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Abstract

Accelerated Life Testing:
Concepts and Models

Debaraj Sen

This thesis deals with the analysis of accelerated life test. First, we provide related
concepts and second, we provide detailed properties of three alternative distributions.
Gamma, Log-normal and Inverse Gaussian. Various models for failure times are
considered which are plausible in this context and estimation procedure using the ML
method is outlined. Finally, a numerical example is considered using various models

introduced earlier.
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1 Accelerated Life Testing and Related

Concepts
1.1 Introduction

The term “Accelerated life test” applies to the type of study where failure times can be
accelerated by applying higher “stress” to the component. This implies that the failure time is a
function of the so called “stress factor” and higher stress may bring quicker failure. For example,
some component may fail quicker at a higher temperature however, it may have a long life at
lower temperatures. At low ‘stress’ conditions, the time required may be too large for its
reliability estimation which may be tested under higher stress factors terminating the experiment
in a relatively shorter time. By this process failnres which under normal conditions would occur
only after a long testing can be observed quicker and the size of data can be increased without a
large cost and long time. This type of reliability testing is called “Accelerated life testing”.
Accelerated life testing methods are also useful for obtaining information on the life of
products or materials over a range of conditions, which are encountered in practice. Some
information can be obtained by testing over the range of conditions of interest or over more
severe conditions and then extrapolating the results over the range of interest. This type of test
conditions are typically produced by testing units at high levels of temperature, voltage, pressure.
vibration, cyclic rate, load etc. or some combination of them. Stress variables are used in
engineering practice for many products and materials. In other fields similar problems arise
when the relationship between variables could affect its life time. Therefore the models
formulated are based on either past studies or theoretical development that could relate the
distribution of failure time to stress or other variables. Such models are also useful in survival
analysis where dependence of the life time of individuals on concomitant variables is analyzed.
The idea of life testing is briefly discussed by Nelson [65] and in a report by Yurkowsky ez
al.[106]. The bibliography by Goba [37] gives a list of categorized references on thermal aging
of electrical insulation. The general area of accelerated life testing deals with the testing
methods, model consideration, form of the life data and required statistical methods. In the next
few sections, we will discuss the details of various aspects involved in accelerated life testing.

Section-2 presents the generalized concept of stress and its classifications. Section-3 presents the



censoring aspect of the data and section-4 presents the relevance of statistical methods.

The purpose of this thesis is to provide an overview of statistical models and methods used along
with application of these models one some real life data. Chapter 2 gives details of accelerated
life models based on transferable functions where as Chapter 3 describes the details of three lite
time distributions namely Gamma, Log-normal and Inverse Gaussian distributions. These
distributions are used later in numerical computations. Chapter 4 describes the reciprocal linear

regression model and other related models and also estimate their parameters.

1.2 Stress and Its Classification

Let us consider a non-negative random variable T(x) which represents the time of failure of an
item depending on a vector of covariates x. In reliability theory, the vector x is called a stress

vector. The probability of failure of an item is then a function of stress given by
F(t) = P[T(x) >t],t=0.

Assume that F.(¢) is differentiable and decreasing on (0,) as a function of ¢ for every x € §,
where § denotes a set of possible stress values.

In accelerated life testing, stress is classified into constant stress, step stress, progressive stress,
cyclic stress and random stress. We now define and describe these stress classifications (see

Nelson [1990] ).
(a) Constant stress

In constant stress testing, each test unit is observed until it fails, keeping all the stress factors at
constant levels. For some materials and products, accelerated test models for constant stress are
better developed and experimentally established. Examples of constant stress are temperature.

voltage and current.

(b) Step stress

In step stress, a specimen is subjected to successively higher levels of stress. At first, it is
subjected to a specified constant stress for a specified length of time. If it does not fail, it is
subjected to a higher stress level for a specified time. The stress on a unit is increased step by
step until it fails. Usually all specimens go through the same specific pattern of stress levels and
test times. But sometimes different patterns are applied to different specimens. The increasing

stress levels ensure that the failures occur quickly resulting in data appropriate for statistical



purposes. The problem with this process is that most products run at constant stress in practice
not in step stress. So the model must take properly into an account of the cumulative effect of
exposure at successive stresses and it must provide an estimate of life under constant stress. In a
step stress test. the failure models occur at high stress levels these may differ from normal stress

conditions. Such a test yields no greater accuracy than a constant stress test of the same length.

(c) Progressive stress

In this type of stress, a specimen undergoes a continuously increasing level of stress. This test is
also called a port test and it is used to determine the endurance limit of a metal in the study of
metal fatigue. These stress tests also have the same disadvantage as the step-stress test.

Moreover. it may be difficult to control the accuracy of the progressive stress.

(d) Cyclic stress

A cyclic stress test repeatedly loads a specimen with the same stress pattern. For many products.
a cycle is sinusoidal. For others. the test cycle repeats but is not sinusoidal. For insulation tests,
the stress level is the amplitude of the AC voltage . Therefore a single number characterizes the
level. But in metal fatigue tests, two numbers characterize such sinusoidal loading. Thus, fatigue
life can be regarded as a function of these two constant stress variables. In most cases, the
frequency and length of a stress cycle are the same as in actual product use. But sometimes, they
are different and may be assumed to have negligible effect on the life time of the product and
therefore they are disregarded. For many products, the frequency and length of a cycle affect the

life time of the product, so they are included in the model as a stress variable.

(e) Random stress

In random stress testing, some products are used to undergo randomly changing levels of stress.
For example, bridge and airplane structural components undergo wind buffeting. Also
environmental stress screening uses random vibration. So an accelerated test employs random
stresses but at higher levels.

In survival analysis, the covariate x is a vector, components of which correspond to various
characteristics of life time of individuals such as methods of cure operation, quantities or types
of remedies, environment, interior characteristics such as blood pressure, sex. These factors can
be constant or non-constant in time.

Among all stresses, the constant stress method has been used widely and it is considered more

important than other stress testing methods. The relationship between the accelerating variable



and life time are well developed in this case. Because this method requires long test times, step
stress and progressive stress testing which require shorter test times, may be employed. However
in progressive stress testing, it is difficult to maintain a constant rate of increase so that in this
situation step stress testing method is easier to carry-out. Actually, the relation between the
accelerating variables and life time depends on the pattern of step or progressive testing. It
requires a model for the cumulative damage, i.e. the result on life of the exposure changes its
environment. Such models are more difficult than those for constant stress. These type of testing
methods are used in an experiment with one accelerating variable. More than one accelerating

variable are discussed in Nelson [65] and they have involved only constant stress testing.

1.3 Type of Censoring

An important reason for special statistical models and methods for failure time data is to
accommodate the right censoring in the data. Generally censoring complicates the distribution
theory for the estimator even when the censoring technique is simple and in other cases complex
censoring technique may make some computations impossible. If the values of the observation in
one of the distribution tails is unknown then the data is said to be single censored. For example,
life test data are single censored because in a life test if all units are placed on test at the same
time and all unfailed units have accumulated the same running time at the time of analysis. the
failure times of unfailed units are known only beyond their current running times. If the values of
the observations in both tails are unknown then data are called double censored. For example,
instrumentation data may be doubly censored because observations may be beyond the scale of
measurement at either tails of the distribution. Some data censored on the right have differing
running times inter-mixed with the failure times. These type of data are called multiply or
progressively censored. Censored data are called type-I censored if observations occur only at
specified values of dependent variable. For example, in life testing when all units are put on test
at the same time and the data are collected and analyzed at a particular point in time. For life
data, it is also called time censored if the censoring time is fixed and the number of failures in
the fixed time is random. But if the number of censored observations is specified and their
censored values are random then this type of censored data are type-II censored. For life data, it

is called failure censored if the test is stopped when a specified number of failures occur and the



time to that fixed number of failures is random.
In accelerated life testing, data are analyzed before all specimens fail. If the model and data are
valid then the estimates from the censored data are less accurate than those from the complete

data.

1.4 Relevance of Statistical Methods

Accelerated life tests serve various purposes. i.e., identify design failures, estimate the reliability
improvement by eliminating certain failure models, determine burn in time and conditions,
quality control, access whether to release a design to manufacturing or product to a customer.
demonstrate product reliability for customer specifications, determine the consistency of the
engineering relationship and adequacy of statistical models, develop relationship between
reliability and operating conditions. Actually, management must specify accurate estimates for
their design purposes and statistical test planning helps towards this goal. Many engineering
experiments may not follow a good experimental design, without which analysis and

interpretations of data may not be adequate and thus may resuit in improper decision.



2 Accelerated Life Models Based on
Transferable Functions

2.1 Transferable Functions

Let T(x) be a non-negative random variable representing the time of failure which is considered
to depend on a vector of covariates x and R.(¢) be the survival function of the random variable
T(x) given by

Ry (t) = P[T(x) >t] =1 —F(t).t 2 0.
Let xy be the base line stress level, also known as the normal stress in reliability theory. Then the

function f'is defined by
ft.x) = F7l[F«()],£ >0 (2.1.1)

and is called the transferable function. We assume here that F(z) is absolutely continuous for

every x. Equation (2.1.1) implies that
P{T(x) <t} = P[T(x0) < f(t.x)]. (2.1.2)

i.e. the probability that an item under stress x would survive at time ¢ is equal to the probability
that an item used under normal stress xg would survive beyond f(r,x). The time ¢ under any stress
x is in this sense equivalent to f(z,x) under the base line stress xo, then f{(t,x) is called the
resource used at time ¢ under stress x. The random variable R(x) = f(T(x),x) is called simply the
resource under the failure time T(x) and the survival function of R(x) is Ry,.

Again suppose G is some survival function defined on [0,%) and there exists an inverse function

H = G7!, the function defined by
fe.x) = H[R@)(@)], | 2.1.3)
is called the G —transferable function or simply transferable function and we have
P{T(x) <t} = P{Tc < f(t.x)}, (2.1.4)

where T is a random variable having the survival function G and the corresponding resource

known as the G resource is given by



R = (H * R(x))T(x),

which has survival function G.

2.2 Accelerated Life Models

The models of accelerated life testing can be formulated on the basis of the properties of the
transferable function. To obtain a larger class of models we generalize the notion of the
transferable function rejecting the assumption that the distribution of the resource is defined by

the survival function. Consider E to be the subset of some set of stresses.

Model-1

This model is said to hold if there exists a positive functional r : E = (0,%) such that for all

x € E the transferable function f satisfies the differential equation

PEX) — r(x(ey),

subject to the condition that f(0,x) = 0. The model implies that the rate of change of the

resource depends only on the covariate x at the time . Now
t
fit.x) = J' r(x(u) )du. Q.2.1)
[}

Therefore the resource is

R=| ) L xu))due. 2.2.2)
0

In this model, the covariate changes only the scale of the time to failure distribution. This model

is known as accelerated failure time model (see Nelson [65]).

Model-2

This model is said to hold if there exists a positive functional r : E - (0,c) such that for all x,

y € E the transferable function f satisfies the differential equation

Px) . FCI) — rxiey) + (o)),



subject to the condition that f{0.x) = f{0,y) = 0. This model implies that the ratio of rates of
resource at the two points x and y depends only on values x and y at the time ¢. If the covariates

are fixed i.e, vy = xo € E, denote r(x(T)) = r(y(T)) by r(x(T)), then for all x € E we have
ft,x) = J.; r(x(u))df(u,xo) (2.2.3)
and the resource is
T(x)
R=| . rD)AT.xo). (2.2.4)

Here the distribution of R does not depend on x € E. This model is the generalization of the
general transformation model (see Dabrowska [26]) which is formulated using an unknown
monotone function 4 such that A(T(x)) = B7x +e& where € follows some known distribution and

B = (B1.Ba........ B)T is a vector of unknown parameters.

Model-3

This model is said to hold if there exists a positive functional r : E — (0.) such that for all x,

v € E the transferable function satisfy the differential equation
Lfie,x) = Lfie,y) +a(x(r)) ~ aly(1))
dr’” dar’t’ ’

subject to the condition that f(0,x) = f(0.y) = 0. This model means that the difference of rates
of resource depends only on the values of the covariates x and y at the time r. For some fixed

covariate v = x, € E denote
a(x(u)) = a(x(u)) — a(xo(u)),

then for all x € E the function is
t
ft.x) = f(t,xo) + Io a(x(u))du.
Therefore the resource s
T(x)
R = f(T(x),x0) + _[ | al(w)du. (2.2.5)

Model 1, 2 and 3 can be considered as parametric when the survival function G is supposed to be



from some parametric family of distributions and the functions have some specified forms

depending on some unknown parameters.

Model-4

This model is said to hold if there exists a positive functional r : E — (0,e) such that for all

x € E the transferable function f satisfies the differential equation
< f(e.x) = rix(©) gl )]

subject to the condition that f{0.x) = 0. Here g is some positive function on x. This model means
that the rate of resource is proportional to some functional of the stress at the time ¢. Therefore

the transferable function is
fex) = j” r{x(ue)]qf(u. x)]du, (2.2.6)
0

and the resource is

T(x)
R={ 7 Hx(u)Jq[fCu. ) e @.2.7)

Model-5

This model is said to hold if there exists a positive functional r : E - (0,) such that for all

x € E the transferable function f satisfy the differential equation
4 fle.x) = g(x(D).f1. X)),

subject to the condition that f(0,x) = 0. Here g is some positive function on [0,). This model
means that the rate of resource depends on the value of a covariate at the time . So the transfer

function is
fiex) = [ gle(w).fiex))du, (2.2.8)
and the resource is

R=| :"’ g(x(u), (e, x) )due. 2.2.9)



2.3 Survival Functions in the Case of the
Models

For all x € E the survival functions of the model 1, 2 and 3 have the following forms

R(x(r)) = G{[’ r(x(u) Ydu }
R(x(8)) = G{[}, r(x(u))dH(Ro() } 23.1)
R(x(2)) = G{H(Ro(u)) + I; a(x(u) )du}

Here R, is some fixed survival function but it does not depend on x € E. But in the case of

models 4 and 5 the survival function R(x) satisfies the equation

H(R(x(£))) = [ r(x(u))qo(ROx(2)))du

r 2.3.2)
H(R(x(1))) = [ golx(u). R(x(r))]du

Now consider the class of constant in time covariates then the survival function of the models

1,2 and 3 have the following forms

R(x(1)) = G{r(x)t}
R(x(2)) = G{r(x)H(Ro(t))} (2.3.3)
R(x(t)) = G{H(Ro(1)) + q(x)t}

The models 1,2 and 3 are parametric if the function G is supposed to be from some parametric
family of survival functions and r and g have some specified forms depends on some unknown
parameters. If the function Ro is completely unknown and the functions G and (or) r are
parametrized then the models are semi-parametric. But in model-2, the distribution G can often
be parameter free because this model is invariant with respect to some transformation. If the

functions Ro, r and G are completely unknown then the models are non-parametric.

10



2.4 Accelerated Life Models when the
Stress is Constant

Consider the sub-models of the models 2 and 3 for the class of constant in time stresses.

Model-2

Suppose that model 2 is holds for all x € Eq then
R(x(r)) = G[r(x)H(Ro())], (2.4.1)

where Ry is some unknown survival function. But it is invariant with respect to the
transformation § = (£)“ when G(t) = Go((%)®) for 6 >0 , a>0. Thus all the
distributions of the resource from the class Go{((4)“) follow the same model and 6 = a = 1
always can be taken. In this case, the important idea for accelerated experiment is «at the
accelerating factor is one dimensional and the parametrization is r(x) = aexp(bz) where
z = z(x) is some unknown function.

Consider the model. R(x(z)) = G{ae®*H(Ro(t))} for some function of the stress or the stress x.

Suppose the reliability function R is
R(r) = G{aH(Ro(1))}-
Then we obtain
G{ae’H(Ro(1))} = G{e"H(R(r))},
therefore the new model is
R(t) = G{eP*H(R(t))}. (2.4.2)

Now if the reliability function G has the form G = Go( (%) “) then there is only one parameter

B to be estimated. Below we consider some specific distributions of the resource:

(a) Gamma resource

The density of the gamma distribution is

g(t,m,0) = e 5™ g0)(t) form,0 > 0. (2.4.3)

1
6™ (m)

11



The survival function of the resource is given by

G(t.m.0) = F(in_) j'i ™ e~ dxl 0.y (t). .4.4)

Taking parameter free survival function, we have
G(t,m) = Imx””e"‘dx
r
and the formula (2.4.1) implies the model
I(R(x(1)).m) = r(x)I(Ro(t),m), (2.4.5)

where I(Ro(t),m) is the incomplete gamma distribution with the survival function G(t.m). If

m = | this model is the famous Cox proportional hazard model.
(b) Weibull resource

The density function of Weibull distribution is

g(t.a.0) = ca™ {‘(t_;ﬂ}c-l exp[-{ (t:zo) C]I(o.m)(f)»

with@ > 0. a > 0, t > @ and the survival function is

G(t.a.0) = exp[-{—é—}a]l(o.w)(t) fora >0,0 > 0. (2.4.6)
Now we adopt a parameter free survival function of the resource
G(1) = el0)(2),
and the formula (2.4.1) implies the model

R[x(1)] = (Ro(2))"™ (2.4.7)

R[x(t)] = r(x) (Ro(r))™! (2.4.8)

Thus the equality (2.4.1) implies for the failure rate of random variable

A:(t) = ’—R{Q[f(‘—t(%l = r(x)Ao(t). (2.4.9)

It is the proportional hazard model ( See Bagdonavicius and Nikulin (8]).

12



(c) log-normal resource

The density function of the log-normal distribution is

g(r.a.0) = [t-0)yZx 5] exp[ 1 {log(x —0) —a}” ] (2.4.10)

o2
with ¢ > 0., € > 0 and the survival function is
G(t.a.0) = ¢(log(7§-)a)1(o_m)(t) fora>0.6>0. (2.4.11)
Now we adopt a parameter free survival function for ¢ > 0 which is
G(r) = ®(log(r) Yo.=)(2).
Therefore formula (2.4.1) implies that
O Y(R[x(1)]) = logr(x) + ®~'(Ro(t))- (2.4.12)

It is the generalized probit model (see Dabrowska and Doksum [26]).
(d) log logistic resource

The density of the log- logistic distribution is
g(t.a,0) = ab(at)?' (1 + (ar)?)™ for a >0,0 >0 (2.4.13)
The survival function is
ay -1
Ger.a.0) = (1+ (%) ) Loxy(t) fora>0,6>0.
So we adopt a parameter free survival function which is

G(r) = Tirlom()-

The formula (2.4.1) implies the model

= —logr(x) + log T%%' (2.4.14)

This is the analogue of the model for logistic regression which is used for analysis of
dichotomous data when the probability of success or failure is dependent of some factors (see

Lawless [57]). We can consider other distributions for the resource. If larger classes of

13



distributions of the resource are considered then the more general semi-parametric models

including known models can be obtained.

Model-3

For all x € Eg, the model is
R(x(t)) = G{H(Ro(t)) + q(x)t}. (2.4.15)

Here Ro is some unknown survival function. For 8 > 0 if G(¢) = Go(%) then the equation
(2.4.15) is invariant with respect to the transformation § = %+ and 6 = | can always be taken.
The important idea for accelerating experiment is when the accelerating factor is unidimensional
then the parametrization of g(x) is g(x) = a + Bz where z = z(x) is some known function. But

always we will take g(x) = Bz. From equation (2.4.15) we have
R(x(£)) = G{H(Ro(1)) + (a + B2)t}- (2.4.16)
Suppose
R(t) = G{H(Ro(1)) + at},
Then we obtain
G{H(Ro(1)) + (a + Bz)t} = G{H(R(?)) + Pzt}-

So the new model is

R(x(t)) = G{H(R(t)) + Bzt}. (24.17)
which can be considered. More generally, if g(x) = a + 7z where B = (Bi1,.weeeeess Bm)” and
2= (Ths e z=)7 and B is the vector of regression parameters and z is a vector of some

unknown stress functions then the parameter a can be eliminated and this model is considered as
semi-parametric.
Consider some specified distributions of the resource.

(a) Weibull resource

The density function of Weibull distribution is

g(t,a,0) = ca™ {_(t_;_ol}c_l exp[—-(ka—el)c]l(o_m)(t) for 8>0,a>0

14



and the survival function is
G(t) = e™.
So model-3 simplifies to
AF (1) = AT () +q(o)r. (2.4.18)
If the resource is exponential, i.e. @ = 1 then the additive risk model is obtained. i.e.
Ac(t) = Ao(2) + q(x). (2.4.19)

(b) log-logistic resource

The survival function of this distribution is

=1
G(r) = T+ (2.4.20)
so model-3 implies
L-Rx()) \* _ [ L=Rot) 1* 5 anl
(o) R ] +acon (2420

(c) lognormal resource

The survival function of this distribution is
G(t) = ®(alogt), (2.4.22)

where ® is the survival function of the standard normal distribution. Therefore the model

simplifies to

et RED)) = TP Ro) 4 g(x)e. (2.4.23)

2.5 Accelerated Life Models when the
Stress is Piecewise Constant

Consider the possible submodels for modelsl to 5 for the class E; < E of stepwise stresses is of

the form
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x(u) =x; for ue [titt;),i=1,.cce., m (2.5.1)

where 0 = 19 < f1 < ... < lm = +o0.

Model-1

Forr € [ti-1,t;) equation (2.2.1) becomes
-1
ft.x) = Z r(x;)(t; = i) + r(x: ) (8 — iz ) (2.5.2)
=1
and the resource is

-1

R =" rC)(t = ti1) + r(e)(T(x) — £t
=1

if T(x) = [[,‘-|.[,‘).

Now define T«(x) as the life of an item tested under stress x in the interval [£;-1,¢;)

0 if T(x) < fg-1
Tk(x) = T(_t) — I lf i < T(x) < Ix (2.5.3)
Lp — L1 if T(x) =1t
[f model-1 holds on E then
p(x) dll
= 254
I o Itp(x(u)) L ( )

and if the means E(T(x)),E(T(x(u))) exists then

T(x
U - E(r(‘i‘éu)))) L. (2.5.5)

Here formula (2.5.5) determines the linear accumulation of damages (see Miner [60]). So in the

case of stepwise stress of the form (2.5.1), formulas (2.5.4) and (2.5.5) imply the equality

Z E(Tu(x) _
E(T(xe))
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and

(ri—ten) | 1p(X) —tict _
3o ot o @59

fm]

if tp(x) € [tk_[,tk).
The inequality (2.5.6) is called Peshes-Stepanova model (see Kartashov [54]). These formulas

can be used for estimation of the mean life under normal stress from the data of accelerated

testing.

Model-2

Consider model-2 holds on E, then
r
R(x(1)) = G| HRu())dlog H(Ruagu)}-
where x is of the form in (2.5.1). Then for ¢t < r; we have

H(R(x(r))) = H(R(x1(1)))-

Thus fort € [t—i,te) fork > 1

H(R(x(1))) = Z RO H(R(xa(0:))) = HR(xo(1)))]

H(R(xx(1)))

HR(x1 (1)) [H(R(xo(2))) — H(R(x0(7:-1)))]- (2.5.7)

+

This equality can be used for the estimation of the survival function under the normal stress

from accelerated life experiments.

Model-3

Consider model-3 to be true on E, then

R(x()) = G{ | o H(R,(,,,(:))du}
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= G{H(R(xo(t)) + [ ;[HRX(,,)(u) — H(R(xo(u)))]dlog u}. (2.5.8)

Now consider the stepwise stress of the form (2.5.1). Then for ¢ € [ti-1, ) we have
ki
HIR(x(1))] = 44 37 HIR(x(0)) 1t - tit) + HIRC(0))](2 = 11t } (2.5.9)
i=0

If the stress has the form

x(u) = xo Iif u € [ta, )
xy if uefty .ty,) *k=01,.... m—1)

Here xp is the normal stress and x; is the accelerated stress , then

k-1
H(R(x(1))) = 1 {H(R(Xo(t)))[Z(ty+u —1y) +E-tn ]}

=0

P
+H(R(x1(1))) Z(hﬂ-z —tzm)}— (2.5.10)

=0

Therefore for r € [ta+1,2%+2) equation (2.5.10) becomes

k-1
H(R(x(t))) = }{H(R(xo(:))) 3t —12) + H(R(xl(t)))}
=0

k-1
. I:Z(tziq-z—tzm)*-t—tuﬂjl- (2.5.1H
=0

when m = | then

H(R(x())) ift <1y,

H(R(x(1))) = { L{HR(xo(r)))tr + HR(x1(£)))(t —t1)] otherwise.
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Model-5

Suppose model-5 is true on E then the transformational function satisfy the equality
fex) = fle—tio + 07, %i), (25.12)

if t € [tig, i) fori = 1,2,......m

Here r; can be found by solving the equations

St x1) = f21,x2)

S =ty +170.x:) = f(17 . xia1)

forto =0andi=1,2......, m-—1.

These equations are equivalent to
R(x(t)) = R(x,-(t —ti + ti‘—l)) l:f t e [ti_l,t,'), (2.513)

where R(x:(¢)) = R(xa2(t7))-

These equations imply that
P[T(x) = 1, +sIT(x) = 1] = P[T(x2) = 17 +sIT(x2) = 17]. (2.5.14)

This equality is the so called model of Sedyakin (see Sedyakin [79]).

2.6 Accelerated Life Models when the
Stress is Progressive

Suppose the stress x is progressive, i.e. it is continuously increasing in time ¢. For example. this

stress is linear unidimensional of the form x(¢) = br. The models 1, 2 and 3 can be written as

R(x(0)) = G{% | : r(s)ds} 2.6.1)
R(x(1)) = G{ | 0 r(bu)dH(Ro(u))} (2.62)
R(x(t)) = G{H(Ro(t)) + O a(bu)du} (2.63)

For model-2, the parametrization of r(bu) is e*#%. Now taking , R(t) = G(e®H(Ro(t))) for
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eliminating «, the model is
RGx(6)) = G{_ edH(Ro(w))}- . @64

Similarly, model-3 is

R(x(r)) = G{H(Ro(t)) + Bbt*}. (2.6.5)
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3 Possible Survival Distributions and Their
Properties

3.1 Introduction

In this chapter, we consider some statistical distributions that are used to describe survival times
in accelerated life testing. The distributions discussed in this thesis are the Gamma, Log-normal
and Inverse Gaussian.

Consider a set of observations from a population. The natural question arises about the nature of
the parent population. The clear idea is provided by the frequency polygon or frequency curve.
But the information may be totally inadequate and unreliable, i.e. the sample observations may
not cover the entire range of the parent distribution. Basically, an unusually high frequency in
any one class may arise and the frequency curve may completely out of shape. In order to
determine the frequency curve, we will have to make use of the technique of curve fitting to the
given data. Some standard distributions may be tried and the best fitting distribution may be
selected. Below, some important properties of common distributions used in survival and

reliability analysis are described.

3.2 Gamma distribution

3.2.1 Gamma distribution as a model for failure
times

In this thesis we consider the Gamma distribution as a model for failure times. We consider here
the Gamma distribution because of its appealing features:

(i) It accommodates a variety of shapes similar to the Weibull, Inverse Gaussian and log-normal
distribution.

(ii) This distribution has the structure of an exponential family and its many properties are
associated with sampling distributions.

(iii) Its derivation from a stochastic formulation of the failure process provides a physical
support to its exact fit.

In this thesis, we consider a reciprocal linear regression model for the mean of the Gamma

distribution. We consider the following situation. Suppose n objects are subjected to stress levels
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X1.X2,ccoeeeeee Xn and there failure times are observed. Each object has a characteristic outset
which we take to be the same. The stress levels signify the accumulation of the fatigue process at
different levels. The Gamma distribution is a good competitor to other well known survival

distributions such as the Inverse Gaussian, the Weibull and the Log normal.

3.2.2 Properties

The general form for the p.d.f. of a random variable x has a Gamma distribution
_ 1 AT 2 _ (x —-r )
f8) = kg (e =n) exp[ Len ] forx>r.a>0 >0, (3.22.1)

where r and B are location and scale parameter respectively and a determines the shape of the
p.d.f. This distribution is Pearson’s type 3. The standard form of this distribution is obtained by

putting § = | and r = 0 which is given by

fulx) = -‘";;" for x > 0. (3.2.2.2)
If @ = |. the Gamma distribution reduces to the exponential distribution. If a is a positive
integer, the Gamma distribution is sometimes called a special Erlangian distribution. Put y = —x

in (3.2.2.1) and (3.2.2.2) then,

(—y-n*"exp( )

Q) = FTa for y < -r. (3.2.2.3)
a-1
Q) = L%—gy- fory <0. (3.2.2.4)

(3.2.2.3) and (3.2.2.4) are also Gamma distributions rarely considered and not discussed further

here.

The cumulative distribution function of (3.2.2.2) is

P(X<x)= £ j': e-1e-ldt, (3.2.2.5)

which is called an incomplete Gamma function ratio but

[i(a) = j' : e~1*-\dr. (3.2.2.6)

is sometimes called incomplete Gamma function. Pearson [73] found it more convenient to use
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u = xaT instead of x and defined the incomplete Gamma function as

Ja
u.a—1) = 1a-le~tdr.

|
[(a)
The Gamma distribution with positive integer a can be derived as the distribution of the waiting
time to the ath arrival from a Poisson source with parameter a. So it is apparent that the sum of k

independent exponential variates with failure rate a has the Gamma distribution with parameters

a and k. The continuous random variable x which is distributed according to the probability law

flx) = ex! o a>0,0<x<®,

[(a)

is known as a Gamma variate with parameter a and its distribution is called the Gamma
distribution. The mean and variance of this distribution are equal to a. like in a Poisson
distribution. The density function which can be seen to be a member of the exponential family is
unimodal, positively skewed and Leptokurtic, with its mode at x=a-1 if a > 1. But
distribution (3.2.2.1) has amode at x = r + f(a — 1). [f & < 1, fi(x) tends to infinity as x tends

to zero, also if a = [, lim fi(x) = L.
=0

The m.g.f. can be easily found. Now the m.g.f. of the Gamma distribution (3.2.2.2) is
M(1) = E(e®) = [ efee)de = 7 [ eresxetdx
: 0 Fa Jo
=(l-0)" ltl< I
Thus the cumulant generating function K.(z) is given by

K.(t) =InM (1) = In(l =)™ = -alog(l —1)

2 13 t-t
-a[[+—+—-+—‘1—'+ .......

From which we can derive

23



Mean = K| = coefficient of in K (t) = a

H> = K> = coefficient off,z—l, inkK,(t) = a

M3 = K3 = coefficient of % in K (t) = 2a
K. = coefficient of -% in K,(t) = 6a
Therefore us = Ky +3u3 = 6a + 3a*

2 2
Hence, B = £3 = 42” _ 4

p;;’ a3 a
and ﬁ[ = Zz =3+%

The moments can be found from either the m.g.f. or c.f. or directly by integration. From
distribution (3.2.2.2) the rth moment about origin zero is

I'(a+r)

Ta forr=1,2......

,ll,’- = (ra)-l :xaﬁ-r—le—.tdx -

The moments are found easily. Hence for distribution (3.2.2.2) has a Mean=variance=a.

43 = 2a and py = 3a? + 6a. The mean deviation of distribution (3.2.2.2) is 3‘[’_:;;' and the

coefficient of variance is ——.
3

3.2.3 Applications and Uses

In 1900, Pearson [74] used an approximate chi-square statistics for various tests in contingency
tables. But in this case, the exact distribution of this statistic is discrete. The Gamma distribution
is approximately distributed as a positive definite quadratic forms and it is multinormally
distributed variables. In 1938, the result of Welch [101] was proposed to Gamma distributions as
a test criterion for the difference between expected values of two normal populations with
possibly different variances. This distribution is used in place of the normal distribution as a
parent distribution which is an expansion of Gram-Charlier series with Laguerre polynomial
multipliers. Khamis [50] described this expansions and their properties. Barton [13] and Tiku
[90], [91] used Laguerre series to approximate the distributions of smooth test statistics and
non-central F.

The Gamma distribution gives us useful representation of many physical situations. It is used to
make realistic adjustments to exponential distributions in representing life times in life testing

situations. Now Weibull distributions have been more popular for this purpose although they do
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not provide a permanent solution. Weibull families have simple forms of the failure rate
function. Also the sum of independent exponentially distributed random variables represents a
Gamma distribution which leads to the appearance in the theory of random counters and other
related topics in associated with random process in meteorological precipitation process. This

was discussed by Kotz and Neumann [49], Das [25].

3.3 Log-Normal Distribution

3.3.1 Introduction

Many distributions are far from being normal. However, in certain cases. logarithmic
transformations of a variable make the distribution almost normal and thus changes a skewed
distribution into a symmetrical distribution. The log-normal distribution is sometimes called the
anti-log-normal distribution because it is not the distribution of the logarithm of a normal
variable but of an exponential that is an antilogarithmic function of such a variable. When this
distribution is applied to economic data, particularly production functions it is often called the
Cobb-Douglas distribution (Dhrymes [24]).

In 1879, Galton [35] pointed out that if X;,X>......., X, are independent positive random variables
and T = [TL X then logT=Z'."_l log X; would tend to a normal distribution as n tends to infinity .

log(X-6)-p
]

For a non-negative random variable X define U= where 6, p and o are parameters and

assume it has a standard normal distribution. Then the probability density function of X is
fx(x) = [(x-8) V27 o] exp[—% {Log(x - 0) — p}2/c?]. (3.3.1.1)

which is known as three parameter Log-Normal distribution. The name 'Log-Normal’ can also
be applied to the distribution of X if log(f — X) is normally distributed, X having zero probability

of exceeding 6.

3.3.2 Properties

The rth moment of X about zero is

;= E(x") = exp(rp + %rlal). (3.3.2.1)

This moment sequence {u,} is not unique to the lognormal distribution. Heyde [42] has shown

that the distribution can not be defined by its moments. In 1917, Wicksell [94] obtained formulas
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for the higher moments while Van Uven [92], [93] considered transformations to normality from

a more general point of view. The mean of this distribution is
Ky = exp(p + %02)

and when @ = ¢°° the lower order central moments are
pr = e*e® (e - 1) = o(w— 1)e*
3
s = oI (w—- 1) (w+ 1)e**

Uy = 0w — 1) (0* + 203 + 30> - 3)e*” .

The coefficient of variation is (@ — 1)"2. This distribution of X is unimodal and its mode is

*

M
exp(p—o?) = Io Px(x)dx =

(N

and median of X is e”.
:. Mean > Median > Mode.

As ¢ - 0 or & to infinity the standard Log- Normal distribution tends to a unit normal
distribution. Actually as o increases, the log-normal distribution rapidly becomes markedly

non-normal. Wise [95] has shown that the probability density function of the two parameter

distribution has two points of inflection at x = exp[p - 3‘21’— + O’Jl + —1-0'2- 1-

3.3.3 Applications and Uses

The Log-normal distribution is usually represented as the distribution of various economical
variables (see Gibrat [38], [39]). Gaddum [36] and Bliss [14] found that the distribution of the
critical dose for a number of forms of drug application could be represented with adequate
accuracy by a two parameter Log-normal distribution. In 1937-1940, Cochran [17], Williams
[96] [97], Grundy [40], Herdan [44], [45] and Pearce [75] described the use of the Log-normal
distribution in agricultural, entomological and literary research. Wu [98] has shown that
Log-normal distributions can arise as limiting distributions of order statistics if sample size and
order increase in certain relationships. Kolmogrov [53], Tomlinson [88], Oldham [72] applied

this distribution of particle sizes in natural aggregates and in the closely related distribution of
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dust concentration in industrial atmospheres. Geological applications have been described by
Ahrens [2], Chayes [18], Miller and Goldberg [61] and Prohorov [76], Oldham {72] described
the deviation of sickness absence and physicians consultation time. Wise [95] has described the
application to dyedilution curves representing the concentration of the indicator as a function of
time. This distribution gives a good representation of flood flows although extreme value
distributions are more generally associated with this field (see Hermanson and Johnson {43]).
Ferrell [29], Morrison [62] and Rohn [78] describe the use of this distribution in quality control.
Koopmans et al. {55] pointed out that if the normal distribution is replaced by a log-normal
distribution then confidence limits for the coefficients of variations are easily constructed. Wise
[95] has pointed out marked similarities in shape between appropriately chosen log-normal
distributions, random walks and Gamma distributions. The log-normal distribution is also
applied in certain approximations to the distributions of Fisher’s Z = —;— logF. It is a well known
approximation because the distribution of Z is much closer to normality than that of F' (Aroian
[1]. Curtiss [21], Pearce [75]). Logarithmic transformations are often used in attempts to

equalize variances.

3.4 Inverse Gaussian distribution

3.4.1 Introduction

The inverse Gaussian distribution was derived first by Schrodinger [85] as the probability
distribution function of the first passage time in Brownian motion. Tweedie [87] proposed the
name inverse Gaussian distribution since he found an inverse relationship between the cumulant
generating functions of this distribution and those of Gaussian distributions. But in sequential
analysis,Wald [99] derived an asymptotic form of the distribution of average sample numbers,
which is the limiting form of the distribution of sample size in a sequential probability ratio
tests. Because of this derivation, this distribution is sometimes called Wald’s distribution.

The probability density function of a random variable X distributed as inverse Gaussian

distribution with parameters u and 4 is denoted by IG(u, A) and given by

L
fle,pu, k) = ( 5 :x:, ) " exp (~A(x — u)?)/(2p3x) forx > 0. (3.4.1.1)

The Inverse Gaussian distribution belongs to a two parameter family of distributions. The p.d.f.
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of this distribution can be represented in several different forms each of which would be
convenient for some purpose. Another important form can be obtained by a Weiner process w, in
one dimension with positive drift v and w(0) = 0. The time T which is required for the Weiner
process to reach an arbitrary real value a, is a random variable with d.f.

—vt) 2
20t

fe) = ; - exp{ (a fort >0, v>0. 3.4.1.2)
o2t

This form is a reparametrization of the p.d.f. in (3.4.1.1) obtained by putting u = 4- and 4 = ;—:

where a is specified. There are various other representations of the density function but we will

use the p.d.f. in 3.4.1.1).
3.4.2 Properties

3 . et
The mean and variance of this distributions are u and 4- respectively. This distribution is

unimodal and positively skewed, with mode

Xmode = y{(l + 432 )% - %}

and its shape depends only on the value of ¢ = -,-’;- The cumulant generating function of this

distribution is obtained as

Kx(t.p,A) = %{1-(”2—‘5’-)%}. (3.4.2.1)
Therefore the first four cumulants are
Ki=pu
K, = £
Ks = 2%
Ko =13

i3

Generally, for r > 2, Tweedie (13] found the formula for the rth cumulant ie.

K =135.....(2r—-3)¢1) where ¢ = 4. The characteristic function of this distribution is

202\ T
®.(t) = E[e™] = exp{¢(1 - (1 - ﬁiﬁ) ’ )} (3.4.2.2)
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The central moments can be derived from cumulants, by direct integration or by using the
characteristic function. From these raw moments can easily be obtained. For this distribution, all
positive and negative moments exists. There is a remarkable relation between negative and

positive moments, given by

r+l
E[X—] = %’(+_l] (3.4.2.3)

As ¢ = 7’,— — o with fixed y, the standardized inverse Gaussian distribution (u = 1) tends to a

unit normal distribution. If Z = z’f then Z~IG(¢,$?), where ¢ = 4. This transformation gives a

single parameter family of distributions. Wasan and Roy [100] found that as y — «© and 1 is

fixed then ¥ = + tends to the gamma distribution, i.e.
fr(y) = AQr) Tyt exp(——é—ly) fory > 0.

3.4.3 Applications and Uses

In the area of engineering reliability, inverse Gaussian distribution have been used to model of
the movements of particles in a colloidal suspension under electric field. This distribution was
long known in the literature of stochastic process and its potential in statistical applications in
increasingly recognized in recent years. Wasan [102] also explained that this distribution have
been used to the motion of particles influenced by Brownian movements. Tweedie [87]
suggested that since X is a sufficient statistic for y, then the statistical independence between X

and 4+ can be performed for nested classification in analysis of variance and this analogue

s

developed for the analysis of variance with the values of chi-square and F tables. Although this
distribution calls as the first passage time distribution of Brownian motion with positive drift
suggests that a wide variety of shapes generated by the p.d.f. makes a good competitor to the
Gamma, Weibull and log-normal models. Since it is a positively skewed distribution and this
distribution has advantage over some other skewed distributions because of exact small sample
theory is tractable and in some cases it is parallels that of the normal distribution. Inverse
Gaussian distribution is also used in the area of natural and social sciences, i.e., lengths of strikes
(Lancaster [58]), hospital stays (Etan and Whitmore [28]), employee service times (Chhikara and
Folks [19]), noise intensity (Marcus [63]) and tracer dilution curves (Wise [95]) etc. Analytically
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inverse Gaussian distribution is sufficient to use for curve fitting but its scientific interest is
limited. This distribution serves as a good model for accelerated life tests. Bannerjee and
Bhattacharyya [10] applied this distribution in marketing research and Chhikara and Folks [20]
consider applications of IG in life testing. Bhattacharyya and Fries [5] argue that IG is more
appropriate than the Birbaum Saunders fatigue distribution and Chhikara and Gultman [22] gives
sequential and Bayesian prediction limits. So the IG widely used tool in reliability theory.
Gerstein and Mandelbred [41] showed that the IG model provides a good fit for the spontaneous
activity of several neurons in the auditory of a cat and explained that by introducing a time
varying drift for the Brownian motion they replicate the behaviors of one of the neurons
subjected to periodic stimuli of various frequencies. Weiss [103] has given a review of the
various types of random walk models for physical systems. Bachelier [12] used IG in stock
prices. Recently Bannerjee and Bhattacharyya [10] used this IG model in renewal process and

Whitmore [104] used this model to find labour turnover in marketing and labour research area.
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4 Models of Failure Times in Accelerated
Life Testing

4.1 The Reciprocal Linear Regression Model

In stochastic modeling of failure times, the fatigue life time distribution plays to a prominent
role in the engineering literature. Bhattacharyya and Fries [4] motivated their Inverse Gaussian
reciprocal linear model as follows. For a given stress, they assumed that the fatigue grows to a
level where the component fails. Assuming, the accumulated fatigue to be governed by a Wiener
process. the time to failure is distributed as an Inverse Gaussian distribution. This fact is due to
the particular characterization of the Inverse Gaussian distribution as a first passage time
distribution (see Johnson and Kotz [47] ). For a stochastic relation of y to the intensity of stress
x, they assumed that the severity of the stress levels (x) does not change the form of the life time
distribution () but the stress levels (x) have an influence on the value of the parameters. In this
case, the parameter g is taken most important role to have a direct relation to x because it
measures the mean fatigue growth per unit time.

Since, in accelerated life testing, it may be assumed that higher stress produces smaller

mean failure time, they considered the following simple model

{u(x)}" =a+px for a >0,>0,x>0 4.1.1)

In a practical situation, we only consider @ + Bx > O on a finite interval of x which corresponds
to the range of stress x. But we assume that the origin is taken at the lower point of this interval.
l.e.a > 0.

Since, the fatigue life distribution may not follow a Wiener process, Inverse Gaussian
distribution may not be always appropriate. Hence, we would like to consider some other general
family of distributions in accelerated life testing. Due to proximity of the Gamma distribution to
the Log-normal and Inverse Gaussian family, we are inclined to use the Gamma distribution as
the model for failure times, i.e. the failure times at stress level x may be assumed to follow
Gamma(a,, B:) distribution. The choice of a,,f: for a given x may be motivated from the
following considerations. A constant §, implies that the distribution shape may change with

respect to x but not the scale, where as, a constant a, implies that the distribution changes with x

31



according scale changes. Moreover, since, yu, = a,B., the mean failure time at level x is

considered to be a decreasing function of x, a general model for u. may be given by

>

ux = g(a., Br).

where g is an increasing function, assuming that a, is decreasing in x for fixed B, and B is

decreasing in x for fixed a,. For simplicity, we consider the following choices

FirstModel a: = (ao+a lx)-l
SecondModel B, = (Bo + B1x)™"
ThirdModel e, = [ao +ai(L)]

FourthModel B = [Bo + B1(1)]

The method of estimation involving these models is maximum likelihood, a general treatment of

which is given in the following section.

4.2 Introduction of ML Method

Method of Maximum Likelihood is the most widely used method of estimation which was
initially formulated by C. F. Gauss but as a general method of estimation was first introduced by
Professor R. A. Fisher. Method of maximum likelihood has the following attractive features:

i) Generally it is a simple procedure, although the computational problems may not always be
simple.

ii) The asymptotic properties of maximum likelihood estimators for under certain regularity
conditions make their use desirable.

iif) Maximum likelihood estimation affords a rather general methods of estimation of parameters
of survival distribution’s even when observations are censored for example one can in most
instances obtain the maximum likelihood estimators of the parameters of the survival
distribution.

For some models, explicit solution of the maximum likelihood estimators may be possible.
However for other models solutions can not be obtained explicitly. For this reason, there are two

computational methods of finding maximum likelihood estimators such as Newton-Raphson
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method and Scoring method. These are described in the next section.

4.3 Computational Aspects of ML Method

Let us consider a random sample of n observations Xi.....X, from a population with density

function f{x.0). The joint density function of sample values when regarded as a function of

unknown parameter @ is called likelihood function and is denoted by

L(B) = flx1.0)f(x20)..(xn0) = | [ fx:.0).
=]
The principle of maximum likelihood consists in finding an estimator of the parameter which
maximizes L for variations in the parameter. Thus if there exists a function 9= '0\(,t|__”,_r,,) of the
sample values which maximizes L, then B is to be taken as estimator of 8. Thus 8 is the solution
of the equatlon = 0 subject to the condition that < 0 i.e. 0 consists of a single parameter.
Since L > 0 so is logL which shows that L and logL attain their extreme values at the same value
of 8. But it is more convenient to work with logL. So M.L. estimator 8 is generally obtained as

the solution of the equation a;gz. = 0 subject to the condition that acl‘+g" < 0. For

multiparameter case, the MLE’s D,,---,.8, of 8,,---,0; are obtained as the solution of the k x k

system of equations, i.e.

GlogL(8,,....0k) _ .
50, |a'_8’ =0, i=1,2,....k

(See Cramer [15]).The estimators (8., ---,8;) are asymptotically normally distributed with mean

(81, ---.6) and variance-covariance matrix V; (see Rao[77]) where
lo L o*logL
( ) —E( 00,0x )
Vs =

E( logL ) E( 6-log[. )

ie.
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In cases where it is not possible to obtain Maximum Likelihood Estimators for the parameters of
the distribution then we use numerical techniques. There are two cases of the numerical
techniques

i) No constraints on values of the parameters are assumed.

ii) Parameters are subject to some constraints.

[n the second case, maximizing the logarithm of the likelihood functions, the constraint is
typically as follows

The value of a parameter must lie in the interior of a particular region and must not lie on the
boundary of that region. Numerical procedures that do not allow for constraints can be used as
long as successive maximum iikelihood estimators lie in the interior of the region.

Here we can describe maximizing techniques that do not consider constraints. These techniques
can be put into direct and indirect classes. In the direct class, starting value is determined which
thought to be a good approximation to the desired value. An example of this class is the method
of steepest ascent or gradient method of Cauchy. In the indirect class, at first the derivatives of
the logarithm of the likelihood function with respect to each parameter are obtained and then
equated to zero. Next, the values of the parameters are easily obtained in terms of the
observations that simultaneously satisfy these equations. Two examples of this class are
Newton-Raphson method and the method of Scoring which we investigate below. Rao [77] also
discussed this indirect procedure. Therefore some modern and sophisticated methods are
available for solving non-linear equations of the type which confronts us the Newton-Raphson
method and the Scoring method are very practical to implement and calculations are not

difficult.

4.4 Asymptotic Properties of Maximum
Likelihood Estimators

Maximum Likelihood estimators are the most important methods of estimation because of their

34



asymptotic properties. Generally, the asymptotic properties for maximum likelihood estimates
applies to samples with many failures and models that satisfy certain regularity conditions.
Let X,...X, be a random sample of size n from a population with density function f(x). Then the

likelihood function of the sample values xi, ..., X, usually denoted by L is given by
L = f(x,0) ¢ f(x3,0) » --- ¢ f{x,,0)
= Hﬂxi,e)-
i=l

The following assumptions are made
i) The first and second order derivatives exist and are continuous functions of @ in a range R,

including the true value of the parameter for almost all x. For every 8 in R. ﬂ;ﬁ < Fi(x) and

C—Clgﬂg—L- < Fa(x) where F(x) and F1(x) are integrable functions over (—, ).

23 i 3 .. .
if) C—C_’;’% exists such that &—c,:’sg—"- < M(x), where E[M(x)] < k,a positive quantity.

iii) For every @ in R, E(__"%&) is finite and non-zero.

iv) The range of integration is independent of 6. But if the range of integration depends on 6 then
flx,8) vanishes at the extremes depending on 6.

Under the above conditions, the asymptotic properties of the maximum likelihood estimators are
[) MLE is consistent.

if) It is asymptotically normally distributed.

lLe.

8 = N[O, {1(0))y " Jwhere, I(0) = —E[%é]

(iii) It is asymptotically efficient and achieves the Cramer-Rao lower bound for consistent
estimators.

The second property greatly facilitated hypothesis testing and the construction of interval
estimates and the third property is a particularly powerful result.

Under certain general conditions, maximum likelihood estimators possesses some important
theorem which can be helpful to prove the asymptotic properties of maximum likelihood
estimators.

Cramer — Rao Theorem : “With probability approaching unity as n tends to infinity, the
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likelihood equation -‘?%,?A = 0,has a solution which converges in probability to the true value
60" (Dugue [27]).
Huzurbazar'sTheorem: Any consistent solution of the likelihood equation provides a maximum
of the likelihood with probability tending to unity as the sample size tends to infinity (
Huzurbazar [46]).

Cramer'sTheorem : A consistent solution of the likelihood equation is asymptotically normally

distributed about the true value 6y. Thus 8 is asymptotically N( 0o, 7(2;0_)') (Cramer [15]). Here

1(8) is known as the information on @ supplied by the sample X, ---. X, .

4.5 The Newton-Raphson Method

The Newton-Raphson method is a widely used and often studied method for minimization.
When the derivative of g(@) is a simple expression which can be easily found, the real roots of
the equation g(@) = O can be found rapidly by a process called the Newton-Raphson method
after its discoverers. This method consists in finding an approximate value of the desired root
graphically or otherwise and then finding a correction term which must be applied to the
approximate value to get the exact value of the root. We illustrate this technique by solving first
for a single 8 and then presenting the case for 8;, { = [,2,---.k. Let
g(0) = 61065(9). (4.5.1)

where

L(0) = [ Tfx..6).
i=1

The problem is then to find the value of 8 say 8 such that

g(l;) = 0. (4.5.2)

Thus § is the requisite maximum likelihood estimator of . If there is more than one value [}
such that g(8) = 0, the choice of an initial value is very important. In most cases, the initial
value obtained is in the neighborhood of the maximum likelihood estimator. When in doubt,

consider several different initial values.
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If 8 can not be obtained explicitly from solving equation 2(8) = 0, we may attempt a solution
by means of the Newton-Raphson procedure. Suppose 8o be an initial value of @ and then
finding a correction term h so that the equation g(8) = 0 becomes g(@o+h) =0. Now

expanding g(8¢ + k) by Taylor’s theorem we have

g(@o +h) = g(@o) + heg'(Bo) + '2‘: eg"(Bo)+--- =0.

Supposing & is very small, we may neglect the terms containing /> and other higher powers.

Then we have
g(Go) + h e g'(B0) = 0.

_ 200

which implies that & = i
g (8a)

Then the improved value of the root is given by

o0 = 3y - £@0)
g'(8o)
Here, 65" is called first approximation of the desired root. Similarly in the same way. the vth

approximation of 8 is given by

09 = By - 3’(2»4) ' (4.5.3)
8 (ev-l)

where

4.54)

Thus, Newton-Raphson method consists of solving each iteration, the equation is
g(8.) +(0-8.)8'(0) = 0.

For the next iterate 8,.;, the solution takes the form of equation (4.4.2) by replacing 9 by 8.1,
and 8,_, by .. It is evident from Newton-Raphson formula that the larger the derivative g'(),
the smaller is the correction term which must be applied to get the correct value of the root. This
means that when the graph of g(6) is nearly vertical where it crosses the x-axis, the correct value

of the root can be found rapidly. But this method should not be used when the graph of g(6) is
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nearly horizontal where it crosses the x-axis.

Suppose f(x;0;,---,0;) is a density function containing k-parameters 6;,---.6, k= 2.
Furthermore, suppose the maximum likelihood estimators 8.,---,0¢ of Oy,---.0y are respectively
found by differentiating the logarithm of the likelihood function with respect to 6;,---,6, and
then equating to zero and then solving the resulting equations in terms of 8, ---, 0. This leads to
a system of k equations in £ unknown parameters which can not be solved directly. We then
extend Newton-Raphson method to &-dimensions.

Suppose L(8,,---.0:) be the likelihood function of the k parameters distribution and let the

maximum likelihood estimators of 8;,---,8, be found by solving simultaneously the vector

equation
g(ﬁl.---ﬁk)= o, (4.5.5)
where
g (1,80 = (8:(@1.--.80).--.8x(B1,---.81))
and
gi(@1.---.8y) = al°g[‘(a%‘i""’0") lgng, » B = Lok (4.5.6)

Let us consider the initial estimates of @l,---.ﬁk are respectively Bi0.---,0w . Then the vth
iteration of 8y, ---,8 of the solution 8, ---,8¢ is

§'=§:bl _g'(wl)||vij[|(-"Ll)’ 4.5.7

P ot ot -~ o~ _ o1 i
where 0.=6,,,--.04. 0..,= (91_‘,_1,---.9&.,4) and gV = (g Vg,

g8 = gi(B1amt, 0kt ). i= 1,2,k Also lvyllyy is the & x k matrix whose ijth

element is

= agi(ol’ "'yak) I

Vij 50j 81 )=(B ot Bert)

(4.5.8)

fori=1,---k, j= 1,---,k.

The important part of this method is to choose the initial estimates 810,---,0 because the
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Newton-Raphson method will converge to a value that is not the maximum of likelihood
function [L(,.---.6:)]. In 1975, Gross and Clark noted that although this method does not
always guarantee a maximum, it is a safeguard in that more than one set of initial values is

considered and it means that any particular values in convergence can be uncovered.

4.6 Convergence of the Newton-Raphson
Method

For considering single 6, the Newton-Raphson method formula for finding the roots are

95 = B~ <@

g'(@a)
(4.6.1)
¥ = 9, — £@n)
0 T @y

which shows that the Newton-Raphson method is really an iteration method. Since the above

equation can be written symbolically in the form
ow[ = ¢(uv).

then from the condition of convergency of iteration process, we can say that the

Newton-Raphson method converges when I¢'(u.)l < 1. Hence from equation (4.5.1) we have

oo (52

- [ dr ( g(&)) )l.e

_ I:[ _ £/(0)g'(x) — g(x)g"(x) :I
(g'(0)° s

[ 2(0)g" () ]
(g'(x))?

g(9v-| )g (ev-l )

(o)
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Therefore the sufficient condition for convergence is

2(0.-1)g"(B.-1)
(¢@.-0))"

<1,

therefore |g(8.-1)g"(8.-1)| < (¢'(Bu-1)) .
Graphical representation has also proved that the Newton-Raphson method converges. See the

figure in next page. We observed that since g'(80) = 0,the tangent line is not parallel to the axis.

Where this line crosses the 8 axis, we find our next approximation 8" and so on. Generally we
stop our iteration procedure when logL(8) stops increasing appreciably. Actually if any value of
two approximations are fairly close, we will make no further approximation and accept the last
approximation as the required value of 8. The value of logL(@) should be calculated at each step

because it permits us to monitor the stopping procedure.

4.7 The Scoring Method

The method of scoring is similar to the Newton-Raphson method for obtaining maximum
likelihood estimates of parameters which was established by C.R. Rao in 1952. Sometimes
maximum likelihood equations are complicated so that the solutions can not be obtained
directly. For this reason, a great mechanism is introduced by adopting the method known as the
scoring method when the requisite system of equations for solutions is non-linear. In this
method, consider a trial solution and derive linear equations for small additive corrections. This
process will continue until the corrections become negligible. The difference between
Newton-Raphson method and scoring method is that the matrix of second derivatives used in the
Newton-Raphson technique is replaced by the matrix of the expected values of second
derivatives in the method of scoring. We discuss this technique by solving first for a single 6 and
then presenting the case for8;; i = 1,2, ---,k.

Suppose L(8) be the likelihood function of the parameter € then ﬂg_gi is defined as the efficient

score for 0. Let 8 be the trial value of 8 then expanding E‘Z_"# by Taylor’s expansion, we have
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dlogl _ dlogL _ayOlogl
30 = 50 + (0 —00) 202 +

= dogk _ or04) + ---
360

where, 60 = 6 — 8¢ and I(6,) is the Fisher information at the value 8 = 8, and it is the expected
value of (—-";%g") In large samples, the difference between [— [(80)] and a’% will be very

small which is negligible so that the correction term &6 is obtained from the equation

80 « I(80) = %%, [ s(a—'ggé):o]

therefore

50 = I-1(8,) 2108L.
069

Therefore the first approximation is (6o + 60). The process will continue until the stable value of

0 is obtained.

Now consider the case of the simultaneous estimation of several parameters. Suppose

L(6:,---,0;) be the likelihood function of the parameters 0,,---,8«. Let the i-th coefficient be
defined by
o= Z0EL. 2k

00,
and the Fisher information matrix is

I; = E(S:S;)-
Let 69,---,02 be the trial values of 8,,---,0; respectively and their small additive corrections
08, ---,00; are given by the following equations

19,80, + --- + 19,0, = S

15,60, + --- + 15,60, = S?

This process will continue with corrected values each time until stable values of 8,,---,0« are

obtained. The main problem of this method is computation and inversion of the information
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matrix at each stage of approximation. But after some stage, the information matrix may be kept
fixed and only to recalculate the scores. When final values are reached at the final stage, the
information matrix may be computed at the estimated values for obtaining the variances and
covariances of estimates. A discussion of the Newton-Raphson method and the method of

scoring is also given by Kale.

4.8 Review of Accelerated Life Testing

This section presents brief review of the work done in accelerated life testing.

4.8.1 Nelson’s Work

Nelson [67], [68], [69] presented statistical methods for planing and analyzing accelerated life
tests with the Arrhenius model. He suggested that when all test units are run to failure, Arrhenius
model should be of wide interest for estimating life which as a function of temperature because
test units are not limited to just accelerating variable but they are applicable to many accelerated
life tests with other accelerating variables. The assumptions of this model for the population of
product life times are as follows

(i) For any temperature, the life distribution is log-normal.

(if) The logarithmic standard deviation of the distribution is constant.

(iii) The u(x) of the logarithmic life is a linear function of the reciprocal x = LT of the absolute

temperature 7 that is
u(x) = a + px,

where a and B are parameters characteristic of the material and the test method. The important
fact about a log-normal life distribution is that the logarithms of the times to failure have a
normal distribution. And the algorithm of the log arithmetic mean life g(x) is the median life and
is regarded as a nominal life. He used log-normal distribution to find the proportion P of units

failing at an absolute temperature T with reciprocal x = lT is

42



p = o LB KD )
= q)( log(?) -&a-ﬁx )

where ®(e) is the standard normal cumulative distribution. At each test temperature, Nelson
obtained estimates of the median and other percentiles of the life distribution and then provides
an estimate of the Arrhenius relationship between the median life and temperature. He used both
graphical and analytical method and recommended that a combination of graphical and
analytical methods be used for analysis of accelerated life test data since both methods
compliment each other. In 1972, Nelson presented another approach for analyzing accelerated
life test data with the Inverse Power Law model. He suggested that the Inverse Power Law
model is satisfactory for describing life as a function of the accelerating variable if the
relationship for the situation can be transformed into a linear one. The assumptions of the
[nverse Power Law model are

(a) For any constant positive stress, the life distribution is Weibull.

(b) The shape parameter m of the Weibull distribution is constant i.e. independent of the stress.

(c) The scale parameter @ is an inverse power function of the stress V i.e.

o(V) = 4.8.1.1)

where k and n are positive parameters characteristic of the material and the test method.
Equation (4.8.1.1) is called the Inverse Power Law since the inverse of the stress is raised to the

nth power. Under these assumptions, the fraction F(z;v) of units failing by time z > O is

F(;v) = | —exp[-(kv*v)™].

Here Nelson used graphical method for analyzing accelerated life test results with the [averse

Power Law model when all test units are run to failure.

4.8.2 Work of Bhattacharyya and Fries

Bhattacharyya and Fries [4] discussed accelerated life testing with reciprocal linear regression
model. They explained that a material fails when its accumulated fatigue exceeds a critical

amount w > 0 and assumed that the fatigue growth take place over time according to a Weiner
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process with drift u > 0. The physical aspect leads to a regression structure for the reciprocal of
the mean 6. Then the first passage time through w has the Inverse Gaussian distribution /G(6, 1)
with @ = wu™! and A = w262 where 62 denote the diffusion constant of the process. Actually
the IG model conforms to the structure of an exponential family and the methodology of
optimum statistical inferences including test of hypotheses is well developed. Consider the time
of failure yy, v, ........ ,¥a corresponding to the stress setting xi,Xx2, ........ ,Xn. Then yi;i = 1,......, n
is distributed as IG(8;, 1) with 8;' = a + Bx;. They claimed that a linear form of the mean life is
a simple choice for describing life as a function of the accelerating variable. They studied here to
estimate the parameters by maximum likelihood method and follow the asymptotic properties of
the estimators. But this asymptotic theory is based on number of replicates go to infinity at a

fixed rate and their analysis is to include a lack of fit test.

4.8.3 Work of Singpurwalla
Singpurwalla Nozer D.[83] presented the inference procedure for analyzing accelerated life tests
with Arrhenius re-action rate model. He pointed out that the scale parameter of an exponential
distribution is reparametrized as a function of the stress according to the Arrhenius re-action
rate model. He proposed for meaningful inferences for the problem of accelerated life testing
when the location and the scale parameters of an exponential failure distribution was
reparametrized according to the power rule model. He considered the following situation.
Suppose the device under consideration is subjected to the constant application of a single stress

V. and its failure distribution under V; follows the shifted exponential

Aiexp(t—v)Ais Ai>0t2v,yi20
fAiyi) = P )
0 otherwise

By the Arrhenius model for a < V; < b where a and b are known as constants, the scale

parameter A; is reparametrized by
Ai = exp(A - —5‘-)

where A and B are unknown parameters which will be estimated. Again he suggested that the

location parameter ¥; is reparametrized as a linear function of the stress V; as



}'i=a—ﬂVi fora<V:;<b

where a and B are unknown parameters. He showed that the stress levels does not change the
form of the life time distribution but the stress levels have an influence on the parameters. The
general procedure here is to obtain estimates of the parameters A, B,a and f from the results of
the accelerated life test and then use these estimates to obtain estimates of the scale and the
location parameter at use stress conditions. This type of parametrization are appropriate of the
large sample theory for the ML estimators by using the shapes of the maximum relative
likelihood functions. The main goal of this idea deals with inference about mean life at use stress

conditions.

4.8.4 Work of Babu and Chaubey

Babu and Chaubey [6] presented reciprocal linear regression model for analyzing regression
variables and the observations on the dependent variable following inverse Gaussian
distribution. To formulate the inverse Gaussian regression model let y;;i = I,......n be the time
of failure is distributed as IG(u.,A) where u, = x;f and B = (Bi,-eeens [3,,)' is a vector of
regression parameter and x; = (X, ....... ,x,-,,)' be the vector of stress setting. Then we can write
vi' = xiB +e; where A7'y; €} are i.i.d. x{, variables. To estimate B and 1 they used pseudo
maximum likelihood estimators given by Whitmore [105] and Bhattacharyya and Fries [3]

B=xr)'X1

s _ (rv1-rxp)

n

They established consistency and derived the asymptotic distribution of the psudo maximum

likelihood estimators under very general assumptions on the design points.

4.9 Estimation of the Parameters of the
Reciprocal Linear Regression Model by
Maximum Likelihood Method under Gamma
Failure Times

First model

In order to obtain estimates of the parameters, let us consider the observations
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(xi,yi);i = 1,2,....... ,n from n runs of an accelerated life test experiment where y; denote the
failure time corresponding to the stress setting x;. Here the random variables yi.y», ........, Y are

independent and they are distributed as Gamma distribution, such that y,~Gamma(a.,, ) where
a;' = ﬂ(ﬂo + ﬁ[X). (4.9.1)

This gives a reciprocal linear model since the mean of the ith observation is a., . We may also
write
a;' = ao+aix; where, ag = BBo and a; = .

Now the corresponding likelihood function is given by

= e_zi-l ¥ l—[ D / S 4.9.2)

Hence the log-likelihood function becomes

logL = —z": lﬂ’— + i(ax, - Dlogy: — z": logla., — iax, log B, 4.9.3)
=l =l

=] =l

where, a,, = L So the maximum likelihood estimators of ao,a: and B are given by the

aog+ax,

solution of the following equations

ologL _ , dlogL _, dlogl _ (4.9.4)
Oag ’ aa[ ’ aﬂ
Now %ii =0, i.e.

—Za,’;, logyi +; -r—az! +a,,(2;(p—ia—x‘)—)}a§, +§a§, log=0

i=1 p=t
4.9.5)

L Slog L :
Similarly, %2~ =0, i.e.



- Y xiallogy: + -r—a;! +a,, —1 | xia2 + ) xiallogB=0
2 loeyi+ 2 ' (; Pl +a:) )} .
(4.9.6)
And e—"%’—‘- =0, le.
S i s =0. (4.9.7)
Fml ﬂ"’ r-Zl ﬂ

To solve the equation (4.9.5), (4.9.6) and (4.9.7) we will get the estimated value of ao,a;. and B-
But these equations are usually complicated to solve so that their solutions can not be obtained
directly but their solutions can he numerically obtained by using the Newton-Raphson method.

For various sets of data which we generated on a computer by some computer program it was

P
found that &g, @; and B could be obtained in a few iterations of the method.

Second model

Now we consider «a is fixed that is yy,........, y. are independently distributed as Gamma (a, B3:)
with
(@Bi)™ = ao+aux;, (4.9.8)
ie. B7' = a(ao + aix;)
= o + Pix;

where fo = aao, B = aa,. So

o1
b Bo + Bixi

In this case, the log-likelihood function is

n /N
e sy

L(a,o.B1) = HW

=]

dx,.-l

T ETT Y 4.9.9)
‘ [l per(a)
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where S, =  —
ﬂ‘ Bo+Bix; So

logl = —Z(ﬂo + Bixi)yi + (a — l)Zlogy,— -aZlog(———l——) ~nlogla
im1 =l fl Bo + Bxi
(49.10)

Therefore the maximum likelihood estimators of B¢, 81 and a are given by the solution of the

following equations

Ologl _, GlogL _, 2dlogL _, 4.9.11)
aﬁo aﬂl aa

But these equations are complicated to solve so that their solutions can be numerically obtained

by using the Newton-Raphson method. For several types of data which we generated on a

AN . . . .
computer program it was found that Bo,B, and @ could be obtained in a few iterations .The

maximum likelihood estimators in third and fourth model can be similarly obtained.
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5 Numerical lllustration
5.1 Data

Nelson [65] reports data on the failure of 40 motorettes with a new class-H insulation material in
a motorette test performed at four elevated temperature setting run at 190°C,220°C,240°C and
260°C. For each test temperature, the 10 motorettes were periodicaliy examined for insulation
failure and the given failure time is midway between the inspection time when the failure was

found and the time of the previous inspection.

Table: Hours to failure for class-H insulation material

190°C 220°C 240°C 260°C
7228 1764 1175 600
7228 2436 1175 744
7228 2436 1521 744
8448 2436 1569 744
9167 2436 1617 912
9167 2436 1665 1128
9167 3108 1665 1320
9167 3108 1713 1464
10511 3108 1761 1608
10511 3108 1953 1896

Source: Nelson [65]

5.2 Estimates of the Parameters

For illustrative purposes, we fit the Gamma regression model to these data. Nelson [65] used the
same data in the Arrhenius model by employing a combination of graphical and analytic
techniques based upon the assumptions that the log-failure times are normally distributed with
constant variance and the mean depends on temperature. Bhattacharyya and Fries [4] fit an
Inverse Gaussian reciprocal linear model to be adequate for this data . They choose the x values
given by x = 10-8(s*> - 180%), ¢ denoting the temperature in centigrade. Babu and Chaubey [6]

used this data to fit an Inverse Gaussian model given by IG(u.,1) where uz! = Bo + Pix.
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Actually the main purpose of the experiment was to estimate insulation life at 180°C exceeded a
minimum requirement. We took the distribution of failure times as Gamma i.e. G(a, ) with
reciprocal linear regression model where x = 10~8(¢> — 180%). The computer program developed
to estimate the parameters attached to the appendix was used for the purpose. We used here a
SAS program PROC NLP [84] and this program provides estimates of the parameters, Hessian
matrix, Covariance matrix, Correlation matrix and confidence limits for parameters and

functions of them.

First step

Maximum likelihood estimates of the parameters

' Model | Parameters } Estimates of the parameters | Standard error of the estimates |
. a 0.00433 ; 0.00123 ;
First = o, | 0.77118 0.17239
B 107.42389 24.11420 §
| . Bo 0.00074293 0.00025522
Second| g, 0.13956 | 0.03187
. a 19.18338 | 425277
o 4.16547 1.17190
Third a 0.69342 0.159 |
B 124.755 28.04153
B0 23.07059 | 8.69414 :
Fouth g 5.43162 128748
. a 17.19921 3.80919
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Second step

CONFIDENCE INTERVAL FOR DIFFERENT PARAMETERS

An approximation to 100(1 — @)% confidence interval for a; (say) as,

@+ Z[SE(@)]

where Z< is the 100(1 — a)-th percentile of the standard normal distribution.

An approximate 90% confidence interval for the parameters are shown in the next table.

' Model | Parameters| Lower limit Upper limit *
a0 0.00230665 0.00635335 |
, First a; 0.48759845 1.05476 |
B 67.756031 147.091749 |
| Bo 00003230931 | 0.0011627669 |
‘Second | g, 008713385 | 0.19198615
| . a 12.18757335 | 26.17918665
 ag 22376945 6.0932455

- Third + 4, 0.431865 0.954975

B 78.62668315 | 170.8833169
Bo 8.7687297 37.3724503 |
- Fourth B 3.3137154 7.5495246 |
I i
a 10.93309245 | 23.46532755
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5.3 Goodness of Fit of the Models

Since Yi~Gamma(a;, §) then
Y, =P (5.3.1)

Goodness of fit is judged using the following norms;

L= Z[’Y‘— Y| (53.2)
=]

Ly, = i|/y\x— Y; : (5.3.3)
=]

For comparative purpose, we can use Bhattacharyya and Fries result and Babu and Chaubey’s
result. Bhattacharyya and Fries [4] find the Inverse Gaussian reciprocal linear model to be
adequate for this data excluding the 260°C setting and they choose the x values given by,
x = 1078(¢3 — 180%), ¢ denoting the temperature in Centigrade. Babu and Chaubey used this data
for both batches and they fit an Inverse Gaussian reciprocal linear model given by IG(u., A)

where
u:' = Bo+ Pix

They obtained to estimate the parameters by maximum likelihood method and are respectively

given by
Bo = 0.03731, B: = 7.317285, 7 = 0.040233

Since Y;~IG(u;,,A) then

P

—~
Hx,

The models can be selected according the value of the likelihood and L;,L> norms. In practice,
L1, L, norms are used but not be always appropriate. For this reason, we may also consider the

likelihood as the selection criterion.
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The table below shows the L. L> norms and log likelihood function in the different model

' Model L, L, Log likelihood

First 19068.23003 | 18101706.78 | 306.1948749
' Second 18937.04473 | 18119160.63 | 310.3946866
' Third 19651.03725 | 19547356.61 | 309.2575996
' Fourth 20946.02746 | 24074289.70 | 312.6183789
' Babu and Chaubey | 18784.80094 | 18231932.08 -

5.4 Conclusions and further Research

For the Gamma family, it can be observed that the reciprocal regression model for scale
parametrization gives the better result than other types of model according to L; norm, but first
model, i.e. shape parametrization is better according to L norm. Thus we consider the
likelihood criterion according to which the first model is the best. Note also that the estimators
given in Babu and Chaubey [6] provide best model amongst all the models considered according
to the L, norm this property is lost when we consider L; norm.

For further research, we can consider the use of the family of power transformations of
dependent variable before carrying out the regression analysis. Below we give some more details
of this.

Let Yy,---,Y, be a random sample from some non-normal density function. Let us assume

that they follow a gamma distribution. Consider the following transformation
Y—Y® |

where Y= (Yi,---.¥x)' and YW = (¥®, ... y@)'. Here Y? is the transformed value of Y;
for some A= (1|, ---,A¢) from the family A = (1;,---,A,) of transformation. From the above

transformation we assume that Y&¥ ~ Gamma(a;, B:). We will use the method of maximum
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likelihood estimation for estimating A from a given family. In 1964, Box and Cox proposed the

parametric transformation which is

Yi-1 .
Y(]') - -5 l_f A=x0
logY; if A=0

But Tukey also suggested another type of transformation which is

Lkl §f A4 %0

v =
log(¥;+42) if A1 =0

54.1)

(54.2)

For 2 = 1, Box and Cox transformation follows a single shift in ¥; which affects the location but

shape will be unchanged in the distribution. If A varies over (0,1) then it covers the range from

logY; to Y; — | or Y; itself with something new in between. But if 1 is not set in advance then for

estimation we must of course prepare for values outside this range. This will investigate in

future.
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Appendix

The SAS System for First model

PROC NLP: Nonlinear Maximization

proc nlp data=final tech=tr vardef=n covariance=h pcov phes;
profile alpha0Q alphal beta / alpha=.5 .1 .05 .0I;

max loglik;

parms alpha0=.04, alphal=7 .4, beta=2892.4;

bounds beta >le-12;

loglik=-(y/beta)+(( 1/(alphaO+(alphal *x)))-1)*log(y)
-lgamma( 1/(alphaO+(alphal *x}))

-(1/(alpha0+(alphal *x)))*log(beta);

Tun;

Optimization Start
Parameter Estimates

Parameter Estimate Gradient Lower BC Upper BC

I ALPHAO 0.040000 816.18854

2 ALPHAI 7.400000 12.40821 .

3 BETA  2892.400000 -0.03093 1E-12
Value of Objective Function = -389.2812123

Hessian Matrix
ALPHAQ ALPHAI BETA

ALPHAO -20134.66628 -236.0086413 0.291805417

ALPHAI -236.0086413  -4.354286129 0.004882963

BETA 0.291805417 0.004882963 4.8600017E-6

Determinant = 0.333665073

Active Constraints= 0 Criterion= -306.19487

Maximum Gradient Element= 0.000106442 Lambda= 0 Rho= 0 Radius= 0.6205

Optimization Results
Parameter Estimates

Approx. Ut Approx.
Parameter Estimate Std Er  Ratio Prob>itl Gradient Active BC

1 ALPHAO  0.00433 0.00123 3.54 0.0010 0.000i06
2 ALPHAI 077118 0.17239 4.47 0.0001 7.0096E-7
3 BETA 107.42389 24.11420 4.45 0.0001 -5.109E-9

Value of Objective Function = -306.1948749

55



Hessian Matrix
ALPHAO ALPHAI BETA

ALPHAO -5668291.165 -67323.54382 705.80305958
ALPHAl  -67323.54382 -1308.268456 11.896872251
BETA 705.80305958 11.896872251 -0.113879592
Determinant = 4958235.1736

Covariance Matrix 2: H = (NOBS/d) inv(G)

ALPHAQO ALPHAI BETA

ALPHAO 1.5024515E-6 0.0001472442  0.0246943265
ALPHAl 0.0001472442 0.0297171712 4.0171093065
BETA 0.0246943265 4.0171093065 581.49459929
Factor sigm = |

Determinant = 2.0168467E-7

Approximate Correlation Matrix of Parameter Estimates

ALPHAO ALPHAI BETA
ALPHAO I 0.69684 0.83546
ALPHAL  0.69684 I 096636
BETA 0.83546  0.96636 1

Determinant = 0.0077681796

Confidence Limits

Profile Likelihood Wald

Parameter Estimate Alpha Lower Upper Lower  Upper

AILLPHAO 0.00433 0.500 0.00361 0.00526 0.00351 0.00516

. 0.100 0.00279 0.00711 0.00232 0.00635

. 0.05 0.00257 0.00788 0.00193 0.00674

. 0.01 0.00221 0.00971 000118 0.00749
ALPHAl 0.77118 0.500 0.66710 0.89910 0.65491 0.88745

. 0.100 054579 1.14070 048763 1.05473

. 0.05 051294 1.23674 0.43331 [1.10905

. 0.01 045667 145726 0.32714 1.215
BETA  107.42389 0.500 92.87478 125.33121 91.15911 123.68867

. 0.100 75.93396 159.22813 67.75957 147.08822

. 0.05 71.35430 172.73327 60.16093 154.68686

. 0.01 63.50486 203.80396 45.30983 169.53795
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The SAS System for Second Model

PROC NLP: Nonlinear Maximization

proc nip data=final tech=tr vardef=n covariance=h pcov phes;
profile alpha0O ailphal beta / alpha=.5 .1 .05 0l;
max loglik;
parms alpha0=.04, alphal=7 4, beta=2892.4;
bounds beta >le-12;
loglik=-(y/beta)+(((alphaO+(alphal *(1/x))))-1)*log(y)
-lgamma(alphaO+(alphal *(1/x)))
-((alphaO+(alphal *(1/x)))*log(beta));
run;
Optimization Start
Parameter Estimates

Parameter Estimate Gradient Lower BC Upper BC

1 ALPHAO 0.040000 -209.12616
2 ALPHAI 7400000  -7483 .
3 BETA 2892.400000 -3.54405 1E-12

Value of Objective Function = -45399.52324
Hessian Matrix
ALPHAO ALPHAI BETA

ALPHAO -0.347567308 -5.426975682 -0.013829346
ALPHALI -5.426975682  -188.3970515 -0.481131939
BETA -0.013829346 -0.481131939 0.001219465

Determinant = 0.0882049632

Optimization Results

Parameter Estimates

Approx. Ut Approx.
Parameter Estimate Std Err Ratio Prob>Itl Gradient Active BC

1 ALPHAO 4.16547 1.17190 3.55 0.00107.8793E-9
2 ALPHALI 0.69342 0.15900 4.36 0.0001 3.239E-7
3 BETA 124.75500 28.04153 445 0.0001 1.3774E-9

Value of Objective Function = -309.2575996
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Hessian Matrix
ALPHAO ALPHAI BETA

ALPHAQO -2.547743794 -44.19306969 -0.320628431
ALPHA]l -44.19306969 -1773.006194 -11.15487168
BETA -0.320628431 -11.15487168 -0.072706742
Determinant = 3.2609032319
Covariance Matrix 2: H = (NOBS/d) inv(G)

ALPHAO ALPHAI BETA

ALPHAO  1.3733438358 0.1114522181  -23.15560055
ALPHAI O.[114522181 00252799772 -4.370016367
BETA -23.15560055 -4.370016367  786.32757125

Factor sigm = |
Determinant = 0.3066635005

Approximate Correlation Matrix of Parameter Estimates
ALPHAO  ALPHALI BETA

ALPHAO 1 0.59815 -0.7046
ALPHALl  0.59815 I -0.9802
BETA -0.7046  -0.9802 [

Determinant =0.0112331776

Confidence Limits

Profile Likelihood Wald

Parameter Estimate Alpha Lower Upper Lower Upper

1 ALPHAO 4.16547 0500 3.42386 4.98849 3.37503 4.95590
. 0.100 244548 6.31774 2.23787 6.09307
. 005 2.15802 6.78482 1.86859 6.46234
- 001 1.63231 7.75029 1.14686 7.18408

2 ALPHAL 0.69342 0.500 059346 0.80547 0.58617 0.80066
. 0.100 046306 0.98776 043189 0.95494
. 0.05 042582 1.05211 038179 1.00504
. 0.01 0.35843 1.18506 0.28387 1.10296

3BETA  124.75500 0.500 107.83589 . 105.84127 143.66873
. 0.100 88.14367 185.05844 78.63078 170.87922
. 0.05 82.82266 . 69.79461 179.71539
. 0.01 73.70203 . 52.52480 196.98520
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The SAS System for Third Model
PROC NLP: Nonlinear Maximization

proc nlp data=final tech=tr vardef=n covariance=h pcov phes:

profile alphaO alphal beta/alpha=.5 .1 .05 .0l;

max loglik;

parms beta0=.04, betal=7.4, alpha=2892.4;

bounds alpha >le-12;

loglik=-(y/(1/(betaO+(betal *x))))+(alpha-1)*log(y)
-lgamma(alpha)-(alpha*log(1/(betaO+(betal *x))));

run;

Optimization Start
Parameter Estimates

Parameter Estimate Gradient Lower BC Upper BC

I BETAO 0.040000 258773
2 BETAI 7.400000 8726 . .
3 ALPHA  2892.400000 -42.76325 1E-12

Value of Objective Function = -48974.51621
Hessian Matrix

BETAO BETAI ALPHA

BETAO -2441237.629 -40850.75962  138.27448705
BETAI -40850.75962  -1599.824144  4.6579757457
ALPHA 138.27448705 4.6579757457 -0.013827162

Determinant = 4885.6211925

Optimization Results

Parameter Estimates

Approx. Ut Approx.

Parameter Estimate Std Err  Ratio Prob>itl Gradient Active BC

1 BETAO 0.00074293 0.00025522 291 0.0059 1.0283E-7
2 BETAI 0.13956 0.03187 4.38 0.0001 8.5502E-9
3 ALPHA 19.18338 4.25277 4.51 0.0001 2.4555E-8

Value of Objective Function = -310.3946866
Hessian Matrix

BETAC BETAI ALPHA

BETAO -45957951.41 -766891.8898  7359.0804364

BETAl  -766891.8898 -29929.03424  247.43744877

ALPHA  7359.0804364 247.43744877 -2.140430055
Determinant =43533771758
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Covariance Matrix 2: H = (NOBS/d) inv(G)
BETAO BETALI ALPHA

BETA0 6.5138242E-8 4.1217113E-6  0.0007004309
BETAl 4.1217113E-6 0.0010156188  0.1315782877
ALPHA 0.0007004309 0.1315782877  18.086049033
Factor sigm = 1
Determinant = 2.297067E-11
Approximate Correlation Matrix of Parameter Estimates

BETAO BETAL ALPHA

BETAO I 050675 0.64532
BETAI  0.50675 I 097084
ALPHA 0.64532 0.97084 1

Determinant = 0.019198321

Confidence Limits

Profile Likelihood Wald

Parameter Estimate Alpha Lower Upper Lower Upper

I BETAC 0.0007429 0.500 0.0005816 0.0009223 0.0005708 0.0009151
. 0.100 0.0003691 0.00121 0.0003231 0.00116
. 0.05 0.0003068 0.00131 0.0002427 3J.00124
. 0.01 0.0001929 0.00153 0.0000855 0.00140
2 BETAI 0.13956 0.500 0.11953 0.16202 0.11807 0.16106
. 0.100 0.09339 0.19855 0.08714 0.19198
. 0.05 0.08593 0.21144 0.07710 0.20202
. 0.01 0.07242 0.23809 0.05747 0.22165

3 ALPHA 19.1838 0.500 . . 16.31493 22.05182
. 0.100 . 27.05488 12.18819 26.17856
. 005 12.02611 2877568 10.84810 27.51865
. 0.0l . 3233112 8.22897 30.13778
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The SAS System for Fourth Model

PROC NLP : Nonlinear Maximization

proc nlp data=final tech=tr vardef=n covariance=h pcov phes;

profile betaO betal alpha / alpha=.5 .1 .05 .0l;

max loglik;

parms beta0=.04, betal=7 .4, alpha=2892.4;

bounds alpha>1le-12;

loglik=-(y/((betaO+(betal *(1/x)))))+(alpha-1)*log(y)
-lgamma(alpha)-(alpha*log((beta0+(betai *(1/x))))):

run:

Optimization Start
Parameter Estimates

Parameter Estimate Gradient Lower BC Upper BC

I BETAO 0.040000 -993.37999
2 BETALI 7400000 -15543 . .
3 ALPHA  2892.400000 -209.29233 1E-12

Value of Objective Function = -490512.0855
Hessian Matrix

BETAO BETAL ALPHA
BETAO 11.782818164 133.37469585  -0.345497136
BETAI 133.37469585 2087.9220323  -5.403537853
ALPHA  -0.345497136 -5.403537853 -0.013827162
Determinant = -189.474342

Parameter Estimates

Approx. t Approx.
Parameter Estimate Std Err Ratio Prob>itl Gradient Active BC

1 BETAO 23.07059 8.69414 2.65 0.0114 8.8349E-7
2 BETALI 5.43162 1.28748 4.22 0.0001 0.0000151
3 ALPHA 17.19921 3.80919 4.52 0.0001 4.8547E-6
Value of Objective Function = -312.6183789
Hessian Matrix

BETAO BETAI ALPHA

BETAO -0.064583156 -0.820764914 -0.34583265

BETAl -0.820764914  -15.18155547 -5.895378867

ALPHA -0.34583265  -5.895378867  -2.394605403
Determinant = 0.0211454195
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Covariance Matrix 2: H = (NOBS/d) inv(G)

BETAO

BETAQ0 75588132197
BETA!  3.4715036805
ALPHA  -19.46319568

BETAI

ALPHA

3.4715036805  -19.46319568
1.657614408  -4.582309994
-4.582309994  14.509890445

Determinant = 47.291565895

Approximate Correlation Matrix of Parameter Estimates

BETAO BETALI ALPHA
BETAO 1 031013 -0.5877
BETAl 031013 I -09344
ALPHA  -0.5877 -0.9344 1

Determinant = 0.0260125204

Confidence Limits

Parameter

| BETAO

2 BETAI

3 ALPHA

Estimate Alpha

Profile Likelihood Wald

Lower _Upper _Lower

Upper

23.07059 0.500

. 0.100
. 0.05
. 0.01

17.95599 29.59865 17.20648
11.32680 4251886 8.77000
9.26985 4790117 6.03038
475244 60.77066 0.67596

5.43162 0.500 4.66056 6.39553 4.56322
. 0.100 3.77287 8.26100 3.31389
. 0.05 353795 9.01937 290819

. 001

3.13114 10.79198 2.11528

17.19921 0.500 14.80493 19.88341 14.62996
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. 0.100
. 0.05
. 0.01

11.68067 24.24959 10.93366
10.78849 25.79088 9.73335
9.17368 28.97543 7.38740

28.93470
37.37119
40.11080
45.46522
6.30001
7.54934
7.95504
8.74795
19.76847
23.46477
24.66508
27.01103
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