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ABSTRACT

Dynamic instability analysis of tapered composite plates

using Ritz and finite element methods

Weiguang Liu

Tapered composite plates are widely used in civil, mechanical and aerospace
structures such as robot arms, wing structures, helicopter yoke and turbine blade where
the plate structure needs to be stiff at one location and flexible at another location. By
terminating some plies at discrete locations, different types of ply drop-off can be
obtained depending on the application. In the present work, the instability of tapered
laminates under dynamic loading conditions is considered. Because of the complicated
mechanical behavior of the tapered composite plate and the complexity of the analysis,
no exact solution is available at present and therefore, Ritz method and finite element
method have been used for the calculation of the dynamic instability regions. Solutions
based on classical laminated plate theory have been developed first for vibration and
buckling of uniform and tapered composite plates without in-plane forces. The effects on
the laminate stiffness of the composite plates caused by the taper angle have been
considered. Different configurations of tapered plates have been investigated. Then,
based on the formulations for free vibration and buckling, the formulation for the
dynamic instability analysis has been developed using Finite Element Method and Ritz

method for both uniform-thickness and tapered composite plates based on classical

1il



laminated plate theory. The efficiency and accuracy of the developed formulation are
established in comparison with available solutions for uniform-thickness laminates. The
dynamic instability regions that serve as a measure of the degree of instability of the
laminates are determined considering different boundary conditions, the tapered
composite plate configurations, and the in-plane loading patterns. The NCT301 graphite-

epoxy composite material is considered in the numerical study.
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Chapter 1

Introduction, Literature Survey and Scope of the Thesis

1.1 Dynamic instability and vibration analysis in mechanical design

Periodic dynamic loading may cause dynamic instability of a structure through
parametric vibration. The plate structures consisting of individual rectangular component
plates are rigidly connected together at their edges to form structures of arbitrary cross-
section and frequently subjected to in-plane stress systems. When the stress system is
time-dependent, the dynamic instability of the plate structure must be considered in the

design process.

The vibrations may not threaten the structure or its normal operation, but they can
bring about fatigue failure if they continue to act. If the in-plane stress system makes the
mechanical structure work in the dynamic instability regions, the mechanical component
will reach the state of parametric resonance. The resonance will decrease the life time of
the structure and causes unpredictable failures. Therefore, the study of the formation of
parametric vibrations and the method for the prevention of their occurrence are necessary

in the various areas of mechanical design.



In the case of a free vibration, during vibration, there are no externally applied
forces, but an external force may have caused an initial displacement or velocity in the
system. After the external force is removed, the body will continue to vibrate because of
the action of elasticity and mass. Undamped natural frequency is a frequency of the
structural system when it undergoes a free vibration without friction. Similarly, if the
frequency of exciting force gets close to the frequency band of the natural frequencies of
the structure, the mechanical component will reach severe vibration due to resonance.
The resonance will also decrease the life time of the structure and causes unpredictable
failures. Therefore, vibration analysis in mechanical design is as important and necessary

in the various areas of mechanical design as that of dynamic instability analysis.

1.2 Buckling analysis in mechanical design

A simple way to describe the buckling phenomenon is to use an example of a plate
subjected to uniformly distributed compressive in-plane forces around the edges. Under
such forces, the plate will be slightly shortened but remain straight with no bending. If a
small out-of-plane load is applied, the plate will be bent infinitesimally but will return to
its original straight form when the small in-plane load disappears. If the uniformly
distributed compressive in-plane forces are gradually increased, a condition will be
reached in which small in-plane loads will cause a deflection which remains when the in-

plane loads disappear. Such an unstable phenomenon is called buckling and the critical



forces are called buckling loads. Buckling usually occurs when the compressive stresses

are well below the material stress limit.

Buckling can happen to structures in many forms, such as columns, truss members,
components of thin-walled beams and plate girders, walls, arches and shell roofs. In
aerospace structures, minimum-weight design is an important criterion so that the
structures are made of skins and thin members. The instability due to buckling can lead to
a catastrophic failure of a structure and it must be considered when one designs a

mechanical structure.

1.3 Composite materials and structures

The increased use of composites in aerospace, land, and marine applications has
resulted in ever-growing research in the design of structures made of fiber-reinforced
composite materials. The composite materials refer to materials created by synthetic
assembly of two or more organic or inorganic materials, such that the specific
characteristics and properties such as high strength, high stiffness, high modulus and low
weight can be obtained. In many mechanical structures, composite materials took the
place of previously used aluminum alloys and other metallic materials, and they also
achieved quite good mechanical properties with low specific weight. Furthermore, fiber
composite materials provide the unique opportunity to simultaneously optimize structure

configuration, material make-up, fabrication process and structural integrity.



Fiber reinforced composite materials are the engineering materials which are most
commonly used in modern industries and composite plate is one of the most widely used
structural elements. They are made by stacking together many plies of fiber-reinforced
layers in different orientations to achieve the desired properties. In fibrous composite
materials, the fibers provide virtually all strength and stiffness. The purpose of the matrix
is to bind the reinforcements together and keep them in proper orientation, transfer and
distribute the load to and between them. These stacked layers are permanently bonded
together under heat and pressure using a hot press or autoclave. Some specific
applications of composite plates need to be stiff at one end and flexible at the other end.
Such plates can be made by dropping off some plies at discrete locations to reduce the
stiffness of the plates. This results in a tapered shape, which is to be discussed in this

thesis work.

1.4 Finite element method

As one of the powerful numerical methods for solving the mathematical problems
of engineering, the finite element method has been increasingly used in many engineering
areas with the rapid development of computers. Its application ranges from static analysis
of a simple component to a complicated fluid flowing system. Most importantly, the finite
element method has now become a predominant structural analysis and design tool which

is used routinely by structural engineers.

For analysis of complex structures such as tapered composite plates, the finite



element method is one of the efficient and powerful tools. The speed of convergence and
accuracy of the results obtained by finite element method are strongly dependent on the
element types which are chosen for the analysis. In conventional finite element method, a
plate element is modeled using four nodes where each node has three degrees of freedom.
In conventional finite element method, the plates should be divided into a large number
of elements to achieve an accurate result. With the rapid development of computers, it is
not difficult for dividing a large number of elements of the plate to obtain an acceptable
accuracy. In this thesis work, the finite element method is used to analyze deflection,

vibration, buckling and instability of the plates.

1.5 Literature survey

In this section, a comprehensive literature survey is presented on the instability
and vibration of composite plates, and on the application of the finite element method to
composite plates. Important works done on the dynamic instability and vibration analysis
of uniform and thickness-tapered composite plates by finite element methodologies have
been chronicled. The majority of works done on the dynamic instability analysis of plates
are limited to homogeneous material and uniform composite plates. The works on the
dynamic instability analysis of composite plates are presented, though the quantity of

such works is of course very limited.

1.5.1 Dynamic instability analysis of composite plates



A number of researchers have investigated the dynamic instability of isotropic
thin plates due to periodic in-plane stress systems. A comprehensive study of dynamic
instability problems has been given in the text of Bolotin [1] for elastic systems, such as
rods, plates and shells, under periodically varying loads. The dynamic instability of
rectangular plates has been studied by Hutt and Salam [2] using the finite element method
(FEM) and by Krajcinovic and Herrmann [3] using an integral equation technique.
Duffield and Willems [4] have studied the behavior of stiffened rectangular plates. The
dynamic stability of skew stiffened plates has been investigated by Merritt and Willems

[5] and of annular plates by Tani and Nakamura [6].

The increasing application of fiber-reinforced composite laminated materials to
primary components in advanced structures such as spacecraft, high speed aircraft, naval
vessels and other transportation vehicles has stimulated a renewed interest in problems
involving dynamic instability. Birman [7] has considered unsymmetrically laminated
cross-ply rectangular plates under a harmonically varying biaxial stress system. In this
work damping is neglected and the four edges are assumed to be simple supported so that
the problem is governed by a set of uncoupled Mathieu equations. The principal dynamic
instability region (DIR) is determined analytically. Srinivasan and Chellapandi [8] have
analyzed thin laminated plates under harmonically varying biaxial stress systems by
using the semi-analytical finite strip method. Damping is again neglected and the four
edges are assumed to be clamped. A set of coupled Mathieu equations is obtained and
Hill’s method of infinite determinants is applied to determine the DIRs. The above-

mentioned studies [2-8] are based in the context of the use of classical laminated plate



theory (CLPT). When considering composite laminated plates, however, it is well known
that through-thickness shearing effect can be significant in some cases and hence that it is
desirable to base the analysis on the use of a shear deformation plate theory (SDPT)
rather than on the use of the CLPT. Bert and Birman [9] have used the first-order SDPT
in an analysis of the dynamic instability of anti-symmetric angle-ply laminates in which
both the through-thickness shear effect and rotary inertia are included. Damping is
neglected and the four edges are assumed to be simple supported with no in-plane
displacements perpendicular to the edge and no tangential stress. As with the earlier work
of Birman [7], this allows for a closed-form solution and leads to uncoupled Mathieu
equations. For a uniaxial stress system, the principle DIRs are determined and the effects
of the aspect ratio, thickness-to-length ratio, numbers of layers, and magnitudes of the
shear correction factors are studied. Chen and Yang [10] have also used the first-order
SDPT to study the dynamic instability of anti-symmetric angle-ply plates using the
Galerkin FEM. The plates are assumed to be subjected to the combination of a periodic
bending stress and a periodic uniaxial in-plane stress system. Damping is not included
and the effects of various parameters and boundary conditions on the DIR are studied.
Moorthy [11] have carried out a similar investigation using the FEM based on the first-
order SDPT. In this study, both symmetric cross-ply laminates and anti-symmetric angle-
ply laminates are considered. Damping is included and the dynamic load is a uniaxial in-
plane stress system. Two methods are used to determine the DIRs, namely Hill’s method
of infinite determinants and an analytical method, and mainly the principal DIRs are
considered. The effects of damping, thickness-to-length ratio, anisotropy, boundary

conditions, number of layers and lamination angles are investigated. Aditi and Adrian



[12] have analyzed the instability of isotropic and cross-ply composite plates using FEM
based on CLPT, first-order SDPT and the higher order theory (HOT). Damping is
neglected in this study. The DIRs are determined with periodic in-plane stress system
under the boundary conditions of one of the short edges fixed and both the short edges
fixed. Wang and Dawe [13] have determined the DIRs of composite laminated

rectangular plates and prismatic plate structures using B-spline finite strip method.

Although a limited amount of work has been conducted on analyzing the dynamic
instability of some categories of plates, it appears that no studies are available in the open
literature on the dynamic instability of tapered composite plates subjected to combined
in-plane stress systems. The present thesis focuses on the topic by describing the
development of a reliable, efficient, accurate and versatile procedure for predicting DIRs

of rectangular tapered composite plates.

1.5.2 Vibration and buckling analysis of composite structures

Vibration analysis of composite laminates has been done by some researchers. At
the same time, the works on vibration analysis of composite plates or shells have
concentrated on uniform laminates. Study on the vibration analysis of tapered laminated

plates has been scarce in spite of their applicability in important mechanical structures.

Nigam [14] used hierarchical finite element method to investigate the static and
dynamic response of uniform and tapered laminated composite beams. Zabihollah [15]

extended Nigam’s work to tapered composite beams based on a higher-order finite



element. He presented the vibration and buckling analysis of uniform and tapered
composite beams using conventional and advanced finite element method based on the
classical laminate theory and the first-order shear deformation theory. Chen [16] studied
the vibration of uniform and tapered beams with and without axial force using

hierarchical finite element method.

Reddy [17] used virtual work principles, and variational methods to study the
static and dynamic response of laminated composite plates based on the classical and
first-order shear deformation theories of laminated plates. Whitney [18] derived the
foundation in the theory of uniform laminated anisotropic plates and beams, including the
problems of bending under transverse load, stability, and free-vibration. Noor [19]
studied the free vibration of simply supported symmetric laminated plate based on
classical laminate theory, which neglects the effects of the rotary inertia and shearing
deformation. Reddy and Khdeir [20] dealt with the free vibration behavior of cross-ply
composite laminates under various boundary conditions considering the shear

deformation laminate theory.

Khdeir and Reddy [21] used various plate theories to study the buckling of
laminated plates, and different boundary conditions are considered. Bertholet [22], in his
text book, has used classical method and Ritz method to analyze the vibration and
buckling of laminate and sandwich beams and plates. Kollar and Springer [23] also
studied more details about vibration and buckling analysis of composite laminated plates.

But no researcher has investigated tapered composite plates.



1.5.3 The finite element analysis

The finite element method is an efficient tool for the analysis of mechanical
structures. The standard finite element method is to divide the domain of interest into a
number of smaller sub-domains called Finite Flements. The solution is then
approximated by locally admissible polynomial functions. Various procedures have been
developed to obtain more accuracy and rapid convergence of solutions. The most
common procedure is to increase the number of elements while keeping the degrees of

freedom of each element fixed.

Research works have been carried out using conventional FEM to study the
vibration of beams and plates. Reddy [24], Zienkiewicz [25] and Cook [26] investigated
the vibration of beams and plates made of conventional materials. In refs. [27,28,29],
similar works have been applied on the dynamic analysis of Timoshenko beams. Also,
some researchers extended their study to tapered beams. Thomas and Dokumaci [30]
treated the dynamic analysis of tapered beams by using an internal node element
considering the total deflection and bending slope as the co-ordinates at the two terminal
nodes and two internal nodes giving eight degrees of freedom to the element. Thomas
and Abbas [31] used four degrees of freedom per node and two nodes at the ends to
obtain stiffness and mass matrices for tapered beams based on the Euler-Bernoulli beam
element. In this kind of model, the deflection, rotation, curvature and gradient of

curvature are considered as degrees of freedom. Cleghorn and Tabarrok [32] presented a
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finite element model for free vibration of lineary-tapered Timoshenko beams.

Some research works have been carried out on the dynamic analysis of composite
beams or plates using conventional FEM. Shi ef al [33] considered a finite element model
for higher order plate theories for the vibration analysis of composite beams and plates.
Ramtekkar ef al [34] presented a mixed finite element formulation to calculate the natural
frequencies of laminated beams. Rao and Ganesan [35] studied the natural frequencies of
tapered composite beams considering the shear deformation. However there are only few
research works on the finite element dynamic analysis of tapered composite plate

configurations.

1.6  Objectives of the thesis

The objectives of the present thesis are, (1) to derive the formulations for the
mechanical behavior of tapered laminated plates considering the effect on the stiffness of
plies caused by the taper angle; (2) to analyze the tapered composite plates for free
vibration and buckling using the finite element method based on the Classical Laminated
Plate Theory (CLPT) and Ritz method; and, (3) to conduct a detailed instability analysis

of tapered composite plates with dynamic in-plate forces.

The formulations using Ritz method and the finite element method are developed.

The formulations are analyzed for their performance in the vibration and buckling

analyses of uniform and tapered composite plates. These formulations are then used to
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analyze for the instability regions of tapered composite plates subjected to dynamic in-
plane forces. A detailed parametric study on the instability of tapered composite plates is

conducted.

1.7  Layout of the thesis

The present chapter provided a brief introduction and literature survey on the
finite element method and the instability analysis of uniform and tapered composite
plates.

Chapter 2 provides the formulation of off-axis behavior of an arbitrary oblique ply
in a tapered composite plate. Then the formulations of elastic behavior of different
tapered composite configurations are developed considering the effect on the stiffness of

plies due to the taper angle.

In Chapter 3, formulations based on Ritz method and the finite element method
are developed and applied to the deflection analysis of tapered composite plate
configurations based on the classical laminated plate theory. The effect on the stiffness of
plies due to the taper angle is considered. Then a detailed comparison is made between

the Ritz solutions and the finite element solutions.

In Chapter 4, the vibration analysis of uniform and tapered composite plates is

developed by using finite element method and Ritz method. Then a detailed comparison

is made between the solutions obtained using Ritz method and the finite element
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formulation for the tapered composite plate configurations. For the uniform composite

plate, the results are compared with the results given in ref. [12].

In Chapter 5, the buckling analysis of uniform and tapered composite plates is
developed by using finite element method and Ritz method. Then a detailed comparison
is made between the solutions obtained using Ritz method and the finite element
formulation for the tapered composite plate configurations. For the uniform composite

plate, the results are compared with the results given in ref. [12].

In Chapter 6, the instability analysis of uniform and tapered composite plates is
developed by using both the finite element method and Ritz method. Comparisons are
made between the solutions obtained using Ritz method and the finite element
formulation for the tapered composite plate configurations. For the uniform composite
plate, the instability region results are compared with the results given in ref. [12]. A

parametric study on the dynamic instability of tapered laminates is presented.

Chapter 7 brings the thesis to its end by providing an overall conclusion of the

present work and some recommendations for future work.
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Chapter 2

Mechanical Behavior of Tapered Laminated Plates

2.1 Introduction

Laminated plates are extensively used in aerospace, mechanical, and automotive
structures, where saving in weight without reduction in strength is of paramount
importance. The tapered composite laminated plates are used in many structures, such
as turbine blades, wing structures, helicopter blades, and robot arms. To investigate
and analyze the static and dynamic performance, we must study the mechanical
behavior of the tapered laminated plates first. Since most Jaminated composite plates
are composed of a number of layers, it is possible to construct variable thickness
composite structures and adjust the taper angle to achieve the desired performance of
the structures. In this chapter, the mechanical behavior of tapered laminated plates is

considered and the effect of taper angle is determined.

2.2 Stiffness and Compliance Matrices

The stiffness constants C, or the compliance constants S; can be used to
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describe the elastic behavior of the composite materials. According to Hooke’s law,
these matrices for a material can be written based on the linear elasticity relations as

in the following equations [22]:

& Sy S S Sy S5 S| o
En Sp Sn Su Sy Sy S| [0n
Ex | _ Sy Sy Sy Sy Sy Sy )O3 @1
Vo S Sy Su Su S S| |Tn
713 Sis Sy Sy S Sss o Sy Ty
) [Se Sw S S S S (T

where, &; and o, are the strain and stress components in the material coordinate
system (1, 2, 3). S, is the corresponding compliance coefficient. We can also write

the equation in a condensed form:

{8}123 = [S]m {0-}123 | (2.2)

The stresses are given by

Oy _Cn C, C; C, C C16— &n
O C, Cp Gy Gy C Cyf |&n
O3 | _ Cy Cy Gy G G Gy |y 2.3)
T Cu Gy Gy Cf Cpy Cylf |7n
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where, C,; is the corresponding stiffness coefficient. This equation can also be written

in a condensed form:

{5}123 = [C]m {5}123 (2.4)

where,

Cl { ClZ C13 CM ClS Cl6
ClZ CZZ C23 C24 C25 C26
[C]!B — Cl3 C23 C33 C34 C35 C36 (25)
C14 C24 C34 C44 C'45 C46
ClS C25 C35 C45 CSS C56
_Cl() C26 C36 C46 C56 C66 |
The matrix [C ]m is called as the stiffness matrix.
Further
i 11 12 13 14 15 16 ]
12 22 23 24 25 26
[s}: = s (2:6)
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n
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x

The matrix [S ],23 is called as the compliance matrix.

The relation between stiffness matrix and compliance matrix is expressed as:



[S]m = [C]m_] 2.7

The elastic behavior of an orthotropic composite material can be described by

introducing either the stiffness constants C, or the compliance constantsS;. By
taking into account the fact that the value of some stiffness and compliance

coefficients is zero for orthotropic ply, Hooke’s law is written in the matrix form:

oy ¢, €, ¢; O 0 0 &
On C, G, Gy 0 0 0 €xn
Os | _ C; Cy G5 O 0 0 ] €3 (2.8)
Ty 0 0 0o ¢, O 0 ¥
Ty 0 0 0 0 Cs O Vi
T, | O 0 0 0 0 Cgul 712

The elastic behavior of the orthotropic composite material can be characterized by

two groups of nine independent coefficients respectively.

2.3 Off-Axis Behavior of Composite Materials

The linear clastic relation can be written as the equations (2.1) and (2.3). At the same

time, the elastic behavior of a unidirectional composite material can be described by

introducing either the stiffness constants C,; or the compliance constantssS, the
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equations can be obtained as the equations (2.8) and (2.9). The principal directions of
the composite materials are written in the coordinate system (1, 2, 3) as in the
following Figure 2.1. The transformation equations are used to obtain the stiffness
matrix [C] and compliance matrix [S], written in the coordinate system(x’,y",z).
There is a rotation of angle € between coordinate system (1,2,3) and coordinate

system (x,)’,z")in the plane 102 and x'Oy’.

Figure 2.1 The principal directions (1, 2, 3) and the reference system x',y",2")

The principle directions of a lamina are set in the system(1,2,3), and the reference
system (1'2",3) is equivalent to system (x',y’,z") of the laminate. According to the
reference system, we can get the stiffness matrix [C].. and the compliance

matrix[S] .. respectively:

{o} e =[Clue {e i (2.10)
[T]a '{0'}123 = [C]x'y’:' '[T]s '{8}123 (2.11)



(o} =[], [C)y - ITL.

[c]s =1L e,y - [r)

{8}123 = [S]m : {0}123

’ {8}123

[T]s '{8}123 = [S].r'y':' '[T]a '{0'}123

[S]m = [T]e_l '[S]x’y':' '[T]o
[sL,. =[] -I8]s [T

(2.12)
(2.13)

(2.14)

(2.15)
(2.16)
(2.17)
(2.18)

(2.19)

Matrices [T ]0 and [T ]E are the transformation matrix for stresses and the

transformation matrix for strains respectively, and they have the form as follow:

2 2 2

/ 1, I,
2 2 2

m, m, m,

n 2 n : n 2

pl= "

_ll my Lemy

m-n, m,-n, my-n,

Li-n,  Ly'ny, Li-m

.’/n3

2-0,-1

2-my-my

2-n,-ny
m, -n, +m, - n,
Ly -ny, +1,-ny

I, -m, +1,-m,
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2-11,
2-m,-m,
2-n;-n,
m,-n, +m -n,

L-n +1 -n,

Ly-m +1-m, |

(2.20)
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21 -n

| 20, -m,

2-m,-n,
2-1,-n,

2-1,-m,

2-m, - ny
21 -n,

2-1-my

my -1y +m, Ry
Li-n +1-n

Iy »m, +1, -m,

ll 'ls lxlz
-y m, - m,

“n, n, - n,

m, -1, +m -n,
l-n +1 n,

L-m +1I -m, |

(2.21)

where 1., m,,and n, are the direction cosines relating the coordinate systems (1, 2,

3)and (x',)",z"). The direction cosines are expressed as follows:

Table 2.1: Direction cosines relating coordinate systems (1, 2, 3) and(x',y',z")

1 2 3
x' [ = l. = I =
, =cosa, , =Cosa, , =C0SQ,
r
y m, =cos f3, m, = cos f3, m, = cos f3,
! — o —
z n, =Ccosy, n, =COSY, n, =Cosy,

As it can be seen from Figure 2.1, there is a rotation of angle 8 between coordinate

system (1,2,3) and coordinate system (x,)’,z") in the plane 102 and x'Oy".

Therefore, we can see that :

a, =0, a,=90"-0, a,=90"°;

B,=90°"+0, B,=6, B, =90

71:9009 72:9007 73 :OO;
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and then, we can express the direction cosines in Table 2.2.

Table 2.2: Direction cosines between systems (1, 2, 3) and (x',y",2")

1 2 3
x' I, =cosd I, =sin@ l,=0
Y m, =—sinf m, =cosf m, =0
Z' n =0 n, =0 n, =1

By substituting the results of the direction cosines in the Table (2.2) into the equations
(2.20) and (2.21), the equations (2.14) and (2.19) can be used, when a unidirectional
composite’s fiber direction has an angle 6 with the coordinate system (x',y’, z') in

the plane 102 and x'Oy’. Hereafter, the stiffness constants are written as in the

following [22].

C!, =C, cos* 8 +C,,sin’ @+2(C,, +2C)sin’ Ocos® 6 (2.22)
Cl, =(C,, +C,, —4C,)sin’ Bcos’ 6+ C,,(sin* O + cos* 0) (2.23)
Cl,=C,co8’0+C,,sin’ 0 (2.24)
cl, =0 (2.25)
Cl, =0 (2.26)
Cl = (C, —Cpp, —2C4)sin@cos’ @+ (C,, — Cy, +2Cy )sin’ Bcos (2.27)
Ch, = C, sin* @+2(C,, +2C;)sin’ Gcos’ 0+ C,, cos” 6 (2.28)
Cly =C,,sin’ @+C,, cos’ 0 (2.29)
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C;4 =0
C£5 =0

Cl = (C,, —C,, —2C)sin’ Bcosd + (C), - Cy, +2C,,)sin&cos’ 6

C;3 =Cy,
C3’4 =0
C3'5 =0

C;, =(C,, +C,;)sinfcosd

C, -C .

Cl, =2 "B cos’0+Cysin’ 0
c,-C

Cis =(Cy ——Qﬁ)sinﬁcosé’
Ci =0

C,-C
Cl, =2 "2gin’ @+ Cycos’ 0
Ci=0

C, =[C,, +Cyy —2(C,, + Cgq)]sin’ fcos® 8+ C,, (sin* & +cos* 0)

Similarly, the compliance constants can be written as follow:

S!, =8, cos* @+85,,sin* O+ (25, + S )sin’ Gcos® 6
S, =(S,, + 8, — Se)sin’ Bcos’ &+ S, (sin* @ + cos’ )
S/, =8,cos’0+8, sin’ 0

S, =0

S, =0
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(2.30)
(2.31)
(2.32)
(2.33)
(2.34)
(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)
(2.44)
(2.45)
(2.46)

(2.47)



S =12(5), ~S12)—2S66]sin0cos3 O +[2(S;, —S,,) + S )]sin’ Gcosd
S1, =8, sin* @+ (28, + S )sin® Ocos” @+ S, cos’ O

S, =8,sin’ @+, cos’ &

Sl =0

Sl =0

St =[2(S,, = S,,) =S¢ 1sin’ Ocos@ +[2(S, ~8,)+S,]sinfcos’ &
S =85

S =0

S =0

St =2(S), +8,)sinfcosd

S, =2(S,, — Sy )cos’ @+ sin® 0

Sis =[5 —2(S,, —S,3)]sin& cosd

Sl =0

St =2(S,, — S,,)sin® @+ S cos® 6

SL =0

Ses =2A2(S,;, + S, —25),) —8,)]sin’ Ocos® G+ S (sin* @ + cos" 0)

(2.48)
(2.49)
(2.50)
(2.51)
(2.52)
(2.53)
(2.54)
(2.55)
(2.56)
(2.57)
(2.58)
(2.59)
(2.60)
(2.61)
(2.62)

(2.63)




2.4 Elasticity Equations for Plane Stress State

Under plane-stress state, one of the normal stresses and two of out-of-plane shear
stresses are zero. We select the normal stress o to be zero inthe z' coordinate
direction and the out-of-plane shear stresses, 7,, and 7,5, tobezeroin x' -y’
plane, just as it is shown in Figure 2.1. So the strains can be obtained as [36]:

—51'17 S, S, S, 000 St | [ ol
8 S, S, S, 0 0 Sy)\|op
3 _ Sy, S S, 0 0 S ) 0 (2.64)
Vi 0 0 0 S, S, O 0
75 0 0 0 S5 Ss O 0
Yol LS Sx S 0 0 Se 7]

Therefore, from the equation (2.64), we deduce that:
7y =0,and y;; =0

The relations between stresses and strains given in terms of stiffness constants are

written as:
-0-1'1“ —Clll ¢, C; 0 0 C1’6_ _‘91,1
o ¢, ¢, C; 0 0 Ci|len
0 - ¢, C; C; O 0 G ) £5 (2.65)
0 0 0 0o ¢, Cs 0 0 ’
0 0 0 0 C, Ci O 0
L T, i _Cl,() Chx Cy O 0 Cg i _71,2 i
We can get the following equations:
o, =C &, +Cl,e5, +Cley +Clry, (2.66)
oy, = Clhe), +Chey, +Cheg + Cl?12 (2.67)
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0=Cpe), +Cpes, +Chegy + Chgryy (2.68)

’

TN ’ o ot
T, =Cle + 08y + e +Cyyy, (2.69)

From the equation (2. 68), we deduce the following equation:

14 1 1 12 ’ 1 14 14
£y = —F(CBSH + 65 +C71,) (2.70)
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By substituting equation (2.70) into the other three equations (2.66), (2.67), and (2.69)

above, we can get the reduced stiffness matrix:

! ’ ’
O’;I Qn, le, Ql(), 5;1
oy |= le, sz’ Qz()’ | & (2.71)

14

’
T Qm Qze ro 712

Q, =C;, ————— (2.72)

The coefficients Q, are called as the transformed reduced stiffness constants for a

plane stress state. The matrix

Qni le’, Ql():
[Q,]: le, sz, Qz(,' (2.73)
Oy Ox s

is called as the transformed reduced stiffness matrix.
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2.5 Elastic Behavior of Laminated Composite Plate

First, the elastic behavior of uniform laminate is considered and the laminate stiffness
matrices are derived following. Then the tapered laminate is considered. This
approach is followed here to highlight the effect of taper angle on the laminate

stiffness.

2.5.1 Elastic Behavior of the Uniform Laminated Composite Plate

The uniform laminated composite plate is shown in Figure 2.2 given below. 1In the
coordinate system (x, y z), the stress field can be obtained by equation (2.71). In the
case of the classical laminate theory, for the k—h layer we get the following

equations [22]:

0, =006, tOLE, + 07, (2.74)
0, = 0hE, + 058, +07, (2.75)
T = Ol T 058, + 07 (2.76)
7. =0 (2.77)
r.=0 (2.78)
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Figure 2.2 Uniform laminated composite plate in (X, y, z) coordinate system

The stresses in the k —th layer are written as following:

G.\'X 87(\
o, =lolle, (2.79)
T‘O k 7/’0

where [Q’]k is the reduced stiffness matrix of the & —th layer introduced by the

equation (2.71). According to the classical laminates theory, the following equation

can be obtained:

0
€. £ x k,

g, | =" |+ k, (2.80)
Vo l, 70)0’ kxy

We can also write the equation as:

)=l ]+ [z, | (2.81)
Here:

.
e, ] =&, is called as the in-plane strain matrix. And

o
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Sfu k(

[8f]= gy l=z k, is called as the flexural strain matrix.

¥ o Ky
By substituting the equation (2.79) into the equation (2.71), the stresses in the &k —th

layer are expressed as follows:

o Qu’ Q12, Qm’ g% O, 0, O k.
On| = Q12, Q22, Qzﬁ, (&0 |12 0h O O k, (2.82)
Yo L O D e 4 0"'3' Ql’6 Qéf) Q(ZG k k Xy

k

The in-plane resultants of the laminate can be written as in the following:

NX GXX
/2
Nenl=| N, |= [ o, (2.83)
N
Xy Xy

where A is the thickness of the laminate.
By substituting the equation (2.80) into the equation (2.82), we obtain the following

equation:

VG- [ oL le, Gl 2+ [0 L e, iz (2.84
k.\'

where, k(x,y)=|k,
k,

From the equation (2.83), we can obtain the following equation:
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n

NG l= ST, )] f dz)+ i[[Q’]k [k(x, )] j: zd]

k=1

= (3, — b DO L e G )+ {%i(kﬁ b Dl Tk )]

k=1

(2.85)
This expression can be written in the following form:
Ve )= [4le, (0] + [BIk(x, )] (2.86)
So we can obtain the following matrices:
[4]=2 )0 (2.87)
k=1
A,-j = Z(hk - hk—l )(Q;)k (2- 88)
k=1
1< ,
[B]== 2 - hHle' (2.89)
k=1
1< ,
B, =5 20 ~h Q) (2.90)

The resultant bending moments and twisting moment of the laminate are defined by

the following equation:

29



[Mx,)]=| M, =[7 o, (2.91)

By substituting the equation (2.82) into the equation (2.91), we obtain the following

equation:
W)=Y [ EdoLle, (ryle 2 [0 i ) e (2.92)
Hence, we can write [M (x, y)] as follows:

[M(x,y>]:[%i(h h DOl e v, y)][ > (1 — by [0 e, )]

k:l

(2.93)
This expression can be written in the following form:
[M(x, 0] =Bl (x. )]+ [DIk(x, 3] (2.94)
We can get the new matrix:
[p]= Z(h h OO, (2.95)
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n

D, == (b —h  ND)), (2.96)

k=1

W | —

For the mechanical behavior of a laminate, the constitutive equation of a laminated

plate can be written as follows:

N, (4, A, 4, B, B, B, 18
N, 4, Ay Ay By, By By %y
N, _ Ay Ay Ay By By B 7' (2.97)
M, B, B, By Dy D, Dyl k,
M, B, By By D, Dy Dy| k,
(M, | [Bs By By Dy Dy Dg| ky |

By introducing the thickness e, andthe z coordinate z, of the center of the

k—th layer, the expressions (2.88), (2.90), and (2.96) can also be written as follows:

n

4; =) (Q)), e (2.98)
el
B, = (Qt;)kekzk (2.99)
pa
n e 3
' 2
D, = 2. () (2, +Tk2~) (2.100)

Matrix [A] is called as the stretching matrix or the extensional stiffness matrix.
Matrix [B] is called as the coupling stiffness matrix.

Matrix [D] is called as the bending stiffness matrix.



2.5.2 Elastic Behavior of the Tapered Laminated Composite Plate

Tapered composite laminates can be made using different configurations. Four
such configurations are shown in Fig 2.7, Fig 2.8, Fig 2.9, and Fig 2.10, and they are

called as configurations A, B, C, and D respectively.

We consider that the tapered laminate layers below the mid-plane have a
positive oblique angle, « and the others above the mid-plane have a negative

oblique angle « . It can be seen in Figure 2.3 given below.

Z '

Figure 2.3 A ply in the tapered laminate with oblique angle— c .

From the Table 2.3, we can obtain the stress transformation relations between the two
coordinate systems, (x',y’,z"), and (x,y,z).
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For transformation from (x',y,z")to (x,y,2):
a =a, a,=90", a,=90" -a;

B =90°, B, =0, B, =90";

7, =90 +a, y,=90", 7, =a;

The direction cosines are given in the Table 2.3.

Table 2.3: Direction cosines for a ply in the tapered laminate

x y z
xl ' 4 I3
[, =cosa I, =0 I, =sma
yl ’ 14 r
m, =0 m, =1 my; =0
Z! ’ ! ’
n, =-sna n, =0 n, =cosa
I3 !
The matrices, [T > } and [T . ], have the form:
2 12 ’2 ror o ror 7
[ l, A 2L, 1 201 211,
12 12 r2 ' ’ r r ' '
m, m, m, 2m, m, 2m, m, 2m, m,
, 12 2 r2 ' ror [
[Tg }: n, n, n, 2n, n, 2n, n, 2-n, n,
’ ’ r ’ ! r ! r ’ ’ ’ ’ r ' r 14 !

my n, m, n, ms; Ny msy n, + m, A, m; n, +ml n,
[ [ [ "o ' ro v

I n, l,n, Iy n, Lin, +1, n, Iy n +1 n,
14 14 14 14 ! r 12 ! 14 14 1 ! ’

4
Lmy Lmy Lmy Limy, +Lmg Lymg +lmy

m, n, +m n,
14 1 14 14
Lyn +1ln,
r 14 ! 13

lLym, +1 m,

(2.101)




2m, n,

| 2L, m,

2m, n,

21, m,

12
l3
72
1713
'2

iy

14

2m, n,

21, m,

'

4 !
L1
! r
m, m,
r 13
n, ny
' !
m, n, +m, n,
f r ’ 13

!

’ ’ r ! I3 4
2l n,  2L,n, 2 n, Ln, +1,n,
I3 ’ ’ r ! ! ' ! r ’

IL,m, +1, m,

’

m, ny +m,n,
f ’ ! !
Lin +1 n
r 14 ' !

ILym, +1 m,

’ [
L1,
! ’
my m,
14 !
n, n,
2 !
m, n, +m n,
! ! 14 '
l,n +I n,
r 1 ! ]

’

Lm +lm, |

!

(2.102)

By considering the equations (2.14) and (2.19), we can get the following equations:

(). =[7. el fn T <[ e 1 2] (2,109
and
(1. =[x, sk [ ] <[ Tl sk 20 [ ] (2,104

The state of the stress and strain corresponds to the plane stress state. The stresses in

the k —th layer are expressed by means of the stiffness coefficients (), as follows:

O Oy Gn Q| |n
T, | = Cn Oy Ox |'| &y (2.105)
Ty Qi On s Vs

By considering plane stress assumption for the ply in tapered laminate, we can not
calculate the stiffness coefficient using equation (2.72), because the stiffness matrix

and compliance matrix of the ply with taper angle do not have the same forms as that
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of the ply with no taper angle which are shown in equations (2.64) and (2.65). For

plane stress assumption,

relationship:
xx ?ll

»w ‘SIZ

& _ S 13
V| | S
Vel |Sis
Vi _S 16

Condensing out £_, y,. and y ., the reduced equation is:

o™
L )

¥

& »

Vs

=

L tal L bl Yl W
wn - e N 1]

]
(=

L U
N

[
~

]
(=)

Ll Ll Lt Gy
= w [* w

wo)i

|

[
(=)

| Laj Un|

o
>N

&

™
>

o=t ,.=7,.=0, and we have the following stress-strain

Ll il Ll
£ & € ¥ %

!

Y
(=

xx

pud

L L Ll bl Ll W

w
=

| | Lt La Un) Ui
& g & & &g =

=N

Ay

(2.106)

(2.107)

By inverting the reduced stiffness matrix, we can get the reduced compliance matrix

as below:
0, 9»
QIZ Q22
O O

O
Oy |=
O

5,
§l2
Slﬁ

Reciiiel
[\ 2

)
(=

(=)

!

LY

(=)}

L=

(2.108)

By using the results for the uniform laminated composite plate, we can write the

following equations:
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The stretching stiffness matrix:

[A]:g(hk _hk—l)'[ k]

The coupling stiffness matrix:

[1=3 2 h’ ~h ) [o)]

k=1

The bending stiffness matrix:

[D]:i%'(hkS whk~l3)'[Qk]

k=1

(2.109)

(2.110)

@2.111)

From Figure 2.4, for the k — th ply above the mid-plane in the tapered composite

laminate, if the oblique angle is — «, the equations for /4, and A,_, canbe written

as follows:

Z [

JO—

= mid-plane

Figure 2.4 k —th layer with oblique angle— «

36



h, =tan(-a)-x+c, (2.112)

h,, =tan(-a)-x+c¢,_ (2.113)

So we can obtain the following matrices for the tapered composite laminated plate:

n

[4]= Y [(tan(-a)- x + ¢,) - (tan(~a) - x + ¢, )] [0,] (2.114)
(1= é[(tan(—a)-xwuz—(tan(—a)-x+ck-.)2]-[ ‘] (2.115)
[p]= 3 ltan(-a)- x+,)° ~(an(-e)-x + )T [0,] (2.116)

k=1

2.5.3 The Reduced Stiffness Matrix for Isotropic Materials

The tapered laminated composite plate has resin pocket. Because resin is isotropic
material, the reduced stiffness matrix is written for the behavior of the resin inside the

tapered laminates [40].

O, Oy 0
0=0, Oy 0 (2.117)
0 0 O
Here:
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Qll = l_vz
E
Oy = 1—y2
v-E
le = 1—V2
E
Q66_2(l+v)

The stiffness matrix for the resin is written as in the following:

E vE

1-v? 17

vE E

0= 1-v? 1-v?
0 0

| Y

(2.118)

(2.119)

(2.120)

(2.121)
1 v 0

v 1 0 (2.122)
0 o =¥
2

In Figure 2.5, by considering the taper angle of the resin pocket inside the tapered

laminate, we can determine the elastic behavior of the resin pocket as follows:

zZ

o

Figure 2.5 Resin pocket with one side having a taper angle
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According to equations (2.109), (2.110), and (2.111), we can obtain the following

equations for hypothetical one layer of resin pocket from Figure 2.5.

[4]= f;[Q]-dF[Q]'(h{—hé) (2.123)
i | .

[8]= Q[Q]'Z'dzzg-[Q]‘(hl —hyy’ (2.124)

pl= [llo}-2 -az ==-lo] ¢ ~ )’ (2.125)

1
3

As can be seen from the Figure 2.5,

h,=c ,and A =tan(-a) -x+c';

Therefore, considering the resin inside the tapered composite plate, the stretching
stiffness matrix, the coupling stiffness matrix, and the bending stiffness matrix of the

tapered composite laminate are written as the following:

[4]= Y ltan(-a)-x-+e,) - (tan(-a)-x +e, )] [0, ]+ > o]t ~#.)

(2.126)

5

%.[(tan(_a).wy ~(tan<—a)‘x+ck_,>2]-[Qk]+§-i[Q]- (B2 =)

(2.127)



n

Ip]-

k=1

[(tan(~a)-x + ¢, )’ ~(tan(—a>'x+ck_,>3]-[Qk]%-i[Q]-(h;ﬁ ~h)

W] -

(2.128)

2.6 Example Applications

2.6.1 Example Calculation for Elastic Behavior of a Uniform Laminated

Composite Plate

A uniform rectangular laminated plate is made up of graphite/epoxy composite
material with symmetric cross-ply arrangement. The laminate is made of eight
identical plies each with the mechanical properties as follow.

E, =134.4x10° Pa;E, = E, =10.34x10° Pa;G,, = G,, = 4.999x10° Pa;

G,, =1.999x10° Pa; v, =v,; =v,, =0.33. The plate has a length L =127 mm and
awidth b =12.7mm. Two different plate thicknesses, 4 =1.016mm and

h =10.16 mm resulting in the two cases L/h=125 and L/h=12.5 are considered.
The uniform plate has configuration [(90/ 0), ]  at the left and right ends

respectively (Figure 2.6). According to the direction cosines for the plies that have

an angle of 90°, we can obtain the direction cosines given in Table 2.4:
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0 - p—— e Y
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\

|

127mm .

Figure 2.6 Uniform Composite Laminate

Table 2.4: Direction Cosines of the Composite ply with 90° Orientation Angle

1 2 3
x' I,=0 I, =1 I, =0
Y m, = -1 m, =0 my, =0
z' n =0 n,=0 n, =1

By using the equation (2.14), we get the following:

[, =Ir, ] [c],-[.]" (2.129)

By considering the equations (2.72) and (2.73), we can obtain the following reduced

stiffness matrix of the layer that has the 90° orientation angle:
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O, ' O, ’
[Q,]90 =10, On 0 (2.130)
0 0 O

90

The stretching stiffness matrix is written as:

[A] = Z (hk - hk~l )[Ql]k = (h1 - ho )[Q,]90 + (hz - hl )[Q]o + (h3 - hz )[Q’]% + (h4 - hs )[Q]()

k=1

+ (hs - h4 )[Q]o + (ho - hs )[Q,]% + (h7 - ho )[Q]o + (hs - h7 )[Q’]90

2.131)

The coupling stiffness matrix: Because the laminated plate is made up of the

graphite/epoxy with symmetric cross-ply, we can obtain the following result:
1¢ ,
[B]=- > - el = ol (2.132)
k=1
The bending stiffness matrix:

(D)= 5 30 - h Mok = 0 =T + 56 ~mleb 50 —h)lR T, +

L5 s o3 s | PR EN P R T N L PPN P

N o) R e o) e A A e Ry (R
(2.133)

For the laminate with L/h =125, we can express the mechanical behavior of this

uniform laminated plate as:
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7.4149
0.3496
0.0000

0.0000
0.0000
0.0000

8.4286
0.3007
0.0000

0.3496
7.4149
0.0000

0.0000
0.0000
0.0000

0.3007
4.3283
0.0000

0.0000

0.0000 |x 10° Nm™

0.5079

0.0000
0.0000 |N
0.0000

0.0000
0.0000 |Nm
0.4369

For this kind of uniform laminate, 4,, 4,,, 4, and A, are zeros because of the

D,

0/90 configuration, and all the B, are zero because of symmetry. D, Dy,

D6]

and D, are also zeros because of the 0/90 configuration.

For the laminate withL/h =12.5, we can express the mechanical behavior of this

uniform laminated plate as:

7.4149
0.3496
0.0000

0.0000
0.0000
0.0000

0.3496
7.4149
0.0000

0.0000
0.0000
0.0000

0.0000

0.0000 |x10° Nm ™

0.5079

0.0000
0.0000 |V
0.0000



8.4286 0.3007 0.0000
[P]=10.3007 43283 0.0000|x10° Nm
0.0000 0.0000 0.4369

Similarly, for this uniform laminate, 4,,, 4,,, 4, and A, are zeros because of the
0/90 configuration, and all the B are zero because of symmetry. D, Dy, Dy

and D,, are also zeros because of the 0/90 configuration.

2.6.2 Example Calculation for Elastic Behavior of Tapered Composite Plate

Four configurations A, B, C, and D of the tapered composite laminates as shown in
Figure 2.7, Figure 2.8, Figure 2.9 and Figure 2.10 respectively are considered. The
laminates are made up of the NCT301 graphite/epoxy material with symmetric
cross-ply arrangement. The laminates have twelve plies in the left side and six plies in
the right side. For configuration A, B and C, the tapered plates have ply
configurations [(0/90),], at the left end and [0/90/0]; at the right end
respectively. For configuration D, the tapered plates have ply configurations
[0/7esin/90/0/0/90], at the left end and [0/90/0]; at the right end respectively.
The ply has the following mechanical properties:

Elastic Modulus: E, =113.9x10° Pa; E, = E, =7.9x10° Pa;

Shear Modulus: G, = G,, =3.1x10° Pa; G,, =2.8x10°Pa;
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Poisson’s Ratio: v,, =0.28; v,, =0.40; v, =0.02.

These plates have the length a = 240 mm and the widthd = 240 mm.

The properties of the epoxy resin making up the resin pocket of the tapered composite
laminates are written as follows:

Elastic Modulus: E =3.93x10° Pa, Shear Modulus: G =1.034x 10° Pa , and

Poisson’s Ratio: v =0.37.

According to the direction cosines of the plies that have an orientation angle of 90°,

we can obtain the following Table 2.5 of the direction cosines:

Table 2.5 Direction cosines of the plies that have an orientation angle of 90°

1 2 3
x' l, =0 5, =1 I, =0
y' m, = -1 m, =0 my; =0
z' n, =0 n, =0 n, =1

We use the procedure explained in example 1. By considering the equations (2.14),
(2.129), (2.72) and (2.73), we can obtain the following reduced stiffness matrix of the

layer that has the 90° orientation angle:
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4

0, 0. 0
[Q’]()o =10, Oy 0, (2.134)
0 0 O

90

By considering the taper angle « , we get the direction cosines for the plies that have a

taper angle of « in Table 2.6:

Table 2.6 Direction cosines for the plies that have a taper angle of «

’ ’ ’
x ¥ z
x ’ [ !
/, =cosa l, =0 [, =sina
1 2 3
y r 14 I3
m, =0 m, =1 my; =0
z ’ 14 '
n, =-—sina n, =0 n, =cOS&

We can get the following equations about the stiffness matrix and compliance matrix

of the plies that have a90° orientation angle and a taper angle of « .

[C]’(}Z = TO" ) [C]x')z'z'Ts’~l = Ta’ 'Ta ’ [C]123 'Te_l 'Ts'_l (2135)

7 r~1 ’

[S].xy: =T, [S]x')r":' T = Tg 'Te : [S]I?.S .Ta—‘l 'Ta—l (2136)

We can also obtain the reduced stiffness matrix and stiffness coefficients using
equation (2.108). By using the equations (2.126), (2.127) and (2.128), we can obtain

the mechanical behavior of the four kinds of tapered composite plate models.
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n m

[4)= Y [(tan(-) - x + ¢,) — (tan(-a) - x + ¢, )] [0, ]+ D [0 (., - 1)

k=1 k=1
(2.137)

n

[B]= Z%'[(tan(—a)-ﬁck)z ~(tan(-a)- x+¢, )’ 1[0, ]+

k=1

Sl -m

1
2

(2.138)

lo} (1, =h)

M=

[D] = i% J(an(—a)-x + c,()3 —(tan(—ar) - x + ck_l)3 IE [Qk]+

k=1

(PSR
Eod
i

1

(2.139)
At first, we set the coordinate point O at the center of the tapered composite plate and
the following results can be obtained:

1. Taper Configuration A:

By using the equation (2.139) given above, we can obtain the following stiffness

coefficients of the taper configuration A.

Db

T RW R LGN 00N T =

Figure 2.7 Tuper Configuration A
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The stiffness coefficients for Configuration A (—0.12m < x £0.12m) of the laminate

(see Figure 2.7) are computed as follows (unit: Nm):

D, (x) = ~15.5814x° +200.2225x” —94.0874x +12.5442
D,,(x)=-5.7651x" +7.5550x” —2.8792x + 0.3518
D,,(x) =-5.7651x" +7.5550x" —2.8792x+0.3518
D,,(x)=~-15.5814x +112.7107x* — 52.0818x + 6.3365
D (x) = —4.9081x" +9.4047x* —3.8781x + 0.4850

D, (x)=0; Dy(x)=0; Dg(x)=0; Dg,(x)=0

2. Taper Configuration B:
By considering the equation (2.139), we can obtain the following results for the

mechanical behavior of the taper configuration B.

12
11l
10
S
3 X
7 _ i
5
1
3
2
1
. 0.08m 0.08m 0.08m .
! Part A Part B Part C

Figure 2.8 Taper Configuration B
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The stiffness coefficients for the part A (—0.12m < x £ —0.04m) of the laminate (see

Figure 2.8) are computed as follows (unit: Nm):

D, (x) = ~15.5814x> +200.2225x” —94.0874x +13.8988
D, (x) = —5.7651x +7.5550x" —2.8792x +0.3594

D, (x) =-5.7651x* +7.5550x" — 2.8792x +0.3594

D, (x) = ~15.5814x" +112.7107x" — 52.0818x + 6.5708
D, (x) = —4.9081x° +9.4047x" —3.8781x + 0.5084

D, (x)=0; Dy(x)=0; Dy(x)=0; Dg,(x)=0

The stiffness coefficients for the part B (—=0.04m < x <0.04m) of the laminate (see

Figure 2.8) are computed as follows (unit: Nm):

D, (x) = -15.5814x" +200.2225x" — 94.0874x +12.5501
D, (x) =~5.7651x> +7.5550x> — 2.8792x +0.3528

D, (x) =-5.7651x +7.5550x” — 2.8792x +0.3528

D, (x) =-15.5814x> +112.7107x" —52.0818x +6.5292
D, (x) = ~4.9081x° +9.4047x" —3.8781x + 0.4880

D (x)=0; Dy(x)=0; Dg(x)=0; Dg,(x)=0

The stiffness coefficients for the part C (0.04m < x <0.12m) of the laminate (see
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Figure 2.8) are computed as follows (unit: Nm):

D, (x) = —15.5814x +200.2225x” —94.0874x +12.5442
Dy, (x) ==5.7651x" +7.5550x” —2.8792x +0.3518
D,,(x) = —5.7651x" +7.5550x" —2.8792x +0.3518

D, (x) =—15.5814x" +112.7107x* - 52.0818x + 6.3365
Dy, (x) = ~4.9081x +9.4047x" —3.8781x +0.4850

D, (x)=0; Dy(x)=0; Dy(x)=0; Dy(x)=0

3. Taper Configuration C:
By considering the equation (2.139), we can obtain the following results for the

mechanical behavior of the taper configuration C.

O N

'—WI\)W&MO\\IOO\D'—“—"“
T

Figure 2.9 Taper Configuration C

The stiffness coefficients for the part A (-0.12m < x < -0.04m) of the laminate (see
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Figure 2.9) are computed as follows (unit: Nm):

D, (x) = —15.5814x" +293.3213x" —94.5328x +12.6116
D, (x) =—5.7651x" +8.4409x —2.9501x + 0.3551
D,,(x) = -5.7651x" +8.4409x” —2.9501x +0.3551

D, (x) = ~15.5814x° +205.8095x” — 66.5321x + 6.9642
Dy, (x) = —4.9081x’ +12.1407x* — 4.0970x +0.4925

D, (x)=0; Dy(x)=0; Dg(x)=0; Dg,(x)=0

The stiffness coefficients for the part B (—0.04m < x <0.04m) of the laminate (see

Figure 2.9) are computed as follows (unit: Nm):

D, (x) = —15.5814x’ +203.0065x" —94.5328x +12.5635
D, (x) = ~5.7651x> +7.9979x* —2.9501x +0.3549

D, (x) =-5.7651x" +7.9979x* —2.9501x +0.3549
D,,(x) =—15.5814x" +203.0255x” — 66.5321x + 6.9627
D, (x) = -4.9081x" +10.7727x% — 4.0970x + 0.4945

D (x)=0; Dy(x)=0; Dg(x)=0; Dg,(x)=0

The stiffness coefficients for the part C (0.04m < x <0.12m) of the laminate (see

Figure 2.9) are computed as follows (unit: Nm):
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D,,(x) =—15.5814x" +200.2225x> —94.0874x +12.5442
Dy, (x) = =5.7651x" +7.5550x" —2.8792x +0.3518
D, (x) =-=5.7651x +7.5550x* — 2.8792x +0.3518
D,,(x) =-15.5814x" +112.7107x* —52.0818x + 6.3365
D, (x) = -4.9081x’ +9.4047x* — 3.8781x + 0.4850

D (x)=0; D, (x)=0; Dy (x)=0; Dg,(x)=0

4. Taper Configuration D:
By considering the equation (2.139), we can obtain the following results for the

mechanical behavior of the taper configuration D.
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Figure 2.10 Taper Configuration D

The stiffness coefficients for the part A (—0.12m < x <—0.04m) of the laminate (see

Figure 2.10) are computed as follows (unit: Nm):
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D, (x) = —15.5814x> +107.1332x” - 63.8534x +15.2575
D,,(x) = -5.7651x" +6.6692x* —2.5249x +0.3750
D,,(x) = -5.7651x" +6.6692x* — 2.5249x +0.3750

D, (x) =-15.5814x" +19.6119x? —7.8398x + 8.4894
Dy, (x) = —4.9081x° + 6.6687x" —2.7838x +0.5565

D, (x)=0; D, (x)=0; D, (x)=0; Dy(x)=0

The stiffness coefficients for the part B (—0.04m < x <0.04m) of the laminate (sce

Figure 2.10) are computed as follows (unit: Nm):

D, (x) =-15.5814x" +109.9172x" — 65.1897x +11.5388
D, (x) =-5.7651x" + 7.1121x* - 2.7375x + 0.3478
D, (x) =-5.7651x" +7.1121x"> = 2.7375x + 0.3478
D, (x) = —15.5814x" +109.9267x> — 51.1909x + 6.4980
Dy, (x) =—4.9081x" +8.0367x” —3.4404x + 0.4726

D, (x)=0; Dy(x)=0; D (x)=0; Dg,(x)=0

The stiffness coefficients for the part C (0.04m < x <0.12m) of the laminate (see

Figure 2.10) are computed as follows (unit: Nm):

D, (x) = -15.5814x +200.2225x" — 94.0959x +12.5442

D, (x)=-5.7651x> +7.5550x* —2.8792x +0.3518

53



D, (x) = —5.7651x" + 7.5550x" ~2.8792x +0.3518
D, (x) =—15.5814x" +112.7107x* — 52.0818x + 6.3365
D, (x) =—4.9081x" +9.4047x* —3.8781x +0.4850

D, (x)=0; Dy (x)=0; D (x)=0; Dg,(x)=0

As we can see from the above results, the four configurations’ D, D,,, D, and
D,, are zeros because of the 0/90 laminate configuration. This is as same as that of

the uniform plate. The other terms in D matrix are cubic functions of x because of the

tapered configuration.
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Figure 2.11 Coefficient D,, of tapered composite plate
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Figure 2.12 Coefficients D,, and D,, oftapered composite plate
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Figure 2.13 Coefficient D,, oftapered composite plate
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Figure 2.14 Coefficient D, of tapered composite plate

The graphs in Figure 2.11 show the variation of coefficient D,; with respect to
x for Configuration A, Configuration B, Configuration C and Configuration D. The
coefficient D,, of Configuration A has a continuous variation with x in all the three
parts (Part A, Part B and Part C), because all dropped-off plies are replaced by resin
pocket in Configuration A. Whereas the other three configurations have the
discontinuous variations through different parts, Part A, Part B and Part C, because
the tapered structure of each part is different. All of the four configurations have the
same tapered structure in Part C, therefore the D, variations of them have the same
trend. In Part B, the three configurations, Configuration A, Configuration B and

Configuration C, have almost the same behavior, whereas Configuration D has a little
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bit lower performance than others. In Part A, the coefficientD,, of all the four
configurations has different characteristics: Configuration D has lowest stiffness, and
the Configuration B has the highest stiffness, whereas Configuration A and
Configuration C have the stiffness between that of Configuration A and Configuration
D.

In Figure 2.12, the graphs show the variation of coefficient D, (D, is the
same as D,,) respect to x for Configuration A, Configuration B, Configuration C and
Configuration D. The coefficient D, of Configuration A has a continuous variation
with x in all the three parts, due to the same reason as in Figure 2.11, and the others
have discontinuous variations with different parts, Parts A, B and C. Just as D,; in
Figure 2.11, in Part C, the variations of the four configuration s is the same. In Part B,
the variations of the four configurations are very close where as Configuration D has a
little bit low variation. In Part A, the tendency is almost the same as in Part B.

In Figure 2.13, the D,, variation is almost the same as in Figure 2.12, but in
Part A, Configuration D has a low performance, because the top and the bottom plies

have the 0  orientation.

In Figure 2.14, D, variation has almost the same tendency as D,, variation

in Figure 2.12.

Next, we set the coordinate point O at the left side of the tapered composite

plate, and the following results are obtained:
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1. Taper Configuration A:
By using the equation (2.139), we can obtain the following stiffness coefficients of the

taper configuration A:

Z i
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Figure 2.15 Taper configuration A with the coordinate point O at the left side

The stiffness coefficients for Configuration A (0m < x <0.24m) of the laminate (see

Figure 2.15) are computed as follows (unit: Nm):

D, (x) = ~15.5814x" +205.8318x” ~142.8139x + 26.7448
D,,(x) =—5.7651x° +9.6304x? —4.9414x +0.8161

D, (x) = -5.7651x* +9.6304x* —4.9414x+0.8161

D, (x) = -15.5814x* +118.3200x —79.8055x +14.2363
Dy, (x) = —4.9081x" +11.1717x> — 6.3473x +1.0943

Dy (x)=0; Dy(x)=0; Dg(x)=0; D,(x)=0
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2. Taper Configuration B:

Considering the equation (2.139), we can obtain the following stiffness coefficients of

the taper configuration B:

D=2
|
,
!
!

IR I
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Figure 2.16 Taper configuration B with the coordinate point O at the left side

The stiffness coefficients for the part A (Om <x<0.08m) of the laminate (see

Figure 2.16) are computed as follows (unit: Nm):

D, (x) =—15.5814x> +205.8318x> —142.8139x + 28.0994
D, (x) = =5.7651x* +9.6304x> — 4.9414x + 0.8237

D, (x) ==5.7651x" +9.6304x> — 4.9414x +0.8237
D,,(x) =-15.5814x> +118.3200x> — 79.8055x +14.4706
Dy (x) =—4.9081x° +11.1717x% - 6.3473x + 1.1177

D, (x)=0; Dy(x)=0; Dy (x)=0;D,,(x)=0
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The stiffness coefficients for the part B (0.08m < x <0.16m) of the laminate (see

Figure 2.16) are computed as follows (unit: Nm):

D, (x) = —15.5814x" +205.8318x> —142.8139x + 26.7507
D,,(x) = =5.7651x" +9.6304x> — 4.9414x +0.8170

D, (x) = —5.7651x" +9.6304x” — 4.9414x +0.8170
D,,(x) = —15.5814x" +118.3200x> — 79.8055x +14.4290
Dy, (x) = —4.9081x* +11.1717x> - 6.3473x +1.0972

D (x)=0; Dy(x)=0; Dy (x)=0; D,(x)=0

The stiffness coefficients for the part C (0.16m < x <0.24m) of the laminate (see

Figure 2.16) are computed as follows (unit: Nm):

D, (x) = —15.5814x" +205.8318x> —142.8139x + 26.7448
D,,(x) = =5.7651x" +9.6304x? — 4.9414x +0.8161

D, (x) = -5.7651x" +9.6304x> —4.9414x + 0.8161

D,,(x) = -15.5814x* +118.3200x> — 79.8055x +14.2363
D, (x) = -4.9081x +11.1717x> — 6.3473x +1.0943

D (x)=0; Dy(x)=0; Dy (x)=0; Dg,(x)=0

3. Taper Configuration C:

By using the same steps or calculation used for taper configuration B, we can obtain
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the following stiffness coefticients of the taper configuration C:

N
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Figure 2.17 Taper configuration C with the coordinate point O at the left side

The stiffness coefficients for the part A (Om < x <0.08m) of the laminate (see

Figure 2.17) are computed as follows (unit: Nm):

D, (x) = —15.5814x> +298.9306x —165.603 1x + 28.2063
D, (x) =-5.7651x° +10.5163x> — 5.2249x + 0.8407
D, (x) =—5.7651x* +10.5163x> — 5.2249x + 0.8407
D,,(x) =-15.5814x" +211.4188x> —116.5995x +17.9387
D, (x) = -4.9081x" +13.9076x* —7.2228x +1.1702

D (x)=0; D, (x)=0; D, (x)=0; Dg,(x)=0

The stiffness coefficients for the part B (0.08m < x <0.16m) of the laminate (see

Figure 2.17) are computed as follows (unit: Nm):

61



D, (x) = —15.5814x> +208.6158x> —143.9275x + 26.8576
D, (x)=-5.7651x> +10.0734x” —5.1186x +0.8341
D,,(x) =-5.7651x> +10.0734x* —5.1186x +0.8341
D,,(x) =-15.5814x" +208.6349x” ~115.9314x +17.8971
Dy, (x) = —4.9081x° +12.5396x —6.8945x +1.1498

D (x)=0; Dy (x)=0; Dg(x)=0; Dg,(x)=0

The stiffness coefficients for the part C (0.16m < x <0.24m) of the laminate (see

Figure 2.17) are computed as follows (unit: Nm):

D, (x) =—15.5814x +205.8318x> —142.8139x +26.7448
D, (x) =—5.7651x> +9.6304x* — 4.9414x +0.8161

D,,(x) =—5.7651x> +9.6304x> —4.9414x + 0.8161

D, (x) =—15.5814x> +118.3200x> —79.8055x +14.2363
Dy (x) =—4.9081x° +11.1717x* — 6.3473x +1.0943

D (x)=0; Dy (x)=0; D (x)=0; Dg,(x)=0

4. Taper Configuration D:
By using the equation (1.139), we can obtain the following stiffness coefficients of the

taper configuration D:
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Figure 2.18 Taper configuration D with the coordinate point O at the left side

The stiffness coefficients for the part A (Om <x<0.08m) of the laminate (see

Figure 2.18) are computed as follows (unit: Nm):

D, (x) = —15.5814x’ +112.7425x" — 90.2385x + 24.4896
D,,(x) = -5.7651x +8.7446x* — 4.3745x + 0.7840

D, (x) =-5.7651x" +8.7446x" —4.3745x +0.7840

D, (x) =-15.5814x" +25.2212x* —13.2197x +9.7395
D, (x) = —4.9081x> +8.4357x” — 4.5963x +0.9951

D (x)=0; Dy (x)=0; Dyy(x)=0; Dg(x)=0

The stiffness coefficients for the part B (0.08m < x <0.16m) of the laminate (see
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Figure 2.18) are computed as follows (unit: Nm):

D, (x) =-15.5814x" +115.5265x" —92.2430x + 20.9713
D, (x)=-5.7651x" +9.1875x" — 4.6934x + 0.7887
D, (x)=-5.7651x> +9.1875x" — 4.6934x +0.7887
D,,(x) =-15.5814x" +115.5360x> —78.2464x +14.2508
D, (x) =-4.9081x’ +9.8037x* — 5.5812x +1.0097

D (x)=0; Dy(x)=0; D (x)=0; Dy(x)=0

The stiffness coefficients for the part C (0.16m < x <0.24m) of the laminate (see

Figure 2.18) are computed as follows (unit: Nm):

D, (x) = —15.5814x> +205.8318x% —142.8139x + 26.7448
D,,(x) =-5.7651x" +9.6304x* — 4.9414x +0.8161

D,,(x) ==5.7651x" +9.6304x> — 4.9414x + 0.8161

D,,(x) = -15.5814x" +118.3200x> — 79.8055x +14.2363
Dy, (x) = —4.9081x" +11.1717x> — 6.3473x +1.0943

D, (x)=0; Dy(x)=0; D, (x)=0; Dg,(x)=0

The coefficients D, D,,, D, and D,, are zeros because of the 0/90 configuration.
This is as same as that of the uniform plate. The other terms in D matrix are cubic

functions of x because of the tapered configuration.
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Figure 2.19 Coefficient D,, of tapered composite plate
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Figure 2.20 Coefficients D,, and D, of tapered composite plate
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Figure 2.21 Coefficient D,, of tapered composite plate
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Figure 2.22 Coefficient D, of tapered composite plate
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In Figures 2.19, 2.20, 2.21 and 2.22, all the variations the coefficients are the same as
in Figures 2.11, 2.12, 2.13 and 2.14 respectively, and the only difference is that the

point O of the coordinate system is at the left side of the tapered composite laminates.

2.7 Conclusion

In this chapter, the stiffness and compliance matrices of both the uniform laminated
plate and the tapered laminated plate have been determined. By using the derived
equations, two example problems involving a uniform laminated plate and a tapered
laminated plate have been solved. For the tapered laminated plate, four kinds of taper
configurations, Configuration A, Configuration B, Configuration C and Configuration
D, have been considered, and their mechanical behavior has been determined taking
the resin pocket into consideration. Different coordinate systems were used in the
calculation of the stiffness matrices of the tapered laminated plate with the objective
of using them in the following chapter in the calculation of the dynamic response

using Finite Element Method and Ritz (Energy) Method.
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Chapter 3

Deflection Analysis of Tapered Composite Plates Using Finite

Element Method and Ritz Method

3.1 Introduction

Composite materials, especially laminated composites are being increasingly used in
the aerospace, mechanical and automobile industries. This is mainly because the
composite materials exhibit high strength-to-weight and stiffness-to-weight ratios.
The response to static loading is an important characteristic of composite laminates,
and the accurate prediction of the effect of static loading is the first step in analyzing

the effect of dynamic loadings on the composite structures.

By using the results of the preceding chapter, in this chapter, we use Finite Element
Method and Ritz Method to analyze the deflections of different tapered composite
plate configurations, when uniform loadings are distributed over the tapered
composite plates. The maximum deflections of tapered composite plates are computed
under different boundary conditions according to the classical laminated plate theory.

These two methods give a practical way to predict the static response of the tapered
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composite plates, which is an important step in conducting the analysis of dynamic

characteristics of the tapered laminated plates in the following chapters.

In this thesis work, we consider that the tapered laminated plate is thin and the
deflection is small. For the thin plate’s bending with small deflection, we have the

following assumptions [37]:

1. The middle plane of the plate remains neutral (undeformed) during bending.

2. Straight lines initially normal to the middle plane of the plate remain straight and
pormal to the middle surface. This assumption is equivalent to the neglect of the
effect of transverse shear deformation.

3. The stresses normal to the middle surface are negligible.

The classical theory of laminates uses a first-order model. In this model the transverse

shear strains are zero, therefore:

Ve =V, =0 3.1
Hereafter, the displacement field can be written as follow:

5,2 =1t (1) 2 2 (3.) (32)
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ow
v(xayrz):vo(x7y)_2733/0—(x7y) (33)

w(x, y,2) = w(x, ) (3.4)
where, u, v, and w are displacements in the x, y, and z directions in the
coordinate system (x,y,z).

Therefore, the strain field is written as:

o L Ouy 00w, (3.5)

Y ox ox’ )
ov, o
=0 C % (3.6)
¥ ay 8)/-
2

Vo = %+%)_2za T (3.7)

v oy Ox Oxdy

The strain field can also be written in the matrix form as follow:

e, |=|e,’ |+2k, (3.8)

where,
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0w 0w ’w
k, = e X, 5 k,=- g i ) k .= -2 0 »
. P (x,y), k, & (x,»), k, ooy (x,7)

In the study of laminated plate bending, the most complex analysis is that of laminates
made of an arbitrary stacking, presenting stretching-bending, stretching-twisting, and
bending-twisting couplings. Here, we study the laminated plate of crosé-ply
symmetric lay-up configuration which has the following properties: there exists no

in-plane stretching bending coupling, that is, B; =0 ; there exists no

bending-twisting coupling, thatis, D, =D, =0.

In Figure 3.1, we consider a rectangular plate subjected to a distributed transverse

load g =gq(x,y). In the case of cross-ply symmetric laminates, the response can be

expressed as:

2 62 2
Aua—uzo'l'Ase_uzO“"'(Alz +A66)§_—v£:0 (3.9)
Ox oy Ox0y
62 62 2
(A + A )2 Ay =20 1 4, 0 L) (3.10)
Ox0y ox oy
o'w, o*w 0w
D“—éxTO+2(D12 +2D66)8x28;2 +D,, ay40 =q(x,y) (3.1D)
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Figure 3.1 Rectangular Plate Subjected to a Distributed Load

In the general case, the transverse load can be expanded as a double Fourier sine

series [22}:
4(5,3) = 3. D4, sin " sin (3.12)
m=1 n=1 a

where, the coefficients g,, are given by:

4 . max . Ry
= x, y)sin —— sin —— dxd, 3.13
D abffq( y)sin— L dxdy (3.13)

The solutions to the bending problem can be investigated by expressing the
displacements in the form of a double Fourier series satisfying different boundary

conditions. For example, for the four-side-simple-supported boundary condition, we
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can obtain the following equations:

uy(x,y) = ZZAM” cosvﬂxcos Zy (3.14)
m=1 n=1

vy (%, y) = ZZB cos—cos "Zy (3.15)
m=1 n=}

W= 3C, sm—-—sm% (3.16)
m=1 n=]

By substituting u,(x,y) and v,(x,y) into the equations (3.9) and (3.10), we can
get that 4 =0 and B, =0. The in-plane displacements are identically zero:

u, =0, v, =0.

3.2 Finite Element Analysis for the Deflection of the Tapered Composite Plate

3.2.1 Four-Node 12-D.O.F. Nonconforming Rectangular Element

According to the results above, we can select the Four-Node 12-D.OF
Nonconforming Rectangular Element [37] to calculate the deflections of the tapered
composite plates with different configurations using Finite Element Method. This
kind of element is a typical rectangular element with four corner nodal points. It can
be seen from Figure 3.2 that the element has length a, width b, and thickness 2h
(changing along the x direction for tapered laminated plate configurations). Let us

assume that the origin of the Cartesian coordinates is at the nodal point I and that
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there are three degrees of freedom at each nodal point: deflection w; slope in the

x direction, w, = 0w/ 0x; and slope in the y direction, w, =0w/dy . Then we can
derive the stiffness matrix by assuming the displacement function as a 12-term

polynomial.

Figure 3.2 Four-node 12-d.o.f. rectangular plate bending element

The displacement function is assumed as

w(x,y) = +02x+c3y+c4x2 +csxy+c6y2 -I-C7)C3 +ch2y+c9xy2 +C10y3 +c“x3y+clzxy3

(3.17)

For the four nodal points (0, 0), (a, 0), (a, b), and (0, b), we can evaluate the values of

the 12 nodal degrees of freedom based on the equation (3.17).
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Therefore, the nodal degrees of freedom can be expressed as follow:

w, 1 00 0 0 0 O 0 0 0 0 0 ¢

w, 010 0 0 0 O 0 0 0 0 0 c,

W, 001 0 0 0 O 0 0 0 0 0 ¢

w, 1 a O0a> 0 0 & 0 0 0 0 0 c,

W, 01 022 0 0 3a°> 0 0 0 0 0 Cs

wol 001 0 a 0 0 a° 0 0 a’ 0 s

wi| |t a b & ab b* @& &b ab® b a’b  ab’ | |c

W, 0102z b 0 3a° 2ab b> 0 3a’b b Cq

W3 001 0 a 20 0 a* 2ab 3> a 3ab’| |c

w, 1 05 0 0 5 0 0 0o 0 0 Cio

W, 010 0 » 0 0 0 b 0 O b’ ¢

W, 001 0 0 20 O 0 0 3 0 0 ¢y,
(3.18)

or symbolically,

a}=la] i} (3.19)

And then

{e}=la]" g} =18]-{a} (3.20)

The strain field of the laminated plate can be written using equations (3.5), (3.6), and

G.7).

75



By considering the thin plate and small deflection assumption, we can simplify the

equations (3.5), (3.6) and (3.7) as follow:

azwo
g, =—zo (3.21)
Ox
o’w
w =7 yzo (3.22)
82
yo =270 (3.23)
i Oxdy

By substituting equation (3.17) into (3.21), (3.22), and (3.23), the strain-displacement

relations are written as follow:

: &*w/ox’ 0002 006x 2y 0 0 6xp O
g, r=-2z0 O’w/dy’ y=-240 0 0 0 0 2 0 0 2x 6y 0 6xp
Vs 2-0%/oxdy 000020 0 4 4y 0 6x° 6y°

=[6]-{}=[6,]18]- la} =14, {¢} (3.24)

Hereafter, the element stiffness matrix can be derived by first formulating the strain

energy for the element and then performing partial differentiation of the strain energy
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with respect to each degree of freedom following Castigliano’s theorem [34].

The strain energy in the subject finite element is in the form [34]

f [ [ (&) {o)dzdyax (3.25)
where,

g,\'X O—XX
{e}= £, and {O'}: o,

sy TX)

By considering the stress-strain relations for composite laminates and using equation

(3.24), we obtain the following:

{o}=lole} = [o]4 e} (3.26)

By substituting the equation (3.26) into (3.25), the following equation of strain energy

can be obtained:

ff [ ¥ 1T 014, Nairavaz
W[ [ [ 14T lo)4 Jaxavazria)

(3.27)
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Applying Castigliano’s first theorem [37],

F=Y (3.28)

By performing partial differentiation of the strain energy with respect to each of the

degrees of freedom of the finite element, we obtain:

{F}=[kla} (3.29)

{F}: the vector of the nodal forces of the element
{g}: the vector of nodal displacements of the element

[k]: the stiffness matrix of the element

The stiffness matrix of the element can be obtained as:

-3 [ [ [4] oL [a] s (3.30)

Here, we set [a] L [Al ] Therefore, we can obtain the following equation:
z

[k]:g fff:_]z-[a]T o). -z -] drdydz (331
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By using the method of calculating material’s mechanical bebavior as in chapter 2, we

can get the following equation:
> [ 2 lo] d=[n] (3.32)
k=1 k-1 k

Since the thickness of the tapered composite plate changes in x direction, we can

write the mechanical behavior of the tapered composite plate as follow:
[D]=[D(x)] (3.33)

The mechanical behaviors of the tapered composite plate configurations can be
calculated by using the method in chapter 2 of this thesis. Therefore, the stiffness

matrix of the element of the tapered composite plate is expressed as:

]= [ [ la] Dlalixay (3.34)

3.2.2 The Structure Stiffness Matrix and the Treatment of Boundary Condition

For the stiffness equation of the complete structure, we can do the systematic addition
of the stiffness matrix of all elements. The system stiffness equation can be expressed

as
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Pi=[k]-{0.} (3.35)

{P}: the vector of the nodal forces of the structural system
{Q, }: the vector of nodal displacements of the structural system

[k ]: the stiffness matrix of the structural system

According to the loads applied to the tapered laminated plate, we can get {P}
Using the boundary condition, we can solve the equation (3.35) above and get the

result of {Q, }

Calculation of the stiffness matrix of the tapered laminated plate can be done as
follow. For example, we can consider the 4x 4 mesh to calculate the stiffness matrix
of the structural system, and the element numbering is done just as in the following

Figure 3.3.
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Figure 3.3 The 4 x 4 mesh of the plate model

We can calculate the stiffness matrices [k]l , [k, [k]3 and [k]4 for elements 1, 2,

3 and 4 by using equation (3. 34).

If this plate is a tapered plate and the thickness changes in x direction, the stiffness
matrices [k}, [k],, [}, and [k], should be different. We can assemble the
structure stiffness matrix by using the element stiffness matrices [k],, [k}, [k,
[k, [kl [k, [k],.and [k],. Matrices [k];, [k];, [k];. and [k]; have the same
value as matrices [k}, [k],, [k],, [k], respectively. We can get the structure

stiffness matrix [K ] by assembling these matrices.

According to the applied forces on the plate, by considering the elements of the plate,

we can get the vector of the nodal forces of the structural system {P}. Then, by use
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of equation (3.35), we will get the vector of the nodal displacements {Ql }

By considering the boundary condition, it is common and efficient practice to

'

formulate the condensed stiffness matrix [K]| instead of the whole stiffness matrix

[x ] based on the zero-displacement conditions. By use of the condensed stiffness

matrix [K ] for different boundary conditions, we can get the displacement results

that correspond to different boundary conditions.

In this thesis work, we consider three kinds of boundary conditions as follow:

1. simple support for four edges
2. four edges clamped

3. one edge clamped and other three edges free.

Finally, we can get { 1} for different boundary conditions. From these, we can get
the maximum deflection of the plate and the corresponding boundary condition for the

tapered composite plate configuration.

As another example, we can consider the 6x6 mesh to calculate the stiffness matrix
of the structural system, and the element numbering is done just as in the following

Figure 3.4.
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Figure 3.4 The 6x6 mesh of the plate

Similarly, we can calculate the stiffness matrices [k]l, [k]z, [k]3, [k]4, [k]5 and

[k]6 that correspond to elements 1, 2, 3, 4, 5 and 6 by using equation (3. 34).

If we consider the tapered composite plate configuration, the thickness of the plate
changes in x direction, and therefore matrices [k],, [k],, [k],, [xl,, [k]; and [£]
should have different values that correspond to elements, 1, 2, 3, 4, 5, and 6. By using
the procedure that was used for the 4x4 mesh, we can assemble the structure
stiffness matrix using the element stiffness matrices [k],, [k),, [k],, [kl.» [k];,
(K. Wl Wk, [l [k, Do Bedes Belss DD Tids, Tele. [kl and
[k],. Matrices [k],, ], [k], [k],, [k];, and [k], have the same values as the

matrices [k]7, [k]sa [k]9a [k]loa [k]n and [k]ua and matrices [k]ma [k]14= [k]IS’
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[k]16 , [k]”, and [k]]8 respectively. We can get the structure stiffness matrix [K ] by

assembling these matrices.

As in the case of 4 x4 mesh, by considering three kinds of boundary conditions, 1..
simple support for four edges, four edges camped and one edge clamped with other
three edges free, we can get the {Q,} for the cases of different boundary conditions.
Finally, we can get the maximum deflection of the plate for different tapered

composite plate configurations.

3.3 Deflection of the Tapered Composite Plate Based on Ritz Method

The energy theorems can be used to obtain a variational formulation of the governing
equations of the laminate. This formulation with associated boundary conditions
provides the basis for the development of approximate solutions of the mechanical

behavior of laminates {22].

The strain energy of an elastic solid can be written in Cartesian coordinates as

follows:

1
Ud = E J““J-(o-'“g“ + O"\ygyy ‘o, & +T. Y. T T),:}/y: + T.\')‘}/xy )dxdydz (336)
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By taking into account the assumptions of the classical theory of laminates, we can

obtain that o, =0, y,. =y, =0,and the following equation:

Q

xx Ql 1 Ql 2 Ql 6 gxx
o, | =0 On Ox| |, (3.37)
T,\'y Ql 6 Q26 Q66 k }/xy

It may be noted that the kinematic assumptions of Euler-Bernoulli beam bending

theory and classical laminate theory correspond to the assumption that

o.. =7, =7, = 0. Therefore, the strain energy can be written as:

1
Ud = 5 .[j._[(Qk“gxxz +Qk228yy2 + lee}’n,z +2Qk128}38”, +2Qk168”7xy

+20%xe ¥, dxdydz (3.38)

where, the constants Q*, Q*», Q%s, Q'n, 0%, and Q% are reduced
stiffness constants of the k—th layer of the composite laminate. For cross-ply

laminate, Q%15 = Q%% =0.

The equation (3.38) can be written as a function of the displacement by substituting

the equations (3.21), (3.22) and (3.23) into the preceding expression. In the case of

symmetric laminates, the stretching-bending coupling terms B, are zero. In case of

pure bending and orthotropic plates, the strain energy can be written as follow:
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1 0w 8w, 0w, 0*
Uy :E f f[D“(ﬁ)z +2D,, ~axzo ayzo + Dy ( By

w, o'w,
20 )2 + 4D66 (%)%)2 ]dXdy +C

2
X

(3.39)

As we can see in Figure 3.1, in the case of transverse loading, the potential energy

owed to distributed transverse load ¢ = g(x,y) 1s written as:

W, = [ [ ae.yym e y)dsdy (3.40)

The shape function can be written in a double series to satisfy the different boundary

conditions as follow:

wo(x, ) =Y. > A, X, (X)Y,() (3.41)

m=1 n=1

Here, the coefficients A , are determined by the stationary condition.

We can express the potential energy of the structure and its derivative using the

following equations [38]:

U=U,-W, (3.42)
ouU, ~Ww

ou__ oW, f)zo (3.43)

aAﬂl’I aAmn
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where, U, and W, are the strain energy and the potential energy owed to the

transverse load, obtained by substituting the expression (3.41) for the deflection nto

equations (3.39) and (3.40) respectively.

By considering different boundary conditions, we can obtain different shape functions

for use in equation (3.41). Then, W, can be obtained considering transverse load
q = q(x,y) applied. By substituting U, and W, into equation (3.43), a system
equation about the 4, will be achieved, thereafter, the solution of the system allows
us to find the coefficients A, and to deduce the transverse displacement at each point

(x, y) by using equation (3.41).

The maximum deflection of the tapered composite plate can be obtained by

substituting the coefficients 4, into the equations given below for different

boundary conditions:

1. When we consider the boundary condition of simple support for four edges of the

tapered composite plate, the shape function can be written as [22]

wy(x,y) = ZZA sm— sin nZy (3.44)
m=1 n=l

2. When we consider the boundary condition of four edges clamped for the tapered

composite plate, the shape function can be written as [22]
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wo(t )= Y 4, %(Z—l) [f) -{7-(%4) (Z] (3.45)

3. When we consider the boundary condition of one edge clamped and the other three

edges free for the tapered composite plate, the shape function can be written as [39]:

w(x) = i A (1-cos 3%) (3.46)

If the boundary conditions are simple support for four sides and clamped for four

. a b . . .
sides, we setx:E, and y:E, so the maximum deflection can be obtained as

follow:

W ) =S4, X, (g)mg) (3.47)

m=1 n=l

If the boundary condition is one side clamped and the other three sides free, we

setx = a, and so the maximum deflection can be obtained as follow:

(n=1)

w(x) = nZ]:;An (1-cos ™ ) (3.48)

In the following example, for the first two boundary conditions, we set m =n = 2 and

m = n = 3 to calculate the maximum deflections of different kinds of tapered
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composite plate configurations. And for the third boundary condition, n = 9 is

considered.

3.4 The Example for Calculating the Deflections of the Four Tapered Composite

Plate Configurations Subjected to Distributed Transverse Loading

In this part, we consider four different kinds of tapered composite plate configurations,
Configuration A, Configuration B, Configuration C, and Configuration D, which can
be seen in Figure 2.7, Figure 2.8, Figure 2.9, and Figure 2.10 respectively. By using
Finite Element Method and Ritz Method, we can get the results of the maximum
deflections of the four tapered composite plate configurations which are subjected to

distributed transverse loads.

The four tapered composite plate configurations considered here are made up with 12
plies in the left side and 6 plies in the right side, and the composite material is
NCT/301 graphite-epoxy. The mechanical properties of NCT/301 are:
E, =1139GPa, E, =E, =79GPa, v, =028, v,; =04, v, =002, G, =31
GPa, G, =3.1 GPa, G,; =2.8 GPa, p=1480 kg/m’, h, =0.138 mm.

The geometric properties of the tapered composite plates are: the length a is 240 mm
and the width b is 240 mm; the thickness changes in x direction from 2.208 mm to

1.104 mm; the laminates for Configuration A, Configuration B and Configuration C
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are [(90/0),], in the left side and (0/90/0), in right side. For configuration D, the
tapered plate has lay-up configuration [O/resin/ 90/0/0/ 9O]S at the left end and

[0/90/0]; at the right end respectively.

3.4.1 Solution Using Finite Element Method

In this example, the problem is solved using 36 finite elements to obtain accurate
results of the maximum deflections of the four kinds of tapered composite plate

configurations under three kinds of boundary conditions:

1. simple support for the four edges of the tapered composite plate
2. four edges of the tapered composite plate clamped
3. one edge of the tapered composite plate is clamped and the other three edges are

free

A distributed load of 2000N /m’ is applied on the four kinds of tapered composite
plate configurations. By using the results of the mechanical behaviors of the four
kinds of tapered plate configurations calculated in the chapter 2, we obtained the
results of the maximum deflections given in the Tables 3.1, 3.2, 3.3 and 3.4. The

coordinate system used in the finite element analysis is as in Figure 3.5.
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Figure 3.5 Rectangular Plate Subjected to a Distributed Load with Point O

at the center of the plate

3.4.2 Solution Using Ritz Method

The problem is also solved using Ritz Method. For the first two boundary conditions,
we set m =n =2 and m = n = 3 to analyze the four different kinds of tapered
composite plate configurations for the maximum deflections. For the third boundary

condition, n = 9 is considered.
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A distributed load of 2000N/m? is applied on the four kinds of tapered composite
plates. By using the results of the mechanical behaviors of the four kinds of the
tapered plate configurations calculated in the chapter 2, we obtained the results of the
maximum deflections given in the Tables 3.1, 3.2, 3.3 and 3.4. The coordinate system

used in Ritz Method is the same as in Figure 3.1.

3.4.3 The Results of the Maximum Deflections Calculated Using Finite Element

Method and Ritz Method

1. Boundary condition: Four edges of the tapered laminated plate simply supported

For the distributed load of 2000N/m” applied on the tapered composite plates, the
results of deflections for four kinds of taper configurations are calculated by using
Finite Element Method and Ritz Method (two terms and three terms). In Table 3.1 and

Figure 3.6, we can see all the deflection results.
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Table 3.1 Deflections (in: x107 m) of Four Taper Configurations Subjected to

Uniformly Distributed Loading and with Four Simply Supported Edges

Finite Element Solution Ritz Solution
Taper
12 24 36 48
Configuration 5-Terms | 4-Terms | 3-Terms | 2-Terms
elements | elements | elements | elements
A 0.4928 0.4980 0.5002 0.5008 0.5301 0.5301 0.5303 0.5371
B 0.4851 0.4905 0.4927 0.4932 0.5236 0.5236 0.5238 0.5304
C 0.4740 0.4780 0.4807 0.4813 0.5107 0.5107 0.5109 0.5175
D 0.5136 0.5178 0.5206 0.5215 0.5416 0.5416 0.5418 0.5528
-+ FEM36
~} FEM24 /l
& FEM12 L
~&x- Ritz2 /
— Ritz3 A
T > Ritzd e
—e  Ritzh
T

Figure 3.6 Deflections of Four Taper Configurations Subjected to Uniformly

Distributed Loading and with Four Simply Supported Edges
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In table 3.1, we can see that the results of 36 elements and 48 elements using finite
element method are much closer, and the results of 3 terms, 4 terms and 5 terms using
Ritz method are also much closer. Therefore, the 36 elements result for finite element
method and 3 terms results for Ritz method are used as converged results to be

compared below.

The graphs in Figure 3.6 show the deflections of the four taper configurations
calculated by Finite Element Method and Ritz Method (two terms and three terms).
Both the methods give the same result that the Configuration D has largest deflection
due to the position of resin pockets far from the mid-plane, and that the Configuration
C has the smallest deflection. The deflections change from small to large in the order
of Configuration C, Configuration B, Configuration A, and Configuration D. The
results of Finite Element Method are much closer to that of the Ritz Method solution
using three terms than the Ritz Method solution using two terms, and the three
solutions show the same tendency of deflections with the change in the taper

configuration.

2. Boundary Condition: Four Plate Edges Clamped

For the distributed load of 2000N/m?* applied on the tapered composite plates, the
results of deflections for four kinds of taper configurations are calculated by using

Finite Element Method and Ritz Method (three terms). In Table 3.2 and Figure 3.7,
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we can see all the deflection results.
Table 3.2 Deflections (in m) of Four Taper Configurations Subjected to Uniformly

Distributed Loading and with Four Edges Clamped

Taper Finite Element Solution
Ritz 3-terms Solution
Configuration (36 elements)
A 0.115426 107 0.110012 %107
B 0.112762 %107 0.106640x 107
C 0.110397x107 0.105877 x107*
D 0.119962 %107 0.112570x 107>
3

g

Configurations: A, B, C, D corespond to Points: 1,2,3,4

Figure 3.7 Deflections of Four Taper Configurations Subjected to Uniformly

Distributed Loading and with Four Edges Clamped
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The graphs in Figure 3.7 show the deflections of the four taper configurations
calculated by Finite Element Method and Ritz Method (three terms). Both the
methods give the same result that the Configuration D has largest deflection due to the
position of resin pockets, and that the Configuration C has the smallest deflection.
The deflections change from small to large in the order of Configuration C,
Configuration B, Configuration A, and Configuration D. The results of Finite Element
Method are much closer to that of the Ritz Method solution using three terms, and the
two solutions show the same tendency of deflections with the change in the taper

configuration. The deflection tendencies are very similar in Figure 3.6 and Figure 3.7.

3. Boundary condition: One Plate Edge Clamped and Three Edges Free

For the distributed load of 2000N /m’ applied on the tapered composite plates, in
the first step, the results of deflections at the center for four kinds of taper
configurations are calculated by using Finite Element Method and Ritz Method (three

terms). In Table 3.3 and Figure 3.8, we can see all the deflection results.
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Table 3.3 Deflections (in m) at the Center of Four Taper Configurations Subjected to

Uniformly Distributed Loading and with One Edge Clamped and Three Edges Free

Taper Finite Element Solution
Ritz 9-terms Solution
Configuration (36 elements)
A 0.134777x107" 0.117111x107"
B 0.127684 x10™" 0.111051x107"
C 0.130290x10™" 0.113447 x10™"
D 0.140101x107" 0.121468x 107"

Figure 3.8 Deflections at the Center of Four Taper Configurations Subjected to

Uniformly Distributed Loading and with One Edge Clamped and Three Edges Free
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The graphs in Figure 3.8 show the deflections at the center of the four taper
configurations calculated by Finite Element Method and Ritz Method (three terms).
Both the methods give the same result that the Configuration D has largest deflection
due to the position of resin pockets, and that Configuration B has the smallest
deflection. The deflections change from small to large in the order of Configuration B,
Configuration C, Configuration A, and Configuration D. The results of Finite Element
Method are much closer to that of the Ritz Method solution using three terms, and the
two solutions show the same tendency of deflections with the change in the taper

configuration.

In the second step, the results of deflections at the free side for four kinds of taper
configurations are calculated by using Finite Element Method and Ritz Method (three

terms). In Table 3.4 and Figure 3.9, we can see all the deflection results.

Table 3.4 Deflections (in m) at the Free Edge of Four Taper Configurations Subjected to

Uniformly Distributed Loading and with One Edge Clamped and Three Edges Free

Taper Finite Element Solution
Ritz 9-terms Solution
Configuration ( 36 elements)
A 0.433599x10™" 0.458674x10™"
B 0.415718x10™" 0.443034x10™
C 0.422972x107" 0.449774x10™"
D 0.452268x10™" 0.477735% 107"
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: - Configurations: A, B, C, D correspond to Points: 1,2, 3, 4

Figure 3.9 Deflections at the Free End Edge of Four Taper Configurations Subjected

to Uniformly Distributed Loading and with One Edge Clamped and Three Edges Free

The graphs in Figure 3.9 show the deflections at the center of the four taper
configurations calculated by Finite Element Method and Ritz Method (three terms).
Both the methods give the same result that the Configuration D has largest deflection
due to the position of resin pockets, and that Configuration B has the smallest
deflection. The deflections change from small to large in the order of Configuration B,
Configuration C, Configuration A, and Configuration D. The results of Finite Element

Method are much closer to the Ritz Method solution using three terms, and the two
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solutions show the same tendency of deflections with the change in the taper
configuration. The tendency is the same as in Figure 3.8 for the deflections at the

center of the plates.

3.5 Conclusion

In this chapter, the Finite Element Method and Ritz Method have been used to
calculate the deflections of different tapered composite plate configurations. By using
these two methods, the example problem involving four tapered composite plate
configurations has been solved. For the tapered composite plate, four kinds of taper
configurations, Configuration A, Configuration B, Configuration C and Configuration
D, have been considered, and their deflections for the distributed load and for
different boundary conditions have been determined by using Finite Element Method
and Ritz Method, and using the mechanical behavior calculated in Chapter 2. Both the
methods yield much closer results for deflection. In the following chapters, the
calculation of the dynamic response is performed using the Finite Element Method

and Ritz Method.
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Chapter 4

Free Vibration Analysis of Uniform and Tapered composite Plates

Using Finite Element Method and Ritz Method

4.1 Introduction

Composite plates are widely used in civil, mechanical and aerospace structures.
In this chapter, the uniform composite plate configuration and four tapered composite
plate configurations are considered. By using the thin plate assumption as in Chapter
3, in this chapter, we calculate the free vibration characteristics using Finite Element
Method and Ritz Method. We will derive the formulations based on classical laminate
theory for analyses using Finite Element Method and Ritz Method. By using the
results of mechanical behavior of tapered composite plate configuration calculated in
Chapter 2 and the stiffness matrix of tapered composite plate configuration calculated
in Chapter 3, we can determine the free vibration response of uniform and tapered
plate configurations. All the results will be used in instability analysis of different

kinds of composite plate configurations in the following chapter.
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4.2 Finite Element Analysis of the Free Vibration Response of Uniform and

Tapered Composite Plates

When a plate undergoes free, undamped vibration, the deflection of the plate has a

sinusoidal variation with respect to time ¢ [23],

w=w, -sinot

where, @ is called as the circular frequency.

(4.1)

By considering the symmetric cross-ply laminate analyzed in Chapter 3, the strain

energy of the plate structure can be written as follow:

0*w 0w 0w
2

1 o*w
U= PGy +20e 5055+ Pas

8w
)+ 4Dy (‘ax—ay‘)z]dXdy

The kinetic energy of the vibrating plate in bending with small deflection:

r= f%h(W)zdxdy - gi [ [ i)? dvay

(4.2)

(4.3)

By substituting the equation (4.1) into the equation (4.2), the strain energy equation is

obtained:

U,=U,,.sin’ ot

d max
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where U, . isdefined as

d*w, O’w, 0

2 62
a 2 ayz +D22( 6‘42)0 WO
X Y

Ox0y

’w
U = [ [100C 5 2D, )+ 4D, (S 20)" Jdvdy

(4.5)

By substituting the equation (4.1) into the equation (4.3), the kinetic energy equation

is obtained:
b, f 2 _ 2
T'=—w cos” wt f,ohwo dxdy =T,,, cos” wt (4.6)
2
where T 1is defined as
_1 2,2
Tows = [ [ photw, dxdy (4.7)

If the plate is of the tapered composite plate configuration, we can obtain the

thickness of the plate % = f(x) and the load can be expressed as follow:

or,
Fvi — aUd max_ i( nfax (48)
0q, dt 0Oq

Therefore, the equation of motion can be written as follow:
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{F=[k]-g}+[m]- {4} (4.9)

Because the plate undergoes free vibration, we can obtain a set of eigenvalue

equations for free vibration by using the equation (4.9).

o} =[lx]- o’ [m]1- g} (4.10)

{F}: the vector of the nodal forces of the element
{q}: the vector of nodal displacements of the element
[k]: the stiffness matrix of the element
[m]: the mass matrix of the element

2

®”: the eigenvalue

@ : the natural frequency

We can use the equation (3.34) to get the stiffness matrix of one element, and then, we
can assemble the stiffness matrices of all elements to obtain the stiffness matrix of the
whole plate system [K ] For Calculating the mass matrix [m], we can use the
following steps. Considering the displacement function (3.17), we change this

equation to matrix form as follow:

w(x, y) = [XY]-{c} (4.11)
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where the matrices [XY ] and {c} are expressed as follow:

[XY]:[I x y ¥ xy ¥y X Xy x»t Yy Xy xy3]

The values of the 12 nodal degrees of the freedom can be expressed as the following

matrix:

T
{Q}—{Wl Wy Wy Wy, W, W Wy W, W, W, Wy Wy4}

y i
40,b) 3@

element

1

100 , - 2(2,0)

o)

Figure 4.1 The rectangular finite element

The rectangular finite element is taken as in the Figure 4.1, and the equations (3.19)

and (3.20) are taken into account. The following equation is obtained:
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wix,y) = [xr ] e} = [xv] o] o}

=Y filxy)q, (4.12)

By substituting the equation (4.12) into equation (4.3), the following equation is

obtained:

r={ f%h(vi/)zdxdy :g [ fh(W)zdxdy

[ 12N fite) -4 dsy (@13

Therefore, we can obtain the following equation:

d oT d 2, & .
dt(a-q.i)j[ffph(;l;ﬁ(x,y)-fj(x,yyqi)dxdy
=p> Y[ [ 1 S £, p)dvdy -] (4.14)

i=l j=1

The mass matrix coefficient can be written as follow:

m,=p[ [ 1,069) £,059) dvdy @.15)

For tapered composite plate configurations, the thickness % is the function of x.
When we consider the tapered composite plate configurations, the resin pocket must

be taken into account. In Figure 4.2, the top side of the resin pocket (1) has the height
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h,, in the left and the height A, in the right with the taper angle —«, and the
bottom side has the height 4,, without taper angle. The density of the composite is o,

and the density of resinis p, .

!
resin pocket(1) ‘ P L
h, I EE—— \\¢ hyg X
e I I
. element _|

Figure 4.2 Tapered composite plate element with resin pocket
Therefore, the thickness of the resin pocket (1) can be expressed as:

h,+h

h) =[tan(—a)- x + ~—”—2—1°—] ~hy, (4.16)

Similarly, we can write the following equation for resin pocket (n) inside the tapered

composite plate configuration:

h +h
K =[tan(—a)- x + —"'—’;—"i] —h, 4.17)
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Because the resin pocket has the same displacement function as the whole element,

we can express the mass matrix coefficient of the resin pocket as follow:
M, =P, f fh,i S5 3)- fi(x,p) - dxdy (4.18)

Hereafter, the mass matrix coefficient of tapered composite plate configuration

element with n resin pockets can be written as follow:

my = o [h fG3) 1,y -dsdy =Y (p=p) [ [Hf069)- f, (5 y)dedy

n=

(4.19)

Thereafter, we can get mass matrix of finite element [m] For the 4x4mesh and
6x 6 mesh, we assemble the mass matrices of all elements, and hence we get the
system mass matrix [M ] of the composite plate structural system. By using the
system stiffness matrix [K ], the equation of motion for the plates can now be written

as:

{P}=[&]- {0} +[M]- 10} (4.20)

{P}: the vector of the nodal forces of the structural system
{0} : the vector of nodal displacements of the structural system

[K ]: the stiffness matrix of the structural system
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[M ]: the mass matrix of the structural system
By assuming sinusoidal motion with natural frequency @, we obtain a set of

eigenvalue equations for free vibration,

o}=1k]-o* -[M])- {0} 4.21)

By solving the equation (4.21) given above, we can get free vibration frequencies.

Here, we consider three kinds of boundary conditions, four edges simply supported,
four edges clamped and one edge clamped with other three edges free. By considering
the boundary conditions, it is common and efficient practice to formulate the

condensed stiffness matrix [K ] instead of the whole stiffness matrix [K ] based on

the zero-displacement conditions. Similarly, we can formulate the condensed mass

!

matrix [M ] instead of the whole mass matrix [M ] based on the zero-displacement
conditions. By use of the condensed stiffness matrix [K ] and the condensed mass

matrix [M ] for different boundary conditions, we can get the vibration frequency

results corresponding to different boundary conditions. Finally, we can calculate the
frequencies of the free vibration of 1* mode, 2" mode, 3" mode, etc for the uniform

composite plate configuration and tapered composite plate configurations.
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4.3 Ritz Method for Free Vibration of Uniform and Tapered Composite Plates

The determination of natural frequencies can also be obtained by Ritz Method. In the

case of orthotropic plates the strain energy is given by equation given below [22]:

8w, 8 5? 8
NOR I Y0y 44D (S0 Ydxdy
ox® oy Oy OxOy

(4.22)

At the same time, the maximum kinetic energy is then written as follow [19]:
_1 2,2
T = [ [ pherv,’dxdy (4.23)

In Figure 4.3, by considering the resin pocket in the tapered composite plate
configuration, we can see that the top side of resin pocket (1) has a taper angle —a
and the bottom side is without taper angle. Therefore the thickness of resin pocket (1)
can achieved using equation (4.16). Similarly, for arbitrary resin pocket (n), if the
coordinate points in x direction are ¢, in left side and d, in right side, the

maximum kinetic energy can be written as follow:
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Z ‘ resin pocket(1)

resin pocket(2)

Figure 4.3 Resin pocket inside the tapered composite plate configuration
1 2 2 =1 " ro2 2
T, .= 5 f jjpha) W, dxdy—ZI:E f f (p—p,)h,0 w, dxdy (4.24)

In the absence of transverse loads, the maximum potential energy function reduces to

the value expressed as follow:

1 0*w, 0w, 0w, 0w 5w
Usm ~Ton = [P0 #2002 0 PGy 4Dl )
2,2 v 1 " ro2 02
— pho’w, }dxdy+25f [" (- p W0 w, dxdy (4.25)
l n

P

The approximate solution to the displacement functionw, (x, ) is sought in the usual

form of a double series:
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wo (6, )= D > A, X, (DY, () (4.26)

m=1 n=1

The different displacement functions that correspond to different boundary condition

are expressed as follow:

1. When we consider the boundary condition of simple support for four edges of the

uniform and tapered composite plates, the shape function can be written as [22]:

M N 7’!7[)/
wo(x,3) =Y Y A, n4 sinT (4.27)
n=i

m=1

2. When we consider the boundary condition of four edges clamped for the uniform

and tapered composite plates, the shape function can be written as [22]:

Mk

WO(x7y) =

Lo (x V(YT 2 (v V()
2 2( )(a) b (b 1) [b) (4.28)

3
i

3. When we consider the boundary condition of one edge clamped and the other three

edges free, the shape function can be written as [54]:

w, (x) = ﬁ A (1-cos 1”%1—)) (4.29)
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The coefficients A4, will be determined by the stationary condition. We can obtain

the following equation:

~6£—[Udmax -T..1=0 (4.30)

mn

By substituting equations (4.25) into (4.30) and considering the different displacement
functions with respect to different boundary conditions, we can get the eigenvalue

equation of ®”, and it can be written as follow:

’w, O’w
3 b [ [, #2D, 5 S PG ) 4D, (0 6;) Vixdy}
_ o’ 5; [ f phw, dxdy = 0 (4.31)
If wechoosem=1,2,....,M,andn=1, 2, ........,, N in the shape functions, we can

get the following equation about — 4" :
N N
dmax ZZG,’M _Amn (432)
A, 11
Similarly, if we choose m =1, 2, ..., M, and n = 1, 2, ......., N in the shape

dmax .

functions, we can also get the following equation about

mn
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QT_d'ﬁe&_N
oA “Z

mn

M
dL,, A, (4.33)
i

Hereafter, we can write the equation (4.30) in the following form:

N M

iic Ay~ Y DL, 4, =0 (4.34)
1 1

1 1

Then, we can reduce the equation (4.34), and express the eigenvalue equation of o’ in

the following matrix form:
[6li4,,}-0*[LK4,,}=0 (4.35)

For the first two boundary conditions, we set m =n =2 and m = n = 3 to calculate the
free vibration frequencies of different kinds of tapered composite plate configurations.
For the third boundary condition, we set n = 9 to compute the frequencies of different
kinds of tapered composite plate configurations. We can get the results of free

vibration frequencies for 1* mode, 2" mode, 3 mode, etc.
The 1 mode, 2™ mode and 3" mode free vibration frequencies for the plate

configurations are given in Figure 4.3. The mode shape is the same as that used in the

Finite Element Method.
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Ist mode x O 2nd mode X Y 3rd mode X

Figure 4.4 The modes of the free vibration of plates

4.4 The Example Calculations for the Free Vibration of the Uniform and Tapered

Composite Plate Configurations

In this part, the uniform composite plate and tapered composite plates are considered.
By using the results of Chapter 2 and Chapter 3, we calculate the free vibration
frequencies using Finite Element Method and Ritz method in the following examples.
For the uniform composite configuration, we choose the plate configuration according
to the uniform plate configuration in ref. [12], and compare our results of free
vibration frequencies with the results in ref. [12]. For the tapered composite plate
configurations, the Finite Element Method and Ritz Method are used to calculate the

1 mode, 2™ mode and 3" mode free vibration frequencies.
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4.4.1 Example Calculation for the Uniform Composite Plate

A uniform rectangular laminated plate is made up of the graphite/epoxy material and
with symmetric cross-ply arrangement, as shown in Figure 2.6. The laminate is made
out of eight identical plies with the following mechanical properties: E, =134.4x 10°
Pa;E, = E, =10.34x10° Pa;G, =G, =4.999x10° Pa; G, =1.999x10° Pa;

Vi, =V, =V,, =0.33; p=1480 kg/m’. The plate has alength L =127 mm and a
widthb =12.7 mm. Two different plate thicknesses, #=1.016mm and 4 =10.16mm
resulting in the two cases of L/h =125 and L/h=12.5, are considered. The

uniform plates have configurations [(90/0)2 ]S at the left and right ends respectively

(see Figure 2.6).

By using the mechanical behaviors of these two uniform configurations calculated in
chapter 2, we use the Finite Element Method to compute their free vibration natural
frequencies. The 36-element mesh is taken to calculate the results in this example, and

the results have been compared with the results given in ref. [12].

In this example, two types of boundary conditions for these two uniform

configurations are studied as follow:
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Case 1: one of the short edges fixed and the other three edges free

Case 2: both of the short edges fixed and both of the long edges free

In ref. [12], three kinds of methods are used to calculate the free vibration frequencies,
and some experimental results were obtained in this paper. The three methods are: the
higher order theory (HOT), the classical laminate plate theory (CLPT), and the first
order shear deformation theory (FSDT). We calculate the results using Finite Element
Method and based on CLPT. A total of 36 elements were used. We can see all the

results of free vibration frequencies in Table 4.1 and Table 4.2.

First, we consider the boundary condition of one of the short edges fixed and other
three edges free (Case 1). The natural frequencies for the two uniform composite
plates (L/h=125 and L/h=12.5) are calculated using Finite Element Method, and the

results are given in Table 4.1.

Table 4.1 The natural frequencies of uniform composite plates with one of the short

edges fixed and other three edges free (unit: Hz)

CLPT FSDT Experimental HOT FEM
L/b
[12] [12] [12] [12] (36 clements)
125 82.15 82.12 79.83 82.11 79.01
12.5 820.52 795.09 789.22 790.17
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Next, we consider the boundary condition of both of the short edges fixed and both of
the long edges free (Case 2). The natural frequencies for the two uniform composite
plates (L/h=125 and L/h=12.5) are calculated using Finite Element Method, and the

results are given in Table 4.2.

Tuble 4.2 The natural frequencies of uniform composite plates with both of the short

edges fixed and both of the long edges free (unit: Hz)

CLPT FSDT HOT FEM
L/h
[12] [12} [12] (36 elements)
125 522.85 521.15 520.72 502.93
12.5 4664.4 4058.6 3885.5 5029.34

From the Table 4.1 and Table 4.2, we can see that the results calculated using Finite
Element Method are very close to the results for the uniform plate configuration
(L/h=125). For example, for the uniform plate configuration (L/h=125) in Case 1, the
experimental result of natural frequency is 79.83(Hz), whereas the result calculated
using Finite Element Method is 79.01(Hz), therefore meaning that the present method
is efficient for prediction of the natural frequencies for the thin plate configuration.
For the uniform plate configuration with L/h=12.5, the result is not as good as that for

configuration with L/h=125, because the plate’s thickness is large, and therefore the
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higher order theory and shear deformatjon theory must be used to analyze the plate

configuration with large thickness.

4.4.2 Example Calculation for the Free Vibration of Tapered Composite Plates

In this part, four different kinds of tapered composite plate configurations,
Configuration A, Configuration B, Configuration C, and Configuration D are
considered (see Figures 2.7, 2.8, 2.9, and 2.10). Thereafter, we use the Finite Element
Method and Ritz Method to calculate the free vibration frequencies of the tapered
composite plate configurations. The example is given below and it is the same

problem as that of the examples given in Chapter 2 and Chapter 3.

The tapered composite plate configurations are depicted in Figures 2.7, 2.8, 2.9, and
2.10. The laminates are made up of the NCT301 graphite/epoxy material with
symmetric cross-ply arrangement. The laminates have twelve plies in the left side and
six plies in the right side. For configurations A, B and C, the tapered plates have
lay-up configurations [(O /90), ]S at the left end and [0/90/O]S at the right end
respectively. For configuration D, the tapered plate has lay-up configurations

[O /resin/90/0/0/ 9O]S at the left end and [0/90/ O]s at the right end respectively.
The ply has the following mechanical properties:

E =113.9 GPa, E,=E, =79 GPa, v,=028 , v,=04, v, =002

2
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G, =3.1 GPa, G, =3.1 GPa, G, =28 GPa, p=1480 kg/m’, h,=0.138
mm, p=1480 kg/m’.

The mechanic’al properties of the epoxy resin are given as:

E=393 GPa, G=1.034 GPa, v=037, p, =1200 kg/m".

The geometric properties of the tapered composite plates are: the length a is 240 mm
and the width b is 240 mm, and the thickness changes in x direction from 2.208 mm

to 1.104 mm.

By using Finite Element Method and Ritz Method, we calculate the free vibration
frequencies of the tapered composite plate configurations under three different

boundary conditions.

1. Boundary condition: Four simply supported edges

Under this boundary condition, the three modes of natural frequencies are calculated

using Finite Element Method and Ritz Method. The results are shown in Table 4.3,

Table 4.4, and Table 4.5, and in Figure 4.5 and Figure 4.6 also, for the four tapered

composite plate configurations.
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Table 4.3 I mode natural frequencies of tapered composite plate configurations with

four simply supported edges (unit: rad/s)

Finite Element Solution

Ritz Solution

Taper

Configuration | 12 elements | 24 elements | 36 elements | 4-Terms 3-Terms 2-Terms
A 543.9 587.2 596.5 596.0 595.6 589.2
B 543.9 580.2 589.3 588.4 587.5 581.5
C 549.1 590.9 599.9 595.3 594.7 588.4
D 521.2 563.8 577.1 576.8 575.4 569.6

In table 4.3, we can see that the results of 36 elements and 24 elements using finite

element method are much closer, and the results of 3 terms and 4 terms using Ritz

method are also much closer. Therefore, the 36 elements result for finite element

method and 3 terms results for Ritz method are used as the converged results to be

compared below.

Table 4.4 2™ mode natural frequencies of tapered composite plate configurations with

Jfour simply supported edges (unit: rad/s)

Taper Finite Element Solution
Ritz Solution (3 terms)
Configuration (36 elements)
A 1425.1 1423.5
B 1415.1 1412.4
C 1468.6 1448.9
D 1397.1 1396.1
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Table 4.5 3" mode natural frequencies of tapered composite plate configurations with

Sfour simply supported edges (unit: rad/s)

Taper Finite Element Solution
Ritz Solution (3 terms)
Configuration (36 elements)
A 1832.8 1820.7
B 1844.1 1805.6
C 1848.4 1799.3
D 1822.2 1770.1

—& FEM
- Ritz(3)

Figure 4.5 I’ mode natural frequencies of tapered composite plates with four edges

simply supported calculated using Finite Element and Ritz Methods
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Figure 4.6 The natural frequencies of three modes of tapered composite plate

configurations with four edges simply supported calculated using FEM

In Figure 4.5, the graphs show that the 1" mode natural frequencies of the four
tapered composite plate configurations calculated using Finite Element Method are
very close to the results calculated using Ritz Method. From the Table 4.4 and Table
4.5, it can be seen that the Finite Element Method and Ritz Method also have much

closer results for the 2™ and 3™ mode natural frequencies.

In Figure 4.6, we can see that Taper Configuration C has the highest natural

frequencies in all the three modes, whereas Taper Configuration D has the lowest
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natural frequencies in all the three modes. The natural frequencies of Taper
Configuration A and Taper Configuration B have the natural frequencies between the
other two configurations. The same trend has been observed in the results obtained

using Ritz Method.

2. Boundary condition: Four clamped plate edges

Under this boundary condition, the three modes of natural frequencies are calculated
using Finite Element Method and Ritz Method. The results are shown in Table 4.6,
Table 4.7, and Table 4.8, and in Figure 4.7 and Figure 4.8 also, for the four tapered

composite plate configurations.

Table 4.6 I' mode natural frequencies of tapered composite plate configurations with

four clamped plate edges (unit: rad/s)

Taper Finite Element Solution
Ritz Solution (3 terms)
Configuration (36 elements)
A 1292.7 1280.8
B 1283.7 1269.9
C 1301.3 1282.1
D 1249.6 1241.5
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Table 4.7 2' mode natural frequencies of tapered composite plate configurations with

four clamped plate edges (unit: rad/s)

Taper Finite Element Solution
Ritz Solution (3 terms)
Configuration (36 elements)
A 2274.5 23123
B 2262.7 2297.1
C 2327.8 2342.6
D 2235.1 2278.6

Table 4.8 3" mode natural frequencies of tapered composite plate configurations with

four clamped plate edges (unit: rad/s)

Taper Finite Element Solution
Ritz Solution (3 terms)
Configuration (36 elements)
A 2773.8 3298.1
B 2793.8 3397.1
C 2796.6 3268.9
D 2744.9 3268.8
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Fzgure 4.7 I mode natural frequencies of tapered composzte plate configurations with
four clamped edges calculated using Finite Element and Ritz Methods
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Figure 4 8 vy hree natural frequencies of all tapered composzte plate configurations with
four clamped edges calculated using FEM

126



In Figure 4.7, the graphs show that the 1% mode natural frequencies of the four
tapered composite plate configurations calculated using Finite Element Method are
very close to the results calculated using Ritz Method. From the Table 4.7 and Table
4.8, it can be observed that the Finite Element Method and Ritz Method have closer
results for the 2" mode natural frequencies, but the results for 3 mode natural

frequencies have some differences.

In Figure 4.8, we can see that Taper Configuration C has the highest natural
frequencies in all the three modes, whereas Taper Configuration D has the lowest
natural frequencies in all the three modes. The natural frequencies of Taper
Configuration A and Taper Configuration B have the natural frequencies between the
other two configurations. The same trend has been observed in the results obtained

using Ritz Method.

3. Boundary condition: One edge clamped and three edges free

Under this boundary condition, the two modes of natural frequencies are calculated
using Finite Element Method and Ritz Method. The results are shown in Table 4.9 and
Table 4.10, and in Figure 4.9 and Figure 4.10 also, for the four tapered composite

plate configurations.
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Tuble 4.9 I°' mode natural frequencies of tapered composite plate configurations with

one clamped edge and three free edges (unit: rad/s)

Taper Finite Element Solution
Ritz Solution (9 terms)
Configuration (36 elements)
A 234.4 228.2
B 245.5 232.0
C 242.9 229.6
D 234.6 221.7

Tuble 4.10 2" mode natural frequencies of tapered composite plate configurations

with one clamped edge and three free edges (unit: rad/s)

Taper Finite Element Solution
Ritz Solution (9 terms)
Configuration (36 elements)
A 1141.0 1127.8
B 1148.0 848.9
C 1149.9 848.5
D 1112.3 826.2
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Figure 4 9 I’ mode natural frequencies of tapered composzte plates with one clamped
edge and three free edges calculated using Finite Element and Ritz Methods
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Figure 4 1 0 The natural frequencies of two modes of all tapered composite plate
configurations with one clamped edge and three fiee edges calculated using FEM
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In Figure 4.9, the graphs show that the 1% mode natural frequencies of the four
tapered composite plate configurations calculated using Finite Element Method are
very close to the results calculated using Ritz Method. From the Table 4.9, results of

2" mode natural frequencies have some differences using these two methods.

In Figure 4.10, we can see that Taper Configuration B has the highest natural
frequencies in both the two modes, whereas Taper Configuration D has the lowest
natural frequencies in both the two modes. The natural frequencies of Taper
Configuration A and Taper Configuration C have the natural frequencies between the
other two configurations. The same trend has been observed in the results obtained
using Ritz Method. Here, we can see that the frequencies of the four tapered

composite plate configurations are much closer for this kind of boundary condition.

4.5 Conclusion

In this chapter, the uniform composite plate configuration and tapered composite plate
configurations are considered. By using the results given in Chapter 2 and Chapter 3,
we have calculated the free vibration frequencies for uniform plate configuration and
taper configurations using Finite Element Method and Ritz method. For the uniform

composite plate configuration, we have chosen the plate configuration according to
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the uniform configuration considered in ref. [12]. By comparing our results of free
vibration frequencies with the results given in ref [12], we observe that much closer
results have been obtained in the present work. For the tapered composite plate
configurations, the Finite Element Method and Ritz Method are used to calculate the
1 mode, 2™ mode and 3™ mode free vibration frequencies. The calculation shows
that the two methods yield closer results. The calculation and results of this chapter
provide a good preparation for the dynamic instability analysis in the following

chapter.
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Chapter 5

Buckling Analysis of Uniform and Tapered Composite Plates Using

Finite Element Method and Ritz Method

5.1 Introduction

Composite plates are widely used in civil, mechanical and aerospace structures.
In this chapter, the uniform composite plate configuration and four tapered composite
plate configurations are considered. By using the formulation developed in Chapter 3,
we calculate the critical buckling loads of the composite plate configurations using
Finite Element Method and Ritz Method. We will derive the formulations for
calculating buckling loads based on classical laminate theory for Finite Element
Method and Ritz Method. By using the results of mechanical behavior of tapered
composite plate configurations calculated in Chapter 2 and the stiffness matrices of
uniform and tapered composite configurations calculated in Chapter 3, we can obtain
the results of critical buckling loads for the uniform and tapered plate configurations.
All of the results will be used in instability analysis for different kinds of composite

plate configurations in the following chapter.
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5.2 Finite Element Buckling Analysis of Uniform and Tapered Composite Plate

Configurations

In formulating the plate elements for buckling analysis, the effect of in-plane
compressive stresses is included and expressed in the form of incremental stiffness
matrix. The potential energy or work done in a plate element due to the in-plane

forces can be obtained as follow (see Figure 5.1) [22]:

74

[

Figure 5.1 In-plane direct and shearing forces on an element

W, =[Nz, +Ne, +N

4
x)’yx)’

Ydxdy (5.1)

'
xx ?

where, € 8;)), and }/;y are the in-plane strains resulting from the deflection w, .

By considering the thin plate assumption as in Chapter 2, the in-plane strain owed to
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transverse displacement can be written in the following form:

’ 1 a.W;() 2
— (0 5.2
=) (5.2)
o =L@y (53)
Pl 2 ay
yro= O O (5.4)
Y ox oy

Therefore, by substituting the equations (5.2), (5.3) and (5.4) into equation (5.1), the
potential energy or work done in a plate element due to the in-plane forces can be

written as follow [37]:

oWy

=5 LT,

2 8M)O aw()

where, N, =0 h, N, =c,h, N =7_h and o, o,, and 7, are the normal
stresses in the x direction and y direction and the shearing stress respectively, as it can
be seen in Figure 5.1. The work done in a plate element due to the in-plane forces and

transverse loads can be obtained as follow:
W=W,+W, (5.6)

where W, is the work done due to the transverse loads, W, is the work done due to

m
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the in-plane forces.

If there are no transverse loads applied to the plate element, the equation of the work

done in a plate element can be obtained as follow:
1 ow ow, ow, . Ow

w== N (=2 +N () + 2N (%) —"1dxd 5.7
3 [ IV om0t v, (G5 sy (57

For the plate configurations, the equations of motion can be obtained by use of the

Lagrange’s equation as follow:

d or. oUu,+w
dt o4, aq,

H

- F, (5.8)

When the potential energy of the equation (5.7) is included in strain energy

U=U,+W of the equation (5.8), the following equation can be obtained:

{F}=[lk]+ [n]- o [mhiq} (5.9)

{F }: the vector of the nodal forces of the element
{q}: the vector of nodal displacements of the element
[k]: the stiffness matrix of the element

[m]: the mass matrix of the element

@’ : the eigenvalue
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@ : the natural frequency

[n]: the incremental stiffness matrix of the element

In the case of static problem, the equation (5.8) can be changed to the following form:

B
U _ 9 w,+w)=F (5.10)

0q; 9q,

{F}=(k}+ b} (5.11)

According to the procedure given in the Chapter 3, we can get the stiffness matrix of
the element. In the equation (5.9), the matrix [n] is the incremental stiffness matrix,
and we can obtain [n] using the following steps:

From the equation (5.7), and considering the equation (4.12) in the chapter 4, we

obtain the following equations:

3
(—) —(Z f(x N (5.12)
3
(——“—) —(Z f(x y) )’ (5.13)
3 3
(ﬁ_O_)Ey__(Z (%, ) q,) (Z f(x J’) ' (5.14)

And then, we can get the following equation forms:



a(a;}o)z 2 12 of (x, y) of (x,y)
X :222 iHY) vk -q

aqi i=l j=1 ox ox 4 (515)
(- O) 2 12
2zzaf(x » o, E(; ., -
a[(8w°)a”’°]
77777 212 8 3 5 5
___a__.___ ZZ f(x y) fg; ») fg;y) fé); y)] . 517

ow . . .
Therefore, one term, ——, in the equation (5.10) can be written as follow:

12 12 af f of, iff_ of, _511_ éf_'ai .
f-;;ff{ oD oL NG L NG+ (0 g,

(5.18)

Hereafter, the incremental stiffness coefficients of the matrix [n] can be obtained by

using the following equations:

of, f af & . oY
n, = ff{ DS NIG ) (L )-]} (5.19)

Thereafter, we can get the incremental stiffness matrix [n] for the 4x4 and 6x6

meshes. After we assemble all the incremental stiffness matrix of every element, we
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get the system incremental stiffness matrix [N ] of the composite plate structural
system. By using the system stiffness matrix [K ], the equation of motion for the

plates can now be written as:

{P}=[K]-fo}+ [N]- o} + [M]- 0} = {K ]+ [N]- 0* - [M]}- o} (5.20)

{P}: the vector of the nodal forces of the structural system
{Q}: the vector of nodal displacements of the structural system
[K]: the stiffness matrix of the structural system

[M ]: the mass matrix of the structural system

[V ]: incremental stiffness matrix of the structural system

When there is only in-plane forces applied to the uniform or tapered composite plates,
and only the in-plane force in x direction is applied to the plate, the equation can be

written:

o}={k]+IN} o [K]+ N, [V]=1{0} (5.21)

N, : the buckling force

By solving the eigenvalue equation (5.21) above, we can get the critical buckling

force (the lowest N, is the critical buckling load N, ) N, of the composite plate
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configuration.

Here, we consider three kinds of boundary conditions: four edges simply supported,
four edges clamped and one edge clamped with three edges free. By considering the
boundary conditions, it is common and efficient practice to formulate the condensed

stiffness matrix [K ] instead of the whole stiffness matrix [K] based on the

zero-displacement conditions. Respectively, we can formulate the condensed

’
incremental stiffness matrix [N | instead of the whole incremental stiffness matrix

[N] based on the zero-displacement conditions. By use of the condensed stiffness
matrix [K ], and the condensed incremental stiffness matrix [N]’ for different
boundary conditions, we can get the buckling forces that correspond to different
boundary conditions. Finally, we can calculate the buckling forces of 1" mode, 2™
mode and 3" mode for the uniform composite plate configurations and tapered

composite plate configurations.

5.3 Ritz Method Buckling Analysis of Uniform and Tapered Composite Plate

Configurations

The analysis of buckling of the uniform and tapered composite plate configurations

can also be obtained by Ritz Method. In the case of orthotropic plates the strain
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energy is given by equation as follow, when we consider the equation (4.2) of energy

in Chapter 4.

In the case of orthotropic plates the strain energy can be reduced as follow:

1 o’w o’w 82w o’w
U, :5 f f[Dn(E;go‘)z +2D12?20 ayz Dzz( ay ) +4D66

(5.22)

The work done in a plate configuration due to the in-plane forces and transverse loads

can be obtained as follow:
W=Ww,+W, (5.23)

where, W, is the work done due to the transverse loads, and W, is the work done

due to the in-plane forces.

Similarly, the potential energy W, of the in-plane loads owed to deflection w; is

written as follow:

ow, Ow,
N N—O 2N _ —2 " dxd 5.24
H( )N, ) N, T My (5.24)

If there are no transverse loads applied on the laminated plates, the work can be

140



expressed as follow:

W=W,

m

Thereafter, the total potential energy is obtained as follow:

0’ 0’
:l f f[Dn( "‘2’0 +2D,, o %o 2 M Dzz( ) T4l o
2 Ox o’ oy’ oy’ Ox0y
ow, ow, ow, ow,
+ N (=2 + N, (-2 +2N,, —*—]dxdy (5.23)
T oOx T oy Ox Oy

By virtue of the principle of the stationary potential energy, we have the equation:

U _ 0 (w,+wy=0 (5.24)

o4, o4

mn

Here, we consider three kinds of boundary conditions for the tapered composite plate

configurations:
1. For the boundary condition of the four edges simply supported of the uniform or

tapered composite plate configurations, the shape function can be written as

wy(x,y) = ZZA,M sm—~ smn—b@— (5.25)

m=1 n=1

2. For the boundary condition of the four edges clamped of the uniform or tapered
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composite plate configurations, the shape function can be written as

M N xzx 2xmA1y2y Zym—l
men=32a 5 (5 (55 (51 () e

3. For the boundary condition of one edge clamped and with the other three edges free,

the shape function can be written as:

m(n—1)

w,(x) = iAn (1—cos ) (5.27)

We consider only one direction in-plane load N_. By substituting equation (5.23)
into equation (5.24) and considering the different displacement functions

corresponding to different boundary conditions, we can get the eigenvalue equation

of N

xcr ?

and it can be written as follow:

1 o’w, 0%w, 0°w, o’w
G [ Jon G5 #2007 3 s D 44D

a 2
9 P02 Yaxdy)
oA, Ox0y

0 ow,
+— N (=) dxdy =0 5.28
aAmff A0y dsdy (5.28)

If wechoosem=1,2,....,M,andn=1,2, ........ , N in the shape functions, we can

get the following equation about the By

mn
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aUd 3 N N .
= =>3G,, 4, (5.29)

mn 1 1

Similarly, if we choose m =1, 2, ..., M,and n = 1, 2, ........ , N in the shape
. . . ow
functions, we can get the following equation about the :
W N M
W SV H,, 4, (5.30)
1 1

04,,
Hereafter, we can write the equation (5.28) in the following form:

fﬂ A =0 (5.31)

Then, we can reduce the equation (5.31), and express the eigenvalue equation

of N, in the following matrix form:
[6k4,,}- V.. [H}4,,}=0 (5.32)

For the first two boundary conditions, we set m = n =2 and m = n = 3 to analyze the
different kinds of tapered composite plate configurations for the critical buckling
loads. For the third boundary condition, we set n = 9 to analyze the different kinds of

tapered composite plate configurations. We can get the results of the critical buckling



forces for 1% mode, 2" mode and 3™ mode.

We can also know the 1% mode, 2™ mode and 3™ mode corresponding to the buckling
forces for the plate configurations in Figure 4.3 in Chapter 4. The mode shape is the

same as that obtained using Finite Element Method.

5.4 Example Calculations of the Critical Buckling Loads for the Uniform and

Tapered Composite Plate Configurations

In this part, the uniform and tapered composite plate configurations are considered.
By using the results in Chapter 2 and Chapter 3, we calculate the critical buckling
loads for uniform and tapered composite plate configurations using Finite Element
Method and Ritz method in the following examples. For the uniform composite
configuration, we choose the plate configuration according to the uniform plate
configuration given in ref. [12], and compare our results of the critical buckling loads
with the results given in ref. [12]. For the tapered composite plate configurations, the
Finite Element Method and Ritz Method are used to calculate the 1 mode, 2" mode

and 3" mode buckling loads.
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5.4.1 Example Calculations of Critical Buckling Loads for the Uniform

Composite Plates

A uniform rectangular laminated plate is made up of the graphite/epoxy material and
with symmetric cross-ply arrangement, as shown in Figure 2.6. The laminate is made
of eight identical plies with the following mechanical properties: E; =134.4x 10° Pa;
E,=E, =10.34x10° Pa; G, =G,, =4.999x10° Pa; G, =1.999x10° Pa;

v,, =V,, =V, =033 The plate has alength L =127mm and a widthb =12.7mm .
Two different plate thicknesses, # =1.016mm andh =10.16mm resulting in the two
casesof L/h=125 and L/h=12.5 are considered. The uniform plates have

configurations [(90/0)2 ]s at the left and right ends respectively (Figure 2.6).

By using the equations of mechanical behavior of these two uniform configurations
derived in Chapter 2, and using the Finite Element Method, we compute the critical
buckling loads. The 36-element mesh is taken to calculate the results in this example,

and the results have been compared with the results given in ref. [12].

In this example, two types of boundary conditions for these two uniform

configurations are studied as follow:

Case 1: one of the short edges fixed and the other three edges free

Case 2: both of the short edges fixed and both of the long edges free
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In ref. [12], three kinds of methods are used to calculate the critical bucking loads.
The three methods are: the higher order theory (HOT), the classical laminate plate
theory (CLPT), and the first order shear deformation theory (FSDT). We calculate the
results using Finite Element Method based on CLPT. A total of 36 elements were used.

We can see all the results of free vibration frequencies in Table 5.1 and Table 5.2.

First, we consider the boundary condition of one of the short edges fixed and other
three edges free (Case 1). The critical buckling loads for the two uniform composite
plates (L/h=125 and L/h=12.5) are calculated using Finite Element Method, and the

results are given in Table 5.1.

Table 5.1 The critical buckling loads of uniform composite plates with one of the short

edges fixed and other three edges free: (unit: N)

CLPT FSDT HOT FEM
L/h
[12] [12] [12] (36 elements)
125 16.43 16.38 16.33 16.37
12.5 16344 15772 15364 16370

Next, we consider the boundary condition of both of the short edges fixed and both of
the long edges free (Case 2). The critical buckling loads for the two uniform

composite plates (L/h=125 and L/h=12.5) are calculated using Finite Element Method,
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and the results are given in Table 5.2.

Table 5.2 The critical buckling loads of uniform composite plates with both of the

short edges fixed and both of the long edges free: (unit: N)

CLPT FSDT HOT FEM
L/h
[12] [12} [12] (36 elements)
125 261.62 260.11 259.73 262.33
12.5 261623 165644 152179 262336

From the Table 5.1 and Table 5.2, we can see that the results calculated using Finite
Element Method are very close to the results for the uniform plate configuration
(L/h=125). For example, for the uniform plate configuration (L/h=125) in Case 1, the
results of FSDT and HOT are 16.38 (N) and 16.33 (N) respectively, whereas the result
calculated using Finite Element Method is 16.37 (N), therefore meaning that the
present method is efficient for predicting the critical buckling loads for the thin plate
configuration. For the uniform plate configuration with L/h=12.5, the result is not as
good as that for configuration with L/h=125, because the plate’s thickness is large,
and therefore the higher order theory and shear deformation theory must be used to

analyze the plate configuration with large thickness.
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5.4.2 Example Calculation for the Critical Buckling Loads of Tapered Composite

Plates

In this part, four different kinds of tapered composite plate configurations,
Configuration A, Configuration B, Configuration C, and Configuration D are
considered (see Figures 2.7, 2.8, 2.9, and 2.10). Thereafter, we use the Finite Element
Method and Ritz Method to calculate the critical buckling loads of the tapered
composite plate configurations. Similarly as it is in chapter 4, the example is given
below, and it is the same problem as that of the examples given in chapter 2 and

chapter 3.

The tapered composite plate configurations are depicted in Figures 2.7, 2.8, 2.9, and
2.10. The laminates are made up of the NCT301 graphite/epoxy material with
symmetric cross-ply arrangement. The laminates have twelve plies in the left side and
six plies in the right side. For conﬁguratioﬁs A, B and C, the tapered plates have
lay-up configurations [(O /90), ]S at the left end and {O/ 90/ O] ; at the right end
respectively. For configuration D, the tapered plate has lay-up configuration

[O/re sin/90/0/0/90], at the left end and [O 190/ O]S at the right end respectively.
The ply has the following mechanical properties:

E =1139GPa, E,=FE, =79GPa, v, =028, v;=04, v,=002, G, =3.1

GPa, G, =3.1 GPa, G, =28 GPa, p=1480 kg/m', h,=0.138 mm.
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The mechanical properties of the epoxy resin are given as:

E=393 GPa, G=1.034 GPa, v=037, p, =1200 kg/m’.

The geometric properties of the tapered composite plates are: the length a is 240 mm
and the width b is 240 mm, and the thickness changes in x direction from 2.208 mm

to 1.104 mm.

By using Finite Element Method and Ritz Method, we calculate the critical buckling
loads of the tapered composite plate configurations under three different boundary

conditions.

1. Boundary condition: Four simply supported edges.

Under this boundary condition, the three modes of the critical buckling loads are

calculated using Finite Element Method and Ritz Method. The results are shown in

Table 5.3, Table 5.4, and Table 5.5, and in Figure 5.2 and Figure 5.3 also, for the four

tapered composite plate configurations.
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Table 5.3 I'' mode critical buckling loads of tapered composite plate configurations

with four simply supported edges (unit: N/m)

Finite Element Solution

Ritz Solution

Taper

Configuration | ]2 elements | 24 elements | 36 elements | 4-Terms 3-Terms 2-Terms
A 2560 3386 3496 3305 3320 3358
B 2575 3438 3549 3335 3350 3391
C 2592 3524 3635 3404 3422 3470
D 2539 3213 3373 3192 3255 3274

In table 5.3, we can see that the results of 36 elements and 24 elements using finite

element method are much closer, and the results of 3 terms and 4 terms using Ritz

method are also much closer. Therefore, the 36 elements result for finite element

method and 3 terms results for Ritz method are used as the converged results to be

compared below.

Table 5.4 2™ mode critical buckling loads of tapered composite plate configurations

with four simply supported edges (unit: N/m)

Taper Finite Element Solution Ritz Solution
Configuration (36 elements) 3 Terms 2 Terms
A 10950.3 10720.3 10432.4
B 10961.1 10811.0 10868.2
C 10969.1 10833.2 10701.7
D 10845.6 10622.6 10268.1
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Table 5.5 3" mode critical buckling loads of tapered composite plate configurations

with four simply supported edges (unit: N/m)

Taper Finite Element Solution
Ritz Solution (3 Terms)
Configuration (36 elements)
A 7098.8 8131.51
B 7158.4 8262.7
C 7133.5 8254.6
D 6969.8 7848.4

—& FEM
-x- Ritz(3)

---------
..........

. ., ;
. Configurations (AB C Dy represented as F

Figure 5.2 I’ mode critical buckling loads of tapered composite plates with four edges

simply supported calculated using Finite Element and Ritz Methods
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Figure 5.3 The three mode critical buckling loads of tapered composite plate

configurations with_four edges simply supported calculated using FEM

In Figure 5.2, the graphs show that the 1 mode critical buckling loads of the four
tapered composite plate configurations calculated using Finite Element Method are
close to the results calculated using Ritz Method. As it can be seen from the Table 5.4,
Finite Element Method and Ritz Method also have much closer results for the 2"
mode critical buckling loads. From Table 5.5, 3" mode critical buckling loads have

some differences between the two methods.
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In Figure 5.3, we can see that Taper Configuration C has the highest critical buckling
loads in all the three modes, whereas Taper Configuration D has the lowest critical
buckling loads in all the three modes. The critical buckling loads of Taper
Configuration A and Taper Configuration B have the values between the other two
configurations. The same trend has been observed in the results obtained using Ritz

Method.

2. Boundary condition: Four clamped plate edges.

Under this boundary condition, the three modes of critical buckling loads are
calculated using Finite Element Method and Ritz Method. The results are shown in
Table 5.6, Table 5.7, and Table 5.8, and in Figure 5.4 and Figure 5.5 also, for the four

tapered composite plate configurations.

Table 5.6 I mode critical buckling loads of tapered composite plate configurations

with four clamped plate edges (unit: N/m)

Taper Finite Element Solution
Ritz Solution (3 terms)
Configuration (36 elements)
A 12854 11960
B 13134 12280
C 13383 12430
D 12400 11770
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Table 5.7 2" mode critical buckling loads of tapered composite plate configurations

with four clamped plate edges (unit: N/m)

Taper Finite Element Solution
Ritz Solution (3 terms)
Configuration (36 elements)
A 20968.1 22610
B 21017.9 22810
C 21098.4 22940
D ‘ 20695.2 22320

Table 5.8 3™ mode critical buckling loads of tapered composite plate configurations

with four clamped plate edges (unit: N/m)

Taper Finite Element Solution
Ritz Solution (3 terms)
Configuration (36 elements)
A 14639.4 18660
B 14729.8 18840
C 14725.3 18660
D 14276.8 18620
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Figure 5. 4 I°" mode critical bucklma loads of tapered composzte plates with four
edges clamped calculated using Finite Element and Ritz Methods
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Figure 5.5 The critical buckling loads of three modes of tapered composzte plate
configurations with four edges clamped calculated using FEM
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In Figure 5.4, the graphs show that the 1% mode critical buckling loads of the four
tapered composite plate configurations calculated using Finite Element Method are
close to the results calculated using Ritz Method. From the Table 5.7 and Table 5.8, it
can be seen that the Finite Element Method and Ritz Method have closer results for
the 2™ mode critical buckling loads, but the results for 3™ mode critical buckling

loads have some differences.

In Figure 5.5, we can see that Taper Configuration C has the highest critical buckling
loads in all the three modes, whereas Taper Configuration D has the lowest critical
buckling loads in all the three modes. The critical buckling loads of Taper
Configuration A and Taper Configuration B have the critical buckling loads between
the other two configurations. The same trend has been observed in the results obtained

using Ritz Method.

3. Boundary condition: One edge clamped and three edges free

Under this boundary condition, the two modes of critical buckling loads are calculated

using Finite Element Method and Ritz Method. The results are shown in Table 5.9 and

Table 5.10, and in Figure 5.6 and Figure 5.7 also, for the four tapered composite plate

configurations.
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Table 5.9 I'' mode critical buckling loads of tapered composite plate configurations

with one edge clamped and three edges free (unit: N/m)

Taper Finite Element Solution
Ritz Solution (9 terms)
Configuration (36 elements)
A 676.7 676.5
B 694.1 694.1
C 685.9 685.8
D 649.4 649.8

Table 5.10 2 mode critical buckling loads of tapered composite plate configurations

with one edge clamped and three edges free (unit: N/m)

Taper Finite Element Solution
Ritz Solution (9 terms)
Configuration (36 elements)
A 4461.3 4453.3
B 4555.5 4547.0
C 4516.8 4508.4
D 4397.72 4391.21
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Figure 5.7 The critical bucklmg loads of two modes of four tapered composite plate
configurations with one edges clamped and three edges free calculated using FEM
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In Figure 5.6, the graphs show that the 1®* mode critical buckling loads of the four
tapered composite plate configurations calculated using Finite Element Method are
much closer to the results calculated using Ritz Method. From the Table 5.10, it can
be seen that the results for 2°? mode critical buckling loads obtained using these two

methods are closer.

In Figure 5.7, we can see that Taper Configuration B has the highest critical buckling
loads in both the two modes, whereas Taper Configuration D has the lowest critical
buckling loads in both the two modes. The critical buckling loads of Taper
Configuration A and Taper Configuration C have the critical buckling loads between
the other two configurations. The same trend has been observed in the results obtained
using Ritz Method. Here, we can see that the critical buckling loads of the four
tapered composite plate configurations are much closer for this kind of boundary

condition.

5.5 Conclusion

In this chapter, the uniform composite plate configuration and tapered composite plate
configurations are considered. By using the results given in Chapter 2 and Chapter 3,
we have calculated the critical buckling loads for uniform plate configuration and

tapered plate configurations using Finite Element Method and Ritz method. For the
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uniform composite plate configuration, we have chosen the plate configuration
according to the uniform configuration considered in ref. [12]. By comparing our
results of critical buckling loads with the results given in ref. [12], we observe that
much close results have been obtained in the present work. For the tapered composite
plate configurations, the Finite Element Method and Ritz Method are used to calculate
the 1% mode, 2™ mode and 3™ mode critical buckling loads. The calculation shows
that the two methods yield close results. The calculation and results of this chapter
and Chapter 4 provide a good preparation for the dynamic instability analysis in the

following chapter.
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Chapter 6

Dynamicﬁlhstébility Analysis of Uniform and Tapered Composite Plates

6.1 Introduction

Composite plates are widely used in civil, mechanical and aerospace structures. In
this chapter, the uniform composite plate configuration and four tapered composite plate
configurations are considered. By using the thin plate assumption as in Chapter 3, in this
chapter, we calculate the first-order approximation of the first two instability regions for
the composite plate configurations using Finite Element Method and Ritz Method. We
will derive the formulations based on classical laminate plate theory for analyses using
Finite Element Method and Ritz Method. By using the results of mechanical behavior,
the stiffness matrix, the mass matrix, and the incremental stiffness matrix of the uniform
and tapered composite plate configurations that were calculated in Chapter 2, Chapter 3,
Chapter 4, and Chapter 5 respectively, we can determine the instability regions for the
uniform and tapered composite plate configurations. The results of instability regions for
the uniform composite plate configurations will be compared with the results given in ref.

[12].
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6.2 Dynamic Instability Analysis of Uniform and Tapered Composite Plate

Configurations Using Finite Element Method

In Chapter 3, Chapter 4 and Chapter 5, we have obtained the stiffness matrix [K ], the
mass matrix [M ] and the incremental stiffness matrix [V] for the structural system.

Therefore, the equation of motion for the plate can now be written as:

(P} =[k]-{o}+[N)-{o} + M- 10} 6.1)

where

{P} is the vector of the nodal forces of the structural system,

{Q} is the vector of nodal displacements of the structural system,
[K] is the stiffness matrix of the structural system,

[#] is the mass matrix of the structural system,

[V] is incremental stiffness matrix of the structural system,

and overdot denotes differentiation with respect to time.

The governing equation of the plate is obtained by reducing the equation (6.1) in matrix

form as follows:

[M1ig+ [k o} F.IvKo} = {o} (6.2)
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where, F, is in-plane dynamic buckling loading.

For analyzing the instability of the uniform and tapered composite plates, the plates are

subjected to in-plane dynamic buckling loading F,, and it can be expressed in terms of

the critical buckling load N_, as the following form:

F.=a,N,, +a/N,, cos(th) (6.3)

where,
a, is the static parameter,
«a, is the dynamic parameter,

0 is the parametric resonance frequency, and

0 /2w is the parametric ratio.

By substituting the equation (6.3) for the dynamic buckling loading into the governing
equation (6.2), the differential equation for the structural instability can be written as

follow:

[M]- {0} +1[K]- (@, +a, -cosér)- N, - [N]-{0} = {o} (6.4)
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This Mathieu type equation (6.4) describes the instability behavior of the plate subjected
to an in—plane loading which includes a static component and a dynamic component. By
solving the generalized eigenvalue problem of this equation, the instability regions can be

determined from the boundaries of the stability regions.

Dynamic instability of a structure can be caused by simple parametric resonance with
respect to one natural frequency or by combined resonance with respect to two natural
frequencies. In this case all dynamic instability regions are separated from dynamic
stability regions by periodic solutions with periods 7'=27/6 and 2T =47/6 . The
finding of the regions of instability reduces to the determination of conditions under
which the differential equation system (6.4) has periodic solutions with period " and 2T

[1].

To find conditions for the existence of periodic solutions with period 27, We seek the

solutions of the governing equation (6.4) in the form of a series [1]:

{Q(t)} = i ({ak } sinkgt— + {bk } cos %?t—) (6.5)

k=13,5

Similarly, to find conditions for the existence of periodic solutions with period 7', We

seek the solutions of the governing equation (6.4) in the form of a series [1]:
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owk=1 )+ X () sinf b} -cos D) ©6)

where, {a k} and {bk} are vectors which are independent of time. The series is obviously

equivalent to the n-term Fourier series for the components of vector {Q(t)}.

By substituting the series solutions into the governing equation (6.4) and by grouping the

sine terms and the cosine terms, two sets of linear algebraic equations in {a, } and {b, }

are obtained for each solution.

Hereafter, the determination of the instability regions 1 and 2 can be made by substituting

. . . . : . : . k6
the series solutions into the differential equation and comparing coefficients of smT

ko .. : . .
and cos—z— . For the nontrivial solutions, the resulting determinants must be equal to

zero. This leads to the following generalized eigenvalue problems.

For instability Regionl of the composite plate configurations, the boundaries can be

obtained using the following equation (see appendix):
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[K]-eoV [N} S, V-0 ] e, V] 0
1 9 1
—Ealecr[N] [K]——aONxcr[N]_ZHZ[M] _-ialecr[N]
0 an M KN, V-]
6.7)

The equation (6.7) determines the two boundaries of the first region of dynamic

instability of the uniform and tapered composite plate configurations corresponding to the

+ and — signs in the term [K]-a, N, [N]i%a,Nm, [N]-=6[M].

Similarly, for the instability Region2 of the composite plate configurations, the

boundaries can be obtained using the following equations (see appendix):

[K]-a,N_ [N]-6°[n] —%ale[N] o
San, M Klan, Vet ] Sev ] o
0 —%ale [V] [K]-a,N_ [N]-96*[M] ..

(6.8)
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and

K]-a,N,..[V] -a,N_,[N] 0 o ]
- % aN_ [Nl [K]-a,N, [N]-6%[M] - % a,N_ [N] o |

0 - %a] N_[N] [K]-a,N_ [N]-460[M] = % aN_[N] ..

0 0 - % a,N_ [N] [k]-a,N_ [N]-90*[Mm] ....]

(6.9)
The two equations (6.8) and (6.9) given above determine the two boundaries of the
second region of dynamic instability of the uniform and tapered composite plate
configurations.
1. One-term Solution for the Instability Regions for the Composite Plate Configurations
Hereafter, we consider the instability region of one-term solution for the composite plate

configurations. The one-term solutions of the governing equation (6.4) can be derived

from the equations (6.5) and (6.6), and they can be written as follow:

{0} = {a, }sin(6r/2) + b, jcos(6t/2) (6.10)
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{b, }+ {a, }sin(ér) + {b, }cos(6r) (6.11)

o | =

By substituting the solutions into the differential equation (6.4) and comparing

. . kO ko .. . : .
coefficients of sin— and cosT , for nontrivial solution, the resulting determinants

must be equal to zero. The following generalized eigenvalue problems for 1* Region and

2" Region are obtained.
For the 1* Instability Region of the uniform and tapered composite plate configurations,

by substituting equation (6.10) into the governing equation (6.4), it leads to the following

generalized eigenvalue problems.

0 (6.12)

i

[l ¥ V], )07

0 (6.13)

[i]- . )= .. V] 0]

Thereafter, we can obtain the upper boundary and lower boundary of the 1* instability

region from the two eigenvalue problems given above by equations (6.12) and (6.13).
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For the 2™ Instability Region of the uniform and tapered composite plate configurations,
by substituting equation (6.11) into the governing equation (6.4), it leads to the following

generalized eigenvalue problems.

[K]- N, [V]-6*[m] =0 (6.14)

[K]-a,N..,[N] ~aN,,[K]

1 [N]-62[M

—Ealecr[N] [K]_aON :0 (615)

xcr

We can also write the equation (6.15) as follow:

[k]-aN,, [N -an, V] ’o 0 J

8 = .
——;-alec,[N] K]-a,N N o ]’ 7" (6.16)

So we can obtain the upper boundary and lower boundary of the 2" instability region of
composite plate configurations from the two eigenvalue problem equations (6.14) and
(6.16).

2. Three-term Instability Region for the Composite Plate Configurations

The three-term solutions of the governing equation (6.4) can also be derived from the

equations (6.5) and (6.6), and they can be written as follow:
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{0} = {a, }sin(6r12) + {b, }cos(6r 1 2) + {a, }sin(36k 1 2) + {b, }cos(36r) +{as fsin(S6 / 2) + {b, feos(56t / 2)

(6.17)

0} = -;—{b0 L+ {a, bsin(6r) + {b, Jcos(6r) + {a, }sin(26r) + {b, }cos(26r) + {a, §sin(36F) + {b, fcos(36r)

(6.18)

For the 1*' Instability Region of the uniform and tapered composite plate configurations,
by substituting equation (6.17) into the governing equation (6.4), it leads to the following

generalized eigenvalue problem.

K]-a,N, [Nt e, [V]- 62 [m] ~LanIN] 0
0 xcr 2 4 2 C
1 9 1
—Ea]Nxcr[N] [K]"“CXONX”[N]—ZQZ[M] _Ealecr[N] :0
0 e N K-, V-2t ]
(6.19)

The eigenvalue problem equation (6.19) expresses the upper boundary and lower

boundary of the 1* instability region of the composite plate configurations corresponding

to the + and — signs in the term [K]-a N, [N]+ %ale, [N]——;;GZ [M].
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For the 2™ Instability Region of the uniform and tapered composite plate configurations,
by substituting equation (6.18) into the governing equation (6.4), it leads to the following

generalized eigenvalue problems.

[k]-aV, W0 ] -San,, V] 0

xcr
1

—yaN, V) [K]-aN,, [V]-467 (M ] =0

xer

1
_Ealecr[N]

0 [K]- eV, [V]-90°[Mm]

I
_Ea]N [N]

(6.20)

and

[K]-a,N.,[N]
- %alN [N]

xcr

_alecr [N]
[K]_aoN
1

xcr

[N]-67[m]

1

-—a,N
2

0

xecr

[¥]

1

0
0

[k]-a,N,, [N]-407[M]

xcr

0 -y aN [V]

xcr

_Ealecr[N]

0 0 [K]-a,N,, [N]-96*[M]

1
_’2”“1N [N]

6.21)

The eigenvalue problems given by equation (6.20) and (6.21) express the upper boundary
and lower boundary of the 2™ instability region of the composite plate configurations

respectively.
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6.3 Dynamic Instability Analysis of Uniform and Tapered Composite Plate

Configurations Using Ritz Method

Following the procedures given in Chapter 4 and Chapter 5, we can obtain the strain

energy of the composite plate configuration:

o’w o’w 0*w
= D, D, 4D, 2D, dxd 6.22
ff[( 2y + (ay) (ay)+ o Tl (6.22)

The potential (work) of the in—plane forces acting on the composite plate configuration is

given by:

ow dw
ff[N (G 4N (-5y-) +2N, a—gy—]dxdy (6.23)

The kinetic energy of the composite plate configuration is given by:
— j Ip(——) dxdy (6.24)
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Therefore, when a composite plate configuration undergoes free vibration, the deflection

of the plate has a sinusoidal variation with respect to time t:

w =W, - sin @t (6.25)

Hereafter, the strain energy, the potential (work) and the kinetic energy can be written as

follow:

U=U,,, -sin’ ot (6.26)

W=w__ -sin’ ot (6.27)

r=1 f [ (P dvdy = L o7 sin ot f [ o, dxay (6.28)
2 dt 2

For the thin plate assumptions given in Chapter 3, the approximate solution of the

displacement functionw, (x, y) is sought in the usual form of a double series:

Wo (xs y) = ZZAnanm (X)Y” (y) (629)

m=1 n=1
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The different displacement functions that correspond to different boundary conditions are

expressed as follow:

1. When we consider the boundary condition of four edges simply supported for the

uniform and tapered composite plates, the shape function can be written as:

M N
wﬂnﬂzZZﬂmsm%?sm%? (6.30)
m=1 n=1

2. When we consider the boundary condition of four edges clamped for the uniform and

tapered composite plates, the shape function can be written as:

M N x x 2 x m—1 yz y 2 y m=1
men=3 3 (5] (51 () ®3D

3. When we consider the boundary condition of one edge clamped and the other three

edges free, the shape function can be written as:

%uhi4ﬂww@%ﬂ) (6.32)

The coefficients 4,, will be determined by the stationary condition. By virtue of the

principle of stationary potential energy, the following equations are obtained.
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U, .. T ~Wia)=0 (6.33)

max max max

oU. -T. —-W._)

max max max

04

mn

=0 (6.34)

If we choosem=1,2, ...... ,M,andn=1,2, ........ , N in the shape functions, we can get

max .

the following equation for

mn

aU N N
= = Z Z Gl"” : AIIIII (6.35)
aAnm 1o
Similarly, if we choosem=1,2,....,M,andn=1,2,........ , N in the shape functions,

ax

o7,
we can also get the following equation for —=

mn

GT N M
T = Z ZLmn ) Amn (636)

aAmn 11
And, if wechoosem=1,2,....,M,andn=1,2, ........ , N in the shape functions and the

max .

in-plane force is only N_, we can get the following equation for

mn
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O = iniH"m ‘A, (6.37)
04 11

mn

Hereafter, we can write the governing equation of the composite plate configurations as

in the following form:

N N N M N M .
Z Z Gl"” : A”lll z Z HI"II ’ Anl” + Z z Lﬂlll : A”lll = {0} (6'3 8)
11 11 11

Then, we can reduce the equation (6.38), and express the governing equation (6.38) in the

following matrix form:
[£]- i+ [6]-{4}- N, [H]- {4} = {o} (6.39)

By considering the dynamic in-plane loading of the composite plate configuration, the

load can be expressed as follow:

N,=aq,N,, +aN,, costr (6.40)

xcr xcr

By substituting the equation (6.40) into the differential equation (6.39), the governing

equation of the composite plate configuration can be expressed.
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[Li}+ [6]- ao N, [H}A} - (@ N, cosén[H]{4}={o} (6.41)

To find conditions for the existence of periodic solutions with period 27, We seek the

solutions of the governing equation (6.41) in the form of a series [1]:
amy= >, ({ak}~sin%€t—+ {bk}-cos%) (6.42)

Similarly, to find conditions for the existence of periodic solutions with period T, We

seek the solutions of the governing equation (6.41) in the form of a series [1]:

{a()} = %bo + i ({ak}-sink—fer {bk}-cos%) (6.43)

k=2,4,6

where, {a,} and {b, } are vectors which are independent of time. The series is obviously

equivalent to the n-term Fourier series for the components of vector A(?) .

By substituting the series solutions into the governing equation (6.41) and by grouping

the sine terms and the cosine terms, two sets of linear algebraic equations in {a, } and

{b,} are obtained for each solution.
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Determination of the 1% and 2™ instability regions of the composite plate configuration

can be made by substituting the series solutions (6.42) and (6.43) into the differential
. . . . kOt ko -
equation (6.41) and comparing coefficients of sin By and COST . For nontrivial

solution, the resulting determinants must be equal to zero. The following generalized

cigenvalue problems for 1* instability region and 2" instability region are obtained.

Using the procedure similar to that in the Finite Element Method, for the 1* instability
region of the composite plate configuration, the boundaries can be obtained by

substituting the equation (6.42) into equation (6.41), which results in the following

equation:
(61~ @V, i S -5 02 ~Zan. [ 0
_%alecr[H] [G]_aONxcr[H]__Z—HZ[L] _%alecr[H]
O _%alecr[H] [G]_aONxcr[H]—%S_ez[L]

(6.44)

The equation (6.44) determines the two boundaries of the 1* instability region of dynamic

instability of the uniform and tapered composite plate configurations corresponding to the

+ and — signs in the term [G]-a N, o

[H]ir%alN [H]—%W[L].
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Similarly, by substituting the equation (6.43) into the equation (6.41), for the o

instability region of the composite plate configuration, the boundaries can be obtained

using the following equations:

[]-auN, H]-e2lt]  —San, ] 0
San ] Glan, Hl-aeth]  JanlH] o
0 —%ale [H#] [G]-a, N, [H]-99°[L] ...
(6.45)
and
[G]-a,N . [H] ~a,N_|H] 0 o
San 0] [olan, -0 -Jan. ] o .
0 - %a,Nw [H#] [G]-a,N_ [H]-46%[L] - %ale 14—
0 0 —%ale [H]  [6]-aN,[H]-90%[L] ...
(6.46)
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These two equations (6.45) and (6.46) determine the two boundaries of the 2" instability

region of dynamic instability of the composite plate configurations respectively.

1. One-term Solution for the Instability Region of the Composite Plates

The one-term solutions of the governing equation (6.41) can be derived from the

equations (6.42) and (6.43), and they can be written as follow:

{4} ={a,}sin(6r/2) + {b, }cos(6r/ 2)

{4} =~{b,}+ {a, }sin(6r) + {b, }cos(6r)

By substituting the solutions into the differential equation (6.41) and comparing

(6.47)

(6.48)

) . k6 ko .. . . .
coefficients of smT and 0087 , for nontrivial solution, the resulting determinants

must be equal to zero. The following generalized eigenvalue problems for 1* instability

region and 2" instability region are obtained.

For the 1% instability region of the uniform and tapered composite plate configurations,

by substituting (6.47) into the governing equation (6.41), it leads to the following

generalized eigemvalue problems.
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l[G]—aONxcr[H]+%alecr[H]_%92 [11 :0 (649)

}[G]— aoN . [H]- %a,NW [H]- %92 H =0 (6.50)

Thereafter, we can obtain the upper boundary and lower boundary of the 1% instability

region from the two eigenvalue problems given by equations (6.49) and (6.50).

For the 2™ instability region of the uniform and tapered composite plate configurations,
by substituting (6.48) into the governing equation (6.41), it leads to the following

generalized eigenvalue problems.

fol- . )07 =0 .
[G]—aoNxcr[H] “Q'INW[H]
- %%NW [E#] [6]-a.N. [H]-6%[L] 0 (6.52)

We can also write the equation (6.52) in the following form:

[6l-aN [H]  —anN,[H] | 1o o
‘ Jazzo (6.53)

—%a,Nxcr[H] (6]~ ] o |2

xcr
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We can obtain the upper boundary and lower boundary of the 2" instability region of

composite plate configurations from the two eigenvalue problems given by equations

(6.51) and (6.53).

2. Three-term Solution for the Instability Region of the Composite Plate Configurations

Next, the three-term solutions of the governing equation (6.41) can also be derived from

the equations (6.42) and (6.43), and they can be written as follow:

(4} ={a, }sin(@/2) + {b, }cos(6r 1 2) +{a, }sin(361/ 2) + {b, }cos(36F) + {a |sin(56t/ 2) + {b, feos(56t / 2)

(6.54)
{4} = %{bo }+ {a, }sin(6r) + {b, Jcos(é) + {a, }sin(2) + {b, }cos(26r) +{a, }sin(36F) + b, fcos(36r)
(6.55)
For the 1* instability region of the uniform and tapered composite plate configurations,

by substituting (6.54) into the governing equation (6.41), it leads to the following

generalized eigenvalue problem.
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N, 1] [6]-aN =20 ] e, i)
0 el 6N, -2
(6.56)

The eigenvalue problem (6.56) given by equation (6.56) expresses the upper-boundary

and lower-boundary of the 1* instability region of the composite plate configurations

corresponding to the + and — signs in the term [G]— a,N

xcr

i), [H)-S 02 ]

For the 2™ instability region of the uniform and tapered composite plate configurations,
by substituting (6.54) into the governing equation (6.41), it leads to the following

generalized eigenvalue problems.

1

[6l-av -] e, [A] 0
—an 1 [Gan -] e, (0] =0
0 —an il [Gl-aN, [H]-90[L]
(6.57)
and
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[G] - aONxcr [H] - alecr [H] 0 O
_%alecr H] [G]_aONxcr[H]_ez[L] —éalecr[H] 0
0 el Glan, [m-aet ] e, la]
0 0 —aN [ [elan, [1]-90° (L]

(6.58)

The eigenvalue problems given by equations (6.57) and (6.58) express the upper
boundary and lower boundary of the 2™ instability region of the composite plate

configurations respectively.

6.4 The Example Calculation for the Instability Regions of Uniform and Tapered

Composite Plate Configurations

In this section, the uniform composite plate and tapered composite plates are considered.
By using the results of Chapter 2, Chapter 3, Chapter 4 and Chapter 5, and the
formulation developed in the present Chapter, we calculate the instability regions for
uniform and tapered composite plate configurations using Finite Element Method and
Ritz method in the following examples. For the uniform composite configuration, we

choose the plate configuration considered in ref. [12], and compare our results of the

184



instability regions with the results given in ref. [12]. For the tapered composite plate
configurations, the Finite Element Method and Ritz Method are used to calculate the one-

term instability regions and three-term instability regions.

6.4.1 The Example Calculation of Instability Regions for the Uniform Composite

Plate

A uniform rectangular laminated plate is made up of the graphite/epoxy material and with

symmetric cross-ply arrangement, as shown in Figure 2.6. The laminate is made out of
eight identical plies with the following mechanical properties: E, =134.4x10° Pa

.E, = E; =10.34x10° Pa;G,, = G,; =4.999x10° Pa; G,, =1.999x10° Pa;

Vi, =V, =V,, =0.33; p=1480 kg/m’. The plate has alength L =127 mm and a

widthb =12.7mm. Two different plate thicknesses, # =1.016mm and 4 =10.16 mm
resulting in the two cases of L/h =125 and L/h =12.5, are considered as in ref. [12].

The uniform plate has configuration [(90/ 0), ] . at the left and right ends respectively

(see Figure 2.6).

Based on the results for the mechanical behavior of these two uniform configurations
calculated in Chapter 2, we use the Finite Element Method to compute their instability
regions. The 36-element mesh is taken to calculate the results in this example, and the

results have been compared with the results given in ref. [12].

185



In this example, two types of boundary conditions for these two uniform configurations

are considered as follow:

Case 1: one of the short edges is fixed and the other three edges are free

Case 2: both of the short edges are fixed and both the long edges are free

In ref. [12], the first-order approximation of the first two instability regions for the
composite plate are calculated based on the finite element method. The three theories that
have been used are: the Higher Order Theory (HOT), the Classical Laminate Plate
Theory (CLPT), and the First Order Shear Deformation Theory (FSDT). In this chapter,
we calculate the results using Finite Element Method based on CLPT. A total of 36
elements were used. We can see all the results for the first two instability regions for the

composite plate in the figures given next.

We consider the boundary condition of one of the short edges being fixed and other three
edges being free (Case 1) and the boundary condition of both the short edges being fixed
and both the long edges are free (Case 2). The variation of the natural frequency of the
plate with the static buckling load and the first-order approximations to the first two
instability regions of the composite plates (L/h=125 and L/h=12.5) are calculated using

Finite Element Method, and the results are given in Figures 6.1-6.4.
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the variation of the natural ‘f;req_ue'r‘i’,  1 &

- Natural frequency(Hz)

4000 . BOOD
~ Static buckling

Figure 6.1 The variation of the natural frequency of the uniform composite plate with the

static buckling load and with Case 1 boundary condition; L/h=12.5

From Figure 6.1, we can see that the results obtained in the present work using Finite
Element Method based on CLPT are very close to the results obtained using Finite
Element Method based on FSDT and HOT given in ref. [12]. Therefore, it shows that the
present Finite Element Method provides an accurate prediction of the natural frequencies

corresponding to different static buckling loads.
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{case 1,L/h=125)(a0=02 and a0=08)

1E

—& FEM{@D.2)
~+ FEM{@D.B)
14} —+ ref[12]0.2)
o - ref[12](0.6)

Parametric ratio(@2)

: 0"‘ T : 5 .
. e : ynamn: parameter{m‘t) :

Figure 6.2 The first-order approximation of the first two instability regions for the uniform
composzte plate wzth Case 1 boundary condztzon L/h 1 25

e 1 Uh—-??&)(n::u}=ﬂ E‘

—&— FEM
—+  ref[12]

0 005 D1 DBis D0 B85 D3 035 04 04 05
- 4 Dynamlc parameter(&‘t) ‘ . '

Fi zgure 6 3 Two lnstablllty reglons of the uniform composite plate calculated using Finite
Element Method; Case 1boundary condition; L/h=125
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(pase2 Lh=125)0=04)

12@3 T — —— T o —
¢ & FEM
g —+ ref[12]
1000 s

Parametric frequency(tlzs) = L

Figure 6.4 Two instability regions of the uniform composite plate calculated using Finite

Element Method with Case 2 boundary condition; L/h=125

From Figures 6.2, 6.3 and 6.4, we can see that the results obtained using Finite Element
Method are very close to the results given in ref. {12]. Both the results have the same
trend of the two instability regions and the width of the instability regions increase with
an increase in both static and dynamic loads, as expected. So, it is expected that the
present Finite Element Solution will provide accurate results for tapered composite plate

configurations in the following example.
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6.4.2 Example Calculation of Instability Regions for Tapered Composite Plates

In this section, four different kinds of tapered composite plate configurations,
Configuration A, Configuration B, Configuration C, and Configuration D are considered
(see Figures 2.7, 2.8, 2.9, and 2.10). We use the Finite Element Method and Ritz Method
to calculate the instability regions of the tapered composite plate configurations. The
example is given below and it involves the same problem as that of the examples given in

Chapter 2, Chapter 3, Chapter 4 and Chapter 5.

The tapered composite plate configurations are depicted in Figures 2.7, 2.8, 2.9, and 2.10.
The laminates are made up of the NCT301 graphite/epoxy material with symmetric cross-
ply arrangement. The laminates have twelve plies in the left side and six plies in the right

side. For configurations A, B and C, the tapered plates have lay-up configurations

[(0/ 90), ]S at the left end and [O/ 90/ O]S at the right end respectively. For configuration
D, the tapered plate has lay-up configurations [O/ resin/ 90/0/ O/9OL at the left end and
[0/90/ 0]5 at the right end respectively. The ply has the following mechanical properties:
E =1139 GPa, E, =E, =79GPa, v, =028, v,, =04, v, =0.02, G, =3.1 GPa,
G =3.1 GPa, G, =2.8 GPa, p=1480 kg/m’, hy =0.138 mm, p =1480 kg/m’.
The mechanical properties of the epoxy resin are given as:

E =3.93 GPa, G=1.034 GPa, v=037, p, =1200 kg/m’.
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The geometric properties of the tapered composite plates are: the length a is 240 mm and
the width b is 240 mm, and the thickness changes in x direction from 2.208 mm to 1.104

mim.

By using Finite Element Method and Ritz Method, we calculate the instability regions of

the tapered composite plate configurations under three different boundary conditions.

1. The Instability Analysis of Taper Configuration A under Three Kinds of Boundary

Conditions:

With four edges simply supported, the variation of the natural frequency with the static

buckling load and the two instability regions (@, = 0.2,a, =0.5, and, = 0.8) of the

tapered composite plate configuration A are shown in the Figures 6.5-6.8.
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the variation of the natural frequency
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Fi igure 6 5 The variation of the natural frequency of taper conf iguration A with the static
bucklmg load; four edges are Szmply supported

(Cnm" guration A with fmsr edges szm Euppurted)aﬁ*ﬂ 2
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Dynamic parameter{xﬁ} ‘

Figure 6 6 Two znstablllly regions of taper confi guratzon A determzned using Finite
Element Method and Ritz Method; four edges are simply supported (a, =0.2)
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Figure 6.7 Two instability regions of taper configuration A determined uszng Finite
Element Methoa’ and thz Method four edges are Szmply supported (a, =0. 5 )

g o1 D2 03 pa:. 05 0B D7 08
- v _ Dynamic parameter(al) .

Fzgure 6.8 Two instability reglons of taper configuration A determmed using Finite
Element Method and Ritz Method, four edges are simply supported (a, = 0.8)
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In Figure 6.5, the graphs show that the natural frequencies decrease as the static buckling
loads increase. The variations of natural frequencies of the tapered composite plate
configuration A obtained using Finite Element Method and Ritz Method have almost the

same form.

From Figures 6.6, 6.7, and 6.8, we can see the two instability regions with different static
parameters corresponding to, = 0.2,, = 0.5, and «, = 0.8. The graphs show that the
widths of the instability regions increase with an increase in both the static and dynamic

loads. The instability regions for tapered composite plate configuration A determined

using Finite Element Method are much closer to that obtained using Ritz Method.

Next, considering the boundary condition of four edges clamped, the variation of the
natural frequency with the static buckling load and the two instability regions

(a, =0.2,a, =0.5, and, = 0.8) of the tapered composite plate configuration A are

determined and shown in the Figures 6.9-6.12.
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Fi igure 6 9 The variation of the natural frequency of taper confi guratzon A with the static
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Fi zgure 6 1 0 Two mstabzlzty regzons of taper confi guratzon A determmed using F inite
Element Method and Ritz Method; four edges are clamped (a, =0.2)
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{configuration A with four edges clamped}(ﬁcﬂﬂlﬁ)
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Fi igure 6 11 T wo mstabzlzty regions of taper configuration A determmed usmg Finite
Element Method and thz Method four edges are clamped ( a, = 0.5 )
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Fi zgure 6 12 T wo mstabllzty regions of taper configuration A determined using Finite
Element Method and Ritz Method; four edges are clamped (a, = 0.8)

196



In Figure 6.9, the graphs show that the natural frequencies decrease as the static buckling
loads increase. The variations of natural frequencies of the tapered composite plate
configuration A obtained using Finite Element Method and Ritz Method have almost the

same form.

From Figures 6.10, 6.11, and 6.12, we can see the two instability regions with different
static parameters corresponding toar, =0.2,, =0.5, and &, = 0.8. The graphs show
that the widths of the instability regions increase with an increase in both the static and
dynamic loads. The instability regions for tapered composite plate configuration A with
four edges clamped determined using Finite Element Method are very close to that

obtained using Ritz Method.

Finally, considering the boundary condition of one edge clamped and other three edges
free, the variation of the natural frequency with the static buckling load and the two
instability regions («, = 0.2,a, = 0.5, anda, = 0.8) of the tapered composite plate

configuration A are determined and shown in the following Figures 6.13-6.16.
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Figure 6 13 The variation of the natural frequency of taper conf guratton A with the static
bucklmg load; one edge is clamped and other three are edges free
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Figure 6.14 T wo mstabtlzty regions of taper configuration A determmed uszng F zmte Element
Method and Ritz Method; one edge is clamped and other three are edges free (a, =0.2)
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Figure 6.15 Two instability regions of taper confi guratzon A etermmed using F inite Element
Method and Ritz Method one edge is clamped and other three edges are free ( ao = O 5 )
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Figure 6. ] 6 Two mstabzlzty regions of taper confi guratzon A determmed usmg Fi zmte Element
Method and Ritz Method; one edge is clamped and other three edges are free (a, =0.8)
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In Figure 6.13, the graphs show that the natural frequencies decrease as the static
buckling loads increase. The variations of natural frequencies of the tapered composite
plate configuration A obtained using Finite Element Method and Ritz Method have the

same form.

From Figures 6.14, 6.15, and 6.16, we can see the two instability regions with different
static parameters corresponding toa, = 0.2, = 0.5, and «, = 0.8. The graphs show
that the widths of the instability regions increase with an increase in both the static and
dynamic loads. The instability regions for tapered composite plate configuration A under
this boundary condition determined using Finite Element Method are much closer to that

obtained using Ritz Method.

2. The Instability Analysis of Taper Configuration B under Three Kinds of Boundary

Conditions:

With four edges simply supported, the variation of the natural frequency with the static

buckling load and the two instability regions (o, =0.2,a, =0.5, and, = 0.8) of the

tapered composite plate configuration B are shown in the Figures 6.17-6.20.
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Flgure 6.18 Two znstabzlzty regzons of taper configuration B determmed uszng Finite
Element Method and Ritz Method; four edges are simply supported (o, =0.2)
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F 1gure 6 20 T wo lnstabzlzty regzons of taper configuration B determined using Finite
Element Method and Ritz Method; four edges are simply supported (a, =0.8)
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In Figure 6.17, the graphs show that the natural frequencies decrease as the static
buckling loads increase. The variations of natural frequencies of the tapered composite
plate configuration B obtained using Finite Element Method and Ritz Method have

almost the same form.

From Figures 6.18, 6.19, and 6.20, we can see the two instability regions with different
static parameters corresponding to ¢, =0.2,a, = 0.5, and a, =0.8. The graphs show
that the widths of the instability regions increase with an increase in both the static and

dynamic loads. The instability regions for tapered composite plate configuration B

obtained using Finite Element Method are very close to that obtained using Ritz Method.

Next, considering the boundary condition of four edges clamped, the variation of the
natural frequency with the static buckling load and the two instability regions

(a, =0.2,a, =0.5, andr;, = 0.8) of the tapered composite plate configuration B are

determined and shown in the Figures 6.21-6.24.
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Fi zgure 6 22 Two znstabzlzty regions of taper configuration B determined using Finite
Element Method and Ritz Method; four edges are clamped (o, =0.2)
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Figure 6.24 Two instability regions of taper confi guratzon B determined using F inite
Element Method and Ritz Method; four edges are clamped (o, =0.8)
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In Figure 6.21, the graphs show that the natural frequencies decrease as the static
buckling loads increase. The variations of natural frequencies of the tapered composite
plate configuration B obtained using Finite Element Method and Ritz Method have

almost the same form.

From Figures 6.22, 6.23, and 6.24, we can see the two instability regions with different
static parameters corresponding toa, = 0.2,a, =0.5, and @, = 0.8. The graphs show
that the widths of the instability regions increase with an increase in both the static and
dynamic loads. The instability regions for tapered composite plate configuration B

determined using Finite Element Method are very close to that obtained using Ritz

Method.

Finally, considering the boundary condition of one edge clamped and other three edges

free, the variation of the natural frequency with the static buckling load and the two
instability regions («, = 0.2,, = 0.5, ande, = 0.8) of the tapered composite plate

configuration B are determined and shown in the Figures 6.25-6.28.
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Figure 6. 26 T wo mstabllzty regions of taper configuration B determmed usmg Finite Element
Method and Ritz Method; one edge is clamped and other three edges are free (a, = 0.2)
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Figure 6. 27 T wo mstabzlzly regions of taper configuration B determzned using Finite Element
Method and Ritz Method one edge is clamped and other three edges are free (a, =0.5)
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Fi zgure 6 28 Two mstabllzty regzons of taper configuration B determmed uszng Finite Element
Method and Ritz Method; one edge is clamped and other three edges are free (a, = 0.8)
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In Figure 6.25, the graphs show that the natural frequencies decrease as the static
buckling loads increase. The variations of natural frequencies of the tapered composite
plate configuration B obtained using Finite Element Method and Ritz Method have close

form.

From Figures 6.26, 6.27, and 6.28, we can see the two instability regions with different
static parameters corresponding tor, = 0.2,a, = 0.5, and &, = 0.8. The graphs show
that the widths of the instability regions increase with an increase in both the static and
dynamic loads. The instability regions for tapered composite plate configuration B

determined using Finite Element Method are very close to that obtained using Ritz

Method.

3. The Instability Analysis of Taper Configuration C under Three Kinds of Boundary

Conditions:

With four edges simply supported, the variation of the natural frequency with the static

buckling load and the two instability regions («, = 0.2,a, =0.5, anda, = 0.8) of the

tapered composite plate configuration C are shown in the Figures 6.29-6.32.
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F igure 6.30 Two instability regions of taper configuration C determined using Finite
Element Method and Ritz Method, four edges are simply supported (a, =0.2)
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Fzgure 6.32 Two mstabzltty regzons of taper conf iguration C determmed usmg Finite
Element Method and Ritz Method; four edges are simply supported (o, = 0.8)

211



In Figure 6.29, the graphs show that the natural frequencies decrease as the static
buckling loads increase. The variations of natural frequencies of the tapered composite
plate configuration C obtained using Finite Element Method and Ritz Method have

almost the same form.

From Figures 6.30, 6.31, and 6.32, we can see the two instability regions with different
static parameters corresponding toe, = 0.2,, = 0.5, and «, = 0.8. The graphs show

that the widths of the instability regions increase with an increase in both the static and
dynamic loads. The instability regions for tapered composite plate configuration C

determined using Finite Element Method are very close to that obtained using Ritz

Method.

Next, considering the boundary condition of four edges clamped, the variation of the
natural frequency with the static buckling load and the two instability regions

(@, =02,a,=0.5, and, = 0.8) of the tapered composite plate configuration C are

determined and shown in the Figures 6.33-6.36.
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Figure 6. 33 The variation of the natural frequency of taper conf iguration C with the static
bucklzng load; four edges are clamped
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Fi igure 6 34 Two znstabzlzty regions of taper configuration C determined using Finite
Element Method and Ritz Method; four edges are clamped (o, =0.2)
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Figure 6 36 T wo znstabzlzty regions of taper configuration C determined using Finite
Element Method and Ritz Method; four edges are clamped (o, = 0.8)
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In Figure 6.33, the graphs show that the natural frequencies decrease as the static
buckling loads increase. The variations of natural frequencies of the tapered composite
plate configuration C obtained using Finite Element Method and Ritz Method have

almost the same form.

From Figures 6.34, 6.35, and 6.36, we can see the two instability regions with different
static parameters corresponding toe, = 0.2, = 0.5, and «, = 0.8. The graphs show
that the widths of the instability regions increase with an increase in both the static and
dynamic loads. The instability regions for tapered composite plate configuration C

determined using Finite Element Method are very close to that obtained using Ritz

Method.

Finally, considering the boundary condition of one edge clamped and other three edges

free, the variation of the natural frequency with the static buckling load and the two
instability regions (a, = 0.2,a, = 0.5, ande, = 0.8) of the tapered composite plate

configuration C are determined and shown in the Figures 6.37-6.40.
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Figure 6.38 T wo instability regions of taper configuration C determined using Fi inite Element
Method and Ritz Method; one edge is clamped and other three edges are free (a, =0.2)
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Figure 6. 40 Two mstabzlzty regions of taper configuration C determined using Finite Element
Method and Ritz Method; one edge is clamped and other three edges are free (a, =0.8)
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In Figure 6.37, the graphs show that the natural frequencies decrease as the static
buckling loads increase. The variations of natural frequencies of the tapered composite
plate configuration C obtained using Finite Element Method and Ritz Method have

almost the same form.

From Figures 6.38, 6.39, and 6.40, we can see the two instability regions with different
static parameters corresponding tor, =0.2,¢, = 0.5, and &, = 0.8. The graphs show
that the widths of the instability regions increase with an increase in both the static and
dynamic loads. The instability regions for tapered composite plate configuration C

obtained using Finite Element Method are much closer to that obtained using Ritz

Method.

4. The Instability Analysis of Taper Configuration D under Three Kinds of Boundary

Conditions:

With four edges simply supported, the variation of the natural frequency with the static

buckling load and the two instability regions (&, =0.2,, =0.5, and, = 0.8) of the

tapered composite plate configuration D are shown in the Figures 6.41-6.44.
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Figure 6 42 Two instability regions of taper conf gumtton D etermmed using Finite
Element Method and Ritz Method; four edges are simply supported (o, =0.2)
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Figure 6 44 T wo znstabzlzty regtons of taper conf guratzon D determmed usmg F inite
Element Method and Ritz Method; four edges are simply supported (o, = 0.8)
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In Figure 6.41, the graphs show that the natural frequencies decrease as the static
buckling loads increase. The variations of natural frequencies of the tapered composite
plate configuration D obtained using Finite Element Method and Ritz Method have

almost the same form.

From Figures 6.42, 6.43, and 6.44, we can see the two instability regions with different
static parameters corresponding tor, = 0.2,, = 0.5, and «, = 0.8. The graphs show
that the widths of the instability regions increase with an increase in both the static and
dynamic loads. The instability regions for tapered composite plate configuration D
obtained using Finite Element Method have more difference with that obtained using Ritz

Method when the static parameters have large values.

Next, considering the boundary condition of four edges clamped, the variation of the
natural frequency with the static buckling load and the two instability regions

(a, =0.2,a, =0.5, and, = 0.8) of the tapered composite plate configuration D are

determined and shown in the Figures 6.45-6.48.
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Fi zgure 6 46 Two instability regzons of taper configuration D determzned using F inite
Element Method and Ritz Method; four edges are clamped (o, =0.2)
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F zgure 6 47 Two instability regions of taper conf guratlon D determined using Finite
Element Method and Ritz Method; four edges are clamped ( ao =0.5 )
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Fi zgure 6 48 T wo mstabllzty regzons of taper configuration D determined using F inite
Element Method and Ritz Method; four edges are clamped (a, =0.8)
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In Figure 6.45, the graphs show that the natural frequencies decrease as the static
buckling loads increase. The variations of natural frequencies of the tapered composite
plate configuration D obtained using Finite Element Method and Ritz Method have

almost the same form.

From Figures 6.46, 6.47, and 6.48, we can see the two instability regions with ditferent
static parameters corresponding toe, = 0.2,a, = 0.5, and «, = 0.8. The graphs show
that the widths of the instability regions increase with an increase in both the static and
dynamic loads. The instability regions for tapered composite plate configuration D

obtained using Finite Element Method are much close to that obtained using Ritz

Method.

Finally, considering the boundary condition of one edge clamped and other three edges
free, the variation of the natural frequency with the static buckling load and the two
instability regions (¢, = 0.2, &, = 0.5, and o, = 0.8) of the tapered composite plate

configuration D are determined and shown in the Figures 6.49-6.52.
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Figure 6 50 Two mstabzlzly regions of taper configuration D determined using Finite Element
Method and Ritz Method; one edge is clamped and other three edges are free (0, =0.2)
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Figure 6. 5] Two znstabzltly regions of taper confi guratlon D determined using Finite Element
Method and thz Method; one edge is clamped and other three edges are free ( @ = 0.5 )

o B 0.1 0.2 03 04 05 06 D07 B8
. Dynamic parameter(ol) .

Figure 6. 52 Two mstabzlzty regions of taper conf iguration D determined using Fi inite Element
Method and Ritz Method; one edge is clamped and other three edges are free (a, = 0.8)
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In Figure 6.49, the graphs show that the natural frequencies decrease as the static
buckling loads increase. The variations of natural frequencies of the tapered composite
plate configuration D obtained using Finite Element Method and Ritz Method have much

close form.

From Figures 6.50, 6.51, and 6.52, we can see the two instability regions with different
static parameters corresponding toar, =0.2,a, = 0.5, and &, = 0.8. The graphs show
that the widths of the instability regions increase with an increase in both the static and

dynamic loads. The instability regions for tapered composite plate configuration D

obtained using Finite Element Method are very close to that obtained using Ritz Method.

5. The analysis of two instability regions of different tapered composite plate

configurations.

By using the results for the instability regions of four tapered composite configurations
calculated using Finite Element Method, we compare the two instability regions of the
four taper configurations that have three boundary conditions corresponding to four edges
simply supported, four edges clamped, and one edge clamped and other three edges free.

The static parameter «,, 1s 0.2.
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Figure 6. 53 Two instability regions of the four tapered compbsfte plate configurations with
four edges simply supported determined using Finite Element Method, o, =0.2
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Figure 6. 54 Two instability regions of the four tapered co‘;hposité plate conﬁgumtions
with four edges clamped determined using Finite Element Method; o = 0.2
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Figure 6.55 Two instability regions of the four tapered composite plate configurations with one
edge clamped and other three edges free determined using Finite Element Method; o, = 0.2

In Figure 6.53, the graphs show that the two instability regions of the four tapered
composite plate configurations A, B, C, and D with four edges simply supported are
almost the same. Therefore, there is not too much difference in the instability regions of

the four different tapered composite plate configurations.

Similarly, in Figure 6.54, the graphs show that the two instability regions of the four

tapered composite plate configurations A, B, C, and D with four edges clamped are

229



almost the same. So, with the change of the taper configuration, the instability regions do

not change too much.

In Figure 6.55, the instability regions of the four tapered composite plate configurations
A, B, C, and D with one edge clamped and other three edges free are shown.
Configurations B, C, and D have instability regions that are too close, and configuration
A has a wider region than the other three configurations due to the large resin content (at

a single location) in configuration A.

6.5 Conclusion

In this chapter, the uniform composite plate configuration and tapered composite plate
configurations are considered. By using the results given in Chapter 2, Chapter 3, Chapter
4 and Chapter 5, we have calculated the instability regions for uniform plate
configuration and tapered plate configurations using Finite Element Method and Ritz
method. For the uniform composite plate configuration, we have chosen the plate
configuration according to the uniform configuration considered in ref. [12]. By
comparing our results of instability region with the results given in ref. [12], we observe
that much closer results have been obtained in the present work. For the tapered
composite plate configurations, the Finite Element Method and Ritz Method are used to
calculate the 1* instability region and 2™ instability region. The calculation shows that

the two methods yield results that are very close. The calculation results of this chapter
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and that of the last two chapters provide an accurate prediction of the dynamic instability

regions for tapered composite plate configurations.
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Chapter 7

Conclusions and future work

In the present thesis, the finite element method and Ritz method have been used
for vibration, buckling and instability analyses of uniform and tapered composite plates
with and without in-plane forces. The effects on the laminate stiffness of the composite
plates caused by the taper angle have been considered. Different configurations of
tapered plates, Configurations A, B, C, and D, have been investigated. The study of the
vibration, buckling and instability has been developed based on classical laminated plate

theory.

The taper angle of composite plate changes not only the geometric properties but
also the stiffness of the oblique plies. Consequently, the mechanical behavior of tapered
composite plate differs from that of uniform plate. The effect on the ply stiffness can be
small if the taper angle is very small. When the taper angle of the plate increases, this

influence is not negligible.

Considering the effect of taper angle, the constitutive equations of motion of
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tapered composite plate with and without in-plane forces have been derived. Then, based
on these differential equations, the Finite Element Method and Ritz method have been
applied considering four tapered composite plate configurations. Thereafter, the

vibration, buckling and instability analyses are conducted using theses two methods.

The finite element model for the plate structure considers element with four nodes
and three degrees of freedom per node, so as to satisfy the geometric boundary
conditions. It was shown that this kind of finite element model for plates based on
classical laminated plate theory is easy to use for calculation, and the results are accurate

especially for the thin uniform and tapered composite plate configurations.

The Ritz method used in the thesis is based on classical laminated plate theory,
and the different shape functions of the plates corresponding to different boundary
conditions are used in the calculation. The accurate results of vibration, buckling and
instability analysis are obtained using Ritz method. Hereafter, the results have been
compared with that of finite element method, and the results are much closer. It may be
noted that the accuracy of the Ritz method depends on: 1. the chosen approximate
functions for deflections and their suitability for specific boundary conditions, and 2. the
number of terms used. On the other hand, the finite element solution does not suffer from

this limitation. Therefore, the finite element solution would be more accurate.

For the calculation program, symbolic and numerical computations have been

done using MATLAB® software. At the end of each formulation of vibration, buckling
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and instability analyses, appropriate problems have been solved and the results are
validated with the solutions given in some references if available. In the analysis of
vibration, buckling and instability, comparisons between the results obtained using Ritz

method and finite element method have been achieved in all the problems.

The parametric study is carried out for the tapered composite plates with and
without in-plane forces to see the effects of various changes in the laminate parameters
on the vibration, buckling and instability of the laminates. These changes include the
change in the boundary conditions, and the change in the laminate configuration for the
tapered composite plates. For the instability analysis, the static in-plane forces and the
dynamic in-plane forces are all changed for obtaining different instability regions. The
work done in the present thesis has provided some conclusions on the results obtained
using the finite element method and the Ritz method, and the design of the tapered

composite plates. The important and principal conclusions are:

> The accuracy can be obtained more efficiently and rapidly by increasing the
number of the elements of the finite element mesh based on CLPT, and the
results for thin laminates will be much closer to that of finite element method
based on FSDT and HOT given in the ref. [12].

> The natural frequencies and the critical buckling loads determined using the
current approach for the uniform composite plates are in good agreement with
that obtained in ref. [12]. For tapered composite plate configurations,

excellent correlation is observed between the natural frequencies and critical
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buckling loads calculated using finite element method and the corresponding

results obtained using Ritz method.

‘/"/

The finite element solution based on CLPT predicts results for the natural
frequencies and the critical buckling loads that are much closer to that given
in ref. [12] for two types of boundary conditions. The deviations increase with
plate thickness due to increased transverse shear effects.

» The width of the instability region of the uniform and tapered composite plate
configurations increases with an increase in both, static and dynamic loads, as
expected. Deviations also increase with plate thickness.

> Among the tapered plates designed using Configurations A, B, C and D,

Configuration D is the least-stiff configuration and Configuration C is the

stiffest configuration. This is because the kept and dropped plies are same and

the dropped resin pockets in Configuration C are closer to the mid-plane
whereas in Configuration D they are farthest from mid-plane. As for the
instability regions of the four configurations, the differences among them are

much smaller.

The study on the instability of the tapered composite plate with and without in-

plane forces can be continued in the future based on the following recommendations:

1. The finite element method and Ritz method presented in this thesis can be

extended for the analysis of the instability of different types of tapered

composite plate structures based on SDPT and HOT.
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The effect of damping can be considered in the analysis of vibrations and
instability of tapered composite plate configurations.

. The study in this thesis can be applied to design optimization of tapered
composite plate configurations.

The effects of random material properties and loading can be included in the

dynamic instability analysis.
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Appendix

Derivation of equation for the boundaries of instability region [1]

The governing equation of the plate is obtained in matrix form as follows:

M0+ [KTo} - F.INYo} = o) (A1)

where

{Q} is the vector of nodal displacements of the structural system,
[K] is the stiffness matrix of the structural system,

[M ] is the mass matrix of the structural system,

[N] is the incremental stiffness matrix of the structural system, and

F_ is the in-plane dynamic buckling loading

F, can be expressed in terms of the critical buckling load N, as the following

form:

F =ay,N,, +a,N,, cos(6) (A2)

where

«, 1is the static parameter,
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a, is the dynamic parameter,
€ is the parametric resonance frequency, and

/2w is the parametric ratio

By substituting the dynamic buckling load (A.2) into the governing equation (A.1),

the differential equation system of the structural instability can be written as follow:
[M]- 01+ IK]- (@, +a,-cost) N, - V- {0} = {0} (A3)

This Mathieu type equation (A.3) describes the instability behavior of the plate
subjected to an in—plane loading which includes static and dynamic components. By
solving the generalized eigenvalue problem of this equation, the instability regions

can be determined from the boundaries of the stability.

To find conditions for the existence of periodic solutions with period 2T, we seek the

solutions of the governing equation in the form of a series [1]:

o} 3 datsin + ) -cos ) (A4

k=1,3,5

Similarly, to find conditions for the existence of periodic solutions with pertod T', we

seek the solutions of the governing equation in the form of a series [1]:



o0}=2 b+ 3 dasin 4 )oc0s T (A3

Therefore, we consider 3-term boundaries of instability regions.
1. The first instability region boundary, k=35

The equation (A.4) can be reduced to the following form:

o) = {a, }sinﬁ +1{b, }cosg +1{a, }sinﬁ +1{b, }cosﬁ +1{a, }sinﬁ +{b, }cosﬁ
2 2 2 2 2 2
(A.6)
Hereafter, we can obtain the following equation:
2 2 2 2
o) =- tadsin® 2t 1cos® ~ 20 4o Jsin ¥ 20 gy 1eos >
4 2 4 2 4 2 4 (A7)

256° . 56r 256° 56
- {as}sm7— 1 {bS}COST

By substituting the equations (A.6) and (A.7) into the governing equation (A.3), the

differential equation system of the structural instability can be written as follow:

0* & & & 90 .36 967 36t
[M]-[——I{a,}smz——Ll«{bl}cosz——4—{a3}sm—2~—T{bS}cos—2—
2 2
250 {as}siné?—%lg—{bs}coségt-]nL[[K]—(ao +a,-cosé) N, [NIl

. o or . 36 30 . 56 56
[{a, }sm; + {bl }cos; + {a3 }sm7 + {b3 }cos—2— + {a5 }sm7 + {bS }cos —2-]
=}

(A.8)
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6

For comparing coefficients of sin% , sin~2~~ , sinég'i, cos—, cosizle and

coségﬁ etc, we can use the following formulae.

singcosﬁt = lsin@ - lsing (A9)
2 2 2 2
cosgcosﬁt:lcosﬁJrlcosﬁ (A.10)
2 2 2 2
sinﬁcosé’tzlsiniq+lsin€t— (A.11)
2 2 2 2 2
cosi@cos@t:lcosénglcosg (A.12)
2 2 2 2
sinégt—cosé’t:lsinﬂ+lsinﬁ (A.13)
2 2 2 2 2
cos—Sﬁcosthlcosngrlcosﬁ (A.14)
2 2 2 2 2

By using equations (A.9)-(A.14) in the governing equation (A.8), we can obtain the

coefficients of sing , sin— , sin— , COS— , cosﬁ and coss—
2 2 2 2 2 2

respectively.

The coefficient of sinit can be written as follow:
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=T ) b T g, IV S, ) - S, V)

The coefficient of sin 3—? can be written as follow:
99° 1 1
- T [M] {a3 }+ ([K]~ aONxcr [N]) : {613 }— Ealecr [N] {al }_ Ealecr [N]{aS }

The coefficient of Sin? can be written as follow:

_ 250°
4

b))+ (KT ¥, VDo e, ] o)

The coefficient of cos% can be written as follow:

O ) b+ QK- e, VD - L IN) - S, VT

The coefficient of cos%gt— can be written as follow:

_¥[M] {b3}+([K]_aoNxcr[N])'{bs}_%ale[N]' {bl}‘%alecr [N]{bs}

The coefficient of cos%‘z can be written as follow:
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B0 ) K-V Do} S, [N

Thereafter, according to the governing equation (A.8), the following equations are

obtained.

Pl e (KT VD s S V] o)=L, V)= )

0[] g+ (K- 9D} V] o= S, V) )= )

B ] b (K] VD o L, Vo = )

(A.15)

"%i[M] {bl}+([K]_a0Nxcr[N]) ’ {bl }—%alecr [N] {bl}_%alecr[N]. {b3}
-2 () b KT o VD ) =S o V)= S, [N] )= )
B0 e () v, VD o) ., V-, )

(A.16)

For nontrivial solutions, the resulting determinants must be zero. Equations (A.15)

and (A.16) lead to the following generalized eigenvalue problems:
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1 I
[K]_a(JNx(‘r[N]iEalN\'('r[N]_ZHL[M] _EalN.\'cr [N] 0

e, [¥] K}, V=20l e N =0
0 NN [KlaN M-S0
(A.17)

The equation (A.17) determines the two boundaries of the first region of dynamic

instability of the uniform and tapered composite plate configurations corresponding to

the + and — signs in the term [K]—aONm, [N]i%a,Nm [N]— 41102 [M]

2. The second instability region boundary, k=6
The equation (A.5) can be reduced to the following form:

o) = %{ba }+ {a2 }sin or + {bz }cos6‘t + {a4 }sin 20 + {b4 }cos 20t + {a6 }sin 36 + {b6 }cos 36

(A.18)

Hereafter, we can obtain the following equation:

Ot) =0 -{a, }sin@ - 6° - {b, }cos & — 467 -{a, }sin 26t — 407 - b, }cos 26

A.19
—902 -{a, }sin36t —96° -{b, }cos 36¢ ( )

By substituting the equations (A.18) and (A.19) into the governing equation (A.3), the
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differential equation system of the structural instability can be written as follow:

[M] -0 {a, }sin 6 — 0% {b, }cos 6 — 40° {a, }sin 20t — 40 {b, Jcos 26t
~96*{a, }sin 36t - 90* {b, }cos 3]+ [[k]- (e, +, -cosét)-N,, - [V]-
[% {bo b+ {a, }sin & + {b, }cos O + {a, }sin 26t + {b, fcos 26k + {a, }sin 36t + {b, Jcos36t)

= {0}

(A.20)

For comparing coefficients of siné, sin26, sin36f, costk, cos2tk and cos36

etc, we can use the following formulae.

sin & - cos&f = %sin291 (A21)
I 1
cosé-cost = —2~cos 20¢ + 5 (A.22)
. 1. 1.
sin 26 - cos&f = Esm3t9t+gsm9! (A.23)
1 1
cos26t - cosOr = 5 cos 36 + 5 coso (A.24)
: 1. 1.
sin 36 - cos bt = 5 sin 46¢ + 5 sin 26 (A.25)
1 1
cos36k -cosOr = 5 cos46r + 5 cos 26 (A.26)
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By using equations (A.21)-(A.26) in the governing equation (A.20), we can obtain the

coefficients of sin@, sin26¢, sin30%, cosd, cos20 and cos36¢ respectively.
The coefficient of sinéf can be written as follow:

-0l (KT e, [N} e [V o)

The coefficient of sin26 can be written as follow:

- 4‘92[M]' {a4}+ ([K]_aon [N]){a“}—%a]Nm [N] {az}—‘;‘ame [N] {a()}

The coefficient of sin36f can be written as follow:
1
- 902 [M] {aﬁ }+ ([‘K] - aONxcr [N]){a6 }— 5 alecr [N] {a4 }

The coefficient of 1 can be written as follow:

K1 a N V) . V] o)

The coefficient of cos& can be written as follow:

0] e (KD N, WD} S eV V) e [N o)
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The coefficient of cos26 can be written as follow:

—a02 (] b+ (K-, NV - S V] ) o [N) o)

The coefficient of cos30 can be written as follow:
1
-96* [M] {b6}+ ([K]_ ayN,, [N]){b() }’ Eale [N] {b4}

Thereafter, according to the governing equation (A.20), the following equations are

obtained.

[-0*[M]+(K]-a,N,. [NDT {az}—EOfN [v]-a}= {0}
——;—alecr[N].{a2}+[“402[M]+([K]_aONrcr[N:b'{a4}_2alecr[N].{a6}:{O}

- ;ale, [N]-{a, }+1-96*[M]+ (K]- &, N .. [N Dl } = {0}

(A.27)

%([K]—Ot0 ND-{o, }——a N, [N]: {b} o}
_%aN V), )+ 1-02 M1+ (K- o N INDY- B, ) aN - N]-o, =0}

—%aN V] b, )+ 1407 [M]+ (K ]- 2N, [N DI b, }—EaN V] {6} = {o}

- %ale V] {b, 1+ 1902 [M ]+ (K |- N . [ND]- s } = {0}

(A.28)
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For nontrivial solutions, the resulting determinants must be zero. Equations (A.27)

and (A.28) lead to the following generalized eigenvalue problems:

K- W] = e, ] 0
San, M Kay M-ae] e, V|0
0 aN, M K-, V]9 ]
(A.29)
[K]_aon-[N] ——a]Nxcr[N] 0 0
SN, Kan, WM - an, V] 0
0 San, M Kan Wt Jan (]
0 0 —aN N K]y, [N]-90° ]
(A.30)

The equations (A.29) and (A.30) determine the two boundaries of the second region

of dynamic instability of the uniform and tapered composite plate configurations.

By using similar steps as given above, we can obtain the instability regions of other

terms for uniform and tapered composite plate configurations.
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