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ABSTRACT

Optimal Sample Size Determination in Seed Health Testing - A Simulation Study

Hari Xrishna Suéarla

Selection of an appropriate sample size is an important prerequisite to any
statistical investigation

In this thesis the problem of identifying the sample size for testing the seed health
by noting the presence or the absence of pathogen(s) is considered. The cross-classified
data of variety by seed by pathogen is collected for the purpose, which consists of N
observations for each variety of seed. Here N is regarded as population size and the
outcome is a Bemnoulli random variable.

A simulation method for identifying the sample size is developed and is compared
with five existing methods.

The simulation method is based on chi-square (x*) measure of goodness of fit of
empirical distribution with that of a theoretical distribution. Here k repeated samples for
each of the sample sizes n=10(10)50(25)100(100)500, using a simple random sampling
without replacement (SRSWOR), are considered. For each of the k samples of size n, the
chi-square (y°) measure of goodness of fit is computed. Since these k observed y* values
follow a theoretical ¥* distribution, we considered the upper 0.05 quantile ¥ (0.05-uq)
and corresponding P-value for sample size determination. Thus for each sample size n,
we have the 0.05-uq %* and the corresponding P-value. Now the optimal sample size is
determined as equal to the earliest instance of that sample size corresponding to which

the P-value is non-significant at the desired level of significance.
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Chapter 1

Introduction

1.1 Importance of Sample Size

Determining an appropriate sample size for a study whether it is an agricultural field
experiment, laboratory animal study or seed health testing, is an important step in the
statistical investigation.

The following examples are taken from Desu and Raghava Rao (1990). Consider
a gubernatorial election in which Candidate A has actually received 45% of electoral
votes. If an exit poll of 100 voters is taken, then there is a 13.35% chance of his getting
more than half of votes. If a sample of 2000 voters is taken, however then this chance is
nearly zero. By taking a small sample of 100 voters, the candidate gets a false hope of
winning the election, while the true picture emerges with a large sample of 2000 voters.
Interviewing 2000 voters is expensive and time consuming. One would like to find a
minimum required sample size that enables one to estimate the proportion of his
preferred votes to the desired level of accuracy.

In the next example consider the case of a manufacturer of Modelr X cars with
given equipment options who claims that those cars give an average gas mileage of at
least 25 miles per gallon (mpg). Assume that the standard deviation of gas mileage
delivered by such cars is 1 mpg. A consumer protection agency wants to disprove the
manufacturer’s claim using a test at a=0.05 level of significance. Using only four test

cars, the agency has 26% chance of rejecting the manufacturer’s claim, when the actual



gas. mileage delivered is 24.5mpg. Thus cars giving 0.5 mpg less than the claim have a
74% chance of meeting the manufacturer’s claim. If 100 cars are tested this chance of
accepting the manufacturer’s claim becomes nearly 0%. Then once again there is an
appropriate sample size that enables the experimenter even to retain hypothesis with a
high probability when it fails.

An adequate sample size ensures reliable information regardless of the outcome
of the study. Conducting ‘of a study with an inadequate sample size is not only futile but
also unethical. In clinical or laboratory studies exposing human subjects or animals to the
risks of research is justifiable only when there is a realistic possibility of benefit to those
subjects or may lead to substantial scientific progress.

Here we consider the problem of testing seed health by noting the presence or the
_absencc of pathogen(s) on each seed of a given seed lot of sorghum variety. Absence of a
pathogen indicates healthiness of a seed (free from disease) and presence indicates
otherwise. Thereby bne can dichotomize a given seed lot to be either healthy or diseased
with a reasonably small degree of risk. For this study, a large number of seeds N=1050, is
considered for each variety of seed lot, where the number of seed varieties is equél to five
and each seed is tested for the presence or the absence of a particular pathogen and is
scored as either 1 or O respectively. Thé number of pathogens identified is 15. Clearly
each data point i.e., a particular pathogen-seed combination is a Bernoulli trial. The
cross-classified data of variety by seed by pathogen is collected. Here N is assumed to be
large enough to be considered as population.

The primary purpose of the study is to find the number of seeds to be tested for

each variety of seed material, to identify the pathogens, in order to classify the seed



material to be healthy or diseased across all the pathogens. Usually it is very expensive
and time consuming to collect, maintain and test a large sample of seeds. So one may
want to know a suitable sample size with which he can make a decision about the seed lot
across all the pathogens involved with a reasonable degree of accuracy.
Objectives
1. The purpose of the study is to find an appropriate sample size which statistically
determines the health of a given seed lot for a desired degree of accuracy.
2. To explore and compare different statistical methods available.
3. To do a simulation study (data driven approach) to find a suitable sample size and
compare with other methods.
1.2 Materials and Methods
1.2.1 Seed Material
One-kilogram seeds of each of five sorghum seed varieties (IS-10392, IS-10757, IS-
2742, 1S-3025 and IS-8080) were collected in the year 2002 from the Quarantine unit of
the International Crops Research Institute for the Semi Arid Tropics (ICRISAT),
Hyderabad, India, gene bank, which was called as original sample (OS). Random
samples of seeds of sizes 50, 100(100)400, were taken from each OS, and called as
working samples (WS) for the purpose of seed health testing. The total number of seeds
N=1050 in the WS were arranged ten seeds per plate in blotter method and replications
were made in proportion to the size of WS. Then each seed from each sorghum variety
was evaluated for the presence or the absence of each of 15 pathogens (list is given
below) with a stereo-binocular microscope. Not all the varieties have shown all the

pathogens. Some times a particular seed may show incidence of more than one



pathogen. The number of seeds shown a particular pathogen was recorded and a
proportion of incidence was calculated. This proportion is some times called as
incidence rate. Table 1.1 shows the incidence of pathogens for different sorghum

varieties.

1.2.2 Data

The data Yij » 1=1...N, j=1...dvconsists of the presence or the absence of a pathogen,
coded as (lor 0), for each of d pathogens corresponding to N seeds. The data Yjj can be

considered as independent Bernoulli random variables. Since the incidence of a pathogen
on a seed is independent of the incidence of the same pathogen on any other seed. So
these pathogen incidences can be considered as independent trials with probability of the
presence or the absence of a pathogen being constant. So pathogen incidence on each
seed is a Bernoulli trial.

The following is the list of pathogens identified under laboratory testing, which
were coded for all the N seeds for the purpose of study.

1. Aspergillus niger (AN),

2. Aspergillus flavus (AF),

3. Rhizopus species (RH),

4. Curvularia lunata (CL),

5. Alternaria alternata (ALT),

6. Fusarium species (FS),

7. Penicillium species (PEN),

8. Epicoccum nigrum (EP),

9. Curvularia species (CUR),



10. Bipolaris sorghicola (BIE),

11. Exserohilum réstratum (EXS),

12. Phoma sorghina (PHO),

13. Nigrospora orizae (NIG),

14. Chaetomium globossium (CHA) and

15. Trichothecium species (TRI) .

The incidence of pathogens on different sorghum seed varieties is given in Table 1.1 and
the incidence rates are given in Table 1.2 respectively. Note that from Table 1.1 not all
pathogens were present in all the seed varieties. Also from Table 1.2 one can note that the
pathogen incidence rates are very small except for the pathogens CL, AL and FU across

all the seed varieties.



Table 1.1 Pathogen incidences for different sorghum varieties

Variety
Pathogen | IS-10392 | IS-10757 | 1S-2742 | 18-3025 | IS-8080
F3
AN
*
AF
*
RH
* % * * *
CL
¥ ] * % 3k
AL
* * * * *
FU
%
PE
* %) * * *
EP
% % * ® *
CU
* * * * *
BI
* X K %k
BH
3k L3
NI
* *
CH
sk
TR
%
EX

* Represents presence of pathogen
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Chapter 2

Survey of Literature

2.1 Population or Sample Size Estimation.

Let Xi, Xa,..., Xa be independent random variables with same probability density
function (PDF) f(x|0), where 0 is the parameter of interest. Let X; be a Bernoulli random
variable and the number of observed 1’s, M is a binomial variable with parameters n and
0. Kotz and Johnson (1986) consider a situation where estimation of sample size n is of
considerable interest along with 8 from observed values of M. In some other situations, n
repre'sents the population size, but the problem of estimation is similar in both the cases.

In some life testing experiments the total number of items being tested is known
before hand and the test is carried out for a fixed amount of time, which results in a
truncated sample. This type of situation may arise when, among the items put on a life
test, there is certain unknown number of items with a specific defect identifiable only
after failure. Blumenthal and Marcus (1975) study this situation, where the interest lies in
estimating the number of defectives of a particular type after an initial period. Jelinski
and Moranda (1972) consider a similar situation of estimating the total number of errors
N in. the testing program after running the program for a fixed period of time and thus
obtaining time of detection for M distinct defective items.

Anscombe ‘(1961) considers a situation of estimating the number of responses to

an advertising campaign. Here n represents the number of responsive people among K



contacted in the campaign. Wittes (1970) studies the problem of estimating the size of a
subpopulation of persons who have a trait that occurs rarely in the population at large.

Binomial samples with unknown n, arise when in a sequence of Bernoulli trials
only the successes are observable. Let M be the number of successes in n (unknown)
Bernoulli trials‘with probability of success 0. Blumenthal and Dahiya (1981) and many
other authors have investigated the situation of this unknown sample size. For the case of
9 is known, Feldman and Fox (1968) examine asymptotic properties of the MLE
(maximum likelihood estimation) and MME (modified moment estimation) of n and also
examine two modifications of these estimators. Olkin, et al. (1981) propose some
stabilized estimators. Draper and Guttman (1971) consider Bayes estimators, which we
will not discuss here.

The following is the summary of results given by Blumenthal and Dahiya (1981).

Case: 0 is known:

Let X1,Xa,...,X; be a random sample from a binomial (n, 8), where 6 is known

and we want to estimate n.

Then the likelihood is
L(n|6,%)= H( b= 1-6y. 2.1)
Then the integer valued MLE 7 of nis given by [V], where V is the solution of
rlog,(0) -3 log, (V —x) =0,
= .

and Q=1-0. Also the above authors give asymptotic properties of 7 in the following

theorem.



2.1.1 Theorem (Blumenthal and Dahiya (1981))
a. For any sample the estimator 7 is finite.
b. Forn fixed P(7i=n)—1 asr - oo,

c. Letn — oo, and let r be either fixed or increasing, then

7 P
1. (2 n)—>0 fora>% and loge(zjao,
n

o

n
i N
2. sz—ny»A{Ql—Q),gf1—>u
n e n

Recently Adcock (1997) reviews different sample size determination (SSD)
methods. SSD for binomial distribution is one of the oldest and formal procedures
available, for example one can look into Cochran (1963). The conventional starting point
of SSD for the binomial distribution is to assume normal approximation for the sample
proportion of successes, p

ie., p ~N(6,0(1-0)/n),
where 0 is the population proportion. Let the probability of the absolute difference, e,
between p and 0 is at least 1- o, at the desired level of significance a. . It can be written as,

P[lp-0i<e]=1-a,

which leads to

b

2
03 90-0Z2,

2.2)
e .

where Z, is the upper a% value of standard normal distribution.

Desu and Raghava Rao (1990) describe the procedure of determination of sample

size n to test the hypothesis Ho:0=0 vs. H;:6=01, using the arcsine transformation

10



Z =24/n[Sin" ({fp) - Sin™ (VB)I,

which follows approximately N(0,1). This leads to an expression for n as,

0.25(Z, +Z;)’

(Sin"l\/-e—; —Sin’lﬁ )2 ’

n= (2.3)

which requires both 6 and 6; to be specified. Where Z, and Zp are the upper 0% and B%

values of standard normal distribution. If we write 6;= 6p+e and expand the
Sin™! \/a about 0 ¢, by Taylor’s theorem to terms of order e, we obtain,

90(1_60)(Za + ZB)2
n=

e2

(2.4)

A Bayesian treatment of SSD for the binomial distribution is given by Adcock

(1987), which we will not discuss here.

2.2 Survey of Existing Methods
In general, investigation of the sample size determination methods is difficult because of
complex mathematical nature and multitude of different formula.

In classical hypothesis testing we have two hypothesis, null hypothesis and
alternative hypothesis. The nuli hypotheses usually concludes that there is no significant
difference between groups being compared with respect to the variable of interest. For
example comparing the effects of two pesticides in a pest control experiment, the null
hypothesis would be that the incidence of pest on the crop that receives one pesticide is
the same as the incidence of pest in the crop that receives the other. To draw reliable
conclusions, one has to define the null hypothesis prior to the beginning of the data

collection. Mathematically the null hypothesis can be defined in many different ways. For

11



example the proportion of plants has disease in each variety of pesticide-applied fields -
could be written as (8;= 6,), where 8, and 0, are population proportion values of diseased
plants in both the pesticide applied fields respectively.

The alternative hypothesis refers that there is a significant difference between the
treatments compared with respect to the variable of interest. The magnitude of this
difference of treatments, i.e., (82-01), is generally referred to as effect size. This effect size
plays an important role and choosing it is the first step in sample size determination. One
usually designs a statistical study to find a minimai statistically significant effect size. If
the study data really detects this effect size, then one is forced to change his usual
practices in favor of the other. Determination of the minimal significant effect size is
generally a non-statistical judgment based on the context and field of study. If one wants
to find a smaller effect size then a larger sémple size is needed. Generally time and
resources do not permit to have a large sample size.

There are always some risks involved in drawing conclusions from an

“experimental data. These are called type-I and type-II errors. Type-I error is associated
with falsely rejecting the null hypothesis when it is true. That is in other words falsely
detecting a difference when in reality it does not exists. It is a type of false positive. The
probability of this error is .denvoted by a.

Type-II error is associated with falsely accepting the null hypothesis and
concluding that there is no difference, but in reality the difference exists. This is a false
negative. The probability of this error is denoted by f.

Usually the type-II error is considered in terms of power of the study rather than

in B alone. The power of the study is the probability of obtaining a statistically significant

12



P-value, if a true difference exists, that is equal to the effect size defined by the
alternative hypothesis. Then the power of the study is 1-f. For any statistical study the
power of the method is determined by sample size, effect size and by o.

In the study of power, we have three parameters under control. They are any three
of the sample size, the effect size, o and . By fixing any three parameters together one
can determine the fourth. For exaﬁple if one fixes o, effect size and power then he can
determine the sample size.

Graphically the power analysis can be shown as in Figure 2.1. Here we consider a
normal distribution setup. Because when sample size is large Binomial distribution
converges to normal distribution. The curve on the left hand side is the distribution of the
values under null hypothesis, where as the curve on the right hand side is the distribution
of values under the alternative hypothesis. Here the effect size is the difference between
the peaks of the two curves. Suppose we draw a vertical line corresponding to a P-value
equal to a, which touches the horizontal axis at A, then any value falling right of A
results in rejection of the null hypothesis. Now the power of the test is the area under the
second curve to the right of A which is 1-f.

If one chooses a small value of a then the area under the right curve decreases,
which results in lower value of power. That is, setting a more stringent criterion for
rejecting the null hypothesis results in increase of type-II error.

In Iiteratﬁre for example see Roger (2000), one could find many mathematical
approximations for sample size determination formulas and by nature they are all ratios.

In all of them the outcome of interest is assumed to follow a normal distribution.

Generally the numerator term is a function of Z, and Zg and the denominator term is

13



proportional to the square of the effect size. Here Zy and Zg are standard normal critical

values corresponding to o and f levels of significance.

Figure 2.1 Power analysis

«Effect size—>

Ho

Usually statistical investigations are planned to estimate a parameter of interest.
For example the mean yield per hectare, mean IQ score in a psychological experiment,
etc that are continuous variables and proportions such as proportion number of defectives
in a quality control study, are discrete‘variables. In each of these cases one can measure
the precision by considering a width of (1-0.) % confidence interval. If one uses a larger
sample size then he gets a smaller width for confidence interval. Therefore one may
consider the width of the interval instead of effect size to determine an appropriate
sample size. Sometimes this confidence width is termed as precision, which is generally a
function of variance of data. Thus a statistical study can be planned to a desired precision

without choosing or bothering about of the effect size.

14



One cannot plan a statistical investigation if the likely variability or variance of
the outcome of the interest is not known. Such a variability is generally not under the
control of the experimenter and is important in determining the sample size. Therefore
one should estimate the variability, without that, it is impossible to estimate the sample
size. To estimate the variance, one can conduct a pilot study to get a likely value of
variance. A Number of authors have provided different approaches to conduct pilot
studies, and information thus derived is incorporated into the final analysis to determine

the sample size.

When the variance is poorly known, the likely effect size is difficult to predict. In
such a case one can think of using a sequential trial based on maximum possible variance.
" If the variance in the real data is small, then that will reduce the required sample size and

the trial will terminate earlier.

In the light of above discussions, we now consider the following approaches to
find optimum sample size when the outcome of the interest is a Bernoulli variable.
1. Sampling from a Bernoulli distribution.

2. Power analysis
3. Coefficient of variation method.

4. Sequential analysis based on coefficient of variation..

5. Poisson method.

15



2.2.1 Sampling from a Bernoulli Distribution

Let X be a Bernoulli random variable with probability of success 6. It has a probability
mass function as,

f(x;0) =0*(1-0)"™, x=0,1. (2.5)
Then the mean and variance of this distribution are respectively 6 and 8(1-8). Now let

X1,X3, ...,Xq be a random sample on X. Then the sum of Bernoulli random variables,

Y= Zn: X,
i1
has a binomial distribution with parameters n and 0, and its probability mass function is
given as
f(y,n,0)=(1p*(1-6)"Y, y=0,1.2,..n (2.6)

Then the mean. and Jvariance of Y are n9 and nO(1-0) respectively. Thus Y/n is an
unbiased estimator of 8. We now consider the determination of sample size in estimation
and testing of hypothesis on 8 in the following sections.

Estimation of 0 in Binomial Distribution

Let 0 is estimated by 9=Y/n. One can determine sample size n by controlling the

absolute error e, where e = |é-9| is the positive difference between dand 0, with a high

probability, that satisfies the following relation,

P[|6-0|<e]=1-a,

-~ -9

l.e., P[ Y

n

< e} >1-aq, 2.7)

where o and e are pre-specified positive constants.

16



Now the left hand side term of (2.7) can be written as,

P{—eS—Y——OSe}ZI—a, (2.8)
n

ie, PnO-e)+1<Y<n®+e)]=ply,<Y<y,]

=S (pra-o. 2.9)

¥y=%

To obtain a solution of (2.7) one can use central limit theorem, which states that the

distribution of —Xn—
A/0(1-6)/n

is -asymptotically N(0,1).

Without loss of generality one can divide throughout the left hand side term of above

(2.8) with +/0(1—0)/n and gets,

P—— e < Yn-6 < e S1—q
| J6(1-0)n  \6(1-68)n 6(1-6)m |

ie., pl-— <7< % |>1-q
- Je(l-om  u-om |

Where Z is a standard normal variable. Because normal distribution is a symmetric

distribution, the areas to the left side and right side of Z are equal in magnitude. Using

this symmetric property of normal distribution the above inequality can be written as,

P[z<Z ,]1=21-0/2,
where

© (2.10)

o = B orm
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is the upper (/2 )% value of standard normal distribution.

By rearranging the terms in (2.10) one can get an expression for lower bound for sample
size n as

. 2
nze—(%{?—gﬁ. (2.11)

Because 0 is not known, one can concentrate on maximum value of the product 6(1-6).

However, since 0<0<1, the product 6(1-0) attains its maximum equal to 0.25 when 6=0.5.
So one can use 0 =0.5 to get a generous estimate of n as denoted by [#n"]+1 where

2
Ly

e (2.12)

and [n"]is the integer value of n". Thus one can also tabulate the required sample sizes

for varying values of a, 6 and e.

Now one has the following result [see Desu and Raghava Rao(1990)].
Result

An appropriate sample size n for estimating 0 is given by [n"]+1, where n'is computed

from (2.12).

3.2 Power Analysis (Tests of Hypothesis About 0)

Suppose one wants to test Hy:0=60, against the one sided alternative H;:6>9, .

Then let the critical region be

Y>e, (2.13)

where ¢ satisfies
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PlY>cl|0=0,]<c. (2.14)
Also if one wants to have power toibe at least (1-B) at 6=0,(>0), then that can be
mathematically expressed as

PlY>c|0=6]21-p. - (2.15)
In normal distribution case the power analysis can be depicted as shown in Figure 3.1
(pp.14). Now an approximate solution to sample size n can be obtained by making the
well-known arcsine transformation [see Desu and Raghava Rao (1990)] on 6=Y/n that

is defined as,
7 = 2J/n[Sin"'/8 - Sin"'v8] ~ N(0,1)
asymptotically and expressing the probabilities in (2.14) and (2.15) in terms of standard

normal distribution function as follows.

Rearranging the terms of inequality (2.14) and equating it to maximum risk o, one gets

P|:X>_c_
n n

9=60}=a.

Now applying the arcsine transformation on Y /n , one will get

P[z >2n {Sin‘l \/g ~Sin™ /8, H =a.

Which can be written as

1-P| Z <2\/H{Sin~‘\/§—sm-1\/§H =q.

1-¢ 2«/5{Sin_l\[—:;—8in”l\/_6:H =,

where ¢ is a standard normal distribution function.

Therefore
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Hence

(p[zﬁ {Sin-‘\/—g —Sin™./8, H =1-a.

Finally one will get,

Z, =2Jn {Sin*l\/E ~Sin™./8, } . (2.16)
n

Similarly rearranging the terms in inequality (2.15) and equating to the lower bound of

" power, that is equal to (1-B), one will get,

P[X>_C_
n n

0= 9le =1-B

Now again by applying the arcsine transformation on Y /# , one can get
P{z > 2\/5{Sin‘l\/—-§ ~Sin™./8, H =1-B.

Proceeding as above one gets,

1- @{ZH{Sin_l\/g —Sin™ \/EH =1-B.

Since P is the type II error defined under the alternative hypothesis and is a lower tail
probability, the corresponding value of standard normal distribution is —Zg at  level of

significance. Thus one will get
~Zy=2n {Sin"\[g —~Sin™. /0, }
n

and can be written as
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Zy=2n {Sin‘lﬁ ~Sin™ \E} : 2.17)
n

Then the solution to the sample size n can be found by adding the equations (2.16) and
(2.17), which is

Z, +Z, =230 Sin" Jo, ~Sin ™o, |.
In the above expression the only unknown quantity is n. Then finally solving for n, one

can get

(Za + Zﬁ).z

" 4Sin B, —Sin" 8, I

In the above expression (2.18) if one writes 6;=0y+e, where e is defined earlier to be

(2.18)

equal to

Z—H , and expand Sz’n_l\/&—1 about 8y by Taylor’s expansion to the terms of
n

order e, Desu and Raghava Rao (1990) obtain,

Sin™'./o, =Sin™'/8, +e
. d (.. - d* (.. - 2
=Sin 1@+E(Sm 1\/6;)e+ae—g<81n 1@)% ...

and finally after differentiating and omitting the higher order terms (because they are

negligiblé), one gets,

Sin™,/6, =Sin™ /8, +-Z\/—eo‘(?1—_——eo)+8 (2.19)
where ¢ is a negligible quantity.
Now substitute (2.19) in (2.18) and solving for n, one obtains,

0o 0,(1-0,)(Z, + Zﬁ)2

. (2.20)
e .
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Now (2.20) leads to the conservative rule similar to the inequality in (2.12) when 0.5
replaces 0, as

1o (Z,+Z,) |

e (2:21)

Now one has the following result [see Desu and Raghava Rao (1990)].

Result

Consider a one sided a level test Hyp:0=0¢ vs the alternative H;:6=0;(>8). Then an
approximate sample size, required to give power at least 1-B at the alternative is [n]+1,
where n is given by (2.18).

2.2.3 Coefficient of Variation (CV) Method (Sukhatme and Sukhatme (1970))

One can use this method to determine the sample size at a desired CV, where CV is the
coefficient of variation of the proportion parameter 6 of a binomial distribution.
Intuitively one can see that coefficient of variation is a function of sample size through
the mean and the variance of random variable. We kﬁow that the coefficient of variation
is defined as the ratio of standard deviation to mean. From general principles of sampling
one knows that with the increase of sample size the standard deviation decreases which
‘results in lower values of CV. Thus one may use CV as a criterion to identify an

appropriate sample size.

Let Y be a random variable from a binomial distribution with parameters n and 0.
Then we know that

E,(Y/n)=0
and the standard error of (¥'/7) is

SE,(Y/n)=+/6(1-0)/n .
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Then we can define the coefficient of variation, C of Y/n, as

_SE,(Y/)
E,(Y/n)
Then c-81-0n_ [1-9) (2.22)
0 no
Solving for n gives,
C?= 1___9
né
) 1-0 1
1.e., n=e——m—. 2.23
5 (2.23)

Thus the sample size n is a function of 6 and C. By choosing a desired value of C for a
particular 6, one can calculate the required sample size. For varying values of
6=0.1(0.1)0.9 and C=0.01(0.1)0.2 one could tabulate the values of sample size (see Table
4.2, pp-40).
2.2.4 Sequential Sampling Approach (Wald (1947))
In some practical situations such as life testing, clinical trials and destructive scientific
experiments, sampling is both expensive and time consuming. Hence in these situations
one may consider it to be more efficient to take samples sequentially rather than to take
all at one time. The sampling procedure is terminated when a particular condition is met
in the sample. That condition is usually called as a stopping rule. Hence one has to define
a stopping rule to know when to terminate the sampling pfocess.

In a single sampling situation, the entire sample is drawn at a single instance.
Whereas in multisampling or sequential sampling, the samples are taken in successive
stages based upon the results obtained from the previous sampling. Thus multistage or

sequential sampling allows assessing the results at each stage and facilitates the
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possibility of stopping the process by reaching at an early decision. If the situation is
clearly favorable or unfavorable (for example the quality of a particular lot is definitely
’good or bad), then terminating the sampling process usually saves both time and
resources. One may continue with sampling process when the data obtained earlier is
ambiguous, so that one can use additional information to take a better decision.

In order to apply sequential sampling procedure one needs to know the values of
the parameters in the null and the alternative hypotheses respectively. Usually that’s not
the case. So he has to estimate the values from the data. Then based on the parameter
values he can define a stopping rule. In the present situation, instead of considering the
parameter values to deﬁné a stopping rule, one can use a measure of precision that is
coefficient of variation, C. This method is described below.

In the present situation of seed health testing, seeds were selected at random, one
after another (sequentially) and incidence (presence ‘1’ or absence ‘0°) of a particular
pathogen was recorded as described earlier. Hence a total of j number of seeds was tested
up to the i stage of sampling. ObVioﬁsly here the outcome of each seed tested is a
Bernoulli random variable with parameter 0.

Now let T; be the cumulative number of diseased seeds observed up to the i
stage of sampling. Clearly j and T; are integers. Here T; ~ Binomial (j, 0).

Also let p; be the proportion of diseased seeds based on Tj at the i™ stage of
sampling deﬁned as

T.
Pj:Tj-
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Then the expected value of p; is given by

Eylp))

and similarly the standard error of p;is given as,

SEq(0;) = Va2 = VA () = /5 V(T).
B0 = |5 90-0) =/61-0)]

Let the expected number of cumulative diseased seeds at the j™ stage of sampling

B () _jo_

- 9,
J J

Hence

is defined as Eg(T;). We know that for binomial distribution,

which can be written as,
I R
Ee(Tj)‘e+(1—e) B (1«9)
— I+ —
0 0
- ] _ J
_ 1 2
1 OO TT T ISE )
j 086 0
where
SE(6E= 9(1,_ ) was defined earlier.
J
Therefore
j
Ee (TJ) = 2
SE. (p.
1+[ ee(PJ)] j
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and finally,
J
E,(T.) = , 2.24
o(T5) 1+jC? @24

where C is the coefficient of variation for 0 (i.e., the pre-specified precision), which is

deﬁnedvas,

Here E,(T;) in (2.24) is a function of coefficient of variation C and j , which is

free from sample proportion. By fixing the value of C at a desired level one can see that

E4(T;) converges as j increases. Now one can compare T, and E,(T;) at a desired level

of precision (C), and can stop the sequential sampling process only when the observed

number of diseased seeds T; exceeds the expected number of diseased seeds Eq(T;),

then compute 9 as,

0.
]

Now one can plot the curves (j, E,(T;)) see Figure 4.1 (page 43), for different

values of C=0.05(0.05)0.2. By observing the diagram one could notice that the curves
stabilize rapidly with increasing in values of j. The curves become horizontal almost
parallel to X-axis. Now one could select a point on a curve of specified precision (C),
where the slope of the curve is reasonably small approximately equal to zero and the
corresponding value on the horizontal axis will be the value for sample size n.

The above sequential method can be summarized as follows,

1. test each seed one after another and incidence of disease (presence:1 or

absence:0) is noted.
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2. At the end of each stage of testing (say the j™ stage), the cumulative number

of disecased seeds T, and the expected number of diseased seeds
Eo(T) =3/(1+ jC?) are computed at a desired level of precision C.

3. Then T, and E,(T;) are compared, and the following decision rule is applied,
if T,>E,(T;) then stop the sampling process and set 0 ="T,/j.

Otherwise continue the sampling process.

Note: To facilitate easy comparison, one could draw the curves (j, Ey(T,)) for different
pre-specified values of C. Then the observed T, values are plotted against the curves.

The decision to stop the sampling process is made at the first instance of T, >Ey(T)) .

4. Finally, the sample size n is the value on the horizontal axis (see Figure 4.1)
corresponding to which the slope of the curve is negligible.

2.2.5 Poisson Procedure

Burstein (1971) explains the Poisson procedure based on the well-known fact that when
60— 0 and n — oo and A = né is finite then binomial distribution converges to a Poisson
distribution. Here A is the parameter of the Poisson distribution.

When the probability of success 8 decreases, then the Poisson procedure becomes
an increasingly accurate method of obtaining the sample size. The Poisson procedure is

described below.

Assume that a sample of size n is drawn from an infinite population. Let 6 be the
probability of success of an event, where each event is a Bernoulli trial. Let Y be the
number of such events in the sample. Then one can compute a value for observed

proportion of events as Y/n, which can be considered to be an estimate of 8.
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To determine the sample size n, one has to specify the maximum tolerable error

e=0 —X at a desired level of confidence 1-0. Here
n

B~ (2.25)

| |

*-Y)’

n+
2

is the upper confidence limit for 8 calculated at confidence level (1-0)% given by
Anderson and Burstein (1967). The upper confidence limit, A for the parameter A of

Poisson distribution is given as

1

T 2
A= Koy+2,1-02 5

2n

(2.26)

which is derived using the mathematical relationship between Poisson distribution and
chi-square distribution [see Evans, Hastings and Peacock (1993)]. The above relationship
between the two distributions is expressed as

P[Y <y]=P[x* > 2\\] (2.27)
where Y ~ Poisson(A) and x>~ x5, (chi-square distribution with degrees of freedom
2(y+1)).

Usually in real life one does not know the value of the proportion of events, but
sometimes can anticipate it from the sample. This information may come from
knowledge about the population under study, experience with similar populations and a
pilot study etc. Let us define this proportion as the largest anticipated sample proportion

and denote it by 6. Also denote the anticipated value of the upper confidence limit of 6,

that is, @ as @ , which is computed as,

A

f=0+ec. (2.28)
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Now one can determine the sample size n by rearranging the terms in (2.25) as,

-B—[n+ (X_Y)}zx,

2

then

o2n+A-Y]~2A,
that is

02n-Y]~A[2-6],

therefore it can be written as

n@(Z—X—) ~A[2-0].
n

1t follows that
n@(Z - X)
oy —— 17
2-8) ’
hence finally one gets,
o Gy
7= _Y—n_— : (2.29)
[— 2- 9)}
n

Now by assuming the sample proportion Y/n=6 and the upper confidence limit 8 =6’L ,

then (2.29) will become

We may now denote the left hand side and the right hand side of (2.30) separately by Q

and Q respectively as
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_A |
Q=< 2:31)
Q= ____?"(2 =) 2.32)
[6(2-6)]

Now one may use Table.8 of Herman Burstein (1971) to determine the sample size that

gives values for Y for various values of Q based on the relationship between Poisson and

Chi-square distributions and at confidence level (1-c)%. Using the fact that Q = Q, the

sample size determination procedure is described as follows.

1.

Guess the sample proportion & and the reasonable error e.

Calculate the anticipated upper confidence limit 5 from (2.28),

A

1.e., 0=0+e
Calculate O from (2.32) as O =8(2—0)/[6(2—8)]
From Table 8 of Herman Burstein (1971) find Q nearest to Q, for specified

confidence value (1-0.)%. Note that one need not have to know the value of A.
From the above Table 8 identify the value of Y corresponding to Q. Sometimes if

necessary linearly interpolate between Q values to find Y as given below,

vy, + 5B-Y)Q-Q
(Qa —Qb)

where,

Q, is the bounding value larger than Q ,

Qs is the bounding value smaller than Q ,
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Y, is the value corresponding to Q, and
Yy is the value corresponding to Q.

. Now calculate sample size n by using above Y and rearranging the terms in the

known relation,
Y_s,
n
finally n= % .
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Chapter 3

Simulation Approach

3.1 Simulation

Inferences based on just one sample of a particular size n could be misleading. Because
this may not give an idea of the likely variation in the results had we drawn more samples
of that size. Generally repeated samples provide an objective assessment of the degree of

consistency and stability of results. One can conduct simulations through repeated

sampling to find a lower optimal sample size.

As described by Chandra et al. (2001) a sample of size n that consistently does not
reject Hy :p; =6;, and 6, is known (where p; and 6; are sample and population proportion
values of incidence respectively of the j th pathogen), at a chosen level of sigﬁiﬁcance o
across all k-repeated samples is the safest sample size to use. The authors propose to use
a measure of goodness-of-fit of the sample estimate to the population value in terms of v
value for each of the k-repeated samples. They base their argument on the following
reasons,

1. * measures the discrepancy between sample estimate and population value.

2. Additive property of x* distribution, which states that the sum of > random

variables follow a y® distribution with corresponding sum of degrees of

freedom.
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Now for a sample of size n, they define the y* measure for testing H, : p i=90;,771,2..d

as,
(®;-9,)’°
e
]
2 d 2 2
and - X :_lejNX@’
. J:

at a level of significance o across all the d pathogens

Now for each sample of size n, there are k-repeated samples, which in turn result

in k-observed y” values. Under the null hypothesis H, : p ,=0,, for a given sample size

n, these k-observed x* values are iid random variables from the corresponding theoretical
x? distribution. This theoretical 3> distribution may provide a lower bound on the optimal
sample size, if that exists.

To determine the optimal sample size, one can suitably choose a characteristic of
the k-observed y*-values. Some possible characteristics are the maximum, 0.01-uq (uq:
upper quantile above which there are 1% of observed values) 0.05-uq and a median of the
observed distribution of the k values of y>. If one plots sample size n versus the chosen
characteristic, a discernable pattern emerges with increasing values of n (see Figures 4.2
a-e). One expects that with increasing values of n the values of the chosen characteristic
of y* decrease. Because, generally with increase of sample size n, the sample proportion
approaches the population proportion value. In other words the discrepancy between
sample and population values decreases, which in turn results in lower values for v

Obviously the safest characteristic to use is the maximum, because it covers the

maximum possible risk in terms of the largest possible discrepancy between the
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population and the sample values. However, theoretically the xz can assume the
maximum value to be infinity. Because of the randomness of the nature of the observed
¥ values, the maximum x* values show an' erratic pattern, which they did, with
increasing sample size n. The possibility for the erratic pattern could be explained as
follows. In drawing k-repeated samples of size n, there is a possibility of drawing such a
sample for which the sample proportion value could be either abnormally high or low,
which could be an outlier. Though the probability of drawing such a sample is very small
but is possible in practical situations. This single value of proportion coming from a
sample, which is by nature a random variable, will inflate the max-x2 value. Thus the
maximum y° value could become an outlier and basing decision on this maximum 2
value could be misleading. That situation will make it difficult to clearly identify an

optimal sample size.

However on the other hand, use of median, compared to using either the observed
0.05-uq or 0.01-uq x2 values covers much less risk. So, one needs to choose a suitable
characteristic, which covers reasonable amount of risk, keeping in mind that moving
towards maximum increases the risk of erratic-ness. Here the authors compared the
values of y* for minimum, 0.95-uq, 0.75-ug, 0.5-ug, 0.25-uq, 0.05-uq and maximum
along with the P-values in their study of genetic relationships.

The authors have considered the use of 0.05-uq x> value to be adequate to
determine an optimal sample size. Since theoretically 0.05-uq is the 95™ percentile point,

above which the area under the theoretical distribution is 0.05. That is, the event of
getting a y° value above 0.05-uq has a risk of 5%. Thus any 0.05-uq x* value that is non-

significant at a chosen level of significance o, implies that, for the corresponding sample
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size, all samples of that size will consistently deliver non-significant +* values 95% of the
times, hence provide a good fit to the population. Also the more the P-value of the
observed 0.05-uq y* value exceeds the specified o, the less is the discrepancy between
population and sample values.

From this perspective, one could chose an o-value other than the conventional
values of 0.05 and 0.01 to further minimize the risk of selecting an inappropriate sample
size. The upper quantile % values and the corresponding P-values can be summarized in
a tabular or graphical form, provide an objective probabilistic basis to select a suitable
sample size.

The following is the methodology of simulation approach adopted based on the
above discussion.

1. Here we consider N=1050 seeds as large enough to be a population.

2. We have drawn k=5000 independent random samples, each of size n=10(10)
50(25)200(100) 500, using a simple random sampling without replacement
(SRSWOR), from a total of N seeds.

3. For each of the k=5000 repeated samples of a particular sample size n, the
pathogen incidence rate p;, j=1...d is estimated.

4. Also the goodness-of-fit of the sample estimate to the population value is
calculated in terms of y* value as described above for each of the k=5000
samples.

5. Thus we have 5000 y* values for each sample of size n. By definition they

follow a theoretical y* distribution. Since each y° value measures the
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discrepancy between sample and population proportion values, defined as chi-
square measure of goodness of fit follows a y? distribution.

. For each sample of sizé n out of the k observed x* values we identified
minimum, 0.95-uq, 0.75-ug, 0.5-ug, 0.25-uq, 0.05-uq and maximum (uq:
represents upper quantile) along with the corresponding P-values. They can be
plotted and also can be expressed in a tabular form. See tables 4.5 a-e and
Figure 4.3

. We used 0.05-uq ° values to determine the optimum sample size as follows.
The sample size at which the 0.05-uq v* values become non-significant at a
chosen level of significance across all the seed varieties is the optimum

sample size.

. Further we have used Kolmogrov-Smirnov (K-S) test (Sokal and Rohlf
(1981)) to test the goodness of fit of observed k x> values with the
corresponding theoretical +? distributions for each sample of size n.

The K-S test statistic D is defined as,

D =Max

i
MaxiFC) -+

2

where F(-)is the theoretical cumulative distribution of the distribution being

tested. In this case we are testing %~ distribution.

36



Chapter 4

Results

4.1 Results of Sampling from Binomial Distribution
The sample sizes for different pre-specified values of o, e and 6 are summarized in Table
4.1 (pp.38) below.

_An examination of the results in the Table 4.1 shows that for any given values of
o and e, the sample sizes increase with increase in proportion value 6, reaching maximum
at 8=0.5. After that the sample sizes progressively decrease to zero. So one may consider
6=0.5 to get a conservative sample size. Therefore for a sample to adequately represent
the population with respect to any pathogen with incidence 6, (0<6<1) at =0.05 and
a=0.05, a sample of size about 384 randomly selected seeds is required. In practical
situations the actual sample size required will be less than this conservative sample size.

Similarly if one considers a=0.01 and e=0.05, then he can observe from the table

that the conservative sample size is 666 seeds.
4.2 Results of Power Analysis
Sample sizes for different pre-specified values of 6, a, B and e are summarized in Table
4.2 (pp.40). An Examination of the results in Table 4.2 shows that for any given values of
o, B and e, the sample size values increase as © increases, reaching maximum at 6 =0.5.

Beyond 6 =0.5 the sample size values progressively decrease to zero. So, to identify a
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conservative sample size, again one needs to concentrate on 6 =0.5. Here also one has to

be careful in selecting the values of o, B and e.

Table 4.1 Results of sampling from Binomial distribution
in estimation of 0.

a
0.05 0.01
c 5

0.01 | 0.05 | 0.01 |0.05

0.00 0 0 0 0
0.05] 1825 73] 3162 126
0.10] 34571 138 5991 240
0.15| 4898  196| 8487 339
0.20] 6147 246| 10650 426
0.25 7203[ 288| 12481 499
0.30] 8067 323| 13978 559
0.35] 8740 350| 15143] 606
0.400 9220 369 15975 639
0.45] 9508 380] 16475 659
0.50] 9604] 384| 16641 666
0.55| 9508 380f 16475 659
0.60{ 9220, 369| 15975 639
0.65] 8740 350| 15143 606
0.70; 8067 323| 13978 559
0.75| 7203 288| 12481} 499
0.80] 6147 246} 10650, 426
0.85| 4898 196/ 8487 339
0.90] 3457 138 59911 240
0.95) 1825 73 3162) 126
1.00 0 0 0 0

Suppose one selects the trio a, p and e to be 0.05, 0.15 and 0.05 respectively, then the
conservative sample size needed is identified from the table as 1156 seeds. If B is
changed to 0.1 keeping other parameters constant, then the minimum sample size needed

will be 1299 seeds.
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4.3 Results of Coefficient of Variation Method

The sample sizes for different pre-specified values of 0 and coefficient of variation, C,
are tabulated in Table 4.3 (pp.41).

An examination of results in Table 4.3 shows that the sample size values for a given C
decrease as sample proportion © increases. Theoretically the sample size approaches to
infinity when 6=0. So, one has to be very careful in anticipating the value of the
proportion 0. That knowledge may come from experience with similar studies or pilot
samples etc. Suppose one chooses 6=0.1 and C to be either 15% or 20%, then from the
table one could get the corresponding sample sizes required to be equal to 400 and 225
seeds respectively.

4.4 Results of Sequential Sampling

Results of the sequential approach to determine the sample size are shown in Figure.4.1
(pp.43). For different pre-specified values of coefficient of variation, C the points (],

E,(T;)) are plotted and are joined with smooth curves.

An examination of the diagram shows that the curves stabilize with
increasing values of j, that is their slopes converge to zero. Hence the curves become
almost parallel to X-axis. Suppose one wants to find a sample size for C=0.1 (i.e., at
‘10%), he can observe from the Figure 4.1 that the corresponding curve stabilizes at about
§=500. So for this case the minimal sample size needed is 500 seeds for any proportion

value 0.

Similarly if C is changed to 0.2 (i.e., 20%) then the minimal sample size needed is

300 seeds.
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Table 4.3 Sample sizes for Coefficient of variation method

0 C
0.01 0.05 0.10 0.15 0.20

0.05 190000 7600 1900 844 475
0.10 90000 3600 900 400 225
0.15 56667 2267 567 252 142
0.20 40000 1600 400 178 100
0.25 30000 1200 300 133 75
0.30 23333 933 233 104 58
0.35 18571 743 186 83 46
0.40 15000 600 150 67 38
0.45 12222 489 122 54 31
0.50 10000 400 100 44 25
0.55 8182 327 82 36 20
0.60 6667 267 67 30 17
0.65 5385 215 54 24 13
0.70 4286 171 43 19 11
0.75 3333 133 33 15 g
0.80 2500 100, 25 11 6
0.85 1765 71 18 8 4
0.90 1111 44 11 5 3
0.95 526 21 5 2 1
1.00] 0 0 0 0 0

4.5 Results of Poisson Procedure

We will first discuss a simple example of calculating sample size before presenting the
results. In this method one should supply the values of 9, e and a.

Example: Let 9=0.25, ¢=0.05 and 0:=0.05.

1. Calculate é_ =0+e

= (.25+0.05 = 0.03.
?(2—(?) _0.30(2-0.25) _1935
d2-0) 025 (2-0.30)

2. Q=
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3. For Q=1.235 and 1-0=95% the bounding values of Q in Table 8 of
Herman Burstein (1971) are 1.245 and 1.229 with corresponding Y=80

and 90 respectively.

That is,
Q.=1.245, Y.=80,
Qs=1.229, Y»,=90,
0=1.235,
then using interpolation we get

(90 —80)(1.245-1.235)

Y =80+ = 86 (to nearest integer).
(1.245-1.229)
4. Now the sample size n can be computed as,
n= —g = —& =344 .
6 025

The sample size values are summarized in Table 4.4 by applying the above

procedure for different pre-specified values of §=0.1(0.1)0.9 , e=0.01 and 0.05, and

a=0.01 and 0.05 respectively.
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4.6 Results of Simulation Method
The upper cumulative frequency distributions of the 5000 observed x* values according
to sample sizes n for different seed varieties are summarized in Tables 4.5a-4.5¢ (pp.38).
As expected from the law of large numbers, the v?* values show generally a decreasing
trend as the sample size increases.' One can observe from Figure 4.2a-4.2¢ (pp.48) that the
maximum y> values show an erratic pattern as n increases, whereas the 0.05-uq v values
follow a smooth decreasing curve. So in this study we consider the 0.05-uq v* values to
determine the sample size. Figure 4.3 (pp.51) graphically depicts the observed 0.05-uq v
values and their corresponding P-values for different seed varieties. Closely observing
Figure 4.3, one can see that the values of the 0.05-uq x* values follow a smooth
decreasing curve and stabilize as n increases. One can also see that the observed * values
become non significant after certain n. An examination of Tables 4.5a-4.5¢ shows that the
D (K-S statistic) value attains its minimum value at n=175 across all the seed varieties. It
is significant with P<0.01. At this sample size the 0.05-uq x* values become non
significant across all the seed varieties. Thus this sample size n=175 seeds may serve as a
lower bound on optimal n. So one may consider n=175 seeds as an adequate sample size
to represent the population across all the sorghum varieties. |

However, for a=0.05, the corresponding 0.05-uq x2 values for the five sorghum
varieties are significant at n=100, 100, 125, 125, 125 having P-values equal to 0.0447,
0.0379, 0.0495, 0.0496 and 0.0402 respectively. But for the same a=0.05, at n=125, 125,
150, 150, 150, the P-values are 0.0671, 0.0508, 0.0666, 0.0631 and 0.0576 respectively,

which exceed the o =0.05 and become non-significant for the first time. In real life
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situations one can choose a desired level of significance and accordingly he can select an
appropriate sample size.

4.7 Conclusion and Discussion

Sample size plays an important role in any statistical investigation. Sometimes data
collection could be very expensive and time consuming. So one wants to know it before
hand to properly plan his resources to collect data. Especially in the case of Bernoulli
outcomes one needs to be extra cautious in anticipating the proportion of success.
Otherwise sample size determined may result in over estimation or under estimation.

Here we have presented and compared five different sample size determination
methods along with the simulation method. The underlying assumptions for all the five
methods are as follows,

1. the probability distribution under null hypothesis is normal, and

2. the inferences are based upon the large sample assumption.

If the proportion of success is very small then the normal approximation may not be
suitable to identify sample size. So one may use Poisson procedure in such a case.

In all the five methods the sample size needed for a particular proportion of
incidence (for a pathogen) is reported. But when we consider all the pathogens together
then the level of significance would need to be modified according to Bonferroni
correction. Then recalculate the sample size, which would be much higher than the
sample sizes calculated for individual pathogens, because the new level of significance
will be much lower than the earlier a.

In the simulation method, we used the additive property of ¥ distributions. The

resulting random variable again follows a x? distribution. In other words, the individual

46



x2 measures of different pathogens were added together to form a pooled xz value. This
pooled value represents the information across all the pathogens, from which the
inferences are drawn. The simulation method gives sample sizes across all the pathogens
for different seed varieties as 125,125,150,150 and 150 respectively. These sample sizes
from simulation method are much smaller than those were predicted by the other
methods. The results from a simulation study are based on a particular data set and cannot
be generalized but can serve as a tool and guide an experimenter in identifying a lower

bound on the optimal sample size.
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Figure 4.2 Comparison of maximum, 0.01-uq and 0.05-uq 2 values
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Table 4.5a Quantiles of observed 5000 +* values of seed variety 1S-10392

n min | 0.95-uq | 0.75-uq [0.50-uq| 0.25-uq | 0.05-uq | 0.01-uq | max ©KS-D
10 0.96 1.06 241 5.21 12.41] 33.29] 77.21| 142.46 0.4164
0.9999| 0.9998] 0.9921| 0.8767| 0.2586| 0.0002 0 0
20 1.01 1.79 3.58 6.78| 11.41] 28.16] 58.83] 104.64 0.263
0.9998| 0.9977| 0.9643| 0.746] 0.3265| 0.0017 0 0
30 1.63 2.23 45 6.89] 11.68] 2542 46.07) 80.03 0.239
0.9985] 0.9943 0.922| 0.7358] 0.307| 0.0046 0 o

40 1.55 2.87 485 7.18] 12.24] 27.18] 3793 64.71 0.2088
0.9988] 0.9843 0.901| 0.7083] 0.2693| 0.0024 0 0]

50 1.8 3.22 4.93 7.44 11.8) 2529; 33.68] 49.12 0.1958
0.99766| 0.97576]  0.8958|0.68336| 0.29866| 0.00482| 0.00021 o

75 1.64 3.22 5.28 7.7, 11.76| 20.71 27.39 53.6 0.165
0.99843| 0.97576| 0.87171/0.65811| 0.30144| 0.02321] 0.00226 of

100 1.24 3.24 53 7.45 11.39| 18.67| 25.86] 39.36 0.1856
0.99954| 0.9752| 0.87026/0.68239| 0.32795| 0.04466| 0.00393| 0.00002|

125 0.95 3.42 544/ 7.69| 1135 17.34] 23.74] 43.89 0.1634
0.99986| 0.96975| 0.85992/0.65909| 0.33091| 0.06717| 0.00832 0

150 0.96 3.26 536/ 7.68| 10.87| 16.66| 2236 34.68 0.1612
0.99986| 0.97463| 0.86587/0.66006| 0.36774| 0.08223| 0.01337| 0.00014

175 1.17 3.24 54/ 7.76| 10.62| 1597 21.39] 35.18 0.158
0.99965| 0.9752| 0.86291[0.65227| 0.38788| 0.10049| 0.01853| 0.00012|

200 1.2 3.18 536/ 7.55 10.03 14.8 19.78| 32.25 0.196
0.99961| 0.97686| 0.86587| 0.6727| 0.43787| 0.13953| 0.0314| 0.00036|

300 1.13 2.99 479 6.62 8.89| 12.74 16.17) 23.94 0.2972
0.9997| 0.9817| 0.9048] 0.7608| 0.5426| 0.2386] 0.0949] 0.0078]

400 0.99 2.7 432 583 77|  11.05 13.69 23.9 0.4124
0.9998| 0.9876| 0.9318] 0.8293| 0.6581] 0.3536] 0.1876| 0.0079

500 1.09 2.27 3.64 494 6.51 9.21 1148 18.72 0.5418
0.9997| 0.9938| 0.9621| 0.8951| 0.7708] 0.5123| 0.3214] 0.044

Number of pathogens identified is10
"For each sample size and uq the +? value and the corresponding P-value are provided.

@ Kolmogrov -Smirnov statistic D value with P<0..001
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Table 4.5b Quantiles of observed 5000 xz values of seed variety IS-10757

N min_] 0.95-ug | 0.75-ug ]0.50-ug] 0.25-ug | 0.05-ug | 0.01-ug | max | ®KS-D
10 0.93 0.93 0.99 1.88 734]  34.86] 5407 13739 ( 4064
0.99588| 0.99588| 0.99499| 0.96618| 0.39436] 0.00001 0 0
20 0.66 0.84 1.93 3.76 83| 2609 3927| 10298 ...,
0.99862| 0.99701| 0.96361| 0.80697| 0.30689| 0.00049 0 0
30 1.15 1.21 2.57 4.03 854 1983 32.16] 110.79) 597,

0.99203] 0.99069| 0.92173| 0.77632| 0.28739| 0.00595| 0.00004 0
40 1.19 1.46 2.43 4.81 892 1835 28] 134.58 (.,
0.99116| 0.98366| 0.93228| 0.68314| 0.25845] 0.01049| 0.00022 o
50 1.21 1.66 2.76 4.85 8.89 16.3 283 6485 ¢4
0.99069| 0.97625| 0.90628| 0.67826] 0.26065| 0.02251| 0.00019 o
75 0.88 1.8 3.26 5.23 821 1525] 24.43] 4727 | ,a¢
0.99654| 0.97008| 0.85995| 0.63192] 0.31444| 0.03293| 0.00096 o
100 1.06 1.9 3.52 5.43 8.02| 14.85] 22.54 352 01150
0.9938] 0.96517| 0.8331] 0.60764| 0.33083| 0.03797| 0.00205| 0.00001|
125 0.98 1.95 3.61 5.31 774 1402 2072[ 3873 o4 ¢
0.99514| 0.96256| 0.82344| 0.62219] 0.35608| 0.05083] 0.00421 0
150 0.97 2.05 3.64 5.15 748 13420 1827] 3179| . csy
0.9953| 0.95702| 0.82018| 0.64166 0.38067| 0.06251| 0.01081| 0.00004|
175 1.02 2.13 3.52 5.03 7.29 124 1695  36.92) -5,
0.9945| 0.9523| 0.8331] 0.6563] 0.39932| 0.08815| 0.01772 o
200 0.79 2.04 3.42 4.94 726)  12.06] 1625 27.81] o0,
0.99754] 0.95759| 0.84363| 0.66729| 0.40232| 0.0986| 0.02293| 0.00024]
300 0.52 1.77 3.13 4.48 635 10.15] 1359 21.59) e
0.99937| 0.97147| 0.87272| 0.72312] 0.49953] 0.18023| 0.05897| 0.00299| "
400 0.19 1.47 2.78 4.02 5.51 8.39]  10.85] 16.26] (340
0.99998| 0.98333] 0.90458| 0.77747| 0.59798| 0.29946| 0.1453| 0.02284]
500 0.29 1.18 2.35 3.35 4.67 6.91 9.08] 16.13] | e
0.99991] 0.99138| 0.93796| 0.85085| 0.70016| 0.43831| 0.24696| 0.02395

Number of pathogens identified is 10
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~ Table 4.5¢ Quantiles of observed 5000 +* values of seed variety IS-2742

N min 0.95-uq | 0.75-uq | 0.50-uq | 0.25-uq | 0.05-uq | 0.0l-uq | max @KS-D
10 0.41 0.59 1.65 3.27 9.12 36.45 99.43| 186.94 0.516
0.99999| 0.99994] 0.99587| 0.95262| 0.42627| 0.00003 0 0
20 0.71 0.83 2.22 4.75 11.77 29.8 57.35 114.8 0.367
0.99986| 0.99974| 0.98749| 0.85553| 0.22659| 0.00047 0 0
30 0.75 1.17 2.73 5.4 10.85 25.46 42.69 82.52 0.3178

0.99983| 0.99894| 0.97405| 0.79814| 0.28613| 0.0025 0 0 —
40 0.97 1.53 3.14 6.17 10.86 26.59 38.33 63.18 0.251
0.9995| 0.99692| 0.95848| 0.72279| 0.28543| 0.00163| 0.00002 0
50 1.24 1.76 3.68 6.52 10.93 23.62 34.08 52.21 0.2184
0.99866| 0.99472| 0.93118] 0.68696| 0.28054] 0.00494| 0.00009 0 —
75 1.22 221 4.13 6.59 10.9 20.54 27.71 44.12 0.198
0.99874| 0.98769| 0.90265| 0.67972| 0.28263] 0.01486| 0.00107 0
100 1.48 2.58 4.27 6.62 10.62 18.15 26.13 47.02 0.181
0.99729| 0.97865| 0.89276| 0.67662| 0.30266| 0.03347| 0.00195 0
125 1.55 2.64 4.38 6.66 10.19 16.95 23.34 35.17 0.1782
0.99676| 0.97688| 0.88467| 0.67247| 0.33532] 0.0495| 0.00548| 0.00006|
150 1.48 2.75 4.53 6.77 9.96 16.01 21.62 40.07 0.1684
0.99729! 0.97339| 0.87321| 0.66105| 0.35373| 0.06667| 0.01016| 0.00001|
175 1.33 2.84 4.54 6.78 9.54 15.1 20.89 33.62 0.1642
0.99822| 0.9703| 0.87243] 0.66001| 0.38899| 0.08823| 0.01315| 0.0001}
200 1.29 2.76 4.59 6.59 9.18 14.49 19.39 29.8 0.1916
0.99843| 0.97306| 0.86849| 0.67972| 0.42083| 0.10593| 0.02207| 0.00047]
300 1.08 2.63 4.37 5.96 8.03 12.13 15.43 24.08 0.2826
0.99923| 0.97718] 0.88542| 0.74392| 0.53113| 0.20608| 0.07978| 0.00418|
400 0.71 2.36 3.84 5.21 6.91 10.31 13.18 19.31 0.3994
0.99986] 0.98441| 0.92162| 0.81563| 0.64649| 0.32598| 0.15463| 0.02268|
500 0.79 1.97 3.21 4.35 5.78 8.37 10.68 19.84 0.521
0.99979] 0.99193} 0.95538| 0.8869| 0.76172| 0.49733] 0.29828| 0.01893|

Number of pathogens identified is 9
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Table 4.5d Quantiles of observed 5000 +* values of seed variety IS-3025.

n min 0.95-uq | 0.75-uq | 0.50-uq | 0.25-uq | 0.05-uq | 0.0l-uq | max @KS-D
10 0.49 0.83 1.63 3.38 10.03 26.78| 103.94| 207.06 0.4744
0.99988| 0.99911| 0.99033] 0.9083| 0.26293| 0.00077 0
20 0.82 1.02 2.67 5.11 9.87 20.86 53.18 75.16 0.2662
0.99915| 0.99812| 0.95333| 0.74576| 0.27427| 0.00753 0 0
30 0.94 1.38 3.17 5.43 9.53 24.76 40.32 78.75| 0.232
0.9986| 0.99453| 0.92324| 0.71078] 0.29957| 0.00171 0 0
40 1.16 1.81 3.27 5.75 9.16 26.1 34.08 54.83 0.2058
0.99702| 0.98629| 0.91629| 0.67521| 0.32898| 0.00101] 0.00004 0
50 1.47 1.96 3.75 5.97 9.25 22.52 30.45 56.47 0.16
0.99319| 0.98221/ 0.87895] 0.65059| 0.32165| 0.00404| 0.00018 0 '
75 1.05 2.31 3.95 5.85 9.68 18.7 27.11 54.07 0.1688
0.99791 0.97| 0.86161| 0.66403| 0.28821] 0.01655| 0.00068 0
100 1 2.31 3.87 5.87 9.58 16.37 22.84 38.19 0.1746
0.99825 0.97| 0.86866| 0.66179| 0.29575| 0.03738| 0.00358| 0.00001
125 0.93 23 3.9 6.09 9.52 15.53 21.37 37 0.1412
0.99865| 0.97041| 0.86603| 0.63715| 0.30034| 0.04962 0.00623 0.00001
150 0.8 2.17 4.05 6.17 9.05 14.8 20.33 32.8 0.135
0.99922| 0.97535| 0.85258| 0.6282| 0.3381| 0.06315] 0.00916| 0.00007
175 0.62 22 3.99 5.94 8.61 14.09 18.63 34.09 0.1546
0.9997| 0.97426| 0.85802| 0.65395] 0.37626] 0.07945| 0.01697| 0.00004
200 0.45 2.07 3.94 5.94 8.46 13.11 17.32 31.16 0.1608
0.99991| 0.97879| 0.8625| 0.65395] 0.38987| 0.10812; 0.02694| 0.00013
300 0.52 2.17 3.82 5.35 7.37 11.23 14.84 23.18 0.2534
0.99985| 0.97535| 0.87299] 0.7196| 0.49729 0.189| 0.06233] 0.00314
400 0.72 1.91 3.23 4.57 6.25 9.54 12.6 17.76 0.3698
0.99947| 0.98365| 0.91911| 0.80239| 0.61925| 0.29881| 0.12637| 0.0231
500 0.59 1.64 2.77 3.87 5.23 7.72 9.95 14.87 0.501
0.99975| 0.99013| 0.94795| 0.86866| 0.73273] 0.46129| 0.26855| 0.06172

Number of pathogens identified is 8
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Table 4.5e Quantiles of observed 5000 3> values of seed variety IS-8080.

n MIN | 0.95-uq | 0.75-uq | 0.50-uq | 0.25-uq | 0.05-uq | 0.01-uq | max @KS-D
10 0.86 0.86 1.8 3.1 9.43 40.22| 112.81} 341.64 0.6082.
0.99998| 0.99998| 0.99908| 0.98934| 0.58227, 0.00003 0 0
20 0.62 1.03 249 4.84 12.19 53.43 66.24 133.7 0.4614

1| 0.99994| 0.9959| 0.93867| 0.34953 0 0 0
30 0.9 1.41 3.06 5.74 11.76 40.11 53.11 88.27 0.3925
0.99997| 0.99972| 0.98991| 0.89014| 0.38195| 0.00003 0 0 —
40 1.24 1.78 3.73 6.8 12.19 32.56 50.81 79.25 0.3239
0.99985| 0.99913| 0.97716| 0.81504| 0.34953| 0.00062 0 0
50 1.31 2 3.92 7.06 14.57 29.56 43.67 94.6 0.2961
0.9998| 0.9985| 0.9722] 0.7942| 0.20304} 0.00186| 0.00001 0
75 1.29 2.6 461 7.42 15.4 25.41 33.59 48.31 0.2721
0.99982| 0.99503| 0.94858| 0.76412| 0.16491| 0.00794| 0.00042 0
100 1.41 2.83 4.87 8.37 13.64 22.1 30.18 59.04 0.2318
0.99972| 0.99279] 0.9373| 0.67983| 0.25356| 0.02361| 0.00148 0
125 1.55 2.97 5.17 9.29 12.92 20.4 26.93 38.44 0.189
0.99955| 0.99112| 0.92265] 0.59514| 0.29859| 0.04015| 0.00471| 0.00007
150 1.59 3.1 5.63 8.89 12.54 19.2 26.1 44.77 0.1511
0.9995| 0.98934] 0.89688| 0.63205| 0.32445| 0.0576] 0.00627| 0.00001
175 1.47 3.09 5.86 8.42 11.78 17.73 22.86 40.48 0.1782
0.99966| 0.98948| 0.88254| 0.67526| 0.38041| 0.08806/ 0.0185| 0.00003
200 1.27 3.31 5.96 8.34 11.27 16.61 21.61 34.2 0.1893
0.99983| 0.98596| 0.87602| 0.68256] 0.42093| 0.11995| 0.02757| 0.00034]
300 1.49 3.74 5.79 7.5 9.6 13.64 16.96 30.13 0.3169
0.99963| 0.97691 0.887| 0.75727| 0.56669| 0.25356| 0.10906| 0.00151]
400 1.94 3.65 513 6.48 8.09 11.32 14.09 19.84 0.4608
0.9987| 0.97906| 0.92471| 0.8395| 0.70522| 0.41686| 0.22805] 0.04758|
500 2.28 3.23 4.35 5.47 6.87 9.44 11.44 15.05 0.5889
0.99725| 0.98732| 0.95854| 0.90629| 0.80951| 0.58135| 0.40717| 0.18022

Number of pathogens identified 1s 11
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