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Abstract

Ali Habibi, Ph.D.
Concordia University, 2005

Recent advances in hardware design has enabled integration of a complete yet
complex systems on a single chip (called System-on-a-Chip: SoC). It is conceivable
that the role of traditional Register Transfer level (RTL) languages will diminish to
an extent akin to assembly level languages in software design. Therefore, new design
languages or so-called System Level Languages (SLL) have emerged. Verification
techniques for SOC designs also need to change with this trend. Combining classical
verification techniques, such as simulation, with several other formal techniques, into
a single approach has been gaining attention in SoC verification.

Classical simulation based verification techniques when used with SystemC face sev-
eral problems related to the object-oriented aspect of SystemClibrary and due to
the complexity of its simulation environment. In this talk, we present our proposed
methodology to verify SoC designs modeled in SystemC. To this end, we introduce a
hybrid approach combining static code analysis, model checking and assertion based
verification. We also propose to augment the approach by a test generation module
in order to improve the coverage metrics in comparison to the classical simulation

approach (mainly based on random test generation).
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‘Chapter 1

Introduction

1.1 Motivation

A decade ago, the EDA industry went progressively from gate level to register-transfer
level (RTL) abstraction. This is one of the basic reasons why this process gained a
great increase in the productivity. Nowadays, an important effort is being spent
in order to develop System Level Languages (SLL) and to define new design and

verification methodologies at this level of abstraction.

The reason for all this activity is simple. RTL hardware design is too low as
an abstraction level to start designing multimillion-gate systems (as shown in Figure
1.1). What is needed is a way to describe an entire system, including embedded
software and analog functions, and formalize a set of constraints and requirements —
all far beyond the capabilities of existing HDLs. VHDL and Verilog both will become
the assembly languages of hardware design. Designers and verifiers will write RTL
code for things that are performance-critical, nevertheless, for everything else, they

will stop at a higher level.

By looking at the specifications of embedded systems, particularly for commu-

nications, portable and multimedia equipment, we can realize an important and rapid

1
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Figure 1.1: Hardware Design Evolution [82].

growth in complexity that will require System-on-a-Chip (SoC) solutions that gen-
erally integrate diverse hardware and software. Time-to-market and cost also need
to be reduced more than ever before and backed up by an effective marketing-driven
strategy that can meet today’s highly competitive and demanding circumstances.
To achieve all this, the product development process must assure the product spec-
ification phase is integrated smoothly with the product design phase, allowing the
customer’s demands, marketing goals and designer expertise, to be evaluated and an-
alyzed at significantly less cost in time and resources, and to be rapidly incorporated

into the final product.

State-of-the-art SLL proposals can be classified into four main classes. First,
reusing existing software SLL such as UML. Second, extending classical hardware
languages such as extending Verilog to SystemVerilog [57]. Third, readapting soft-
ware languages and methodologies (C/C++ [88], Java [6], etc.). Third, creating new

languages specified for system level design (Rosetta [3] for example).

The SystemC SLL [80] is expected to have a stronger effect in the area of
architecture, the co-design and integration of hardware and software [101]. The Sys-

temC library of classes and simulation kernel extend C++ to enable the modelling
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of systems. The extensions include support for concurrent behavior, a notion of time
sequential operations, data types for describing hardware, structure hierarchy and
simulation. The core language consists of an event-driven simulator working with

events, processes, modules, ports, interfaces and channels.

The verification of SoC is a more serious bottleneck in the design cycle. In fact,
defining an SoC design language and methodology is a matter of time, however, the
verification is a very open and ambiguous question. Classical functional verification
is consuming an inordinate amount of the design cycle time. Estimates vary, but
most analysts and engineers agree that as much as 70 percent of the design cycle
is consumed by functional verification. In addition, the quality of these verification
efforts has become more important than ever because the latest silicon processes are
now accompanied by higher re-spin costs. No doubt, classical random simulation is
no more able to handle actual designs. Going further in complexity and considering
hardware/software systems will be out of the range of the currently used simulation

based techniques [64].

Classical verification techniques when used with SystemC will face several prob-
lems related to the object-oriented aspect of this language and to the complexity of
its simulation environment. In order to solve this problem, we propose a verification
methodology based on abstract interpretation. The objective of our endeavor is to
build an abstracted representation of the SystemC program that can be used for both
model checking and static code analysis. This latter is a well-known technique that
has been applied in the past for both the software and the hardware areas[4]. It tries
to get an abstract representation of the system and use it to verify some properties
such as loops non-termination. However, some proposals try to present a so-called
total program analysis [9]. This refers to an analysis that will allow the extraction of

all program properties.

For instance, the main trends in defining new verification methodologies are

considering a hybrid combination of formal, semi-formal and simulation techniques.
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The first step in this direction was the adoption of Sugar language [5] from IBM
as a standard for hardware formal specification. The new standard is recalled the
Property Specification Language (PSL) [1].

A lot is expected from combining an assertion language such as Sugar with both
smart test generation and coverage analysis. This kind of hybrid techniques can offer
a partial answer to the question: “Is the verification task complete?” However, an
answer to a question like “Is a property always true?” can be only answered by purely
formal techniques such as theorem proving [66] and model checking [86]. This latter,
despite its problem of of state explosion, is gaining a lot of interest in both academic
and industrial areas. A number of proposals offer to abstract the system in order to
verify some of its properties using model checkers and then complete the verification

process by classical simulation techniques.

1.1.1 System Level Languages

System level design [93], requires system level tools that simultaneously handle both
hardware and software, for modeling, partitioning, verification and synthesis of the
complete system. The software evolution story is replayed again in the hardware
world. Migrating to the system level of abstraction introduces a higher order of
complexity. To reach the next level of complexity, EDA vendors and analysts are
telling designers that another leap is necessary — from RTL to system-level design.
Such a leap implies that an increasing amount of hardware design will be done using
C/C++, Java, or other high-level languages, while RTL (VHDL and Verilog) will be
relegated to smaller blocks of timing critical logic.

Nevertheless, the highest level of abstraction will be the one that survives, and
that is clearly the software domain. Considering the economic reality, this transition
will not be abrupt, but it will occur more as an evolution than a revolution. The
most likely transition will be along the lines that software followed as it evolved from

a strict use of hand-coded assembler in the fifties to extensive use of compilers in the
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sixties. The most realistic scenario will start by migrating the non-critical portions of
time-to-market-driven designs to higher levels. Then, progressively over time, more
sophisticated compiler and synthesis technology augmented by increasing hardware
functionality will extend the reach of automatic techniques until only extremely criti-
cal portions of highly performance-driven designs will be implemented at the register

transfer level.

Eventually, the software and hardware design will end by getting into a single
flow. Optimistically, in a few years, the difference, if it will exist, will be a matter of
compiler options (“-software” or “-hardware”). However, to get to there, we need at

first to define system level languages and design methodologies.

The usage of a SLL is a direct result of the way the SoC design process works
[59]. Following the software evolution, the most likely methodology would be to push
toward successive refinement, an actual successful methodology in software develop-
ment. A possible solution is to define what are the basic requirements for a system
level language; intuitively, we would first have a look to the way software design
is actually performed. No doubt, a short-term solution will come from languages
that“push up” from or extend current HDL-based methodologies. We cannot omit
that languages like SuperLog [96] hold great promise for the next three to four years
basically because SuperLog does not require a radical shift in methodologies and al-
lows groups to retain legacy code. This approach can be seen as a refinement of
the existent languages. Some people define SuperLog as “Verilog done right”. The
medium-range solutions will likely be C++ based languages that have hardware de-
sign capabilities, we mention here SystemC [81] and Cynlib [29] as two promising
languages. The revolution may also come from the Java side. Long-term language
solutions will likely come from new languages developed just specifically to work at
the system level such as Rosetta [3] which promises to make true system level design

a reality L.

LA more detailed description of state-of-the-art SLL proposals is provided in Appendix A.
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1.1.2 Problem Description

As SoC designs become a driving force in electronics systems, current verification
techniques are falling behind at an increasing rate. A verification methodology that
integrates separate but key technologies is needed to keep up with the explosive
complexity of SoC designs [64]. An SoC verification methodology must address many
more issues than were prevalent even a couple years ago, in particular the integration
of purchased and in-house Intellectual Property (IPs) into new designs, the coupling
of embedded software into the design, and the verification flow from core to system.
Several key concepts are important to understand, including the transition from core
to system verification, the re-use and integration of multiple sources of cores, and the

support needed to optimize core re-use.

There are two major problem areas with SoC verification today that keep the
verification as a true bottleneck: IP core verification, and the System Level Verifi-
cation (SLV). The verification of today’s IP cores tends to be inward focused. For
example, the verification of a Peripheral Component Interconnect (PCI ) IP core
would test the bus modes and address space. This verification is useful, and helps
provide information on the core functionality to the IP integrator. However, all this
verification does not help a great deal at the system level, when the PCI core is con-
nected to the rest of the system. How should the software team write drivers involving
this IP core? What if the core needs modification? Will there be any architectural
issues that arise when it is too late to change the core? All these make IP use, and
reuse, challenging.

Most of todays research effort is spent in defining new verification methodologies
combining both simulation and formal methods. Several state-of-the-art projects offer
such a combination (SLAM [4] from Microsoft, BANDERA [33] from Kansas State
University, etc.). They generally use abstract interpretation [26], model checking
[86] and assertion based verification [78] techniques in order to guide and to improve

random simulation.
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If hybrid solution combining both simulation and formal methods is being a de

facto for SoC verification, there is a number of open questions, mainly:

At which abstraction level the verification has to start?

What are the more suitable techniques that can be used for SoC verification?

How to combine formal methods with simulation in an efficient verification flow?

How to improve the coverage metrics?

1.2 Verification Approaches: State-of-the-Art

1.2.1 Simulation

Today, the usual validation method to discover errors in SoC is still simulation. In
this method, a simulation run must be performed in each level of abstraction such as
transaction, RT and gate level to check if the required characteristics are preserved.
With simulation, input signals are injected at certain points in the system and the
resulting signals at other points are observed. These methods can be a cost-efficient
way to find errors. However, in order to get full confidence in the design we would
have to perform a complete simulation which covers all possible input combinations.
Exhaustive simulation of even moderately-sized circuits is impossible, and partial
simulation offers only partial assurance of correctness. This is an especially serious
problem in safety-critical applications, where failure due to design errors may cause
loss of life or extensive damage. In these applications, functional errors in circuit
designs cannot be tolerated. But even where safety is not the primary consideration,
there may be important economic reasons for doing everything possible to eliminate
design errors, and to eliminate them early in the design process. A flawed design
may mean costly and time-consuming re-fabrication, and mass-produced devices may

have to be recalled and replaced.
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1.2.2 Formal Verification

A solution to these problems is one of the goals of formal methods [18] for verifi-
cation of the correctness of SoC. With this approach, the behavior of the system is
described mathematically, and formal proof is used to verify that they meet rigofous
specifications of intended behavior. However, formal verification is not the golden
rule in system verification because of some limitations. A correctness proof cannot
guarantee that the real device will never malfunction; the design model of the device
may be proved correct, but the resulting hardware/software system actually built
can still behave in a way unintended by the designer (this is the case for simulation
too). Wrong specifications can play a major role in this, because it has been verified
that the system will function as specified, but it has not been verified that it will
work correctly. Defects in physical fabrication can cause this problem too. In formal
verification, a model of the design is verified, not the real physical implementation.
Therefore, a fault in the modeling process can give false negatives (errors in the de-
sign which do not exist). Although sometimes, the fault covers some real errors.
Because of these limitations we can consider simulation and formal verification as

complementary techniques, the methods have to play together.

Formal verification methods can be categorized in two main groups: theorem
proving [46] and static analysis [107]. Theorem proving refers to the use of axioms
and proof rules to prove the correctness of the systems. In this method, one expresses
the system model and specifications in a suitable logic, and constructs a proof in the
logic that the system model implies the specifications. The powerful mathematical
techniques such as induction and abstraction are the strengths of theorem proving
and make it a very flexible and powerful verification technique. The used formal
logics make it possible to construct a model at almost every abstraction level and
proves properties on all classes of systems. However, it is a time consuming process
which can involve generating and proving literally hundreds of lemmas in painstaking

detail.
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Static analysis is a family of formal methods for automatically deriving infor-
mation about the behavior of a software or hardware system. Several applications of
static analysis include automated debugging, invariant checking, code optimization,
etc. Briefly, program analysis — including finding possible run-time errors — is unde-
cidable: there is no mechanical method that can always answer truthfully whether
programs may or not exhibit runtime errors. This is a mathematically founded result
dating from the works of Church [15] and Turing [103] in the 1930’s. There exist two
main families of formal static analysis: model checking [17] and static code analysis
by abstract interpretation [22].

Model checking considers systems that have finite state or may be reduced to
finite state by abstraction. In comparison to theorem proving, it is more limited in
scope, but is fast and fully automated. The system model is in essence a finite state
machine, and specifications are written in temporal logic. These logics are limited
with respect to the very powerful logics handled by general theorem provers, but are
quite simple and concise, and can express a wide variety of useful properties.

Static code analysis by abstract interpretation, on the other hand, approximates
the behavior of the system by considering more behaviors than can happen in reality.
In theory, it is not limited in scope (state space explosion, for example). But, it may

get false alarms due an over-approximation of the system.

1.2.3 Semi-Formal Verification

Although full model checking is not yet ready for widespread deployment, the idea of
writing and checking properties seems to be catching on, where the checking is done
by simulation, possibly amplified by some kind of formal method. Several industrial
tools have been developed to promote automatically generating checkers (e.g., 0-In
Check [54] and Specman Elite [106]). Usually, these checkers concern properties like
conformance to input/output protocols, correct management of FIFOs, etc. They

are specified with high level directives expressed as comments in the source or as
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external monitors. If a property is violated during simulation then the checker fires

and reports a bug.

Assertions (or constraints) may be expressed either declaratively or procedurally.
A declarative assertion is always active, and is evaluated concurrently with other
components in the design. A procedural assertion, on the other hand, is a statement
within procedural code, and is executed sequentially in its turn within the procedural

description.

The most important step towards setting Assertion Based Verification (ABV)
as a dominant technique for SoC is the standardization of the property specification
language (PSL) [1]. A PSL specification consists of assertions regarding properties of
a design under a set of assumptions. A property is built from Boolean expressions,
which describe behavior over one cycle, sequential expressions, which describe multi-
cycle behavior, and temporal operators, which describe relations over time between
Boolean expressions and sequences. PSL provides a means to write specifications
that are both easy to read and mathematically precise. It is intended to be used for
functional specification on the one hand and as input to functional verification tools

on the other.

Another issue with assertion based verification is coverage. How do we know
that the verification process is complete? There is both functional or specification
coverage and implementation coverage. Metrics for the latter include toggle cover-
age, code coverage (line, branch and sub-expression coverage), and finite state ma-
chine (FSM) coverage (state, arc and path). While easy to measure, it is difficulty
to correlate these measures with coverage of functional intent. Functional coverage
metrics, including coverage points, are designed to check that the verification tests
have exercised specific key functionality — for example, executing all instruction types
or transmitting and receiving all packet types. However, functional coverage on the

chip inputs and outputs may miss the exercise of internal structures likes FIFIOs.
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1.3 Proposed Verification Framework

To the previously discussed open issues facing SoC verification there is no magical
solution. There are ongoing proposals sharing relatively similar concepts and di-
verging in the realization phase. In other terms, to overpass the question of system
complexity, for example, a classical solution is to abstract the system.

Before going further to any verification proposal, the first step is to define the
abstraction level at which the verification is performed. No doubt, the classical way
was, for hardware, to consider mainly the RT level. However, as previously discussed
this level is no longer suitable for SoC designs. We propose, in this project, to focus
on the system level. This choice is motivated by the fact that existing commercial
tools offering formal verification techniques such as model checking (FormalCheck
[70] from Synopsys,@Verifier [42] from @HDL, etc.) and equivalence checking (e.g.,
FormalPro from Mentor Graphics [91]) are operational for lower design levels and fail
when considering complex systems or a high level of abstraction these tools cannot
do much.

Reusing what exists in terms of formal methods and techniques requires ab-
stracting the system before going to any verification technique. Abstraction here
means simplifying the system in order to verify some of its properties. For sure, there
may be a loss of information about the system. Nevertheless, the most important is
to get some aspects of the system well covered and then complement the verification
flow by simulation. There exist a number of abstraction approaches, among them
abstract interpretation [24] is one of the most relevant techniques, which proved to be
quite successful when dealing with large scale systems and various kinds of languages
[26].

To explain the concept of our proposed methodology we consider the classical
way a programmer deals with semantical errors in his program. If we consider a
code that compiles well and then gives wrong output, a classical way to solve such a

problem comes in three steps:
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e First, analyze the source code if there is some coding errors; e.g., non-initialized

variables, wrong procedure call, etc.

e Then, if no errors found, verify if the values of certain variables are equal to

what is expected.

e Finally, if the problem is not solved, randomly test the program in order to

localize the source of the error.

Figure 1.2 describes the proposed SoC verification framework which is composed
from two proposals: AsmL based approach and direct approach. The link between the
two paths is established using a syntactical transformation from SystemC to AsmL
and vice-versa. The correctness of this transformation guarantees the validity of the
results obtained using AsmL for the original SystemC design.

In the direct approach, the SystemC design is abstracted using abstract interpre-
tation. The resulting reduced model is used: (1) for model checking a set of design’s
properties; and (2) to narrow the test space generation of the best test generator for
a set of assertions integrated with the original design as external monitors.

In the AsmL based approach, both the design and the property are modelled in
AsmL. We adapted a reachability analysis algorithm inside the Asmlt tool to perform
the model checking of the design’s PSL properties. The same algorithm is also used to
generate the system’s FSM which serves as a reference model to evaluate the coverage

by simulation of the PSL assertions (compiled using the AsmL compiler to C#).

1.3.1 Static Analysis by Abstract Interpretation

Abstract interpretation is a theory of sound approximation of the semantics of com-
puter programs, based on monotonic functions over ordered sets, especially lattices
[26]. It can be viewed as a partial execution of a computer program which gains
information about its semantics (e.g. control structure, flow of information) without

performing all the calculations. Its main concrete application is formal static analysis,
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the automatic extraction of information about the possible executions of computer

programs; such analysis has two main usages:

e inside compilers to analyze programs in order to decide whether certain opti-

mizations or transformations are applicable

e for debugging or even the certification of programs against classes of bugs.
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Given a programming or specification language, abstract interpretation consists
in giving several semantics linked by relations of abstraction. The most precise seman-
tics, describing very closely the actual execution of the program, is called the concrete
semantics. For instance, the concrete semantics of an imperative programming lan-
guage may associate to each program the set of execution traces it may produce -
an execution trace being a sequence of possible consecutive states of the execution of
the program; a state typically consists of the value of the program counter and the
memory locations (stack and heap). More abstract semantics are then derived; for
instance, one may consider only the set of reachable states in the executions (which

amounts to considering the last states in finite traces).

To apply static analysis, some computable abstract semantics must be derived
at some point. For instance, one may choose to represent the state of a program
manipulating integer variables by forgetting the actual values of the variables and only
keeping their signs (+, - or 0). For some elementary operations, such as multiplication,
this abstraction does not lose any precision: to get the sign of a product, it is sufficient
to know the sign of the operands. For some other operations, the abstraction may
lose precision: for instance, it is impossible to know the sign of a sum whose operands
are respectively positive and negative. Such loss of precision may not, in general,
be avoided so as to make a decidable semantics (Rice’s Theorem [87]). There is,
in general, a compromise to be made between the precision of the analysis and its
tractability, either from a computability point of view or from a complexity point of

view.

In this thesis, we propose a framework based on abstract interpretation, where
the program’s memory (stack and heap), execution environment and the program
itself are described in terms of graphical entities called hypergraphs [105]. Our target
is to represent graphically an abstracted version of the program; then to analyze it
statically. In a second step, we use the abstracted model (which is supposed to be less

complex that the concrete system) to verify formally some properties, through model
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checking and assertion based verification. Finally, as the previous steps may not cover
all cases or may fail to return an answer (e.g., non-termination), it is necessary to
augment the whole approach by a simulation phase. This latter is called here smart
test generation because we intend to consider the information collected in the previous

steps in order to improve the coverage metrics.

1.3.2 Model Checking

There are two main state exploration verification techniques used in the EDA industry.
The first is equivalence checking which refers mainly to a comparison of an RTL
version of the design to its gate-level equivalent, or the comparison of two gate-level
netlists. The other technique is model checking [86] which is concerned with properties
verification mainly at the RTL.

Model checkers are the most adequate formal technique to be used at the system
level design. With this technique there are no corner cases, because the model checker
examines 100% of the state space without having to simulate anything. However, this
does mean that model checking is typically used for small portions of the design only,
because the state space increases exponentially with complex properties and quickly
runs into a “state space explosion”.

For instance, there are no new model checkers adapted for system level design
of the SoC domain. Nevertheless, what is interesting about these techniques is the
definition of hierarchical verification allowing the use of the checkers for small design
portions.

The most relevant progress for the future use of model checkers for SoC verifi-
cation is the selection of the Property Specification Language Sugar (PSL) [1] (called
Sugar [44] before being taken as a standard by Accellera) as a new standard for for-
mal properties and systems specification. PSL is described as “a declarative formal
property specification language combining rigorous formal semantics with an easy

to use style” [35]. A PSL specification can also be used to automatically generate
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simulation checkers, which can then be used to check the design using simulation.

1.3.3 Assertion Based Verification

Assertions are higher abstraction mechanisms that concisely capture design specifi-
cation. They drive dynamic simulation and formal analysis to pinpoint bugs faster.
They are a useful way to represent design specifications that are readable and reusable
by multiple tools in the verification flow. HDL simulation tools use assertions to dy-
namically run checkers and monitors during simulation. Functional coverage tools
analyze simulation activity and provide information on coverage of functional test
plans by reporting on coverage of assertions. Assertions are also used as properties
that formal analysis engines can use to exhaustively analyze and prove or disprove,
greatly enhancing verification confidence.

In the methodology proposed in this thesis, we integrate assertion based verifi-
cation as a component of the verification framework. For instance, we embedded the
whole specification of PSL in AsmL (Abstract state machines Language) [51]. Then,
we compile PSL assertions into C# code using the Asmlt tool [74], and integrate
them with the original design. Assertions are then verified by simulating the new
model that combines the original design and the integrated assertions. This enriches
the design language with a powerful and expressive assertion specification layer, and

improves the verification procedure by targeting specific properties during simulation.

1.3.4 Code Coverage Analysis

Coverage has become a key technology in the pursuit of efficient and accurate verifica-
tion of large designs [64]. The easiest form of coverage to introduce into a verification
methodology is RTL coverage. Tools are available that, given an existing RTL design
and a set of vectors, will provide valuable information about the coverage [36].
Often overlooked, the first limitation of RTL coverage tools is that they do not

know anything about what the design is supposed to do. Therefore, the tools can only
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report problems in the RTL code that has been written. There is no way for these
tools to detect that some code is missing. In fact, some bugs are due to incorrectly
written RTL, while others are due to RTL that is simply not there.

The second limitation of RTL coverage is the lack of a built-in formal engine. An
expression coverage tool would see no problem in reporting that certain combinations
of the expression inputs were not covered, even though by construction, they are
mutually exclusive and therefore formally unreachable [78]. This spurious reporting
adds to the confusion and limits the effectiveness of coverage. Constant propagation
and effective dead code detection would also benefit from such an analysis.

At system level, functional coverage is the good methodology to test designs
exhaustively but never being able to answer the question is verification complete?
Traditionally, this metric has not been used because of the historic difficulty in im-
plementing it. The two most complex issues are defining tests that execute the desired
functionality and collecting the functional coverage data to determine the metric. Ad-
vances in directed randomization technology address the issue of creating tests. The
development of tools to capture and analyze transaction-based information addresses
the collecting, analysis and determination of the metric. The combination of these
two advancements will reduce the complexity of implementing functional coverage

metrics.

1.4 Thesis Contributions

In this thesis, we present a verification framework for system level languages with
application to SystemC. We propose to combine static code analysis using abstract
interpretation, model checking and assertion based verification in order to attain
higher verification coverage of the design under verification. We prove the soundness
of our approach by establishing an isomorphism relation between the design model

in SystemC and its formal representation in AsmL (used for both model checking
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and automatic assertion monitors generation). Furthermore, we provide a genetic-
algorithm based approach to enhance code coverage by guided simulation. A more

detailed description of the thesis contributions is listed below:

e In [Bio:Jr-2,Bio:Cf-4,Bio:Cf-5,Bio:Cf-8|, we present a methodology to design
and verify SystemC transactional models starting from a UML system specifi-
cation and integrating an intermediate ASM layer. We proposed to upgrade the
UML sequence diagram in order to capture transaction related system proper-
ties. Then both of the design at its properties are modeled in ASM to enable
performing model checking. On the other hand, to cover for the state explosion
problem that may result due to the system’s complexity, we completed our ap-
proach by offering a methodology to apply assertion based verification re-using
the already defined PSL properties. To do so, we defined a set of translation

rules to transform the design’s model in ASM to its implementation in SystemC.

e In [Bio:Jr-1,Bio:Tr—4], we present a fixpoint semantics of the SystemC library
including, in particular, the semantics of a SystemC Module that we proved to

be sound and complete w.r.t. a trace semantics of a SystemC program.

e In [Bio:Jr-1,Bio:Tr-2], we present the semantics of a subset of AsmL and we
proved the soundness and completeness of an AsmL class w.r.t. to a trace

semantics of the AsmL program.

e In [Bio:Jr-1,Bio:Tr-1], we prove the existence, for every SystemC program, of
an AsmL program having similar behavior w.r.t. an observation function that
we set to consider the traces of the system just after the update phase of the
SystemC simulator. We have used this SystemC to AsmL transformation to
reduce the complexity of SystemC models and enabled their formal verification
using model checking and theorem proving approaches used with AsmL and

ASM languages in general.
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e In [Bio:Cf-9,Bio:Cf-10], we extend the classical abstraction framework, which
is usually restricted to the program code to cover the whole SystemC simu-
lation environment. In the adopted methodology, the abstraction output is a
complete abstract environment that we modeled in a graphical representation
(hypergraphs) in order to allow better interaction between the designer and the
static analysis environment. On the hypergraph entities we define reduction
operations that can be used to simplify the abstract code or to transform it
into a more suitable representation for the static analysis or other verification

techniques.

e In [Bio:Cf-1,Bio:Cf-9|, we present a bottom-up approach where starting from
an existent SystemC design we generate internally a-model in AsmL and verify

the system property at the ASM level.

e In [Bio:Cf-7], we present a modelling of PSL in AsmL. We provide a deep
embedding in AsmL of the three hierarchical layers: Boolean, temporal, and

verification of PSL.

e In [Bio:Cf-10], we present a methodology to enhance assertion coverage using
transaction level models as intermediate step in the design process. We use
AsmlL as a TLM language for the sake of automatically generating a finite state
machine of the system. We define assertions as a set of states (part of the
system’s FSM). We introduce two assertion coverage metrics: state and transi-
tion coverage. Furthermore, we propose a genetic algorithm based approach to

enhance the coverage.

e In [Bio:Cf-13], we propose a methodology to integrate SystemVerilog Assertions
(SVA) support to SystemC.

e In [Bio:Cf-3,Bio:Cf-5,Bio:Cf-8,Bio:Cf-12], we illustrate the efficiency of our

proposed approach to verify SystemC designs on several industrial and complex
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case studies including the Bus structure from the SystemC library, the PCI Bus
standard, the AGP Bus standard, the Look-Aside Interface (LA-1) standard,

and several other examples from the SystemC library.

1.5 Overview of the Thesis

This thesis is made up of nine chapters. Each chapter begins with an introductory
paragraph and a section in which the subject of the chapter is informally introduced
and compared with the existing literature. The results of Chapters 3, 4, 5, 6, 7 and
8 have been published in the proceedings of international conferences and Journals?.

Below we sketch the content of the next chapters.

In Chapter 2 we recall some basic definitions, notations and results used through-
out the thesis.

In Chapter 3, we establish a formal link between both paths of our proposed
SoC verification framework by establishing a trace equivalence between the original
SystemC model and its transformed AsmL model.

In Chapter 4, we first extend generic static code analysis by abstract interpre-
tation to support the SystemC semantics. Then, we provide a graphical model for
the abstract analysis and debugging of SystemC models.

In Chapter 5, we first present a direct application of the model checking tech-
nique to a an RTL model in SystemC. Then, we provide an enhanced approach for
general SystemC models based on a transformation to the AsmL language.

In Chapter 6, we propose two distinct approaches to integrate SVA and PSL
assertions to SystemC.

In Chapter 7, we present a genetic algorithm based approach in order to enhance
the system’s state space coverage using guided simulation.

In Chapter 8, we introduce two application methodologies of our proposed SoC

2The list of these publication is provided in the Biography Section.
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verification framework for the case of SystemC. The first is a top-down approach
integrated with the design process where we refine a behavioral specification to a
system level design. The second is a bottom-up approach where we verify an existing
design.

Finally, in Chapter 9 we conclude the thesis and propose perspectives for future

work.
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|Chapter 2

Preliminaries

In this chapter we introduce the mathematical background used in the rest of the
thesis. We fix the notation and we recall some well-known results in lattice theory
and fixpoint theory. We overview the notion of Abstract State machines and the
AsmL language. We also introduce existent system level languages and describe the

most important features of the SystemC language.

2.1 Notation and Basic Definitions

2.1.1 Partial orders

A partial order on a set D is a relation T on D which is reflexive, antisymmetric and
transitive. A set with a partial order defined on it is called a partially ordered set,
poset. We denote it as (D,C). A relation on D which is reflexive and transitive is
called a preorder.

Given a poset (D,C) and a subset U of D, we say that an element d € D is:

e an upper bound for U if Yu € U C d.

o a least upper bound for U if it is an upper bound of U and any upper bound

d € U is such that d C d'.

23
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e a largest element of U if it is an upper bound of U.

Because of the antisymmetric property, if the largest element exists then it is
unique. If it exists, we denote the largest element of D with T. Lower bounds,
greatest lower bounds and smallest elements are defined dually. In particular, if it
exists, we denote the smallest element of D with L.

A poset (D,C) is called a lattice if any two elements of D have both a greatest
lower bound and a least upper bound. If a poset admits greatest lower bounds and
least upper bounds even for infinite sets then it is a complete lattice. In such a case we
write either (D,C, 1 T Li,M) or, when the lattice operators are clear from the context,
simply (D,C). We say that the operator LI is complete if any subset U of D admits
the least upper bound.

2.1.2 Functions

Given two sets D and R, a relation f C D x R is called a function, or a mapping, if:
Vd e D,Vri,ro € R, d fryand d fry:ry =ry.

If (D,C) and (R,=) are complete lattices, then we say that a function f € [D —
R] is:

e monotonic if it preserves the order of the elements: Vdi,dy € D.dy C do: f(dy) <

f(dz).

e a join-morphism if it preserves least upper bounds: Vdi,dy € D.dyUdy:f(dy) Y
f(da).

e a complete join-morphism if it preserves least upper bounds for arbitrary subsets

of D.

e continuous if it preserves the least upper bound of increasing chains.
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Similarly, a function f is said to be a meet-morphism if it preserves the greatest
lower bound of two elements and a complete meet-morphism if it preserves the greatest

lower bound for any subset of a complete lattice D.

2.1.3 Fixpoints

Given a set D and a function f € [D — D], a fizpoint of f is an element d € D such

that f(d) = d. When f is defined over a partial order (D,C), an element d € D is:
e a pre-fizpoint if d C f(d);
e a post-fizpoint if f(d) C d;
e the least fizpoint if: d = f(d) and Vd' € D.d' = f(d') =:d C d;

o the least fizpoint if: d = f(d) and Vd' € D.d' = f(d') =:d' C d.

Given a function f defined over a poset (D,C) and an element d € D, we
denote with lfp(% f, the least fixpoint of f w.r.t. the order C larger than d, if it exists.
Sometimes, when the order and the element are clear from the context, we will simply

write Ifpf. The definition of gfp;ic* f is dual .

A main result of Tarski [102] is that a monotonic function defined over a com-

plete lattice admits a least and greatest fixpoint:

Theorem 2.1.1 (Fizpoint Theorem, Tarski [102])
Let (D,C,1,T,L,M) be a complete lattice and let f € [D — D] be a monotonic

function. Then the set F' = {d € D|f(d) = d} is a non-empty complete lattice w.r.t

the order C. Furthermore,
o ifpTf =n{d € D|f(d) Ed}

e 9fpTf =U{d € D|f(d) 3 d}
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The result of the theorem is not constructive. An alternative characterization
of the least fixpoint for monotonic functions defined over a complete lattice is given

in the Transfinite Iterations theorem given in [23]).

2.1.4 Traces

Definition 2.1.1. (Traces)
Given a set 3 of states and an Q ¢ ¥, a trace 7 is a function 7 € [N — 3 U Q] which
respects the prefix condition: Vn € N.7(n) = Q =:Vi > n.7(i) = Q.

Roughly, if a trace is undefined for an n € N, then it is undefined for all the
successors of n too. We say that a trace 7 is finite if In € N.7(n) = Q. If not we say

that it is infinite. The sets of finite traces over ¥ is denoted by 7 ().

2.2 Abstract State Machines

States in Abstract State Machines (ASM) are given as many-sorted first—order struc-
tures [9]. A structure is given with respect to a signature which is a finite collection of
function names, each of a fixed arity. The given structure fixes the syntax by naming
sorts and functions. An algebra provides domains (i.e., carrier sets) for the sorts and
a suitable symbol interpretation for the function symbols on these domains, which
assigns a meaning to the signature. Therefore, a state is defined as an algebra of a
given signature with domains and an interpretation for each function symbol.

A wocabulary is a finite collection of function names, each with a fixed arity.
Every ASM vocabulary contains the following logic symbols: nullary function names
true, false, undef, the equality sign, the names of the usual Boolean operations, and
a unary function name Bool. Some function symbols (such as Bool) are tagged as
relations. A state S of vocabulary I' is a non-empty set X (the superuniverse of S),
together with interpretations of all function symbols in I' over X. A function symbol

f of arity r is interpreted as an r—-ary operation over X; if r = 0, f is interpreted as
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an element of X. The interpretations of the function symbols true, false, and undef
are distinct, and are operated upon by the Boolean operations in the usual way. The
value undef is used to code functions whose value is outside the indicated domain.
A state transition into the next state occurs when dynamic functions change
their evaluation. Locations and updates capture this notion. A location of a state is
a pair loc = (f, @), where f is a dynamic function symbol and @ is a tuple of elements
in the domain of the function. The element f(@) at a state is the value of the location
(f,a@) in that state. For changing values of locations the notion of an update is used.
An update of a state is a pair o = (loc, val) where loc = (f,a) is a location and wval,
the update value, is a value in the function domain. To fire an update at a state, the
update value is set to the new value of the location. As a consequence, the overall
dynamic function f is redefined to map the location onto the new value. Transition
rules define the state transitions of an ASM. While terms denote values, transition
rules denote update sets, which define the dynamic behavior of an ASM. At each state
all update sets are fired simultaneously which causes a state change. All locations
that are not referred to in the update sets remain unchanged. ASM runs, starting
in a given initial state, are determined by a closed transition rule declared to be the
program. Basic transition rules are skip, update, block, and conditional rules.

The update rule is an atomic rule denoted as

f(tl,tz,...,tn) =1

It describes the change of interpretation of function f at the place given by (¢,, s, ..., t,)
to the current value of term ¢.

A conditional rule specifies a guarded execution.

if guard then R1
else R2
endif

Where guard is a first order Boolean term. R; and R, denote arbitrary transition
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rules. The condition rule is fired in state S by evaluating the guard ¢g in S, if it

evaluates to true R; fires, otherwise R, fires.

AsmL (the Abstract State Machine Language) [51] is a novel executable spec-
ification language based on the theory of ASM. It is fully object-oriented and has
a strong mathematical component. In particular, sets, sequences, maps and tuples
are available as well as set comprehension, sequence comprehension and map com-
prehension. ASMs steps are transactions, and in that sense AsmL programming is
transaction based. AsmlL is fully integrated into the .NET framework and Microsoft

development tools providing inter-operability with many languages and tools.

Although the language features of AsmL were chosen to give the user a familiar
programming paradigm (supporting classes and interfaces in the same way as C# or
Java do), the crucial features of AsmL, intrinsic to ASM, are massive synchronous
parallelism and finite choice. These features give rise to a cleaner programming
style than is possible with standard imperative programming languages. Synchronous
parallelism and inherently AsmL provide a clean separation between the generation

of new values and the committal of those values into the persistent state.

2.3 SystemC

In this section we provide a detailed description of the SystemC components including
SystemC signal, MUTEX channel, a SystemC protocol, SystemC design rule checks,
and SystemC simulator. The SystemC simulation kernel does not impose any or-
der on processes that are simultaneously ready-to-run. In our definition, we treat
different kinds of notifications separately. Immediate notifications are not shown in
this definition since they are implied in the execution of a method, which we treat
abstractly here. Timed and delta notifications are shown below within the simulator

definition. The type of events notification can be immediate.
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Figure 2.1 illustrates a generic simulation methodology in the SystemC envi-
ronment [84]. The SystemC model can be written at the system level, behavioral
level, or RTL level using C/C++ augmented by the SystemC class library. The class
library serves two important purposes. First, it provides the implementation of many
types of objects that are hardware-specific, such as concurrent and hierarchical mod-
ules, ports, and clocks. Second, it contains a lightweight kernel for scheduling the
processes. The design’s SystemC code can be compiled and linked together with the
class library with any standard C++ compiler (such as GNU’s gce), and the resulting
executable serves as the simulator of the user’s design. The testbench for verifying
the correctness of the design is also written in SystemC and compiled along with the
design. The executable can be debugged in any familiar C++ debugging environ-
ment (such as GNU’s gdb). Additionally, trace files can also be generated to view

the history of selected signals using a standard waveform display tool.

SystemC Models:

*Behavioral Level SystemC Testbenches
*System Level

*RT Level

C++ Compiler

SystemC
Library

Executable
(Simulation)

A 4

C++
Debugger

Waveform
Display

J UL

Trace Files

Figure 2.1: SystemC Simulation Methodology [84].

The import of a traditional software development environment into the hard-
ware design and system design scenario entails some powerful advantages. The so-

phisticated program development infrastructure already in place for C/C++ can be
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directly utilized for the SystemC verification and debugging tasks. For hardware de-
signers traditionally used to viewing simulation data in the form of waveform displays,
the trace file generation facility provides a familiar interface. Conceptually, the most
powerful feature is that the hardware, software, and testbench parts of the design can
be simulated in one simple and unified simulation environment without the need for

clumsy co-simulations of disparate modeling paradigms.

2.3.1 Structure and Hierarchy

Modules

Structural decomposition is one of the fundamental hardware modeling concepts be-
cause it helps partition a complex design into smaller entities. In SystemC, structural
decomposition is specified with modules, which are the basic building blocks. A Sys-
temC description consists of a set of connected modules, each encapsulating some
behavior or functionality. Modules can be hierarchical, containing instances of other
modules. The nesting of hierarchy can be arbitrarily deep, which is an important

requirement for structural design representation.

Signals and Ports

The simplest means of connecting together different SystemC modules is by using
ports and signals. Actually, the interface of modules to the external world can be
much more general and sophisticated, but the interface at the lowest and most prim-
itive levels matches the typical facilities available in current HDLs. A port has an
associated direction which can be input, output, or bidirectional.

A module is declared with the keyword SC_MODULE, and ports are specified
with sc_in, sc_out, and sc_inout keywords, with the template parameter <bool> indi-
cating that the type is Boolean (single bit). Other data types, including user defined

ones, could also be used as port types. The structural hierarchy is specified inside
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the constructor for the module, specified with the keyword SC.CTOR.

2.3.2 Data Types

In addition to the standard C++ data types such as int, bool, char, etc., SystemC
provides a rich set of data types which can be used to model hardware-specific con-
cepts. We outline some useful data types here. The complete list of data types is

given in [81]. Below are some illustrative examples:

e 4-state Logic: In addition to the standard bit values '0’ and '1’, it is useful to
provide a mechanism to indicate that the value of a bit is unknown. This helps
identify initialization or conflict (multiple driver) problems during simulations.
Further, there is the need to specify the high impedance (or tristate) state on
signals. With this in mind, SystemC provides sc_logic, a four state logic data
type, the states being '0’ (low or false), 1’ (high or true), "X’ (unknown), and
’Z? (high impedance or tristate). SystemC also provides data types to represent
resolved logic signals which is useful in modeling wires and buses with multiple

drivers.

e Bit and Bit Vector: The sc_bit and sc_bv types can be used to model bits
and bit vectors for which only two states, '0’ and ’1’ are sufficient, and on which
logical operations such as logical AND, logical OR, etc are performed. Useful
operations for these types include the reduction (and reduce, or reduce, and

zor reduce) and part-select (range).

e Fixed and Arbitrary Precision: The integer data types provided in C++,
such as int and unsigned have an implementation dependent bit width. How-
ever, the designer may wish to fix the precision of a data item if the range of
values it takes is known in advance. SystemC provides two data type families
for achieving this: fixed precision and arbitrary precision. The fixed precision

types sc_int and sc_uint can be used to model data that is up to 64 bits wide.
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These data types are implemented with a 64 bit integer. The usual operations
associated with C++ integers can be applied to the fixed precision types, one

useful addition being the bit-select operation.

¢ Fixed Point Representation: while the float data type can be used to model
real numbers in the early stages of simulation, the hardware designer may have
in mind an exact representation of such data in terms of the precision used for
integral and fractional parts. The sc_fized and sc.ufized data types, which are
used to represent such fixed point numbers in SystemC, are accompanied by the
standard characteristics of fixed point arithmetic, such as quantization mode,

overflow mode, and saturation bits.

The choice of data types has a significant impact on the simulation speed, and
care must be taken to use the correct data types during modeling. The reader is
referred to [81] for an exhaustive list of all the SystemC data types and the relevant

operations.

2.3.3 Functionality and Concurrency

The functionality of a system is described in processes in SystemC. Analogous to
VHDL processes, the SystemC processes are used to represent concurrent behavior —
multiple processes within a module represent hardware or software blocks executing
in parallel. Processes have an associated sensitivity list — a list of signals that trigger

the execution of the process. There are two important types of processes.

Methods

A method process behaves like a function call and can be used to model simple
combinational behavior. It does not have its own thread of execution, and hence,

cannot be suspended. This characteristic allows for high simulation efficiency.
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Threads

A thread process can be used to model sequential behavior. It is associated with its

own thread of execution, and can be suspended and re-activated.

2.3.4 Time and Clocks

Since the concepts of time and clocks are very important in modeling hardware,
SystemC provides a mechanism to specify them. A clock with a period of 10ns can

be specified as:

sc_clock clk ("clk", 10, SC_NS);

The sensitive, sensitive pos, and sensitive neg keywords can be used to specify

synchronization of a process to a clock.

SC_THREAD (x);

sensitive_pos << clk;

ensures that process z is activated on the positive edge of clock signal clk.

2.3.5 SystemC Update

The method read is trivial, and method write was faithfully described in [81]. The
update method as described in SystemC documentation ensures deterministic behav-
ior in the case of simultaneous read and write actions. If the new value of the signal
is equal to the current value, then no update is needed. After that, we add it to the
pending events set, set its time to next SystemC delta cycle, and finally change its

type to event type.
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2.3.6 SystemC MUTEX

This channel is part of SystemC 2.0 only [80]. It performs FIFO queuing of pending
requests and issues a warning if multiple requests are issued during the same delta
cycle. The MUTEX (mutual exclusion) channel is owned by only one process during
any delta cycle at simulation time. If the channel is not locked, it is given to the first
process that issues a request. Only the process that locked the MUTEX is allowed to
unlock it. Dynamic sensitivity is used to suspend processes that request locking the
channel when it is already locked, and and later resume them. The SystemC MUTEX
primitive channel can be used to model shared variables, either through inheritance
by deriving a shared variable channel from the MUTEX channel or by convention,

where access to a certain variable is protected by a MUTEX.

The lock method keeps trying to take ownership of the channel while it is in use
by another, the process will wait on freeing MUTEX channel event, and then check
if the target channel is still in use. When it is freed, the process takes ownership of
the channel, and it can unlock it later. The method, trylock tries one time to take
ownership of the channel, it either fails or succeeds. The unlock method frees the
channel (if process is the current owner of the channel) and triggers other processes

that are suspended on freeing channel event in the next delta cycle.

2.3.7 Request Grant Protocol

This protocol deals with two SystemC channels, master and slave, that are sharing
one port. Only one master and one slave can be connected to the port at one time.
During a WriteMaster operation, the method verifies that the channel is not already

requested, otherwise, it waits on the norequest event.
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2.3.8 Design Rules

Each SystemC channel requires a specific number of ports to be connected to it, or
arbitrarily unlimited in some cases. When a channel is created, it has to pass a design
rules check in order to make sure that the number of ports connected is allowed. This
is called static design rules checking. On the other hand, a channel may impose that
only one process can perform an I/O operation at one time, so the channel has to
pass design rules checking when processes access the channel. This is called dynamic
design rules checking.

The SystemC signal channel demonstrates how to do dynamic design rule check-
ing in addition to static design rule checking. During static design rule checking, the

channel makes sure that only one writer port is attached.

2.3.9 Language Design

The overall architecture of the SystemC class library is summarized in Figure 2.2. The
simulation kernel, i.e., the lightweight scheduler that is responsible for activating and
suspending the SystemC processes is at the heart of the implementation, and forms
the base layer. With these layers as the foundation, the communication elements —
interfaces, channels, and ports are defined in the next layer. The design is based on
the interface-method-call (IMC) scheme: essentially, the ports access the channels
only through the interfaces. The example primitive channels supplied by SystemC is
built on this layer. Finally, the hierarchical and other user-defined channels are built
on the top layer. The most important observation is that the upper layers are built
cleanly on the lower ones, and the designer can use the modeling mechanisms at any
of the levels.

The simulation kernel for SystemC follows the evaluate-update paradigm that
is common in HDLs. The concept of delta cycles, where multiple evaluate-update
phases can occur at the same simulation time, is supported. A simplified version of

the simulation algorithm is as follows:
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Layer 4 | Methodology-specific and User-defined Channels
Layer 3 Primitive Channels (signals, FIFOs, etc.)

Layer 2 Channels, Interfaces, Ports
Layer 1 Events, Dynamic Sensitivity
Layer 0 SystemC Scheduler

Figure 2.2: SystemC Language Architecture [84].

1. Initialization: Execute all processes to initialize the system.

2. Evaluate: Execute a process that is ready to run. Iterate until all ready pro-
cesses are executed. Events occurring during the execution could add new

processes to the ready list.
3. Update: Execute any update calls made during step

4. If delayed notifications are pending, determine list of ready processes and pro-

ceed to Evaluate phase (step 2).

5. Advance the simulation time to the earliest pending timed notification. If no
such event exists, simulation is finished, else determine ready processes and

proceed to step 2.

2.4 Transaction Level Modeling

Complexity management, particularly at the highest level of design, has led to the
emergence of Transaction Level Modeling (TLM) [13]. The primary goal of TLM
is to dramatically increase simulation speeds, while offering enough accuracy for the
design task at hand. The increase in speed is achieved by the TLM abstracting away
the number of events and amount of information that have to be processed during
simulation to the minimum required. For example, instead of driving the individual
signals of a bus protocol, the goal is to exchange only what is really necessary, i.e.,
the data payload. TLM also reduces the amount of detail the designer must handle,

therefore making modeling easier.
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Specification model

n ,."‘ g [ D | I
Implemenation model

Figure 2.3: Defined System Models at Different Abstraction Levels [13].

Several proposals have been introduced to define TLM (in particular, {38], [49]
and [85]). Among them, the model defined in [13] is the most accurate and complete.
For instance, Cai et al. [13] proposed six system models at different abstraction
levels according to Figure 2.3, where the TLM computation models are represented

as shaded ellipses. These models are defined according to the following:

e PE-assembly model: The entities at the top level of the model represents concur-
rently executing processing elements(PEs), which communicates through mes-
sage passing channels. The communication part of the model(channel) is un-
timed, while computation part of the model(PE) is timed through estimation.
In comparison to specification model, PE-assembly model explicitly specifies

the allocated PE in the system architecture and process-PE mapping decision.

o Bus-arbitration model: In comparison to PE-assembly model, channels between
PEs in bus arbitration model represent buses, which are called abstract bus
channels. The channels still implement data transfer through message passing,
while bus protocols can be simplified as blocking and nonblocking 1/0. No

cycle-accurate and pin-accurate protocol details are specified. The abstract bus
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channels have estimated approximate time, which is specified in the channels

by one wait statement per transaction.

Time-accurate communication model: This model contains time/cycle accurate
communication and approximate timed computation. (Rather than specify-
ing the communication time, time-accurate communication model specifies the
time constraint of communication, which is determined by the time diagram of

components protocol.

Cycle-accurate computation model: This model contains contains cycle accurate
computation and approximate-timed communication generated from the Bus-

arbitration model. computation components(PEs) are pin accurate and execute

cycle-accurately.



|Chapter 3

Soundness of the SystemC to

AsmL Transformation

3.1 Introduction

In this Chapter, we establish the correctness of the transformation from SystemC to
AsmL and vice-versa. Such a result represents a formal link between the two verifi-
cation approaches we proposed for SoC verification framework previously introduced

in Figure 1.2.

The work of Patrick and Radhia Cousot in [27] is the essence for any program
transformation using abstract interpretation. The tactical choice of using semantics to
link the subject program to the transformed program is very smart in the sense that it
enables proving the soundness proof of the transformation, related to an observational
semantics. The transformation from SystemC to AsmL, and vice-versa, represents
an online program transformation which corresponds to the approach described in
Section 3.9 of [27]. Figure 3.1 displays a projection of that generic methodology on
a SystemC subject program and an AsmL transformed program. The same figure
can be used to perform the soundness of a transformation and also to construct it.

In both cases, we need to define the syntax, semantics and observation functions for

39
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both AsmL and SystemC.

Subject uuS ntactic Transformed
Program Py Transformation ¢ Program {{P,]
sscl sAl
Subject Program Semantic Transformed Program
Semantics SgcfPscl Transformation ¢ Semantics Sa[{P,]]

"‘EXA A%f?s

655(SsclPsd) =a, aASSAHPAD

Figure 3.1: Online Program Transformation.

Several approaches have been used to write the SystemC semantics. In partic-
ular, in [75], ASM based SystemC semantics have been defined. However, the use
of ASM as a concrete semantics has two main drawbacks. First, the ASM notation
has the tendency to hide low-level details, by making wide use of macros. While this
may be an advantage to the casual reader, it is a drawback for the design of precise
yet sound static analyses. Second, the program computation is hidden in the ASM
transition relation, and the fixpoint computation is not explicitly stated. As a conse-
quence, this formalism is inadequate to express, for example, program-wide invariant
properties.

In this respect, denotational semantics [77] is found to be most effective since
objects can be expressed as fixpoints on suitable domains [63]. Moreover, it is straight-
forward to consider a domain composed by an environment (a map from variables to
addresses) and a store (a map from addresses to values). Hence, object aliasing can be
naturally expressed. It was shown in [20] that generally denotational semantics is an
abstraction of a trace-based operational semantics in the sense that it abstracts away
the history of computations, by considering input-output functions. Salem in [90]
proposed a denotational semantics for SystemC. However, the proposal in [90] was
very shallow and does not relate the semantics of the whole SystemC program to the

semantics of its classes. In [71] Logozzo presented a complete and sound denotational
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semantics for a generic OO language. However, this work cannot be directly applied
to SystemC due to the specific environment, store, modules structure and simulation
semantics of SystemC.

In this chapter, we provide a formalization of the SystemC and AsmL semantics
in fixpoint. We will first list the syntactical domains. Then, we will provide the
semantics of whole program and the semantics of modules for SystemC and classes
for AsmL. Finally, we will establish the proofs for the completeness and soundness of
the whole semantics. We expend the generic OO semantics provided by Logozzo in [71]
by: (1) modifying the syntactical domains to support SystemC specific domains such
as modules and signals; (2) upgrading the default environment and store to include
the values of the signals in the previous, current and next simulation cycles; (3) adding
to the generic class semantics (in particular to the class constructor) the information
related to initializing the processes and threads involved in the simulation; and (4)
re-establishing the soundness and completeness proofs considering the extensions and

modifications of (1), (2) and (3).

3.2 SystemC Denotational Semantics

3.2.1 Syntactical Domains

The SystemC language has a large number of syntactical domains. These, however,
are based on the single SC_Module domain. Hence, the minimum representation for a

general SystemC program is as set of modules.

Definition 3.2.1. (SystemC Module: SC_Module)
A SystemC Module is a set (DMem, Ports, Chan, Mth, SC_Ctr), where DMen is a set of
the module data members, Ports is a set of ports, Chan a set of SystemC Chan, Mth

is a set of methods (functions) definition and SC_Ctr the module constructor.
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Definition 3.2.2. (SystemC Port: SC_Port)

A SystemC port is a set (IF, N, SC_In, SC_Out, SC_InOut), where IF is a set of the
virtual methods declarations, N is the number of interfaces that may be connected to
the port, SC_In is an input port (provides only a Read method), SC_Out is an output
port (provides only a Write method) and SC_InOut is an input/output port (provides

Read and Write functions).

Definition 3.2.3. (SystemC Channel: SC_Chan)

A SystemC channel is a set (SigMeth, CurrVal, PrevVal, NewVal, SC_Mutex, SC_Semaph),
where SigMeth is a set of basic channel virtual methods (including in particular the
Update method), CurrVal the current value of the signal, PrevVal its previous value,
NewVal its value in the next simulation cycle, Mutex is a mutex channel (including
additional methods such as Lock and UnLock) and SC_Semaph is a semaphore interface

(including in particular the number of concurrent accesses to the interface).

In contrast to default class constructors for OO languages, the SystemC module
constructor SC_Ctr contains the information about the processes and threads that
will be executed during simulation, and their sensitivity lists, SC_SL, specifying which

events can affect their states.

Definition 3.2.4. (SystemC Constructor: SC_Ctr)
A SystemC constructor is a set (Name, Init, SC_Pr, SC.SSt), where Name is a string
specifying the module name, Init is a default class constructor, SC_Pr a set of pro-

cesses and SC_SSt is a set of sensitivity statements (to set the process sensitivity list

SC_SL).

Definition 3.2.5. (SystemC Process: SC_Pr)

A SystemC process is a set (PMth, PTh, PCTh), where PMth is a method process (defined
as a set (Mth, SC_SL) including the method and its sensitivity list), PTh is a thread
process (accepts a wait statement in comparison to the method process), PTh is a

clocked thread process (sensitive to the clock event).
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Definition 3.2.6. (SystemC Process Sensitivity List: SC_SL)

A SystemC sensitivity list is a set (SLs, SLp), where SLg is a static sensitivity list and
SLp is a dynamic list. Both lists contain a set of events SC_Event but are different
in the sense that one can be updated during the simulation while the other is not

changeable.

Definition 3.2.7. (SystemC Event: SC_Event)
A SystemC event is a set (t, notify, cancel), where t specifies (in simulation cycles)
when the notification is supposed to be sent, notify the method used to notify the

owner module and cancel is the method used to cancel an event.

Definition 3.2.8. (SystemC Program: SC_Pg)
A SystemC program is a set (Lscmoa, SCmain), where Lgcuoq is a set of SystemC
modules and SC_main is the main function in the program that performs the simulator

initialization and contains the modules declarations.

Note that restricting our model to modules does not affect the validity of the re-
sults since modules are the default syntactical domain for SystemC. All other domains

are built on top of it.

3.2.2 Fixpoint Semantics
Semantic Domains

In this section, we define the semantics of the whole SystemC program, W [SC_Pg],
and the SystemC module, Mgc[m_sc]. Then, present the proofs (or proof sketches)

of the soundness and completeness of Mg [m_sc].

Definition 3.2.9. (Delta Delay: 64)
The SystemC simulator considers two phases evaluate and update. The separation

between these two phases is called delta delay.
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Definition 3.2.10. (SystemC Environment: SC_Env)

The SystemC environment is the summation of the default C++ environment (Env) as
defined in [71] and the signal environment (Sig.Store) specific to SystemC: SC_Env
= Env + Sig.Env = [Var — Addr]+ [SC_Sig — Addr,Addr|, where Var is a set of

variables, SC_Sig is a set of SystemC signals and Addr C N is a set of addresses.

Definition 3.2.11. (SystemC Store: SC_Store)

The SystemC store is the summation of the default C++ store (Store) as defined in
[71] and the signal store (Sig-Store): SC_Store = Store + Sig_Store = [Addr —
Val]+ [(Addr, Addr) — (Val,Val)], where Val is a set of values such that SC_Env C
Val.

We denote by Ry € P(SC_EnvxSC_Store) the set of initial states, pci, the entry
point of the main function sc_main and —C: (SC_Env x SC_Store) X (SC_EnvxSC_Store)

a transition relation.

Whole SystemC Program Semantics

The whole SystemC program semantics can be defined as the traces of the executions
of the program starting from a set of initial states Ry. It can be expressed in fixpoint

semantics as follows:

Definition 3.2.12. (Whole Program Semantics: W [SC_Pg])
Let SC.Pg = (Lscmoa, SC-main) be a SystemC program. Then, the semantics of SC_Pg,
W [SC_Pg € P(SC_EnvxSC_Store) — P(7(SC_Envx SC_Store)) is:
W(sc_pg](Ro) =
lfp @gAX- (Ro) U {po = ... pn = Pryi| pt1 €
(SC_Envx SC_Store) A {po— ... pn} € X

N Pn = Pny1}



3.2. SystemC Denotational Semantics 45

Module Semantics

A SystemC module is a particular C++ class where the constructor declares a set
of processes and thread that will executed during simulation according to a set of
events (timed or non-timed). The module semantics can be defined as the set of all
its instances. While and object module semantics reflects the evolution of the object

internal state.

Module Constructor Semantics

Definition 3.2.13. (Process Declaration: Pg [SC_Pr]))
Let SC_Pr = (PMth,PTh, PCTh) be a SystemC process. Then, the semantics of SC_Pr,
Pr [SC_Pr ]) € P(SC_EnvxSC_Store) — P(7(SC_EnvxSC_Store)) is
P, [SC_Pr](Ro, M, SL) =
lfp@g AX, m, sl. (Ro) U{po— ... Pn = Pny1| Pn+1 €
(SC_Envx SC_Store) A {pp — ... pn} € X

A Pa = Pri1 A Pas1(X) = (m, sl)}

Definition 3.2.14. (Module Constructor: Pey [SC-Ctr]))
Let SC_Ctr = (Name, Init, SC_Pr, SC.SSt) be a constructor of a SystemC module.
Then, the semantics of SC_Ctr, Pcy [SC_Ctr]€ P(SC_Env x SC_Store) — P(7 (SC_Env
X SC_Store)) is:
Pey[SCCtr](Lpm,sr) =
Ifp 5 A {(pr,m1,sh), ..., (pi,ms, 8L, - . ., (Do, M,
8ln)} Ugpiima,sti)eLpmst PR [sC_Pr](Ro, M, SL)}

Module Object Semantics

In a general OO context, such as C++, an object can be defined as a set of
states including a first (initial) state representing the object just after its creation and
a set of states resulting from the interaction of the object with its context [71]. In

this case, the interaction can happen in two ways: (1) the context invokes an object’s
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method, or (2) the context modifies a memory location reachable from the object’s
environment. In [71], this interaction was very well defined using two functions nexty,
for direct interactions, and next;,e for indirect interactions. The object semantics, Q

[o], was defined as [71]:
Ofo](v,s) = lfp 5 AT.
ln—1 l

So(v,8) U {o0 % ... 5 g, = o

{00 ... " g, €T, next(oy) 3 (o, 1)}
where next(o) = nexty(o) U nextin(o), [ is a transition label and Sq(v, s) is a set of

initial states.

In addition to the semantics definition of an OO object in [71], a SystemC
method can be activated by the SystemC simulator through the sensitivity list of the
process. This interaction is a hybrid direct/indirect interaction because the SystemC
simulator will, according to the state of the program events (that may be external
to the module), invoke directly the concerned methods. First, we will define the
interaction states, then, we will provide the complete definition for the direct, indirect

and SystemC simulator based interaction functions.

Definition 3.2.15. (Interaction States)
The set of interaction states is Y, = SC_Env X SC_Store X Dy X P(Addr)

After the creation of the module object, the reached states represent the initial

states defined as follows:

Definition 3.2.16. (Initial States So{vsc, Ssc))
Let v, € Di, be a SystemC object input value, s;, € SC_Store a store at object
creation time and SC_0bj a SystemC module object. The set of initial states of SC_0bj
is:

So(Usc) Sse) = {{€eer S5> 8, 0) | Porr [SCCET](Lpar,sr)

3 (€5er S5e) |
where: Lprsr = {(p1,m1, sli), ..., (i mg, sli), ...,

(Dn, Min, Sln) } 1s a list of all the module processes, methods, and sensitivity lists.
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In Definition 3.2.16, ¢ is a void value (€ Do) meaning that the constructor

does not return any value and therefore does not expose any address to the context.

Definition 3.2.17. (Transition Labels: Label_SC)
The set of transition labels is Label_SC = (Mth x Dy,) U (SC_Pr x Dy,) U {k}.

In Definition 3.2.17, we distinguish three types of interactions corresponding,
respectively, to: (1) invoking a C++ method (direct interaction); (2) invoking a Sys-
temC process (interaction through the SystemC simulator); and (3) modifying the
memory location that is reachable from the the object environment (indirect inter-
action). The transition function next.SC is made up of three functions: next_SCg;,,

next_SCp, and next_SCiuq.

Definition 3.2.18. (Direct Interactions: next_SCq;;)
Let (esc, Sse, Use, ESC) € Y be an interaction state. Then, the direct interaction func-
tion next.SCqir € [Y_ — P(D_ xLabel _SC)] is defined as:
next_SCair({€sc, Ssc, Vse, ESC)) =
{{(€s, S Vie  EsC?), (mth, vin)) | mth € Mth, vy, € Din,
Mmth](vin, €ses Sse) D (Vser Eser Sse)

Esc’ = Esc U reachable(v.,, e’}

sc? Usc

where M[mth] is the semantics of generic OO method as defined in [71].

The function reachable is an extension of the helper function defined in [71]. For
instance, given an address v,, and a store sy, reachable determines all the addresses
that are reachable from vs. In the SystemC context, this function acts only on the

data members of the module according to the following recursive definition:

Definition 3.2.19. (The Function reachable)
The function reachable € [Dgyy X SC_Store] — P(Addr) is defined as follows:

reachable(vse,Ssc) =
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if vy, € Addr then
{Addr} U {reachable(€, (dmem),ss) |
3 scmodule = (DMem, Ports, Chan, Mth, SC_Ctr),
dmem € DMem, s4.(vs.) is an instance of sc_module,
8sc(Ssc(Vsc)) = €5c}

else .

In the case of interactions related to changing the sensitivity list of a processor,
the function next_SC,, considers the method that was affected to the process in the
module constructor. Then, the invocation of the method is similar to the direct

interaction.

Definition 3.2.20. (Process Interactions: next_SCp;)

Let (esc, Ssc, Usc, Esc) € > be an interaction state. Then, the process interaction
function next_SCp: € [y — P(>_ x

Label_SC)| is defined as:

next_SCpr({€se; Ssey Use, ESC)) =
{{{el s vt Esc”), (pr,m,sl,vin)) | pr € SC_Pr,
Vin € Din, Pog[SCCtr](pr,m, sl) 3 (v, €L, She)s
Mﬂmﬂ (Uin’ elsc’ Slsc) =] (U;Icv 6;,c’ Sls,c)v

Esc” = Esc U reachable(vl,, ei.)}.

scr s8¢

The third possible interaction corresponds to indirect interaction which may
happen when an address escapes from an object. In that case, the context can modify
the content of this address with any value. The function next_SC;,q defines this type

of interaction:

Definition 3.2.21. (Indirect Interactions: next_SCipq)

Let (esc, Sse, Use; ESC) € D be an interaction state. Then, the indirect interaction
function next_SCins € [>, — P(D %

Label_SC)| is defined as:
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neXt—SCind(<65m Sscs Usey ESC>) =
{<<esm ngca &, ESC>7 k) I Jac Esc.

s.. € update_sc(e, s%,)}-

Y ¥sc

The update_sc function is an extension of the update function defined in [71]
in the sense that it considers SystemC signals in addition to C++ variables. It is

defined in following:

Definition 3.2.22. (The Function update_sc)
The function update_sc € [Addr X SC_Store — P(SC.Store)] is defined as follows:

update_sc(a,ss.) = {s}, | Jv € Val. s, = ss]a—v] }.

update_sc returns all the possible stores where s,.(«) takes all the possible values
in values domain Val.
Using the definitions of next_SC4;r, next_SC,, and next_SCi,4, we define the

global transition function next_SC as:

Definition 3.2.23. (Transition Function: next_SC)

Let st = (€s¢, Ssc, Use, ESC) € Y be an interaction state. Then, the transition function
next_SC € [y — P(3 x

Label _SC)] is defined as:

next_SC(st) = next_SCy;,(st) U next_SCy(st)

U next.SCina(st)

Using the transition function, a SystemC module object’s semantics is defined

as follows:

Definition 3.2.24. (SystemC Module Object: Og¢[o-sc])
Let v, € Val be a SystemC object input value and s, € SC_Store a store at object
creation time. Then the SystemC object semantics, Qgco-sc]€ [DiyxStore] —

P(T (X)) is defined as:
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Osclo-sc])(vse, ssc) = Up % AT

So(v,8) U {oo % ... " o, =5 o]

{00 ... "5 0, € T, next_SC(ov) 3 (o', 1)}}
where Y = SC_Env X SC_Store X Dy x P(Addr) is a set of interaction states, Di,

and Doy are, respectively, the semantic domains for the input and output values.

Theorem 3.2.1 (SystemC Module Object Semantics in Fizpoint)
Let F,. = AT.

Solv, 8) U {00 % ... "3 0, 15 o

ln—l

{00 b 5 on €T, next_SC(0,) > (o', ')}
Then Qgsc Jo-sc])(Vse, Sse) = U4_oFs™(0)

Proof 3.2.1. The proof is immediate from the fixpoint theorem in [25].

Definition 3.2.25. (Module Semantics: Mgc[m_sc]))

Let m_sc = (DMem, Ports, Chan, Mth, SC_Ctr) be a SystemC module. Then its se-
mantics Mge[m_sc]) € P(7(2)) is:

Mscm_sc]= {Osclo-sc](vse, $sc) | 0-sc is an instance

of m_sc, v_sc € D_in, s_sc € SC_Store}

Theorem 3.2.2 (SystemC Module Semantics in Fizpoint)
Let Gg(S)= AT.
{SO<U,S> | <'U,5> €S } U {0'0 E) ln—_)l On l—/> o"|

lo ln—l

{o0 = ... 5 o, €T, nexts.(0,) > (¢, ')}
Then Mgc [m_sc](vse, 85¢) = Ufp % Gse{ DinxStore)

Proof 3.2.2. Although the SystemC model presents some additional functionalities
on top of C++, the proof of this theorem is similar to the proof of Theorem 3.2 in
[71]. For instance, considering the definition of Mgc and applying in order Definition
of a SystemC module object, Theorem 3.2.1 and the fixpoint theorem in [25], the

proof is straightforward.
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Soundness and Completeness of the Module Semantics

The last step in the SystemC fixpoint semantics is to relate the module semantics to
the whole SystemC program semantics. For this purpose, we consider an extended
version of the functions split (ay.), project (af) and abstract ( °) as defined in [71].
The new functions are upgraded to support the SystemC simulation semantics, envi-
ronment and store. For example, split.SC' (a_SCY) can drop the memory reached by
the environment for a method that was previously executed in the current simulation
cycle because a method cannot be executed again until the next cycle starts.

The basic concept behind defining the module object semantics is to cut all
the instances not involving the object. For this purpose, two helper functions are
required: (1) a_SC;. cuts all the traces involving the object instances; and (2) a_SC{
maps all the cut instances to interaction states.

First we define the helper function split_SC that given a trace 7 and an object
o_sc returns a pair consisting of the last state of the prefix of 7 made up of the last
state of the execution of a method or process of o_sc and the remaining suffix of the
prefix of 7. In contrast to the general case of OO programs, we consider both default

C++ methods and processes according to the following definition:

Definition 3.2.26. (The Split Helper Function split_SC)
Let o_sc be a SystemC module object, 7 € T(SC_Env X
SC_Store), CurProcess € SC_Pr, CurMethod € Mth and pce,; be the exit point of
7(0)(CurMethod). Then split_SC € [(7 (SC_Envx SC_Store) — (SC_Envx SC_Store)
X 7T (SC_Env X SC_Store)] is defined as:
split_SC(7)=

let n = min{: € N | 7(7)(CurProcess)=(CurMethod, SL)

A 7(2)(SL)=true A 7(i)(pc)=pCezit A

7(i)(this)= o_sc A 7(i)(StackHeight)=

7(0)(StackHeight)}

in (r(n),7(n+1) — ... —» 7(Len(7) — 1))
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The cut function a_SCy considers four different cases: (1) for the empty trace,
€, it returns an empty trace; (2) if the trace is part of the object trace, then we split
it recursively keeping only the last state of the execution of a method or process. The
rest of the trace is removed; (3) If this is not the current object and the store is not
changed, then we continue with the rest of the trace; and (4) If this is not the current
object and the store is changed, then we keep the current trace and we continue with

the rest of the traces.

Definition 3.2.27. (Cut Function: o_SCY)

Let o_sc be a SystemC module object, 7 € T(SC_Envx SC_Store). Then a_SC. €

[(T(SC_Envx SC_Store) X SC_Store) — 7 (SC_Env x SC_Store)| is defined as:
a_SC2 = (T, Syast)-

.
€ if T=¢

let (p,7') = split.SC(7) if 7 = (esc, Ssc) = 7",

in let (e}, s,.) = ¢’ esc(this) = o_sc

in p/ — a-SCL(7, 5.,)
if 7 = (€ses Ssc) — T,
@ SC(7", S1ast) esc(this) # o_sc,
S/5(0sc) = Slast/s(osc)

if 7 = (ese, Ssc) — 77,

€sc, Sse) — _SCS(T", 8 esc(this) # o_sc,
1%

S/S(o_sc) 7é Slast/S (o_sc)

\

The second part of the abstraction includes the a_SC$ function which maps the

states of a trace to interaction states.

Definition 3.2.28. (Map Function: «_SC%)
Let o_sc be a SystemC module object, 7 € T(SC_Env x
SC_Store). Then «.SC} € [(7(SC_Envx SC_Store) x P(Addr)) — T (3 )] is defined

as:
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a_SC = A(7, Esc).

p
€ if r=¢

let (€sc, Sse) = p
in let Esc’ = EscU

reachable SC(p(retVal),ss) if 7=p— 7,

in ({esc, $se, p(retVal), Esc), esc(this) = o_sc
< {p(curMethod), p(inVal)))

— a.SC3(7',Esc’)

let (€sc, Ssc) =p

in {{esc, Ssc, ¢, Esc), k) if 1T=p— 7,
| — a_SC3(7',Esc) esc(this) # o_sc

The abstraction function «.SC° projects from the traces of an execution the set

of relevant states to a specific object.

Definition 3.2.29. (Abstract Function: a_SC°)
Let o_sc be a SystemC module object, T C 7 (SC_Envx SC_Store) a set of execution
traces and sp the empty store. The the abstraction function a.SC° € [(7 (SC_Envx
SC_Store) — P(7(>])] is defined as:

aSC°(T) = {aSC(a_SC2. (7,80),0) | TET}

Theorem 3.2.3 (Soundness of Mgc [m-sc])
Let Mgc be a whole SystemC program and let msc € Msc be a SystemC module. Then
V Ry € SC_Enux SC_Store. V 7 € T (SC_Enux SC_Store).

7 € W[SC_Pg[(Ry) : 37" € Mg [msc [. aSC({7}) ={7'}

Proof 3.2.3. We have to consider both cases when 7 contains an object og¢, instan-
tlation of mge, and when it does not include any oge. For the second situation, the
proof of the theorem is trivial considering that 7 will be an empty trace. In the first

case, the trace is not empty (let it be 7). Since SystemC modules are initialized in
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the main program sc_main before the simulation starts, there exist an initial envi-
ronment, store and set of variables that define the initial trace o9 € 7. The rest of
the traces in 7”7 are interaction states of ogc because they are obtained by applying

«_SC° on 7. Therefore, 7" € Mgc[mgc].

Theorem 3.2.4 (Completeness of Msc[])

Let msc be a SystemC module. Then
Vr e T(X). 7 € Mgcg[mse [ 3 SC_P € {Lsc.pg)-

dpg € SC_Envx SC.Store. 3 ogc instance of msc.
37" € T(SC_Enux SC.Store). 7' €

WlooIn a-sC({7'}) = {7}

Proof 3.2.4. A SystemC program satisfying the previous theorem can be constructed
by creating an instance of mgc in the sc_main function, the initial state corresponds
to the state when the module’s constructor, SC_Ctr, was executed. An execution of a
method of mge corresponds to executing a method thread (setting of the events in its
sensitivity list to Active) and a change of a port corresponds to updating its internal
signal by the new values. Hence, it is always possible to construct both SC_P and
po- For instance, there exist many other possible constructions involving SystemC

threads, clocked threads, etc.

3.3 AsmL Denotational Semantics

3.3.1 Syntactical Domains

We will present the basic syntactical domains that are required for the semantics

section. These include: classes, methods, constraints and programs.

Definition 3.3.1. (AsmL Class: AS_C)
An AsmL class is a set (AS_DMem, AS_Mth, AS_Ctr), where AS_DMem is a set of the class
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data members, AS Mth a set of methods (functions) definition and AS_Ctr is the class

constructor.

One of the important AsmL features corresponds to the methods pre-conditions

(Boolean proposition verified before the execution of the method).

Definition 3.3.2. (AsmL Method: AS_Mth)
An AsmL method is a set (AS_M, AS_Pre, AS_Pos, AS_Cst), where AS M is a the core
of the method, AS_Pre is a set of pre-conditions, AS_Pos is a set of post—conditions

and AS_Cst is a set of constraints.

Note that AS_Pre, AS_Pos and AS_Cst share the same structure. They are
differentiated in the methods by using a specific keyword for each of them (e.g.,

require for pre-conditions).

Definition 3.3.3. (AsmL Method Precondition: AS_Pre)

An AsmL method pre-condition is a set (AS.B), where AS_B is a Boolean proposition.

Definition 3.3.4. (AsmL Program: AS_Pg)
An AsmL Program is a set (Lysc, INIT), where Lys is a set of AsmL classes and

INIT is the main function in the program.

3.3.2 Semantical Domains

Asml considers two phases: evaluate and update. The program will be always running
in the evaluate mode except if an update is requested. There are two types of updates,

total and partial.

Definition 3.3.5. (Total Update: Step)
A total update is performed using the Step instruction and affects all the programs

variables.
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Definition 3.3.6. (AsmL Environment: AS_Env)
The AsmL environment is a modified OO environment AS_Env = [Var — Addr,Addr],

where Var is a set of variables and Addr C N is a set of addresses.

For every variable correspond two addresses storing its current and the new

values.

Definition 3.3.7. (AsmL Store: AS_Store)
The AsmL store is AS_Store = [(Addr, Addr) — (Val,Val)|, where Val is a set of
values such that AS Env C Val.

Let Ry € P(AS_EnvxAS_Store) be a set of initial states, pci, be the entry point
of the main function Main and —C: (AS_Env X AS_Store) X (AS_Envx AS_Store) be

a transition relation.

3.3.3 Fixpoint Semantics

Whole AsmL Program Semantics
The whole AsmL program semantics can be defined as the traces of the execu-
tions of the program starting from a set of initial states Ry. It can be expressed in

fixpoint semantics as follows:

Definition 3.3.8. (Whole AsmL Program Semantics: W4g [AS_Pg])
Let AS_Pg = (Ljs.c, Main) be an AsmL program. Then, the semantics of AS_Pg, W g
[AS_Pg ]€ P(AS_EnvxAS_Store) — P(7 (AS_Envx AS_Store)) is

W as[AS_Pg](Ro) = lfp (%)\X. (Ro) U {po — ... pn — Pni1l| Pns1 € (AS_Envx
AS_Store) A {po — ... Pa} € X A pr = pPny1}

Definition 3.3.9. (Method Semantics: Mys [. [))
Let AS_ Mth = (AS_M, AS_Pre, AS_Pos, AS_Cst) be an AsmL method. Then, the seman-
tics of AS_Mth, M4 [ASm |) € P(AS_EnvxAS_Store) — P(7T(AS_Envx AS_Store))

is
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Mys [AS-m](Rg, M, Pre, Pos,Cst) =
Iifp % AX, m, spre, spos, scst. (Ro) U {po — ... Pn = Pnt1| Pnt1 €
(AS_Envx AS_Store) A {po— ... pn} € X A pn — pnt1

A pai1(X) = (m, spre, spos, scst) A spre = spos = scst = true}

AsmL Class Semantics

The AsmL class constructor is a default OO constructor. It can be defined according
to the Definition 3.8 in [71].

In a general OO context, such as Java, an object can be defined as a set of states
including a first (initial) state representing the object just after its creation and a set
of states resulting from the interaction of the object with its context [71]. In this
case, the interaction can happen in two ways: (1) the context invokes an object’s
method, or (2) the context modifies a memory location reachable from the object’s
environment. In [71], this interaction was very well defined using two functions nexty,
for direct interactions, and next;,q for indirect interactions and the object semantics,
O [o], was defined as:

Ofo](v,s) = lfp @g AT'. So(v,s) U {og LA ol

{00 b, Iy o, € T, next(oy,) 3 (0,1}

where next(o) = nextq(c) U nextin(o), [ is a transition label and So(v, s) is a set of
initial states.

In addition to the semantics definition of an OO object in [71], an AsmL method
can be activated by an update instruction. This interaction is a hybrid direct/indirect
interaction because, according the state of the program events (that maybe external
to the object), invoke directly the concerned methods. In following, we will define
the interaction states, then, we will provide the complete definition for the direct,

indirect and AsmlL specific interaction functions.

Definition 3.3.10. (Interaction States)
The set of interaction states is Y = AS_Env X AS_Store X Dgu X P(Addr)
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After the creation of the object, the reached states represent the initial states

defined as follows:

Definition 3.3.11. (Initial States So{(vgs, Sqas))
Let vgs € Din be an AsmL object input value, s,s € AS_Store a store at object

creation time and AS_0bj an AsmL object. The set of initial states of AS_Obj is:

80(Vas, Sas) = {(€as: Sas) ) | Pour [ASCor](Lar) 3 (e, s0) }

where: Ly, = {my,...,m;,...,my,} is a list of the methods.

In Definition 3.3.11 ¢ is a void value (€ Doyt ) meaning that the constructor does

not return any value and therefore does not expose any address to the context.

Definition 3.3.12. (Transition Labels: Label_AS)
The set of transition labels is Label AS = (Mth X Di,) U {k}.

In Definition 3.3.12 we distinguish two types of interactions corresponding re-
spectively to: (1) invoking a method (direct interaction); and (2) modifying the mem-
ory location that is reachable from the object environment (indirect interaction). The

transition function next_AS is made up of two functions: next_ASy;, and next_AS;4.

Definition 3.3.13. (Direct Interactions: next_ASy;,)
Let (eqs, Sas) Vas, EsC) € > be an interaction state. Then, the direct interaction

function next_ASy;, € [>_ — P(D_ xLabel AS)| is defined as:

next_ASqir{{€as, Sas, Vas, ESC)) =
{((€ls, Shs, Vis, EsC’), (mth, vsy)) | mth € Mth, viy, € Din,
Clmth](vin, €as, Sas) D (U5, €4y Shs)s Esc? = Esc U reachable(v,, el,)}.

where C[mth]is the semantics of a generic OO method as defined in [71].

The function reachable is an extension of the helper function of the one defined

in [71]. For instance, given an address vo, and a store s,s, reachable determines all
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the addresses that are reachable from v,,. In the AsmL context, this function acts

only on the data members of the class according to the following recursive definition:

Definition 3.3.14. (The function reachable)
The function reachable € Doy, X AS_Store] — P(Addr) is defined as follows:
reachable(vys,Sq5) =
if vg; € Addr then
{Addr} U {reachable(€, (dmem),s,s) | 3 as_class =
(AS_DMem, AS_Mth, AS_Ctr), dimem € AS_DMem, S44(Vqs)

is an instance of as_class, Sgs(Ses(Vas)) = €l

else .

The second possible interaction corresponds to indirect interaction, which may
happen when an address escapes from an object. In that case, the context can modify
the content of this address with any value. The function next_AS;,4 defines this type

of interaction:

Definition 3.3.15. (Indirect Interactions: next_AS;.)

Let (eqs, Sas; Vas, EsC) € Y be an interaction state. Then, the indirect interaction

function next_AS;,y € [>. — P(D_ xLabel AS)] is defined as:

neXt-—ASind(<eaSa Sas: Vas, ESC)) =

€as, Soey O, Esc), k) | 3 a € Esc. s, € update_as(a, s,,,)}.
as as

1% as

The update_as function is an extension of the update function defined in [71] in
the sense that it considers AsmL updates in addition to variables. It is defined in

following:

Definition 3.3.16. (The function update.as)
The function update_as € [Addr x AS_Store — P(AS_Store)| is defined as follows:

update_as(a,s.s) = {4, | Jv € Val. s, = sgsla — v] }.
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where: update_as returns all the possible stores and s,s(c) takes all the possible values
in the values domain Val.
Using the definitions of next _AS4;, and next_AS;,q, we define the global transi-

tion function next_AS as:

Definition 3.3.17. (Transition Function: next_AS)

Let st = (eqs, Sas, Vas, Esc) € >, be an interaction state. Then, the transition function

next_AS € [Y, — P(>_ xLabel_AS)]| is defined as:

next_AS(st) = next_AS4;,(st) U next_AS;ye(st)

Using the transition function, an AsmL object semantics is defined as follows:

Definition 3.3.18. (AsmL Object: O4s[0-AS])
Let v,s € Val be an AsmL object input value and s,s € AS_Store be a store at ob-

ject creation time. Then the AsmL object semantics, Q4gfo-as]€ [DinxAS_Store] —

P(T (X)) is defined as:

O slo-as])(vas, Sas) = Up é—: AT'. So(Uas, Sas) U {00 L T a'l

In—
{00 b on € T, nextys (o) 2 (0,1}
where Dy, and Doy is the semantic domain for the input and output values, > =

AS_Env X AS_Store X Doy X P(Addr) is a set of interaction states, next,s(o).

Theorem 3.3.1 Let l
Fos = M. So{vas, Sas) U {00 % ... 5 0, 1 o]

{00 b, ot on €T, nextas(0,) > (o', ')}
Then Qas[o-a5](Vas, Sas) = Us_gFas™(0)

Proof 3.3.1. The proof is immediate from the fixpoint theorem in [25].

Definition 3.3.19. (AsmL Class Semantics: Cyg[c-as])
Let c_as = (as_dmem, as_mth, as_ctr) be an AsmL class. The semantics of Cxg[c_as]e

P(T()) is:
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Cusfc-as]= {Oas[o-as](vas, Sas) | 0-as is an instance of c_as, v_as € D_in,

s.as € AS_Store}

Theorem 3.3.2 (AsmL Class Semantics in Fizpoint) Let
Hys(S)=AT. {So{v,s) | (v,s) € S} U {oo o, oo on LN o'|

lo ln—l

{o0 = ... = 0, €T, nextys(o,) > (o', I)}

Then Cagfc-as(vas, Sas) = Ufp 0g H,s( Dy, x Store)

Proof 3.3.2. Although the AsmL model presents some additional functionalities on
top of generic OO languages, the proof of this theorem is similar to the proof of
Theorem 3.2 in [71]. For instance, considering the definition of C4g and applying in
order Definition 3.3.18, Theorem 3.3.1 and the fixpoint theorem in [25], the proof is

straightforward.

3.3.4 Soundness and Correctness of the Class Semantics

The last step in the AsmL fixpoint semantics is to relate the class semantics to the
whole AsmL program semantics. For this purpose, we consider updated versions of
the functions split (o), project (af) and abstract ( o°) as defined in [71]. The new
functions are upgraded to support the Asml update semantics, environment and
store.

The basic concept behind defining the object semantics is to cut all the instances
not involving the object. For this purpose, two helper functions are required: (1)
o _AS;. that cuts all the traces involving the object instances; and (2) «.AS} that
maps all the cut instances to interaction states.

Let us first define the helper function split_AS, which given a trace 7 and an
object o_as, it returns a pair consisting of the last state of the prefix of 7 made up
of the last state of the execution of a method or process of o_as and the remaining

suffix of prefix of 7.
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Definition 3.3.20. (The Split Helper Function split_AS)

Let o_as be an AsmL object, 7 € T (AS_EnvX AS_Store), CurMethod € Mth and pcezi
be the exit point of 7(0)(CurMethod). Then split_AS € [(7(AS_Envx AS_Store) —
(AS_EnvXx AS_Store) x 7T (AS_Env x AS_Store)] is defined as:

split AS(7)= let n = min{i € N| 7(i)=(CurMethod)
A 7(i)(SL)=true A 7()(pc)=pCezit N
7(i)(this)= o_as A 7(i)(StackHeight)=
7(0)(StackHeight)}
in (r(n),7(n+1) — ... — 7(Len(r) — 1))

The cut function a_ASZ, considers four different cases:

1. for empty trace, €, it returns an empty trace.

2. if trace is part of the object trace, then we split it recursively keeping only the
last state of the execution of a method or process. The rest of the trace is are

removed.

3. If this is not the current object and the store is not changed, then we continue

with the rest of the trace.

4. If this is not the current object and the store is changed, then we keep the

current trace and we continue with the rest of the traces.

Definition 3.3.21. (Cut Function: a_ASg)
Let o_as be an AsmL object, 7 € T (AS_Envx AS_Store). Then a_ASy € [(7 (AS_Envx
AS_Store) X AS.Store) — 7T (AS_Envx AS_Store)] is defined as:
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OZ_AS;_ — )\(T, Slast)-

€ if T=e¢€

let (p',7') = split_AS(7)
in let (e, sh.) =¢ if 7 = (eas, Sas) — 7', €as(this) = o_as
in o — a AS(7',s),)
if T = (€asy Sas) — 7",
. ASY (7", S1ast) eqs(this) # o_as,

S/S(o_as) - Slast/S(o-as)

if 7= (€ns, Sas) — T,

(€qsy Sas) — a_ASZ(T",S) eqs(this) # o_as,

S/S (o.as) 7‘4 Slast/S (o.as)

The second part of the abstraction includes the . AS] function which maps the

states of a trace to interaction states.

Definition 3.3.22. (Map Function: a_AS})
Let o_as be an AsmL object, 7 € 7 (AS_Envx AS_Store). Then a_AS € [(7(AS_Envx
AS_Store) X P(Addr)) — 7(>)] is defined as:
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a_AS? = X(7,Esc).

4
€ if T=c¢€

let {eus,Sas) =P
in let Esc’ = EscU
reachable AS(p(retVal), sqs) if 7= p — 7/, e,5(this) = o_as
in ((eys, Sas, p(retVal), Esc),
{p(curMethod), p(inVal)))
— o AS3(7',Esc’)

let <easy Sas) =p
in ({egs, Sas, 9, Esc), k) if 7=p— 7, e.(this) # o_as
— aAS3(7', Esc)

\

The abstraction function «_AS° projects from the traces of an execution of the

set of relevant states to a specific object.

Definition 3.3.23. (Abstract Function: «_AS°®)
Let o_as be an AsmL object, T C 7 (AS_Envx AS_Store) a set of execution traces

and sg the empty store. The abstraction function o AS° € [(7 (AS_Envx AS_Store)
— P(T(>])] is defined as:

o AS°(T) = {aAS(aASY (7,59),0) |7 €T}

Theorem 3.3.3 (Soundness of Cas[c_as])

Let Pag be a whole AsmL program and let cas € Cas. Then
Y Ry € AS_Envx AS_Store. ¥ 7 € T (AS_Enux AS_Store). 7 € W[AS_Pg](R)

: A1 € Casfleas | aAS({7}) = {r'}

Proof 3.3.3. (Sketch) We have to consider both cases when 7 contains an object

o4g, instantiation of mgg, and when it does not include any o4g. For the second
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situation, the proof of the theorem is trivial considering that 7 will be an empty
trace. In the first case, the trace is not empty (let it be 7). Since AsmL classes
are initialized in the main program Main before the execution starts, there exists an
initial environment, store and set of variables that define the initial trace oq € 7.
The rest of the traces in 7”7 are interaction states of 045 because they are obtained

by applying a_AS° on 7. Therefore, 7/ € Cas[mas]-

Theorem 3.3.4 (Completeness of Cas/[])

Let cag be an AsmL class. Then

VreT(X). 7€ Cuasfeas J: 3 AS_P € (Luspg). Ipo € AS_Enux
AS_Store. 3 oag instance of cas. exists 7' € T (AS_Envx

AS_Store). 7' € W[poJA e AS°({7'}) = {7}

Proof 3.3.4. An AsmL program satisfying the previous theorem can be constructed
by creating and instance of csg in the Main function, the initial state corresponds
to the state when the class constructor, AS_Ctr, was executed. It is always possi-
ble to construct both AS_P and py. For instance, there exist many other possible

constructions involving Asm[L methods pre-conditions and post-conditions.

3.4 Program Transformation

The equivalence in behavior, with respect to the observation a,, between the source
SystemC program and the target Asml program is required to ensure the soundness
of any verification result at the AsmL level. Our objective is to define a relation
between the SystemC processes active for certain delta cycle and the set of methods
allowed to be executed in the AsmL model. Hence, we will map every thread (method,
sensitivity list) in the SystemC program by a method (method core, pre-condition)
in the AsmL program to ensure having set of variables in both programs updated in

the same time with the same values.
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The SystemC observation function needs to see all the active processes at the

beginning of a delta-cycle by checking for the end of the update phase.

Definition 3.4.1. (SystemC Observation Function: o3¢)

o

SC

Let SC_Pg= (Lscmoa, SCmain) be a SystemC program, the observation function a2

€ P(SC_EnvxSC_Store) — P(7(SC_Envx SC_Store)) is
a;“[sC-Pg] (Ro) =
Ifp §AX.(Ro) U {fo — ... 0| Vi € (SCEnvx SC_Store) I {p} — ... oL}
€X Ap, — pi A{ m_sc in Mgc | Jo.sc € Mgg. o_sc(pi,()) # {e} } = 0}

In the previous definition, oS¢ is only tracing the initial states of a simulation

cycle. For instance, the third condition confirms that in the last simulation cycle
there was no single process ready to run. Similarly, we define an observation function

a for an AsmL program.

Definition 3.4.2. (AsmL Observation Function: a4%)

(o]

Let AS_Pg= (Lysc, INIT) be an AsmL program, the observation function a4% €
P(AS_EnvxAS_Store) — P(7 (AS_Envx AS_Store)) is
ag®[AS_Pg](Ro) =
Ifp 7AX.(Ro) U {fo — ... fn] Vi € (SCEnvxAS.Store) 3 {p} — ... pi.}

eEXANp,—piAN{masin Cyg | Jo.as € Cys. 0-as(p’,()) #{e} } =0}

Next, we define the notion of equivalence between the two observations. Al-
though, SystemC and AsmL have different environment and store structures, it is

possible to ensure that they contain the same information.

Definition 3.4.3. (Equivalence w.r.t. a,: =)
Let SC_Pg be a SystemC program, V_sc a set of its variables, AS_Pg be an AsmL
program and Dout_as a set of its output variables.
prog.-sc =,, prog.as if
VR5C set of initial states of SC_Pg. VR{' set of initial states of AS Pg.
Vi€ {po— ... = pn} € aS°[sCPg](RFC).
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e lis— o — fu} € a5 [as PE](RE) |

V vsc € V.sc. d vas € V_as such that
if vsc € SC_Sig then (p(vsc) = (v1i1,v12)) A (p(vas) = (v11,v12))
if vsc € AS_DMem then (j(vsc) = v11) A (p(vas) =(v1l1,v1l))

The observation function ensures that the Asml program is mimicking the
evaluate and update phases (same length n of the p sets). The first if condition takes

care of the SystemC signals while the second one concerns basic C++ variables.

Theorem 3.4.1 (Existence of Transformed AsmL Program w.r.t. a5¢)

Let SC_Pg be a whole SystemC' program, SC_Din a set of inputs and SC_Dout a set of
outputs. Then

3 4S_Pg, an AsmL program, such that SC_Pg =,, AS_Pg

Proof 3.4.1. (Sketch) The proof is done by constructing the Asml program. For
instance, for every SystemC module we affect an Asml class having the same data
members and methods. We set the pre-conditions, AS_Ctr, for the AsmL methods as
a conjunction of the state of the events present in the sensitivity list, SC_SL, of the
SystemC program processes. The tricky point in the construction is when to make
the updates in the AsmL program. We have two possibilities: (1) C++ variables
update: whenever a C++ variable is involved in an instruction, a partial update can
be applied using the notion of binders in AsmL; and (2) SystemC signals: all signals
are updated when all methods pre-conditions are false. Once the set of AsmL classes

defined, Theorem 3.3.4 ensures the existent of the AsmL program.

Theorem 3.4.2 (Soundness of the transformation)
Let SC_Pg be a whole SystemC program and let AS_Pg be a whole AsmL program. Then

SC_Pg =4, ASPg: Y Prop(V.sc,p) | p € oS¢ [SC_Pg].
SC_Pg & Prop(V_sc,p) : AS_Pg - Prop(V.as,p) | p € a9 [AS_Pg].

where Prop is a program’s property, V_sc is a set of variables of the SystemC program,

V_as are their corresponding variables in the AsmL program.
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Proof 3.4.2. The proof is straightforward from the construction of equivalence rela-

tion =,, in Definition 3.4.3.

3.5 Summary

We presented in this Chapter the fixpoint semantics of the SystemC library includ-
ing, in particular, the semantics of a SystemC module that we proved to be sound
and complete w.r.t. a trace semantics of a SystemC program. We provided also
the denotational semantics of a subset of AsmL and we proved the soundness and
completeness of an AsmL class w.r.t. to a trace semantics of the AsmL program.
Then, we proved the existence, for every SystemC program, of an AsmL program
having similar behavior w.r.t. an observation function that we set to consider the
traces of the system just after the update phase of the SystemC simulator. In the
next four Chapters we are going to present the techniques we used in our proposed

SoC framework for both direct and Asml based approaches.



|Chapter 4

Static Code Analysis

4.1 Introduction

In this chapter we introduce an abstraction framework for object-oriented languages.
Then, we provide the abstract environment for SystemC. Finally, we illustrate our
proposed methodology to statically analyze SystemC design by considering a Packet
Switch design from the SystemC library.

4.2 Abstraction Framework for OO Languages

Program analysis by abstract interpretation (also called semantical analysis) is a
method that computes, automatically, an approximative description of the behavior
of a program when executed. This description can be a property like “a variable z is
always negative” or “at the entry of a function, the variable z is equal to the value of
the variable y”. These properties are considered as invariant properties because they

are always true for every program execution. Let us consider the following example

program:
read(x0)
x := x0

69
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while (x < 100) do
begin
write(T[i])
X :=x +1

end

which requires the user to enter a value z0 then prints the elements of the table T'[z]

having their indexes x between 20 and z0 + 100. The following two properties:

e 20 <z <100 at the entry of the loop.

e z0 > 101 at the end of the program.

are invariant properties, in other terms they are always true for any value of 20
entered by the user. Determining these properties automatically is important for
program analysis and in particular bug detection.

Abstract interpretation was first introduced by Patrick Cousot [21] in 1977 to
analyze flow chart based languages (not procedural languages). Then, both Patrick
and Radhia Cousot [22] upgraded their proposal to support recursive procedures. The
objective of the technique was to formally design approximate semantics of programs
which can be used to gather information about programs in order to provide sound
answers to questions about their run-time behaviors. These semantics can be used to
design manual proof methods or to specify automatic program analyzers.

Formally, given a concrete domain C and a semantic function [.] : Program —
C associating to each program P € Program its semantics [P], an abstract inter-
pretation can be formulated by defining a corresponding abstract domain A and an
abstract semantic function II]]# : Program — A which approximates the concrete
one. The notion of approximation is encoded in abstract interpretation by suitable
partial order on domain’s objects. Both C and A are assumed to be complete lattices

with respect to this approximation order. The ordering on the concrete and abstract
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domains describe the relative precision of domains values, somehow in a dual fashion

with respect to the standard domains for denotational semantics.

The relationship between the concrete and abstract setting is given by a pair
of functions, namely the abstraction map « : C — A and the concretization map
v: A — C, where, Va € A, alc) <4 a, or, equivalently, Vc € C, ¢ <¢ 7v(a). This

means that a is a concrete approximation of c.

The classical verification methodology, as defined by Cousot [21], defines an
adjunct couple of functions between concrete and abstract semantics. However, this
approach can be applied only for semantics based abstractions. For syntax based
abstraction, where the program is represented in the collecting semantics as a set
of properties, there is no Galois connection to abstract semantics. In fact, several
properties can have the same meaning and may orient the analysis of the program
differently. Therefore, the link between the abstract and collecting semantics is no
more defined by an adjunct Galois Connection but using a meaning function ~ [10].

The general schematic of the approach is given in Figure 4.1.

Concrete Computations Abstract Computations
Concrete (Standard) ) Abstract
Semantics Semantics
Abstraction ,«" l T
relation based on R Q/"
a Projection L7 Approximate
function Profum
,--~ Guide the Abstract Semantics
- .* construction of the
Collecting A" [ Abstract function by ] -
Semantics using a function of Abstraction Iterations
meaning 7. based on ¢

Figure 4.1: Abstraction Methodology.

The general methodology of Figure 4.1 requires the definition of a concrete

semantics then a collecting semantics to collect the properties to analyze.
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The projection of the concrete semantics to the collecting semantics defines
the properties associated to the concrete semantics. The collecting semantics is con-
structed by induction. The main constructions cover basic types, pairs, tuples, func-
tions and sets.

The link between the abstract semantics and the collecting semantics is per-
formed using a meaning function 7. In general there is no abstraction function cor-
responding to this function because the abstract domain corresponds to a number of
properties and a set of properties may have the same semantical meaning and orients

the analysis differently.

4.2.1 Constructing Collecting Semantics

A fundamental step in our abstraction methodology is to define the collecting seman-
tics which will allow us to perform total and precise analysis. It defines statically the
future domains that will serve for the analysis and their specific manipulations. It is
not possible to change the domain during the analysis which presents a drawback for
the technique.

In our proposed collecting semantics we distinguish two notions: the syntax and
the semantics. For basic domains, natural numbers for example, both concepts are
confused. Nevertheless, for complex domains they are separated. Syntactical con-
structions are algorithmic. Semantical constructions, on the other hand, are “mean-
ing” constructions because they correspond directly to mathematical constructions.

As shown in Figure 4.2, we define a collecting semantics associated to X by:
e A domain X, augmented by syntactical operations.
e A number of theorems (rewriting rules) valid in the concrete semantics.

We define an element from the collecting semantics as a combination of:

e An element z¢ € X, representing a property.
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e A link to the environment of properties: for every symbol in the z¢ corresponds

a number of properties that must be verified by this symbol.

Concrete Semantics Collecting Semantics
Semantical Domain Syntactical Domain
Syn2 X, )
N e Domain Theorems
Domain { X [|—» semx.
P(X)C un T X bxolxlx,
- Sy x,
X
Element x — l Formula € Env— X,
AWAYA
{z}

Figure 4.2: Collecting Semantics.

The environment corresponds to all the collecting semantics objects that are
introduced by the program. In the rest of this Section, we will focus on the construc-
tion of the domain X, but we should always take to consideration the existence of
theorems and rewriting rules. These theorems describe syntactical properties of the
programs functions. For example, the analysis of a function performing the summa-
tion of two elements supposes the addition operator is implemented by a total order
that does not modify the memory. The properties of total order are described then
as syntactical theorems.

The general methodology of construction is done by induction on the concrete
domains X . Syntactical operators are algorithmic operators that take their arguments
z¢ in a language of formulae defined by X.. Semantical operations are descriptive;
their arguments are concrete elements x € X that verify the property z.. This
construction was first introduced by [76] for general types.

For every collecting domain X, correspond two basic operations: a projection
function px and and order of approximation Cx, . px : X — X, computes for every

concrete element z € X the most precise property verified by z. The syntactical
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order Cx, defines the relative precision between two properties.

As we previously noticed, considering complex systems induces the separation
of both semantical and syntactical domains. Therefore, there exist another order
Csem,x. Which is a semantical order that describes the real precision of the objects.
In order to define a set of operations on the collecting semantics, the construction
methodology must verify certain properties. These latter define the validity of the

syntactical order and define the semantical order.
- Cx, is the syntactical order associated to the domain X..
- Uy, and My, are the union and intersection operations associated to Cx,.

- The image by px is partially atomic (for every element from the concrete se-
mantics, there exists at least one corresponding property in the collecting semantics),
which means: px(z) Cx, Ux, X¢:3z¢ € X..px(z) Sx, z° This property is less
powerful than total atomicity since it does not prove that there is no contradiction.

It ensures however that the union of non-coherent states will be non-coherent.

As we will prove, the previous properties define a double Galois Connection

between the collecting domain X, and the natural domain of properties, P, set of

parts of X:
semx, SYN2 X
X, &2 PX) =2 X, and semy, surjective.
synl,xc se'mxc
where:

synax. d Ux.{px(@) / w € S}
semx, & {z [ px(z) Cx, 2%
syny x, = Uy {z° / semx, (z¢) C S}
The proof of soundness of the collecting semantics is equivalent to prove that

(semy, , syni x,) and (semx, , synq x,) form two couples of joint Galois functions.

semx,
Proof that: X, &  P(X).

sYn1, x.
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The proof is done in two steps:

Step 1: Proof that semyx, C S:z. Cx, syny x.(S)
Since semyx, C S, then, z¢ € {y° / semx (y°) C S}, therefore, x° Cx, syn; x.(S)

Step 2: Poof that z¢ Cx, syny x,(S):semx, (z¢) C S

Let us consider x € X verifying px(z) Cx, z° The objective is to prove that z € S.
From the definition of px, px(z) Cx, Ux {y/y¢ C S}.

Or, px is atomic, therefore, 32¢ /px(z) Cx, z¢ and semyx, (z¢) C S.

semy, is monotone, meaning: semy,(px(z) C S

Or, if there exists y/px(z)px(y), then, z =y, which implies for our case that:
semx, (px(z) = {=z}.

Therefore, z € §.

Proof that: semyx, is surjective.

Consider S C X,
S =u{{z}/z € S} = U{semx.(px(z))/z € S} = semx (Ux.(px(z))/z € 5).

The last equality is true because semy, is an abstraction operation.

Therefore, semx,_ is surjective.

SYn2, X
Proof that: P(X) & X, and semy, surjective.
semx.

The proof is done in two steps:

Step 1: z° Cx, syng x,(5):S C semx,_(z°)

Let S C X and z° € X, verifying z¢ Cx, syns x.(S)

We have to prove that: S C {z/px(z) Cx, z°}

Consider z € S. From the definition of syns x,, px(z) Cx, z°.
Therefore, z € {y/px(y) Cx, ¥°}

Step 2: Poof that S C semy,(z°):syng x.(S) Cx, z°¢

Let z € S, we need to prove that px(z) Cx, z°.

Or, z € semy,(z°) (because of the inclusion), hence, px(z) Cx, z°
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The semantical order, T, x, is then defined as: X{ Ceemx, X5 ‘g
semyx, (X§) C semx, (X§). The semantical function semy, gives the meaning of
an element from the collecting semantics, it was firstly defined by [10] as a meaning
function. The first Galois connection proves the validity of the construction while

the second one ensures that every property can be described by an element from the

collecting semantics.

Collecting Basic Domains:
Basic domains correspond to bits, Boolean, bytes, natural numbers and reals. Con-
sidering such a domain X then the collecting semantics over X is defined by the set

of parts of X. The projection function is defined as:
px: X — X,

r — {z}
The syntactical order Cx, is defined as C. Union and intersection operations

(Ux, and My,) are defined as N and U respectively. Syntactical equality is simply
defined as:
w=eas < (@ =0)V (@5 =0)V (a5 = 29)

There are many orders that can be defined on basic domains. In general, they
are used accordingly to the requirements of the application. The simplest way to
extend the natural order < to an order <, defined as:

<25 & Vrpcxf Ve €x§ .z <29
The previous order can be eventually extended to an Egli Milner order [34] that

represents the classical notion of intervals.

Collecting Pairs:

Pairs are fundamental in all programming languages. For C++ for examples, they
are the first step in order to represent tables and lists in general. The direct way to

collect pairs is to consider the following projection function:
Pxxy: XxY — P(XA\0)x(Yc\0))
(@,y)  — {px(@),pr(y)}
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Removing the empty set from the definition of the projection function ensures
that the pairs are defined on consistent property. In other terms, non-consistent

properties will be represented by the empty set.

The syntactical order T(xxy), over the domain (X x Y). is defined as:

PY Exxy). P & V(ef,41) € PP 3(a5,45) € By . (2f Ex. 25) & (41 Cy. 95)

Four main operations are usually defined over pairs: fst (for first) and snd (for
second), constructing a pair from two components and equality of pairs. fst and snd

are defined as:
fst: X xY — X snd: X xY — X
and
(z,y) = =z (z,y) = y

The validity of the operations defined over pairs is ensured by:

semx, (fst(P?)) 2 fst(sem(xxy).(F°))

semy, (snd(P°)) 2 snd(semxxy),(P°))

semxxy).(z9,4) 2 {(z,y)/ = € semx (%) & y € semy,(y°)}
Pf =, P§:sem(xxy).(Pr) = sem(xxy).(P5) is a singleton.

The syntactical operations are defined as follows:

Fste(Pe) Y U {z¢ | (a°y°) € P}
def ¢ c
snd.(P°) = Uy {y° / (2%y°) € P°}
(25,5 < {(2%,9°))
C C g C C C C C C c .
Py =. b5 V(zf,yf) € Pf . Y(25,95) € P5 . 1§ =,
x5 & yi=cy5
Example:

The pairs (z,y) verifying x > 5y is described as:
Pe=3teZ. (|- o004t t)e Y {(] - 00,48, {t})/t € 7}
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4.2.2 Constructing Abstract Semantics

Collecting semantics associates a domain of properties to a programming language. It
is possible to stop the analysis at this level and perform all the analysis on collecting
semantics. Nevertheless, this approach has many drawbacks in particular algorithmic
problems. In fact, an analysis program can only handle finite sets which is not the
case for elements based on semantical polymorphism. On the other hand, even for
relatively simple domains, such as sets, the algorithmic construction may cause state
explosion.

This is the reason why abstract semantics was introduced. It maps a property
to a finite representation of the property more suitable for the analysis. The connec-
tion between the abstract and collecting semantics is performed using the meaning
function Yepe € Xabs — X This function is not a concretization function as it is
not possible to define a correspondent abstraction function because the concept of
the best abstraction cannot be applied to collecting semantics. Therefore, this con-
struction does not fall under the classical concept of the abstract interpretation. This
fact will require a complex algorithms for the analysis [72], however, it will offer more
flexibility.

Informally, the link between the abstract and collecting semantics can be‘ seen
as compilation. In fact, the collecting semantics can be interpreted as a low level
language with no loops. However, the abstract semantics is an advanced language.

Semantical domains corresponds to decidable theories over which we can define
efficient algorithms. It was very deeply studied in the literature. In general, these
are represented as lattices [65]. In contrast, the syntactical abstract domains corre-
sponds to non-decidable theories having theories elements as logical formulae. They
are usually defined as programming languages trying to compromise complexity and
formal analysis.

Abstract syntax domains allow the syntactical manipulation of expressions in

order to perform the analysis of the program. In order to allow both the interaction
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with the user and abstract debugging we selected the so-called hypergraph structure
firstly introduced by [105] to represent the abstract environment. This graph is illus-

trated in Figure 4.3 where we can notice a structural layered representation.

Compact Structure General Structure

Entry Point

Disjunctive Type Entry Branch
Distribution Point

Conjunctive Type Distribution Branch

Confined

Hypergraph <:>

Junction Type Junction Branch

Junction Point
Output Type Output Branch

Output Point

Figure 4.3: Hypergraph General Structure.

The hypergraph structure can be seen as a general automata connecting its
states by branches (also called hyper-branches). Theses branches can be seen as an
extension to Binary Decision Diagrams (BDDs) more adapted to programs repre-
sentation. In other terms, they offer a higher level of abstraction and flexibility by
introducing the notion of confined hypergraph. This encapsulation property of the
hypergraphs is very suitable to SoC where a system is a connection of modules (IPs)
using its input and output ports.

The hypergraphs define a logical language and a control language for both sim-
ulation and program proofs. It may offer good solution to control the state explosion
problem of model checking. In fact, over the hypergraphs is defined a number of re-
duction and analysis techniques reducing (abstracting) the concrete system to get to a
simplified abstract structure more adequate for model checking and formal techniques
in general.

Abstract concrete domains are atomic domains. They usually include natural

numbers, real, Boolean, etc. Their collecting domain corresponds to their domains’
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properties. The main elements of the abstract domain are:

wl|a]) € {a}

def
,YXabs( TX ) = X

) 2 g,

’YNabs ( [a7 b] S

Just like collecting semantics, abstract semantics domains support both syntac-

tical and semantical disjunctions accordingly to the following:

def
fyXabs ( l{\ ) = ’yXabs ( x(]l_lbs ) U fyXu,bs ( xgbs

" bs
{23

d e{dabs )

fYXabs( = Hd E rYDabs (dabs) ' ryXabs( xabs )

xabs

where: vx,,,( | 28 | ) and 7x,,,( | 2% | ) represent the hypergraphs associated to

Xaps. To complete the construction of the abstract semantics we need to represent all
the operations present in the concrete domain. These operations will be introduced
as separation points. The operation of multiplication is, for example, represented as

follows:

) < (

’YNabs ( - F)/XN

mollbs ) X 'YXabs( :L’%bs

abs

mtlzb.s xgbs

def z
Vs ( ieé[o,n] ) [ va(] 2 |)
i=0

,I.('zbs

Over natural numbers, for example, the basic operations such as the addition

@ and multiplication @ are defined. We also add an operator to represent interval

construction .

In order to use the previously defined graphical structures, it is required to
introduce abstract operations. These will include in particular operations related to
the degradation and fusion of hypergraphs. But, let us first introduce the abstract

order for these basic domains. For every a and b elements of the concrete domain X
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and any confined hypergraph H, defined from elements in X, we define the following.

a E_:absE g a=1»b

def

Hz Cabs Tx true

def

Tz Eabs a

false

The abstract union and intersection operation are defined as follows:

a Uabs b = a b

def
Ha: Llabs TX = TX

a if a=b

def
a I_Iabs b é

def

0 otherwise

Hm Habs TX Ha:

Simplifying the hypergraph structure is very important in order to analyze the
abstract system. By contrast to the usage of tactics in theorem proving, we define a
number of possible simplifications. Eventually, when performing a simplification, a
loss of information will occur. Nevertheless, simplification is mandatory in order to
analyze the hypergraph. Several simplifications can be defined over the basic domains.
We present in following three simple illustrative cases. We consider: x,ny,ne and ns €

X. The symbol =: will be used to represent a simplification operation.

vel@ | - [,
[
Xz

T

a EI[O, 1]

(n2 — n1)a + ny

ny, N =:

l

Ny Do Ny Ny =1 {Imin{ny, ng, ng, ny), miaz(ny, n2, N3, n4)}<

Analyzing a program does not mean to optimize it. In other words, the hyper-
graph simplification techniques are not defined to reduce the representation but to

extract the program properties. In fact, two different simplifications may get to two
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totally different hypergraph representations. To illustrate this fact, let us consider

the following small C++ code:

int main() {
int output = 1;
int index;
for(index=0; index<4;index++)
output *= 2;
cout << output << endl;

}
Figure 4.4: C++ Illustrative Program.

Depending on the reduction technique used, we may get one of the three hy-
pergraphs represented in 4.5. The first representation is very suitable to analyze
analytically the value of n. The second, can ensure that the result is always positive.
The third one proves that the result is always even. The user will define the most

suitable algorithm to apply to his/her program.

a€03)< - A
n € [l,16]c. n = 29 /é\
| [0, 3]<
1 1 [O,S]S

Figure 4.5: Possible Generated Hypergraphs

4.3 SystemC Static Analysis

The previous construction of the collecting and abstract semantics are generic for
C++ (and Object-Oriented languages in general). However, when it comes to the
verification of SystemC designs, it is required to define a specific abstraction for the
SystemC designs. This abstraction will include the SystemC simulation semantics
and basic classes.

Static code analysis has its own limitations in particular with respect to the

completeness of the analysis [40] (for large-scale programs for instance). There are
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already some attempts, which try to define abstract environments for C++ [105] that
might be used to analyze SystemC programs. However, in order to succeed, such an
approach will have to analyze the whole SystemC simulation manager (responsible
for the management of process and threads in particular), the SystemC events stack
(that contains the list of all the events and their status) and all the classes involved in
the program. Even considering the best case when the approach succeeds in handling
the complexity of the SystemC structure, it will not extract many properties from
the program because it would neglect totally the design structure and the SystemC
library semantics. Thus, an efficient SystemC analysis environment has to consider
the abstraction of the SystemC library itself in addition to the abstraction of the
C++ language. The abstraction has also to target, in addition to the static analysis
of the program, the eventual link with other verification techniques, in particular,
abstract debugging, model checking and simulation.

To illustrate what is specific to SystemC designs, we will consider the example
of Figure 4.6 (which illustrates a general structure of a SystemC design). SystemC
programs include, in general, the function sc.main() which calls the default main()
function. The core of this function consists of instructions related to variables decla-
ration, modules configuration, binding establishment, simulation and cleanup.

The Event Manager is defined as a function that associates variables to events in
order to identify their status. For instance, this function provides a link between the

event status and its identifier of the event inside the program.

4.3.1 Constructing Concrete Semantics
Concrete Semantics

In this paragraph we will define the concrete semantics for the elements that we
consider in the abstraction of both C++ language and the SystemC library. Some
of the definitions exist already in the literature [105}, so we will introduce them in a

very short manner providing the required information for the abstraction section.
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int sc.main(int ac, char * av[]){
sc_signal < float > in;
sc.signal < float > sum;
sc_clockelk(”CLOCK1”,10,0.5,0.0);
NumGen N(” NumGen”);
N(in, clk);
TransformUnit TU(" Transform”);
TU.inl1(in); TU.sum(sum); TU.clk(clk);
display D(” display”);
D(sum);
scanitialize();
sc-clock :: start(—1);
return 0;

Signals Declaration
Clock Definition

Number Generator Declaration
Tansformation Unit Declaration

Display Declaration

Simulation Initialization
Start Simulation
Exit point of the program

L I

Figure 4.6: Example of a Generic SystemC Program Structure.

Memory Semantics
Allocation blocks are atomic entities associated with the memory. Every block is
defined by its size and a function extracting its bytes. The concrete semantic of such

a block is given by the following:

$€Meoy : AllocBlock — N x (N — Byte U {Undefined})
b — (sizeof(b), Alloc(b))

where: Vi < sizeof(b) , Alloc(b)(i) € Byte
Vi > sizeof(b) , Alloc(b)(i) = Undefined

Unde fined is a non-allocated memory byte. Otherwise, we know nothing about
it. When a byte is allocated it belongs then to the type Byte.

The stack is defined as a table, of a variable size, of Allocation Blocks:

S€Mgon : Stack — N X (N — AllocBlock U {Undefined})

p +— (sizeof(p), Alloc(p))



4.3. SystemC Static Analysis 85

where: Vi < sizeof(p) , Alloc(p)(i) € AllocBlock

Vi > sizeof(p) , Alloc(p)(i) = Undefined

The program environment is defined as a function p, which provides a link between
the memory location of variables and their names inside the program. For instance,

this function returns an address [ in the stack identifying the variable.

SeMeon : ProgramEnvironment — (Ident x Stack)

p +— Xdl

Declaration Semantics

When a variable is declared with a certain type, its corresponding allocation block
is reserved in the memory. For classes, the reserved memory space will include the
static objects, the inherited fields and the virtual methods [32] (if the definition of

the class included some virtual methods).

Expression Semantics
Given a stack Stack and a program environment PFEnwv, a program point corresponds
to the position of the bullet “e” in the list of instructions.

For variables, for example, two cases are possible: either the variable is affected
by value or by address. The following corresponds to the second case:

Env(Id = a) < eId, Stack, PEnv > — < Ide, Stack[Block(p, a)], PEnv >

Regarding classes, the general rule is:
< o(Object. Member Name), Stack, PEnv > —

< (eObject. Member Name), Stack, PEnv >
Instructions Semantics
The semantic of the expression instructions is basically defined as a removal from the
stack of the value that was computed by the expression:
< eEzxpry;, Stack, PEnv > — < Exprje; (Stack — b), PEnv >
< Ezprye;, (Stack — b), PEnv > — < Expry; e, (Stack — b), PEnv >

The semantic of the selection instruction is:
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< o(if (Expr) Instr), Stack, PEnv > — < if (e Expr) Instr, Stack, PEnv >

According to the if condition, two cases are possible:

o AllocBloc(b) = true

< if (eExpr) Instr,Stack, PEnv > — < if (Expr) e Instr,(Stack —
b), PEnv >

< if (Ezpr) eInstr, (Stack — b), PEnv > — < (if (Expr) Instr)e, Stack, PEnv >

e AllocBloc(b) = false

< if (eExpr) Instr, Stack, PEnv > — < (if (Ezpr) Instr)e, Stack, PEnv >

SC_MODULE(module_name){
//ports, data members, member functions
//processes etc.
SC.CTOR(module_name){
//body of constructor, process registration,
/[ sensitivity lists, module instantiations etc.

};

<= Base section

<= Construction section

Figure 4.7: SystemC Module.

SystemC Classes Semantics

Most of SystemC classes include two sections: a base section where the class members
and methods are defined just like C++ classes and a construction section where
the information related to the simulation execution is introduced (declarations of
processes, threads, events, etc.). Both sections are illustrated in Figure 4.7 for the case
of SystemC modules. The first part is general however the second part is specific to
the SystemC library since it includes the list of processes, threads and their activation
conditions.

SystemC Simulator Semantics

The Event Stack will keep the traces of all events and their status (active, idle, etc.),

it is defined as:
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S€Meon : BventsStack — N x (N — EventsStatus U {Undefined})
b +— (EventlD, Status)
The Event Manager is defined as a function that associates variables to events in

order to identify their status. For instance, this function provides a link between the

event status and its identifier of the event inside the program.
S€Meon : FventManager — Ident — EventsStack

¢ — Xdl

The semantics of the SystemC simulator can be seen as a succession of eight steps.

A delta~cycle (evaluate and update phases) is defined by the steps 2, 3 and 4.

1. Initialization Phase.

2. Ewvaluate Phase: Select a process from the ones that are ready to run. The order
in which processes are selected is unspecified. The execution of a process may
cause immediate event notifications to occur, possibly resulting in additional

processes becoming ready to run in the same evaluate phase.
3. Repeat Step 2 for any other processes that are ready to run.

4. Update Phase: Execute any pending updates resulting form the processs exe-

cution in the evaluate phase.

5. If there are pending notifications (inter-process messages or timed events like
clocks for example), determine which processes are ready to run and go to step

2.
6. If there are no more timed event notifications, the simulation is done.

7. Else, advance the current simulation time to the time of the earliest (next)

pending timed event notification.
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8. Determine which processes become ready to run due to the events that have

pending notifications at the current time. Go back to step 2.

In summary, the SystemC simulation semantics can be regarded as an execution of the
algorithm shown in Figure 4.8 The first step in the procedure, which corresponds to
the initialization phase, is defined syntactically in the compilation phase. The infinite

while loop is executed until the simulation is exited otherwise it loops infinitely.

While(true) {
While (NotEmpty (EventStack)) {
Enumerate all active processes
Select an active process
Execute the active process
Update the active processes list

}
Update the EventsList

Figure 4.8: SystemC Simulation Semantics.

4.3.2 Constructing Abstract Semantics

Abstraction can be applied to the memory, the environment and to the code itself.
Since the environment is known statically at each program point, we can use the
concrete program environment which is generated during the compilation phase. So,
it is seen as a function that associates with every variable a list of abstracted pointers

referring to some locations in the stack.

Memory Abstraction
Following the memory concrete semantics, the memory abstract semantics includes
the allocation blocks and the stack.

Figure 4.9 shows the abstraction of an allocation block represented by a list of
abstracted bytes. The concretization function vpy.4ss generates for every block an

integer b; that can vary in the range 0 to 2% — 1 = 255.
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Three possible cases can describe how the data is organized inside the memory:

a b: both a and b are in the same memory block, they do not overlap and

their relative positions are unknown.

a @ b: a comes before b in the memory (some other blocks can be in between:

case of structures for example).

a @ b: a comes just before b in the memory (case of tables for example).

YBlocAbs

= {fYByteAbs( )/1 <1< ’I’L}

Figure 4.9: SystemC Example.
N.B.: yayea([_*_]) = {(1,b:)}

The abstraction of the memory includes also the definition of some operations over
the defined graphical entities. The basic operations are: extraction of sub-blocks,
conversion and determination of the size of a block.

The stack is represented as a sequence of allocation blocks. The access to the
stack is always done using the address parameter. Two distribution points are defined
to separate the blocks:

@: separates local variables for a block.

@: separates function arguments and their local variables.

Code Abstraction

It is possible to abstract the code as a list of program points of the compiled code.
However, without the abstraction of the code, it is quite impossible to reduce local
variables (for example, unused variables). The code is seen as a list of instructions,

where every two instructions are separated by a program point.
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For every expression an abstract code is defined. To make the required trans-

formation in the stack and the memory any time a program point is executed.

Vil ;
i
1 +
Stack :

sizeof(Member]
’

Figure 4.10: Class Members Abstraction.

Figure 4.10 shows the general case of a class members abstraction, where Iy , I5
and [3 respectively represent a function call, a local variable and an expression local
to an instruction. The member name is represented in the stack by a pointer to its
relative address in the object. Considering l..,r as the address of the object Expr in
the stack, the address of the member name is then: lo,, + sizeof(Member).

Instructions abstraction concerns the basic instructions having the general for-
mat ‘Fxpr;, conditional instructions and declarations. The general effect of an in-
struction is shown in Figure 4.11(a), where the instruction acts as a memory trans-
former. A concrete example is given in Figure 4.11(b) for the conditional instruction:

if BExprthen Instry else Instry

SystemC Elements Abstraction
Figure 4.12 illustrates the abstraction of SystemC elements by the base module,
where Classname refers to the module name, stringname is the name of the module

and (argi, args, ... , argy,) are the arguments of the module.

SystemC Simulation Manager Abstraction
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[ Memory | | Memory’ |

(a) (b)

Figure 4.11: Instruction Abstraction.

The way events are organized can be summarized in three possible cases:

el e,: both e; and e, will be executed in the same simulation cycle, however,
their relative occurrence is unknown.

e1 @ eq: €1 is always executed before es.

el @ es: e is executed then ey is executed (no other process execution in
between).

The events stack is represented as a sequence of events. The access to the stack
is always done using the event identifier. We define two distribution points are defined
to separate the blocks in the stack:

@: separates events general to the whole program.

@: separates events local to a module.

The main set of operations to manipulate the events stack is: adding a new
event to the stack, removing an event from the stack and reading the state of an
event considering its identifier.

The abstraction of the simulation environment of SystemC adds a new abstract
layer over the default C++ abstraction. Figure 4.13 shows a general representation

of the abstract environment (including the abstraction of the simulation manager).
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1 Q

‘ new Classname l

2 Q

string_name

9

arg,

arg,

n+3 ¢
L d

Figure 4.12: SystemC Base Module Abstraction.

The program is no more seen as a single copy performing updates over the memory
at every program point. But, the abstracted program is represented by a number of
entities (for instance, processes and threads) that are either active or inactive for a
specific abstract cycle (which corresponds to a simulation cycle). In addition to that,
the whole program is in the same time interacting with the program environment and

the stack and dealing with the SystemC’s event’s stack and event’s manager.

4.3.3 Analysis Tactics

The computation technique we propose combines ideas from both [14] and [19] and is
based on the same principles as for the denotational semantics. The stack is supposed
to be infinite. However, when the stack becomes full an exception will be processed.
The general structure of the computation technique can be described by the following

steps:
e Construct the hypergraph from the code fragments.

e Decorate the hypergraph by the abstract memory related information.
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EventsStack EnventManager

Clock @ ldp
Meth1 Meth2
i 4
Stack Env

id,
Process, Thread, . -
| )

@)
Thread,, g
ly

Simulation Manager

Process,,

Figure 4.13: General Structure of the Abstract Environment.

e Any time a distribution point is found, an iteration counter is introduced. The
analyzer will try to predict in the next steps how to relate the next state of the

hypergraph to the iterations counter.

o After few duplications a merge tactic is applied. The analyzer will apply the

merge after four to five iterations depending on the SystemC program.

o After few more iterations a new merge is applied but this time based on the

iterations counter.

e The analyzer, at this level, must determine formally the shape of the code for

the next iteration.
e Decompose the iterations counter in a union of a number of disjoint intervals.

e Given the initialization condition, we increment directly the iterations counter

to the value of the actual interval targeting to get to the last state.
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¢ Repeat previous tasks for every abstract simulation cycle in order to relate the

simulation state to the cycles iterations counter.

To get more details about this computation approach and the abstract environ-

ment construction, we will consider in the next Section a small illustrative example.

4.3.4 Illustrative Example

We consider the relatively simple SystemC design given in Figure 4.14. It is composed
from a random number generator, a transformation unit and a display. The trans-
formation unit receives at every clock cycle a random input uniformly distributed in
the interval [0,1] and outputs the summation sum of the last 1000 inputs (every 1000
cycles). The display shows sum every time a new value is available. The function of

the transformation unit can be described by:

999

sum = Z in;, where in; specifies the input at the clock cycle ¢ + k/1000  (4.1)
i=0

(k is the actual cycle and k/1000 is an integer division).

Random in_! Transformation [.SYM, i
Generator Unit Display
ok i i l outevent |

Figure 4.14: SystemC Example.
Each block of the design includes only one method:

o U.Transform(): responsible for performing the transformation on the input

signal. This method is active on a clock event.

e N.Generate(): generates a random number. This method is active on a clock

event.

e D.Display(): displays the number at its input (activated by the arrival of data).
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EventsStack EnventManager
-------- -
@

U.Transforr'ﬁij N.Generate()|| D.Display(}

v
U.Transform()
Stack Env

Q) i,
N.Generate()

)
D.Display() @

L |
SO O -

Clock -

» Simulation Manager

Figure 4.15: Initial Hypergraph.

Figure 4.15 shows the first hypergraph that is generated including four processes
(the three methods and the clock process). Only the clock process is active at time
t=0.

The stack is empty and the program environment contains the list of the iden-

tifiers (without an explicit link with the program variables).

Figure 4.16 shows the new hypergraph after one iteration where the methods
N.Generate() and U. Transform() are active and will be executed. The program envi-
ronment is updated with the new variables (in, sum, T, N, D, a and N) coming from
sc.main(). At the same time, the abstracted SystemC environment will be updated
by the simulation manager. To get the hypergraph representation more compact and
readable, we only included the new objects as pointers (Py, Pr and Pp are pointers
to the Number Generator (NN), the Transformation Unit (T") and to the Display (D)

respectively).

Figure 4.17 displays more details about the transformation method U.Transform().
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EventsStack EnventManager

O~~~

Clock -

U.Transforr'ﬁii N.Generate(){| D.Display()

)

1 Q’/’
N.Generate() Stack ng

20
¢U. Transformy|

) T

N

double a; J;L D
= in1.read();

bt OO

if(N == 100) { ... } -

MQ__

Simulation Manager

Figure 4.16: Iteration 1: SystemC Transformation Unit Hypergraph.

This compact representation will serve for iterations over this method. Then, after
the link between the new copy of this method and the iterations counter is defined, we
relate, using the reduction tactics, the new copy of the method to the cycles counter.
We will proceed first by small step for the first iterations, then we move to big step for
the last iteration. For instance, we can jump to the condition on the output N = 1000

because the condition on the output event to be triggered is activate by N = 1000.

After the iterations over the cycles counter are completed, the reduced version
of the hypergraph is the one given in Figure 4.18. In this example, the simulation
manager is reduced to an infinite while loop and an iterations counter (iter). The
events are represented by if conditions and the whole system is reduced to a single
procedure. Such a representation will eventually offer more information about the
system in terms of order of execution of methods, relations between the program

variables, the state of system at every iteration, etc.
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Figure 4.17: Hypergraph of the Active Methods.
4.4 Application: Packet Switch

In this Section, we show a more complex example of a 4x4 multi-cast packet switch
taken from the SystemC library [80]. The switch uses a self routing ring of shift
registers to transfer cells from one port to another in a pipelined fashion, resolving
output contention and efficiently handling multi-cast cells. Input and output ports
have FIFO buffers of depth four each !.

Each input port is connected to a sender process. Each output port is connected
to a receiver process. The sender and receiver processes are given distinguish id
numbers during instantiations.

A sender process, writes a random value to data, and sends it to one or more
of the four receivers. Each packet also contains a sender id field. Sender processes

send packets at random intervals, varying from 1 to 4 units of its clock. A receiver

IThe description of the switch is provided in Appendix C.1
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E

N.Generate()

20
1 d)U. Transform()

double a;
a = int.read();

While(true)

Iter++;

| D.Display)

e iile}

- false
‘ iter= 0; local_sum = 0Q; |

Ty—
~

Figure 4.18: Final Reduced Hypergraph.

process is activated whenever a packet arrives. Then, it displays the content of the

packet and the receiver d.

Figure 4.19 shows the first hypergraph generated from the packet switch code.
It includes twelve processes: four senders, four receivers, two clock processes (first
clock used for input and output operation and second clock used as internal switch
clock), a process for the internal clock of the switch and process for the switch core
itself. Only the clocks clockl and clock?2 are active when the switch starts. The other

processes are activated on the reception of a packet or after sending a packet.

In parallel with the program environment, the events environment includes the
list of all the system processes and their status. For simplification, we use only two

status for each process: active (1) and not-active (0).

The simulation manager is presented as a box connected to the entries of the
program hypergraph. It can be seen as a procedure that determines the structure

of the system according to the list of active processes. For example, if the senders 1
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Figure 4.19: Packet Switch: Initial Hypergraph.

and 3 are active, then, only their relative code is analyzed. The general case when
all the processes are active is presented in Figure 4.19. Each small box from the
program environment, (e.g., sender0) presents a confined hypergraph that includes
the correspondent object members and methods. For clarity, we will present the

object hypergraph as its main method.

Note also that Figure 4.19 gives only an overview of the program environment.
The variables [1, I and [3 represents the general global and local variables. The status
of the memory is not yet defined. In fact, during the analysis, when a new variable
is analyzed, it will be added to the environment and will have its allocation space in

the stack.

In this application we focus on the switch core itself. Figure 4.20-(a) presents

the hypergraph of the switch entry method (main method). Figure 4.20-(b) shows an
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A
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Figure 4.20: Hypergraph of the Packet Switch Main Method.

overview of the state of the program environment and the stack. The stack includes
global pointers to the senders and receiver objects. We detailed in particular the
switch entry method parameters. This includes the local variables and the connection

signals.

The analysis phase relates the elements of the previous hypergraph to a general
iterators representing the simulation cycle. In other terms, we target to replace the
whole SystemC simulator by a number of loops and iterators that define statically

the order of execution of the processes.
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Figure 4.21: Reduced Hypergraph of the Switch Main Method.

By applying reduction (also called degradation) techniques on the basic hyper-
graph of the switch core we obtain the reduced version given in Figure 4.21. We
notice that the SystemC simulator is reduced into a while loop and that most of the
internal variables of the switch are defined as functions of the loop iterators. The
switch main core is clearly divided into 3 main sections: reception and storage of the
packets in the FIFOs, rotation of the data in the registers ring and output the packets
to the receivers.

From the reduced hypergraph structure, a number of properties can be deduced.

For example,

e The number of received packets is defined as pkt_count:
itr
pkt_count = Z{ino.event()i + inl.event(); + in2.event(); + ind.event();}

1=0

where: inX.event(); is a Boolean flag (0 for false and 1 for true) set to true
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when a packet is received from the sender X.

e The number of dropped packet at the input FIFOs is defined by drop_count:

itr
drop_count = Z{q():m.full()i + qlan. full(); + q2-in. full(); + ¢3=in. full();}
i=0
where: ¢X _in. full(); is a Boolean flag set to true when the input FIFO X is
full.

e The number of packet received by the receiver X is CountReceivery:

itr

CountReceiverx = Z{(RX.'ual.destX)i X (1—(RX.free);) x (¢X -out. full);) }
=0

where: (RX.val.destX); is a Boolean flag set to true when the header destina-

tion flag of the packet contained in the register X is to be sent to the receiver

X.

Although the previous properties may seem to be general, they can offer very
precious information about the internal way the switch is working. In the same time
they allow to detect behavioral errors. For example, the second property says that:
“the count of dropped packets is the number of times the input queue (FIFO) is
full”, which is not correct. In fact, the correct property must set that: “the count of
dropped packets is the number of of received packet at the entry of the FIFO when
the input queue (FIFO) is full”. In other words, we have to receive a packet when
the FIFO is full to say that the packet was dropped. So, the condition to count the
dropped packets must be changed from:

if (q0_in.full == true)

drop_count++;

to:
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if ((q0_in.full == true) && inO.event())

drop_count++;

Note also that the properties obtained from the analysis phase can be used to
validate properties related to the switch such as the maximum number of dropped
packets. Also, according to the reduced hypergraph, the switch core only uses the
packet’s header to process the packet. Therefore, we can reduce the packet into its
header (4 bits destination and 4 bits identifier) which may facilitate the use of model
checking techniques to verify some particular properties of the switch.

This application can eventually give a general idea about our approach, nev-
ertheless, it does not give a concrete evaluation of its performances. Trivially, real
SoC designs are very complex systems; therefore, studying more complex systems is

mandatory.

4.5 Summary

In this chapter, we presented a static code analysis framework for SystemC. We
defined the basic concepts to construct both collecting and abstract semantics for
OO languages. Then, we presented a graphical environment (extending an environ-
ment originally introduced by Vederine [105]) to represent and manipulate abstracted
SystemC models. Finally, we illustrated the feasibility of our approach on some of

SystemC basic designs.
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|Chapter 5

Model Checking

5.1 Introduction

In this Chapter, we will first illustrate the incapacity of classical model checkers
to handle SystemC designs. For this purpose will conduct a direct model checking
approach by translating the SystemC code to a language supported by existing com-
mercial model checkers (Verilog for the case of FormalCheck [11]). Then, we propose
an efficient model checking technique based on a state exploration algorithm provided

for the AsmL language [51].

5.2 Direct Approach

We use the verification approach given in Figure 5.1, where the static code analyzer
gets as input a SystemC design and a set of reduction tactics (called abstraction
library). It then generates a reduced hypergraph representation of the design. This
latter is fed into a hypergraph to Verilog converter. The conversion is seen as a
concretization of the abstracted design (hypergraph) into the Verilog language. We
did select Verilog because we will use the FormalCheck model checking tool [11].

105
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Figure 5.1: Cascading Abstract Interpretation with Model Checking

We will illustrate the previously described verification approach on a bus struc-
ture offered as part of the SystemC distribution [80] !. In fact, this structure includes
several SystemC components and showed the principles of using SystemC at the
transactional level. Besides some of the sample properties, e.g. liveness and safety,
cannot be verified using simulation. They require the usage of formal techniques such

as model checking.

5.2.1 Abstraction

A partial representation of the bus’s hypergraph is given in Figure 5.2. It shows the
first hypergraph generated from the bus code. It includes an events’ environment
containing several processes: masters, slaves, clocks, arbiter, etc. In parallel with
the program environment, the events environment includes the list of all the system
processes and their status. For simplification, we use only two statuses for each
process: active (1) and not-active (0).

The simulation manager is presented as a box connected to the entries of the
program hypergraph. It can be seen as a procedure that determines the structure of
the system according to the list of active processes. For example, if the Master 1 is

sending active, then only its correspondent code is analyzed. Each small box from the

!The description of the bus structure is provided in the Appendix C.2.
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program environment (e.g., arbiter()) presents a confined hypergraph that includes

the corresponding object members and methods.

EnventManager
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Figure 5.2: Hypergraph of the Simple Bus Structure.

5.2.2 Model Checking

After applying reductions tactics on the hypergraph of Figure 5.2, the generated
reduced hypergraph is concretized into a Verilog code. This latter is fed into the
FormalCheck tool [11] in order to verify some of the design’s properties. In fact,
FormalCheck verifies that a design model exhibits specific behaviors (properties) that
are required by the design specification. Properties that form the basis of a model
checker’s query fall into two categories: safety and liveness. Safety properties can
be expressed using one of two formats: The always format and the never format.
Liveness properties describe behaviors that are eventually exhibited.

For instance we considered the following properties:
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Property 1:

NEVER( (simple_bus.request==ture)

&& (simple_bus.status!=BUS_0K))

Property 2:

AFTER (simple_bus.request==true)

&% (simple_bus.request.block==true)

EVENTUALLY (simple_bus.status==BUS_BLOCK)
Property 3:

EVENTUALLY (simple_bus.status==BUS_0K)

Property 1 means that a master generates a request only when the bus is ready
to handle new requests (i.e. bus status set to BUS_OK). Property 2 says that if the
bus receives a new blocking request, then, in the future, its status will change to
blocking (i.e. bus status set to BUS_BLOCK). Property 3 proves the bus status will

always return to ready to receive new requests.

5.2.3 Results and Discussion

We first started by translating the bus code from SystemC to Verilog (without ab-
straction). We modelled the SystemC simulator as a new module. Although this
simplification reduces effectively the complexity of the code, the verification of all
the previous properties failed after few minutes with the same problem of “memory
exceeded”. Then, when using the abstracted code all the properties were verified as
it can be seen in Table 5.1. The verification platform is described in Table 5.2.
Even though both the design and the considered properties were quite simple,
the results of Table 5.1 illustrate the complexity of model checking SystemC designs.
Furthermore, existing model checkers are restricted to RTL designs which restricts

them from handling transactional SystemC models or general C++ code that could



5.3. Related Work 109

Table 5.1: Model Checking Results.

Property || CPU Time (hh:mm:ss) | Memory (in MB)

Pi 6:59:12 93.59
P2 15:23:02 183.91
P3 17:46:54 293.63

Table 5.2: Verification Platform.

FormalCheck version 3.2
Main Memory 4.0 GB
CPU 2 CPUs (Run 900MHz)
Architecture Sparc
OS Version 5.8

be integrated as part of the SystemC design. Hence, providing a new approach to

apply model checking to SystemC is a non-avoidable task.

5.3 Related Work

As a related work, we cite, in particular, the Bandera [33] project that aims at
interfacing Java code to model checking tools like SMV [17] and SPIN [53] by applying
program analysis, abstraction, and transformation techniques. In its actual status,
Bandera cannot handle SystemC designs because any analysis of a SystemC code
must go through the whole simulation environment as well as SystemC defined data-
types and classes. Besides, considering SMV as internal model checking tool is a big
handicap for Bandera to handle large state space systems. We are not aware of any
related work using a sound syntactical transformation from SystemC to AsmL and

vice-versa to perform either model checking or ABV.
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5.4 AsmL based Approach

We propose to combine the concepts of abstract interpretation and hyperstate in
order to be able to treat complex SystemC designs and fit them to the verification
process. Figure 5.3 shows the flow of our approach, where we start by a SystemC
design, apply abstract interpretation and generate its hypergraphs, we then translate
the events and processes based hypergraphs into ASM based on our embedding for
SystemC in ASM. In parallel, we embed PSL properties in the ASM model 2. We
then compile the ASM model, including both the design and the properties, using the
AsmL tool and generate its FSM. This FSM is translated into the input language of
the model checking tool, which will check the correctness of the model. Similarly, the
AsmL compiler can generate test scenarios, .NET, or C# models for verification by
simulation.

The generation of the FSM from ASM is performed using the algorithm given
in [51]. Unfortunately, the algorithm that generates the FSM is not available as the
AsmL tool is provided as a black-box. To solve this problem, we embed the state
of every property (as Boolean) in every system’s state. Therefore, once the FSM is
generated, it will include, by construction, a Boolean state variable giving the state
of the property. The last step in the verification process is to translate the FSM to a
format supported by a model checker. Note that there is no restriction on the model
checker as the final FSM is concrete and includes only Boolean variables to represent

the state of the PSL properties.

5.4.1 Model Checking Technique

To enable the integration of both the model and the properties at the ASM level,
we embedded the PSL semantics in AsmL. At this level, it is possible to verify these

properties using model checking. For instance, we encode the properties evaluation

2The details of the PSL embedding in AsmL are provided in the Appendix B.
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Figure 5.3: Verification of PSL for SystemC Designs in ASM.

in every state, which enables checking its correctness on-the-fly while executing the
FSM generation algorithm (part of the AsmL tool). An incorrect property detection
stops the reachability algorithms and outputs a sub-portion from the complete FSM,

which represents a complete scenario for a counter-example.

Every property is embedded in every state in the FSM generated by the AsmL
tool and is represented by two Boolean state variables P,yq and Py (stating, respec-
tively, if the property can be evaluated and the value of the property in the current
state). A violated property is detected once Py = true and Pyge = false. The pre-
vious condition is a filter for the FSM generation algorithm stopping the generation
when an error is detected. In this case, the generated portion of the state machine
can be used to identify the problem through a scenario of a counter-example. For
multiple properties, the filter is set as conjunction of all the conditions for the sepa-
rate properties. This technique minimizes radically the number of the state variables

(the FSM size and its generation time). A correct verification process results on the
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generation of the system’s FSM (according to the configuration file constraints). This
approach may seem to be based on an ad-hoc model checking algorithm while more
advanced techniques and approaches have been used in tools like SMV and VIS. We
believe there are many reasons that make our approach more efficient, in particular:
(1) It is impossible to use these tools with AsmL considering the OO nature of the
language. Therefore, a translation to the language supported by the tool (mostly
a very low HDL) is mandatory. This operation will prohibit using some advanced
features AsmL offers (e.g., data abstraction, pre-condition checking, etc.)

(2) Generating the counter-example as an FSM gives a strict and complete path of
the error starting from the entry point to the state where the error took place [47].
(3) The configuration of the FSM generation algorithm can be set by the user in order
to stress the verification only in some particular portions of the state space (through

restricting some variables to have certain range for example) [47].

5.4.2 Illustrative Example: Packet Switch

In this section, we apply the above approach on a packet switch design from the
SystemC library [80] .

For illustration purposes, we consider the following three PSL properties for the
packet switch.

The first property, P1, is intended to verify that if there is only one recipient for
the packet, and the output queue is not full, then the register that holds the packet
should be free in the next internal clock, and the packet should be received at the

output queue.

PropertyP1 :
forall send in {0, 1, 2, 3}
if Reg[send].free == true and
Packet.dest0 and not OutQueue[send]. full and

3The description of the packet switch structure is provided in the Appendix C.1.
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not Packet.destl or Packet.dest?2 or Packet.dest3
then at next SWCLK
Reg[send].free = true

OutQueuel0] = Reg[send)

The second property, P2, is intended to check the shortest path when sending
from sender 7 to receiver i, where the input queue is not full. This operation should
be performed in four internal clocks (SWCLK) or equivalently one external clock
(CLK).

PropertyP2 :
forall send in {0, 1, 2, 3}, forall rec in {0, 1, 2, 3}
if send == rec and not InQueue[send). full and
Reg[send].free == true and
OutQueue(rec].empty == true then
OutQueuelrec] = Reg[send] in 4 SWCLK
and OutQueue[rec] = Reg[send] in 1 CLK

The third property, P3, is intended to check the (worst) longest path when
sender 0 transmits to receiver 3, input queue 3 has only one free slot, all other input

queues are full, and the output queue 0 is full. This property is specified as follows:

PropertyP3 :
ifsend == 3 and rec == 0
and InQueue[3].size ==
and InQueuel0]. full and InQueue[l]. full
and InQueue(2]. full and OutQueue[0]. full then
OutQueue[0] == Reg[3] in 8 to 19 SWCLK

The AsmL tool is used in order to generate automatically the FSM of the packet

switch and having the evaluation of the properties as a state variable. The model
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checking resulted in successfully verifying the correctness of properties P2 and P3.
Property P1, however, was violated, indicating a bug in the SystemC packet switch
model. This bug showed, after further inspection of the code, that the switch will
free any packet coming from senders 0, 2 and 3 and having at least two destinations
including port 1 before routing it to output port (different from port 1). The erroneous

code is the following:

if (Rl.val.destl||R1.val.destl||R1.val.dest2||R1.val.dest3)
Rl1.free = true;

where the condition to free the register does not check if the packet is having as desti-
nation the port 0 and uses a double copy of the check about the port 1 (R1.val.destl).

The correct condition should be:

if (R1.val.dest0||R1.val.destl||R1.val.dest2|| R1.val.dest3).

5.5 Application: AGP Bus

We considered the AGP bus * [58] that was, as far as we know, only verified by
simulation due to its complexity and very large state space. We will show that our
technique combined with the abstraction features of AsmL and using an inductive
proof, allows the model checking of a set of properties on the bus. These properties
are also translated to a SystemC monitor that can be used as a separate IP to validate

AGP compatible devices.

5.5.1 AGP Bus Properties Specification

In order to verify the bus properties, we first used a direct model checking approach by
considering a set of properties to verify all the possible transactions scenarios. These

cover two main classes: (1) PCI transactions and (2) AGP transactions including both

4A detailed description of the bus is provided in Appendix C.4
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modes DMA and execute. We succeeded to prove the first class of properties with
the approach of 5.4, while we failed to prove the second set due to state explosion.

Therefore, we introduce a proof by induction.
Example properties are giving below:
Property P, :
forall Master in {MasterQ, ..., Masterd}

if (\Master.REQ == true) then

eventually (!Master.GNT == true)
meaning that if a master requests the bus (!Master. REQ == true), it will get access
to it in the future (!Master GNT == true), which guarantees that no master will

use the bus indefinitely.

Property Py :
forall Master in {Master0Q, ..., Masterd}
forall Slave in {Slave0, ... Slaved}
if (\MasterGNT == true) and
(IMaster.DEST == Slave.ID)
then {eventually (|Bus. FRAME == true) and
(\Master. TRDY == true) and
(!Slave[ID].TRDY == true) and
(IMaster GNT == false)}
meaning that if a master is selected by the arbiter, then it will be able to get ac-
cess to the bus by setting 'Bus. FRAMUE. Thereafter, its destination slave will be

activated by setting its !Slave. TRDY . Finally, the master will release the bus once
'Master. GNT is set to false.
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5.5.2 Model Checking

Performing the verification of the whole model failed to complete due to a state
explosion problem. The main reason for that is the huge size of the read, write
and commands queues (each of width 256) present in both the AGP device and the
corelogic. By reducing the queues width to three, however, we succeeded to verify all
the properties. To generalize the verification, though, we defined an induction based

approach taking advantage from the abstract data types supported by ASM.

Global Proof

We define DRQ: Device Read Queue, DWQ: Device Write Queue, DRe(): Device
Request Queue, CRQ: Controller Read Queue, CWQ: Controller Write Queue and
CReQ: Controller Request Queue. The maximum width of the queues is Q.Wd. The
number of packets in each queue is XX Q.Np (where XX € {DR, DW, DReq, CR,
CW, CReq}). The list of properties under verification is P.
o Step 1: Verify P = true, V DRQ.Np, DWQ.Np, DReQ.Np, CRQ.Np,
CWQ.Np, CReQ.Np € [0,1].

e Step 2:
— Hypothesis: Consider N e N/ 0< N < Q.Wd
Vz € {DRQ.Np, DWQ.Np, DReQ).Np, CRQ.Np, CWQ.Np, CReQ.Np},
x < N : Pis true.

— Prove: Vz € {DRQ.Np, DWQ.Np, DReQ.Np,CRQ.Np, CWQ.Np,
CReQ@.Np}, z < N +1: P is true.

Single Queue Proof

Considering the condition in hypothesis of Step 2, in order to prove the correctness of

P, we need to consider all the possible states when at least one of the queues contains

N+1 packets: 3z € {DRQ.Np, DWQ.Np, DReQ.Np, CRQ.Np, CRQ.Np,CReQ.Np},
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where z < N + 1. For instance, this is still a quite huge number of states. So, we
did divide this proof into six sub-proofs each considering a particular queue. We will
illustrate next the case of the DRQ (other cases are similar). The new target is to
prove that considering the hypothesis of Step 2, we do have the following:

Vy € {DWQ.Np, DReQ.Np, CRQ.Np, CWQ.Np, CReQ.Np}, y < N and
DRQ < N +1: Pis true.

The proof is as follows:

e Step 1. Verify P = true, V DWQ.Np, DReQ.Np, CRQ.Np, CWQ.Np,
CReQ.Np € [0,1] and DRQ.Np € [0,2].

e Step 2:

— Hypothesis: Consider N € N/ 1< N < Q.WdVz € {DWQ.Np,
DRe@.Np, CRQ.Np,CWQ.Np, CReQ.Np}, z < N — 1 and DRQ.Np <
N +1: P is true.

— Prove: Vo € {DWQ.Np, DRe@.Np,

CRQ.Np,CWQ.Np,CReQ.Np}, < N DRQ.Np < N +1: P is true.

This latter proof requires generating all the system’s states where DWQ.Np =
DReQ.Np=CRQ.Np=CWQ.Np=CReQ.Np=N—1and DRQ < N + 1.

Note that the proof is valid for any value of N > 1 (in particular for the value
of 256 proposed by Intel in {58]). For instance, we abstracted the queue width to the
domain QueueWidth = {Empty, NotEmpty, Full}. The NotEmpty case represents a
non-full queue with at least one element. The QueueWidth abstract domain contains a
set of helper functions (e.g., GetWidth() and UpdateWidth()) to enable tracking the
queue state changes. Such an abstraction was possible thanks to the data abstraction
feature offered by AsmL [51] and the user-defined configuration of the FSM generation
algorithm [47].



118 Model Checking

Table 5.3: Validity of Initialization Conditions.

Queue CPU Number of FSM

width | Time (s) | Nodes | Transitions
1 5.78 34 37
2 30.89 173 193
3 105.20 504 963
6 1758.78 | 4325 9223

5.5.3 Experimental Results and Discussion

The CPU time used for the generation of the model checking for queues widths in
{1,2,3,6} is given in Table 5.3 5. The first three rows are required to ensure the
correctness of the initialization conditions. The fourth row, queue width equal to
six, is given to illustrate the effect of the numbers of states and transitions increase
exponentially as function of the queue size. This clearly illustrates the impossibility

of generating the complete FSM for a width of 256.

In Table 5.4 every row corresponds to the proof of a particular queue. Generally,
the CPU time and the number of Nodes and transitions is close to the case when the
queue width is equal to three (see Table 5.3). This is quite expected because in our
approach the queue may be in one of the three states: empty, has some elements but

not full or full.

Table 5.5 presents the verification information for the PCI mode which is op-
tional for AGP. A direct verification for that mode was possible thanks to the relative

simplicity of the PCI, which does not include any queue structure.

5All experiments presented in this section were conducted on a platform consisting of a 2.4 GHz
Pentium IV and 512 MB of RAM (PC2700).
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Table 5.4: Model Checking (AGP Mode).

Proof for CPU | Number of FSM

the Queue | Time (s) | Nodes | Trans.
DRQ 341.01 1156 1304
DWQ 345.25 1294 1325
DRe() 347.78 1302 1346
CRQ 457.89 1503 1425
CWa@Q 462.07 1653 1433
CReQ 487.01 1859 1481

Table 5.5: Model Checking (PCI mode).

Number of CpU Number of FSM
Masters | Slaves | Time (s) | Nodes | Transitions
1 1 2.31 20 25
3 1 26.01 | 236 341
2 2 26.84 293 449
3 2 574.18 1881 3153
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5.6 Summary

In this Chapter we proposed a model checking technique using a state exploration
algorithm provided for the AsmL language. We illustrated the feasibility of our
approach on a packet switch design part of the SystemC library. Then, we showed
that our technique combined with the abstraction features of AsmL allows, using an
inductive proof, the model checking of complex systems. For instance, we have been
able to verify a set of properties of the AGP bus standard that was never been verified

using formal techniques due to its huge state space.
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Assertion Based Verification

6.1 Introduction

Model checking is not always feasible in particular when dealing with very complex
designs where exploring the whole state space results in a state explosion problem.
For this reason, assertion based verification techniques are more suitable as they turn
the property under verification into a monitor, checked by simulation and evaluated
using coverage metrics. In this Chapter, we present two approaches to add assertions
to SystemC: (1) directly adding assertions as external modules to the system; and

(2) automatically generating assertion monitors from PSL properties.

In [48] an approach is presented to add assertion checkers to SystemC. Our
work is different mainly in two aspects: (1) The properties in [48] are restricted to
the notation of property checker from Infineon Technologies AG then translated to
synthesizable SystemC instructions while we consider any PSL property; and (2)
SystemC is considered in [48] as a low level HDL while we do not put any restriction

on any subset of SystemC.
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6.2 Extending SystemC by SVA

6.2.1 System Verilog Assertions

The SystemVerilog standard is the result of an industry-wide effort to extend the
Verilog language in a consistent way to include enhanced modeling and verification
features. A key feature of SystemVerilog is the SystemVerilog Assertion (SVA) [2],
which unifies simulation and formal verification semantics to drive the design for

verification methodology.

The semantics of SVA are defined such that the evaluation of the assertions is
guaranteed to be equivalent between simulation and formal verification. This equiv-
alence ensures that multiple tools will interpret the behaviors specified in SVA in the
same way. Moreover; the unification of assertions with the design and verification
code streamlines the interaction between the assertion and the testbench to augment
the power of assertions. In particular, SystemVerilog allows assertions to communi-
cate information to the testbench and allows the testbench to react to the status of

assertions without requiring a separate application programming interface (API).

System Verilog provides two types of assertions: tmmediate and concurrent.

Immediate Assertions

Immediate assertions are procedural statements that can occur anywhere within al-
ways or initial blocks, and include a conditional expression to be tested and a set of
statements to be executed depending on the result of the expression evaluation. The

syntax of an immediate assertion is:

immediate_assert_statement =

assert(expression)|[pass_statement|else|fail _statement]]
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The expression is evaluated immediately when the statement is executed, ex-
actly as it would be for an if statement. The pass_statement is executed if the ex-

pression evaluates to true, otherwise the fail_statement is executed.

Concurrent Assertions

The real power of SVA, both for simulation and formal verification, is the ability to
specify behavior over time, which VHDL assertions cannot do. In fact, concurrent
assertions provide the ability to specify sequential behavior concisely and to evaluate
that behavior at discrete points in time, usually clock ticks (such as “posedge clk”).

The syntax of concurrent assertions is:

concurrent_assert_statement =
assert(sequential _expr_or_prop)|{[pass_statement] else

[fail_statement]]

The concepts and components that make up concurrent assertions can best be

understood as a set of layers, each building on the layer as described in Figure 6.1.

assertion block
. Methods inside the
/ Property declaration X :> assertion block
/ Sequential regular expressions C——,> Conditional statements

/ Boolean expressions \ > C boolean expressions

Events to tri th
/ Assertions directives\ :> ven's o ngger he

Figure 6.1: Mapping between SystemVerilog assertions and SystemC objects.

The basic function of an assertion is to specify a set of behaviors that is expected
to hold true for a given design or component. The Boolean expressions layer is the
most basic one, and specifies the values of elements at a particular point in time,
while the sequential regular expressions layer builds on the Boolean layer to specify

the temporal relationship between elements over a period of time. The property
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declarations layer builds on sequences to specify the actual behaviors of interest, and
the assertion directives layer explicitly associates these behaviors with the design and
guides verification tools about how to use them.

To ensure consistency between simulation and formal verification tools, which
apply a cycle-based view of the design, concurrent assertions in SystemVerilog use
sampled values of signals to evaluate expressions. The sampled value of signals is
defined to be the value of the signal at the end (for instance, at read-only synchro-
nization time as defined by the Programming Language Interface (PLI) [2]) of the
last simulation time step before the clock occurs. This way, a predictable result can
be obtained from the evaluation, regardless of the simulator’s internal mechanism of

ordering and evaluating events.

6.2.2 Extending SystemC by SVA

To add SVA to SystemC two options are possible: integrate the SVA as part of the
library or on top of the library. The first case presents a radical change of SystemC
requiring adding new constructors to the library (assert for example). Besides, the
SystemC simulator and semantics must be updated in order to manage and verify
correctly the assertions. This choice may seem to be the most efficient as assertions
will be defined in SystemC the same way they are integrated in SystemVerilog. Nev-
ertheless, considering the OO aspect of SystemC and its modular structure, it is easier
yet probably more efficient to add assertions on top of SystemC. In fact, any assertion
can be seen as a monitor having as input some of the design signals, performing a
verification operation and giving as output a status flag. The open question facing
this latter approach is how to update the design in order to connect the assertions
monitors.

Figure 6.2 shows the proposed methodology to construct and integrate SVA into
SystemC design. We first start by collecting the information about the environment

from the SystemC compiled code. To do so we consider the symbol file generated from



6.2. Extending SystemC by SVA 125

SystemC Assertion in
design SVA format

Assertion
validation

Assertion
compiler

____________

Assertion
-'-P( Design updater ]1% monitor
! Updated
! design
i [ Assertion integrator 74—
1

SystemC updated design containing
the assertion’s monitor

Figure 6.2: Extending SystemC by SVA.

the GNU-C-Compiler (GCC). This step is needed in order to localize which signal
belongs to which module. Then, the assertion is validated and compiled. The valida-
tion phase verifies the syntax of the assertion while the compilation phase performs

the link between the design variables and the assertion parameters.

In order to connect the assertion monitor to the design, this latter needs also
to be updated. In fact, the signals involved in the assertion must be transformed
to output signals in order to feed them to the assertion monitor. The list of signals
required to extract from the design is generated by the assertion compiler and input to
the design updater which performs the required modifications to the original SystemC
design. These modification will not affect the behavior of the design since they will

only get some signals connected to the assertion monitor as read-only.

The assertion module is then connected to the updated design. This module will
be instantiated in the main function of the SystemC design (sc_main) and connected
to the appropriate existent modules. The resulting code when executed will therefore

consider the assertion monitor as part of the design.



126 Assertion Based Verification

The assertion compiler generates the SystemC code that corresponds to the in-
put assertion which includes: Boolean expressions, sequential expressions and prop-
erties. We will consider Boolean variables as SystemC signals (sc_signal) in order to
get benefit of the object nature of this module and to be able to integrate any variable

as part of the monitor constructor section (containing the triggering conditions).

Sequential Expressions

System Verilog includes the ability to specify sequential expressions or sequences of
Boolean expressions with temporal relationships between them. To determine a match
of the sequence, the Boolean expressions are evaluated at each successive sample
point, defined by a clock that gets associated with the sequence. If all expressions are
true, then a match of the sequence occurs. The most basic sequential expression is
something like event! followed by event2 after three-clock cycles” which is represented
in SystemVerilog syntax as: “eventl # # 3 event2”.

In this previous example, the “##3” indicates a three-clock delay between
successive Boolean expressions in the sequence. Every sequence will be represented
in SystemC as a list of members of the assertion monitor. The clock cycles will be

represented as counters. The code corresponding to the previous example is given by:

sc_in<bool> eventl; sc_in<bool> event2;

sc_in<int> counter = 0;
The counter variable is updated in the sequence validation method as follows:

if (eventl)
counter = 1;
if (counter > 0)
counter++;
if (counter == 3) {

if (event?2)
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Table 6.1: SVA Sequence Operations.

Operation Syntax Meaning
Concatenation || seql ##1 seq2 | seq2 begins on the clock
after seql completes
Overlap seql ##0 seq2 | seq2 begins on the same clock
seql completes
Ended seql ##1 seq2 completes on the clock after
Detection seq2.ended seql completes
(regardless when seql started)
Repetition seql [*n:m] repeat seql a minimum of n
and maximum of m times.
First Match | first_match(seql) | if seql has multiple matches,

Detection consider the first one.
OR seql or seq2 compound sequence that matches
when seql or seq2 matches
End seql and seq2 | compound sequence that matches
when both seql and seq2 match
{
counter = 0; return TRUE;
}
else
{
counter = 0; return ERROR;
}

return Pending;

The main operations defined over sequences are summarized in Table 6.1.
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Property Declarations

The property layer allows for more general behaviors to be specified. In particular,
properties allow users to invert the sense of a sequence (e.g., when the sequence should
not happen), disable the sequence evaluation, or specify that a sequence be implied
by some other occurrence. The property construct allows these capabilities using the

following syntax:

property.declaration ::=

property_name|formal_item( , formal_item)];
assertion varaibles declaration
property_spect fication

endproperty

property_specfication =
property_name[formal_item( , formal_item)];
[clocking_events]

[disable iff (expression) | [not] property_expr

property_expr = sequence_expr | implication_expr

The important difference between sequences and properties resides in the fact
that these latter are triggered by signals other than clocks. As a result, the represen-

tation of a property in the assertion monitor will contain two parts:

e Property verification method: A method that is responsible for the verification

of the assertion.

e Triggering conditions: a list of conditions that activate the verification of the

assertion (a signal update for example).

As an illustration consider the assertion: “as long as the test signal is low, check

that the abort_seq sequence does not occur”. This can be written in SVA as:
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property pl;
Q@ (posedge clk) disable iff (test) not abort_seq endproperty

This assertion is represented in the SystemC assertion monitor as method trig-

gered when the signal test is low and performing the following code:

if(test.in()) {
if (abort_seq)
return ERROR;
else

return TRUE;}

We note that in practice, most sequential assertions are expressed as some form
of implication “when this happens, then that will happen”, and thus require the
assertion writer to specify the antecedent expression to trigger the assertion (for the
previously given assertion the condition was test.in() set to TRUE). The object nature
of the SystemC assertion monitor as a “SystemC Module” offers more flexibility to

define this kind of assertions.

6.3 Extending SystemC by PSL Assertions

To support SystemC, PSL can be either integrated as part of SystemC, or put on
top of the library. The first approach presents a radical change of SystemC requiring
the addition of new constructors and functionalities to the library (like assert and
assume). Besides, the SystemC simulator and semantics must be updated in order to
manage, support and verify the assertions and their verification process. Although,
this choice may seem to be very efficient, considering the object-oriented aspect of
SystemC and its modular structure, it is easier, yet probably more efficient, to add
assertions on top of SystemC. In fact, any assertion can be seen as a monitor keeping

track of some of the design signals, performing a verification operation and giving
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a status flag as an output. The open question with the second approach is how to
update the design in order to connect the assertion monitors.

The classical way to add PSL assertions to SystemC is to code them in C++.
However, this option has many drawbacks especially that the C++ language is not
adequate to write logical and sequential properties and formulas as defined in PSL.
Besides, to make sure that the embedding of PSL in C++ is correct, we must put
an important additional effort to validate the new assertion’s layer. It will hence be
more efficient to model the assertion in a language, like ASM, which offers two very
important features: (1) it can model state machines, and (2) it can be translated to
a C# code, which supports any other language in the .NET framework (in particular
C++).

Figure 6.3 describes our approach to extend SystemC with PSL assertions,

which consists of the following three main steps:
1. Updating the SystemC design to interface to the assertion monitor.
2. Generating the assertion as a C# code from its ASM description.
3. Integrating the C# assertion in the SystemC design.

Generating the table of symbols from the SystemC design is important in order
to validate the variables (names and types) that are used in the assertion. In fact,
while compiling the assertion, we are concerned with, first, its syntactical correctness,
and second, its semantical validity. In this latter, we check the type and the naming
of the assertion variables.

Once the assertion's structure verified, we translate it to its equivalent ASM
code. In our embedding of the assertion in ASM, we defined a one to one mapping
between the PSL assertion and their ASM embedding. Hence, the transformation is
purely syntactical, which guarantees the correctness of the embedded assertion.

In the validation phase of the assertion structure, we also generate a list of

updates required to prepare the design to integrate the assertion. For instance, the
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Figure 6.3: Extending SystemC by PSL Assertions

signals (variables) that are used in the assertion must be seen as external signals so
that they can be input to the assertion monitor. So, we provide the design updater
with a list of variables as defined by their unique identifier in the table of symbols.
Then, the design updater modifies the SystemC design to make the required variables
visible to the monitor. This transformation does not affect the behavior of the code

as it will only be accessed in a read-only mode.

Once the code is updated and the assertion is generated, the design integrator
will add the required instantiation of the assertion to bind it to the existing SystemC
design modules. The assertion monitor, acting as part of the design, can do the
following: (1) stop the simulation when the assertion is fired; (2) write a report about
the assertion status and all its variables; and (3) send a warning signal to other
modules (if required). Note that the internal code of the assertion is C# so the

designer can update it or do any other functionalities that can be coded in C#.
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6.3.1 Related Work

In {45], Gordon used the semi-formal semantics in the PSL/Sugar documentation
[1] to create a deep embedding of the whole language in the HOL theorem prover
[46]. The author developed the formal definition of the full PSL language in HOL.
The combination of PSL/Sugar and higher-order logic is quite expressive and provides
temporal logic constructs as higher level syntactic sugar for higher order—logic, thereby
enabling properties to be formulated elegantly. Gordon et al. [45] described how to
‘execute’ the formal semantics of PSL using HOL and investigated the feasibility of
implementing useful tools to conduct automatic verification of PSL from the formal
semantics. They implemented two experimental tools: an interpreter that evaluates
whether a finite trace, satisfies a PSL formula, and a compiler that converts PSL
formulas to checkers in an intermediate format suitable for translation to HDL to be
included in simulation test-benches. However, they did not provide any framework
for the verification of PSL for any implementation language.

In a similar work, Claessen and Martensson [16] defined an operational seman-
tics for a weak fragment of PSL, mainly the safety property subset of PSL, and then
proved the correctness of these semantics with respect to a denotational semantics.
They do not provide definitions for all PSL operators like clock operators and se-
quential composition, and yet, there is no execution for these semantics that provides

verification solution.

There has been a potential work on ASM verification as discussed by Borger
and Stirk [9]. Applying model checking algorithms on ASM was introduced in [108],
where transformation algorithms are provided to transform ASM models into different
verification tools. Two approaches were adopted: the first provides a transformation
to the language of a symbolic model checker, SMV [108], and the second to the MDG
verification tool [39]. Spielmann [97] investigated the problem of verifying a class of
restricted abstract state machine programs automatically. The work we present here,

is different since it provides a solution for the verification problem of system level
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design languages based on semantics definitions and executions of PSL and SystemC.

Stark et al. [99] used an ASM-based modularization technique to define a
structured sequence of mathematical models for the statics and dynamics of the Java
programming language and for the Java Virtual Machine (JVM), covering the com-
pilation of Java programs to JVM code and the JVM bytecode verifier. They present
proofs of correctness, completeness, and type safety for the language and the Java
machine. Borger et al. [8] used the method developed in [99] to define the semantics of
C# programs in ASM, which provided a simple way to reflect those run-time-related
features encountered upon executing a given C# program and allowed specifying the
static and dynamic parts of the semantics separately. The dynamic semantics of the
language is captured operationally by ASM rules which describe the run-time effect of
program execution on the abstract state of the program, the static semantics comes
as a declarative description of the relevant syntactical and compile-time checked lan-
guage features. In a complementary work, Stark and Borger [98] extended the mod-
ular definition of the semantics of C# in [8] by a new module for multi-threaded
C# focusing on purely managed, fully portable threading features of C# and the
.NET common language runtime. Jula and Fruja [62] provided an executable AsmL
semantics for these C# semantics. In a later work, Jula [61] extended the work in
[8] to handle C# 2.0 specific features like generics, anonymous methods and iterator
blocks.

ASM has been used thoroughly to define the operational semantics of program-
ming languages like C++, Prolog, SDL, and Standard ML [55]. However, these
semantics definitions provide no execution of the language semantics itself in order

to give a solution to design problems like verification.

6.3.2 Embedding PSL in AsmL

There are two ways to embed PSL properties into the design, either into the design

code itself or by adding them as external monitors. We adopted the first approach,
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where all the parameters of PSL properties are defined as objects. The objective of
the embedding is to reuse PSL properties, as embedded in AsmL, at lower design
levels since the AsmL tool can automatically compile them into a C# or .NET code.

This latter code can be compiled and executed with the concrete SystemC level *.

6.3.3 Illustrative Example I: Packet Switch

Assertions

For illustration purposes, we consider the following three PSL assertions for the packet
switch used in the previous Chapter.

The first assertion, Al, is intended to verify that if there is only one recipient for
the packet, and the output queue is not full, then the register that holds the packet
should be free in the next internal clock, and the packet should be received at the

output queue.

AssertionAl :
forall send in {0, 1, 2, 3}
if Reg[send].free == true and

Packet.dest0 and not OutQueue[send]. full and

not Packet.destl or Packet.dest2 or Packet.dest3

then at next SWCLK
Reg[send).free = true
OutQueue[0] = Reg[send]

The second assertion, A2, is intended to check the shortest path when sending
from sender ¢ to receiver 7, where the input queue is not full. This operation should

be performed in four internal clocks (SWCLK) or equivalently one external clock

(CLK).

AssertionA2 :
LThe details of the PSL embedding in AsmL are provided in the Appendix B.
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forall send in {0, 1, 2, 3}, forall recin {0, 1, 2, 3}
if send == rec and not InQueue[send). full and
Reglsend]. free == true and
OutQueuelrecl.empty == true then
OutQueuelrec] = Reg[send] in 4 SWCLK
and OutQueue[rec] = Reg[send] in 1 CLK

The third assertion, A3, is intended to check the (worst) longest path when
sender 0 transmits to receiver 3, input queue 3 has only one free slot, all other input

queues are full, and the output queue 0 is full. This assertion is specified as follows:

ifsend == 3 and rec ==
and InQueue[3].size ==
and InQueue(0]. full and InQueue[l]. full
and InQueue[2]. full and OutQueuel0]. full then
OutQueuel0] == Reg[3] in 8 to 19 SWCLK

Results

The AsmL tool is used in order to generate automatically the corresponding C# code
for the above PSL assertions. Figure 6.4 shows, as the example of the integration of
the generated C# model for assertion A1 with the SystemC model. The connection
‘to the existing objects in SystemC model is done using read-only signals extracted
from the packet main module and the switch clock generator.

The simulation of the new model that combines the original design and the in-
tegrated PSL properties resulted in successfully verifying the correctness of assertions
A2 and A3. Assertion Al, however, was violated, indicating a bug in the SystemC
packet switch model. This bug showed, after further inspection of the code, that the

switch will free any packet coming from senders 0, 2 and 3 and having at least two
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Figure 6.4: Integrating Assertion A1 with SystemC Model of the Packet Switch

destinations including port 1 before routing it to output port (different from port 1).

The erroneous code is the following:

if (R1l.val.destl||R1.val.destl||R1.val.dest2||R1.val.dest3)

Rl. free = true;

where the condition to free the register does not check if the packet is having as desti-
nation the port 0 and uses a double copy of the check about the port 1 (R1.val.destl).

The correct condition should be:

if (Rl.val.dest0||R1.val.destl||R1.val.dest2|| R1.val.dest3).
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6.3.4 Illustrative Example I: Simple Bus

We consider a bus structure with N masters and M slaves?. Each master is identified
by a unique priority, that is represented by an unsigned integer. There are two
possible modes for the bus: (1) Blocking Mode, where data is moved through the
bus in a burst-mode. Here, the transaction cannot be interrupted by a request with
a higher priority, (2) Non-Blocking Mode, where the master reads or writes a single

data word. Figure 6.5 shows the protocol used in both modes of operation.

Bus Properties in PSL

For illustration purposes, we considered two properties for the bus architecture: one

for the non—blocking master mode, and the other for the blocking master mode.

Property P1:
If ( (MasterBlock.Request = true) & (BusStatus = OK) &
(MasterBlock. Priority is the highest) ) then
(MasterBlock[3] = OKSend) &
(BusStatus[3] = Used) &
(MasterBlock. DestSlave[4] = Recev) &
(MasterBlock. DestSlave[5] = Ack) &
(MasterBlock[7] = Done) &
(Bus[8] = Ready)

meaning that when a blocking master generates a request while it has the highest
priority to use the bus and the bus is available, then at the third clock cycle, the
status of the master should be OK Send, and the bus should be in the Used status.
Then the status of the destination slave should be Recev at clock cycle 4, and Ack at
clock cycle 5. The status of the master should be Done at clock cycle 7, and finally

2A more detailed description of the bus structure is provided in Appendix C.2.
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the bus becomes ready to handle new requests (i.e., bus status set to Ready) at clock

cycle 8. This property is illustrated as a sequence diagram in Figure 6.5(a).

Property P2:
If ( (MasterNBlock. Request = true) & (BusStatus = OK)
& (MasterNBlock. Priority is the highest) ) then
(MasterNBlock[3] = OKSend) &
(BusStatus[3] = Used) &
(MasterNBlock. DestSlave[4] = Recev) &
(MasterBlock[5] = Done) &
(Bus[5] = Ready)

This property can be interpreted in a similar way as property P1 and is illustrated

in Figure 6.5(b).
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Figure 6.5: Simple Bus Modes: (a) Blocking Mode (b) Non-Blocking Mode.

Properties in PSL-ASM

Both properties were defined in AsmL based on the embedding of PSL layers. Figure
6.6 shows the definition of P1 as an example. The property is included in a PSL
unit as an implication of two sequences seql and seq2, which are formed from basic

Boolean items (Bil() and Bi2() for seql and Bi3() through Bi7() for seq2). The

construction of the above unit includes four steps:
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Creating the basic Boolean items: Bil() to Bi7().

Creating the sequences: seql and seq?2.

Constructing the implication property (P1) from seql and seq2 using the im-

plication operator.

Putting P1 into an embedded PSL unit.

//Blocking Masters Instances
var masterBl as C_MasterBlocking = new C_MasterBlocking yar

masterB2 as C_MasterBlocking = new C_MasterBlocking MASTERSB =
{masterBl, masterB2}

Bi1l() as Boolean Bi: Boolean Item
return exists master in MASTERSB where
master.m_status = MasterReq
. Bi7() as Boolean
return bus.m_status = BusOK

var seql as PSL_SERE = PSL_SERE(2)
seql.AddElement (paraml, param?2)
var seq2 as PSL_SERE = PSL_SERE(5)
seq2.AddElement (Bi3, Bi3, Bi4, Bi5, Bi6, Bi7)
var property as PSL_FL_Property = PSL_FL_Property()
property.AddImplication(seql,seq2) var Assertionl as
PSL_VerificationLayerUnit = new
PSL_VerificationLayerUnit(‘‘Assertionl’’)
Assertionl.AddProperty(property)

Figure 6.6: Definition of the PSL Property P1 in AsmL.

6.4 Application: PCI Bus

In order to evaluate our approach with complex yet real SystemC designs, we con-

sider as application a PCI (Peripheral Component Interconnect) [50] Local Bus. The
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PCI bus is a high performance bus for interconnecting chips, expansion boards, and
processor/memory subsystems. It was adopted as an industry standard administered

by the PCI Special Interest Group (PCI SIG) [50] 3.

6.4.1 Assertions Specification

In addition to the properties defined in [95], we considered several other more complex
properties, which define a complete sequence of transactions over the bus. In what

follows are presented three sample properties:
Property P, :

forall Master in {Master0, ..., Masterd}
if (\Master.REQ == true) then

eventually (\Master GNT == true)
meaning that if a master requests the bus (!Master. REQ == true) it will get access
to it in the future (!Master.GNT == true), which guarantees that no master will

use the bus indefinitely.
Property P; :
forall Master in {Master0, ..., Masterd}

forall Slave in {Slave0, ... Slaved}
if (\MasterGNT == true) and
(!Master. DEST == Slave.ID)
then eventually ('Bus. FRAME == true) and
('Master TRDY == true) and
(!Slave[ID|.TRDY == true) and
(\Master.GNT == false)

3A detailed bus description is provided in Appendix C.3.
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meaning that if a master is selected by the arbiter, then it will be able to get ac-
cess to the bus by setting !Bus. FRAME. Thereafter, its destination slave will be

activated by setting its !Slave. TRDY . Finally, the master will release the bus once
'Master.GNT is set to false.

Property Ps :
forall Master in {Master0, ..., Masterd}
if (!Master.STOP == true) and

(\Master.GNT == true) then
eventually{(!Bus. FRAME == false) and
forall Slave in {Slave0, ... Slaved}
(1Slave. TRDY == false) and
(Slave. IDSEL == false)}

meaning that if a master stops a request, then all slaves will be released.

6.4.2 Experimental Results and Discussion

Table 6.2 shows a simulation evaluation of the PCI bus when implemented in Sys-
temC. We display the average execution time per clock cycle as a function of the

number of masters and slaves connected to the bus?.

6.5 Summary

In this Chapter we described two possible approaches to integrate assertions to Sys-
temC. In both cases, the assertion is considered as an external monitor connected in
read-only mode to the original SystemC design. In the first approach, we proposed
to directly generate monitors from SystemVerilog assertions. While, in the second

approach, we used a PSL embedding in AsmL in order to automatically generate

4All experiments were performed on a 2.4 GHz Pentium IV and 512 MB of RAM (PC 2700).
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Table 6.2: Simulation Results.

Number of Average Execution
Masters | Slaves | Time per Clock Cycle (107%)

1 24.31
29.32
29.766
30.891
32.744
34.032
36.828

W W DN N W e
W N W N =N

C# assertion from properties encoded in PSL. Experimental results, show a very fast
simulation models integrating assertions, which illustrates the suitability of using our
ABV methodology with SystemC. The question of enhancing the assertion coverage

by simulation is discussed in the next Chapter.
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Enhanced Simulation Coverage

7.1 Introduction

In the last Chapter we present two possible approaches how to integrate assertions
to SystemC. However, the objective of the verification process is not only to write
assertions but to verify them. This latter task is usually performed using test vectors
generation tools mostly based on random processes. This kind of blind simulation does
not guarantee that the assertion will be covered during the test execution. Therefore,
it is very important to consider a smarter and more efficient test vector generation
approach. For this reason, we propose to optimize tests at TLM and, then, to reuse
them at RTL. To bring into play such an idea, two main questions must be answered
at the transaction level: (1) how to measure the coverage? and (2) how to improve
it?

As a solution to the coverage measurement question, we propose a layered design
for verification approach involving both TLM and RTL. At the former level, the design
is modeled in Asml where communication between system’s components relies on
direct functional calls. This simplified model is more suitable for the generation
of the system’s FSM. Raising the level of abstraction tackles the problem of state
explosion, usually faced with RTL designs. Once the FSM generated, we define a

143
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functional coverage in terms of state space coverage. For example, if we want to
check a read operation, we define it as the set of states that must be visited in every
operation.

In order to improve the coverage, we propose to use a genetic algorithm (GA)
where the target is to optimize the random test generation. The basic concept is to
find a good random distribution of the inputs’ ranges in order to ensure a higher level
of coverage. The final output of this operation is a test vector generator with a high
coverage rate (at least in comparison to blind random simulation) w.r.t. a predefined
objective.

The test generator produced using the GA optimization technique at transaction
level is reused to validate the RTL design. A bi-simulation relation between both
models guarantees that the coverage remains the same w.r.t. the same assertions.
In general, such a relation is not guaranteed. For instance, designers may modify
certain parts of the code for optimization purposes, for example, when writing the
RTL model. Hence, we propose to compare the coverage results for the RTL level
using our GA and using the random simulation provided by the commercial tool

Specman of Verisity [106].

7.2 Related Work

Genetic algorithms have already been used for a broad range of applications. In
contrast to other approaches, Godefroid et al. [41] addressed the exploration of large
state spaces of concurrent reactive systems as defined for model checking. However,
this work was restricted to simple Boolean assertions and was based on BDDs which
is not suitable for high level languages like SystemC. In contrast to [41], we propose
to add a static analysis phase of the code before applying the genetic algorithm. We
also considered a chromosome-encoding based on weighted probability over the space

of the possible values of the program variables. In this work, we propose to: (1) use
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AsmL to implement transaction level models; (2) define a coverage as function of the
system’s FSM (generated from the AsmL model at TLM); (3) initialize the GA using
the information gathered from the assertion and the system’s FSM; and (4) employ
TLM models as intermediate step in order to identify efficient test generator for RTL
designs.

There exist a variety of efficient EDA tools for test and assertion coverage,
e.g., Specman Elite [106] of Verisity, TestBuilder {12] from Cadence and TestBencher
Pro [100] from SynaptiCAD. They use a user-defined constrained random simulation
in order to perform higher functional coverage. However, these tools do not take
advantage from the design specific properties. Besides, they relate the coverage to
the number of times the assertion was executed while a correct evaluation has to
consider what portion of the assertion’s state space was covered. Therefore, current
tools were developed for low HDL level designs (using Verilog and VHDL) and do not
define coverage metrics for TLM languages such as SystemC assertions. In this work,
we compare coverage results obtained using our approach to the output of Specman

Elite tool for the same RTL model.

7.3 Proposed Methodology

Performing a full coverage of a system’s state space using simulation is not feasible.
Consequently, more interest has to be focused in order to develop smart verifica-
tion approaches. In our proposed methodology we aim to make use of two features:

transaction models and genetic algorithms.

Transaction models run faster than timed models. Avoiding clocks and raising
up the level of abstraction by using channels and direct functional calls accelerates
the simulation. Furthermore, these models are conceptually closer to the system
specification. This latter is generally a collection of properties that could be verified,

as assertion monitors, by simulation. Running faster simulation may result in better
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coverage. Confirming such a result requires defining a precise measurement for the
coverage. Classical ways to measure the coverage at RTL (code, condition, assertion
coverage, etc.) do not give a realistic evaluation about which functionality was ver-
ified. For this reason, we propose to take advantage of transaction models to define

assertions that could be used to verify the final RTL product.

TLM Level
r Model in AsmL '———————j
éiTranslation AsmL Tool ]
: Model FSM
i |

—( SystemC TLM model ] [ Assertions Definition ]

1. Dependency
'2. Inputs ranges

y
Test program generator 4—{ Initial DNA generation J

Instantiation

..................................

RTL Level )|
SystemC RTL model ) : 3
Guided Simulation | |[Random Simulationy
+ Translation
[ Verilog model ]
Coverage
' Evaluation
Specman Tool > Comparison el
Coverage
Evaluation

Figure 7.1: Proposed Methodology.

Generating finite state machines (FSM) from transaction models provides a way
to define assertion as sequence of states. In our methodology of Figure 7.1, we pro-

posed to use AsmL [51] as TLM modeling language. T'wo main reasons influenced our
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choice: the language features and the FSM generation algorithm available for models
written in this language. For instance, AsmL is an object-oriented language rich with
several mathematical constructs and data abstraction. A number of algorithms have
been developed around this language, collected under the AsmL tool (Asmlt) [74],
developed at Microsoft Research. In this work, we make use of the algorithm gener-
ating FSMs from AsmL models in order to extract the system’s FSM. This latter is

adequate to define functional coverage as function of the system’s states.

Enhancing random simulation should always consider the assertion(s) under
verification as reference. Testing a memory read access, for example, should only
focus on the read port operation. For the general case, we propose to use the FSM
generated from system’s TLM model (in AsmL) as a guidance for relevant variables
and input values for testing a specific operation. This is possible by looking into
the state variables involved in the set of states representing the assertion. Therefore,
optimizing the coverage becomes an issue of guiding the simulation to feed the system
with particular values. Unfortunately, at TLM, it is not always possible to find
a direct relation between the variables involved in the assertion and the system’s
inputs. Hence, what we can extract from the FSM is an over-approximation of this
relation. It follows that we cannot define precisely the complete set of tests to validate
a specific functionality. A solution to enhance the test generation process is to use

genetic algorithms.

We use the initial knowledge gathered from the generated FSM as an initial-
ization for a genetic algorithm aiming to enhance the assertions coverage. The input
of the algorithm is a set (population) of test vector generators. After applying a
number of tests, the generators are updated to form a new community. The fitness is
a function of the assertion coverage. Theoretically, by iterating this process, we will
obtain a generation of efficient test vectors generators w.r.t. to the assertion function

criteria.

In this work, we propose to generate the RTL design from the TLM model by
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instantiation. This approach may not work for all kind of designs. But, generally,
for pure hardware designs, it is always possible to translate TLM to RTL through
instantiation. In fact, transaction modeling is an intermediate step to enhance the
verification of the design at RTL. For this reason, once the coverage achieved at
transaction level is satisfactory, we perform two evaluation processes at the RTL. We
compare the coverage achieved using the best generation of test generators output of
the previous phase to the coverage obtained using: (1) random simulation; and (2) the
commercial tool Specman [106]. The first comparison aims to show that improvement
of the coverage is preserved when lowering the abstraction level from TLM to RTL.
The second comparison targets to illustrate the efficiency of our proposed approach
when compared to commercial well-established tactics involved in the tool Specman

tool.

7.3.1 AsmL TLM Models

The system’s TLM model in AsmL is a behavioral specification. It includes a light
description of the system’s functionalities. All the components are communicating
using transactions involving direct functional calls. The simulation environment in-
cludes the notion of updates, i.e., a variable value is not changed until an update is
requested. For this reason, we embedded a light simulation environment in order to
manage events and processes. ‘

The system components are objects instantiations of classes (also called Module$; /)

defined according to Definition 7.3.1.

Definition 7.3.1. (AsmL TLM Module: Module?;,,)
An AsmL TLM module is a set (ASpumem, ASmtn, AScir), where ASpurem is a set
of the module data members, ASyy, is a set of methods (functions) definition and

AScyr 1s the module constructor.

For every method in ASppem corresponds a Boolean pre-condition enabling
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its execution. This is a critical issue in constructing the actual AsmL TLM design
because a wrong definition of the pre-condition may totally change the behavior of
the system and consequently modify the verification results. The pre-condition rules
define the way of communication between the design’s components. The design is

defined as a collection of modules and an initialization method according to Definition

7.3.2.

Definition 7.3.2. (AsmL TLM Design: Designf; /)
An AsmL TLM design is a set (LModule?; ,,, INIT), where LModulef};,, is a set of
AsmL TLM modules and INIT is the initialization function of the model.

In order to perform adequate partial and total updates, we make use of a light
simulation manager partially described in Figure 7.2. This simulator includes an
initialization function that is executed after all the design’s modules have been ini-
tialized (condition: SystemFlag = STARTED). The same method includes a second
pre-condition setting that the method is only executed at the initialization phase
(condition: SimStatus = INIT). This illustrates how the pre-condition constructor is

used to manage the exploration algorithm performing the reachability analysis.

7.3.2 FSM Generation

We use an FSM generation algorithm defined by Gurevich et al. in [51]. It requires
the following inputs: domains, methods, actions and variables (optional inputs are
filters, action groups and properties). The transitions in the FSM are the method
calls (including argument values) in the test sequences. The methods in the model
program that appear in the transitions are called actions. The states in the FSM
are determined by the values of selected variables in the model program, called state
variables. The algorithm generates the FSM by executing the model program in a
special execution environment. It keeps track of the actions while recording the states

it visits. This process is called ezploration.
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class SimManager
public var m_K as ClockEvent = CLK_UP // Main system clock
public var m_Ks as ClockEvent = CLK_DOWN // Negation of the main clock
public var m_E as BANK_|D = BANK_0

public SimManager()

public SimManager_Init()
require SystemFlag = STARTED and SimStatus = INIT
me.m_K = CLK_UP //set first clock to high
me.m_Ks := CLK_DOWN //set second clock to down
forall win WPORTS
if(w.m_E = m_E) then
w.LA1_WP_OnReceiveData_Depth := any rec | rec in {true,false}
else
w.LA1_WP_OnReceiveData_Depth := false
forall rin RPORTS where rm_E =m_E
if(rrm_E = m_E) then
r.LA1_RP_OnReadData Depth := any rea|rea in {true,false}
else
r.LA1_RP_OnReadData_Depth := false
forall s in SRAMS
s.LA1_SRAM_OnWriteData_Depth := false
SimStatus ;= CHECKING_PROP

public SimManager_Restart()

require SystemFlag = STARTED and SimStatus = STOPPED
SimStatus := INIT

Figure 7.2: Light Simulation Manager in AsmL.

The generated FSM will, according to the algorithm’s configuration options,

represent only a portion — an under-approximation — of the huge FSM that would

result if the model program could be explored completely. The FSM generation

process requires a set of Boolean guards in order to reflect the state distinction that

the model designer cared enough about to make explicit. The algorithm takes a

distinguishing sequence as an additional input to produce corresponding equivalence

classes, called Hyperstates.

The FSM generation algorithm in [51] requires the definition of the following:

e data types and static functions

e declarations of state variables vy, vg, . .. vs (v refers to variable and s is the total

number of states) that characterize the state space of the considered system

e rules that describe the transition relation of the system: ¢, ca,. ..

¢y (c refers to
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a Boolean condition (rule), v is the total number of rules).

The classical problem challenging FSM based approaches is state explosion. For
this reason, the notion of states indistinguishability represents the main key feature
of the algorithm in [51] in comparison to other techniques. Furthermore, this notion
fits well to the conceptual structure of TLM models where states can be combined

according to their affiliation to a specific transaction.

Definition 7.3.3. (States Indistinguishability)
Let C = {ci(v1,va,...vs),7 € {1...n}} be a set of Boolean conditions on state vari-

ables. Two states s, = {a1,as,...as} and s, = {b;,bs, ... bs} are indistinguishable if:

Ve € C, c(sy) = c(sp)-

Defining the conditions in C is an additional effort required in building the
TLM models in AsmL. A good tactic to surmount this problem is to define a specific
condition ¢ in C for each transaction. Hence, a natural link will be defined between

transactions and hyperstates.

7.3.3 Assertion Scope

An assertion is as a monitor tracking the system’s state to verify a set of conditions.
Considering a generated FSM, the assertion could be represented as a collection of
hyperstates and transitions (sometimes portion of the global FSM). Classical FSM
coverage, used at RTL, always deals with the full system’s FSM (state or transition
coverage) [60]. Generally, the problem of state explosion raises when considering
data paths. That is why, most of the verification effort is focused on the control
path. In contrast to the classical approaches, our target is not to go for all possible
combinations raising from the system’s FSM (which could be infinite). We define the
assertion coverage as a coverage of a set of hyperstates (for the sake of simplicity,
we will use the word state to refer to hyperstates in the rest of this Chapter) and

transitions in the generated FSM. In Definition 7.3.4, we define an assertion as a
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collection of state variables and Boolean conditions involving at least one of the

assertion’s state variables.

Definition 7.3.4. (Assertion Definition: A)

Let Designi;,, be an AsmL model, V = {v,vy,...vs} its state variables and C =
{ci(vi,vq,...vs),5 € {1...n}} be a set of Boolean conditions on state variables. An
assertion A is the set (A,, A.) where A, is a subset of V and A, is a subset of C

involving at least one variable v; € V.

Checking the assertion does not involve all the states in the FSM. The subset
that we are interested in is restricted to the states where one of the assertion’s guards

(conditions) is evaluated to true. This subset is called Assertion Scope Asc,.

Definition 7.3.5. (Assertion Scope: Age)

Let Design#;,, be an AsmL model, F its generated FSM, V = {vy,vy,...v,} its
state variables, C = {c¢;(v1,va,...0s),% € {1...n}} be a set of Boolean conditions on
state variables and A = (A,, A.) be an assertion. Then, the assertion scope is Ay, =

{s € F, where Ic € A.|c(s) = true}.

The assertion scope, Ase, collects all the states that are of interest for the
assertion A. Definition 7.3.5 does not guarantee that the assertion’s scope will be
an automata [104] (the commonly used mathematical model to represent system
properties). Nevertheless, since we are interested in verifying the assertion using

simulation, defining the assertion scope As, as a set of states is sufficient.

7.4 Coverage Evaluation

Considering the assertion’s definition and scope, we propose two principle coverage
metrics: state coverage and transition coverage. In contrast to the RTL classical

coverage, we are dealing with hyperstates. Furthermore, we are not looking into
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verifying the coverage of the whole system’s FSM (which can be infinite or very
iarge).

A trivial way to define the FSM state coverage is to count the number of states
visited by the test vectors over the total number of states. This kind of coverage
cannot be used when the FSM is formed from hyperstates. Visiting a hyperstate
does not only depend on the state itself but also on the guards elements of the set
of Boolean conditions on state variables, C. It is possible for a guard to be true
for different combinations of the state variables. Therefore, counting all possible
combinations getting to a hyperstate is mandatory for getting a true evaluation of

the state’s coverage.

7.4.1 State Coverage

Before giving the state coverage’s definition, we first introduce the notion of assertion
state space, Asp. This latter refers to all the possible state space combinations involved

in the assertion according to Definition 7.4.1.

Definition 7.4.1. (Assertion State Space: Agp)

Let A = (A,, A;) be an assertion. The assertion state space is:

Agp = { (ve1,%e,...0s) instance of
(v1,09,...0s) € Ay |

dec € A.|c(vy, v, .. .vs) = true}

where (ve1, Ve, - - - Ues) 18 & concrete instance of (vq, v, . .. vg).

Considering concrete instances of variables in Definition 7.4.1 is important be-
cause it is possible to use abstract variables in AsmL. The number and the nature of
the concrete elements depend on the variable’s domain.

Next, we use the assertion’s state space definition, in order to evaluate the

assertion coverage.
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Definition 7.4.2. (State Coverage: S, )
Let A be an assertion, A, its scope and A, its state space. Let Tsp = {(Vte1, Vtea, - - - Vtes)
concrete instance of (ve,Vig, ... vs) | vy € Asp} be a set of test vectors. The state

coverage obtained by executing T, is:

S _ Card(TsE)
€OV " Card(Asp)

where Card is the set’s cardinality.

The state coverage, S.,, computes the fraction of states (element of the asser-
tion’s state space) visited during the execution of the test vectors’ set. An optimal
testing case will provide a state coverage equal to one. For a general graph structure,
we cannot guarantee the existence of an optimal test sequence. However, when the
FSM is a connected graph, Theorem 7.4.1 guarantees that such an optimal case exists.

The theorem’s proof provides a construction of such a sequence.

Theorem 7.4.1 (Optimal Test Sequence for Sey)
Let Design#;,, be an AsmL model and F its generated FSM. If F is a connected

graph, then, there exists a test sequence T, such that Seoy = 1

Proof 7.4.1. If F is a connected graph, then, for any two states a and b in F, there
exists a path from a to b. In this case, the proof of the theorem can be done by
constructing a test sequence satisfying Card(Tsp) = Card(Asp). Such a test sequence
is formed from a set of test vectors each starting from the initial state and getting
to a state in the assertion’s state space A,,. By defining at least a path for every

element in Ay, we ensure that Card(Ty,) = Card(Asy).

7.4.2 Transition Coverage

We define transition coverage, Te,,,, by identifying all the states involved in a transition
from or to a state element of the assertion’s space. In following, we first introduce in
Definition 7.4.3 the assertion transition space, A;y. Then, we will define the transition

coverage.
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Definition 7.4.3. (Assertion Transition Space: Ap)
Let Designf;,, be an AsmL model, F its generated FSM, V = {v,vy,...v,} its
state variables, C = {c¢;(v1,vs,...vs),7 € {1...n}} a set of Boolean conditions on

state variables and A = (A,, A.) an assertion. The assertion transition space is:

Ap = { (ve1,Ve2,...vcs) instance of v € V |
Jv, € Ay and tr € T |

(tr(v,vs) = true) V (tr(v,, v) = true)}
where T = {try,...tr,} is the set of the transition in F.

Similarly to the assertion state coverage (see Definition 7.4.2), we can define

the assertion’s transition coverage, T, using the assertion transition space, Ay,.

Definition 7.4.4. (Transition Coverage: T¢,y)
Let A be an assertion, A, its scope and A, its state space. Let Tty = {(Vic1, Vic, - - - Vtes)
concrete instance of (vi1,Usa, ... Vts) | Vu € Ag} be a set of the test set. The state

coverage obtained after executing T, is:

T — CG,T‘d(TtE)
cov Card(A¢p) "

The transition coverage, T,.,, computes the fraction of states (element of the
assertion’s transition space) visited by a test vector. The optimal test case will
provide an assertion transition coverage equal to one. When the FSM is a clique
graph, Theorem 7.4.2 guarantees that such an optimal case exists. The theorem’s

proof provides a construction of such a sequence.

Theorem 7.4.2 (Optimal Test Sequence for Teo,)
Let Design; ,; be an AsmL model and F its generated FSM. If F is a clique graph

(complete graph), then, there exists a test sequence Ty, such that Teo, =1

Proof 7.4.2. If F is a clique graph, then, for any two state a and b in F, there
exist a transition from a to b. In this case, the proof of the theorem can be done by

constructing a test sequence satisfying Card(Ty,) = Card(Asp). Such a test sequence
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is formed from a set of all test vectors each starting from the initial state and getting

to a state in the assertion’s state space (As,). By covering all the elements in Ay, we

ensure that Card(Ty,) = Card(Ay).

7.5 Enhancing the Coverage

Theorems 7.4.1 and 7.4.2, respectively, guarantee the existence of optimal test se-
quence (with coverage equal to one) for the particular cases of connected and clique
graphs, respectively. However, in the general case, finding or even proving the exis-
tence of an optimal test sequence is not trivial. Furthermore, even when an optimal
sequence exists, its size could be very large. Hence, in this section, we propose a
genetic algorithm based technique aiming to optimize the coverage using a randomly

generated test sequences.

7.5.1 Genetic Algorithm

Genetic algorithms belong to a family of computational models inspired by evolution
[52]. They encode a potential solution to a specific problem on a simple chromosomes
like data structure and apply recombination operators to these structures to preserve
critical information. They evolve candidate solutions to problems that have large
solution spaces and are not amenable to exhaustive search or traditional optimization
techniques. This is the reason why they are often viewed as function optimizers. Since
their introduction by Holland [52], genetic algorithms have been applied to a broad
range of learning and optimization problems [89].

Genetic algorithm is any population based model that uses selection and re-
combination operators to generate new sample points in a search space. Typically,
a genetic algorithm starts with a random population of encoded candidate solutions
(test generators for our case), called chromosomes. Through a recombination process

and mutation operators, it evolves the population towards an optimal solution. The
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challenge is to design a genetic process that maximizes the likelihood of generating
an optimal solution. This objective can be guaranteed by applying a number of steps.
First, we evaluate the fitness of each candidate solution in the current population,
and select the fittest candidate solutions to act as parents of the next generation of
candidate solutions. Then, the selected parents are recombined (using a crossover op-
erator) and mutated (using a mutation operator) to generate offsprings. The fittest
parents and the new offsprings form a new population, from which the process is
repeated to create new populations.

The state variables of the system are classified into three groups: inputs, outputs
and internal variables. This step is required in order to define the connection between

the system and test vectors generator.

Definition 7.5.1. (System Variables Classification)
Let Design?;,, be an AsmL model and V = {v1, vq,...v,} a set of its state variables.

We classify V into three subsets:

Vin = {v €V |wvisan input variable}
Vo = {v €V |wvisanoutput variable}
Vit = {v €V |wvisan internal variable}

In our context, the search space to be explored is the assertion’s state space Agp
(see Definition 7.4.1). Candidate solutions are finite sequences of input ranges and
probability weights. Each candidate solution is identified by a unique chromosome
(a finite string of bits). The information encoded in the chromosomes is composed
of: (1) a list of input variables; (2) their domains (see Definition 7.5.2), and (3) a
probability distribution of the domain (see Definition 7.5.3).

Definition 7.5.2. (Variable Domain)
Let Design?;,, be an AsmL model and V;, its input variables set. To each variable

v € Vip, there is a corresponding domain d.
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Definition 7.5.3. (Variable Domain Distribution: p)
Let Designf;,, be an AsmL model and Vj, its input variables set. Then, for every
variable v € V;, corresponds a function p providing the variable’s values distribution

over its domain.

Definition 7.5.4. (Chromosome Encoding)
Let Design#;,; be an AsmL model and V;, its input variables set. Then, the test
generator’s chromosome is the set Chrom = (V;,,, D;, B)).

where:
e D;={dy,dy,...ds} is the set collecting all the variables domains

e P, ={py,pa,...Ds} is the set collecting all the variables distribution.

The chromosome encoding is the most important aspect of our algorithm. The
variable values generation is controlled by their domains distributions. For example,

for a variable of type Integer, we can use the following chromosome encoding:
e Variable Domain d = [—2'6,216 — 1]
e Variable Domain Distribution:

— p([-2'%,0[) = 0.3

— p([0, 216 — 1)) = 0.7

7.5.2 Fitness Criteria

The proposed fitness criteria serves to guide the genetic search towards covering
the whole assertion’s state space. The intuitive idea is to modify the shape of the
variable’s domain distribution, p, in order to accomplish a better coverage. For the
sake of improving the efficiency of the algorithm, we keep track of the best and

worst chromosome fitness in each generation; if both fitness values become equal, we
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increase the mutation rate, in order to help the genetic evolution get out of local
maxima. Once there is an improvement in the overall fitness, we restore the original

mutation rate to continue the evolution normally.

Definition 7.5.5. (Test Vector Generator: Tgen)
Let Design;,, be an AsmL model and V, its input variables set. Then, a test vector

generator is defined by a unique chromosome encoding Chrom.

For every coverage, there is a corresponding fitness function. For state coverage,
Seov (see Definition 7.4.2), the fitness function is given by Definition 7.5.6 where the
fitness identifies the best test generator by checking for the one having a maximum

state coverage.

Definition 7.5.6. (Fitness Criteria for State Coverage: Fseo)
Let Design4;,; be an AsmL model, V;, its input variables set, A be an assertion,

Asp its space state and T = {T}4,,, T& T} a set of n-test generators. Then,

en? " °

the fitness criteria corresponding to state space coverage is:

Card(TsiE) )

Fseon = 7177'0‘:5 (SCOU> = ’I;I”LCLHI (CaTd(Asp)

) Gen€ Gen T .
T 3 1
where Ty, is a sequence of test vectors generated by T,

The fitness criteria corresponding to the transition state coverage is provided in

Definition 7.5.7.

Definition 7.5.7. (Fitness Criteria for Transition Coverage: Freoy)
Let Design?;,, be an AsmL model, V;, its input variables set, A be an assertion,

Asp its space state and T = {T3,,, Téen: - - - Titen} @ set of n-test generators. Then,

en?

the fitness criteria corresponding to transition state space coverage is:
(Card(Tt‘ )

Frep, = Cnaw (TCOU) = mar CaT‘d(Atp))

. TGeneT TCiv'eneT .
T3 1
where Ty, is a sequence of test vectors generated by T¢.,.

The genetic mutation operation updates the set of test generators, 7 =

{TEons Téens - - - Té.n }, according to the coverage results. We propose to deduce the
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new population of generators using the following operations: inheritance, mutation
and recombination. We keep track of all the populations using a unique sequence

S €4TGen-

Definition 7.5.8. (Generations of Test Generators: Seqrgen)
Let 7; be a set of test generators. Then, the sequence of generations of test generators
is:

Seqrgen = {11, T2y, Tty -, T}

where:
e 7T, is the initial generation.

e Vi | 1 < ¢ < m,7; is the updated generation obtained from 7;_, by applying

inheritance, mutation and recombination operations.

The convergence of the algorithm to a better solution w.r.t. the fitness criteria
is granted if the sequence Seqrgen is increasing w.r.t. an order based on the coverage.
Such a result cannot be derived for a general case. It requires defining precisely: (1)
the variables domains; (2) the variables domains distributions; and (3) the inheritance,
mutation and recombination operations. In general though, using a simple uniform
distribution and preserving the best generator from the previous generation grants

that the sequence will not be decreasing.

7.5.3 Coverage Preserving From TLM to RTL

The most critical step in our methodology of Figure 7.1 concerns the generation of
the RTL implementation from the TLM models. We propose to derive manually
a synthesizable RTL implementation from a SystemC TLM design. Generally, it
is better to start with the computation units. The RTL design includes flip-flop
descriptions, register size and clock cycle accurate controls. Then, communication

protocols can be refined. This process employs conventional ports, using signals
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like standard logic or Boolean. Communication protocols are implemented internally
to each channel, and the synchronization is carried out using clock signals. The
abstraction of data types cannot be used anymore. From a practical point of view, it
is more efficient to focus on the problem using a hierarchical approach. It is useful,
for example, to concentrate on refining modules and then refining communication, as
done here.

Lowering the level of abstraction to RTL may modify the coverage results gained
at transaction level. Theorem 7.5.1 guarantees the preserving of the coverage if both

FSM's resulting from the RTL and TLM models are bisimulate.

Theorem 7.5.1 (Coverage Preserving)
Let Designriy be a TLM model and Frpp its generated FSM. Let Designprr be
the RTL implementation obtained from Designpry and Fgrrp its generated FSM.

If there exists a bi-simulation relation, «, between Frpp and Friu, then, for

any assertion A over the design the following two equalities hold:

TLM _ QRTL
L Scov - Scov

TLM __ RTL
2. Tcov - Tcov

where:

o STLM ond TTLM refer to TLM state coverage and TLM transition coverage,

respectively.

o SETL gnd TETL refer to RTL state coverage and RTL transition coverage, re-

spectively.

Proof 7.5.1. (sketch)
The existence of a bi-simulation induces similar assertion’s state space for both TLM

and RTL. Therefore, the coverage metrics will be preserved in the transformation.
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Theorem 7.5.1 offers a sufficient condition to guarantee coverage preserving.
However, in the general case, proving a bi-simulation relation is not an easy problem.
Hence providing a lighter condition to guarantee coverage preserving is quite impor-
tant. As a future work, we consider defining a preserving rule based on traces, for
example. Furthermore, we aim to provide translation rules enabling a by-construction

coverage preserving RTL implementation.

7.6 Application: LA-1 Interface

New IPv6 systems and carriers increasingly demanding detailed lookups on packets
and flows, the interface between network processors and other components, such as
external co-processors and memory devices, is taking the spot light in the networking
sector. Currently, the Look-Aside 1 (LA-1) interface [79] is the de-facto standard
for linking these components [7]'. It is being the key to several networking-specific
applications, including packet forwarding, packet classification, admission control,

and security.

7.6.1 Coverage Results

In order to evaluate our proposed methodology, we considered a set of assertions.
Table 7.1 (Table 7.2) compares the assertion state coverage (assertion transition cov-

erage) results obtained with:

¢ Blind random test generation of the TLM SystemC code.
e Guided simulation using a test generator obtained after 30 iterations of the GA.
e Guided random test generation of the RTL SystemC code.

e Blind random test generation of the RTL SystemC code.

1The technical description of the LA-1 is provided in Appendix C.5.
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Table 7.1: State Space Assertions’ Coverage Analysis

Assertion Al | A2 1 A3 A4 | A
Rand. TLM (%) 10| 8 4 1121} 14
GA TLM (%) 64 | 72 | 66 | 82 | 55

Guided SystemC RTL(%) | 61 | 71 } 75 | 81 | 56
Rand. SystemCRTL (%) | 6 | 3 | 6 | 7 | 4
Rand. RTL (Specman) (%) | 12 | 11 | 14 | 17| 9

Table 7.2: Transitions Space Assertions’ Coverage Analysis

Assertion A1 | A2 1 A3 | Ad | A5
Rand. TLM (%) 15117113121 15
GA TLM (%) 51 | 55 | 52 | 48 | 47

Guided SystemC RTL(%) | 45 | 44 | 42 | 31 | 33
Rand. SystemC RTL (%) | 4 | 3 | 5 | 6 | 4
Rand. RTL (Specman) (%) | 12 | 11 | 8 | 7 | 13

e Random test generation of the RTL Verilog code using Speman Elite.

We used 10° functional calls and 10° simulation cycles for the TLM and RTL
models, respectively. We iterated the genetic algorithm for 30 generations (each with

10° tests). We used a uniform variables distributions over the variables domains.

7.6.2 Discussion

At the transaction level, our proposed genetic algorithm provided an enhanced cov-
erage in comparison to the blind random simulation by a factor of five to seven. The
value of the coverage vary according to the assertion. When applying the GA, we
noticed that it takes relatively quick progress in the beginning stages of evolution.
We also noted that there exist some phases, where the algorithm hits local maxima

before mutating further, which improves its performance. We even noticed that the
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coverage sometimes decreases slowly from generation to generation due to the fact
that the evaluation of the assertion is based on weighted random generation. In other
terms, since the number of tests is finite, a generator may have two different coverage

results for two different test trials.

We used the final test generator obtained from the GA algorithm procedure at
TLM to verify the same assertion at RTL. Coverage results were comparable. Ran-
dom simulation at RTL provided very low coverage results due to a larger system state
space at this level. By defining a suitable environment using the e-language [106], we
succeeded to improve the coverage results in comparison to the blind random simu-
lation. Nevertheless, the coverage remained low in comparison to our GA algorithm
by a factor of four to five for all the assertions. We also noticed that the execution
time using TLM SystemC was very fast (a factor of 50 to 100) in comparison to the

simulation of the Verilog implementation with Specman Elite.

7.7 Summary

In this Chapter, we presented a methodology to enhance assertion coverage using
transaction level models as intermediate step in the design process. We used AsmL
as a TLM language for the sake of automatically generating a finite state machine
of the system. We defined assertions as a set of states (part of the system’s FSM).
We introduced two assertion coverage metrics: state and transition coverage. We
provided a construction technique: (1) for a connected FSM an optimal test sequence
that covers the whole assertion’s state space (Theorem 7.4.1); and (2) for cliqgue FSM
an optimal test sequence that covers the whole assertion’s transition space (Theorem
7.4.2).

In the second part of the Chapter, we proposed a genetic algorithm to enhance
the coverage. Our genetic algorithm, when applied to the Look-Aside Interface stan-

dard (LA-1) as an application, showed an improvement of the assertions coverage by
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a factor of seven in comparison to blind random simulation and a factor of four in

comparison to a guided simulation using Specman Elite of Verisity.
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|Chapter 8

SystemC Verification
Methodologies

8.1 Introduction

In this chapter we introduce two applications of our proposed SoC verification frame-
work to SystemC. In the first proposed methodology, top-down, the verification is
integrated as part of the design process starting from the behavioral specification
of the system. The final product is a by-construction correct SystemC model w.r.t.
verified properties. In the second proposed methodology, bottom-up, we consider the

verification of existing designs modelled in SystemC.

8.2 Top-Down Design for Verification

QOur proposed top-down design methodology, as displayed in Figure 8.1, includes two
parallel paths concerning the design and its properties. We model the design in
the classical way a C++ design is modeled using UML (i.e., using use cases, class
diagrams, etc.) Then, we translate the UML model to ASM in order to perform model

checking of certain properties. These latter are extracted from the UML sequence
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diagram and encoded in the PSL syntax. The verification process leads to: (1) a
completion either with a success or failure of the property; or (2) a state explosion.
The UML update and UML to ASM translation tasks are repeated until all the
properties pass (either succeeds or do not complete). Then, we compile the PSL
properties into a set of C# classes, using the AsmL tool to be used as assertion
monitors. The design in ASM is, from the other side, translated to C++ (SystemC

model) and co-integrated with the assertions for verification by simulation.

____________ SystemCDesgn ____________ PSLPropertes
UML Level
Use Case Updates Sequence

—» Class Diagram Diagram

. Sequence Diagram
I I N H __________________________________
ASM Level é Mapping

Qg’ [ SystemC Model in Asm PSL Properties modeled

T in ASM

y
AsmL Tool
Cril#kLevel :1-'r-ansla;ion ------------- }Compila-ti:)n
A

SystemC modeled PSL Properties modeled
in C++ in C#

( Static Code Analysis ]

Reduced Hypergraph

Figure 8.1: Top-Down Design and Verification Methodology.

8.3 Bottom-Up Verification Methodology

In our bottom-up verification methodology, as displayed in Figure 8.2, we perform
the model checking of SystemC by translating the original design to an intermediate
representation that omits all the details of the SystemC simulator. The target (or

transformed) program is modeled in AsmL to be cross-produced with the system
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properties that will be verified over the whole system’s state space. To model the
properties, we use the property specification language. Properties are embedded in
the design as external monitors; hence, they can be used as stand-alone IP block(s) to
validate other devices, either at the AsmL level by model checking or at the SystemC

level by assertion based verification.

System C C++)Level ~ Foooommmo e N
{s:v.:st;em@ Design incluing
[ Static Code Analysis } Assertion Integrator  i¢

Assertion Monitor in
SystemC

Figure 8.2: Bottom-up Verification Methodology.

8.4 Static Code Analysis

As a solution to the SystemC (as an SLL language) verification problem we propose to
define an abstract environment that can be used for: (1) the analysis and verification
of SystemC programs, (2) abstract debugging and (3) possible interfacing with model
checking and simulation. The analysis of the design is, as defined in [26], based on
approximate semantics of programs to provide sound answers to questions about their
run-time behaviors. The abstract debugging will be possible thanks to the abstraction

of the memory (allocation blocks and the stack), the language simulation manager,
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component responsible for running the simulation, the events’ stack and to the code of
the program itself. Both the program execution environment as well as the simulation
environment will be represented in order to allow abstract execution of the program.

In order to interface to abstract interpretation with model checking (i.e. feed
the abstracted code into a model checker) objects’ and events’ aspects of SoC designs
need to be translated into a procedural like code. Eventually this may seem to be
not always feasible since we are starting from an object-oriented program structure.
However, the approach can still be valid when restricted to some parts of the program

to verify local properties.

8.5 Modeling PSL Properties

PSL is an implementation independent language to define properties. PSL is a hier-
archical language, where every layer is built on top of the layer below. This approach

allows the expressing of complex properties from simple primitives.

8.5.1 UML Model

Using UML as a high level of abstraction for design showed a lot of success when
applied to software. Main proposals consider either to use UML as new system level
design [30] or as top layer in combination with existing languages (such as SystemC)
[94]. Nevertheless, these proposals neglected totally to consider the properties of
the system (PSL like properties in particular) while sequence diagrams for example
includes very useful information to set transaction properties for TLM in particular.

Unfortunately, sequence diagrams do not allow a direct mapping to PSL due
to two reasons: (1) the complexity of the PSL property which may include temporal
operators; and (2) the need for instantiation in the PSL. In fact, PSL was defined
for real instances from the design formed from objects while the sequence diagram

considers only classes. For these facts, UML will not present completely and precisely
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all PSL property. However, it can be used to provide a general skeleton of the property
that could be refined and instantiated at the ASM level.

In order to make the UML sequence diagram more adequate for PSL represen-
tation, we introduced the following operators:

Clocks: we use the operator to specify the clock that activates the current action (if

there exist one).

Number of cycles: every action can be include the information about after how many
cycles the method is start executing (e.g., Mtd[5/() says that the method Mtd is
executed for exactly 5 consecutive cycles).

Temporal operators: these includes operators specifying if the method will be Always
executed (A), Eventually executed (F), executed Until a condition is fulfilled (U),
etc. These, in fact, represent a mapping to the PSL temporal operators (second layer
of PSL).

Sequence operations: includes information about the order of executing certain se-
quences (e.g., next, prev etc.)

Text output: refers to a message that is displayed in case the method fails. This is
included in PSL to track the progress of the assertion based verification.

Method duration: certain methods are supposed to execute for a certain number of
cycles (for e.g., reading from memory may take 4 cycles). So, we added an operator
$ to specify such an information.

Figure 8.3 gives an example of a sequence diagram describing a PSL property
saying that if a bus sends a new request, then in the next cycle the arbiter will be
notified and will make the arbitration. In the third cycle, the master starts sending.
The bus is released in the fourth cycle and a notification will be sent, eventually, by

the slave to the bus who will forward it in the next cycle to the master.
When mapping to ASM the UML sequence diagram needs to be instantiated

according to the design objects. For instance we need to specify, for example, that

the notification must be to the original master and not to all the masters.
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Figure 8.3: Example of a Modified UML Sequence Diagram.

8.5.2 ASM Model

We embed the PSL properties into the design as external monitors. Such an approach
enables reusing PSL properties at lower design levels since the AsmL tool can auto-
matically compile them into a C# or .NET code, which can be compiled and executed
with the concrete SystemC level or as a stand-alone module. A detailed description

of the PSL embedding in AsmL is provided in Appendix B.

8.6 Modeling SystemC

8.6.1 ASM Model

The design model at the ASM level is purely object-oriented where every class includes
a set of parameters and methods. The particularity of this model resides in the
fact that it will be used to generate an FSM using the reachability algorithm [47]
embedded AsmL tool [74]. So, a specific style of programming is required in addition

to a precise configuration of the algorithm. Before going further into the details of the
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ASM model, we will discuss the FSM generation algorithm which will give a better
idea about the requirements of the ASM model.

The FSM generation algorithm requires as input: domains, methods, actions
and variables (optional inputs are filters, action groups and properties). The tran-
sitions in the FSM are the method calls (including argument values) in the test
sequences. The methods in the model program that appear in the transitions are
called actions. The states in the FSM are determined by the values of selected vari-
ables in the model program, called state variables. The algorithm generates the FSM
by executing the model program in a special execution environment, keeping track
of the actions it performs and recording the states it visits. This process is called
exploration. Usually a model program implies so many states and transitions that it
is not feasible to include them all in the FSM, so it is necessary to limit the number

of states and transitions that the tool explores.

The final FSM will, according to the algorithm’s configuarion options, represent
only a portion — an under-approximation — of the huge FSM that would result if
the model program could be explored completely. Critical information to ensure the
correctness of certain properties concerning identifying the actions and state variables
in the FSM. Domains, finite collections of values from which method arguments are
taken, are defined in order enable better coverage on particular issues. Filters express
stopping conditions that limit exploration (used to stop the FSM generation if a
property fails, for e.g.).

For a model M including a set of classes, C = {cy,...,¢,}, where n is the total
number of classes in M. For every class ¢; in C, we denote its set of methods by
c™h and the set of members by ™. We defined a set of rules (called Rpgpr) to

guarantee the generation of an FSM representing a portion of the complete system’s

FSM; these include:

Rule R}g,,: For every class ¢; in C, we have to define a list of instantiations of the

class. This ensures that the algorithm will not through an exception.
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Rule R%,,: The firstly executed method in the design must verify that all the
objects from the class domains were correctly instantiated. This ensures that the

algorithm will not misbehave.

Rule Ri.g,: For every class ¢; in C, every method in ¢[*™ must include a list of
pre-conditions to specify when the algorithm considers this method in the exploration

process. This ensues that in every state we only explore the involved methods.

Rule R}g,,: For every class ¢; in C, domains for all members in ¢[*™ must be
inherited from AsmL types and restricted to the possible values the system can accept
(in particular for inputs). This will allow exploring known types and limits the risks

of state explosion.

The optimal scenario is to explore all the methods and domains in the model;
nevertheless, this is not possible all the time due to the state space explosion. For
this reason, working carefully the domains and the set of actions is the very critical
path in the FSM generation process. For illustration purpose, Figure 8.4 shows a
generic ASM model with a method including a precondition (denoted by the require
keyword) setting that the method needs the system to be initialized (SystemInit =
true) and that it has both variables m_gnt and m_req set to false before it can be
executed. Such conditions define strictly at which state the system can execute a

particular set of actions.

class PCI_Arbiter

private var m_ActiveMaster as Integer = -1

private var m_req as Boolean = false

private var m_gnt as Boolean = faise

public PCI_Arbiter()

public PCI_ArbiterUpdate_m_req()
require (Systeminit = true) and me.m_gnt = false and me.m_req = false
me.m_ActiveMaster ;= min id | id in Masters_Range where

(MASTERS(id).m_req = true)

me.m_req := true

Figure 8.4: An Example of an ASM Model.
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8.6.2 Translation to C++

Once the ASM model verified using the properties describing its behavior, we translate
it to SystemC according to a set of rules to ensure that the final SystemC model
preserves the original ASM code properties. The transformation is purely syntactical,
it is performed to certain rules (that we call Ry, ) that could be summarized in the

following:

Rule R} +.: “Basic types”: ASM basic types are all mapped to their equivalent
SystemC types (e.g. Integer to int, Byte to unsigned char, etc.). AsmL includes the

same types as C++ which are used for SystemC also.

Rule R%,.: “Class Translation”: this includes two separate rules for variables and

methods:

Rule R%L  : “Class Members”: are translated into SystemC signals having the same

basic type. For example, var m_val as Integer is translated to sc.signal<int> m_val.

Rule R%% . : “Class Methods”: in ASM contain two parts which are the post-/pre-
conditions and the method core. The first part is integrated in the SystemC module’s
constructor. For instance, a method Send defined in ASM with the following pre-
condition require clk=true is inserted in the SystemC module constructor area as
“SC_THREAD(Send); sensitive << clk,”. The method core is integrated as it is in
the SystemC module (we just modify the basic types according to the Rule 1).

Rule R}, : “Global Modules”: are integrated in the SystemC’s main procedure

sc.main. The naming mapping is used to link different modules together.

8.7 Verification Techniques

The verification process is decomposed into two parts: (1) by model checking at the

ASM level; and (2) by assertion based verification at the C++/C# level.
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8.7.1 Model Checking

PSL properties are embedded in ASM as assertions, the assertion here means the
validity of the property. It provides a unique view of the property in every system’s
state. It also simulates the design with the property as a monitor. We build the
assertion starting from basic Boolean components, sequences, and then verification
units. We encapsulate sequences in the verification unit as an assertion which is em-
bedded in the design. Given a set of Boolean items z,xs,...,2,, and ¥y, ¥, ..., Ym
belonging to the Boolean layer, and the sequences, S; and S; belonging to the tem-
poral layer, we can define: S; = {z1,22,...,2,}, and S2 = {v1,¥2,...,¥m} and
then use assertions to check any PSL operation between S; and S, such as S; OP S,,
where OP is a PSL operator (e.g., implication (:), or equivalence (<>)). The assertion
is built as follows:

1. Add all the Boolean items to the sequences:

Viinlton: Si.AddElement(z;)
Vjinltom: Sy AddElement(y;)

2. Create the property: P :=5; OP S,

3. Define the verification unit as an assertion, say A, that includes the above
property: A.Add(P)
This property is embedded in every state in the FSM generated by the AsmL tool and
is represented by two Boolean state variables P_eval and P_value (saying, respectively,
if the property can be evaluated and the value of the property in the current state).
A violated property is detected once P_eval = true and P_value = false. We set the
previous condition as filter for the FSM generation algorithm. This way the generation
stops when an error is detected. The generated portion of the state machine, at this
point, can be used to identify the problem through a scenario of a counter-example.
For multiple properties, the filter is set as conjunction of all the conditions for the
separate properties. This technique minimizes radically the number of the state

variables (the FSM size and its generation time). A correct verification process results
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on the generation of the system’s FSM (according the configuration file constraints).

8.7.2 Assertion Based Verification

We target to add the assertion as an external monitor to the SystemC design. We

consider three steps:

(1) Updating the SystemC design to interface to the assertion.
(2) Generating the assertion (in C#) from its ASM description.
(3) Integrating the assertion in the design.

The translation to C# of the PSL assertions embedded in ASM is a matter
of compilation using the AsmL tool. Most of the effort is spent in updating the
SystemC design to get it connected to the assertion monitor. For instance, we validate
the assertion syntactically by generating the list of its involved variables. Then, we
perform a type check to make sure the variables are well instantiated in the SystemC
design. For instance, the signals (variables) that are used in the assertion must be
seen as external signals so that they can be input to the assertion monitor. So, we
modify the SystemC design to make the required variables visible to the monitor. This
transformation does not affect the behavior of the code as it will only be accessed in

a read—only mode.

Once the design is updated, we add the required instantiation of the assertion
to bind it to the existing SystemC design modules. The assertion monitor, acting as
part of the design, can do the following: (1) stop the simulation when the assertion is
fired; (2) write a report about the assertion status and all its variables; and (3) send
a warning signal to other modules (if required). We note that the internal code of
the assertion is C# so the designer can update it or do any other functionalities that

can be coded in C#.
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8.8 Summary

In this chapter, we first presented a top-down methodology to design and verify Sys-
temC transactional models starting from a UML system specification and integrating
an intermediate ASM layer. We proposed to upgrade the UML sequence diagram
in order to capture transaction related system properties. Then both of the design
and its properties are modeled in ASM to enable performing model checking. On
the other hand, to cover for the state explosion problem that may result due to the
system’s complexity, we completed our approach by offering a methodology to apply
assertion based verification re-using the already defined PSL properties. To do so,
we defined a set of translation rules to transform the design’s model in ASM to its
implementation in SystemC. |

We also presented a bottom-up approach where starting from an existing Sys-
temC design we generate internally a model in AsmL, an Object-Oriented language

used to model systems, and verify the system property at the ASM level.
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Conclusions and Future Work

9.1 Conclusions

In this thesis, we presented a framework for the verification of system level languages,
where we considered SystemC (the future IEEE standard for system level languages)
as an application. We proposed two complementary methodologies: (1) top-level:
where we start from a behavioral specification of the design aiming to produce a
verified SLL design; and (2) bottom-up: where we verify existing SystemC designs.
Both methodologies share an intermediate layer for the verification where the design
is modeled in variant of Abstract State Machines (ASM) languages (AsmL).

The proposed verification framework includes four techniques:

1. Static code analysis using abstract interpretation: We extended the abstract
interpretation framework to support SystemC semantics. We also provide a

graphical environment for the abstract analysis and debugging of SystemC.

2. Model checking: We adapted an existing state exploration algorithm to enable
SystemC model checking.

3. Assertion based verification: We provided two techniques to integrate Sys-

tem Verilog and PSL assertions to SystemC.
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4. Guided simulation: We provided a formalization of the functional coverage.
We also proposed a genetic algorithm based technique to enhance the coverage

using guided simulation.

In order to prove the soundness and the correctness of our proposed verification
framework: first, we defined a generic trace semantics for both SystemC and AsmlL;
then, we proved the soundness and the completeness of this semantics; and finally,

we established the correctness of the SystemC to AsmL transformation.

9.2 Future Work

The methodology presented in this thesis opens new avenues in using formal methods
for the verification of system level languages. Furthermore, it presents a first step
towards combining both formal techniques to simulation for better coverage of real

yet complex designs.

e Design and implement a compiler to generate and manipulate automatically the

hypergraph structures.
e Develop reduction techniques to extract invariants from hypergraphs.

e Improve the state exploration algorithm in order to tackle the state space ex-

ploration problem.

e Provide a formal link between the transaction level and register-transfer levels

functional coverage.

e Optimize the genetic algorithm by finding optimal variables domains and dis-

tributions over theses domains.

e Investigate the verification of complex SoCs using our proposed methodology.
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System Level Languages

This Appendix overviews state-of-the-art System Level Languages (SLL) proposals.
We consider a classification composed from four main classes: (1) reusing existing
software SLL; (2) extending classical hardware languages; (3) readapting software

languages; and (4) creating new languages specified for system level design.

A.1 Reuse of Existing Hardware Languages: Sys-

temVerilog

SystemVerilog [2] is a radically revised Verilog [57] language reaching toward much
higher levels of abstraction. SystemVerilog blends Verilog, C/C++ and Co-Design
Automation’s SuperLog [96] language to bring unprecedented capabilities to chip
designers.

SystemVerilog is a set of extensions to the IEEE 1364-2001 Verilog HDL to
aid in the creation and verification of abstract architectural level models. The key
features include interfaces that allow module connections at a high level of abstrac-
tion; C-language constructs such as global; and an assertion construct that allows
property checking. SystemVerilog includes the synthesizable subset of SuperLog, and
its assertion capability will likely be derived from the Design Assertion Subset that
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Co-Design and Real Intent Corp. recently donated to the Accellera standards body.

With all these enhancements, SystemVerilog may remove some of the impetus
from C-language design, at least for register-transfer-level chip designers. The ba-
sic intent is to give Verilog a new level of modeling abstraction, and to extend its
capability to verify large designs.

SystemVerilog borrows the C-language “char” and “int” data types, allowing
C/CH+ code to be directly used in Verilog models and verification routines. Both are
two-state signed variables. Other new constructs include “bit” a two-state unsigned
data type, and “logic” a four-state unsigned data type that claims more versatility
than the existing “reg” and “net” data types.

The slogan of the people supporting Verilog is: “The right solution is to extend
what works”. However, this may face a harsh critic from the people supporting C++
based solutions and who advocate that Verilog or SystemVerilog or whatever is the
Verilog based name will not offer a shorter simulation time. The debate is quite hard

and the last word will not be said soon!

A.2 C/C++ Based Approach

Some optimistic software designers are supporting the establishment of C/C++ [38]
or even Java [56] based languages for future SoC designs. They think that, over
time, improvements in automatic methods and increases in hardware functionality will
extend the pieces handled automatically to where whole designs can be implemented
by “cc -silicon”. In the near term, however, tools are not going to be good enough
and manual refinement will be required. This means that the version of the language
that will be used must allow for the expression of hardware at lower levels, not only

at the algorithmic level.

Over the past decade, several different projects have undertaken the task of

extending C to support hardware [31], including SpecC [38] at the University of



A.2. C/C++ Based Approach 183

California, Irvine, HardwareC {68] at Stanford University, Handel-C [83] at Oxford
University (now moved to Embedded Solutions Ltd.), SystemC++ [69] at C Level
Design Inc., SystemC [81] at Synopsys Inc., and Cynlib [29] at CynApps.

This variety of projects falls roughly into two complementary categories. The
first, exemplified by SpecC, has focused on adding keywords to the basic C language,
supporting hardware description at a high level as a basis for synthesis. The second,
exemplified by SystemC, exploits the extensibility of C++ to provide a basic set of
hardware primitives that can be easily extended into higher level support [88]. These
two complementary approaches span all levels of hardware description (algorithmic,

modular, cycle-accurate, and RTL levels).

C-Based Solutions

As a C-based solution, we will consider the case of SpecC and HardwareC.
SpecC

The SpecC language [38] is defined as extension of the ANSI-C programming
language. This language is a formal notation intended for the specification and design
of digital embedded systems including hardware and software. Built on top of ANSI-
C, the SpecC supports concepts essential for embedded systems design, including
behavioral and structural hierarchy, concurrency, communication, synchronization,
state transitions, exception handling and timing.

To defend SpecC against C++ proposals and mainly SystemC, when this latter
was first introduced in 1999, SpecC supporters advanced that SystemC is primarily
aimed at simulation, however, SpecC was developed with synthesis and verification
in mind. They also considered that SystemC targets RTL design, but SpecC is a
system-level design language intended for specification and architectural modeling.
Nevertheless, after the release of the version 2.0 of SystemC, all these argument
were broken. In fact, SystemC is nowadays supporting most system level design

requirements.
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HardwareC

Under the same class of C-based languages we find also a language called Hard-
wareC [68]. This is a language that uniformly incorporates both functionality and
design constraints. A HardwareC description is synthesized and optimized by the
Hercules and Hebe system [67], where tradeoffs are made in producing an implemen-
tation satisfying the timing and resource constraints that the user has imposed on
the design. The resulting implementation is in terms of an interconnection of logic
and registers described in a format called the Structural Logic Intermediate Format.

HardwareC attempts to satisfy the requirements stated above. As its name
suggests, it is based on the syntax of the C programming language. The language
has its own hardware semantics, and differs in many respects from C. In particular,
numerous enhancements are made to increase the expressive power of the language,

as well as to facilitate hardware description [68].

C+-+-Based Solutions

As any real system a SoC is composed by a number of entities and objects interacting
together. This is the reason for the limitation of C-based proposals. By reference to
software design, languages that can be used at the system level have to be preferably
object-oriented. That is why nowadays more mature proposals are based on C++.
We will discuss mainly two C++ based proposals: Cynlib and SystemC.
Cynlib

Cynlib [29] provides the vocabulary for hardware modeling in C++. It is a set
of C++ classes which implement many of the features found in the Verilog and VHDL
hardware description languages. It is considered as a “Verilog-dialect” of C+4++, but
it is more correct to say that it is a class library that implements many of the Verilog
semantic’s features. The purpose of this library is to create a C++ environment in
which both hardware and testing environment can be modeled and simulated.

Cynlib supports the development of hardware in a C/C++ environment. To do
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this, Cynlib extends the capabilities of C/C++ by supplying many features such as:
concurrent execution model, cycle-based, modules, ports, threads, etc.

SystemC

SystemC [80] comes to fill a gap between traditional HDLs and software devel-
opment methods based on C/C++. Developed and managed by leading EDA and
electronics companies, SystemC comprises C++ class libraries and a simulation kernel
used for creating behavioral- and register-transfer-level designs. Combined with com-
mercial synthesis tools, SystemC can provide the common development environment
needed to support software engineers working with C/C++ and hardware engineers
working in HDLs such as Verilog or VHDL.

New releases of Cadence Design Systems Inc.’s Signal Processing Worksystem
(SPW) [28] software and Axys Design Automation Inc.’s MaxSim Developer Suite
increase support for SystemC. Mentor Graphics Corp. has also added a C language
interface to its Seamless hardware/software co-verification environment [43] that lets
designers use mixed C/C++ and HDL descriptions for hardware. The interface, called
C-Bridge, will be included with Seamless version 4.3, which is to be released in late

March 2003 [43).

A.3 Java-Based Proposals

While there has been some discussion about the potential of Java as a system-level
language or high-level hardware description language, Laval.ogic may be the first
commercial EDA provider to bring that option into contemporary design systems with
a language called JHDL [6]. LavaLogic’s Java-to-RTL compiler is an “architectural
synthesis” tool that turns Java into synthesizable HDL code. Lavalogic is offering
a tool that will take high-level Java descriptions down to gate-level netlists, starting

with FPGAs [56)].

According to Java advocates, Java appears to be the purest language to solve the
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productivity problems currently at hand. They also claim the language can express
high-level concepts with far less code than today’s HDLs, yet offer more support for

concurrency than C or C++.

The main point all Java advocates stressed in comparing their approach to the
C/C++ based ones is the concurrency. In fact, a classic problem with C and C++ is
their inherent inability to express concurrency. In Java, in contrast, concurrency can
be explicitly invoked with threads. Nevertheless, this unique criterion for comparison
is not enough to balance the choice C/C++ to Java. Java can be classified as the “next
best” choice after C++, since it does not support templates or operator overloading,

resulting in a need for numerous procedure calls.

A.4 Developing a New Language: SuperLog

SuperLog [37] is a Verilog superset that includes constructs from the C programming
language. Because of its Verilog compatibility, it has earned good reviews from chip
designers who express considerable skepticism about C language hardware design.
SuperLog holds great promise for the next three to four years. It is the case mainly
because SuperLog does not require a radical shift in methodologies and allows groups

to retain legacy code.

SuperLog (sometimes said to be “Verilog done well!” [92]) combines the simplic-
ity of Verilog and the power of C, and augments the mix with a wealth of verification
and system features [37]. For now, we have Verilog 2001 at the lower end of the
sophistication spectrum (“Jolly nice but lacking a lot of features” [73]) and SuperLog
at the other end (“incredibly powerful, but as yet falling well short of industry-wide
support” [73]). In a certain way, as defined, SuperLog is a smart idea to deal with
system level design. In fact, SuperLog utilizes the power of C with the simplicity of

Verilog to provide the right balance for productive design
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A.5 Discussion

System-on-a-Chip design, as an open project, initiated a debate between hardware
and software communities. The real issues for embedded chip design are increasingly
embedded software issues. Three main trends are proposed to design SoC. The soft-
ware based methodologies consider that basing everything from the HDL approach
is starting from the wrong point. On the other side, hardware designers are looking
into upgrading Verilog to support system level design requirements. The third group
is supporting the idea of defining new languages designed from scratch for system
level design. Nevertheless, this last approach is facing very hard critics because most
designers think that the idea of a grand unified language is fundamentally flawed.
The best choice will be to have multiple languages targeting specific areas. These
languages will be easier to learn than a grand language and they will also be easier
for tools to parse.

Whatever the syntax looks like C, Verilog, VHDL or UML, most options share a
common goal: the transition of functional design from the minutiae of Boolean logic,
wiring and assembly code up to the level of the designer’s issues. Thus, functionality
becomes modeled as an architectural interaction of behaviors, protocols and channels.
This is great, except that most languages handle only digital functionality and cannot
comprehend trade-offs of power, timing, packaging or cost.

There are also shortcomings with today’s methodology in the face of the growing
use of SoCs. Individual designs that were once an entire system are now blocks in an
SoC. The associated verification strategy with many of these blocks was not designed
to scale up to a higher integration level. If the methodology does not permit easy
integration of block-level verification code into a system-level SoC environment, then

the verification task will become a major bottleneck to the entire system design flow.



188 System Level Languages




openane B
Appendix

Embedding PSL in AsmL

This Appendix provides a description of the embedding of the Property Specification
Language (PSL) [1] in the Abstract state machines Language (AsmL) [51].

PSL properties are defined in a hierarchical way inspired from the hardware
design modular concept. For this reason we defined the embedding in a similar
structure, where all the components are defined as objects and every PSL layer extends

its lower layer using the inheritance feature of AsmL as described in Figure B.1.

B.1 Boolean Layer

This layer is the basic layer of PSL. Even though it is called Boolean layer, it includes
types other than Boolean such as integers and bit vectors. We embedded this layer in
AsmL by defining classes for all types and expressions including their methods. Our
embedding is based on the semi—formal semantics presented in the reference manual
[1], and the formal semantics definition in HOL [45].

The embedding of the PSL Boolean layer mainly includes:

1. Ezpression type class includes the basic five types: Boolean, PSLBit, PSLBitVec-
tor, Numeric and String. Both Boolean and String types are directly inherited
from the AsmL’s AsmL.Boolean and AsmL.String, respectively. The PSLBit

189



190 Embedding PSL in AsmL

PSL_VerificationLayerDirectives PSL_VerificationLayerUnit PSL_Clock
{assert(in prop : PSL_FL_Property) IPSL._VerificationLayerUnit(in name : string) PSL_Clock()
lassert(in prop : PSL_FL_Property, in repart : string} \AddProperty(in prop : PSL_FL_Property) init()
lassert(in tabel : string, in prop : PSL_FL_Property, in report : string) {AddProperty(in prop : PSL_FL_Property, in pos : im)—DReset()
lassert{in label : string, in prop : PSL_FL_Property) ] bopyme(in vunit : PSL_VerificationLayerUnit) Update()
in prop : PSL_FL_Property) iCopyTo(in vunit : PSL_VerificationLayerUnit) SetDefault(}
lassume(in label : string, in prop : PSL_FL_Property) IPSL_VerificationLayerUnit_ ] PSL_Clock_comi )
lassume_guarantee(in prop : PSL_FL_Property)
assume_guarantee(in label : string, in prop : PSL_FL_Property) 1
ict{in prop : PSL_FL_Property) s
lrestrict{in labe! : string, in prop : PSL_FL_Property, in report : string)
hestrict(in label : string, in prop : PSL_FL_Property) PSL_FL_Property
restrict(in prop : PSL_FL_Property, in report : string} IProperty) ool
restrict_guarantee(in prop : PSL_FL_Property) Evapk? ate, Al;tv () : bool
lrestrict_guarantee(in labe! : string, in prop : PSL_FL_Property, in report : string) Evalu aaeNevz() ! -bool
Esﬁa t_guarantee(in label : string, in prop : PSL_FL_Property) lEvalu ateEventuaily() - bool
strict_guarantee(in prop : PSL_FL_Property, in report : string) EvaluateNext() - bool 1 .
cover(in prop : PSL_FL_Property) aluateNe: ()-),b‘;m A—
cover(in prop : PSL_FL_Property, in report : string) M T
eover(in tabel - string, in prop  PSL_FL_Property, in report : string) fraatelloxnn i) oo PSL_Seq
lcover(in tabe! : string, in prop : PSL_FL_Property) :*"” a‘eN: xts(,’" "1' ! ni °2 citinn:ing bool | [PSL_Sean sie ;i)
lPSL_VeriicationLayerDirectives() alu a(in at -int, in a2 - int, in n -int) - b lcreate(in B : boot)
at rint,ina2 :int, in n : int) : bool ICreatetin B - bool, in repeat : int)
Pov-FL_Property() ICreate(in S : PSL._Seq, in repeat : int)
SL‘FL_Frolpeny_ ) 'SL_Seq_commony)
AVZ
PSL_prevBitVector IPSL_stableBitVector| PSL_Bitvector
PSL_prevBitvector(in depth : int) IPSL_stableBitVector() PSL_BitVector()
prev() : PSL_BitVector istable() iGetSize()
jprev(in index : int): PSL_BitVector 1 Isinitialized()
UpdateHistory(in BitVect : PSL_BitVector) '——1, AliZenos()
UpdateHistory(in BitVect : PSL_BitVector, in CLK : bool) ~ |AlOnes()
PSL_prevBitVector_common() PSL_BitVector_History )
[PSL_8itVector_History(in depth : int) IsUnknown()
1 lUpdate(in BitVect : PSL_BitVector) 1__{Summation()
1 {Jpdate{in BitVect : PSL_BitVector, in CLK : bool {Countones()
iPSL_BitVector_History_common(} (@pyﬂ'o()
PSL_BitVector_common(

1
PSL_nextBitVector
PSL_nextBitvector()
xt(} : PSL_BitVector
(UpdateQueue(in BitVect : PSL_BitVector)
UpdateQueuefin BitVect : PSL_BitVector, in CLK : bool)
PSL. i )

PSL_BitVector_Queue
IPSL_BitVector_Queue()
Update(in BitVect : PSL_BitVector)
in BatVect : PSL_BitVector, in CLK : bool}| 11
{PSL_BitVector_Queue_common()

mon()|

Figure B.1: Partial Class Diagram for Embedding PSL in ASM.

type is constructed using the enumerated structure One, Zero, X, and Z. The
PSLBitVect type extends the PSLBit type and offers additional operations such
as access to the bit vector contents. Finally, the PSLNumeric type extends the
AsmL Integer type (AsmL.Integer) by adding some conversion methods from

PSLBitVector to integers and vice—versa.

2. PSL expressions construct properties using the implication and equivalence op-

erators. Both operators are built using AsmL’s implies operator.

3. PSL buslt functions include all the functions defined by PSL to operate at the
Boolean layer. We distinguish here two methods: a method that provides the

previous values of a variable (e.g., prev()) and a method that provides the future
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values of a variable (e.g., nezt()). For both methods, we define a queue structure
that extends the PrimitiveArray class of Asml, to store the values of the signals
(PSL_Bit_Vector_Queue for the PSLBitVector type). Note that all the methods
over the Boolean layer are overridable according to the type of the input. This
approach simplifies writing the properties in AsmL syntax as they will look very

close to the PSL structure.

Figure B.2 shows the AsmL code for PSL_Bit_Vector class with the method
IsInitialized() that checks if a BitVector is initialized.

class PSL_BitVector

var m_size as Integer = 1

var m_sum as Integer =0

var m_array as PrimitiveArray of PSL_Bit = null

public IsInitialized() as Boolean
non_initailized = (exists x in {l..m_size} where

(m_array(x) .m_value = X or m_array(x).m_value=Z))

return not non_initailized

Figure B.2: AsmL Embedding of PSL BitVector.

B.2 Temporal Layer

The most important part of this layer is the Sequential Extended Regular Expressions

(SERE) feature, which embedding mainly includes:

1. Sequential Ezxpressions, where a SERE is defined as an Asml sequence of
Boolean. It offers several operations to construct, manipulate and evaluate
the SERE expression. PSL_Sequence extends the PSL_SERFE class. It adds
operations needed to create and update the SERE.

2. Properties in the form of operations necessary to create properties from sequen-

tial expressions. It also controls when and how the sequence is to be verified
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(i.e., the property “verify the sequence is true after n states” is defined as

PSL_Property. EvaluateNext(n)).

Figure B.3 shows the example of the PSL_SERE.FEuvaluate(), which checks if a
sequence is true in a certain path. This method is activated according to an INIT

signal that must be set by the property.

class PSL_SERE
var m_size as Integer = 0
var m_seq as Seq of Boolean
var m_actualState as Integer = 0
var m_evaluation as SERE_Evaluation = NOT_STARTED
var m_evaluationState as SERE_Evaluation = NOT_STARTED
public Evaluate() as SERE_Evaluation
require m_evaluationState = INIT
if (me.m_seq(m_actualState) = false)
m_evaluation := FAILED
return FAILED

else
if m_actualState = m_size
m_actualState := m_actualState + 1
return IN_PROGRESS
else

m_actualState := 0
return SUCCEEDED

Figure B.3: AsmL Embedding of PSL SERE.

B.3 Verification Layer

This layer is intended to tell the verification tool how to perform the verification pro-
cess. It allows the construction of assertions from properties and to specify relations

between them. The embedding mainly includes:

1. Verification directives to specify how the property will be interpreted (assertion,
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requirement, restriction or assumption). This class extends the temporal layer

class PSL_Property defined above.

2. Verification unit is a compact way to include several properties together. The
embedded class includes several operations to add/remove and update the unit’s

list of properties.

Figure B.4 shows the example of the PSL_VerificationLayerUnit. CopyFrom()
and PSL_VerificationLayerUnit. CopyTo() methods. These latter are usually used to

construct the unit by copying properties from or into other existent units, respectively.

class PSL_VerificationlayerUnit
var m_name as String = ""
var m_size as Integer = 0
var S as Seq of PSL_FL_Property = null
CopyFrom(vunit as PSL_VerificationLayerUnit)
forall i in {1..m_size}
me . AddProperty (vunit.S(i))
CopyTo(vunit as PSL_VerificationLayerUnit)
forall i in {1..m_size}
vunit.AddProperty(me.S(i))

Figure B.4: AsmL Embedding of PSL Verification Layer.

B.4 Modeling layer

This layer is not used in our verification approach since it is intended for VHDL and

Verilog flavors of PSL. So we did not consider it in our current embedding.
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Appendix

Description of Case Study Models

This Appendix provides a description of the case studies that have been displayed
through out the thesis.

C.1 Packet Switch

Figure C.1 provides a general structure of a 4x4 multi-cast packet switch from the
SystemC library [80]. The switch uses a self routing ring of shift registers to transfer
cells from one port to another in a pipelined fashion, resolving output contention
and efficiently handling multi-cast cells. Input and output ports have FIFO buffers
of depth four each. Input and output signals are 16-bit packets. Each input port is
connected to a sender process. Each output port is connected to a receiver process.
The sender and receiver processes are given distinguished ¢d numbers during instanti-
ations. A sender process, writes a random value to data, and sends it to one or more
of the four receivers. Sender processes send packets at random intervals, varying from
1 to 4 units of its clock. A receiver process is activated whenever a packet arrives.
Then, it displays the content of the packet and the receiver id. The switch operates
on an external clock, CLK, and an internal clock, SWCLK, which is four times

faster. Input and output signals are 16-bit packets with the structure given in Figure

C.2.
195
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C.2 Simple Bus

This bus structure as described in Figure C.3 is part of the SystemC library [80]. It
uses an overall form of synchronization where modules attached to the bus execute
on the rising clock edge, and the bus itself executes on a falling clock edge. Multiple
masters can be connected to the bus. Each master is identified by a unique priority,
that is represented by an unsigned integer number. The lower this priority number
is, the more important the master is. Each master communicates with the bus via
an interface which describes the communication between masters and the bus; three

modes are possible:

e Blocking Mode: Data is moved through the bus in burst-mode. The transaction

cannot be interrupted by a request with a higher priority.

¢ Non-Blocking Mode: Read or write a single data word. After the transaction
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is completed, the caller must take care of checking the status of the last re-
quest. The status of the request is one of: SIMPLE_BUS_REQUEST (request
issued and placed on the queue), SIMPLE_BUS_WAIT (request being served
but is not completed), SIMPLE_BUS_OK (request completed without errors)
or SIMPLE_BUS_ERROR (an error occurred during processing of the request).

e Direct Mode: The direct interface functions perform the data transfer through
the bus, but without using the bus protocol. They are usually used to debug

the state of the memory.

Master1 | Master2 Master3

[
_Clock<l3us

Slave 1 |3 Slave 2

Figure C.3: Simple Bus Structure.

The slave interface describes the communication between the bus and the slaves.
Multiple slaves can be connected to the bus. Each slave models some kind of memory

that can be accessed through the slave interface. Two modes are possible:

e Direct interface: immediate read or writing of data without using the bus pro-

tocol.

¢ Indirect interface: read or write a single data element, pointed to by data in or
from the slave’s memory. The functions return instantaneously and the caller

must check the status of the transfer.
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To the bus more than one master can be connected. Each master is independent
of the others, so each one can issue a bus request at any time. The arbiter selects the

most appropriate request according the following rules:

o If the current request is a locked burst request, then it is always selected.

e If the last request had its lock flag set and is again 'requested’, it is selected

from the collection queue and returned, otherwise:

e The request with the highest priority is selected from the collection queue and

returned.

C.3 PCI Bus

The PCI bus boasts a 32-bit data path, 33MHz clock speed and a maximum data
transfer rate of 132MB/sec. A 64-bit specification exists for future PCI designs, which
will double data transfer performance to 264MB/sec. In Figure C.4, we show a generic
structure of the PCI bus with a single master and a slave. We added also an external
monitor module that will be used to track the signals at the input and output ports
of the bus in order to validate the good functioning of the bus.

Each PCI master has a pair of arbitration lines that connect it directly to the
PCI bus arbiter. When a master requires the use of the PCI bus, it asserts its
device specific REQ# line to the arbiter. When the arbiter has determined that
the requesting master should be granted control of the PCI bus, it asserts the GNT#
(grant) line specific to the requesting master. In the PCI environment, bus arbitration
can take place while another master is still in control of the bus.

In PCI terminology, data is transferred between an initiator, which is the bus
master, and a target, which is the bus slave. The initiator, drives the C/BE[3:0]#
signals (Figure C.4) during the address phase to signal the type of transfer (memory
read, memory write, I/O read, I/O write, etc.). During data phases, the C/BE[3:0]#
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Figure C.4: PCI Bus Structure.

signals serve as byte enable to indicate which data bytes are valid. Both the initiator
and target may insert wait states into the data transfer by de-asserting the IRDY#
and TRDY# signals. Valid data transfers occur on each clock edge in which both
IRDY# and TRDY# are asserted. A target may terminate a bus transfer by asserting
STOP#. When the initiator detects an active STOP# signal, it must terminate the
current bus transfer and re-arbitrate for the bus before continuing. If STOP# is
asserted without any data phases completing, the target has issued a retry. If STOP#
is asserted after one or more data phases have successfully completed, the target has

issued a disconnect.
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C.4 AGP Bus

AGP (Accelerated Graphics Port) [58] was introduced to meet consumer demand for
high-resolution 3D graphics in home computers. New software programs (especially
games) require more and more video bandwidth for fancy textures, high frame rate
animations, etc. While the AGP bus employs 66 MHz clocked PCI specifications; it
also has the advantage of allowing large amounts of graphics data to be transferred
directly between the computer’s main memory and the AGP video card. This fea-
ture allows the video card to share the system memory on demand. The AGP bus
is designed strictly for video processing and does not have to share available band-
width with other connected devices. Most high-performance video cards are now only
available as an AGP version.

Both AGP bus transactions and PCI bus transactions may be run over the AGP
interface. An AGP master (graphics) device may transfer data to the system memory
using either AGP transactions or PCI transactions. The corelogic can access the AGP
master device only with PCI transactions. Traffic on the AGP interface may consist
of a mixture of interleaved AGP and PCI transactions. The access request and data
queue structures are illustrated in Figure C.5.

In addition to the PCI features, AGP includes:

Direct Memory Execute (DME) that gives AGP chips the capability to access

the main memory directly for complex operations of texture mapping.

Pipelining and sideband addressing of directly accessing texture maps in system

memory.

Multiple requests for data during a bus or memory access.

A dedicated non-shared bandwidth with other devices.

There are two primary AGP usage models for 3D rendering that have to do

with how data is partitioned and accessed, and the resultant interface data flow
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Figure C.5: AGP Access Queuing Model [58].

characteristics: the DMA model and the execute models. In the DMA model, the
primary graphics memory is the local memory associated with the accelerator, referred
to as local frame buffer. 3D structures are stored in system memory, but are not used
(or executed) directly from this memory; rather they are copied to primary (local)
memory (the DMA operation) to which the rendering engines address generator makes
its references. In the execute model, the accelerator uses both the local memory and
the system memory as primary graphics memory. From the accelerators perspective,
the two memory systems are logically equivalent; any data structure may be allocated

in either memory, with performance optimization as the only criteria for selection.
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C.5 Look-Aside Interface (LA-1)

LA-1[79]is a standard interface used to interconnect network-processing units (NPUs).
It targets look-up-tables and memory-based coprocessors and emphasizes as much as
possible on the use of existing technologies. It is based on QDR and Sigma RAM
technologies. Although modeled on an SRAM interface, the LA-1 specification aims
to accommodate other devices as well, such as classifiers and encryption co-processors.

The LA-1 interface major features include:

e Concurrent read and write operation.

e Unidirectional read and write interfaces.
e Single address bus.

¢ 18 pin DDR data output path.

e 18 pin DDR data input path.

e Byte write control for writes.

The LA-1 interface requires a master-clock pair. The master clocks (K and K#)
are ideally 180 degrees out of phase with each other, and they are outputs for the
host device and inputs for the slave device. A write cycle is initiated by asserting
WRITE_SEL (W#) low at rising edge of K (K clock). The address of the write cycle
is provided at the following falling edge of K (K# clock which 180 degrees out phase
from clock K). A read cycle is initiated by asserting READ_SEL (R#) low at rising
edge of K (K clock) and the read address is presented on the same rising edge. A
block diagram of an LA-1 with four banks is given in Figure C.6.
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