony is rather different than that of the
traditional telephone network. The basic premise is that all signalling and media
flow over an IP-based network, which makes use of the public Internet or various
intranets. This provides a drastic change in the ability of nodes in the network to
communicate. In traditional telephone architectures, nodes can generally
communicate with only the other nodes to which they are directly connected. IP-
based networks, on the other hand, present the appearance at the network level
that any machine can communicate directly with any other, unless the network
specifically restricts it from doing so through means such as firewalls [3].
This change necessitates a major transformation in the architectural assumptions

underlying traditional telephone networks. In particular, in a traditional network, a

large amount of administrative control such as call-volume limitation implicitly
resides at every switch, and additional controls can easily be added there without
much architectural impact. In an Internet environment, in contrast, an
administrative point of control such as a firewall must be explicitly engineered
into the network to prevent end systems from simply bypassing any device,
which attempts to constrain their behaviour.

In addition, the Internet model transforms the location where many services can
be implemented and executed. As a general principle, end systems are assumed
to be much more intelligent than in the traditional telephony model, with the result
that services which had resided within the network are moved out to its edges
without requiring any explicit support within the network itself. Other services can
be supported by widely separated specialized servers, which results in call setup
information traversing paths which might be indirect when compared with the
actual network’s physical topology [4].

A set of Internet Telephony protocols, including Session Initiation Protocol (SIP)
[5] and H.323 [6], has been defined by different standardization organizations.
H.323 is defined by the International Telecommunications Union (ITU) and SIP
has been defined by the Internet Engineering Task Force (IETF). SIP in
particular is gaining momentum in the industry and has been selected by the
3GPP third generation wireless core network standard forum [7].

SIP is a client/server protocol for multimedia call control and services. It is highly

scalable and fairly simple, such that applications and features can be readily built

on top of it [8]. Most of the telephone features and service features of Intelligent
Network standards can be provided by the SIP.

In 1999, an IETF Internet draft proposed a new JAVA Application Programming
Interface (APIl) for use with SIP servers and user agents. It defined the
abstractions necessary to allow a SIP protocol stack to defer some of its
decision-making for the handling of SIP requests and responses to SIP
"Servlets”, Java classes that implement the SipServlet interface. SIP Serviets
can inspect and set message headers and bodies, and can proxy and respond to
requests as well as initiate their own requests and forward responses upstream.
They can reside on top of a SIP protocol stack in network elements such as

proxies, registrars, redirect servers, and user agents.

SIP Servilets provide a new way of implementing services or features in IP
networks. Each individual service or feature can be implemented by a Servlet,
which can be developed by any service operator by following the standard API.

This facilitates the compatibility issue and speeds up the feature deployment [9].

1.2 Feature Interaction Problem

So far, telecommunications service providers have been able to maintain
extremely tight control over the types of equipment and services attached to their
networks. Even within this closed environment, however, up to 90% of the
deployment cost of a specific service can be attributed to management aspect.

Despite this fact, Intelligent Networks fail to address the problem of service

4

management concretely, and fail to provide a definition for a management

interface [10].

A key issue is the Feature Interaction problem. By definition, feature interaction is

a situation in which a feature or a feature set modifies or influences another

feature’s behaviour. Feature interaction is inevitable in a feature-oriented

specification, because little can be accomplished when features are developed

completely independently from each other.

There are many contributing factors:

In telecommunications, new features are often stimulated by new
technology. New technology eliminates obstacles and, in doing so,
invalidates deeply entrenched assumptions underlying the features and
their attributes [11].

Most telecommunication devices are simple and standardized. All
features, no matter how many of them there are, must share the same
small vocabulary of input and output signals, which increases the
likelihood of usage interaction [11].

Telecommunication systems last for a long time, and grow to have
hundreds or even thousands of features the volume of which increases

the likelihood of undesired interactions[11].

All telecommunication systems interoperate with features and services
that have been developed by other parties, which are unknown and

cannot be trusted to abide by the same rules of behaviour [11].

A lot of work has been done to deal with the feature interaction problem in PSTN
and IN [12] [13]. A special network entity called “Feature and Service Interaction
Management” (FIM) entity was defined in the network reference model when the
Intelligent Network architecture was introduced [14]. However, feature interaction
handling in the context of Internet Telephony is still new and not much work has
been done to address the problem. In fact, thus far, feature interaction related to
SIP call control and feature implementation is not even yet on the standards
development agenda. With the growing trend of using SIP Servlets for feature
implementation, it is therefore imperative to have a new feature interaction

handling mechanism in place.

1.3 Contributions Of This Thesis

This thesis explores the possibilities in handling feature interaction in the context
of the SIP Servlet environment. It addresses the issue of detecting feature
interaction when SIP Servlets are used for feature implementation and provides
relevant management solutions to detect, resolve and manage the feature
interaction. An offline feature interaction detection method based on the
mapping between individual feature and general feature category is developed. A
new online detection technique, based entirely on the “mandatory” SIP
parameters associated with the SIP messages used in basic call handling, is also

introduced.

1.4 Organization Of The Thesis

This thesis is organized as follows:

Chapter 2 provides an overview on the feature interaction handling technique. It
puts different detection and management mechanisms into perspective. It also
outlines the feature interaction differences between IN and IP networks.

Chapter 3 gives an overview of SIP and SIP Servlets. The feature handling in
the context of SIP and SIP servlet is detailed. The feature’s signalling diagram in
a SIP and SIP Servlet environment is also reviewed.

Chapter 4 presents our detection techniques as well as an architectural view of
feature interaction handling in the context of SIP Servlet environment. It includes
both offline and online feature interaction detection. Within online feature
interaction detection, two methods, backward and forward are explored. For
offline feature interaction detection, a feature to “feature category” mapping
approach is introduced.

Chapter 5 discuss the implementation of offline feature interaction detection tool
and online feature interaction detection unit FIH. Both the offline tool and the
online FIH unit are validated using feature interaction benchmark.

Chapter 6 summarizes the contributions proposed in this thesis as well as the
advantages of our methods. It also provides some thoughts and ideas for future

work.

Chapter 2

FEATURE INTERACTIONS in IN AND IP

NETWORKS

2.1 Introduction

The feature interaction problem is a major obstacle to the mass deployment of
some telecommunications services. With the introduction of IP networking and
the distribution of service control, the severity of the problem grows. This chapter
provides an overview of different feature interaction techniques, and discusses
some of the differences between IN and IP networks that are relevant to feature
interaction.

The term "Feature Interaction Problem" in telecommunications systems was
coined in the early 1980’s by Bellcore. Bowen et al made the first efforts to
address this large problem by providing a framework in 1988 [15]. Since then,
researchers from academia, research centers, and industry have been working
towards a viable solution [12]. The work carried out in this area has already
grown enormously, with many new aspects of the problem discovered in relation
to PSTN, ISDN and IN services. In the late 1990’s, when IP telephony started to
emerge, a new question came to light: would the existing mechanisms be
capable of handling the new network paradigm?

8

Because an imprecise definition of the terms used in this field is sometimes a
source of confusion, a few important terms are defined and summarized here
[12]:

» Supplementary Service - In ITU-T terminology, a supplementary service
“‘modifies or supplements a basic telecommunication service. It must be
offered together with or in association with a basic telecommunication
service. The same supplementary service may be common to a number
of telecommunications services." Well-known examples of
supplementary services are Call Forwarding Unconditional (CFU), Call
Waiting (CW), and Camp on Busy (CAMP-ON).

= Service Feature or Feature - The term feature is defined as a "unit of one
or more telecommunications or telecommunications management-based
capabilities a network provides to a user”. ITU-T defines the term service
feature as “the smallest part of a service that can be perceived by the
service user’. In that context, the term service refers to a
telecommunication service.

= Feature Interaction - Using the definition above, the term feature
interaction refers to situations where different service features or
instances of the same service feature affect each other. This term is used
in most publications as the most general term describing the problem.

Feature interaction handling in traditional PSTN/IN networks and in new IP
environments can be very different. The following section explores how feature

interaction is handled in the PSTN/IN environment, and highlights the key

differences in an IP environment. The analysis first categorizes the feature

interaction, then suggests methods of handling it.

2.2 Categories Of Feature Interaction

Feature interactions are categorized along three dimensions, in accordance to a
benchmark document in this field of study [11]. The dimensions include a
consideration of several factors as listed below:

e The kinds of features involved in the interaction - This dimension
distinguishes interactions that involve only customer features from
interactions that also involve system features.

e The number of users involved in the interaction - This dimension
distinguishes single-user interactions from multiple-user interactions.
Single-user interactions arise when different features simultaneously
activated by a single user interfere with each other, whereas multiple-
user interactions arise when features activated by one user interfere
with those activated by another user.

¢ The number of network components in the interaction - This dimension
makes a distinction between single-component interactions, which
arise when only one network component is involved in the feature
processing, and multiple-component interactions, which arise when
features supported in one network component interfere with the

operation of those supported in another network component.

10

The following major categories of feature interaction result [11]:

Single-User-Single-Component (SUSC) interactions between
customer features;

Single-User-Multiple-Component (SUMC) interactions between
customer features;

Multiple-User-Single-Component (MUSC) interactions between
customer features;

Multiple-User-Multiple-Component (MUMC) interactions between
customer features; and

Customer-System (CUSY) interactions between customer features and

system features.

The causes of the above-listed interaction categories vary from case to case.

The major ones are the following [16]:

Feature assumption — Features in a telecommunications network
need to operate under a set of assumptions, including a particular call
processing mode, architectural support, and / or other factors. As the
network evolves, the addition of new features or changes in
architecture may violate the assumptions underlying existing features,
which can result in feature interaction.

Limited network support - Network components and existing telecom
protocols have limited capabilities of communicating with other network
components or in processing calls. As a result, two seemingly

independent features may come into conflict over the reception of the

11

same signal or the usage of the same component functionality, causing
feature interaction.

e Problem in distributed systems - Telecom network are real-time
distributed systems. Many of the difficulties seen in dealing with large
distributed systems are also present in managing feature interactions
in telecom networks. One obvious case is the problem of resource
contention where features come into conflict because they attempt to
use the same network resources. Another is that the distribution of
feature support in the network and the customization of features by
each individual can create interactions that require coordination.

The following sections discuss the handling of feature interaction in both
traditional PSTN/IN environments and in the new Internet Telephony

environment.

2.3 Feature Interaction In Intelligent Networks

The increasing demand for telecommunications services has led to a rapidly
growing number of new services, as well as to the enhancement of existing
services with new service features. This trend is still evident today. In order to
facilitate the procurement of new services, the architectural concept of the
Intelligent Network has been developed. It separates the functions of basic call
processing from the execution of supplementary services and presents a well-

defined interface for the realization of new services [1]. This simplifies and

12

speeds up feature development, but increases the risk of interactions due to the
larger number of new services, the lack of tool support for automatic interaction
treatment, and the typical lack of substantive experience held by the service
developers in this environment.

As the number of features and services grows, the amount of effort invested into
the treatment of interactions explodes, because the number of possible
combinations of features and services grows exponentially with their number.
The interaction problem consequently becomes a dominant issue during the
software development period. For the same reasons, exhaustive testing of the
service and feature combinations becomes almost unmanageable. The end
result is that, even with IN, efforts to avoid interaction problems are a major
obstacle to the timely and cost-efficient introduction of new services - and this
obstacle also increases the risk and cost to the service provider [17].

The consequences of failing to manage interactions in a network are significant.
Even though feature interaction may not cause call failures in the Public
Switched Telephone Network, it can bring confusion and annoyance to the end
user, and can ultimately cause financial losses. However, the costs of dealing
with the feature interaction during the development of a new service may be very
high, perhaps even to the extent that the service does not ultimately reach the
marketplace at all.

Handling the feature interaction problem adequately, given its complexity,

requires both a general framework and a consistent approach. The generally

13

accepted categorization of approaches is based on the terminology of avoidance,

detection, and resolution as listed in Figure 1 below [18].

F1 Approaches

Avoidance Detection Resolution
Off-line On-line Off-line On-line Off-line On-line
Figure 1 Categorization of approaches to address Fl

The scheme is supplemented by considering the lifecycle state during which a
given method applies, whether this is "off-line" or "on-line". The off-line part
includes the feature’s specification, implementation, and test phases. The

specification phase can be further subdivided into more granular levels:

14

o The network level specification and the detailed specification
corresponding to the abstract architecture in terms of the emergence level
view.

e The implementation phase concludes the sequence of off-line service
development. In the IN approach, the implementation step is fulfilled by
software tools that translate a detailed specification into software code.

After an implementation is available in a test bed, careful and methodical testing
takes place. If the tests are successful, the feature is deployed in the network,
and is made available to network users who may register to use it. This
concludes the off-line phase. When the feature is invoked, then the on-line

phase of feature interaction begins.

Although Figure 1 has proven useful, the huge amount of research carried out in

this field and the broad spectrum of methods applied suggest refinements and

extensions that are summarized in Figure 2 below.

15

Classification

[
| I | |

Detection Resolution Prevention Management

Interaction Restriction Structural

[
Interference |] Procedural
- I General ¥ Situation-specific l
Cooperation
[
[|
} Conscious I Oblivious

Figure 2 Classification of Approaches

2.3.1 Detection

Detection denotes the identification of the existence (presence) of interactions.
Because it is practically impossible to prove the absence of mistakes, and
because a given interaction is not necessarily undesired, it cannot be expected
that a network is free of any interactions. The detection technique has two main
tracks: formal techniques and informal techniques.

Formal techniques aim to ensure the correctness of a system by first creating a
functional specification of the system and its components and then validating the

specifications using verification techniques, mostly model checking. An

16

important precondition for the successful application of formal techniques is the
availability of a suitable model of the system.

Formal techniques provide suitable means to address the development of
distributed systems, as they allow the choice of an appropriate abstraction level
and, with proper tool support, the verification of a system's correctness, at least
with respect to a number of criteria. A large amount of work in addressing
feature interactions relies on the application of formal description techniques for
the specification of a system and its features, in combination with formal
verification. One example is "verification using general criteria". In this method,
interactions are detected checking general correctness criteria such as the
presence of deadlock and life lock, transitions to invalid states, ambiguities, etc.
This kind of approach is termed the general property approach [19].

Methods of object-oriented software engineering, such as the application of use
cases, provide another means to cope with the interaction problem. These are
generally termed informal techniques. Network-level use cases are elaborated,
and their analysis leads to the examination of possible feature combinations [20].
This method uses the simple but effective criterion that two features are
interaction-prone if they access the same service or call specific data. The
interaction-prone scenarios are then analyzed manually to determine if an

interaction problem actually exists [18].

17

2.3.2 Resolution

Resolution is the desired consequence of feature interaction detection. If an
interaction between two service features is detected, resolution may follow one of
several different routes, namely restriction, integration, precedence or
cooperation.

The simplest approach is restriction, which seeks to avoid situations that will
cause both features to interact, without requiring either feature to modify or adapt
its normal behaviour. This stands in contrast to a precedence approach, which
holds that the behaviour of one of the feature be changed.

Two sub-approaches of restriction can be identified [18]:

e General restriction is characterized by a static set of rules, which
disallows the activation of one feature if another feature is present.

e Situation-specific restriction is characterized by a set of rules that takes
into account the current situation in which the second feature is
activated.

General restriction is a rather rigid method, but is very often chosen by practical
approaches. Situation-dependent restriction is more flexible, in that it allows the
decision of whether or not to carry out a specific operation to be dependent on
the situation encountered by the conflicting services. In contrast to general
restriction, situation-dependent restriction does not affect the user’s ability to

activate and invoke the conflicting features.

18

Integration of both features into one with larger functionality is another strategy
for handling interactions. On the specification level, however, it is not always
easy to decide if an approach belongs to the restriction or to the integration
category, as special treatment in the integration case often has integrative as
well as situation-specific restrictive characteristics. The criterion used to decide
this (if the method is restrictive or integrative) is whether or not it allows the
possibility to clearly assign parts of the specification to one or both features.

Cooperation of the interacting features is the most sophisticated approach of
resolving interactions. Beyond the simple decision used by restriction
approaches to carry out or prohibit an operation, this approach tries to find a
compromise, which satisfies the needs of all participating features. In the
cooperation approach, the features change or adapt their behaviour in order to
resolve the problem. Conscious cooperation is achieved if each of the features
possesses explicit knowledge of the other, and if one or both are equipped with
mechanisms to resolve their specific interactions. With oblivious cooperation,
there exist general mechanisms that require no service-specific knowledge in
order to resolve interactions with unknown counterparts. In this method, features
or services cooperate even though they do not have any special knowledge of
each other, thereby achieving one of the goals of architectures like the IN - the

independence of new services development.

19

2.3.3 Prevention

Prevention complements the detection and resolution of feature interactions. It is
used for approaches where feature interaction cannot occur. These approaches
can be divided into two groups. Structural approaches avoid the occurrence of
interactions by imposing a suitable system structure, including, for example,
architecture and protocols. Procedural approaches attack from another direction,
by introducing new strategies or restricting existing processes of service creation,
for example, or by giving sets of design guidelines. This distinction has already
been identified in some research work, although this has not been formulated

generally.

2.3.4 Management

As the feature interaction problem is so complex, and as the number of feature
combinations grows with their numbers, it is inevitable to add management
issues to the list. In describing the methods that deal directly with the interaction
problem, it becomes clear that no single method can cover all aspects of the
problem at once. To master the problem as a whole, a sophisticated
coordination of a number of different methods and means must be employed.

The research in this area is divided into two groups. The first group is concerned
with the management of combinatorial complexity of the interaction problem,

including tools for context generation and information acquisition. The second

20

group comprises approaches concerning the whole interaction handling process,
and involves tool support for the overall process of dealing with interactions, such
as an integrated toolset for service creation, feature interaction analysis, and

management [21].

2.4 Feature Interaction In IP Networks

Internet Telephony is defined as the provision of telephone-like service over the
Internet. Some consider it the next stage of development of the telephone
network and the first incarnation of the long held goal of an "integrated services"
network. The growth of the Internet as a platform for data delivery and its rapidly
increasing bandwidth make it desirable to enable creation of a telephone service
that can run entirely over Internet protocols. Internet Telephony service offers
the possibilities of multimedia communications, integration with other Internet
services, and simplified development and operation.

In telephone networks, feature interaction occurs when several features or
services, operating simultaneously, interact in such a way as to interfere with the
desired operation of some of the features. This problem of feature interaction
also exists in Internet telephony, and becomes an increasingly pressing problem
as more and more sophisticated services are created and deployed in this
environment. The large amount of work spent in understanding and resolving
feature interactions in traditional telephone networks can also be put to use to

understand and control interactions in Internet Telephony [22].

21

Internet Telephony, however, is different in many ways from the PSTN. Some of
the differences help prevent or resolve feature interaction problems, as the
design of new protocols and the characteristics of the underlying network
eliminate some of the problems associated with legacy networks and systems.
However, some of the differences in Internet Telephony introduce new types of
interactions, which make legacy techniques more difficult and sometimes
impossible to employ.

The following section discusses Internet telephony in terms of the Internet
Engineering Task Force’s (IETF’s) architecture, centered on the SIP. This will be
compared with the handling of feature interaction with the classical method used

in the PSTN and [N networks.

2.4.1 Architectural Model

While the architecture of Internet telephony is similar to traditional telephone
networks in many ways, it also has some significant differences. Most
fundamentally, Internet telephony is different in that it (naturally) runs over the
Internet, or more generally over IP networks. The most significant consequence
of using this underlying network is that it provides transparent connectivity
between any two devices on the network. Whereas devices in traditional
networks are restricted to communicating with those devices to which they are

directly connected, and whereas the telephony protocols themselves must

22

handle all location and routing features, Internet telephony can rely on an
underlying infrastructure to obtain all these capabilities automatically.

Within the Internet telephony network, there are usually three types of devices
[23]: end systems, gateways, and signalling servers. End systems are the
devices on which users make and receive calls. These devices initiate and
respond to signalling, and transmit and receive media. They are “smart” in that
they are aware of Call State, and keep track of the status of each call in which
they are involved. They may provide a number of services based on this call
state information; for example, Call Waiting is generally handled entirely in the
end systems in the Internet.

Gateways are devices, which allow calls to be routed to and from other telephone
networks. To other Internet telephony devices, they are not conceptually
different from end systems. Like end systems, they initiate and respond to
signalling, and transmit and receive media. Other devices need not be aware of
the existence of the other network “behind” the gateway.

Signalling servers handle the application level control of the routing of signalling
messages. They are typically used to perform user location services. A
signalling server maintains information about a user’s current location, and can
forward or redirect call setup requests appropriately. From the point of view of
feature creation, signalling servers are the devices, which most resemble service
control or service switching points in the circuit-switched network. These can be
programmed to direct, block, or alter call signalling messages based on their own

internal logic.

23

2.4.2 Difference Between PSTN And IN

Key differences between IP Telephony and PSTN/IN networks revolve around
the signalling protocol, networking aspects, and features [24].

On_the signalling_protocol side, Internet telephony is different from traditional

telephone networks due to the effects of the Internet environment. Many of the
differences affect the kinds of features that may exist, how these features are
created, and how their interactions are managed.

Internet telephony signalling protocols are significantly more expressive than
those of the PSTN, particularly when compared to the suite of signalling tones
and hook signals available to two-wire analog telephones. Rich signalling in
Internet telephony eliminates many legacy limitations on feature development.
As an example, an end system need no longer indicate its desire to transfer a
call using an elaborate sequence of switch hook and DTMF tones but can
instead explicitly indicate to its partner the party to which the call should be
transferred.

Another characteristic of Internet telephony signalling is that it can be extended
while maintaining compatibility. When new signalling properties or events are
created and added to the existing protocol, they interoperate cleanly with existing
implementations, either by providing richer information about the signalling
information or by allowing fine-grained control over the features required to

understand a signalling message successfully. Internet telephony devices can

24

also query each other to determine what properties and parameters they support.
As new signalling elements and capabilities are developed, the network is able to
evolve gracefully to support advanced features without the need for painful
upgrades over an entire system [24].

One maijor difference between the Internet telephony protocols and those of the
PSTN or ISDN is that the protocols employed by the user's device to
communicate with the network (over the user-network interface, or UNI) and the
protocols used by network devices to communicate with each other (over the
network-network interface, or NNI) are identical. In fact, Internet telephony does
not make a strong distinction between user devices and network devices. A
device sending a request is typically not aware of whether it is communicating
with a signalling server or an end system, nor does it need to be aware of this
distinction. Because of this unification, Internet telephony deployments can
readily scale up from a few individuals running end systems to a giant
organization providing elaborate services and user location features - and both
these organizations can co-exist and interoperate without problems. What's
more, this means that a customer of a large provider can even choose to bypass
the provider if his current needs don’t require its services. For reasons of
simplicity, flexibility, reliability or privacy, users can choose to communicate with
each other directly end-to-end rather than through intermediate servers, without
any incumbent need to modify their end systems.

On the network side, because IP is entirely packet-based, media

communications are not limited to a single fixed rate channel as they are in the

25

circuited-switched network. Internet telephony can use very low bit rate for
speech encoding and very high bandwidth for video. Multiple media sessions
can also be used in a single call.

[P also supports network-level multicast protocols, which do not require
application-level devices such as bridges. This enables a number of features
both at the signalling and media level. More interestingly, media can also be
multicast, which allows multi-party conferences to be established, in a bandwidth-
efficient way, without the need for a conference bridge.

On the features side, however, the features of the Internet itself introduce a

significant number of additional complications to the creation and deployment of
features and to the resolution of their interactions. Most of these problems have
occurred concurrently with the new possibilities enabled by the Internet. These
issues also increase the complexity of creating features. The most significant of
these new complications is the distributed nature of the Internet itself. Features
can be implemented and deployed on numerous network devices, both end
systems and signalling servers. What's more, these systems may well be
controlled by entirely distinct organizations, which may be unaware of each other
or may even competing with each other, and thus may not be inclined to co-
operate to resolve feature interactions [25].

Another related complication is the fact that end systems have control of the call
state. While this introduces many new possibilities for general feature creation
and deployment, it also complicates things when the network wants to impose

control in a manner opposed to the expressed desires of an end system. For

26

example, in traditional telephone networks, emergency calls are usually
subjected to special handling, such that the emergency operator must be the one
to release the call before the line is cleared. If the end system controls its own
states, however, it is impossible for the network to enforce such special treatment

without the end system’s cooperation.

2.4.3 Application Of Existing Feature Interaction Techniques

Several varieties of new feature interactions appear in Internet telephony, which
are either not present or not as prominent in traditional telephone networks.
Most feature interaction solutions used in the PSTN or in IN networks should also
be applicable to the new IP network. The special character of completely
distributed architecture in IP network, however, make it imperative to supplement
this with new solutions to deal with feature interaction problems.

These new solutions can be categorized into two types of interactions.
Cooperative interactions are based on the premise that all parties who implement
features consider the other parties’ actions to be reasonable, and would therefore
prefer to avoid an interaction if at all possible. Adversarial interactions, by
contrast, are those where the parties involved in the call have conflicting desires,
and each is trying to subvert the other’s features. Roughly speaking, cooperative
interactions correspond with single-user multiple-component (SUMC) interactions

whereas adversarial interactions are more commonly multiple-user multiple-

27

component (MUMC) or customer-system (CUSY) interactions as discussed in the

previous sections [26].

2.5 Chapter Summary

This chapter discusses the feature interaction issue in general. It covers the
general feature interaction category based on the benchmark [11]; describes the
feature interaction handling approaches, which include detection, resolution and
management; lastly it addresses the handling difference between PSTN and IP
network from three different perspectives, which are signalling protocol side,

network side and feature side.

28

Chapter 3

SIP AND SIP SERVLET ARCHITECTURE

3.1 Introduction

With the new technology development and Internet is getting more ubiquitous,
nowadays telephony can be provided through either traditionally switched
network or Internet, which is so-called Internet telephony. The two employ
different ways to establish, manage and terminate a call. In the second case, the
same IP network can be used for voice, video and data. One of the most popular
protocols in this area is SIP.

On top of SIP signaling for the basic call handling, SIP servlet [27] provide a new
way of implementing different services. The SIP servlet is very much similar to
HTTP servlet in terms of functions and implementation [28]. This chapter focuses

on the protocols, including messages, parameters and their formats.

29

3.2 Session Initiation Protocol

The Session Initiation Protocol (SIP) signaling is an application-layer control
(signaling) protocol for creating, modifying and terminating sessions with one or
more participants. These sessions include Internet multimedia conferences,
Internet telephone calls and multimedia distribution. Members in a session can
communicate via multicast or via a mesh of unicast relations, or a combination of
these [29].
SIP invitations used to create sessions carry session descriptions, which allow
participants to agree on a set of compatible media types. SIP supports user
mobility by proxying and redirecting requests to the user's current location. Users
can register their current location. SIP is not tied to any particular conference
control protocol. SIP is designed to be independent of the lower-layer transport
protocol and can be extended with additional capabilities.
In SIP protocol participants are identified by SIP URLs. SIP is a request-
response protocol, with requests sent by clients and received by servers. A
single implementation typically combines both client and server functionality. SIP
requests can be sent using any reliable or unreliable protocol, including UDP,
SCTP and TCP. Protocol operation is largely independent of the lower-layer
transport protocol.
The SIP specification [29] defines six SIP request methods:

¢ INVITE initiates sessions

e ACK confirms session establishment

30

e OPTIONS requests information about capabilities

o BYE terminates a sessions

e CANCEL cancels a pending session

o REGISTER allows a client to bind a permanent SIP URL to a temporary

SIP URL reflecting the current network location.

SIP requests and responses consist of a request (or status) line, a number of
header lines and a message body. SIP requests can be sent directly from a user
agent client to a user agent server, or they can traverse one or more proxy
servers along the way.
User agents send requests either directly to the address indicated in the SIP URI
or to a designated proxy ("outbound proxy"), independent of the destination
address. The current destination address is carried in the Request-URI. Each
proxy can forward the request based on local policy and information contained in
the SIP request. The proxy may rewrite the request URI. A proxy may also
forwards the request to another designated proxy regardless of the request URI.
For example, a departmental proxy could forward all authorized requests to a
corporate-wide proxy, which then forwards it to the proxy operated by the Internet

service provider, which finally routes the request based on the request URI.

3.2.1 SIP Session

A SIP session is considered an exchange of data between associations of

participants. As defined, a callee can be invited several times, by different calls,

31

to the same session. If SDP is used, a session is defined by the concatenation of
the user name, session id, network type, address type and address elements in
the origin field [29].

A SIP session is initiated with the “INVITE” request message. A successful SIP
invitation consists of two request messages, “INVITE” followed by “ACK”. The
‘INVITE” request message asks the callee to join a particular conference or
establish a two-party conversation. After the callee has agreed to participate in
the call, the caller confirms that it has received that response by sending an
“‘ACK” request message.

The “INVITE” request message typically contains a session description, for
example written in SDP format that provides the called party with enough
information to join the session. For a multicast session, the session description
enumerates the media types and formats that are allowed to be distributed to that
session. For a unicast session, the session description enumerates the media
types and formats that the caller is willing to use and where it wishes the media
data to be sent. In either case, if the callee wishes to accept the call, it responds
to the invitation by returning a similar description listing the media it wishes to
use. For a multicast session, the callee should only return a session description if
it is unable to receive the media indicated in the caller's description or wants to

receive data via unicast.

32

3.2.2 SIP Message Format And Parameter

SIP is a text-based protocol and uses the ISO 10646 character set in UTF-8
encoding [30]. A SIP message is either a request from a client to a server, or a
response from a server to a client.
SIP message = Request or Response

Both Request and Response messages use the generic-message format of
transferring entities (the body of the message). Both types of messages consist
of a start-line, one or more header fields (also known as "headers"), an empty
line (i.e., a line with nothing preceding the carriage-return line-feed (CRLF))

indicating the end of the header fields, and an optional message-body.

generic-message = start-line *message-header

[message-body |

start-line Request-Line | Status-Line
message-header = (general-header | request-header | response-header
| entity-header)
The SIP header format is shown below:
general-header = Accept
| Accept-Encoding
| Accept-Language
| Call-ID
| Call-Info

| Contact

33

| CSeq

| Date

| Encryption

| From

| MIME-Version

| Organization

| Record-Route

| Require

| Supported

| Timestamp

| To

| User-Agent

| Via
entity-header = Allow

| Content-Disposition

| Content-Encoding

| Content-Language

| Content-Length

| Content-Type

| Expires
request-header = Alert-Info

| Authorization

| In-Reply-To

34

| Max-Forwards

| Priority

| Proxy-Authorization

| Proxy-Require

| Route

| Response-Key

| Subject
response-header = Error-info

| Proxy-Authenticate

| Retry-After

| Server

| Unsupported

| Warning

| WWW-Authenticate

3.2.3 Request Message

The request message format is shown below:
Request = Request-Line *(general-header | request-header | entity-
header)
[message-body]
The Request-Line begins with a method token, followed by the Request-URI and

the protocol version as shown below:

35

Request-Line = Method SP Request-URI SP SIP-Version
Request-URI = SIP-URL | absoluteURI
SIP-Version = "SIP/2.0"
The methods are defined below:
Method = "INVITE" | "ACK" | "OPTIONS" | "BYE" "CANCEL" |
"REGISTER" | extension-method
We will only discuss “INVITE” and “ACK” messages format and its related
parameters in this thesis since it is closely related to the detection mechanism.

All other SIP request messages are not relevant for the topic of this thesis.

The “INVITE" request message indicates that the user or service is being invited
to participate in a session. The message body may contain a description of the
session to which the callee is being invited.

The “ACK” request message confirms that the client has received a final
response to an “INVITE” request message. (“ACK” is used only with “INVITE”
requests.) 2xx responses are acknowledged by client user agents, all other final
responses by the first proxy or client user agent to receive the response. The
“Via" header field is always initialized to the host that originates the “ACK”
request message, i.e., the client user agent after a 2xx response or the first proxy
to receive a non-2xx final response. The “ACK” request message is forwarded as
the corresponding “INVITE” request message, based on its Request-URI and
thus may take a different path than the original “INVITE” request message, and

may even cause a new transport connection to be opened in order to send it.

36

It should be highlighted that the session is not established and SDP connection is
not available before “ACK” message is sent. This is one of the key issues for

feature interaction detection, which will be discussed later on.

3.2.4 Response Message

After receiving and interpreting a SIP request message, the recipient responds
with a SIP response message. The response message format is shown below:
Response = Status-Line *(general-header | response-header | entity-
header)
[message-body |
The first line of a response message is the Status-Line, consisting of the protocol
version followed by a numeric Status-Code and its associated textual phrase.
Status-Line = SIP-version SP Status-Code SP Reason-Phrase CRLF
The Status-Code is a 3-digit integer result code that indicates the outcome of the
attempt to understand and satisfy the request. The Reason-Phrase is intended to
give a short textual description of the Status-Code. The Status-Code is intended
for use by automata, whereas the Reason-Phrase is intended for the human
user. The client is not required to examine or display the Reason-Phrase.
Status-Code = Informational | Success | Redirection | Client-Error |
Server-Error
| Global-Failure | extension-code

extension-code = 3DIGIT

37

Reason-Phrase = TEXT-UTF8
The overview of the Status-Code is shown below. The first digit of the Status-
Code defines the class of response. The last two digits do not have any

categorization role. SIP/2.0 allows 6 values for the first digit:

1xx: Informational -- request received, continuing to process the request

2xx: Success -- the action was successfully received, understood, and accepted
3xx: Redirection -- further action needs to be taken in order to complete the
request

4xx: Client Error -- the request contains bad syntax or cannot be fulfilled at this
server

5xx: Server Error -- the server failed to fulfill an apparently valid request

6xx: Global Failure -- the request cannot be fulfilled at any server.

The Informational and success status codes is shown below:
Informational = "100" ; Trying
| "180" ; Ringing
| "181" ; Call Is Being Forwarded
| "182" ; Queued
| "183" ; Session Progress

"200" ; OK

Success

38

We will only focus on the 1xx and 2xx response messages in this thesis. The
main reason for that is the feature interaction wouldn’'t be an issue if the call or

feature activation were failed.

3.2.5 Header Field

SIP header fields are similar to HTTP header fields in both syntax and semantics.
In particular, SIP header fields follow the syntax for message-header. The header
fields required, optional and not applicable for each method are listed in table
below. The table uses "0" to indicate optional, "'m" mandatory and "-" for not
applicable.

"Optional" means that a UA may include the header field in a request or
response message, and UA may ignore the header field if present in the request
or response message. A "mandatory” request header field must be present in a
request message, and must be understood by the UAS receiving the request
message. A mandatory response header field must be present in the response
message, and the header field must be understood by the UAC processing the
response message. "Not applicable” means for request header fields that the
header field must not be present in a request message. If one is placed in a
request by mistake, it MUST be ignored by the UAS receiving the request.
Similarly, a header field labeled "not applicable" for a response message means
that the UAS must not places the header in the response message, and the UAC

must ignore the header in the response message.

39

Header field where ack | BYE CAN | INV | OPT |REG
Accept R o] 0 0 o] o]
Accept 415 0 o] o] o] o]
Accept r

Accept-Encoding R - 0 o} 0 o] 0
Accept-Encoding 415 - o] o} 0 o] o]
Accept-Language R - o] o] o] 0 o]
Accept-Language R - o] o] 0 o] o]
Alert-Info R - - - o} - -
Allow R 0 o] 0 0 o 0
Allow 200 - - - 0 0 0
Allow 405 m |[m m m m m
Also R - 0 - - - -
Authorization R 0 0 o} 0 0 o}
Authorization R o] 0 o} 0 o} o
Call-ID gc m |m m m m m
Call-Info g - - - 0 o} o}
Contact R o] - - m 0 0
Contact 1xx - - - 0 0 -
Contact 2xX - - - m o] 0
Contact 3xx - 0 - 0 0 0
Contact 485 - 0 - 0 o] 0
Content-Disposition | e 0 o} - 0 0 0

40

Content-Encoding

Content-Language

Content-Length

Content-Type

Cseq

gc

Date

gc

Encryption

Error-Info

Expires

From

In-Reply-To

Max-Forwards

MIME-Version

Organization

Priority

Proxy-Authenticate

401,407

Proxy-Authorization

R

Proxy-Require

R

Record-Route

R

Record-Route

2xx,401,484

Require

Response-Key

Retry-After

41

Retry-After 404,413480 |0 |0 0 o 0 0

,486

500,503

600,603
Route R 0 o] 0 0 o] 0
Server r 0 0 o o] o] o}
Subject R - - - 0 - -
Supported g - 0 o} 0 o} 0
Timestamp g 0 o] 0 o] 0 0
To gc(1) m |[m m m m
Unsupported R o] o] o] o] o] o]
Unsupported 420 0 o] 0 o} 0 0
User-Agent g 0 0 0 o] o 0
Via gc(1) m |m m m m m
Warning r 0 0 0 0 0 0
WWW-Authenticate | R o o} o} 0 0 o}
WWW-Authenticate | 401 0 0 0 0 o] 0

Table 1 SIP Message Header Field

We will now use “Contact” header field as an example, to analyze the information
provided by this field.

Contact:

42

The “Contact” general-header field can appear in “INVITE”, “OPTIONS”, “ACK”,
and “REGISTER” request messages, and in 1xx, 2xx, 3xx, and 485 response
messages. In general, it provides a URL where the user can be reached for
further communications.

In some of the cases below, the client uses information from the “Contact”
header field in Request-URI of future request messages. In these cases, the
client copies all but the "method-param" and "header" elements of the addr-spec
part of the “Contact” header field into the Request-URI of the request message. It
uses the "header" parameter to create headers for the request messages,
replacing any default headers normally used. Unless the client is configured to
use a default proxy for all outgoing request messages, it then directs thé request
to the address and port specified by the "maddr" and "port" parameters, using the
transport protocol given in the "transport" parameter. If "maddr" is a multicast
address, the value of "ttl" is used as the time-to-live value.

For “INVITE", “OPTIONS” and “ACK” request messages: “INVITE” request
message must and “ACK” request message may contain “Contact” headers
indicating from which location the request is originating. The URL in the “Contact”
header field is then used by subsequent requests from the callee.

This allows the callee to send future requests, such as “BYE” message, directly
to the caller instead of through a series of proxies. The “Via” header is not

sufficient since the desired address may be that of a proxy.

43

‘INVITE” 1xx response messages: A UAS sending a provisional response (1xx)
may insert a Contact response header. It has the same semantics in a 1xx
response message as a 2xx response message.

‘INVITE" and “OPTIONS” 2xx response messages: A user agent server sending
a definitive, positive response (2xx) MUST insert a “Contact’ response header
field indicating the SIP address under which it is reachable most directly for
future SIP requests, such as “ACK” message, within the same Call-ID. The
“Contact” header field contains the address of the server itself or that of a proxy,
e.g., if the host is behind a firewall. The value of this “Contact” header is copied
into the Request-URI of subsequent requests for this call if the response did not
also contain a Record-Route header. If the response message also contains a
Record-Route header field, the address in the Contact header field is added as

the last item in the Route header field.

3.3 SIP Servlets

One of the requirements for Internet telephony is to support at least the same

applications/service/feature as traditional telephony.

44

The main reason that the World Wide Web is so successful is that it is (relatively)
easily programmable. This means that Web server can host a variety of
applications, which can be updated and managed independently of Web
browsers. Client software needs only to know how to access services using
HTTP protocol and how to render HTML and doesn't usually participate directly in

executing service logic [31].

In the traditional switched network, services such as personal mobility, Call
Forwarding, Call Screening, etc., are also introduced via programmability of
network servers. For a number of reasons, this has traditionally been done in a
closed, proprietary manner, which translates directly into slower, more
expensive, less creative, but also more reliable and secure services. The service
is mostly provided together with the call control machine.
By using SIP servilets to execute services, a number of advantages can be
identified. Some of these advantages are directly derived from the fact that SIP
servlets are Java programs. Just to name a few [28]:
e SIP servlets are platform independent, as the actual code is hidden by
the Java Virtual Machine.
» Memory access violations and strong typing violations are not pqssible,
so that faulty servlets will not crash the.
e As SIP servlets are platform independent, the service production cost

is dramatically reduced.

45

e SIP servlets provide strong security policy support, as all the Java
environments provide a Security Manager, which can be used to
control whether actions such as network or file access are to be
permitted.

What is not addressed so far with this approach is the issue of "“feature
interaction". Feature interaction is a general problem even in the switched
network, when more than one feature is activated together; there is always a
possibility that the interaction will be occurring. This cannot be avoided in the
new [P telephony environment. This issue while in switched network can mostly
be resolved by proprietary solution since call control and service control used to
be integrated together. However, in a distributed environment such as SIP, new
mechanism is required to detect, manage and resolve the feature interaction.
This thesis focuses on the solution of detecting and resolving feature interaction

in the context of SIP servlet environment.

3.3.1 SIP Servlet Overview

The architecture used in this thesis is based on the SIP Serviet API [32]. There
are other solutions available, such as CPL [33] based. In this API, a servlet
extension to SIP is proposed. However, the mechanism of how to handle the
feature interaction is not addressed. Given the momentum of SIP in the industry,

the feature interaction will be an issue in the foreseeable future. This thesis

46

explored one of the possibilities. There are many other approaches, such as
“Network-level administrative restriction or Universal authentication” [22].

The SIP servlet extension in many ways is very similar to the Http servlet.
Generally speaking, the service servlet in HTTP context can only be initiated by
the incoming "request" message. In the traditional http servlet environment, the
service environment consists of feature/service serviet and http server. It is
sufficient to run the service without any major problem since the user client can
only send "request" messages, but not receiving "request" messages. The user
client in this case is normally the web browser. The situation is a little bit different
in the SIP environment. The User Agent (UA) can not only send but also receive
request messages. It is a both way communication. By SIP definition, a UA
includes User Agent Client (UAC) and User Agent Server (UAS). While sending
"request” messages, UA assumes the role of UAC. While receiving "request"
messages, it assumes the role of UAS. This imposed new challenge on the

serviet in SIP.

3.3.2 SIP Servlet APl Architecture

The Figure 3 below represents the high level SIP servilet APl architecture.

47

*RequestT i Loading and executing

i R e e T — — — SIP serviet APl

Recording ‘ “ Analyzing and

modification

Serviet Engine

& Output result
—— e e o el = =JAIN SIP API

#*Parsi

* Incoming message, X SIP message
> { SIP Stack >
i

X Response

£

Prepared by: Yang Lu 1

Figure 3 SIP Servlet API Architecture

The SIP servlet architecture consists the following components:

o SIP stack: sending/receving SIP request or response messages
e Servlet Engine: loading and executing individual feature serviet
e Service Serviet: each servlet is an individual service

When the SIP stack receives a SIP request message, it will interpreter the
message and if it contains the invocation of a service servlet, the stack will past
the control to the servlet engine. The servlet engine will then look up the relevent

service servlet, load it into the servlet engine and get it executed.

48

3.3.3 Servilet Engine

The servlet engine is the software used in conjunction with a SIP server (i.e.
Redirect Server and Proxy Server) or UA (i.e. UAS and UAC) that provides
support for an execution of servlets as defined by servlet API. To run a servlet,
the servlet engine must instruct the server what to run when a serviet is
encountered (much like CGI). Once the server passes control to the serviet
engine, the servlet engine is responsible for executing the servlet.

The servlet engine is just the software specifically made to control the execution
of individual SIP serviet. When the SIP server receives the incoming SIP
message, the message will be passed over to servlet engine. The servlet engine
will first of all interpret the message with the SIP parser stack help and then

execute them in the servlet handler.

3.3.4 User Agent

The user agent by SIP definition should contain UAC (user agent client) and UAS
(user agent server). The user agent server (UAS) receives SIP request
messages from a client (UAC). It processes the header fields of the request
message that describe the call, and the body of the request message, which
describes the individual media sessions that, makes up the call. Depending on
the header information and on the state of the server, decision to invoke or not a

service can be taken by the server.

49

3.4 Chapter Summary

This chapter describes the general SIP and SIP servlet architecture and its
components. For SIP, the detailed message and parameter format and some
basic principles are specified. For SIP servlet, all the involved components are
individually described.

It provides a foundation for the in-depth feature interaction detection analysis in

later sections.

50

Chapter 4

FEATURE INTERACTION DETECTION IN A SIP

SERVLET ENVIRONMENT

4.1 Introduction

The feature interaction handling for traditional telephony service in a SIP serviet
environment will be different. In order to really understand the issue, we need to
understand in details how SIP protocol and SIP serviets interact and how the
feature interaction can be detected and managed. Here we will first examine
some typical telephony services and their interactions by analyzing the signals
and call flows implemented with SIP and SIP servlets.
A logical entity “Feature Interaction Handler (FIH)" is then proposed to
specifically handle the feature interaction detection in the SIP serviet
environment. The FIH usage and its interface with other components, such as
servlet engine are described.
Our feature interaction detection approach covers both offline and online types.
The distinction between these two types is the following.

e The offline feature interaction detection technique applies when the

feature are assigned to the user by service provider.

51

e The online feature interaction detection technique applies when the

feature is executed during a “call” session.

4.2 General Service Architecture

In this section, we discuss the service environment this thesis is based on. In the
real network, there are many different configurations and setups. It is impossible
to have only one generic network architecture. For instance, within a service
provider domain, there may be a centralized “feature/service” server. There
should be a “PROXY” server in the edge of the service provider domain to
interface with other service providers. In this case, since all user profile is
controlled centrally, it is relatively easy to detect and manage the feature
interaction problem.

However, it is more often that two users involved in a call scenario belong to two
different service provider domains. Therefore, the user profiles are distributed
and feature interaction detection has to rely on the messages passed between
service provider domains. For the purpose of a general feature interaction
detection technique, we assumed two independent “service provider” domains in
this thesis. Each domain maintains its own user data.

Figure 4 below shows the general service architecture.

52

H

SIP |,
client PROXY | "
e A

— | SIP
client
B

PROXY

B —

Vi

Servlet Engine

Servlet Engine

Domain A

Domain B

Figure 4 Service Architecture Without FIH

The problem with the architecture as shown in Figure 4 is that it does not
address the feature interaction problem. We propose to add another logical
entity, called “Feature Interaction Handler (FIH)”. The main function of the FIH is

to detect and resolve feature interaction when it occurs. FIH is a logical entity and

it interfaces with the serviet engine.

With the addition of the FIH, the service architecture is modified as shown in

Figure 5.

53

- — | SIP

S.IP PROXY >| PROXY .

client st client
A «— A R S— B R — B

L H

Servlet Engine + Servlet Engine +
Feature Interaction Feature Interaction
Handler Handler

Domain A Domain B

Figure 5 Service Architecture With FIH

In this architecture, there are two “service provider” domains, Domain A and
Domain B. Each domain has its own PROXY and the interface between the two
“service providers” is through PROXIES using SIP protocol. There are also two
users, User A (UA A) and User B (UA B). The assumptions of this thesis are
listed below:

e Each user's profile is only available in its own domain and managed by
domain’s PROXY. This includes the feature registration/activation,
account management, billing, etc.

e The feature implementation in each PROXY is based on SIP servlet
concept. The feature execution is initiated by serviet engine and each
feature has its own servlet.

» The servlet engine is co-located with the PROXY and is available in every

PROXY. A servlet engine is a logical entity (functional). To simplify the

54

implementation and focus on the feature interaction detection issue, we
decide to co-locate it with PROXY.

e The FIH introduced in this thesis is also co-located with the servlet engine
and is available in every PROXY. FIH is also a logical entity.

e The signaling between PROXYs is done using SIP protocol.

Our feature interaction detection approach consists of two techniques, offline and

online.

4.3 Offline Detection Technique

Offline detection technique discussed in this thesis is applicable for one user
only.

This type of feature interaction can be detected immediately while user gets
registered to certain feature combination. For instance, as soon as subscriber
register to feature "Call Waiting" and Call Forwarding" at the same time, we know
this will definitely cause feature interaction. The feature interaction in this case
can be managed easily with a pre-defined knowledge.

Since the behavior of each individual feature is known in the design phase, so by
analyzing the behavior, we could determine if two features would have

interactions if invoked at the same time.

55

The common approach of handling offline feature interaction is pairwise analysis.
Before introducing a new feature into a network, the feature has to be analyzed
with respect to every feature the user has subscribed to.

This thesis proposes an approach for feature interaction detection by
categorising the "behavior" of each feature, and then grouping them accordingly.
Let us assume the total number of features is M. We group the features with
similar behavior together. Each feature group is a feature category and the total
number of feature categories is N. Then this will create an M—N translation
table, in which N should be much less than M. By doing this, the feature
interaction detection is on the category basis rather than on feature basis. This
should substantially reduce the complexity on the feature interaction detection.
There are three steps in this approach as listed below:

A) Mapping: The first step is to map every feature to a pre-defined behavior
category. Each category is defined according to certain behavior.

B) Analysis: The second step is to analyze the interaction between feature
categories. Based on the analysis result, we create a feature category
interaction matrix.

C) Resolution: The third step is to resolve the feature interactions. The
solution proposed in this thesis is to inhibit the combination of features.
Strictly speaking, this is not a proper resolution method in feature

interaction management.

56

4.3.1 Mapping

The feature category is based on the actual actions of the feature. For instance,

forwarding category covers all type of call forwarding features. Even though the

forwarding features have various triggering conditions, the effect is the same. If

the forwarding happens, the call will be terminated in a third party. Based on this

principle, we have defined six categories, as follows:

Forwarding: This is applicable to all type of call forwarding features,
like forward on busy, forward on no reply. The trigger used to
identify this behavior is the modification of "URL" or “Via” header in
the original "INVITE" message.

Authentication: This is applicable to all type of features that requires
authentication before the session is established. The trigger used to
identify this behavior is the parameter "Auth". Features in this
category are terminating call screening, outgoing call screening,
etc.

Delay: This is applicable to features that require "delayed" session
establishment. Unlike the regular terminating call scenario, the
“delay” category involves “pre-condition”. It means that “pre-
condition” has to be met before the call can be terminated.
Features in this category are call waiting, camp on busy, or call

completion to busy subscriber, etc.

57

* Multi-party: This is applicable to features that involve more than two
users where session is established. Features in this category are
three way calling, etc.

= Regulation: This is applicable to features that require special
treatment, such as 911. This has to be treated separately due to
the regulation requirement. Even in the normal conditions, it
behaves differently from the normal sessions.

= Display: This is applicable to features related to either calling
number display or called number display. It also applies to the
screening service based on the numbers. Features in this category

are calling number presentation, etc.

There is no limitation in the combination of user’s features. The same principle

applies to the behavior combination of above categories. In this case, a

mechanism needs to be created to simulate all possible combinations.

4.3.2 Analysis

We will not analyze all different combinations of categories as introduced in the
previous section. Only a few combinations are selected to explain the concepts

and the result will also be used in the examples shown in later sections.

58

4.3.2.1 Forwarding and Delay

Between feature category “Forwarding” and category “Delay”, a feature
interaction is inevitable if both categories are applied to one user. Regardless the
type of forwarding (forwarding on busy, forwarding unconditional, etc), it means
that the call will terminate in user C instead of dialed user B. “Delay” category
means “pre-condition” has to be met before the call can be terminated, but the
call will be terminated in user B. With the call forwarding effect, the behavior of
“forwarding” feature category violates the assumption of “Delay” feature category.
We therefore can conclude that “forwarding” feature category and “Delay” feature

category will cause feature interaction.

{Forwarding <> Delay} => FI-AA

4322 Delay and Multi-party

Between category “Delay” and category “Multi-Party”, the feature interaction can
happen under certain conditions. Features in “Delay” category has “pre-
condition” to meet before call termination could precede. For instance, “call
waiting” feature requires user to put existing call leg on hold before he can accept
the new incoming leg. Same as features in “multi-party” category, the same
action “flash” is required in both cases in order to put existing leg on hold.
However, the result is different in two cases. One is to accept the new incoming

leg and the other is to connect a third party. Feature interaction will occur in this

59

case. However, we cannot conclude that “delay” category will always cause

feature interaction with “Multi-party” category. There will be no feature interaction

if we put “camp on busy” (part of Delay category) together with “three-way call”

(part of Multi-party category).

{Delay <> Multi-Party} => or =/>FI-AA

4323 Feature Category Interactions Matrix

The Table 2 below shows the feature interaction summary between the different

categories defined in the offline detection method. The summary serves as a

general detection matrix. The feature categories shown in the table represent

features assigned to one user.

In the table:

o Fl means feature interaction will occur.

e “<>" means no feature interaction.

Forwarding | Authentication | Delay Multi- Regulation | Display
Party
Forwarding <> <> Fi <> <> <>
Authentication <> - <> <> <> <>
Delay Fl <> - Fi <> <>
Multi-party <> <> Fi - <> <>
Regulation <> <> <> <> - <>
Display <> <> <> <> <> <>
Table 2 Feature Category Interaction Matrix

60

4.3.3 Resolution

The common resolution method is to inhibit the combination of conflicting
features. This is also the method used in this thesis for offline feature interaction
handling. It works well for the FI-AA type of feature interaction defined in this
thesis. However, this method will not work in distributed service environment
architecture as shown in Figure 5. It doesn’t address the FI-AB type of feature
interaction. There is no way to coordinate the user profile between two different
domains. The approach proposed in this thesis is to drop the call whenever
feature interaction is detected. It simplifies the implementation and focus only on

the feature interaction detection issue.

4.4 Applying Feature Category Interactions Matrix To Two Users

As discussed earlier, the offline detection is for one user only. However, the
concepts for detecting interaction between feature categories are also applicable
to multiple users. Therefore, in this section, we analyze the feature categories
interaction between two users by showing one example. The analysis result for
two users will be used later on for online detection analysis.

To avoid confusion, we also introduce our notation for the type of feature
interaction. “FI-AA” represents feature interaction between two features of one

user.

61

“FI-AB” represents feature interaction between features belonging to two users.

“AB” also represents the direction of the call.

441 Forwarding And Authentication

Between category “Forwarding” and category “Authentication”, an interaction
may occur if these two features are applied to two different users. Regardless of
the type of forwarding (forwarding on busy, forwarding unconditional, etc), the
call will terminate in user C instead of dialed user B. “Authentication” category
means either user B for an outgoing call or user A for an incoming call need to be
checked before a session is established. With the call forwarding effect, the
behavior “forwarding” feature category Vviolates the assumption of
“Authentication” feature category. The feature interaction condition is that user A
has “authentication” feature category and user B has “forwarding” feature

category. Therefore we can conclude the following:

{Authentication <> Forwarding} => FI-AB

It should be noted that there will be no feature interaction if user A has
“forwarding” feature category and user B has “Authentication” feature category.
There is also no feature interaction if both above features are applied to one

user.

62

4.4.2 Modified Feature Category Interactions Matrix

The feature category interaction matrix is modified with the inclusion of “two
users” capability and it is shown in Table 3. The feature categories shown in the
table represent features assigned to user A and User B respectively.
In the table:
o FI-AA means two features are applied to one user. This is applicable to
offline detection.
e FI-AB means two features are applied to two different users. This is
applicable to online detection.

e “<>"means no feature interaction.

Forwarding | Authentication | Delay Multi- Regulation Display
Party
Forwarding FI-AB FILAB FLLAA <> Conditional <>
FI-AB
Authentication <> - <> <> <> <>
Delay FI-AA <> - FI-AA <> <>
Multi-party <> <> FI-AA - <> <>
Regulation <> <> <> <> - <>
Display <> <> <> <> <> FiI-AB

Table 3 Modified Feature Category Interactions Matrix

4.5 Online Detection Technique

The initial SIP servlet concept as proposed in the IETF Internet draft [32] did not
address the feature interaction issue. The specified API structure in the draft

needs to be enhanced in order to support feature interaction detection. In this

63

section, we propose an “online feature interaction detection” mechanism to
address this requirement. It is used for FI-AB type of feature interaction detection
defined in the previous section.
Two methods are introduced. One is called “forward detection” and the other is
called “backward detection”.
e The "forward detection” is to detect feature interaction on the terminating
side of the call as soon as SIP “INVITE” message is received;
e The “backward detection” is to detect feature interaction on the originating
side of the call when SIP response message is received:;
In order to handle feature interaction, the current SIP servlet architecture needs
to be enhanced to incorporate the feature interaction detection and management
function. As stated in the previous chapter, SIP serviet is very similar to HTTP
serviet. It is however not enough just to apply the current HTTP serviet
mechanism to the SIP servlet environment, especially when the feature
interaction is brought into the picture.
We need to introduce a new logical entity called Feature Interaction Handler
(FIH) as an enhancement to the general SIP serviet architecture. The main

function of this entity is to detect and resolve the feature interaction.

4.5.1 Enhanced SIP Servilet Architecture

As mentioned earlier, we have introduced a new logical entity FIH into the SIP

servlet architecture. The enhanced SIP servlet architecture is shown in Figure 6.

64

*Reque_s‘tyi_:ﬂ toading and executing

___________________________ _Extension to SIP
servlet APT

: ; p 4 Analyzing and
rRecordrng Servlet Engme “Feature Interaction Handler modiﬁczyatzi::?r? an
: <-Qutput result

e s e e e e S e e e e = =JAINSIP API
: *Parsing

* Incoming message H SIP message
<« X Response l SIP Stack
3

SIp 'Parser

Prepared by: Yang Lu 1

Figure 6 Enhanced SIP Servlet Architecture

As we can see from Figure 6, the FIH is an integral part of the serviet engine. For
every incoming SIP message, it will go through the servlet engine if the feature
servlet needs to be invoked. Since the FIH sits between the SIP stack and the
servlet engine, the received SIP message will go through the FIH first, and then
get forwarded to the servlet engine after checking for feature interactions.

Depending on the combination of features involved in a particular call scenario,
the FIH may or may not take action. If there is no feature interaction detected by
the FIH, the FIH will pass all the received information transparently to servlet

engine. In this case, the FIH will take no action on the call, and servlet engine will

65

execute feature as defined. If feature interaction is detected in the FIH, the FIH
will construct a SIP release message to disconnect the call.

The FIH can check both SIP request messages and SIP response messages. It
can also correlate between SIP request messages and SIP response messages
for the same session.

In this thesis, the JAIN SIP APi is used between FIH and SIP parser; SIP servlet

APl is used between the servlet engine and the individual servlets.

4.5.2 Backward Detection

Backward detection, as its name implies, is dependent on the SIP response
message (received in backward direction). The detection point is at the call
origination side of the call session. The FIH in domain A (as shown in Figure 5)is
responsible for the feature interaction detection. The FIH needs to correlate the
SIP request message (such as “INVITE”) with the SIP response message (such

as “2xx”) in order to detect feature interaction.

4521 Overview of Backward Detection Technique

According to RFC 3261 [29], a SIP session will not be established until “200 OK”
response message is returned to the originating side. The SIP response

message will provide additional information related to the terminating side. This

66

information can be used by the originating side to determine if an ongoing

session is allowed to proceed or not based on feature interaction analysis.

The detection procedure is as follows:

Store and extract the received SIP response message and its headers.
Only 1xx, 2xx and 4xx response message header are covered in this
thesis. All other response messages can be potentially introduced.
Correlate and compare the session information between initial request
message “INVITE” with the received response message and its header.
This is to detect feature effect on terminating side. For instance, if user B
has call forwarding service, the returned response “200 OK” message
“contact info” header will be changed. By comparing the request message
and response message, the forwarding can be detected.

Look up originating user A’s profile to get feature list.

Both originating user’'s feature list and SIP response message are
crosschecked in the feature interaction category matrix as defined in the
previous section. This is to determine if feature interaction will occur or
not.

If feature interaction is detected, the FIH will not forward any message to
servlet engine. FIH will construct a SIP “BYE” message to abort the

ongoing session.

67

4522 Algorithm for Backward Detection Technique

The backward detection algorithm is shown in Figure 7. It has four key
components as listed below:

* Response message header information extraction

» Response message header analysis

e Originating user profile reading

» Feature interaction category matrix table lookup

Each component in the backward detection algorithm is for one specific task.

68

Response
Message

Originating FIH

. Log session ID

""""""""""""""""""""" » Extract Header info

Check call response leg
info, e.g: redirecting info

Read User Profile

Disconnect Call

FI Detected? |-

> CheCk FI Category MatriX <

----------- > | Proceed Call

Figure 7

Backward Detection Algorithm

69

4523 Example of Authentication vs. Forwarding

In general, the FIH on the originating side will not be aware of what has
happened in the terminating side unless the received SIP response message can
provide additional information [34].

If terminating user B has feature “call forwarding” [Category - Forwarding] and
originating user A has feature "outgoing call screening” [Category -
Authentication], feature interaction will occur on originating side. The question is
how to detect if a call has been forwarded or not during the call setup stage. In
order to get the additional information, we have to look at the SIP 1xx and 2xx
response messages and their contents.

The "contact" header field in the SIP 1xx and 2xx response messages would be
the place to look for the "forwarding" information. By comparing the "contact”
header field in the request "INVITE" message and 1xx or 2xx response
messages, we will find if the call has been forwarded or not.

Let us look at the scenario shown in Figure 8. This is an unconditional call

forwarding signaling flow chart [35].

70

Feature Interaction — Backward Detection (ocs & can forwarding)

SIp Stp Sip Stp
Client A Proxy A Proxy B Client B

INVITE F1

INVITE F2

A4

» (100 Trying) F3
<

180 Ringing F4

¢ 180 Ringing F$

200 0K F6

200 OK ¥7

<

ACK F8

ACK F9

v

BYE Fi0

BYE Fl1

A\ 4

200 OK Fi12

200 OK F13

Figure 8 SIP Call Forwarding Signal Flow

User B wants all calls forwarded to the PSTN. User A calls User B. Since we
only care about the feature interaction detection, we will only look at message
step 1 & 6 & 7. The messages behind PROXY B are not shown [35].
For step 1, the message detail is as below:

INVITE sip:UserB@there.com SIP/2.0

Via: SIP/2.0/UDP here.com:5060

From: BigGuy <sip:UserA@here.com>

To: LittleGuy <sip:UserB@there.com>

Call-ID: 12345600@here.com

CSeq: 1 INVITE

Contact: BigGuy <sip:UserA@here.com>

71

Content-Type: application/sdp

Content-Length: ...

v=0

o0=UserA 2890844526 2890844526 IN |P4 user.here.com
s=Session SDP

c=IN1P4 100.101.102.103

t=3034423619 0

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

For step 6 & 7, the message detail is as below:

E6:

200 OK Gateway -> Proxy

SIP/2.0 200 OK

Via: SIP/2.0/UDP ss1.wcom.com:5060;branch=83749.1
Via: SIP/2.0/UDP here.com:5060

Record-Route: <sip:UserB@there.com;maddr=ss1.wcom.com>
From: BigGuy <sip:UserA@here.com>

To: LittleGuy <sip:UserB@there.com>;tag=314159
Call-ID: 12345600@here.com

CSeq: 1 INVITE

Contact: <sip:+19727293660@gw1.wcom.com:user=phone>

Content-Type: application/sdp

72

Content-Length: ...

v=0

0=GATEWAY1 2890844527 2890844527 IN IP4 gatewayone.wcom.com
s=Session SDP

c=IN 1P4 gatewayone.wcom.com

t=00

m=audio 3456 RTP/AVP 0

a=rtpmap:0 PCMU/8000

F7:

200 OK Proxy -> A

SIP/2.0 200 OK

Via: SIP/2.0/UDP here.com:5060

Record-Route: <sip:UserB@there.com;maddr=ss1.wcom.com>
From: BigGuy <sip:UserA@here.com>

To: LittleGuy <sip:UserB@there.com>;tag=314159

Call-ID: 12345600@here.com

CSeq: 1 INVITE

Contact: LittlleGuy <sip:7773660,phone-

context=p1234@qw1.wcom.com;user=phone>

Content-Type: application/sdp
Content-Length: ...
v=0

0=GATEWAY1 2890844527 2890844527 IN IP4 gatewayone.wcom.com

73

s=Session SDP

c=IN IP4 gatewayone.wcom.com
t=0 0

m=audio 3456 RTP/AVP 0

a=rtpmap:0 PCMU/8000

For this particular feature interaction detection, by examining the "contact"
header field in both “INVITE” message and “200 OK” response message of the
same session, we detect if the interaction can occur or not. If the “contact’
header remains unchanged for the whole session, we can conclude that the call
is not forwarded during the setup stage and there will be no potential feature
interaction. This correlation and detection can be well handled by FIH.

This approach also applies to any other forwarding services, including CFU,

CFON and CFOB.

4524 Example of Delay vs. Delay

Feature "automatic recall (ARC)” [Category — Delay]] automatically repeats last
outgoing call when destination line is no longer busy. Feature “automatic call
back (ACB)” [Category — Delay] automatically returns last incoming call when
user line is no longer busy.

The signalling flow of ARC and ACB is shown in Figure 9. In this example, user A

has feature ARC and user B has ACB.

74

Feature Interaction — Backward Detection ARC & AcB

SIp SIP StP SIp
User A Proxy A Proxy B User B

Invitg F{ »

Invite F2 » .
Inyite E3 >
________ 486 busyFd__ |
| e ARG USYES_ b
e 486 bUSYFG]

-«

notify F§

<
4

< notify F9

%---lnvite (caltback) FI10 ____

Invite (recall) F10" »ie invite (call hack) F11

Figure 9 SIP ARC And ACB Flow

When user A makes a call to user B and user B is busy, SIP response message
486 is returned from terminating side. Once user A receives SIP 486 response
message, it will not kill the session since feature ARC is triggered.

In step F7, terminating user B sends out SIP message “notify” [36] to originating
side. This is to inform originating side that user B is now in “idle” state. At the
same time, user B initiates automatic call back to user A. Upon receiving SIP
“notify” message, user A initiates automatic recall to user B.

On originating side, the new “INVITE” message belongs to the same session as
initial “INVITE” request, therefore the “Call-ID” header in both “INVITE” should be
the same. On terminating side, the “INVITE” message generated by ACB feature
should also use the same "Call-ID" as previous received “INVITE” message from

user A.

75

The originating FIH can detect feature interaction by correlating user A’s profile
with received 486 response message and the “Call-ID” header of the new

“INVITE” message.

4.5.3 Forward Detection

Forward detection, is dependent on the SIP request message (sent in forward
direction). The detection point is on the call termination side. The FIH in domain
B (as shown in Figure 5) is responsible for the feature interaction detection. The
terminating FIH (located in domain B) needs to correlate the SIP request
message, such as “INVITE", with the terminating user’s profile (user B) to detect

potential feature interaction.

4.5.3.1 Overview of Forward Detection Technique

Two scenarios are handled in this case. One is called “forward detection header
info only” and the other is called “forward detection header info and incoming leg
info”.
The detection procedure is the following:
e Store and extract the received SIP “INVITE” request message and its
headers.

e Look up user B’s profile to get user’s feature list.

76

e Both request message information from originating user and feature list
from terminating user are crosschecked in the feature interaction category
matrix as defined in the previous section, to determine if feature
interaction will occur or not.

If feature interaction is detected, the FIH will not forward any message to serviet

engine. FIH will construct a SIP “BYE” message to abort the ongoing session.

4532 Forward Detection Header Info Only

“Forward detection header info only” discuss the scenario that the terminating
FIH only checks the SIP “INVITE” message “Request-Disposition” header and
terminating user’s profile.

The forward detection is to detect feature interaction in the terminating side after
receiving SIP request “INVITE” message. Due to the distributed architecture, the
user A in the originating side might have features that will cause interaction with
the terminating user B’s features (Feature interaction type FI-AB as defined in
early section).

There is no way for the terminating side to know if originating user A has any
features that might cause feature interaction unless this information is made
available to the terminating side. The current SIP protocol [29] doesn't support
the user preferences. A set of extensions to SIP has been defined in Internet
Draft " SIP Caller Preferences and Callee Capabilities " [34]. It allows a caller to

express preferences about request handling in servers. These preferences

77

include the ability to select which URIs a request gets routed to, and to specify

certain request handling directives in proxies and redirect servers.

It does so by defining three new request headers, Accept-Contact, Reject-

Contact and Request-Disposition. The extension also defines new parameters for

the “Contact” header that describe the characteristics of a User Agent.

The Request-Disposition header field specifies caller preferences on how a proxy
or redirect server should process a request. User agents do not process it. Its
value is a list of tokens. Each value specifies a particular feature. When the caller

specifies a feature, the server should treat it as a requirement and will process

the feature request.
The header field has the following syntax:
Request-Disposition = ("Request-Disposition™| "d") ""
1# (proxy-feature | cancel-feature |

fork-feature | recurse-feature |

parallel-feature | queue-feature)

proxy-feature = "proxy"| "redirect”
cancel-feature = "cancel"| "no-cancel”
fork-feature = “fork"| "no-fork"
recurse-feature = "recurse”| "no-recurse”
parallel-feature = "parallel" | "sequential”
queue-feature = "queue"| "no-queue”

extension-feature = token

78

The “Request-Disposition” header provides relevant information regarding
originating user’s service profile. This will help terminating FIH to determine if
there will be any feature interaction.
The “forward detection header info only” algorithm is shown in Figure 10.
This algorithm has three key components as listed below:

¢ Request-disposition header information extraction

e Terminating user profile reading

o Feature interaction category matrix table lookup

Each component in this algorithm is for one specific task.

79

Terminating FIH

INVITE
Received

4
E.xtracjt.Request- Look up client B profile
Disposition header

Look up FI matrix table

N
Fl occurred/? |: >

Reject the call

Figure 10

Forward Detection Header Info Only

80

4.53.3 Example of Delay vs. Forwarding

The typical example is where the originating user has "Camp-on busy" [Category

— Delay] feature and terminating user has "Call Forwarding On Busy" [Category —

Forwarding] feature.

The Figure 11 below shows the high-level signaling diagram.

SIpP
User A

Invite Fl1{queue]

Sip
Proxy 1

Invite F2[queue]

100 Trying F4

Invite F3[quenz]

SIp
User B

486 Busy F§

A

< 100 Tryving E5 . 486 Busy F7 <
l €486 Busy P8 ________|
Invite Fl{queue] > .
g Invite F2[queu: e]
100 Trying F4 Inyite F3{quene] >
< rying
i « 486 Busy F6
100 Toying S <
+ o ARG BUSYFT_
< 486 Busy F§
Invite F1[queue] > X
Invite F2{queue] » .
100, Tryine F4 Joyite Fi[queng] >
< Las}
;i <« < 486 Busy F6
< 100 Trying E5) 426 Busy FT «
< 486 Busy F8 b

Figure 11 Forward Detection — Camp On And CFOB

In this scenario, the detection FIH will be the one in the terminating side.

Here we assume SIP user A initiates a call to SIP user B and user B is already
engaged in a call. When the “INVITE” message arrives in domain B from user A,
feature interaction will occur since user A has the capability of “camp-on” while

busy, however user B would like to have the call transferred.

81

When user A sends the SIP "INVITE" message, the parameter “queue-feature” in
the “request-disposition” header of the “INVITE" message is set to "queue". The
FIH in domain B will correlate user A’s “INVITE” message header “Request-
Disposition” (has “queue” indicator) with user B’s profile (has feature “CFOB”).
Then the correlation is analyzed in the feature interaction category matrix, and

feature interaction is detected.

4534 Example of Multi-party vs. Forwarding

Another example as shown in Figure 12 is that User A has feature “Forking”
[Category — Multi-party] and one of the defined forking destinations has
“forwarding to voice mail” [Category — Forwarding]. Feature “forking” allows
PROXY B to attempt to locate a user by forwarding a request to multiple
destinations, for instance user B and user C. The call will be connected to the
first destination to pick up, and the call attempt to the others will be cancelled.
The feature interaction arises when one of the users to be reached, for instance
user C, is currently located at domain B has had its calls forwarded to a voicemail
system. The call to C will always be picked up first, as it is an automated system,
and thus PROXY B will connect the call to user C and cancel the call to user B.

The caller will never be able to reach the actual human.

82

Sip sip SIpP sip SIp Voice
User A Proxy A ProxyB User B User C Mail

Invite Fl[fork] __

Invite F2{fork]

- Anyite F3ffork] __,

__lnvite F5[fork] _

200 OK F6

<« 200 OK F7

200 OK F8

Figure 12 Forward Detection — Forking And Voice Mail

When user A sends the SIP "INVITE" message, the parameter “fork-feature” in
the “request-disposition” header of the “INVITE" message is set to "fork". The
FIH in domain B will correlate user A’s “fork” indicator (“INVITE” message header
“Request-Disposition”) with user C’s profile, which has “forwarding to voice mail”.
Then the correlation is analyzed in the feature interaction category matrix and

feature interaction will be detected.

4535 Forward Detection Header Info and Incoming Leg

“Forward detection header info and incoming leg” algorithm discuss the scenario

that the terminating FIH checks not only the incoming “INVITE” message and

83

terminating user’s profile, but also the incoming call leg “history”. The intension is
to check what has happened to the incoming call leg before it terminates.
The algorithm is shown in Figure 13.
The algorithm has four key components as listed below:

e Request-disposition header info extraction

¢ General Header info extraction

e Terminating user profile reading

e Feature interaction category matrix table lookup
Each component in this algorithm is for one specific task. Comparing with
“forward detection header info only” algorithm, the “forward Detection header info
and incoming leg” algorithm has one more component, general header info
extraction. The purpose of this additional component is to extract information
related to the call leg “history”. It provides additional information, such as if the
call has been forwarded or not before it terminates. This information will help

terminating FIH to detect potential feature interaction.

84

Terminating FIH

INVITE
Received

/ Ay
’ A

<
// Check incoming leg info
/ e.g: if call redirected
¥ v
Extract Request-

Look up client B profile

Disposition header

Look up FI matrix table

N
FI occurred/? | -~ >

Reject the call

Figure 13 Forward Detection Header Info And Incoming Leg

85

4536 Example of Forwarding vs. Authentication

Let's discuss another scenario where terminating user B has “Incoming Call
Screening” [Category — Authentication] service activated. In the normal situation,
every incoming call terminates at user B will be screened first before the
termination process can actually happen. If the originating user A’s number is on
the user B’s “forbidden” list, then the call will be rejected.
If however the call was redirected once during the call path, the originating
user’'s ID in the “INVITE” message “from” will be the redirection point:

From: Redirection_Point <sip:User Redirection_Point@here.com>
If original originating user A is in the user B’s “forbidden” list and redirecton_point
user is not in the “forbidden” list. Then the call will be accepted and terminated in
the user B. Thus it causes the feature interaction type Fi-AB.
The detection algorithm here is similar to the “backward detection” algorithm, but
the correlation is between the SIP request “INVITE” message and the terminating
user B’s profile. The general header "Via” of the “INVITE” message will provide
the redirection information. If call forwarding occurred in the call path before
terminating in PROXY B, the information will be recorded in the “Via” header of

SIP “INVITE" message. The FIH in domain B will be able to detect the feature

interaction and the call will be released.

86

4.6 Chapter Summary

In this chapter, we have discussed two types of feature interaction detection
techniques, the offline detection technique and the online detection technique.
For the offline feature interaction detection, we introduced the concept of
mapping features into feature categories. It groups features with similar behavior
into a feature category. Instead of detecting feature interaction on a feature
basis, we can detect interaction at the feature categories level. It significantly
reduces the complexity of the task and number of cases to consider.

For online feature interaction detection, two methods are introduced, which are
“forward detection” and “backward detection”. “Forward detection” is to detect
feature interaction on terminating side of the call session. It correlates the SIP
“INVITE” request message with terminating user’s profile to determine if feature
interaction could occur. “Backward detection” is to detect feature interaction on
originating side of the call session. It correlates the originating user’s profile with

the SIP response message to determine if feature interaction could occur.

87

Chapter 5

IMPLEMENTATION

5.1 Introduction

To validate the feature interaction detection techniques proposed in this thesis,
we implemented the FIH for online detection and a tool for offline detection as
discussed in previous chapter.

For the FIH, its interfaces and its architecture are described. For the offline tool,
its functions and architecture are described. The system has been implemented
using JAVA [37].

After the FIH and the offline detection tool have been implemented, we tested

them with the “Bellcore benchmark” [11]and “European benchmark” [38].

5.2 Implementation Architecture

The general service architecture in Figure 4 shows the end-to-end call flow
components. The architecture includes SIP client and SIP PROXY server. For
SIP client, it has a SIP parser, an SDP parser and a SIP stack. For PROXY

server, it has a SIP parser, an SDP parser, a SIP stack and a servlet engine. The

88

PROXY server is implemented using SIP client with “SIP user agent server”

function.

The architecture of the PROXY server stack is shown in Figure 14.

Figure 14 PROXY Stack

Then the end-to-end call flow is shown in Figure 15.

89

Servlet APL Servlet API

Domain B

«—
Response

Figure 15 End-to-End Call Flow Stack View

As discussed in the previous chapter, FIH is an integral part of the servlet engine.
It detects and manages feature interactions. The modified PROXY stack (with

FIH included) is given in Figure 16.

90

Servlet API

Request

Sip-Stack API
+— |

Response

Figure 16 PROXY Stack With FIH

As proposed in Figure 16, FIH resides between the servlet engine and the SIP
stack. This way, it allows FIH to check every incoming/outgoing SIP
request/response message whenever feature servlet is to be invoked.

At the same time, FIH does not interfere with serviet engine if there is no feature
interaction detected. If there is no interaction detected, the serviet engine will
execute individual servlet as usual. If interaction is detected, the FIH will stop the
servlet engine process and sends a SIP “4xx” response message to disconnect

the ongoing “call” session.

91

The modified end-to-end call flow “stack view” (with FIH included) is shown in

Figure 17.

Servlet API

Servlet API

Domain A Domain B

Sip-Stack API

Sip-Stack API i

Response

Figure 17 End-to-End Call Flow Stack View With FIH

5.3 Online Feature Interaction Detection Architecture

In this section, we will discuss online feature interaction detection architecture.

This includes the FIH and the feature servlet. The SIP stack (including Parsers)

92

and Servlet engine implementation are not covered in this thesis. Both entities

are using the existing product.

5.3.1 Interface Description

The FIH interfaces directly with the SIP stack and the serviet engine. This
interface follows the standard SIP API [39].
The interface supports the following SIP request messages.

e BYE - Used in both “backward” and “forward” detection

e [INVITE - Used in both “backward and “forward” detection

e NOFITY — Used in “backward” detection
SIP “CANCEL” and “ACK” message are not required from FIH perspective. There
are no features in this thesis utilizing “CANCEL” message. In case the SIP stack
receives it, it will not invoke any feature servlet. Therefore SIP “CANCEL”
message will not be supported in the FIH.
Some features may require SIP “ACK” message. It is used to acknowledge the
reception of “200 OK” response message. However, the detection algorithms
discussed in this thesis do not use information from SIP “ACK” message. Thus
the SIP “ACK” message will not be supported in the FIH.

The interface supports the following SIP response messages:

e 1xx
o 72XX
o 4xx

93

All other SIP response messages (3xx, 5xx and 6xx) are not relevant from the
FIH perspective. The interaction detection algorithms discussed in Chapter 4
does not use any of them.

As defined in IETF RFC 3261 [29], there are over 40 different parameter fields.
With more extension defined, such as Internet Draft “SIP Caller Preferences and
Callee Capabilities” [34], the total number of parameter field keeps increasing.
This thesis only address limited amount of parameter fields.

The interface supports the following SIP parameter fields:

e Call-ID
e Contact
e Cseq

e Request-Disposition

e From
e To
e VIA

5.3.2 Function Description

All functions specified in online detection algorithm in Chapter 4 are covered and
included as below:
e Feature category interaction matrix — This matrix defines all possible

interactions between feature categories.

94

5.3.3

SIP message header field extraction — This is to store the received SIP
message parameter fields. Input is the message ID and parameter field
ID. There is no output for this function.

SIP message header field comparison — This is to compare the stored
SIP message header fields within the same session. The input to this
function is “session ID”, SIP message parameter field identity. The output
is the service indicator, which depends on the SIP message parameter
field comparison resuilt.

User profile look up — This is to get the user profile. The profile should
contain all features that user has registered and other relevant
information. The input is user identity and output is the feature list.
Feature category interaction matrix table look up — This is to get the
feature interaction detection result. The input is the feature list and output
is the feature interaction detection result.

Session controller — This is to keep track the session status of each call.
The input is “Call-ID” and “Cseq” of each received SIP request/response

message.

FIH Structure

We propose four modules to implement the FIH, which are Transaction manager,

Call leg, User Profile and Feature Category Interaction Matrix. Figure 18 shows

the FIH structure.

95

The Transaction manager module extends the SIP API. It is responsible to keep
track all received/sent SIP messages.

The Call leg module extends transaction manager. It extracts and stores the
parameter fields of received SIP messages; compares the same parameter field
between different messages for the same session.

The User profile module is responsible for user profile modification. It includes
adding/deleting of feature and returning feature list of a user.

The Feature category interaction matrix is to analyze the received session info
and detect if there is potential feature interaction. When the analysis is finished, it

will return the feature interaction detection result.

Jain SIP API * *

Figure 18 FIH Structure

96

5.3.3.1 Transaction Manager

A SIP transaction occurs between a user and a server. It comprises all messages
from the first “Request” sent from the user to the server up to a “final response”
sent from the server to the client.

The “Cseq” sequence number within a single call leg identifies a transaction.

A transaction can be in one of the following states.

INITIAL: a transaction is set to INITIAL state when an INVITE, BYE message is

sent or received.

INPROGRESS: a transaction is set to INPROGRESS state when a response 1xx

is sent by the server to indicate the progress.

FINAL: a transaction is set to FINAL state when receiving a final response 2xx,
4xx.
Classes and methods for Transaction Manager are:
SipTransactionManager: SIPTransactionManager class is a skeleton class. It
manages all transactions that are sent and received by the SIP stack. It is
responsible for matching responses to requests and mapping messages to the
transaction they are associated with. Methods provided by this class are:

¢ addTransaction(): adds a transaction into the transaction map.

¢ removeTransaction(): removes a transation from the transaction map.

e getTransaction(): returns the client transaction if it exists in the

transaction map.

97

e UpdateTransaction(): updates the transaction map with the message
received to an existing transaction in the transaction map
SipTransaction: an abstract base class for the client and server transaction
classes. A transaction consists of all messages from the first request sent from
the client to the server up to a final response sent from the server to the client.
e getTransactionld(): returns the transaction id of the current transaction.
» getRequestMessage(): returns transaction’s initial request.
o getTransactionState(): returns transaction’s state.
e setTransactionState(): sets transaction’s state.
SipClientTransaction a client transaction is created when a request message
(INVITE, BYE) is sent from the client to the server.
o sendRequest(): sends a request message
* processResponse(): processes a response message associated with
the current transaction
SipServerTransaction a server transaction is created when server receives a
request message (INVITE, BYE) from the client.
¢ processRequest(): processes a request message
e sendResponse(): sends a response to the request associated with the

current transaction

98

5.3.3.2 Call Leg

Call Leg is handling all detailed information related to a “transaction”. It extracts
and compares information received between different states of the call.
Call Leg API hides the creation and manipulation of SIP transactions. One Call
Leg consists of one or more transactions. A typical call has at lease one call leg
that comprises two request messages (or transactions) “INVITE” and “ACK”.
Methods that are supported by the class CallLeg are:
o getCalllD():returns CalllD of the call leg
e getFromHeader():returns “From” header of the call leg
o getToHeader ():returns “To” header of the call leg
e getContactHeader (): returns “Contact” header of the call leg
o getViaHeader (): returns “Via” header of the call leg
o getRequestDispositionHeader (): returns “Request-Disposition” header
of the call leg
e compareFromHeader(): compares “From” header between request and
response in the same session
e compareToHeader(): compares “To” header between request and
response in the same session
o compareViaHeader(): compares “Via”" header between request and

response in the same session

99

5.3.33 User Profile

UserProfile handles user profile modification and extraction. Methods supported
by this class are:

o getUser(); gets user identify from the message received from entered

from offline tool

e addUser(): adds new user into the user database

¢ deleteUser(); deletes user from the user database

o getUserList(); returns current user list from database

e addFeature(): adds new feature into a user profile

o deleteFeature(): deletes feature from a user profile

o getFeatureList(): returns a user’s feature list

53.34 Feature Category Interactions Matrix

InteractionMatrix handles the feature category interaction detection. Methods
supported by this class are:

o addFeatureCategory(); adds new feature category into the matrix

o deleteFeaturecategory(): deletes feature category from the matrix

o featureToCategory(); maps feature to feature category

o getFeatureCategory(); returns the feature category list from the matrix

100

¢ detectFeatureinteraction();returns the feature interaction detection
result based on the pre-set logic
e bye(): sends a SIP “4xx” response message for the “INVITE” message

that initiated the call leg

5.3.3.5

FIH Class Structure

The overall FIH class structure shown in Figure 19.

4

CallLeg
InteractionMatrix
UserProfile getCalllDQ);
addFeaturecategory(); . getFromHeader();
deleteFeatureCategory(); getUser(); getToHeader();
featureTocategory(); ’ addUser(); getContactHeader();
getF eaﬂue(‘ategory(j : getUserList(); getViaHeader();
detectFeature in toract ior; 0: addFeature(); getRequestDispositionHeader();
bye(): ’ deleteFeature(); compareFromHeader();
’ getFeatureList(); compare ToHeader();
compareViaHeader();
SipTransactionManager
SipTransaction SipClientTransaction SipServerTransaction
getTransaction(); getTransaction(); getTransaction();
getRequestMessage(); getRequestMessage(); getRequestMessage();
getTransactionState(); getTransactionState(); getTransactionState();
setTransactionState(); setTransactionState(); setTransactionState();
? jain.protocol.ip.sip %
RequestMessage ResponseMessage

Figure 19

FIH Class Structure

101

5.3.4 Feature Servlet

In order to simulate individual feature in SIP servlet environment, we developed
two feature servlets, which are "Call Forwarding" and "Outgoing Call Screening".
Feature servlet is independent from feature interaction detection techniques
analyzed in this thesis.

The javax.servlet package and the javax.servilet.sip package from SIP Servlet
APl provide the classes and interfaces to define serviets. The SipServlet
abstract class defines additional methods for handling SIP requests. These
methods correspond to the request methods defined by SIP specification. The
service method of the SipServlet class automatically calls these methods for
processing a SIP request. The SipServlet interface defines the following
methods for request processing:

o dolnvite(); for handling SIP INVITE requests

e doAck(); for handling SIP ACK requests

e doOptions(); for handling SIP OPTIONS requests

¢ doBye(); for handling SIP BYE requests

e doCancel(); for handling SIP CANCEL requests

e doRegister(); for handling SIP REGISTER requests

e init(); for initiating SIP servlet

e destroy(); for destroying SIP servlet

The Figure 20 below shows the servlet structure.

102

SipServiet

Init();
Destroy(};
dolnvite(};
doAck();

doOption);

doRegister();
doBye();

doCancek);

T

ServletRequest ServletResponse

A GenericServlet A

f Javax serviet

l Javax.serviet.sip

SipServlet

T

SipServletRequest SipServietResponse]

Figure 20 Servlet Structure

The dolnvite method is the heart of the servlet, where instructions and the
purpose of the servlet are carried out.

The dolnvite method instructs the serviet engine about what it must do, whether
playing a media, writing to a database, or simply redirecting the client to a
requested URL. Within this method we use Java programming syntax to give
specific instructions for the servlet to interact between the client and the server

[40].

103

5.4

Offline Tool Architecture

Offline tool is developed for offline feature interaction detection. The objective is

to demonstrate the offline feature interaction detection principle. The feature

interaction detection point is when assigning features to the selected user. The

tool has the following input and outputs:

L

It provides a Graphic User Interface

It can add or delete users from the database

It shows available feature list for the selected user

It is able to assign the selected features to a user if no interaction
detected

It is able to generate error message if feature interaction is detected.

5.4.1 Offline Tool Class Structure

Class FiCheckerTool extends the class UserProfile. Methods supported by this

class are:

getFeatureL.ist(); returns the available feature list
getUserList(); returns all the users in the database
getUserProfile(); returns the user profile

addFeature(); assign feature to user

104

o deleteFeature(); delete feature from user

e returnResult(); returns the feature interaction detection result

FiCheckerTool

getFeatureList();
getUserList();

getUserProfile();
addFeature();

deleteFeature();
returnResult();

Figure 21 Offline Tool Class Structure

5.5 Programming Environment

The following programming tools are used.

The programming is using Borland Company IDE Jbuilder 5 professional

edition
o JDK1.3.1(JAVA 2) [41]
e JAVA Media FrameWork 2.1.1a [42]

e Servlet Tomcat [43]

105

5.6 Application

This section shows the implementation results and validation of the detection
algorithm. For the FIH, we apply the feature interaction benchmarks and check
the feature interaction detection result. If the relevant feature interaction can be
detected, it will prove the viability of both feature interaction detection algorithm
and its implementation.

For offline tool, we will show several snap shot examples of the tool usage. The
examples will demonstrate how to list users in the database, how to assign

features to a user and how feature interaction is detected.

5.6.1 Bellcore Benchmark

The Belicore Benchmark [11] presents two different ways of categorising feature
interactions:
o By nature of the interaction which is divided into:
o Type of features involved
o Number of users involved
o Number of network components involved
e By causes of the interaction
In this benchmark a collection of features and their interactions have been
presented. We used some of the feature in this benchmark and their combination

to test our approach.

106

5.6.2 European Benchmark

In the EURESCOM project P509 [38]. A benchmark for evaluating the
approaches proposed and elaborated in the project has been developed. This
benchmark is based on a new definition of feature interaction from which a
classification of interactions is inferred in a rather straightforward manner. Same
as Bellcore benchmark, a set of features has been introduced and a collection of
experienced feature interactions has been presented. We use some of the
features in this benchmark and some of their combinations to verify our

approach.

5.6.3 FIH Application

Since the FIH is an implementation of our detection algorithm, we use it as a
mean to validate the feature interaction detection. In the section below, part of
the combinations from both benchmark documents are checked and presented.
In each case, the feature interaction detection method is explained.

Since we have only implemented two feature servlets, “Call Forwarding” and
“Outgoing Call Screening”, therefore part of the validation are based on analysis
only.

We did not validate all the feature interaction as defined in the benchmark

document. There are several reasons.

107

It is not possible to pass some of the calling user’s profile or its feature
status without extends the SIP “INVITE® message. Only limited
information is available to terminating side based on the current SIP
standard.

The SIP response message 1xx, 2xx has limited information available to
the originating side. To support our approach, it would also require
extension to the SIP response message.

The PROXY “Forking” function will further complicate the feature

implementation and feature interaction situation.

European Benchmark:

Connected Line Presentation (COLP) / Connected Line restriction (COLR)
o Feature interaction cannot be detected since the current SIP
extension doesn’t support user preference that “doesn’t display
number”. However, if such an extension is available, then feature
interaction can be detected through the “Forward Detection Header
Info Only” Algorithm. The feature interaction type is FI-AB.
Originating Call Screening (OCS) / Abbreviated Dialling (ABD)
o Feature interaction can be detected at offline stage. The feature

interaction type is FI-AA.

 Originating Call Screening (OCS) / Abbreviated Dialling (ABD)

o Feature interaction can be detected at offline stage. The feature

interaction type is FI-AA.

108

Call Waiting (CW) / Three-way Calling
o Feature interaction can be detected at offline stage. The feature

interaction type is FI-AA.

Call Waiting / Call Forwarding on busy (CFB)
o Feature interaction can be detected at offline stage. The feature

interaction type is FI-AA.

Calling Number Delivery (CND) / Unlisted Number (UN)

o Feature interaction cannot be detected since the current SIP
extension doesn't support user preference that “doesn’t display
number”. However, if such an extension is available, then feature
interaction can be detected through the “Forward Detection Header

Info Only” Algorithm. The feature interaction type is FI-AB.

Do not Disturb (DND) / Emergency Response Service
o Feature interaction can be detected through “Forward Detection
Header Info Only” Algorithm. Normally “Emergency Response
Service” has a special digit pattern and it can be used as feature

indication. The feature interaction type is FI-AB

Call completion on busy (CCBS) / Call Back
o Feature interaction can be detected through “Backward Detection”.
The feature interaction type is FI-AB.
e Call Waiting (CW) / Answer Call (AC)
o Feature interaction can be detected at offline stage. The feature

interaction type is FI-AA.

109

 Call Forwarding Unconditional (CFU) / Terminating Call Screening (TCS)
o Feature interaction can be detected through “Forward Detection
Header Info and incoming leg” Algorithm. The feature interaction
type is FI-AB.
» Wake up call (WUC) / Call Forwarding On No Reply (CFNR)
o Feature interaction can be detected at offline stage. The feature

interaction type is FI-AA.

Bellcore Benchmark:

e 911 (emergence call) / Three-way call
o Feature interaction can be detected through “Forward Detection
Header Info Only” Algorithm. “911” is treated as a special dialled
digit string and used as feature indication. The feature interaction
type is FI-AB.
o Terminating Call Screening (TCS) / Automatic Recall (ARC)
o Feature interaction can be detected at offline stage. The feature
interaction type is FI-AA.
* Originating Call Screening (OCS) / Area Number Calling (ANC)
o Feature interaction can be detected at offline stage. The feature
interaction type is FI-AA.
e Operator Service / Originating Call Screening (OCS)
o Feature interaction can be detected through “Forward Detection

Header Info Only” Algorithm. Normally all operator service has a

110

special numbering pattern and it can be used as operator service
feature indication. The feature interaction type is FI-AB.
» Long Distance Calls / Message Rate Charge Service
o Feature interaction cannot be detected since it is related to service
provider administrative area. The service level agreement has to be
reached before cross-network inter-working is possible. Therefore,
there is no need for either offline or online feature interaction
detection.
e Calling from Hotel / Message rate Charge Service
o Cannot be detected since it is related to service provider
administrative area. The service level agreement has to be reached
before cross-network inter-working is possible. Therefore, there is
no need for either offline or online feature interaction detection.
 Call Forwarding Unconditional (CFU) / Originating Call Screening (OCS)
o Feature interaction can be detected through the “Backward
Detection”. Feature interaction type is FI-AB.
* Automatic Call Back (ACB) / Automatic Recall (ARC)
o Feature interaction can be detected through the “Backward
Detection”. Feature interaction type is FI-AB.
 Originating Call Screening (OCS) / Muitiple Directory Number Line with
Distinctive Ringing
o Feature interaction cannot be detected. if different number, which is

associated with the same pilot number, is used as called directory

111

number, there is no way for originating side to know. There is also
no mechanism for terminating side to pass the information back to
the originating side.
o Call Waiting (CW) / Automatic Call Back (ACB)
o Feature interaction can be detected at offline stage. The feature

interaction type FI-AA.

5.6.4 Offline Tool Demonstration

The offline tool provides a graphic user interface as shown in Figure 22 below.
The offline tool includes two parts, one is user definition and the other is feature
assignment to a particular user. The user definition is used to define or delete
individual users in a particular service provider domain. The user is recognized
by its name, which can be any combination of character. Once user is defined in
the network, we could assign certain features to the user, which is done through

the feature assignment part.

112

Khendek
Trial
Test

Figure 22 Offline Tool

When adding features to a particular user, simply clicking on the user name on
the left and clicking the "add" button on the right side of the graphic user
interface. Depending on the current status of the user, a list of allowed features

would pop up as shown in the Figure 23 below.

113

Figure 23 Offline Tool Dialogue

In this case, the user lu.yang@concordia.ca is newly defined and has no feature

defined in the database. So all available features are available for use. In case
user would like to have, for instance "Answer Call" and "CW" together, feature
interaction will occur. For the simulation purpose, a warning message “Feature
Interaction!” will be displayed. The features have been selected are also shown

as part of the warning message. This is shown in Figure 24.

Figure 24 Offline Tool Usage Example

114

5.5 Chapter Summary

In this chapter, both online detection architecture and offline tool architecture are
explained in details. For the online detection architecture, the focus is given to
the FIH implementation. The FIH interface/function description, the component
structure and the class structure are described. For the offline tool, architecture
and class structure are specified.

We also presented the application of FIH and offline tool to detect known feature
interactions for validation purpose. The validation includes both European and
Bellcore benchmarks. Detection results were shown and explanations were

given.

115

Chapter 6

CONCLUSION

6.1 Main Contributions

IP telephony is becoming the new leader in the telephony world. The current
industry trends show that more and more service providers or operators are
transforming their network from traditional circuit based to IP. It is especially true
for the new 3™ generation wireless network. Day by day the number of service
providers interested in IP telephony is increasing. Users also demand new
capabilities and services that must be provided by the service providers using the
best tools to achieve their objectives.

The conventional feature interaction will still be a problem in the SIP environment
and moving to an [P world will not simply take it away. It is true that the richness
of SIP protocol may get rid of some of the existing feature interactions though not
all of them, but at the same time it also creates new feature interactions with the
introduction of new capabilities and functions.

In this thesis, we have proposed an approach to address the feature interaction
detection issue in SIP servlet environment. It is proven through the project that

our solution of handling feature interaction detection in the SIP serviet

116

environment is viable. The detection algorithms have been validated by applying
them to both Belicore and European Benchmarks.

However, its performance and efficiency is not part of the project scope and thus
not verified during the project. It can be a good candidate for future study. Since
the solution proposed is on the handling of low-level SIP signaling, it can be
potentially also used in a generic SIP service environment, not necessarily

bundled with the SIP servlets.

6.2 Main Advantages Of Our Approach

The proposed method is a pragmatic method; it is based on the experience, the
understanding of the feature behavior and the observed cases.

Our approach has the following advantages:

It has the simplicity of the pragmatic methods.

e The approach covers all feature interactions introduced by European
Benchmark

e The tool is user friendly and provides useful prompts and messages for the

user

e The detection algorithms are simple.

117

6.3 Potential Extensions And Future Work

The developed approach is based on SIP servlet concept and its components.
To develop the approach further, a study of new SIP service is required. The

study will probably lead to an extension of the approach and the tool.

New Feature Handling:

Due to distributed feature/service environment in SIP protocol based network, it
is possible that many new features, which we have no idea about at this stage,
will cause new type of interactions. It is impossible to predicate what type of
feature interactions will occur and how to manage them. This issue, it is not

addressed in this thesis and should be explored in a future study.

Feature Interaction Resolution:

As a complete solution for the feature interaction problem, a detection approach
must be followed by a resolution approach. Since the current approach and the
FIH provide all required information about the place and reason of interactions
between the features, a resolution approach can simply use this information to

completely solve the problem.

Combination of more than two features:
Despite the fact that, through this thesis we have mostly chosen the combination

of two features in order to describe different situations, our approach does not

118

have any restriction related to the number of features. During the implementation,
our effort was aimed toward adding the required functionality to different
components in order to handle the combination of more than two features. It is
worth to carefully investigate the possibility of fully extending the FIH in handling

the combination of more than two features.

119

(1]

(2]

[5]

[6]

REFERENCES

“Principles of Intelligent Network Architecture”, ITU-T Recommendation

Q.1201, Geneva, 1992

Bellcore Technical Advisory, “Switching Systems Generic Requirements”,

Advanced Intelligent Network (AIN) Release 1, May 1991

H. Schulzrinne and Jonathan D. Roseberg, “Internet telephony:
Architecture and protocols — an |IETF perspective”, Computer Networks

and ISDN Systems, vol. 31, pp. 237-255, Feb. 1999

Jonathan Lennox, Henning Schulzrinne and Thomas F. La Porta,
‘“Implementing Intelligent Network Services with the Session I[nitiation

Protocol”, Tech-Report Number CUCS-002-99

M. Handley (ACIRI), H. Schulzrinne (Columbia U), E. Schooler (Cal Tech),
J. Rosenberg (Bell Labs), “SIP: Session Initiation Protocol”, RFC 2543,

Mar 1999

ITU-T, Recommendation H.323 Version 5, Packet-based multimedia

communications systems, 2003

120

[7]

(8]

(9

[10]

[11]

Henning Schulzrinne, “SIP for mobile applications”, Dept. computer
science, Columbia University, VON developper’s summer 2000 (Boston),

July 18,2000

Henning g. Schulzrinne and Jonathan D. Roseberg, “The Session Initiation
Protocol: Providing Advanced Telephony Services Across the Internet”,

Bell Labs Technical Journal, Oct-Dec 1998

Werner Van Leekwijck, Dirk Brouns, “Siplets: Java-based Service
Programming for IP telephony”, Alcatel Telecommunication Review-2™

Quarter 2000

Haojin Wang, “Telecommunications Network Management”, [SBN:

0070681708, Computing McGraw-Hill, 1999
E. J. Cameron, N. D. Giriffeth, Y.-J. Lin, M. E. Nilson, and et al, “A Feature
Interaction Benchmark for IN and Beyond”, Feature Interactions in

Telecommunications Systems, 10S Press, pp. 1--23, 1994

FIW'92, St. Petersburg, FL, USA; FIW'94 Amsterdam, The Netherlands:

FIW’95, Kyoto Japan; FIW’97, Montreal, Canada

121

[13]

[14]

[15]

[16]

[17]

(18]

Muffy Calder, Evan Magill, editors, “Feature Interactions in

Telecommunications and Software Systems VI”, Glasgow, Scotland, 10S

Press (Amsterdam), 2000.

Universal Personal Telecommunication (UPT), "Requirements on feature

interaction and network functionality”, ETR 064, reference DTR/NA-70304

T.F. Bowen et al., "The Feature Interaction Problem in Telecommunication
Systems." Proc. Seventh Int'l Conf. Software Eng. for Telecommunications
Switching Systems, Institution of Electrical Engineers, London, 1989, pp.

59-62

Dirk O. Keck, Paul J. Kuehn, “The Feature and Service Interaction
Problem in Telecommunications Systems: A Survey”, IEEE Transactions

on Software Engineering, Vol. 24, No. 10, October 1998

M. Calder and E. Magill, editors, “Feature Interaction in
Telecommunications and Software Systems VI”, 10S Press, Glasgow,

May 2000

F.S. Dworack, “Approaches to Detecting and Resolving Feature
Interactions”, Proceeding GLOBECOM 1991, Phoenix, Arizona, pp. 1371-

1377, Dec.1991

122

[19]

[20]

[21]

[22]

[23]

Y. Peng, F. Khendek, P. Grogono and G. Butler, Feature Interaction
Detection Technique Based on Feature Assumption, Fifth International
Workshop on Feature Interactions in Telecommunications and Software

Systems, FIW’1998, Sweden, 1998

A.Sefidcon and F. Khendek, “A pragmatic Approach for Feature
Interaction Detection in Intelligent Networks”, Proceedings of IEEE

conference on Computer Communication and Networks, Oct. 1999

Alessandro De Marco, Ferhat Khendek, “eSERL: Feature Interaction
Management in Parlay/OSA Using Composition Constraints and
Configuration Rules”, Proc. of 8th International Conference on Feature

Interactions, FIW’'2003, Ottawa, Canada, 2003

Jonathan Lennox and Henning Schulzrinne, “Feature Interaction in
Internet Telephony”, Columbia University, USA, URL:

http://www.cs.columbia.edu/~lennox/Lenn0005 Feature.pdf, 2000

J. Lennox and H. Schulzrinne, “Feature Interaction in Internet Telephony”,
Proc. of Sixth Intl. Workshop on Feature Interactions in
Telecommunication Networks and Distributed Systems (FIW’00), pp.38-

50, May. 2000

123

[24]

[25]

[26]

[27]

[28]

[29]

[30]

H. Schulzrinne and J. Rosenberg, “Internet telephony: Architecture and

protocols,” Computer Networks and ISDN Systems, 1998

R. Manione, M. Festa, P. Renditore, D. Sereno, M. Spaziani, “Service

Issues in Web Call Centers”, Telecom 99 Forum, Geneva, 1999

C. Gbaguidi, et al, Integration of Internet and telecommunications: “An

Architecture for Hybrid Services”. IEEE JSAC vol.17, no.9, Sept. 1999

Ajay P. Deo, Kelvin R. Porter and Mark X. Johnson, “Java SIP Servlet API

Specification”, MCI Worldcom, April 27, 2000
Roch Glitho, Riad Hamadi and Robert huie, “An Architectural Framework
for Using Java Servlets in a SIP Environment”, Proceedings of ICN (2)

2001, 707-716, Colmar, France, July 9-13, 2001

M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg, “SIP: Session

Initiation Protocol”, RFC 3261, IETF, March, 1999

M. Handley, V. Jacobson, “SDP: Session Description Protocol”, RFC

IETF, April, 1998

124

[31]

[32]

[34]

[39]

J. Lennox and H. Schulzrinne, “Call processing language framework and
requirements,” Request for Comments 2824, Internet Engineering Task

Force, May 2000

Java Community process, “SIP Servlet API”, Java Specification IETF

Internet Draft (work in progress)

Lennox/Schulzrinne, “CPL: A language for user control of Internet
Telephony Services” IETF Internet Draft, January 15, 2002 (work in

progress)
Schulzrinne and Rosenberg, “SIP Caller Preferences and Callee
Capabilities IETF Internet Draft”, IETF Interenet draft, Nov 24, 2000 (work

in progress)

Alan Johnston, Steve donovan, Robert Sparks, “SIP Telephony Call Flow

Example”, IETF Internet Draft, November 2000 (work in progress)

A. B. Roach (Dynamic soft), Session Initiation Protocol (SIP) — Specific

Event Notification, RFC2543

125

[37]

[38]

[41]

[42]

[43]

Paul M. Tyma, Gabriel Torok, and Troy Downing, “Java Primer Plus,
supercharging web applications with the Java programming language”,

Waite Group Press, 1996

K.Kimbler and H. Velthuijsen, "Feature Interaction Benchmark”, Proc. of

the third Feature Interaction Workshop (FIW95), Japan, Oct. 1995.

JAIN ™ SIP specification 1.1 release, 2003

Mick O'Doherty, “SIP serviet delivery”, IETF internet draft, July 2000

Core JAVA, J2SE 1.3.1, Sun Microsystem, 2003

Java Media Framework API (JMF) 2.1.1, Sun Microsystem, 2003

Apache Jakarta Tomcat, Jakarta Project, The Apache Software

Foundation (ASF)

126

