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Abstract

Modelling and Piecewise-Affine Control of an Aerobatic Helicopter
‘Wei Yue

The study of highly maneuverable aerobatic helicopters has received a growing amount
of interest in the past few years. This thesis describes the development of an analytic
dynamic model of an aerobatic helicopter with the least amount of complexity and with
sufficient accuracy for control system development. The model is based on a rigid body
dynamics formulation with applied external forces and moments including the effects of
gravity and aerodynamics. The model is validated by comparing simulation results with
flight test data available in the literature for a YAMAHA R-50 helicopter. The model is
further simplified to obtain a three degree of freedom helicopter model and a piecewise-affine
(PWA) approximate representation. The model is then used to develop a PWA controller
for the systém. To design this controller a local linear controller is designed for the PWA
approximate model in the region where the desired closed-loop equilibrium point lies. An
optimization problem subject to Bilinear Matrix Inequalities (BMIs) is then solved to find a
PWA extension of the linear controller. A piecewise quadratic Lyapunov function is found
which proves stability of the closed-loop system in the whole domain of the nonlinearity.

This work develops a physics-based model for aerobatic helicopters representing a com-
plete derivation that allows approximations to be made to yield a simplified representation
for PWA control design and analysis. The model is also expressed in a linear parameterized

form ideal for parameter estimation and adaptive control. Finally, this research represents

the first develbpment of a PWA model and controller for an aerobatic helicopter system.
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Chapter 1

Introduction

1.1 Motivation

* The study of aerobatic (miniature) helicopters hés received a growing amount of
interest in the past few years. Since they are more agile than full-scale helicopters,
aerobatic helicopters can execute maneuvers that outperform most of the full-scale
vehicles. Such miniature, highly agile air vehicles are suited to fly through confined
spaces or in some challenging environments [23}[6]. The modelling of aerobatic heli-

copters differs from that of full-scale helicopters in the following ways [6]:

e The rotor heads in aerobatic helicopters are relatively more rigid than those
in full-scale helicopters, allowing for large rotor control moments. This is one
of the main reasons why aerobatic helicopters are more agile than full-scale

helicopters.
e Many aerobatic helicopters can produce negative thrust, allowing sustained in-
verted flight.

Given these important differences, the challenge of building a simple yet accurate
aerobatic helicopter model for control design is one of the main motivations of this

thesis. Furthermore, given that helicopters are highly nonlinear systems, the control

1



synthesis for complicated nonlinear systems is always a big challenge. One of the
promising novel controller design methods appearing in the past few years was PWA
controller synthesis. This methodology showed good performance applied to hybrid
and switched systems [11][34]. The attempt to adopt PWA controller design synthesis

to aerobatic helicopters is the other main challenge of this thesis.

1.2 Literature Review

There is an extensive body of literature on the dynamics of full-scale helicopters
[2][32][46]. Procedures for building a simulation model were devised by Padfield [30].
One of the first comprehensive studies of aerobatic (miniature) helicopter models was
performed by Mettler et. al. [26]. The authors developed and identified parameterized
linear models for hover and forward flight conditions for the YAMAHA R-50 miniature
helicopter using frequency domain methods. It was shown that miniature helicopters
belonged to a different dynamic class from full-scale helicopters. Following the work
by Mettler et. al., LaCivita et. al. [20] developed a technique that made use of
the frequency response from multiple operating points, for the identification of key
parameters of a more broadly descriptive nonlinear model. They applied the technique
to a YAMAHA R-50 helicopter using the hover and cruisé data collected in [23].
The obtained nonlinear model with 30 states was linearized to enable a fit with the
local frequency response. The reduced-order, linearized model was similar to the
one proposed by Mettler et. al. [26]. One of the first analytical nonlinear model of
miniature helicopters in the literature was described by Gavrilets et. al. [6]. The work
provided the rationale for the derivation of the equations of motion and documented
the experimental methods used for the estimation of the model’s parameters. The
model was valid up to advance ratios (helicopter forward velocity/rotor blade tip

speed) p < 0.15 for a variety of flight conditions, including negative rotor loading and



high angular rates. However, some of the helicopter dynamics in [6] were not well
explained and the helicopter model needed further validation.

Nonlinear control of helicopters has also been studied in the literature (see Koo
[16], Frazzoli [3] and references therein). T. J. Koo [16] illustrated the output tracking
control design of a helicopter model based on approximate input-output lineariza-
tion. By neglecting the coupling between forces and moments, it was shown that
the approximate model with dynamic decoupling is full state linearizable by choos-
ing positions and heading as output. It was proved that bounded tracking could be
achieved by applying to the system the control input designed for the approximate
model. E. Frazzoli [3] developed of a new computational and modelling framework
(the Maneuver Automaton), and related algorithms, for a large class of autonomous
vehicles including models of small autonomous helicopters. The proposed approach
is based on a quantization of the systems dynamics, by which the feasible nominal
system trajectories are restricted to the family of curves that can be obtained by the
interconnection of suitably defined primitives. A fundamental advantage of this ap-
proach is the ability to provide a mathematical foundation for generating a provably
stable and consistent hierarchical system, and for developing the tools to analyze the
robustness of the system in the presence of uncertainty and/or disturbances. Shim
et. al. [42] compared three different control methodologies for helicopter autopilot
design: linear robust multi-variable control [10], fuzzy logic control with evolutionary
tuning [47], and nonlinear tracking control. The simulation results showed that the
robust and fuzzy controller were capable of handling uncertainties and disturbances.

However, the control methodologies in the literature have some limitations. The
linear robust multi-variable control [10] and fuzzy logic control [47] quantify the un-
certainties and unmodeled dynamics in the helicopter system. However they are con-
servative in the sense that the operating regime is limited to near hover conditions.

Nonlinear tracking control covers a substantially wider range of flight envelopes, but



requires accurate knowledge about the helicopter system. Most of these works did
not provide systematic output feedback controller design approaches with stability
proof.

From the discussion in the previous paragraphs, we see that it is desirable to have
a new controller design methodology for helicopters with stability guarantees and the
possibility of systematic extension from state feedback to output feedback. In this
thesis, PWA synthesis is applied to the nonlinear helicopter model. PWA systems
became popular in the past few years. Johanson [11] performed a first comprehensive
study of computational methods for analysis of piecewise-linear systems. Rodrigues
[34][36] extended the analysis methodology to perform state and output feedback con-
troller synthesis for PWA systems. Samadi and Rodrigues [40] developed a MATLAB
and SIMULINK! toolbox for PWA controller synthesis for continuous-time nonlinear
systems using the PENBMI [7] solver.

This thesis is the first successful attempt to apply PWA controller design method-

ologies to aerobatic helicopters. The advantages of this technique are [34][36][40]:

e Possibility of using knowledge in linear controller design. A linear controller
can be designed to satisfy some performance index in a neighborhood of the
desired closed-loop equilibrium point. Then, this linear controller is extended

to the whole area of interest by adding affine pieces to it.

o Effective global analysis tool. Analysis of the obtained controller can be per-
formed in a formal and numerically efficient way as a set of convex optimization
problems. The solutions to these problems can determine bounds on perfor-

mance, degree of stability and many other parameters of interest.

e Proof of stability. A Lyapunov function is found to prove stability of the closed-

loop system. -

'MATLAB and SIMULINK are trademarks of The Mathworks, Inc.



o Systematic extension to output feedback controllers. PWA control synthesis can
be extended from state feedback controllers to output feedback controllers in a

systematic way [34].

1.3 Thesis Outline and Contributions

The thesis contributions are:

e This work presents a physics-based model developed for aerobatic helicopters
that allows approximations to be made to yield a simplified representation for
PWA controller design and analysis. Furthermore, The model is then expressed
in a linear parameterized form ideal for parameter estimation and adaptive

control.

A step-by-step process to develop a dynamic model for aerobatic helicopters is
presented in chapter 2. In section 2.1, the equations of motion of a rigid body
are derived. Then the external forces and moments existing in the equations of
motion are analyzed and computed from section 2.2 to section 2.6. In section
2.2, the author takes great effort to explain the main rotor flapping dynamics,
which is one of the most important factors in the modelling. The simulation
and validation of the model are presented in section 2.8. Section 5.3 presents

the method by which parameter estimation can be implemented.

e A three degree of freedom simplified nonlinear aerobatic helicopter model and

its PWA approximation model are developed.

In section 3.1, the six degree of freedom helicopter model developed in chapter
2 is simplified by restricting the motion of the helicopter to the lateral plane.

In section 3.3, the PWA approximation is carried out.



e The first successful attempt to apply PWA control synthesis to a nonlinear

helicopter model with two variables in the domain of the nonlinearity.

In section 3.2, the control objective is stated and the dynamics of the model
are presented. In section 3.4, a local linear controller for the region where the
desired closed-loop equilibrium point lies is designed. Then, an optimization
problem is solved to find a PWA controller that stabilizes the nonlinear system
in the whole domain of interest and a piecewise quadratic Lyapunov function is

found to prove stability of the closed-loop system.



Chapter 2

Helicopter Dynamics and

Modelling

This chapter describes the six degree of freedom dynamic model of aerobatic
helicopters. This model will be simplified to a three degree of freedom model and
then a PWA controller for the three degree of freedom model will be developed in

Chapter 3.

2.1 Equations of Motion

Deriving the equations of motion of the helicopter is the first step of the modelling
process. It will be assumed that the helicopter is a rigid body. In this section the
equations of motion of a rigid body are derived. The notation used is listed in table

2.1



Table 2.1: Notations

U, U, W translational velocity components of helicopter along fuselage
Ip-,YB-,Zp-aXes
D, q, T angular velocity components of helicopter along fuselage

T B=,YB-,ZB-aXeSs

X,Y, Z | external force components of helicopter along fuselage

T Bp-yYB-,Z2B-aXES

L, M, N | external moment components of helicopter along fuselage
rB-,YypB-,Z2p-aXxes

mass of the helicopter

translational velocity vector
angular velocity vector

external force vector

external moment vector

Th=)=lel<is

angular momentum

2.1.1 Reference Frames

For deriving the equations of motion of the helicopter, it is convenient to define
the body frame indicated in figure 2.1'. The origin lies in the center of gravity. The
zg-axis is fixed to a longitudinal reference line in the helicopter; the yg-axis is oriented
to the right and the zp-axis downward.

Another reference frame that is very useful in formulating the equations of motion
is the inertial (or Earth) frame. The origin lies in the center of gravity. The z;-axisis
horizontal pointing in the helicopter forward flight direction and the z;-axis vertically
downward. The yj-axis is perpendicular to both. The angles between the body axes
and the inertial axes are the roll angle ¢, the pitch angle 6 and the yaw angle ¢ (see
figure 2.1). These angles describe the orientation of the helicopter. The next section

will focus on modelling the orientation.

Figure 2.1, 2.3, 2.4, 2.5, 2.6, 2.23, 2.24 and 2.26 are modified from the Robinson R22 Beta
helicopter picture [32].



¥B

Figure 2.1: The body axes and the inertial axes of the helicopter

2.1.2 Euler Angles

A commonly used method to represent the orientation of vehicles in space is Euler
angles. Euler angles make it possible to represent arbitrary orientations of a frame
~(e.g. the body frame) relative to another frame (e.g. the inertial frame) using the

following transformations (see figure 2.2):
1. Align the origins of both systems.

2. Yaw about the unit vector ky by an angle ¢). The unit vectors in the rotated

frame can be related to those in the original inertial frame by the transformation



Figure 2.2: Euler angles

¥ ie
iy costy siny 0 i
ji | = | —siny cosyp 0O J1
ki 0 0 1 kq

3. Pitch about the unit vector j; by an angle 6, i.e.

in cosf) 0 —sinf 1
h | = 0 1 0 1,
k, sind 0 cosf ky

4. Roll about the unit vector ig by an angle ¢, i.e.

B 1 0 0 1p
iB |l = |0 cos¢ sing J1
kg 0 —sing cos¢ k,

10

or {b} = ¥{a}

-or {c} = ©{b}

or {d} = ®{c}

(2.1)

(2.2)

(2.3)



Of particular interest is the relationship between the time rate of change of the orien-
tation angles (¢, § and ) and the fuselage angular velocities in the body axes system

(p, ¢ and r). From equations (2.1) - (2.3), the following relation can be derived.

¢zp+qsin¢tan0+rcos¢tan0 (2.4)
§ = qcos¢—rsing (2.5)
d} = gsin¢sectd + rcospsech (2~6)

2.1.3 Equations of Motion

Although the equations of motion can be derived for any axes system, the body
axes system is most convenient, especially for the moment equations because the
moments of inertia remain constant.

The equations of motion are now derived step by step from the Newton equations v
of motion. The Newton equations of motion can be written in the vector forms as

(see figure 2.3)

d(mV)
g m
F = 2.7
m (2.7)
— dH

= 2.8
M= (2:8)

Then the forces and moments equations can be derived from equations (2.7) and (2.8),

respectively as follows.

e Forces equations

11



Figure 2.3: Forces and moments equations diagram

The force equation (2.7) can be resolved in body axes as

— — — >
F =Xip+Yjs+ Zks
d
= ma(ug + v]—'; + wk_3>)
- di ) dk
= m[(tip + u"Z) + - + (ikp + w2 (2.9)
dt dt
Since the body axes rotate at W, we can write
—
d%:ﬁxg’:rﬁ—q@ (2.10)
—
N
i{—‘zzw’ X jp = —rip + pks (2.11)
k'—) .
dd—’;:z?x kp = qip — piz (2.12)

12



Substituting equations (2.10) - (2.12) into equation (2.9) yields

X =m(u - v+ qu) (2.13)
Y =m(v+ru — pw) (2.14)
Z =m(w — ru -+ pv) (2.15)

Rearranging equations (2.13) - (2.15) yields

X

U= —wq+or+— (2.16)
m

) Y

0= —ur +wp+ — (2.17)
m

. Zz

W= —vp+uqg+ — (2.18)
m

e Moments equations

The moment equation (2.8) can be resolved in body axes as

— — — —
M  =Lig+Mjp+ Nkp

d
= < (H.in + Hyja + H.k2) (2.19)

Similar to the method used in deriving the forces equations, the angular mo-

mentum can also be resolved in body axes as

H,= zzP — [a:yq — I (220)
Hy = —Iyyp+ Lyq — I.r (2.21)
H,=—1.p—I.q+ L.r (2.22)

where the moments of inertia are I, = Y. Am(y? + 2%), I, = > Am(z? + 2%)

and I, = " Am(z? + v?); the products of inertia are I, = — > Amay, I, =
y Yy

13



— > Amzz and I, = — 3~ Amyz. Considering that helicopters are commonly
assumed to be symmetrical about the rzzp plane, the following products of

inertia are equal to zero (see figure 2.4).

Therefore, equations (2.20) - (2.22) transform to

H; = Ipw, — 1w, (223)
Hy = Lyw, (2.24)
H, = Loy + L, (2.25)

Substituting the angular momentum equations (2.23) - (2.25) ‘and equations

(2.10) - (2.12) into the moment equation (2.19) yields

Mz = :::xp + ([am: - ]yy)rq - ]zz(pq + T) (226)
My = yyq + (11:1: - Izz)pr - Ixz(r2 - p2) (227)
M, = IL,r+ (Iyy - ]:cz)pq - ]avZ(p - TQ) (2'28)

14



Rearranging, this yields

= e
(Izz ]a:a:) I:z:z 2 2 M
q= rp+ —(r" —p°) +
]yy Iyy [yy
(IJJIE Iyy) [:cz . N
rE + T (p—rq)+ T

(2.29)
(2.30)

(2.31)

Finally, by grouping the forces equations (2.16) - (2.18), the moments equations

(2.29) - (2.31) and Euler angles equations (2.4) - (2.6), the equations of motion

of the helicopter are obtained and expressed as follows

. X
u=—wq+uvr+ —
m
. Y
v =—ur+wp-+ —
m

. Z
w=—vp+uq+—n;

. (Iyy —1,,) I, . L
e L + T (pq +7) + 7
. (Izz - III) [CEZ 2 2 M
§=——=rp+—(r"—p°) +—
[yy Iyy Iyy
o (Lo — L) I, .. N
L + T (p—rg)+ I

¢ =p+gsingtand + rcos¢tanf

ézqcosq&—rsincp

¥ = gsin¢secl + rcos ¢ sech

(2.32)

Solving the equations of motion (2.32) for the state variables u, v, w, p, ¢, 7,

¢, 0 and 1) is the next and most important step of the modelling process. To do

this, the forces and moments in the equations of motion (X, Y, Z, L, M and N)

have to be computed and presented as functions of known parameters, state variables

and pilot control inputs?. These forces and moments are shown along with the main

2Pilot control inputs include the main rotor collective control, the main rotor cyclic control and
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helicopter variables in figure 2.5. To compute them, a component derivation method

Figure 2.5: Forces and moments applied on a helicopter

is used. As shown in figure 2.6, a helicopter can be viewed as a complex arrangement
of five interacting sub-systems which are the main rotor, the tail rotor, the horizontal
stabilizer, the vertical fin and the fuselage. Therefore, the forces and moments can

be presented as

X Xm Xt Xh X’U Xf
Y Ym Y Y Y, Ys
YA Zm Zt Zh Zv Zf
= + + + + (2.33)
L Lm Lt Lh Lv Lf
M M, M; My, M, My
N Npn N, Ny Ny Ny

where ()m, (s, Or, (J» and () are used to indicate the forces or moments applied

the tail rotor pedal control. These control inputs will be described in section 2.2 and 2.3.
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on the five sub-systems, respectively. In the following sections, dynamics of the five
sub-systems are described and the forces and moments applied on them are then

computed, respectively.

Main rotor
Vertical fin .
\/ {_,i;,
* "‘;‘:::-E;?”g ’
Fuselage @ M
/\
Tail rotor
Horizontal stabilizer
\ B
!,._.
i it
-

Figure 2.6: The helicopter as an arrangement of interacting sub-systems

2.2 Main Rotor

2.2.1 Terminology

It is necessary to introduce the terminology of the main rotor first as follows (see -

figure 2.7%).

e Mast (shaft) is the rotating shaft that connects the rotor blades to the heli-

copter.

¢ Swash plate turns non-rotating control movements into rotating control move-

ments. The swash plate is made in two halves. The lower part is non-rotating

3Figure 2.7 is modified from the picture in
http://www.delftoutlook.tudelft.nl/info /index80fb html?hoofdstuk=Article& ArtID=>5318.
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pitch horn
- pitch link
control link

flapping hinge

Figure 2.7: Terminology - the main rotor

and fitted with a spherical bearing so that the swash plate can tilt to any angle
in any direction. The sphere can also slide up and down. The upper part is

rotating with the rotor shaft.

Control links are the push or pull tubes that change the pitch angle of the

rotor blades.

Pitch links connect the upper part of the swash plate and the pitch horns.
They move up and down according to the swash plate such that the pitch

angles of the blades are changed.
Pitch horn is the armature that converts pitch link movement to blade pitch.
Hub sits atop the mast and connects the rotor blades to the control links.

Feathering axis is the spanwise axis about which a rotor blade rotates to

change the pitch angle.

Flapping hinge is the hinge that allows the blade to flap up and down freely.
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e Pitch hinge is the hinge that allows the change of the blade pitch angle.

¢ Lead-lag hinge is the hinge that allows the blade to move back and forth

(known as lead-lag motion) in the plane of the rotor.
e Leading edge is the forward facing edge of the rotor blade.
e Trailing edge is the back facing edge of the rotor blade.

e Chord is the distance from the leading edge to the trailing edge of the rotor
blade.

e Tip path plane (TPP) is the plane whose boundary is described by the blade

tips.
¢ Rotor disk is the disk whose boundary is described by the blade tips.
e Hub plane (HP) - The plane which is perpendicular to the rotor shaft.

¢ Collective pitch control moves the swash plate up or down to change pitch
angles of all rotor blades in equal measure such that the rotor will produce more

or less lift.

e Cyclic pitch control tilts the swash plate to change the pitch angle of each
rotor blade periodically as it revolves such that the rotor disk can tilt in any

direction.

With these mechanics the main rotor has three degree of freedom, i.e. rotation about
the feathering axis which is known as blade pitch, bending up and down which is
known as flapping and the lead-lag motion. Among these three motions, the only one
that can be controlled actively by the pilot is the blade pitch. The flapping and the

lead-lag motion are dominated by aerodynamic forces and blade pitch (figure 2.8).
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flapping
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cyclic control +

> lead-lag

aerodynamic forces

Figure 2.8: Degree of freedom of the main rotor

2.2.2 Flapping Dynamics

Since the flapping angle plays an important role in computing the forces and
moments applied on the main rotor, dynamics and the mathematical model of the

flapping angle are first described in this section.

Introduction

The up and down motion of the main rotor blades on their hinges is called the
rotor flapping. As shown in figure 2.9, each of the blades is connected with the shaft
by a flapping hinge, which allows the blade to bend up and down. The angle between

each blade and the zgyp plane is called the flapping angle 3.

flapping hingss flapping lingss

RO
iz

¥ ag Yiay

Side view Risar view

Figure 2.9: Definition of the rotor flapping

Before explaining the physical principle responsible for the rotor flapping it is

necessary to review the expressions for the lift of an airfoil. Figure 2.10 shows the
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Figure 2.10: Lift generation of the rotor blade

cross section of a main rotor blade in the air. vy, is the air flow relative to the blade
and « is the angle of attack. While the airstream is deflected downward by the airfoil,
the lift and drag forces are created. From dimensional analysis, the lift is represented
as L = ¢;Cr(a) = 3pv2,SCL(cx) [45], where g, is the dynamic pressure (g, = $pv2;,),
p is the air density, S is the surface area and Cp(«a) is the lift coefficient that is a

function of the angle of attack as shown in figure 2.11. The lift curve slope ap = dd%

Cr,

arctan gy

1
i
|
[
|
]
1
|
1
1

Leritival ¥

Figure 2.11: Cy, vs. «

is fairly constant up to the stall angle acritica. Therefore, up to stall conditions, the

lift of the rotor blade is proportional to the angle of attack and square of the air flow
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velocity: L o< a, v%
The reason why the rotor flapping exists is because the dissymmetry of the lift on

the rotor can be completely eliminated by the flapping motion. As shown in figure

helicopter QR I = 180°
forward B
velocity

s Jr= G0
pOR

wsin W

QR

Figure 2.12: Blades velocities in forward flight

2.12, the helicopter is in forward flight condition with velocity w. The main rotor speed
is assumed to be constant (£2). R is the length of the blade and ¥ is the azimuth with
¥ =0° o;fer the tail and positive counter-clockwise. The local velocity perpendicular
to the leading edge of the blade tip is v, = QR + usin ¥. Because of the sinusoidal
variation on W, over the tail and over the nose the blade tip sees the same velocity
(sin ¥ = 0), but on the advancing blade it sees a Higher velocity (sin ¥ > 0) while on
the retreating blade a lower one (sin ¥ < 0). If each blade had the same pitch setting,

their angles of attack would be nearly the same, but the difference in velocity vg,
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would produce more lift on the advancing blade than on the retreating blade. This
would produce an unbalanced rolling moment, as shown in figure 2.13(a)*, which

would roll the helicopter over. However, the advancing blade, which initially has high

mmm

Ratreating Advancing
Biade Blade

Rear
View

(&) Likt Distribution without Flapping

mm

Retraating Advancing
Biade Blade

{b} Lt Disteibution with Flapping

Figure 2.13: Effect of blade flapping on lateral lift distribution

lift, begins to accelerate upward. As it is accelerating upward, it is also being rotated
toward the nose, where the local velocity v, is reduced to its mean value (2R),
such that no unbalanced lift exists and the blade stops accelerating. The retreating
blade is undergoing a similar experience except that it is accelerating downward as
it is rotated to a position over the tail. The flapping motion produces a climbing
condition on the advancing blade. As a result, the angle of attack is decreased (see
figure 2.14). The retreating blade, on the other hand, is descending and experiencing
an increased angle of attack. The rotor comes to a flapping equilibrium when the

local changes in angle of attack are just sufficient to compensate for the local changes

4Figure 2.13 is taken from the picture in [32].
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cross section of the advancing blade

angle of attack
while the blade flaps up

AN

~ . 4
air stream velocity angle of attack

due to upward flapping

Figure 2.14: Change in angle of attack due to flapping

in dynamic pressure. Therefore, the unbalanced rolling moment is eliminated by the
flapping motion (figure 2.13(b)).

The goal is to derive the dynamic equétions of the rotor flapping. To do this,
consider now the mathematical analysis of a rotating ﬁépping blade in hover and in

forward flight, respectively.

The Flapping in Hover

aL

blade

™ ACF

fapping hings
ity

shiafy

Figure 2.15: The rotor flapping in hover

Figure 2.15 shows a rigid rotor blade flapping in hover. The equilibrium position

of the blade is determined by the balance of the aerodynamic force I, the centrifugal
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force C.F. and the weight of the blade W. Since the weight of the blade is very
small with respect to the other two forces, it can be omitted in the mathematical
analysis [21]. Given that the centrifugal forces are much larger than the aerodynamic
forces, the flapping angle 3 is usually quite small (between 3-6 degrees is typical for
a helicopter rotor [32]).

As before, it is assumed that the main rotor rotational speed about the shaft is
constant (£2). Assume an uniform mass per unit length of fhe blade, m. Considering
a small element of the blade of length dr, the mass of this element is mdr (see figure
2.15). The contribution of this small element to the centrifugal force applied in a

direction parallel to the plane of rotation is
d(C.F.) = (mdr)r cos Q* = mQ*r cos Bdr

Therefore, the total centrifugal force applied on the blade is

m? R?
2

R R
CF. = / mQ2r cos Bdr = / mQPrdr = (2.34)
0 0

The moment about the flapping hinge as a result of the centrifugal forces produced by
all the elements is (the counter-clockwise direction in figure 2.15 is taken as positive

for computing the moment)

R R
Mcr =-— / m§Q?r cos Ar sin fdr = —m? cos fsin B/ ridr
0 0
_mQ2 cos Bsin BR3 - _mQQﬁR3 (2.35)
3 3
The aerodynamic moment about the flapping hinge is
R
My, = / rdL (2.36)
0
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The rotating blade will reach an equilibrium position where the centrifugal moment
is equal and opposite to the aerodynamic moment (note that the gravity of the blade

is ignored). Therefore the equilibrium equation can be written as
My + Mzg=10 (2.37)

Thus the equilibrium flapping angle or coning angle fJy is given by solving equations

(2.35) - (2.37)
fOR rdL

0~ Tho?RS
3

(2.38)

It is constant and independent of azimuth ¥ in hover, while in forward flight it varies

with respect to azimuth ¥ as shown in the following subsection.

The Flapping in Forward Flight

In forward flight, because of the variation of aerodynamic force with azimuth (refer
to figure 2.12) the blade flaps up and down. Figure 2.16 shows the forces applied on

the blade. The centrifugal moment about the hinge is (note that 3 is a small angle)

di

blade

@

Happing hinge

shadt

Figure 2.16: The rotor flapping in forward flight

dMc.r. = —(mdr)r*Q?8 = —mr*Q°Bdr (2.39)
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The elementary inertial moment about the hinge is
—dIf = —(mdr)r?3 = —mr®Gdr (2.40)
The aerodynamic moment about the hinge is
dMy, = rdL (2.41)
Therefore, the equations of motion can be derived by summing the moments yielding

R R R 7
/ dMc r — / dipg+ / rdL =0 (2.42)
0 0 0

Substituting equations (2.39) - (2.41) into equation (2.42) yields
R R B R
—/ mr2Q?Bdr — / mr?Bdr + / rdL =0 - (2.43)
0 0 0
The mass moment of inertia of the blade about the flapping hinge is
dI = mr’dr (2.44)
Rearranging equations (2.43) and (2.44) yields
.. R
I3+ I8 = / rdL (2.45)
0
"The solution to equation (2.45) can be represented by an infinite Fourier series

f=ao—aicos ¥ —bysin¥ —aycos2¥ —by sin 20 —- - - —q,, cosnW¥ — by, sinn ¥ (2.46)
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Only the first three terms will be used because the second and higher harmonics are

relatively small [32]. Therefore, it will be assumed that
B =ag—ajcos ¥V — by sin¥ (2.47)

where ag represents the average value, which is the coning angle 3, in equation (2.38),
ay is called the longitudinal flapping angle defined as positive when the blade flaps
down at the tail and up at the nose, and b; is the lateral flapping angle defined as
positive when the blade flaps down on the advancing side and up on the retreating

side. The physical description of a; and b; is discussed in the following subsections.

Physical Description of the Longitudinal Flapping

The coeflicient a; represents the amplitude of the pure cosine flapping motion,
which can also be regarded as a longitudinal or fore-aft tilt of the rotor tip path
plane (TPP) (figure 2.17). In forward flight, the rotor disk has a tendency to tilt

blade in forward flight
o
Q/ —~
x

X ai ~
W= 180° R —7\— = — — W =g
a1 ~—
blade in hover x ~

__— shaft

~

helicopter forward speed «

Side View

Figure 2.17: Longitudinal flapping

back (longitudinally) because of the dissymmetry in the lift produced between the

advancing side of the disk (refer to section 2.2.2 - Introduction). As the blade rotates
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into the advancing side of the disk, the excess lift causes the blade to flap upward. As
the blade rotates into the retreating side of the rotor disk, the deficiency in lift causes
the blade to flap downward. Therefore, over the front of the disk (¥ = 180°) the blade

reaches a maximum angular displacement with 3 = 0. As a result of the upward or
downward flapping, the blade lift, that would have increased on the advancing blade
or decreased on the retreating blade if there was no flapping motion, is compensated

due to the change of the local angle in attack (refer to section 2.2.2 - Introduction).

Physical Description of the Lateral Flapping

The coefficient b; represents the amplitude of the pure sine flapping motion, which
can be regarded as a lateral or left-right tilt of the TPP (figure 2.18). This effect

blade in forward flight
o
Qz/ ~
x

—

¥ =277 - b - — —_
17X —

blade in hover RS —~
ao

T =9

> —_— = = =

- shaft

Rear View

Figure 2.18: Lateral flapping

arises because of the blade flapping displacement (coning ag). For the coning rotor in
forward flight with velocity u, the blade over the nose (90° < ¥ < 270°) experiences
an air component (usin j3) corﬁing toward its lower surface (see figure 2.19), while
the blade over the tail (270° < ¥ < 450°) experiences air approaching it from the
top. Therefore the local angle of attack is decreased when the blade is over the

tail and increased when the blade is over the nose. The rotor compensates for this
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Figure 2.19: Change in angle of attack due to velocity orientation

inequality in the same manner as it did for the asymmetric velocity patterns on the
advancing and retreating blades: the blade starts to flap upward when ¥ = 90° and
flap downward when W = 270°. The result is that t‘he difference in flapping velocities
over the nose and over the tail compensates for the difference in the angle of attack

caused by coning.

Dynamic Equations

Since the longitudinal flapping angle a; and the lateral flapping angle b; are nec-
essary in computing the main rotor forces and moments, the dynamic equations of
the rotor flapping are derived to solve for a; and b, in this subsetion. As shown in
equation (2.45) the flapping dynamics can be represented by a second-order equation,

from which the quasi-steady flapping equations can be derived. However, in this the-
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sis first-order equations are used to describe the dynamics, which are more simple yet

sufficiently accurate for our purposc [25][26][6]. The equations are expressed as

ai 1 % (5lon

a =—q— — +— wt — 2.48
! a Te Te 8,uuu Te ( )
. b 1 0b Ma

by = p— e, 4 (2.49)
Te Te 0#'[} T€
where p, = g7 and p, = gy are the components of the nondimensional velocity

of the helicopter, i, and d;,; are the longitudinal and lateral cyclic pilot control

- inputs and 7, is the effective rotor time constant [6]. The derivatives g% and g%

describe changes of the flapping angles due to the helicopter translational velocity

components u and v. Theoretical values for the steady-state longitudinal flapping

and lateral flapping for a rotor without a stabilizer bar are given in [2] as

8(11 8b1
_ — == 2
Oty Oty (

454:0[
3

— o) (2.50)

The stabilizer bar is widely used in aerobatic helicopters. It reduces flapping

response to gusts. Equation (2.50) cannot be used for a rotor equipped with such a

Oay

device. Since these derivatives (8u

and %) play a primary role in the frequency
and damping of the phugoid mode, which is very slow, it is difficult to estimate it
using frequency domain identification methods [26]. An open loop excitation would
have to last for much longer than it takes for the helicopter to diverge, therefore

the necessary pilot’s feedback would bias an estimate of the derivative [22]. In [6], a

scaling coefficient is introduced in equation (2.50), yielding

8(11 abl 45¢:ol
= ok
Oty Oty ul 3

~ o) (2.51)

)

The scaling coefficient K, tells us how much the stabilizer bar reduces the steady-

state flapping response to the helicopter forward velocity v and side slip velocity v.
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A rough estimate for K, can be obtained by matching the steady-state cyclic input
in forward flight at constant speed (maintained with the velocity-tracking feedback

controller) with that predicted by the simulation under the same conditions [6}.

2.2.3 Main Rotor Forces and Moments

In this section the main rotor forces (X,,, Ym and Z,,) and moments (L, My,
and N,,) in the equations of motion (2.32) are presented. Since they are functions of

the rotor thrust 7, and torque Q,,, we will compute T, and ), first.

Thrust

The main rotor thrust 75, is the aerodynamic force perpendicular to the TPP. It

can be computed from the integration of the elementary lift dL on each blade element

dr along the blade and around the azimuth (figure 2.20(a)). The lift for each blade

(a) (b)

Figure 2.20: Main rotor thrust

element can be written as

1
dL = §pU72~CLch (2.52)

where c¢ is the span of the blade, Uz is the tangential component of the air velocity

(Vair, Tefer to figure 2.10) relative to the blade and Up is the perpendicular component
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of the air velocity (see figure 2.21). Cp is the lift coefficient which can be written as

\\
/\ cross section of
chotd : the blade

Figure 2.21: Main rotor thrust

(refer to figure 2.11)

Cr = ax

where a is the lift curve slope of the main rotor. Therefore, equation (2.52) transforms

to

. v
dL = §pU:,2~aacdr (2.53)

The integration procedure is complicated. In this thesis only the main steps and
results are presented. Details can be found in [30] and [32]. The lift per running foot
15

dL 1

p —Q—pU%aac (2.54)

The average lift per blade around the azimuth can be written as

_ 1 2 RdL
L =— —dr)d¥ 2.
- | (/0 ) (2.55)
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The total thrust is equal to the number of blades (b) times the average lift per blade

T i / ——dr (2.56)

Substituting equation (2.52) into equation (2.56) and rearranging in the nondimen-

expressed as

sional form® yields

ac (*", [* Ur Up Ur
Cr=— —)?0 d—d¥ 2.57
T 2/0 </O(QR) +QRQR)R (257)
where ¢ = f—; is the solidity ratio and @ is the pitch angle of each blade. The

integration of equation (2.57) results in

2= A
Cr= —(90( "2 )+ (2.58)
where p = ¥ “m*%"’ is the advance ratio, . = g% is nondimensional form of the vertical

velocity component, y is the rotor collective pitch angle which is proportional to the

pilot collective pitch control input [30], and \g is nondimensional form of the rotor

inflow (Ao = ¢ ~%). The thrust T, is written as
Ty = p(QR)Y*1R*Cr (2.59)

From equation (2.58) and (2.59), it is shown that the thrust 7,, is a function of 8, p,
i, and Xg. Among them, the rotor inflow A\ is an unknown variable. Therefore, in
order to compute the thrust, the rotor inflow should first be computed. The following

subsection describes the process.
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Figure 2.22: The rotor inflow in climb (a) and forward flight (b) motion

Rotor Inflow

The rotor inflow is the flow field induced by the rotor at the rotor disk, thus
contributing to the local blade incidence and dynamic pressure [30]. Figure 2.22(a)
shows the rotor inflow in hover condition. The velocity at various stations in the
streamtube v is shown® and where v; is the inflow velocity at the rotor disk.

Note that the relationship between Cr and )¢ in equation (2.58) is obtained by
integrating the elementary blade lift, momentum theory allows us to derive another
relationship between them. First consider the climb condition (the helicopter is climb-

ing with speed V). The mass flow through the rotor is written as
i = pAa(Va+ ) (2.60)

where Ay is the rotor disk area. The rate of change of momentum between the

*Nondimensionalizing is done by dividing the thrust T, by p(QR)*7R? or dividing the torque
Qum by p(QR)*r R3. The resulting nondimensional form of T, and Q. are thrust coefficient C and
torque coefficient Cg, respectively.

8To avoid introducing more symbols, v is used here. Readers should note that it is different from
the fuselage translational velocity component v.
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undisturbed upstream conditions and the far wake can be equated to the rotor loading,
yielding
T = (V. +v;, ) — mV, (2.61)

where v;_, is the induced flow in the fully developed wake. The change in kinetic

energy of the flow can be related to the work done by the rotor as

1 1
v = (Ve + ;)% — 5mvf (2.62)

From equations (2.61) and (2.62) it can be shown that the induced velocity in the far

wake 1s twice the rotor inflow velocity, i.e.
Vigy = 20y (2.63)
The expression for the rotor thrust can then be written as
T = 2pA4(Ve + vi)v; (2.64)

Now consider the forward flight condition (see figure 2.22(b)). The induced flow
in the far wake is again twice the flow at the rotor (see equation (2.63)). The mass

flow through the rotor is
m = pAqv (2.65)

where in forward flight v = \/u? + (v; — w)? (see figure 2.22(b)). The rotor thrust is

then expressed as

T = m2v; = 2pAgv/u? + (v; — w)?y; ~ (2.66)

Rearranging in the nondimensional form yields

Cr

/\() =
2\/:U2 + ()‘0 — phz)?

(2.67)
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where A = g%, p = g% and p, = o

Finally, given equations (2.58) and (2.67), Cr and Xy can be solved iteratively.
The thrust 7,, can then be derived by substituting Cr into equation (2.59). The
magnitude of the main rotor thrust is limited based on the assumed maximum thrust

Trmaez to model stall of the blades and other viscous losses.

Torque

The main rotor torque can be approximated as a sum of the induced torque due
to the generated thrust and the torque due to the profile drag on the blades [30],

yielding

C 7
200(1 +—p?) (2.68)

CQ = CT(/\O — ,u.z) + 3

where C is the torque coefficient and Cpyg is the profile drag coefficient of the main

rotor blade. The yawing moment produced by the main rotor is then given by

Qm = Cop(QR)*r R (2.69)

Forces and Moments

Given that the thrust and torque are derived in the previous subsections, the
equations of the main rotor forces and moments can be written by computing the

components of the thrust and torque (see figure 2.23)
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Figure 2.23: Main rotor forces and moments

Xm = —Tpsina; (2.70)
Y., = Ty sinby (2.71)
Zm = —T, cOSa; cOs by (2.72)
Ly, = Kgby + Tnhi sin by (2.73)
Moy = Kgay + Tpnhu sin ay (2.74)
Ny = Qy, cOSs a1 cosh (2.75)

where hp, is the height of the main rotor hub with respect to the center of gravity.
The terms Kgb; and Kpa, in equations (2.73) and (2.74) result from the restraint in
the blade attachment to the rotor head. The restraint can be approximated using a
linear torsional spring with a constant stiffness coeflicient Kz resulting in a rolling
moment Kgby or a pitching moment Kga,. The second terms in equations (2.73)
and (2.74) result from the tilting of the thrust vector. Assuming that the thrust
vector is perpendicular to the TPP, the thrust vector will tilt proportionally to the

rotor flapping angles resulting in a rolling moment 7,,h,, sinb; or a pitching moment
| Tnhey, sinag.

Except for the hover condition, the rotor in-plane force, which contributes to the
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drag and side force, is substantially smaller than the drag provided by the fuselage
and the side force from the fuselage and the empennage. The rotor in-plane force is
therefore neglected in the calculations. The moments due to the in-plane force are
much smaller than those due to the blade flapping and therefore also neglected. Notice
that the flapping angles a; and b; are small angles. Therefore, we have sina; ~ a;,
sinb; =2 by, cosa; =2 1 and cosb; = 1. The main rotor forces and moments equations

(2.70) - (2.75) can then be simplified as

X = ~Toas (2.76)
Yy = Tnby (2.77)
Zon = —Th, (2.78)
L = Kby + Tonhuby (2.79)
- M = Kpay + Tyhimas (2.80)
N = Qm (281)

2.2.4 Summary

As a summary, the algorithm for computing the main rotor forces and moments

are as follows.

1. Solve equations (2.58) and (2.67) iteratively for the thrust coefficient Cr and

the rotor inflow Ag.
2. Substitute Cr into equation (2.59) to obtain the main rotor thrust T7,.

3. Substitute Cr into equation (2.68) and Cy into equation (2.69) to obtain the

main rotor torque Q,,.

4. Solve the dynamic equations of the rotor flapping (2.48) and (2.49) for the

flapping angles a; and b;.
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5. Substitute T},, Qmm, a; and by into equations (2.76) - (2.81) to obtain the main

rotor forces and moments X,,, Yi., Zm, Lm, My and N,,.

2.3 Tail Rotor

In this section, the forces and moments applied on the tail rotor are computed.
The basic equations for the tail rotor forces and moments are similar to those for the
main rotor. The analytical expressions for the tail rotor coefficients are approximated
in this section. This can be done by adapting the methods used for computing the
main rotor coefficients. First, we need to determine the normal (u,:) and the in-plane
(12¢) tail rotor inflow components. The main rotor wake effect plays an important role

in the computation of (u,;) and (). This is discussed in the next subsection.

2.3.1 Main Rotor Wake Effect

The main rotor wake affects the tail rotor thrust in a complex way. To model
this influence accurately an extensive modelling of the wake is required. However, a
simple way used in this thesis is to approximate the increase in an apparent in-plane

velocity seen by the tail rotor [6]. This velocity is defined as
Wywake = K,\Ui (282)

where v; is the main rotor induced (inflow) velocity and K is the main rotor wake
intensity factor, which describes the extent the tail rotor is affected by the main rotor

wake. The wake angle v is defined as the angle between the main rotor induced

velocity and the zp axis in the zpzp plane, i.e. v = tan™! v_fw. To compute K, first
compute the wake angles (figure 2.24) as
li— R— R; Ii—R
, = tany; = ————  and =tany;= ———— 2.83
g (il — 9s L ey (2.83)
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Figure 2.24: The main rotor wake effect

where [, is the distance between the tail rotor and the center of gravity, R is the
main rotor radius, R, is the tail rotor radius, h,, is the main rotor hub height above
the c.g. and hy is the tail rotor hub height above the c.g. The tail rotor is out of
the downwash if v; < w, in which case there is an effective upwash. At low enough
forward speed with respect to the air, the tail rotor is out of the wake as well (figure

2.24(a)). These two conditions can be represented by

tan  (——) < ; or < g (2.84)
vV —Ww Vi — W
In both of these cases K, = 0.
The tail rotor is fully in the wake (figure 2.24(b)) if
1 u
tan™"( )y >y or > gf (2.85)
v —w v —w

41



In the far wake, the downwash velocity is twice the value of that at the rotor (see
equation (2.63)). It is assumed that K, = 1.5 when the tail rotor is fully immersed.
In the remaining case, when the tail rotor is partially immersed, a linear growth of

the wake intensity factor with the forward speed is assumed [6] as

u

Ky=1552_% (2.86)
9r — Gi

Next, we determine an advance ratio for the tail rotor

2 2
vt wi (2.87)

M= AR,

where w; = w + ;g — K, v; is the vertical velocity component of the tail rotor and

is the tail rotor speed. The velocity component normal to the tail rotor is given by

vy =v—Lr+ hp (2.88)
or in nondimensional form
Ut
4= 2.89
ezt LR, ( )

Given p; and ju,4, similar to the computation of the main rotor thrust coefficient,
the tail rotor thrust coeflicient Cry and the tail rotor inflow Ag; can be obtained by

solving the following equations iteratively.

2C 1 2

Mot = ot — 2/ — Ge(5 + 1)) (2.90)
J¢ 3 2

CTt = 2/\0t\/,u? -+ (,uzt - /\Ot)2 (291)

where a; is the tail rotor blade lift curve slope, o; is the tail rotor solidity ratio and 8y

- is the tail rotor collective pitch angle which is proportional to the pilot pedal control
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input [30]. The thrust T; is then written as

T, = p(QR)*m R} Cry (2.92)

The magnitude of the tail rotor thrust is limited based on the assumed maximum
thrust Timer to model stall of the blades and other viscous losses. The torque of the
tail rotor can be calculated the same way as the rotor torque was computed and is

represented as

CDOtU

CQt = CTt(,Uzt - /\()t) + (1 + 3/1?) (293)

Qt = CQtp(Qth)Qﬂ'R? (294)
where Cpo; 1s the tail rotor profile drag coefficient.

2.3.2 Tail Rotor Forces and Moments

I

Figure 2.25: Tail rotor layout

Finally, the tail rotor forces and moments can be written (figure 2.25). The forces
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are

X, =0 (2.95)
Y, =T, (2.96)
Z,=0 (2.97)

The pitching moment generated by the tail rotor is equal to the tail rotor torque

My = Q: (2.98)

The yawing and rolling moments due to offsets from the c.g. are computed as follows

(figure 2.26)

Nt = —Ttlt (2100)
T;

Figure 2.26: Moments of the tail rotor
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2.3.3 Summary

As a summary, the algorithm for computing the tail rotor forces and moments are

as follows.

1. Determine the normal (p.) and the in-plane (y,) tail rotor inflow components
from equations (2.87) and (2.89) and substitute these parameters into equations

(2.90) and (2.91).

2. Solve equations (2.90) and (2.91) iteratively for the thrust coefficient Cy; and

the rotor inflow Ag;.
3. Substitute Cry into equation (2.92) to obtain the tail rotor thrust 7.

4. Substitute Cry into equations (2.93) and (2.94) to obtain the tail rotor torque

Qs

5. Substitute T; and @, into equations (2.95) - (2.101) to obtain the tail rotor

forces and moments X;, Y;, Z;, L, M; and N,.

2.4 Horizontal Stabilizer

In this section, the forces and moments applied on the horizontal stabilizer are
computed. The horizontal stabilizer generates a Z-force that provides pitch damping
and enhances\pitch stability. Figure 2.27 shows the layout of the horizontal stabilizer.
The Z-force Z, consists of two components that are generated by the zg-axis airflow

and zp-axis airflow, respectively.

o Z-force component generated by the xp-azis airflow (u). As shown in figure
2.27, ay, is the horizontal stabilizer angle of attack. The force generated by the

rp-axis airflow can be presented in the same way the aerodynamic lift of an
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Figure 2.27: Horizontal stabilizer layout

airfoil is described:

1
Zh] = —§pShC}L’LL2 (2102)

where C}, is the horizontal stabilizer lift curve slope and S} is the horizontal

stabilizer area.

Z-force component generated by the zp-axis airflow. Assuming that the horizon-
tal stabilizer may be fully or partially submerged in the wake of the main rotor
(refer to section 2.3), an effective vertical velocity at the horizontal stabilizer

location is determined by
wp = w + lhg — K)v; (2.103)

where w, Ipqg and —K,v; are the effective velocity components caused by the
helicopter downward motion, the pitch motion and the main rotor wake, respec-

tively.

The Z-force caused by wy is then presented in the same way the aerodynamic

drag of a flat plate is described:

) 1
Dho = —szgn(wh)ipShwi (2.104)
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Therefore, given equation (2.102) and (2.104), the total Z-force generated by the

horizontal stabilizer is determined by

Zn  =Zm+ Zn

1
= —ipsh(ChUQ + Iwhlwh) (2.105)

The Z-force creates a pitching moment due to the offsets from the c.g., yielding

My, = Zply (2.106)

The other forces and moments are equal to zero, i.e.

X, =0 (2.107)
Yp =0 (2.108)
Lh=0 ' (2.109)
Np=0 (2.110)

2.5 Vertical Fin

In this section, the forces and moments applied on the vertical fin are computed.
The vertical fin generates a side force that provides yaw damping and enhances yaw
stability. Figure 2.28 shows the layout of the vertical fin. The side force Y, consists
of two components that are generated by the zp-axis airflow and yp-axis airflow,

respectively.

e Side force component generated by the xg-axis airflow (u). As shown in figure

2.28, B3, is the vertical fin angle of attack. The force generated by x p-axis airflow

47



Figure 2.28: Vertical fin layout

can be presented in the same way the aerodynamic lift of an airfoil is described:
1 2
Yo = —EpSUCvu (2.111)

where C), is the vertical fin lift curve slope and S, is the vertical fin area.

Side force component generated by the yp-azis airflow. An effective Y-axis

velocity at the vertical fin location is determined by
Uy =V — ltT' + EuVit (2112)

where vy is the induced velocity from the tail rotor and ¢, is the fraction of the
vertical fin area exposed to full induced velocity from the tail rotor. v, —Ir
and e, v;; are the effective velocity components caﬁsed by the helicopter side slip

motion, the yaw motion and the tail rotor inflow, respectively.

The side force caused by the yp-axis airflow is then presented in the same way
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the aerodynamic drag of a flat plate is described:

1 .
Yo = —sz’gn(vv)ipvai (2.113)

Therefore, given equation (2.111) and (2.113), the total side force generated by

the vertical fin is determined by

Yv = Yy + Yv2

1
= ~§p5v((7vu2 + |vplvy) (2.114)

The vertical fin side force creates a yawing moment and a rolling moment due to the

offsets from the c.g., yielding

N, = -Y,I, (2.115)

Ly, =Y,y (2.116)

The other forces and moments are equal to zero, i.e.

X, =0 (2.117)
Z,=0 (2.118)
N, =0 (2.119)

2.6 Fuselage

In this section, the forces and moments applied on the fuselage are computed. For
hovering or forward flight speeds well below the induced velocity at hover, the rotor
downwash is deflected by the forward and side velocity components. This deflection

creates a force opposing the movement. We express the Xy, Yy and Z; drag forces
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created by the fuselage in this flight regime by [6]

1

Xy = —épszfvz?% (2.120)
1 v

Y= ——Q-psyfvfa (2.121)
1 w

T = —=pS. 07— 2.122

f 2p fvl Ui ( )

where S;5, Syy and S,y are the effective drag areas of the fuselage in the X, ¥ and
Z directions.

When the forward speed is higher than the rotor induced velocity, the fuselage
drag can be modeled as the drag of a flat plate exposed to dynamic pressure [6]. In

this case the perturbations to the fuselage forces can be expressed as

1 9 U
= ——pS, U*— 2.123
Y, = —2p8, ;U2 (2.124)
f - 2p yf e Ue °
1 9 W
= ——pS, U — 2.12

where U, is the trim airspeed.

Considering equations (2.120) - (2.125), the fuselage forces can be approximated to

be
1
X;= —§prfu\/u2 + 02 + (w — v;)? (2.126)
1
Yy = ~—§pSyf'U\/u2 + 02+ (w — v)? (2.127)
1
Zy = ~§p.5'zf(u1 — )V + v+ (w— v;)2 (2.128)

It is assumed that the center of gravity and the center of aerodynamic force of the
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fuselage coincide. Therefore, no fuselage moments are created, i.e.

Ly =0 (2.129)
M;=0 (2.130)
Ny =0 (2.131)

2.7 Complete Model

All of the external forces and moments are presented in sections 2.2 - 2.6. Sub-
stituting these forces and moments into the equations of motion (2.32) yields the
dynamic model of the helicopter. As a summary, all of the equations used in the

modelling are included in this section.

e FEgquations of motion.

. X .

U= —wqg+vr+— —gsind
m

) Y .

v =—~ur+wp+ — + gcosfhsing¢
m

. Z
w=—vp—+uq+ —+gcosfcosg
m

Uy — L) . L
PE L A

Izz - -[1:2: Ia:z
( ) =(r*—pH) + M (2.132)

§=-—F——rp+

[IZ

Iyy Iyy [.Uy
(O ([m " ]yy) Izz -
TS Pty e

¢=p+qsinq§tan9+rcos¢tan6
= gecos¢ — rsing

1 = gsin ¢ secd + r cos g sec

where, X = Xp + Xy, Y = Yo +Y; 4+ Yo+ Yy, Z=Zp+Zs + Zn,
L=Ln+Li+L,, M=DM,+M+M, N=N,+N,+N,
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o Flapping dynamics.

G =g =t o
Te  Te Ofty Te
y bl 1 abl 5lat
b = S o
Te  TeOfhy Te
where,
8@1 8b1 4600[
ou Oty ul 3 0)

e Main rotor forces and moments.

_ao 1 tz — Ao

A Cr
0 -
2\//7+ (Ao — p2)?
Cpoo 7
Co = Cr(Xo — ) + %0 (1+ glﬁ)

Ty = Crp(QR)*w R?

Qm = Cop(QR)*r R

Xm = =Thna
Y = Tib1
Zm =T

Ly = Kby + Thmby
Mm = Kgal + Tmhmal

Nm:Qm

92

(2.133)

(2.134)

(2.135)

(2.136)

(2.137)

(2.138)
(2.139)
(2.140)
(2.141)
(2.142)
(2.143)
(2.144)
(2.145)

(2.146)



o Tail rotor forces and moments.

_L—-R-R
gi = __—hm—ht
_ L-R
9 W h — Ry
Ky =152

ar — g

ve=v— Lr+hp

we = w+ Lig— Kyvi

WNoar
M7 TR,
Mzt = O R,
2

Aot = Mzt — Q[QCTt - 90t(1 + 'u—t)]

as 0t 3 2
Do = e

2v/ i + (phzt — Aot)?
O = C Cpoto
ot = Cre(pze — Aot) + (1+3

Tt = CTtp(Qth)zﬂ'R?

Qt = C’Qtp(Qth)QﬂRf

Yi=T:
Ly =Tih
Mt:_'Qt

Nt = —Ttlt
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(2.147)
(2.148)
(2.149)
(2.150)

(2.151)

(2.152)

(2.153)

(2.154)
(2.155)

(2.156)

(2.157)
(2.158)
(2.159)
(2.160)
(2.161)
(2.162)

(2.163)




e Horizontal stabilizer forces and moments.

wp = w + lhq — K)\'l)i (2164)
1

7y = ~§pSh(Chu2 + Jwp|ws) (2.165)

My, = Zpln (2.166)

o Vertical fin forces and moments.

Vit = Aol Ry (2.167)
Uy == U — LT + €,Vi (2.168)
Ve = — 508Gt + Juuloy) (2169)
Ny = — Y, (2.170)
Ly = Y,h (2.171)

o Fuselage forces and moments

1

Xy = —2pSIfu\/u2 +v? + (w —v;)? (2.172)
1

Yy = —EpSyfv\/u2 + v+ (w — v;)? (2.173)
1

Zy = —§pSZf(w —v)Vu? 02 4 (w — v;)? (2.174)

2.8 Model Validation

In this section, the developed model will be evaluated and validated by comparing

the simulation results with flight test data available in the literature [26].
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2.8.1 Simulation of the Model

The simulation of the model developed in this chapter is implemented in the
MATLAB and SIMULINK environment. Figure 2.29 shows the simulation structure.
The control inputs consist of the main rotor cyclic andlateral pitch controls, the main
rotor collective control and the tail rotor pedal control. The forces and moments
applied on the five subsystems as well as the interaction between them are computed

and considered as the inputs to the rigid body dynamics block (see figure 2.30).

i State Variables

Forces & Moments | Rigid Body Dynamics o 1

Control Inputs . State variables
Control Inputs

Forces & Moments

Figure 2.29: Simulation structure

t

State Variables Main Rotor Interaction between the
» | .~ main rotor and the other
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i

Interaction between the tail
Tait Rotor |~ rotor and the vertical fin

Contsol Inputs __l /

Fusalage

2

YyvyYy

A

—
Forces & Moments

Y_.¥
A A A

A 4

h 4

Vedtical Fin

Y

A 4

Figure 2.30: Forces and moments block
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2.8.2 Flight Experiments

The method used in this thesis to validate the model is to compare flight test data
with the simulation results for some certain flight maneuvers in the time domain.
The flight test data are taken from the experiment for a YAMAHA R-50 small-size
unmanned helicopter done by Mettler et. al. [26].

It should be pointed out that in [26], a linear model is obtained by system iden-
tification techniques. Compared to the linear model, the nonlinear model described
in this thesis has the advantages of being accurate not only in small regions around

cquilibrium points but also in more complex flight envelopes.

Description of the Helicopter

The YAMAHA R-50 helicopter [26] (figure 2.317) used in the experiment is a
commercially available small-size helicopter originally designed for remote operated
crop-dusting. Because of the adequate payload (20 Kg) and the general ease of

operation, it has become a choice for research in autonomous flight.

Figure 2.31: The YAMAHA R-50 helicopter

The YAMAHA R-50 uses a two-bladed main rotor with a Bell-Hiller stabilizer

bar. The Bell-Hiller stabilizer bar is a secondary rotor consisting of a pair of paddles

"Figure 2.31 is taken from [26].
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connected to the rotor shaft through an unrestrained teetering hinge. It receives the
same cyclic control input as the main rotor but, due to its different design, it has a
slower response than the main blades and is also less sensitive to airspeed and wind
gusts.

The parameters of the YAMAHA R-50 are listed in table 2.2.

Experimental Setup

For the collection of flight-data from the experiments done by Mettler et. al.
[26], the flight maneuvers were commanded by the pilot via the remote control (RC)
unit. To ensure the usability of experiment data, it is important to conduct the flight
experiments in open-loop. This was possible for all axes except yaw for which an
active yaw damping system is in use for the YAMAHA R-50 helicopter. Because
of the use of this artificial yaw damping system during the flight experiments, the
yaw damping dynamics are taken into account. In this thesis, the augmented yaw
dynamics are modeled as first order bare airframe dynamics with a yaw rate feedback

as

(Ixz - [yy)

I, . N
7 pq+ ==(p—rq) + — . (2.175)

=k . L.

where K, is the damping coefficient. Three series of experiments were conducted
for the hover operating point [26]. In each experiment, the pilot applies a control
sequence to one of the control inputs: the main rotor longitudinal control, the main
rotor lateral control and the tail rotor pedal control. At the same time, the rest of
the control inputs are kei)t constant and equal to the values in hover. The responses

of the helicopter physical variables under these maneuvers are recorded for validation

purposes.
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Table 2.2: The YAMAHA R-50 helicopter parameters

m = 97.85 helicopter weight ({b - s)

I,z = 1.4668 | rolling moment of inertia (slug - ft?)

1,, = 4.5765 | pitching moment of inertia (slug - ft*)
I,, = 4.4070 | yawing moment of inertia (slug - ft*)

I5 = 0.86754 | flapping moment of inertia (slug - 1)

2 = 91.106 | nominal main rotor speed (rad/sec)

R =25.05 main rotor radius (ft)

c=0.354 main rotor chord (ft)

a=6.0 main rotor blade lift curve slope (1/rad)
lm = 0.21 main rotor hub location behind c.g. (ft)
Cy = 0.010 | main rotor blade zero lift drag coefficient
hm = 1.841 | main rotor hub height above c.g. (ft)
o= —;f—f? main rotor solidity ratio

K =173.44 | hub torsional stiffness (ft - lb/rad)

l; = 6.0425 | tail rotor hub location behind c.g. (ft)
R, = 0.853 | tail rotor radius (ft)

a; = 3.0 tail rotor blade lift curve slope (1/rad)
Caot = 0.010 | tail rotor blade zero lift drag coefficient
hy = 0.4747 | tail rotor height above c.g. (ft)

¢t = 0.1458 | tail rotor chord (ft)

); = 565.49 | nominal tail rotor speed (rad/sec)

o = f—f;t tail rotor solidity ratio

I, = 3.2925 | stabilizer location behind c.g. (ft)
Cp=3.0 horizontal stabilizer lift curve slope (1/rad)
Sy = 0.6458 | horizontal stabilizer area (ft°)

Cy,=20 vertical fin lift curve slope (1/rad)

S, = 0.3438 | effective vertical fin area (ft?)

€ =0.2 fraction of vertical fin area exposed to tail rotor induced velocity
S.5 = 2.322 | frontal fuselage drag area (ft°)

S,; = 7.849 | side fuselage drag area (ft)

S.; = 6.960 | vertical fuselage drag area (ft*)
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2.8.3 Comparison of Simulation and Experimental Data

This section compares simulation results with flight test data from three experi-

ments.

Experiment 1: Main Rotor Longitudinal Control Input

10

Pitch rate (degrees/s) Longitudinal control (%)

Pitch angle (degrees)

0 1 2 3 4 5 6 7 8
— — — Flight test data
Simulation results N
v ~
b e — ’z - s
1 2 3 4 5 6 7 8
Time (s)

Figure 2.32: Time domain validation for the main rotor longitudinal control input

In this experiment, the pilot applies a control sequence to the main rotor lon-

gitudinal control input as shown in figure 2.32. The other control inputs are kept

constant. The control input is represented by the percentage of the maximum input
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the pilot can apply. A positive (negative) value corresponds to the pilot pushing the
cyclic stick forward (pulling the cyclic stick backward). This will cause the helicopter
to experience a nose-down (nose-up) motion.

Figure 2.32 shows the pitch rate and pitch angle responses of the helicopter
recorded by flight test data (dashed line) and predicted by model simulation (solid
line). It can be seen that a good agreement between them is achieved except for
a small amount of mismatch. From 5.3s to 7s, the flight data show some small
oscillations in pitch rate while the simulation results do not show this effect. The
small mismatch might be due to the approximate way the artificial yaw dynamics are

modeled and the likely omission of some minor aerodynamic effects.

Experiment 2: Main Rotor Lateral Control Input

In this experiment, the pilot applies a control sequence to the main rotor lateral
control input as shown in figure 2.33. The other control inputs are kept constant.
The control input is represented by the percentage of the maximum input the pilot
can apply. A positive value corresponds to the pilot pushing the cyclic stick to the
right (left). This will cause the helicopter to roll to the right (left).

Figure 2.33 shows the roll rate and roll angle responses of the helicopter recorded
by flight test data and predicted by model simulation. Similar to experiment 1, a good
agreement between them is shown except for a small amount of mismatch. From 2.2s
to 2.8s, 4s to 5.55 and 6s to 8s the flight data show some small oscillation in roll
rate while the simulation results do not show the same effect. The mismatch might
also be due to the approximate way the artificial yaw dynamics are modeled and the

likely omission of some aerodynamic effects.
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Figure 2.33: Time domain validation for the main rotor lateral control input

Experiment 3: Tail Rotor Pedal Control Input

In this experiment, the pilot applies a control sequence to the tail rotor pedal
control input as shown in figure 2.34. The other control inputs are kept constant.
The control input is represented by the percentage of the maximum input the pilot
can apply. A positive value corresponds to the pilot stepping on the right (left) pedal.
This will cause the helicopter to yaw to the right (left).

Figure 2.34 shows the yaw rate and yaw angle responses of the helicopter recorded

by flight test data and predicted by model simulation. The results show a good
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Figure 2.34: Time domain validation for the tail rotor pedal control input

agreement. However, during 1.8s to 2.7s the yaw rate response has approximately
0.1 seconds of delay relative to the flight data. This small mismatch is accounted for
by the artificial yaw damping system. Better results could be obtained if the yaw
damping system was disabled during the flight experiments or if the actual actuator

inputs were measured.
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Chapter 3

Piecewise-Affine Controller Design

In this chapter a simplified three degree of freedom helicopter model is derived
from the six degree of freedom model described in chapter 2. A PWA controller will
then be designed for this three degree of freedom model. This PWA controller for the
lateral plane can be used in conjunction with another controller for the longitudinal
plane to control the six degree of freedom helicopter. However, the design of the

controller for the longitudinal plane does not follow under the scope of this thesis.

3.1 Simplified Three Degree of Freedom Model

To derive the equations of motion of the three degree of freedom model, it will be
assumed that the motion of the helicopter is restricted to the lateral plane. Therefore,
the equations of motion can be derived from the equations (2.32) by setting the

longitudinal variables to zero, i.e. w =0,p=0,¢=0,¢ = 0,60 = 0, yielding

¢

X
w=vr+ — : (3.1)
m
U= —ur + Y (3.2)
m
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(3.3)

Y=r (3.4)

where X, Y and N are the external forces and moments applied on the helicopter

and can be written as (refer to equation (2.33))

X =X+ X; (3.5)
Y=Y,.+Yi+Y, +Ys (3.6)
N = N+ Ny + N, (3.7)

Substituting equations for X,,, Yo, Vi, Ye, Nm, Ny and N, (see sections 2.2 - 2.6) into

equations (3.5) - (3.7) yields

X =Tysina; + Xy (3.8)
Y = Tsinb, + T, + Y, + Y; (3.9)
N - Qm a Ttlt + lev (310)

Substituting into equations (3.1) - (3.4) yields

n Tnsinay + Xy

u=vr (3.11)
m
i m i T Y'u
1)=—ur+T sinby + T, + Y, + Yf (3.12)
m
m — LTily + Yol,
po @ e 1 Tolo (3.13)
IZZ
Y=r (3.14)

This simplified model will be further modified for control purposes in the next section.
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3.2 Control Objective and Model Description

As shown in figure 3.1, the motion of the helicopter will be restricted to the
lateral plane. The control objective is to design a controller that forces the helicopter

to follow the straight line y = 0 with a constant velocity wy. The model of the three

X
XB

Flight Path

Figure 3.1: Three degree of freedom helicopter model

degree of freedom helicopter is described in the last section. Note that in equations
(3.8) - (3.10) Ton, T, Yy, @m, X5 and Y; are highly nonlinear functions of the state
variables and control inputs, and since the difficulty of performing PWA controller
synthesis depends on the number of variables in the domain of the nonlinearity, some
further assumptions will be made to reduce the number of variables in the domain of
the nonlinearity to two. Although this will increase the conservativeness of the model,
to the knowledge of the author, it is still a good approximation of three degree of
freedom helicopter models and appropriate for PWA controller design.

The assumptions are as follows.
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1. The advance ratio (forward speed/blade tip speed: u/QR) is small. Therefore

the forces and moments generated by the fuselage are neglected.
2. The moment around the zp-axis generated by the vertical fin is simplified and

regarded as a damper. It can be written as

Ny = —k,r (3.15)

3. The main rotor and tail rotor thrusts are simplified and described as

T = kmBeol (3.16)

n = ktéped (317)

where k,, and k, are the blade constants, 6, and Oped are the main rotor longi-

tudinal cyclic control and the tail rotor pedal control, respectively.

4. The rotor torque is described as

Qm = /\m(Scol (318)

5. Assume that another controller for the main rotor has been designed to imple-

ment the following functions:
e The thrust 7;, remains constant by keeping the main rotor collective con-
trol ., constant (see equation (3.16)).

e The forward speed of the helicopter is kept constant (ug) by changing the
longitudinal flapping a;.
e The overall force component along the yp-axis is kept equal to k,v by

changing the lateral flapping b;, where k, is damping coefficient and v is
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the side velocity of the helicopter.

T = kmOecols Tt = kiOpedy Qm = Amcol, Ny = —k,7 According to these assumptions

equations (3.11) - (3.14) transform to

=0 (3.19)
V= —ugl — aik (3.20)
m
. krT Qm ktlt(sped
=_ ~ 3.21
U S (3:21)
Y= (3.22)

For control purposes, the equation for velocity on the yp-axis is added as

y = ugsin(y) + B) + veos(y + 5) (3.23)

~

Collecting equations (3.20) - (3.23) the helicopter lateral dynamics can be written in

matrix form as

¥ 0 1 0 0 ¥ 0 0
G 0 &2 0 0|}~ o — e
— I, —l— Iz + I.- u (3.24)
v 0 —ug —%’; 0 v 0 0
'y [0 0O 0 0 Y | 9(h,v) 0]
g(1,v) = ugsin(y) + B) + v cos(y + B3) (3.25)
8= arctan — (3.26)
Ug

where 1 is the heading angle with time derivative r, k¢ is the blade constant of the tail
rotor, )\, is the main rotor torque constant, k, and k, are the damping coefficients
and w is the control input (u = 8peq). Assume that the helicopter can start from any
possible initial heading angle and any initial point in the domain y € [—10, 10]. Note

that the nonlinearities sin1y) and cos) are introduced by the heading angle v, which
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can start from any initial angle. Therefore the full nonlinear equations have to be
taken into account.
The controller design method proposed in this thesis consists of two steps sum-

marized in figure 3.2 [34]. The first step is to create a partition of the state space

System PWA 1. b
Dynamics | A soposcimsiti o '
- A pproximation = T
o PWA Controller | K, m
Grid ) i s - >
Polytopic - Design
x Description ; i
o I Fy L Tg

Figure 3.2: The PWA controller design method

into a finite number of polytopic cells and a PWA approximation for the nonlinear
system by giving the system dynamics, the desired closed-loop equilibrium point =4
and a uniform rectangular grid for the domain of the nonlinearity. The parameters
describing the partition and the approximation are then used to design a PWA con-
troller for the system, described by the parameters K; and m; in each region R. The
next two sections will explain the PWA approximation and PWA controller design,

respectively.

3.3 PWA Approximation

PWA systems are able to approximate with high accuracy a large class of nonlinear

dynamical systems of the following form [36]

b
= + + B(z, z)u (3.27)
Z. AZfL' AZZ z f(a,;’ Z)

y=C_ (3.28)
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where b, € R™ is a constant vector, x € R™ contains the state variables with affine
dynamics, and z € R™ contains the state variables associated with the nonlinear
dynamics. These variables will be stacked together in the vector w = [T 27]T. The
function f(z, z) is the nonlinear function. The vector u € R™ is the control input.
It is easy to see that the helicopter dynamics (equation (3.24)) is in this form. To
approximate the nonlinear function g(¢, v) by a PWA function, the space of variables
in the domain of the nonlinearity should be partitioned into simplicial* cells. In each
cell, the PWA approximation considered in this thesis is the hyperplane that passes
through the values of the function at the vertices of the cell. The algorithm for

computing the PWA approximation consists of the following steps [36]:

1. Given a rectangular grid for the domain of the nonlinearity, order all vertices

of that grid.
2. Group the vertices into simplicial cells.
3. Find a polytopic description for each cell.
4. Find a parametric description for the boundaries.

5. Find the PWA approximation of the nonlinearity and the piecewise-constant

approximation of the input matrix within each cell.

The algorithm is described in detail in [36]. After the function g(v,v) from the
nonlinear system (3.24) is replaced by its PWA approximation, the result will be a

PWA system as follows.
z(t) = Aix(t) + a; + Biu(t), if z(t) € R; (3.29)

where z(t) € R™, u(t) € R™, y(t) € RP. The polytopic cells, R;, 1 € Z ={1,..., M},

LA simplex in R™ is defined as the convex hull of n + 1 affinely independent points. The convex
hull of a set S is the smallest convex set that contains S. For example, a simplex in R? is a triangle.
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partition a subset of the state space X ¢ R such that UMY, R, = X, R,NR; =0, i #
7, where R, denotes the closure of R;. Each cell is constructed as the intersection of

a finite number of half spaces

where

and G; € Rpix(n+D),

4
s
v
v
’
v
#
s
s
+
’
s
’

‘X:Fij S+1ij

Figure 3.3: Polytopic regions R; and R; and boundary

Each polytopic cell has a finite number of facets and vertices. Any two cells
sharing a common facet will be called level-1 neighboring cells. Any finite number of
cells sharing a common vertex will be called level-2 neighboring cells. Let N; = {level-
1 neighboring cells of R;}. It is also assumed that a parametric description of the

boundaries can be obtained as (see figure 3.3%)

ﬁ; M “R—j - {Ejs -+ lij | s € Rn_l} (331)

2Figure 3.3 is taken from the picture in [34].
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fori=1,..., M, j € Nj, where F;; € R"*®™1 is a full rank matrix and l;; € R".
For the grid chosen to approximate the nonlinear function, ¢ and v take the values
(-2, —% —% 355 5} and {—0.8,-0.01,0.01, 0.8} respectively. The domain of the
nonlinearity is therefore divided into 30 simplicial cells as shown in figure 3.4.
The boundary v A
between Ry and Ko

| 0.8

Ry

= E]

Figure 3.4: Simplicial cells

3.4 PWA Controller Design

The goal is to design a control input of the following form to stabilize the equilib-

rium point 4 = [0 0 0 0] for the system.

u = Ri.’l_’), T €R; (332)
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where

X
Ki = [Kl mi], x

Substitution of equation (3.32) into equation (3.29) yields the dynamics of the closed-
loop system.

= (A+ BiK)% ifzeR (3.33)

where A; € RMDx(m+) and B, € R®+D*™ ar6 defined as

- A; a; - B;
Ai - y Bi =

0 0

A Lyapunov (or energy-like) function [14]{44] based method is used to design the

controller. The candidate Lyapunov function will be piecewise quadratic.

V(z) = Z@(z)vi(m)

(3.34)
where
1, zeR;
Bi(z) = : (3.35)
O, xE Rj, _] #Z
fori=1,..., M and Vi(z) is quadratic of the form
Vi(z) = 2T Pz (3.36)
with P, defined as
_ P; —Fz
= . (3.37)
—.’EZ;PiT T

where P; = PF' >0, P, € R™", r; € R and therefore P, = PT ¢ Ri+0x(n+1) 1 oy
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case, because x4 =[0 0 0 0], we have

P 0
= (3.38)

0 T

R

To design a stabilizing controller for the PWA ’system, we want to satisfy the

following constraints [37][38]:

1. Continuity of the control input - In order to enforce continuity of the control

ihput at the boundaries, we want
ui(z) = ui(z) for z € R;NR;,

i.e. f—(lﬂ_? = I_(jl_,‘ for z = E]‘S + lij orx = Ejg

Therefore, we have the following constraint in each region:

(Ri — I—(])EJ =0, fOI‘j € M (339)
where
= E lz
E] _ 7 J
0 1

2. Continuity of the candidate Lyapunov function - Continuity of the candidate

Lyapunov function across the boundaries in each region is enforced by
‘/Z(l‘) = V}(l’) for z € ﬁi N 72]',

or-
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This implies

Fj(P, = P)F; =0 (3.40)

3. Positive definiteness of the candidate Lyapunov function - The candidate Lya-

punov function is positive definite if it satisfies the inequality:

Vi(z) >0,V € Ry, x # x4 (3.41)

Using the polytopic description of the cells (equation (3.30)) and the S—procedure
[1], it can be shown [38] that sufficient conditions for satisfying the above in-
equality for each region R; are the existence of P; and matrix Z; with nonneg-

ative entries satisfying

where Ez = [G1 gz]

4. Decrease of the candidate Lyapunov function over time - The candidate Lya-

punov function is decreasing over time if it satisfies the inequality

dav
T < —aV(z) (3.43)

Sufficient conditions for satisfying the inequality (3.43) for each region R; are
the existence of matrices A;, ¢ = 1,...,n with nonnegative entries satisfying

(see [38] for details)

pzfiz -+ AZTR + Ozpi + ElTAlEl <0 (3.44)

Our controller design consists of the following steps [38][40]:

1. Linear controller design - Design a linear local controller to achieve the de-
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sired closed-loop dynamics in the region where the closed-loop equilibrium point
(g =10 0 0 0]") is located. To do this, consider dynamics of the system

in this region described by
&(t) = Apa(t) + ai + Bpu(t), ifz(t) € Ry (3.45)
We assumne that there exists a vector m;~ which satisfies
Apxyg+apx + Bpmg =0 (3.46)
Now using the control input
w(t) = Kpz(t) +mp , (3.47)

the closed-loop dynamics of the system in the region where the equilibrium
point lies are given by

#(t) = Ay + Bi Ko xo(t) (3.48)

The matrix gain K;« can then be designed using linear control methodologies
to satisfy desired design objectives for either stability or performance. In this

thesis, an LQR controller is designed using the following weighting parameters.

°0 0 0 O
0 500 0 O
0 0 500 0
0 0 0 50

2. Local quadratic Lyapunov function - Having a linear state feedback controller

gain, K, the following linear matrix inequalities (LMIs) set is solved to find a
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quadratic Lyapunov function for the region where the closed-loop equilibrium

point is located: R;-.

find P >0

Pi(Ap + Bi- Kiw) + (Ap + B K )T P < 0 (3.49)

The quadratic Lyapunov function is then

Vie(z) = 2" P, € R (3.50)
where
— P’L"‘ 0
0 rp

. Uniformz'iy of the closed-loop dynamics - The closed-loop dynamics of the sys-
tem in the region where the équilibrium point is located can serve as a reference
model for closed-loop dynarﬁics in other regions. Using the method introduced
in [40], we try to minimize the upper bound of the difference between the closed-
loop dynamics of all regions and that of the region holding the equilibrium point.

This bound can be formulated as the following inequality:
| 4; + BiK; — (A + B K:-) |< B (3.52)

Using (3.52), the goal is to design a PWA controller and a piecewise quadratic
Lyapunov function for system (3.29). To achieve this goal, the following con-
straints should be satisfied: continuity of the control input (3.39), continuity of
the candidate piecewise Lyapunov function (3.40), positive definiteness of the
candidate Lyapunov function (3.42) and decrease of the candidate Lyapunov

function over time (3.44). Therefore, the problem can be formulated as follows
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_ F 0
s.t. P =
0 T

P — EI'Z:E >0

A =0

Bi(A; + BiK) + (A; + BiK:)" P+ ETAE; <0
~Krim < Ki < Krim

—B < (A + BiK;) — (A + BnKi) < B

Rie = [Kie k]
0

0] Ti»
forieT={1,. .. M}i#s - (3.53)

where ¢* is the index of the region R« containing the equilibrium point z,. The
constraints of the synthesis problem include a set of Bilinear Matrix Inequalities
(BMIs). PENBMI [7] is the first available general purpose, non-commercial code

for BMIs and it is used to solve (3.53) in this thesis.

If there is a solution to the problem (3.53), the following results can be established

to prove stability of the closed-loop system [34].

Theorem 3.4.1 Assume the Lyapunov function (3.34) is defined in X C R™. If
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there is a solution to the design problem (3.53), then the PWA approximate closed-
loop system is locally exponentially stable inside any subset of the largest level set of

the control Lyapunov function (3.34) that is fully contained in X.
Proof: See [34] for details.

Furthermore, if there is a solution to the design problem (3.53) and if the approxima-
tion error between the PWA closed-loop system and the original nonlinear closed-loop
system is small enough, then it can be shown that the original closed-loop system is
locally exponentially stable inside any subset of the largest level set of the control

Lyapunov function (3.34) that is fully contained in X (see [34] for the formal result).
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Chapter 4

Simulation Results

This chapter shows simulation results for the PWA controller developed in the
last chapter. The parameters used in the simulation are listed in table 4.1. The
simulations were done in MATLAB and SIMULINK version 7.0 and the controller

optimization problem was solved using SeDuMi [18] with YALMIP [19].

Table 4.1: Simulation parameters

I,. = 0.01 | moment of inertia (Kg-m?)

m=1 helicopter mass (K g)

Iy =05 tail rotor hub location behind c.g. (m)
k: = 0.01 | blade constant of the tail rotor

k- =0.1 | yaw damping coeflicient

ky,=1 slide damping coeflicient

@m =1 | main rotor torque (N - m)

up = 0.7 | helicopter forward velocity (m/s)
Yo =% initial yaw angle (rad)

Yo=25 initial lateral position (m)

In the simulation, the three degree of freedom helicopter model is first approxi-
mated by a PWA approximate representation and a PWA controller is designed for
this approximate model. The developed PWA controller is then applied to the ap-

proximate model as well as the original nonlinear model (see figure 4.1).
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PWA Controller

Yaw Angle
—1 Nonlinear System

Yaw Rate

Sideslip Velocity
— PYWA System

Lateral Position

Data Processor

PWA Controller

Figure 4.1: Simulink block for the simulation

225 —
220 —
215
210 —
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200 —
195 —

Controf Input

190 —
185 —
180 —

175J

0.5 0 -05 -1 -15 -2

Yaw Angle (rad)

Figure 4.2: PWA control input
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Figure 4.2 shows the PWA controller designed for the PWA approximate model.
In the domain of the nonlinearity (yaw angle and lateral position), each region R;
contains an affine controller which is extended from the linear controller in the region

where the equilibrium point is located. These controllers together constitute the PWA

controller.
2 T T

e — - — Nonlinear closed-loop system
£ 1 PWA approximation closed~loop system
3
C
<C
2
©
>

_2 1 1 1 1 1

0 5 10 15 20 25 30
05 T T T T T

1
-

Yaw Rate (rad/s)
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o

_.15 L 1 1 1 i
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Figure 4.3: Time history of the PWA approximation closed-loop system and that of
the nonlinear closed-loop system

Figure 4.3 shows the time history of the PWA approximation closed-loop system
(solid line) and that of the nonlinear closed-loop system (dashed line). It can be seen
in this simulation that the PWA controller not only stabilized the PWA approximation
system, but also stabilized the original nonlinear system. This can also be shown
by the trajectory of the nonlinear closed-loop system in the zy plane (figure 4.4).

Stability of the closed-loop system is proved by the Lyapunov function shown in
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14}

12+

10+

X {m)

Y (m)

Figure 4.4: x-y trajectory of the closed-loop system with the PWA controller for
Yo =%,% =9
‘figure 4.5.

Given other initial conditions farther away from the y-axis ((yo, o) € {(—3, —80),
(=3, -72),(-3,-64), (-3, —56), (-3, —48), (-3, —40), (-3, ~32), (=3, —24), (-3, —16),
(-3,-38),(3,8),(3,16), (3,24), (3,32), (3,40), (3,48), (3,56), (3,64), (3,72), (3,80)} ), sim-
ulation results (figure 4.6) show that the nonlinear closed-loop system is also stabilized
by the PWA controller.

However, if we apply the linear controller designed for the region where the closed-
loop equilibrium point is located to the nonlinear helicopter model, the simulation
result is shown in figure 4.7 and figure 4.8. It is easy to see that the linear controller

cannot stabilize the system as the PWA controller did.
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Figure 4.5: Lyapunov function
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Figure 4.6: Closed-loop system trajectories for different initial conditions
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, a physics based model for aerobatic helicopters was developed.
The model was based on a rigid body dynamics formulation with applied external
forces and moments including the effects of gravity and éerodynamics. The analysis
of the forces and moments followed a component buildup approach. The model
was validated by comparing simulation results with flight test data available in the
literature for a YAMAHA R-50 helicopter. This model can be used for predicting
dynamic performance of aerobatic helicopters and it allows approximations to be
made to yield a simplified representation for control design and analysis.

This research presented the first development of a PWA model and controller for an
aerobatic helicopter system. The six degree of freedom model developed in this thesis
was further simplified to obtain a three degree of freedom helicopter model and a PWA
approximate representation. The model was then used to develop a PWA controller
for the system. To design this controller the domain of the nonlinearity of the model
is first partitioned into simplicial regions and the nonlinear model is approximated by

a PWA model. Second, a local linear controller is designed for the approximate model
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in the region where the desired closed-loop equilibrium point is located. Furthermore,
an optimization problem subject to Bilinear Matrix In- equalities (BMlIs) is solved
to find a PWA extension of the linear controller. A piecewise quadratic Lyapunov

function is then found which proves stability of the closed-loop PWA system.

5.2 Future Work

Future work could be focused on applications of the PWA controller design method-
ologies to six degree of freedom helicopters. Furthermore, the model described in
chapter 2 can be expressed in a linear parameterized form ideal for parameter esti-
mation and adaptive control. Therefore, in alternative, parameter estimation for six
degree of freedom helicopters could be implemented in the future by applying flight
test data to the linear parameterized model. The following section presents some

insight on how this could be done.

5.3 Parameter Estimation

In this section, a method of on-line parameter estimation for the nonlinear he-
licopter model from chapter 2 is presented theoretically, following the methodology

explained in [44].

5.3.1 Helicopter Model with Unknown Parameters

In this section we will present a six degree of freedom nonlinear helicopter model
with unknown parameters. This parametric model is based on the one described in
Chapter 2. An assumption is made that the advance ratio of the helicopter is low (55
is small). This assumption will make the parametric model simple and the feasibility

of this method is also guaranteed because experiments for low advance ratio flight of
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helicopters are not difficult to implement.

Main Rotor Forces and Moments

In low advance ratio flight, the main rotor thrust and torquc can be approximated

Tm = mlécol (51)

Qm = m26col +mg (52)

where 0., is the main rotor collective control and m;, mo and ms are parameters.
Therefore, the main rotor forces and moments equations (2.141) - (2.146) trans-

form to

Xm = —M1dea1 (5.3)
Yo = mideabi (5.4)
Zm = —M10c0l (5.5)
Lo = Kby + M1beot by (5.6)
M, = Kga1 + mydeothmar (5.7)
Nm = Madeo + M3 (5.8)

Tail Rotor Forces and Moments

In low advance ratio flight, the tail rotor thrust and torque can be approximated

as

Tt = m4(5ped (59)

Qt = —M50ped — Mg (5.10)
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where dp,.q 15 the tail rotor pedal control and my, ms and mg are paraineters.
Therefore, the tail rotor forces and moments equations (2.160) - (2.163) transform

to

Y: = mabped (5.11)
Li = m4bpeahy (5.12)
My = msbpeq + mg (5.13)
Ne = —1m46 e, (5.14)

Horizontal Stabilizer Forces and Moments

Recall equations (2.164) - (2.166):

Whp = w+lhq - K)\’Ui
1
Zy = —§pSh(C'hu2 + |wp|ws)

Mh = Zhlh

In low advance ratio flight K, = 0. Z, and M, can be represented as function of U,

w and q expressed as

Zn = mau® + mgw® + meq® + miowg (5.15)

My, = (mu® + mew? + mog® + miowq)ly, ‘ (5.16)
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Vertical Fin Forces and Moments

Recall equations (2.167) - (2.171):

Ui = —Aoe§ e Ry
Uy =V — Ui — €,V
1 2
Y, = —§pSH(CUu + |vo|vw)

Ny = =Y ly

In low advance ratio flight, v;; can be approximated as

Uit — moéped

Therefore, forces and moments can be represented as

Y,

2 2 2 2
miu +m12v +m137" —|—m145ped

+misvr + mlﬁvéped -+ m171"(5ped

2 2 2 2
(ma1u” + maav” + masr® + misdoey
+m15v7" + m16v5ped + m17r(5ped)lt

2 2 2 2
(mnu + myv” + masr” -+ m14<5ped

+misur + MigV0peq + m177‘5ped)ht>

Fuselage Forces and Moments

(5.17)

(5.18)

(5.19)

(5.20)

In low advance ratio flight; u, v and w are relatively small compared to the main ro-

tor induced velocity v;. Therefore, the fuselage forces and moments equations (2.172)
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- (2.174) are simplified as

1

Xf = —5p5$fuvi
1

Yy = _§P5yfm}i

1
Zy = —5pSesvi
2
Since v; is a function of §.,, equations (5.21) - (5.23) transform to

X5 = migudeo

Yf = le'U(Scol

2
col

Zf == m20(5

Overall Forces and Moments

(5.21)
(5.22)

(5.23)

(5.24)
(5.25)

(5.26)

Given the forces and moments of each component, the overall forces and moments

can be described as

X=  Xnt+Xs
= —mMibeaa1 + MmigUdcol
Y= Y,+Yi+Y,+Ys
= Mibeothr + Mabpea + My u® + mugv® + myar® + m14<5§ed
+mysvr + Mi16V0ped + M1770ped + M19Vdcol
Z =  ZIntIn+Zy

2 2 2 2
= —mleo + Mmru” + mgw” + meq” + migwq + maoedy,
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L= Ly + Ly + L,
= Kpbi + mibeothmbr + mabpeahy + (myu® + misv® + masr? + m145§€d
+masvr + migUdped + M17T0pea) by (5.30)
M = My + M+ M,
= Kgar + mibdeoihmar + m55ped + mg
+(mau® + mgw? + meq? + miowq)ly ‘ (5.31)
N=  N,+N;+ N,
-2

2 2 2
= mzécol —+ ms — m45pedlt + (muu -+ misv + miar + m14()ped

+misvr + migt0peq + M7 dped)ls (5.32)

9.3.2° Linear Parametrization Model

Substituting equations (5.27) - (5.32) into the equations of motion of the helicopter

(2.32) and applying linear parametrization [44] yields

m(t + wq -—vr+géin9)
m (0 + ur — wp — g cos @ sin ¢)

m(w + vp — ug — g cos 6 cos @)

Loap — (]yy - IZZ)Q'T - Kﬁbl my
[y'yq - ([zz - [m)rp - Kgal Mo
Lot — (Lpe — ]yy)pq =P ms3 (5.33)

é*p—qsinqﬁtane—rcosqﬁtanf)

f — gcos¢ + rsin ¢ ma |

1 — gsin¢secd — rcos ¢ secd

- d
(ly‘!‘(]"f‘?_—i—"m

Te

b'l-i*l7+1;—;~m j

Te
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where

Paixan = [Piaixiy

P

Py

—~a10col
deotbr
—0col
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5.3.3 Filtering Technique

The model (5.33) cannot be directly used for estimation because of the presence
of the unmeasurable accelerations u, v, w, p, ¢ and 7. A filtering technique can be

used to solve the problem [44]. To avoid the acceleration in this relation, let us filter

1

both sides of the equation by - 5

(where s is the Laplace operator and Ay is a known

positive constant). Rearranging, this leads to the form

m(u — )\fo +wrq —vgr + M)

StA
m{v — Apv+ ugr — wpp — %‘l@)
m{w — Afw + vpp — upq — E_C%s.f)_\cfﬂ%)
Lo(p — Asp) — (Iyy — L2)gsr — Kpbiy [ my ]
Lyy(q — Ara) = (Lsz = Laa)rsp — Kpasg my
Lo(r = A1) — (Iex — Ty )5 =Pl ms (5.34)

¢ — App —ps —qrsingtand — rycos@tand

0 — Ap) — grcosd +rysin g Mao

Y — App — grsingsectd — rycos¢sect

510n f
Te

al—/\fa1+qf+%—

b 5ut
bl—)\fbl‘l‘pf*f‘?lf——l‘l'

Te m

where (); denotes % Matrix Py is obtained by filtering each entry of the matrix

P by s+l>‘f.

5.3.4 The Gradient Estimator

In this section a prediction-error-based estimation method called the gradient esti-
mation [44] is introduced. The basic idea in gradient estimation is that the parameter
should be updated such that the prediction error is reduced. The parameter vector

in (5.34) is unknown and is estimated to be a(t) at time ¢. One can predict the value
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of the output y(t) based on the parameter estimate and the model (5.34) as
y(t) = Wit)a(t) (5.35)

where y(t) is called the predicted output at time ¢{. The difference between the

predicted output and the measured output y(#) is called the prediction error, i.e.

er(t) = y(t) —y(®) (5.36)

The gradient estimator is written as
a=—pWle (5.37)
Substituting (5.35) and (5.36) into (5.37), the estimator is represented as
a=—p,WTWa + p, W'y (5.38)

where in our case W = P, a = [m; my---mg]7 and
[ m(u—Afuf+wfq—vfr+g_S:—§f9) ]
m(v — Apv 4+ ugr — wep — 25981%1?)
m(w — Afw + vfp — upq — %}f"s—@)
La(p = Agp) = (Iyy — L2)qsr — Kpbiy
Iyy(q = Arq) — (Tex — Lua)ryp — Kpaay
y= Lo(r — Apr) = Iz — Iy )psq
¢~ Afp—ps—qrsingtanf — rycosptand
6 — A —qrcosg +rysing
Y — App — qpsingsecl — rycos psect

6071
a1 = Ajar +qp + L - 2t

by e
b1 — Apby + py + AL — ett ]

Te
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Therefore, if we are given the continuous measurements of y(t) and W(t), i.e. u, v, w, p,

g, 7, a1, b1, 8col and peq, we can solve equation (5.38) for the unknown parameter vector a.
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