NOTE TO USERS

This reproduction is the best copy available.

®

UMI

STUDIES ON PATTERN DISSEMINATION AND REUSE
TO SUPPORT INTERACTION DESIGN

ASHRAF GAFFAR

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

SEPTEMBER 2005

© Ashraf Gaffar, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-09967-4
Our file Notre référence
ISBN: 0-494-09967-4
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

STUDIES ON PATTERN DISSEMINATION AND REUSE
TO SUPPORT INTERACTION DESIGN

Ashraf Gaffar

The success of interactive software systems can be attributed to many technical
and human factors working in harmony. Designing a new interactive system is a
complex undertaking that must carefully consider this “harmony”. Because this
harmony is hard to predict before a system is actually put to work, extensive
design experience and collaboration are crucial. For additional support,
interaction design patterns have been proposed as a means to discover,
encapsulate, and disseminate user interface design knowledge and best

practices, hence improving the chances of success of new interactive systems.

Despite the obvious and acclaimed potential to support the design process, and
the rich variety of pattern collections we have today, the reuse of HCI patterns
has not achieved the acceptance and widespread applicability foreseen by
pattern advocates. It has been recently identified in the research community that

patterns are greatly underused by mainstream interface designers.

Within the scope of this thesis, we conducted an empirical study and a survey to
gain better understanding of the problem of pattern underutilization. Accordingly,
we point out and demonstrate the lack of suitable representation as a major

cause. This thesis explores two different avenues in solving the problem:

On designer’s side, we demonstrate the potential of patterns in enhancing user
interface design in two investigations. (i) We explore the important but often
neglected interaction between interfaces and the underlying system. We provide
several examples and show how patterns can support this interaction for better
interfaces design. (ii) We look at current approaches of user interface design
processes and the commonly used models. Then we show potential

improvements attainable through informed application of patterns.

In the second avenue, we conclude that a new pattern representation can help
improve HCI pattern dissemination and reuse. We provide a model for the
current pattern lifecycle and propose an additional layer to it, and a new pattern
representation model. A dissemination method is provided to collect and
organize all relevant activities and models within a comprehensive and structured
approach. This addition is supplemented with the needed infrastructure in terms

of supporting software as well as human activities.

Acknowledgements

My first acknowledgement should go to my supervisor Dr. Seffah for his support.
| would also like to acknowledge the experience of Dr. T. Radhakrishnan which
was evident in his assistance and feedback in many parts of my thesis.

Dr. Greg Butler was a wealth of knowledge. Besides the high scientific and moral
standards that | learned from him -as a dedicated and excellent supervisor of my
Masters degree- | appreciate his continued help and advice during my PhD. He
raised the bar of academic values for me to a really high level. The bar was
raised even higher every time | interacted with Dr. Peter Grogono for the last six
years. His dedication to science and to helping students is unprecedented; not
just towards his students, but to any one who wanted to learn.

| was able to improve the quality of my research because | met and worked with
other people who really wanted to help, cooperate, and give. Dr. Peter Forbrig at
Rostock University in Germany was an excellent example. | would like to thank
him for his great and versatile support. | also leaned from Dr. Van der Poll (john)
from the University of South Africa. It was a pleasure working with him. The
feedback | received from Dr. Jean Vanderdonckt clarified several issues in my

thesis. | admire his knowledge and energy.

| would like to thank Dr. Jean-Mark Robert and Dr. Sofiene Tahar for their useful

and constructive feedback which was instrumental to my work.

My research at Concordia was only made possible through several scholarships
and grants. | would like to thank the Government of Quebec for offering me the
FQRNT scholarship. | also appreciate the Federal Government of Canada for
financially supporting some of my work through several NSERC grants. The

scholarship of Concordia University Research Chair as well as the Concordia

Fellowship for Academic Excellence were two major supports to my PhD. | am
also thankful to Daimler Chrysler. Their Web Engineering project was a great

experience for me.

To my parents, your unconditional love and support have inspired me through the
toughest times of my life.

To my wife, thank you for taking over when | was too busy to be there for our

family, and | know | was busy all the time.

To my lovely daughters, Rouan, Judy and Rana, your smiles and hugs
rejuvenated my soul and recharged my batteries everyday. | appreciate your

understanding that daddy’s “endless” homework was important for all of us. | love

you.

Vi

To my Father
I still can’t find the words. ..
God bless you

Vil

Table of Contents

List Of FIQUIres.....cccciiciicviicnnnninnnseri st nncssssnssnsssssnensssssssssesssssnsennesssannenes xiv
List of Tablescccccciiiiiriniiinirinnr e er e eme e s e sennnrne s s s annn s XVi
List of Abbreviations........cccccciniiiiiiimiccsincccernrnrsn s ensersser e eseesessns s senns xvii
Chapter 1
INtrodUCHION ...cciieeiric s e 1
TRESIS SCOPE ..cieiiiririr it eeean e e e e e anber e s e sabeeeas 1
The Essence of Using Patterns............ccceveveiii e 2
A View on Pattern Benefitscccooiviiviiiii e 3
Why the Benefits Were not Reached?..........cccoocvveviiciei e, 6
The Need for Modeling Pattern Lifecycle and Representation.......................... 6
Research Statement ... 9
Research Methodology ... 10
Thesis Organization.............cceeiriir i e e e 12
Chapter 2
A Literature-Based Analysis of HCI Patterns Dissemination and Reuse 14
21 INtrOAUCHON ... 14
2.2 The History of Patterns............cccccoieeiiiiiiiee i 16
2.3 Abstract Pattern VIEW..........euvvieiiiiiiiccciirieee ettt 17
24 ANti-patterns ... ———————— 21
2.41 Anti-patterns in the Design Process.........cccccocviniiiniriirniinee e 22
242 Patterns are not Anti-anti-patternscccceeeevvcciieee e, 23
2.5 The Perception of HCI Design Languages..........ceeevevvveveeeeeeeeveeenvennnnnn. 23
2.5.1 Executable Design Languagesccccccceeeeeeeivnieeieeernmneneennennnn. 26
252 Mental Models vs. Semantic Models of Pattern Languages.......... 28
2.6 Major Uses of Patterns and Pattern Languages..................cccceeo.. 29
2.6.1 Knowledge Encapsulation.............cccocuemereiiieeeeeinnieneeereeeenesnnnnnnnn, 29

2.6.2 LINQUA FranCa........ccccooieiiiiiiiie st ssre e 29

2.6.3 Building Blocks for Knowledge Construction..........cccccccvvivevinnnen. 30
2.6.4 Patterns and the Design ProCess........cccovvvceiviiiciiiicinnneeeeeeeee e, 30
2.6.5 Patterns as Building BIOCKS...........ccccooiiimiiiiieiiiiiiiiinevivananens 31
2.7 Formats for Writing and Structuring Patternscccccceeevevviecnnnnneen. 32
2.71 Presentation vs. Structure-Oriented Viewccccoeevvvveriennenn. 33
2.7.2 How many times: A Famous Question.............ccceeevcvvirinneeeiieennns 36
2.7.3 Internal Pattern Structure...............ccco i 37
2.74 Inter-collection Structurecoooeeieeeiiiiicic s 39
2.7.5 Intra-collection StruCturecoooivveieeeecccii e 40
2.8 Fallacies Related to Misrepresentationcccccccceeeiiriiriniiiicnecnnnneeee, 41
2.8.1 Fallacy 1: Finding the Right Pattern is Straightforward 42
2.8.2 Fallacy 2: Comparing Patterns is Straightforward. 44
2.8.3 Fallacy 3: Implementing Patterns is Straightforward 46
2.8.4 Fallacy 4: Patterns Explain the Consequences of Using Them..... 46
285 Fallacy 5: Finding a Functional Combination of Patterns is
StraightfOrWard e e e eeeeeaeee 47
2.9 107 0) o Tod (U1] o [0 PR 48
Chapter 3

Using Patterns to supplement Software Architecture with Usability........... 50
3.1 INtrOdUCHION ... 50
3.2 Background and Related Workooooveiieiiiiiiiiieeeeeeeeee, 53
3.3 Identifying and Categorizing Typical Scenarios..............ccceeeeeeeeeeeeeee, 55
3.4 Patterns as a Tool to Document Scenarios.............c.oooeevvivvviieeenneceeen. 61
3.5 Software Design Patterns.........cccoccccv i 63
3.6 Interaction Design (HCI) Patternsccccccvieeviciiniiiecceee e, 68
3.7 Cause-Effect Relationships between Software Elements and Usability

71

3.7.1 Traditional Model of Relationship between Invisible Software
Elements and Usability ... 72

3.7.2 Taxonomy of Usability Issues Arising from Invisible Components 74

3.8 APPICALION......itttteeeerr e 77

3.9 CONCIUSION ...oeiiiiiieciieee e et e e e s e r e e e e e e e e nnnnnns 78
Chapter 4
Patterns in Model-Based User Interface Engineeringccccveiiiiieeiiiiennneees 80
4.1 [110 To [0 ez (o] o NPT 80
4.2 Background WOTK........ceeeeviieciiiiineeees s 82
421 Model-Based User Interface Engineeringccccoveececiinmnenaeennn. 83
4,22 Patterns in Model Construction and Transformation..................... 84
4.3 PD-MBUI: A Pattern-Driven Model-Based User Interface.................... 87
4.3.1 Basic Concepts and Terminologyc.cccccveeeiiciinie e, 87
432 PD-MBUIMOAEIScoocotiirie ittt 88
4.4 Proposed HCI Patterns and their Description...........ccooeeviiiiiiieiiiiieeennn. 91
441 Pattern Instantiation and Application.............ccceeeeiiiiiiiiiiiieennn. 92
4.5 Constructing Models Using Patterns...........ccoooooeiineee 95
451 Patterns in Task Modeling.......ccccooiiiiiiiiiiiniiieeees 95
452 Patterns in Dialog Modeling............. SO TP PR PPRIUPPON 97
453 Patterns in Presentation Modelingccccccciciiiniiinniiinnn, 99
454 Patterns in Layout Management Modeling............ccccovevvininnenns 100
455 Patterns in Interface Architectural Modeling............ccccomvrreeenenn. 103
Z SCS TR FoTo] IRSTU o] o] o SRR 104
4.7 Pattern Relationshipsccccvvuiriiniii i 108
471 UPADE Architecture and Basic Features...........ccccccoiiiiiiinennnn. 111
UPADE Archite@Cturecoeeiiiieiieieeee et 111
Feature DescCription ... e e e 112
Practicing Pattern-Oriented Designcoooiiin i, 114
4.8 (070) o To1 [0 1o TSRO 116
Chapter 5
Towards an Integrated Pattern Environment............cooccmmmeeeeeennnnecccninnneae 118
5.1 INErOAUCHION ... e 118
52 A SchemaforPatternscccooiviiiniiiiinc, 120
5.2.1 WHhy @ SChemMa?.......oeeiiiiiiiiiiieiceieieeeee e 120

5.22 The Proposed SChemacoooeeiiiiiiiiiiiieee it 121

5.3 A Database for Patterns ... 124
5.4 A Suitable Data Type for Patterns..........c...cccoovvviiiiiiiiniiinnnccn, 126
5.5 Modeling a Complete Pattern Lifecycle.......c.ccccovvvriiiiiiiiiiineen 130
5.5.1 A Model for Pattern Lifecycle ... 132
5.5.2 Defining the Dissemination ProCessccoovveeririeeiicennnnneeenees 134
5.5.3 Defining the Assimilation Process..........ccccceeviiieiriiiiiiiciiccicnnnnenn. 135
5.6 High Level View of a Dissemination Systemccccoiiiiinnnnnnnn. 135
5.6.1 THE 7C’S PrOCESS....uuuviiiiieee ittt e et e e e s e e e e e e 137
5.6.2 The Integrated Pattern Environment, IPE 140
Motivating the Use of XMLurceecee e 141
The Role of XML in Pattern Automationcccoiiiriiiiiiniiiiiieececceee, 142
Smart Data...........ooooii - 143
5.7 The System Design and Implementationcccc.oiiiiiinicnnnn 144
5.7.1 The Generic Pattern Model, GPM.........ooooiiiie e 147
5.7.2 The Generic Pattern Type, GPT ... 147
Automatic Transformation between Paradigms.............cevvveciinnnins 148
5.7.3 The EXtensible Minimal Triangle, XMTccoovrriiiiiimiiiiiieneeeeennns 149
5.74 The Progressive Abstraction Type Hierarchy, PATH 149
5.7.5 Structured Expert Support, SES ... 150
DY 4171 (o] o PP PPUPPRRTT 150
MOAUIAEION ... e r i nrnnnnnn 151
5.8 The Multi-tier Software Systemccccovvviievirimriiriee, 151
5.9 (@7] 3T [=3 o] o [PP 152
Chapter 6
0o 1 1o = ' o 154
1 PatternN REUSEcooivireei e e . 154
2 Pattern Disseminationovcciiiiieiiiiiince e 156
3 LImMitationSceeeee e 157
FULUI@ WOTK ... s 168
1 Enriching the Systemcccocevvveeveecercveennnen. et anens 158

Xi

2 LonNg Term ViSIONcccveiiiiiiiee ettt et e e e e s 1569

Reconciling Usability and the Architecture Modelsccccceeeereennee. 160
From Code Fragments to Implementation Strategiescccccccocnnuee 161
Bibliographycccicccciiicincimiiiinnnnirccssnnrsssssnsnsssssnssnssssssresssssnnessessssnnesseessannnes 163
APPENAICES ... senen e e e e e aenaaans 189
Appendix A
Additional Semantics of the System..........cccoecimriinininiiccerinnnins e 189
The eXtensible Minimal Triangle, XMTcccovvvvviieureeeereeeeerrerrnrererreereneen.. 189
Identical Patterns..........cccooo i 190
Similar Patterns ...t 192
The Progressive Abstract Type Hierarchy, PATH..........ccoccviiiiveeieininns 194
Structured Expert Support Implementation...........c..ccoocveeeviieeeiciciin e, 196
FAN o 18] 1 1= o USRI 197
Inter-collection Redundancies, ICR..........c.ccccveeiiiiiiiiniie e 199
Appendix B
A Case Study on Pattern Ontologyccccevrrrmmmmmmnirnicncemeneennnnessssssssssnnnenns 201
Appendix C
A Case Study on Pattern Assimilation ..., 206
The Task MOGEI ...t e e e s 206
Designing the Dialog StruCtUreooccciiieiieeeeeeeeee e, 211
Defining the Presentation and Layout Modelccccccvneiicciveierccccneen, 214
Appendix D
A Survey on Pattern Reuse in Practiceccccccmieviecirrscccerrescceeccesenssseenn 217
Introduction and related WOrK............ooociiiiiiii e 218
The Survey Structure and Populationoooccviiieei e 219
ANalySisS Method...... ..o nanas 220
Summary of Survey FINAINGScccccoiiiiii e e e 220
Who Develops the User Interface?...........cooooiioeiiiiii e, 221
The Current Practices of Guidelines and Patternsc..cccocoveeeecnneeen. 222
The Status of Pattern TooIS.........cccoov i, 222
The Mainstream Perception about Patterns..........ccouevvvvviiiivivveiiieeeceeennn. 223

Xii

(070 (o] [V F]T0] o [OOSR 223

Appendix E
Broadcasting HCI Patterns on the Web: Its effectiveness as a
Dissemination Methodcccoiiiiiiiieeeeee e 224
] 10 To 11 L1 1] o IR 225
Whois Using the Internet?........ .o 225
The Rate: An Exponential Growth of the Internet?cccccciiiniiiinne, 226
The Size: “How Much Information 20037?"............oeeeiiirirciiree e 227
Pattern Broadcastingonthe Webooonueoori i, 229
Keyword INAICAtOrSoovviiiiiiiiiiiiiee e 231
Automated Search ... 233
£ T0] V] (o] g T USSR 234

Appendix F
Key Terms and CONCEPLSc.ccccevrriircmerinnismesninssescsssssss s issssss s s ssssssssnsssnes 235

Xiii

List of Figures

Figure 1. Major milestones and users of patterns..........cccccccccceiiiieeccineeeeeeeen, 7
Figure 2: The visual effects and illusion of patterns............c..ccccovniniiiiinnnnn . 19
Figure 3: Pattern’s anatomy and CYCIes.........ccccovriiiiiiniiniiiriiiiiieeiveeeeeeeeeeeeeeeennnes 20
Figure 4: Languages and the communicating parties.............ccccceceeeveerreevrvenneene. 27
Figure 5: The traffic junction form and pattern............ccccoovmirien e, 34
Figure 6: Patterns’ complexity vs. number of USES........ccccevvvviiiniieeeeeeiiiicccnnnns 35
Figure 7: Presentation style of design patterns of GoF............ccccooeiiiiiiiicnnnnn. 38
Figure 8: Search results from Amazon.Comccccceeveviiciiniieeeen e, 44
Figure 9: Maps of pattern relationships in Coram and Lee.........ccccoeeeeiieeeniiennnn. 48
Figure 10: The roles of MVC architecture componentscccccceiieiiiiriiinnnen, 54
Figure 11: Traditional “twin towers” model of...........ccccccov i, 72
Figure 12: Revised model of usability,..........cccccevvurieiiniiiinniini e, 75
Figure 13: Most probable types of cross-relationshipscccccceveenriiicecninnen, 77
Figure 14: PD-MUI framework..........ccccoiiiiiiiciiiiiinc e, 88
Figure 15: Models and their relationships in the PD-MBU! framework 89
Figure 16: Interface of a patterncccovvvviveii i 94
Figure 17: Pattern aggregation...........ccueeiiiir e 95
Figure 18: Interface and composition of the Search Pattem...................ccccuuu. 96
Figure 19: Structure of the Search Pattern.............cocoooveoiiiiiiiiiiniiiccns 97
Figure 20: Presentation and one instantiation of Recursive Activation Pattern .. 98
Figure 21: Interface of the Form Pattern.............cccocvoeieiinniccciieeieeenneen s 99
Figure 22: The rendered interaction elements with three different instances ... 100
Figure 23: Floor plan suggested by the Portal Pattern [Wel0Q]uuuu.e. 101
Figure 24: A comprehensive view of a model based process.........cc..ccceuueeeeee. 102
Figure 25: A Composite pattern for a complete application.ccc........... 104
Figure 26: The Task Pattern Wizard selection screen..........cccccceeeevvicccciicinnnnn. 106
Figure 27: Navigating and selecting patternsooouuiiiiiiiiiiiii e 113
Figure 28: Combining patterns in a new designccoovvvvvieecienirrrieeeceiceeenn. 115

Xiv

Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 563
Figure 54
Figure 55

: A 3D presentation of pattern properties.........cccoccvveeeeecceevirecinenn. 122
: The auspice of databaseccccvuveeeeiiiieecciee e 125
: The hierarchy of the GPM ..o 130
: A model for pattern lifecycCleccccveevecrieeeiiieeee e, 133
: The abstract lifecycle model..........ccccocoveeiiiiiiiiie e, 134
: Smart Patterns delivery system...........ccccoovevvi e 136
S The XML SPACEeeiiiiiieit ettt 142
: A comprehensive system to disseminate HC/ Patterns................... 145
: The multi-tier software system.............ccccveeeiieeiii e 162
: The date conSttUENEScooeiiiiiiic e 189
: The Minimal Triangle........coccviiriiiieeec e 190
: Snapshot of the PATH model........ccccoocveiiecceeneeceece e 195
: Useful and noisy similaritiesc.ccoceeieiceevrecceeceecee s 199
: Typical HCI patterns applied in page layout...........ccoceveeeeirieeeenns 202
: Deducing additional relationships..........cccceveeeeeeericcvinccecee e 203
: Missing information in pattern relationships...........cccocoveiiiiivvennenn. 205
. Coarse-grained task model of the hotel management application... 207
: Interface and structure of the Find Patternccccocuvveueeeeeeeeeeeenn, 209
: Concrete task structure delivered by the Find Pattern..................... 210
: Graph structure suggested by the Wizard Pattem........................... 212
: Dialog graph of the hotel management application 213
: Screenshots of visualized XUL fragments.............ccccvvveviiviinieneennnns 215
: Screenshots from the hotel management application...................... 216
: The distribution of respondentscccccevieiiiei e 220
: The responsibilities delegated to development teams..................... 221
> Internet indexes growth ..., 227
tHCl as depicted by ACMcoooiiiiieeeee et 238

XV

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:

The names and order of pattern items in two collections..................... 39
Pattern-related books at Amazon.Comcccccovvririeieeniiieenccnnreceeen 42
Different pattern attributeso oo, 45
Example of design patterns ... 65
A partial vision of the ISO 9126 measurement framework.................... 73
Relationships between invisible software entities and usability factors 78

Pattern summary ... 92
The proposed format of pattern documentation................cccocvennnneen. 123

XVi

List of Abbreviations

GPM: Generic Pattern Model, see sec. 5.7.1

GPT: Generic Pattern Type, see sec. 5.7.2

GUI: Graphical User Interface

HCI: Human Computer Interaction

IPE: Integrated Pattern Environment, a unifying concept that offers interoperable
models, a notation to implement these models using XML or an object oriented
Ianguage, and an underlying multi-tier information system to store the essential
data and to offer interaction with it.

Minimal triangle: The problem, context and solution predominantly used in
patterns.

MVC: Model View Controller. An architectural model that separates application’s
data, processing and display into a model and several views and controllers.
PAC: Presentation, Abstraction, Control. An object oriented model composed of
a hierarchy of cooperating PAC agents used in implementing user interfaces.
Smart Data: Smart data is data that is capable of describing its contents
independent of any application. Smart data is often associated with and
described in XML to offer a language independent, application independent
representation of data. It can be accessed and parsed by different XML
applications to retrieve its contents. The non-smart data often refers to object

dumps as binary files. They can only be used by their own applications and their

Xvii

data contents can only be processed through the application that created them or
through an appropriate application-specific transformation.

Smart Patterns: Smart patterns are pattern objects that are capable of
communicating with other object and tools in a runtime environment. They offer
different Application Programmer Interfaces (API’s) to allow interaction with them.
Ul: User Interface

UIML.: User Interface Markup Language, an XML-compliant markup language. It
focuses on describing the user interfaces in an abstract way, independent of any
platform or programming languages.

USIXML: USer Interface eXtensible Markup Language. It is an XML-compliant
markup language. It focuses on describing the user interface in multiple contexts
of use like command line interface, graphical user interface.

XML: Extensible Markup Language. It is a simple, flexible ASCll-based Markup
language. It is used to exchange wide variety of data between applications and is
extensible by allowing the creation of arbitrary XML-compliant sublanguages for
different purposes.

XUL: XML User Interface Language. XUL is an XML-based User interface
definition Language. It allows building feature-rich cross platform applications’

interfaces that can run connected or disconnected from the Internet.

Xviii

Chapter 1

Introduction

Having a good language of patterns at your disposal
1s like having an extended team of experts
sitting at your side during development

Grady Booch

Thesis Scope

An Interaction design pattern’ is generally defined as a solution to a usability
problem which occurs in different contexts of use. The concept of patterns was
inspired by the work of Christopher Alexander In towns and building architecture
[AIx79]. Interaction design patterns are a means to transfer experience from
Human Computer Interaction (HCI) experts to software developers [WVEOQQ].
Several languages have been used to represent patterns including natural
languages, programming languages, design languages (like UML), markup
languages (like HTML and XML), and simple sketches (we can see them as
visualization languages). These notations have some benefits and drawbacks.
This thesis looks into the way we represent interaction design patterns. Our goal

is to evaluate and facilitate their discovery and delivery.

' Within this thesis, we will interchangeably use the term interaction design pattern with HCI
pattern as well as Ul design pattern, design pattern, pattern, user experience pattern, usability
pattern to refer to the large variety of patterns used to make any type interactive system usable.
This includes Web, GUIs, mobile and other highly interactive applications.

HCI pattern writers, who are usability experts with background in psychology,
focus on usability and human aspects of the user interface design. They
generally prefer to use narrative formats to convey solutions to common user
problems with supporting theories and concepts of interaction design and human
factors. On the other hand, user interface designers are typically software
developers who need concise and pragmatic guidance through their design and
coding activities. They often find it hard to translate text pattern knowledge into
concrete design [LNHLOO], [GSP05]. Moreover, with the plethora of patterns
available today, mainstream developers get inundated with huge number of
pattern literature and links in many books and on the Internet. They have to
manually read and sift through piles of texts looking for some useful patterns to
apply [Gaf05b] and [Gaf05c]. Once found, narrative descriptions make it
prohibitively difficult to automate the interoperability between patterns and design
tools, an indispensable help to developers today [CHV00].

In this regard, besides focusing on what should be presented in terms of
information contents within patterns, a fundamental challenge is how it should be
packaged and offered to developers in an appropriate way to help understand
and apply them correctly and efficiently. As will be discussed in this thesis, more
flexible notations and views are required to represent different types of pattern
information. The pattern lifecycle needs to be investigated, defined and modeled
to allow for better understanding of pattern dynamics as an emerging design
technique. In what follows we will explore the multi-faceted problem of pattern
representations.

The Essence of Using Patterns

Alexander, Ishikawa, and Silverstein [AIS77] promoted the idea that one could
achieve excellence in architecture and building construction by learning and
using a carefully-defined set of design rules in form of patterns. Although the

quality of a well-designed building is hard to put into words, the patterns

2

themselves that make up that building are remarkably simple and easy to
understand [Tid97]. The software engineering community has popularized
patterns throughout the entire software design spectrum from requirements to
testing, deployment and reengineering.

In the field of Human Computer Interaction, patterns have been proposed as a
step towards building more usable user interfaces. The idea is to capture
information about frequently encountered- and hard to solve problems and
explain how they can be solved in an optimal way. By recording the indications
and remedies of typical problems, patterns can improve communication among
developers and support design reuse. When several patterns are collected
together, they form a “language” that provides a process for the orderly resolution
of software development problems. Pattern authors have introduced pattern
languages using different approaches and terminology. They are not formal
languages, but rather a collection of interrelated patterns, though they do provide
a vocabulary for talking about a particular problem.

A View on Pattern Benefits

Out of a large literature about pattern benefits, we will briefly explore one as cited
by Grady Booch in [AMCO3].

“...at its most mature state, a pattern is full of things that work, absent of things
that don’t work, and revealing of the wisdom and rationale of its designers”.

Being carefully stated to summarize several aspects of patterns, this statement is
acceptable on its own merits. The statement focuses on the benefits that stem
from the basic nature of pattern concept. We briefly provide some insight into this

statement.

“...most mature state”: from that we can understand that patterns are mature
artifacts; or mature solutions. The maturity process makes the difference
between a solution and a pattern, and again makes for the goodness of patterns
as “tried, tested, and true”. In the current shift towards mobile and pervasive
computing, universal usability, and context-aware interfaces [WPO05], [FFS+04],
[VCBTO04], pattern oriented design processes as well as the pattern lifecycle
should be investigated, understood and promoted within a pattern community to
look for and validate pattern discovery and reuse. Mature patterns can provide
robust and more predictable solutions in new paradigms than new, untested

solutions.

“...full of things that work” indicates that a pattern is more than a simple
solution. In today’s sophisticated and highly interactive software, it is not effective
to just build the system as a collection of simple entities and assemble them
according to one’s own knowledge. We once learned machine language
instruction sets as all what was need to solve a problem and we wrote programs
that worked well. Since then we continuously upgraded our language approach
towards higher level languages and more abstractions. That definitely increased
our ability to address and solve more complex problems with relatively less effort.
As the complexity increased, we tended to reuse existing composite structures
instead of building new ones every time, and we are constantly looking for better
aggregation and abstraction techniques, both in languages as well as in running
software. Patterns enhance this trend -in a context sensitive paradigm- as a
collection of usable solutions that happen to appear repeatedly together in
successful applications. Being known -or proven- to work better than other
combinations, we need to discover and collect them, understand why they work
well as a group, and in which context, then put them in a suitable format that

insure their effective reuse.

“Absent of things that don’t work” reveals another advantage of patterns,

namely the reduction of failure by warning us of concealed traps. It is a human

nature that we prefer to focus on things that we have seen before and ignore
things that are unfamiliar to us. In other words, the ability to analytically observe
things is biased towards their familiarity to the observer, and not towards their
actual importance [Coc01]. Consequently, we could underestimate things that
are important just because we don’t understand them or because we never saw
them before or, even worse, because they are accompanied by other things that
are more familiar to us. That might explain why experts do better jobs in

recognizing more important things faster.

In the huge stream of knowledge that is passing by software designers, they tend
to catch only those things that they know, and anchor them to their memory, and
to their design. This can have negative effect as designers may see the system
from a programmer’s point of view or point of understanding and not from the
user’'s. That said, an interface designer might be tempted to think that a certain
combination of objects will definitely work in the envisioned interface, and indeed
they will work, only not for the end users satisfaction, but rather for the
designer’s.

Realizing this fact has promoted the rise of usability patterns, user centered
design, and quality-in-use concepts. While it is hard to explain why certain things
that had great design were less successful than anticipated, they help guide
interaction designers into seeing things from the user's perspective and hence

avoid things that “don’t work”

“...revealing the wisdom and rationale of its designers” indicates an
important facet of patterns. Many of us have had the opportunity to work with
mentors that left great impression on us about their professional “wisdom”. We
then learned how to follow the same approach or a similar one in other situations.
While often implicit and hard to quantify, we use our intelligence and reasoning to
acquire, adapt and reuse this wisdom to new situations, or contexts. Besides

giving a solution to a problem, patterns often provide other information that

reveals the wisdom of the designer or of the solution. The other end of the
spectrum would be the famous expression of “reinventing the wheel”.

Why the Benefits Were not Reached?

As a promising approach in interactive software design, the benefits of HCI
patterns have been largely discussed and the applicability of patterns has been
promoted and cost-justified [AMBC98], [GL99], [MMP02]. As a result, many
patterns were provided to interface designers. However, very little work has been
done to evaluate the acceptance and the success of these patterns as originally
predicted. Recently, researchers started to observe that the expected benefits
have become conditional or unattainable [CHV00], [LNHL00]. We believe that
additional work is needed in order to represent patterns in a more suitable way to
achieve these benefits. More analysis of the problem is provided later in the

chapter.

The Need for Modeling Pattern Lifecycle and

Representation

The best patterns are not so much invented
as they are discovered and then harvested
from existing, successful systems.

Grady ‘Booch

From the above statement, we can look at patterns in general as artifacts that
have three main milestones, organized from a user perspective (Figure 1).

Discovery Representation

=7 XX

Pattern Pattern
Author User

>to
Sto oOO

Figure 1: Major milestones and users of patterns

Pattern Delivery

On the pattern user side, we can say that patterns are harvested and
represented with the main goal of being delivered to other users who implement
them as solutions. A delivery paradigm is essential in the pattern approach
because it indicates that patterns arrived effectively to potential users; a
knowledge dissemination view. This means that patterns should be represented
in a way that software developers can learn, master and apply easily and
effectively in their context. This implementation highlights the main role of
patterns, promoting effective reuse. If patterns were harvested and written down
just for the sake of archiving them then we have missed on the great benefits of
patterns.

Pattern Discovery |

On the pattern writer side, the discovery of a pattern is only the beginning.
Harvesting is a carefully selected metaphor that indicates the hard work
associated with patterns. By observing existing artifacts and problems that have
been solved successfully, we can detect a repeated structure or behavior that is
worth recording. By asserting its importance, we can write down the essential
components and —if possible- analyze them. An expert can provide insight as to

why this combination is good or why it works well and in what context. Finally

7

guidance of how to reuse this solution can be added to assist in modifying and
reapplying the solution. In Chapter 3, we will provide some work in this area.

Pattern Representation

Representation of patterns can be seen as a vehicle —a medium or an
infrastructure —to bridge the gap between the two main activities; delivery and
discovery. This representation is essentially about how to format the solution in a
way that allows it to mature from its solution-format into a pattern. In essence, a
pattern is a solution alongside other information that supports it. The reason is
that in order for a solution to be used by others, they have to be convinced that
this is a good solution. Part of this come by annotating pattern solution with
expert analysis and comments, listing of some cases where the solution has
been applied and the “success indicators”, and possibly some code examples.
Bearing in mind that no two systems are exactly the same, and that every new
software is a new adventure, patterns are typically annotated with important
guidance on how to apply them in different contexts and situations. Some details
are left out to allow the end user to rematerialize an abstract pattern back into a
concrete solution that is adapted to the new design. Having decided on what to
write, the sibling question would be how to best represent this information:
through UML diagrams, simple diagrams, images, text, source code, or a

combination of all of them.

The success of pattern approach depends on all those three milestones. As we
discuss the potential benefits of applying patterns in design reuse, we can not
claim that patterns are “silver bullets”. Due to the inherently creative nature of
design activities, the direct reusability of designs represents only a small portion
of the total effort [YAQ9]. It requires a considerable amount of experience and
work to modify existing designs for reuse. Many design ideas can only be reused
when abstracted and encapsulated in suitable formats. Despite the creative
nature of their work, software designers still need to follow some structured

process to help control their design activities and keep them within the available

resources. Partial automation of this process, combined with sound experience
and good common sense can significantly facilitate the analysis and design
phase of software development [Art00]. Within this process, tools can help glue
patterns together at higher design levels the same way we do with code idioms
and programming language structures [CHVO00]. For example, the Smalltalk
Refactoring Browser, a tool for working with patterns at the source code level,

assists developers using patterns in three ways [FMW97]:

- Generate program elements (e.g. classes, hierarchies) for new instances of a
pattern, taken from an extensible collection of "template” patterns.

- Integrate pattern occurrences with the rest of the program by binding program
elements to a role in a pattern (e.g. indicating that an existing class plays a
particular role in a pattern instance)

- Check whether occurrences of patterns still meet the invariants governing the
patterns and repairing the program in case of problems

Research Statement

As highlighted in the previous sections, patterns are ideally meant to help in
developing concrete design artifacts. Developers can reuse them in building
more usable interactive systems. However, the lack of tool support coupled with
unclear description of the process of collecting, documenting, disseminating and
implementing them in new designs compromises these benefits [BFVY96]. The
text-based formats currently used for documenting patterns cause them to have
problems similar to those of design guidelines — they become ambiguous,
abstract, and therefore difficult to fully understand and master [WVEOQO].

We can see that the lack of communication and coordination between pattern
authors and users is one of the main obstacles to effective adoption of pattern-
oriented designs. Different interviews, debates and studies [CHV00], [Gaf04],
[GWC+00] and [LNHLOO] revealed that designers found patterns highly beneficial

when presented to them. Yet many designers experienced difficulties when
attempting to find, understand and apply patterns correctly in their design
context. They also found it more challenging when they were asked to implement
same patterns for different platforms. Once they were trained, translating a
pattern into a program block was a straightforward task.

The lack of communication is apparent in other issues associated with patterns.
Logistical concerns are often tied to the storage, publishing and delivery of
patterns to their users. Not all experts with genuine ideas can —or care to- afford
publishing their patterns in books or keep them in an updated Website.

Our work proposes a new approach to document and represent patterns. We do
not suggest a fixed template to be enforced on pattern authors, but rather an
abstract “generic model” that covers a wide range of formats and promotes
interoperability between them. The generic model allows for instantiating
concrete pattern objects, or “complex types” in the object oriented paradigm
terminology. This idea allows pattern authors to use their creativity and their own
formats in writing patterns and then adds an additional modeling layer to
transform them into software components with the same semantics, and without
losing any knowledge contained in them. Once transformed, patterns become
software objects in any runtime environment and can be manipulated by
developers using tools within a software development environment. The concept
equally encourages new patterns to be written originally as objects instead of text

artifacts.

Research Methodology

This objective has been realized in 4 main undertakings:

1- Identify, via a comprehensive literature review, the state-of-the-art of

research on HCI patterns, languages and catalogs as well as the

10

prevailing myths and misconceptions in terms of pattern discovery,
representation and delivery. In Chapter 2, we will discus the results of this
literature review from an analytical perspective while paving the road for

an informed approach to pattern representation.

To complement this analytical review, we conducted an empirical study in
a usability lab setting (Concordia Usability and Empirical Studies Lab) to
assess the pattern approach from users’ perspective. A large scale online
questionnaire-based survey was also conducted to investigate how
pattern are currently perceived and used in the industry.

Explore, via a major experiment, how patterns should be represented to
enhance their role and increase their reusability within architecture driven
development. In particular, we study the intricate relationship between
user interfaces and the underlying system. Despite the prevailing trend to
completely decouple them using popular architectures like “Model View
Controller” or the “observer pattern”, we shed new light on ‘“invisible”
associations that need to remain coupled for better interface designs. An
interface that offers “Undo” functionality must be connected to a system
that can safely support many “frantic’ Undo/Redo combinations without
crashing or corrupting user’s data. If not, it might be more prudent to not
offer the Undo in the interface or to constrain its use. Patterns are
proposed to identify and improve this association. We identify and
enhance the role of these patterns within a usability context to abate some
negative consequences and improve the overall software architecture.
These aspects are detailed in Chapter 3.

With a focus on the interface, we present another major experiment to
investigate the role of modeling and the emerging trends in model-based
approaches in interface design. In this regard, we identify some existing
shortcomings in current model-based interface design techniques and look

11

into reconciling patterns and models to improve them. These aspects are
detailed in Chapter 4.

5- Based on the 1, 2, 3 and 4 above, we have been able to propose a
comprehensive model for the existing pattern lifecycle and define the main
activities associated with it. We propose a new methodology, called the
Seven C’s to govern the essential steps and roles for effective pattern
reuse. We also extend the representation of patterns to be accessed and
manipulated within different programming paradigms including object
oriented languages, XML and relational data models.

Thesis Organization

This thesis is organized in 6 chapters.

In this introductory chapter, we motivate our research by highlighting the current
problem in HCI pattern representation.

In Chapter 2 we investigate the concept of HCI patterns in some details and
discuss common facts and fallacies about them.

In Chapter 3 we show how patterns can help improve the usability of interactive
systems and demonstrate the significant but invisible association between user
interfaces and the underlying system.

Chapter 4 shows the strong connection between user interface design and
models, and the beneficiary interaction between them. In it we investigate the

prevalent modeling approaches and how we can support them with patterns.

Chapter 5 culminates the work by providing an integrated pattern environment to
support pattern dissemination and reuse. The system offers patterns in multiple

12

formats that promote interoperability with other software users and tools in
different programming environments.

Chapter 6 provides the conclusion and an insight into related future work.

13

Chapter 2

A Literature-Based Analysis of HCI

Patterns Dissemination and Reuse

Abstract: In this chapter, we look at how patterns are currently used in the HCI
community, who is proposing them, what types of HCI patterns are being
proposed and how they are used. Our investigations and analysis have been
proposed in several HCl-related workshops and conferences and the feedback
from these activities has been guiding us through our work. Since the Internet is
used as one of the main media of disseminating HCI patterns, we also include an
analysis of several studies of the Internet, and evaluate its role and its
effectiveness in the dissemination process.

2.1 Introduction

You ought to be able to show that you can do it
with the regular tools before you have a license
to bring in your own improvements

Ernest Hemingway

Designing a usable and easy-to-maintain user interface is a challenging task.
Indeed, user interfaces are engineered in a wide variety of ways, based on
hundreds of design heuristics and thousands of design “tips”. Only few of them
are drawn from empirical evidence. In general, there is no feedback on the
quality or usability of the interface design until relatively late in the design cycle
when usability testing is performed. Not only does it come late in the design

14

process, but also it is expensive and time-consuming. Unlike code fragments or a
complete source code of an application, Interface testing is hard to perform in a
formal way. It has to deal with many new users and collect their feelings and
opinions about interacting with the application. Due to the expense and difficulty
of setting up tests with humans and the frequent lack of interest or exactness by
some participants, it is not always possible to truly evaluate or improve the
usability of a design. Results can be coarse-grained and mainly qualitative, often

lacking sufficient insights into specific cause or solution of a problem.

Besides testing, there have been many partially successful approaches to collect,

represent and deliver best design practices. The most popular ones are [Cas97]:

- Study of exemplars

- Practice under the instruction of a mentor

- Design principles to capture the mentor's implicit knowledge

- Design rationale for organizing application of principles to cases
- Design guidelines and style guides making principles specific

- Ul toolkits embodying some guidelines

The common difficulties associated with testing, and the attempts to overcome
them have helped in the rise of interaction design patterns as a cost-effective
vehicle for capturing and disseminating best practices in interface design. They
have the advantage of giving designers immediate feedback on their design in
progress and the ability to select and combine different successful design
alternatives. Consequently, many HCI experts devoted themselves to developing
HCI pattern languages, encapsulating their knowledge in a reusable format for
designers. Among the heterogeneous collections of pattern, “Common Ground”
[Tid97], “Amsterdam [Wei98], “Experience” [CL98] and “The Design of Sites”
[DLHO3] play a major role and wield significant influence. It has often been
reported that all HCI patterns and pattern languages are useful design tools
[Erc00], [GL99], [GSSFO04].

15

In this chapter, we first consider the facts about patterns, starting with the history
and then moving on to the definition of patterns and anti-patterns. There are
different motivations for using patterns and correspondingly different opinions
about them. We discuss them as well together with the recurring questions and
debates about how many times a solution to a design problem should be used
before it can be called a pattern. also take a deeper look into the existing
patterns, reflecting on their internal structure, inter-collection structures and intra-
collection structures. HCI design pattern languages are then discussed at a
conceptual level. We consider the semantic model of patterns as seen by a
pattern author versus the mental model as perceived by a pattern user. We
explore how this can be exploited to promote better communication between the
two parties, hence improving the reuse of patterns. We finally highlight some
pitfalls in using patterns based on assumptions and fallacies in discovering,

composing, implementing, and validating patterns.

2.2 The History of Patterns

Since their first inception, patterns have been accompanied by certain
expectations that rose from logical thinking of researchers. Many of these
expectations have proven to be true. In this section, we will evaluate them and
discuss how well-known patterns originated as well as how they are currently

perceived and used.

The first major milestone is often attributed to the architect Christopher
Alexander, in the 1970s. His two books, A Pattern Language [AIS77] and ‘A
Timeless Way of Building” [Alx79] contained collections of pattern examples, all
following a similar structure. Alexander had an earlier book “Notes on the
Synthesis of Form” [AIx70] which paved the road for his other books and
provided some analytical insight into pattern-related philosophy. The pattern

concept was not well known in software community until 1987 when patterns

16

appeared at OOPSLA, the object orientation conference in Orlando. There Kent
Beck and Ward Cunningham introduced pattern languages for object-oriented
program construction in a seminal paper [BC87]. Many papers and presentations
have then appeared, authored by renowned software design practitioners such
as Grady Booch, Richard Helm, Erich Gamma, and Kent Beck. In 1993, the
formation of “Hillside Group” [Hil93] by Beck, Cunningham, Coplien, Booch,
Johnson and others was a step forward to forming a design patterns community
in the field of software engineering. In 1995, Erich Gamma, Richard Helm, Ralph
Johnson, and John Viissides (the Gang-of-Four; GoF) published “Design
Patterns: Elements of Reusable Object-Oriented Software [GHJV95] which gave
patterns a new object-oriented dimension. This book is widely accepted and used

in the software developers’ community.

Following the great success of design patterns by GoF, patterns were further
proposed to HCI practitioners at a “CHI 1997” Workshop by Erickson and
Thomas [ET97]. The HCI community immediately adopted the concept of
patterns for Ul design. Several individuals and groups contributed swiftly to the
development of HCI patterns for interaction design like [Tid97], [Cas97], [ET98]
[CLO8], [PG98], [GLOY], [Bor00], [Wel00] and many others. Every year, new
pattern collections are added through publications in conferences, workshops
and books.

2.3 Abstract Pattern View

The concept of design patterns can have different meanings in different domains.
This can lead to confusion when these domains intersect. An example is in the
two domains of artificial intelligence (pattern recognition) and interaction design
(HCI design patterns). While the concept of patterns and the activities associated
with them look different in both domains, they have —in fact- strong similarities

that can be used in a constructive way.

17

A mathematics forum at Drexel University [Dre02] defines patterns as “A unit,
repetition, and a system of organization”. This is an abstract definition that
broadly applies to different domains and uses in both art and science. In artificial
intelligence, for example, the units of patterns exist in the environment, and
through their repetition (temporal, spatial, or otherwise), they are observed and
recognized. The system of organization is the environment in which these
patterns occur. Similarly, in interaction design, the unit could be a proposed
solution to a problem. The repetition is the fact that the proposed solution is good
enough that it has been successfully used in existing applications and is
therefore recommended for reuse in other designs®. The system of organization
is the design artifact in which the pattern is applied.

Similarly, in textile industries, patterns have a parallel analogy. The unit is the
graphical shape printed on the fabric. The repetition is the fact that these shapes
are printed repeatedly on the fabric, which also serves as the system for
organizing these patterns together.

Our field analysis revealed an important observation . A concrete design goal has
to be explicitly specified to the textile pattern designer. Namely, the designer has

to devise patterns according to one of three (apparently contradicting) criteria:
- Pattern shape and size should work out to hide the repetition completely
- Patterns should be placed together to emphasize the repetition

- Patterns should visually interact to give the illusion of other virtual patterns

For example, to emphasize the third goal, we show the pattern in Figure 2.

2 This statement raises two important issues: The first one is about the famous debate of how
many times a solution should have been used before calling it a pattern. We will come back to
this point later. The second issue is using the word pattern “reuse”, and not pattern “use”, due to
the fact that —by definition- patterns have been used as solutions and only as they are reused,
they become patterns.

18

FAkAF Ik FIEAFALFALAFAL FALAFALF Ik AF AL A
FAEAFIEF Ik dF AL F AL dF e F Ik dF AL F AL AF kA
FAkAFqEFIEAF I F AL JF AR FIL AF e F AR AF kA
FAkAFAEFILdFAb F AL AF AL F AL AF b F AL IF Tk
FALAF AL FIAEIFAL F AL AF AL F AL AF AL F AL AF AL
FALAF AL F AR AF b F AL AF A F AR AFTLF AR JF Ak
FAEAFAEFAEdFIEF A AF AL F I AFIEFIEIF R

Figure 2: The visual effects and illusion of patterns

The unit here is the letter “F”, and it is organized to give the illusion of several
virtual patterns like “columns of 7 letters”, “double columns of mirrored letters”,

“inverted double columns”, “squares of 4 double columns touching each other”,

and even the illusion of some “ corrugated 3D wall effect”.

At a practical level, repetition is emphasized as one of pattern fundamentals.
[AIS97] defined a pattern as: “A recurring solution”. Therefore the recurrent use
or reuse-ability is an important factor to validate patterns.

Alexander defines a pattern as a three-part rule which expresses a relationship
between a certain context, a problem and a solution [Als79]. The context is the
environment, situation, or interrelated conditions within the scope of which
something exists. The problem is an issue that needs to be investigated and
resolved, and is typically constrained by the context in which it occurs. The
solution is a response to the problem that resolves the issue in a specific context.
In general, patterns also provide the rationale behind the proposed solution, as
well as the consequences that might be encountered if the solution was applied.
Patterns are essentially context dependent. If the context is changed, the solution
could be different for the same problem, which may lead to a different pattern
being applied. This is one of the fundamental pillars of patterns. Without a
context, patterns loose their applicability and the relevance of much of their
knowledge and analysis. It is the context that makes rise to the particularity of
patterns as packaged “ready to go solutions with insight”. A context-free pattern
would be too abstract to apply or even understand.

19

Nonetheless, a certain degree of abstraction —or invariance- is still needed to
prepare patterns for reuse in different designs. In software engineering, the GoF
[GHJVOY] stated that a problem has a set of goals and constraints collectively
referred to as forces, which occur in a specified context. The context, in this
case, is the recurring set of situations within which the pattern applies. The

pattern is a generalised solution that can be applied to resolve the forces.

Some defining characteristics and basic terminologies that are relevant to
patterns are commonly understood and used among pattern authors. They
include: identification of the problem in context with imposed constraints,
existence of the solution, recurrence of the problem, invariance abstraction of
aspects of the solution, practicality of the solution, which needs to strike a
balance between optimality and objectivity, and communicability of the
problem and the process of conveying the solution to the user. The relationship
between some of these characteristics is illustrated in Figure 3.

Pattern

Identity Consequence

Context

Constraints Apply

Practical .
Problem » Solution
Communicable

Recurrence Validation

Figure 3: Pattern’s anatomy and cycles

20

2.4 Anti-patterns

Over the last few years, the idea of anti-patterns has started to gain momentum
in software pattern research [MJ99] [WVO03]. Anti-patterns document what usually
goes wrong in software development, and how one can avoid these mishaps
[CBE+04]. The rationale in publishing anti-patterns is to identify recurring design
flaws for the purpose of preventing other people from making the same mistakes
[BMMMO8].

An anti-pattern has two possible forms: it either “provides knowledge on how to
go from a problem to a bad solution” or shows “how to go from a bad solution to
a good solution” [CBE+04]. The former will be referred to as a waming anti-
pattern, and can be seen as a “warning before falling into a trap”. The latter is
commonly called an amelioration anti-pattern, and is seen as “recovery from- or
surviving a trap”. As in patterns, an anti-pattern has more information and
analysis than just a problem and a solution statement. If described properly, an
anti-pattern tells the designer why the recurring bad solution looks attractive, why
it turns out to be bad and what positive patterns are applicable in its stead. Anti-
patterns therefore concentrate on presenting negative solutions [BMMM98].
Warning anti-patterns are not very useful to the designer, behaving as mere
examples of what could go wrong. They might be browsed quickly before or
during design, but they rarely take major role in design, or motivate designers to
examine them carefully. On the other hand, amelioration patterns are
constructive and useful to designer since they show how a bad solution can be
refactored. They often take a major role, especially in reengineering projects
where problems are already present, showing in test results or even crippling a
working system.

The fact that warning patterns are less useful compared to amelioration patterns
may look counter-intuitive. By default, it makes more sense to avoid a trap than

21

to first fall into it and then try to find a safe exit or a recovery strategy. However,
several factors might contribute to the opposite:

e Lack of motivation: It is a human nature that we are not always
motivated to heed warnings until they happen to us, or at least until we
see them happening close to us.

o Overconfidence: designers tend to like or believe in their own point of
view of an issue more than that of an anti-pattern author.

e Underestimation: As discussed earlier, in the huge stream of knowledge
that is passing by us, we tend to only catch those things that we know.
Designers could underestimate potentially serious problems just because
they don’t understand them. Therefore, an eminent trap might be simply
ignored.

o Perceived overhead: Design process is often restricted by limited
resources. Tight schedules and limited budgets might force designers to
go ahead with their design with minimal preparations. They are often
tempted to believe they have little time to spend looking at anti-patterns
and carefully studying them.

Empirical studies are needed to determine these factors and their effect.

241 Anti-patterns in the Design Process

Due to the fact that applying patterns and anti-patterns have added complexity to
any projects, some refactoring proponents call for having a no-pattern design
first. After having an application that is up and running, patterns can be added at
a subsequent refinement stage. This approach definitely has its merits in
simplifying the design process. By not focusing on patterns early on, this idea
lends itself naturally to the concept of iterative design and early working versions,
as promoted in XP and agile programming methodologies. This might be a
controversial issue with positive and negative sides depending on the nature of

22

each project. For example, amelioration anti-patterns are the foundation of many
reengineering projects. The use of anti-patterns and their role in the design

process is definitely an interesting issue that warrants more research

2.4.2 Patterns are not Anti-anti-patterns

In the theory of pattern languages, now —ironically- developed more extensively
in software than in building architecture, the concept of ‘anti-pattern’ plays a
central role. Unfortunately, the solution space is not one-dimensional; a pattern
may have a number of associated anti-patterns, and a pattern used in a different
context may become an anti-pattern. Furthermore, the negative of an anti-pattern
is not necessarily a pattern — it could merely be another anti-pattern. At this stage
research into software design anti-patterns abounds [CBE+04], but none of the
renowned HCI pattern collections investigated make any reference to anti-
patterns yet.

2.5 The Perception of HCI Design

Languages

A tomato does not communicate with a tomato,
we believe.
We could be wrong.

Gustav EcKstein

There is abundant literature that discusses the issue of languages from different
points of view, and there are several ways of grouping and categorizing them.
Broadly speaking, we can see a language as “a means of communicating
knowledge between two physical or logical parties”.

23

[RE96] state that design languages have been used to design all kinds of objects
and services and that these languages are “offen used unconsciously, arising out
of the natural activity of creation and interaction with the created things”. They
emphasize that when consciously understood, developed, and applied, design
languages can build on and improve this natural activity, and “can result in
dramatically better interactions, environments, and things of all kinds". A
successful design language is commonly used by many designers (we can refer
to UML as a good example). However, as pattern authors have developed
different “pattern languages”, the mere facts of multitude of these languages and
their incompatibilities seem to make them ineffective. Users have to define their
own “activities” of interacting with patterns within each pattern language, and
have to figure out how to select and apply them, which make pattern languages
hard to learn. Ideally, when the activities of pattern reuse are explicitly defined
and understood, design languages can build on and improve this natural activity,

and can result in dramatically better interactions.

A pattern language is more than just a collection of patterns. A catalogue or
collection of items can be viewed as a dictionary, which offers a way to access
items individually, looking for their internal contents or characteristics. Apart from
providing an organized access method to individual items, dictionaries seldom

provide information on how items can be interrelated or used together.

In contrast, a significant part of pattern knowledge lies in how they can be
combined together in a dynamic network of pattern associations and
consequences of their interactions [GSP05], [GMS05]. A successful pattern
language contains information regarding when and how patterns can be
combined in order to form larger-granularity pattern blocks. Ideally, this activity
can be iteratively applied to produce concrete design artifacts. This concept is
often dubbed as pattern-oriented design (POD) approach. The POD in itself is
not a comprehensive design process that relies fully on patterns and their
interactions. It would be unrealistic to generate a design synthesized solely from

24

patterns. On the other hand, POD is not a simplistic activity of using few patterns
to manually modify the layout of a web page or an interface. A realistic POD
would fit somewhere between these two extremes. The POD approach is usually
integrated into another design process —a host process- where POD activities are
inserted within specific phases of the host process [GSSF04], [GSP05].

In the context of accumulating experience, Nonaka [Non98] distinguishes
between tacit and explicit knowledge and suggests four modes of knowledge
transfer:

1. Internalization: Creating tacit knowledge by acting upon explicit knowledge

2. Combination: Creating new explicit knowledge by linking existing explicit
knowledge

3. Socialization: Sharing tacit knowledge with others through implicit interaction

4. Externalization: Sharing tacit knowledge with others through explicit
verbalization

In HCI, the concept of a pattern language is often considered in an analogous
approach to three of Nonaka’s four modes of transfer. Creating a new pattern
language strongly resembles the first two modes, internalization and
combination. The former corresponds to observing current solutions, collecting
and analyzing them, and the latter corresponds to building a new pattern
language by combining patterns into a collection.

When it comes to pattern reuse, Tidwell [Tid97] sees pattern languages as a
‘way of communicating design knowledge and idioms between design team
members”, which is a form of externalization. Gaffar [GSSF04] explains that in an
HCI pattern language, communicating patterns is done using a natural language:
something like “Are we going to use menu bar or sitemap within the
homepage?” where the three boldface words are actual HCI patterns. Duyne
[DLHO3] explains *In fact, though you may not know it, you may already be using

25

some form of pattern languages to articulate and communicate your design”. The
presence of externalization is evident since patterns are mainly used for sharing
some knowledge by explicitly writing it in a pattern format. We agree that without
pattern names, communication between designers would be more difficult and
implicit; resembling a socialization knowledge transfer. But we also believe that

there is more to a pattern language than just that.

251 Executable Design Languages

As mentioned earlier, there are plenty of pattern languages, and the number is
growing. Apparently, there is an evident need to transfer knowledge, and this
need is likely to remain in the foreseeable future. Nonetheless, looking into the
quality of pattern languages as a tool for knowledge transfer is as important as
looking into their quantity.

Traetteberg [Tra02] mentions that the role of representing knowledge is both to

“capture knowledge”, and to “support the design process®

. Many of the works on
pattern languages focus on the first point alone. We can see the challenge in
crossing the existing gap from the first point to the second. The large number of
patterns “captured” is not scalable when it comes to “supporting” the design
process. Currently, the common methods of implementing Traetteberg's two
points are through human activities. People write patterns in a natural language
for other people to read and understand, and then manually produce new design
artifact. We can see the scalability problem of this approach by considering the

thbusands of patterns offered today.

One categorization of languages in the context of communicating parties can be
as shown in Figure 4 [GSSFO04].

% We will come back to these two items later in the thesis, and will refer to them as “Traetteberg’s
two points” for simplicity

26

Flexibility
Human-Human

Communication
{Natural Languages}

Human-Computer
Communication
{Programming Languages}

Computer-Computer
communication
{Protocols)

Ease of ¥ a
Compilation/ Complexity
Automation

Figure 4: Languages and the communicating parties

In the paradigm of today's pattern languages in HCI domain, the two
communicating entities are humans. The computer is not meant to play any role
in this language concept. Adopting this point of view, we define the issue of this
argument as an answer to the question: “Is it possible to redefine the HCI pattern
language to be an Human-Computer Communication (HCC) Language, and not
just an Human-Human Communication (HHC) Language?” It is worth mentioning
that the HHC, HCC and CCC language spaces are general and are not confined
to HCI patterns®.

From the above figure, it seems that moving pattern languages from HHC to
HCC space improves the level of automation (and hence the scalability) by
allowing computers to help in preprocessing patterns for users, but it could also

reduce flexibility by moving pattern representation from free text formats to a

* As we first published the subject in [GSSF04], we used “interaction” instead of “communication”
in all three ellipses, so HHC, HCC and CCC were originally referred to as HHI, HCI, and CCI.
However, due to the confusion with HCl acronym in HCI patterns, we replace the interaction with

communication.

27

more restricted language model. This issue is explored in more details later in the
thesis (in section 5.4).

252 Mental Models vs. Semantic Models of

Pattern Languages

The importance of mental models has been long identified in literature. They are
small-scale psychological representations of real, hypothetical, or imaginary
situations [Cra43]. They are constructed to anticipate events, to reason and to
underlie explanation. Cognitive scientists have since argued that the mind
constructs mental models as a result of perception, imagination and knowledge,
and the comprehension of discourse [JGL98]. It is therefore reasonable to
assume that as designers read patterns, they construct mental models to
represent them in their problem context. A successful pattern allows users to
construct the correct mental model the pattern author intended in their envisioned
design artefact. Referring back to the two points of Traetteberg, we can see the
mental model applicability as implementing the second point, namely supporting
the design process, albeit only manually so far.

An interesting observation is the relationship between mental models and
semantic models. We discuss the semantic model applicability as implementing
the first point. Data is written with specific syntax and semantics. The syntax is
determined by the language alphabets and grammar used to write data. Data
semantics describe the underlying meaning of data regardless of the way it is
written. While a specific syntax is required to represent data, it is the underlying
semantics that carry the actual knowledge within it. In [GP04], Bosak asserts that
true data interoperability requires not just interoperable syntax, but interoperable
semantics. Being able to explicitly represent the underlying semantics of data
allows the computer to process it the same way we do as we read a text

document. For example, an XML document is represented in a format that

28

explicitly exposes its semantics in such a way that can be understood and
processed by software.

2.6 Major Uses of Patterns and Pattern

Languages

In this section, we define and categorize the prevailing concepts underlying the
usage of patterns as seen by different people. We also analyze the goals and
expectations behind them. We emphasize that these concepts and approaches

are not orthogonal; they can complement- or intersect with one another.

2.6.1 Knowledge Encapsulation

Patterns represent design knowledge in a form that can be understood, learned,
and applied to situations that are partially similar to original cases. The rationale
is that abstracting and encapsulating experience and best practices in a
comprehensible format would allow novice users to produce quality design
artifacts without relying on direct help from experts. [Cas97] demonstrates the
potential of using patterns over templates, standards and guidelines in creating
usable interactive systems. HCl and other software patterns are primarily

concerned with the similar objective of supporting knowledge transfer [Bor00].

2.6.2 Lingua Franca

The interface design of an interactive system can be a challenging task,
especially for software developers who are not familiar with usability engineering
techniques and human interaction theories [MR92]. Experienced designers focus
on the creation of an artifact that integrates various behavioral theories and
technologies with no real expectation of evaluating one variable at a time

[ZEBPO04]. They use their implicit knowledge to produce quality design. Usability

29

experts often take a more scientific approach, looking at specific elements and
their demonstrable optimization with some scientific analysis. Additionally,
software developers are interested in finding the applicable design and
implementing it correctly, right out of the box. This is a fertile soil for patterns as
they provide the mechanism to integrate and satisfy different goals by different
stakeholders.

In this direction, patterns have been seen as a lingua franca or common design
language for improving communication by providing a common vocabulary for
design. The focus is on sharing basic, broad meaning with less emphasis on
technical design issues. The use of a lingua franca is intended to help cross the
cultural and professional barrier between these stakeholders [Eri02].

2.6.3 Building Blocks for Knowledge Construction

As building blocks, patterns have a larger scale of granularity than objects and
classes to compose systems [CHV0OQ]. Given a broad collection of patterns on
different scales of granularity (e.g. architectural patterns, design patterns,
language-idioms) it should be possible to combine and glue them together into a
design that can be mapped to different programming languages. Based on the
abstraction concept of patterns, this approach enables designers to talk about
software in different design stages using patterns. At some point it is sufficient to
know that we are using a specific pattern (its name and general characteristics).
Details about the constituents of this pattern or how it is actually implemented are
only the subject of later stages.

2.6.4 Patterns and the Design Process

It has been reported that HCI patterns and pattern languages can act as driving
force in the model-based development approach as well as the user-centered
design lifecycle in general [LG99], [Bor00], [Eri00]

30

Within the scope of the development of interactive applications, POD, as
discussed earlier is one attempt to seemingly integrate patterns into the design
process. On the basis of the UPADE Web Language [GMSO05], the POD
approach aims to demonstrate when a pattern is applicable during the design
process, how it can be used, as well as how and why it can or cannot be
combined with other related patterns. Developers can exploit pattern
relationships and the underlying best practices to come up with concrete and
effective design solutions.

Similar to POD, the “Pattern Supported Approach” (PSA) [GL99], [GLO1]
addressed patterns not only during the design phase, but during the entire
software development process. PSA aims to support early system definition and
conceptual design through the use of HCI patterns. In particular, patterns have
been used to describe business domains, processes, and tasks to aid early
system definition and conceptual design. The main idea of PSA is that HCI
patterns can be documented according to the development lifecycle. In other
words, during system definition and task analysis, depending on the context of
use, it can be decided which HCI patterns are appropriate for the design phase.
In contrast to POD, the concept of linking patterns together to result in a design is
not tackled. Study of this topic is elaborated in Chapter 4.

2.6.5 Patterns as Building Blocks

[BFVY96] developed a tool to generate C++ code from the patterns published by
Gamma et al. [GHJV95]. Generating code from pattern descriptions gives rise to
the idea of generative design patterns. In the field of software engineering,
generative design patterns (GDP’s) are used to promote rapid prototyping and
provide a mechanism for code reuse at a high level of abstraction [SBG99].
GDP’s are both useful and productive in leveraging design re-use into code re-
use [MSS+04].

31

In [MMPO02], Molina et al. proposed the Just-Ul framework, which provides a set
of conceptual patterns that can be used as building blocks to create interface
specifications during analysis. In particular, conceptual patterns are abstract
specifications of elemental interface requirements such as: how to search, how to
order, what to see, and what to do. Molina also recognized that the mostly
informal descriptions of patterns today are not suitable for tool use. Within the
Just-Ul framework, a fixed set of patterns has been formalized in order to be
processable by the “OliverNova” tool [CT04]. Eventually, based on the analysis
model, the JUST-Ul framework uses code generation in order to derive an
implementation of the Ul.

2.7 Formats for Writing and Structuring

Patterns

There are different ways to document patterns, including text, figures, diagrams
and code fragments. Different formats have been proposed for organizing this
information. Alexander's original patterns were presented in a fairly informal,
narrative style. The text had an implicit structure as will be shown later. The
Gamma format presented in the GoF book “Design Patterns” was much finer
grained with more details, decomposing each pattern into many sections. The
structure used in patterns depends on several factors. Authors have their own
preferences. Different subject matters may influence the structure. For example
more technical information can call for patterns with more examples. Diverse
audiences may call for different formats as well. Novice readers may prefer a
more prosy style while more experienced readers may prefer a more formal
approach. What matter is that we should provide a consistent structure so
patterns may be easily understandable and comparable.

32

2.7.1 Presentation vs. Structure-Oriented View

In the presentation-oriented view, a pattern is seen as a “Problem, context,
solution” triangle. This view is more user-interface related, and has more focus
on the presence of a solution and less focus on how to implement it. In this view,
the focus is roughly equally distributed between the three parts of the triangle.
Granularity is very high. Solutions are generally sketchy, providing only high-level
recommendations with much less focus on final details or implementation.
Examples are present in the form of simple graphs, or a snapshot of an existing
user interface with few, if any, details about implementations. This is typically
common in many HCI patterns.

This form of solutions can be strongly linked to an interesting observation by
Christopher Alexander in his book “Notes on the Synthesis of Form” [Alx70]. He
indicates the relationship between repetition and patterns with the example of a
traffic junction as depicted in Figure 5. Wider lanes reflect more usage (more
repetition) than thinner ones, and arrows (the pointed tips of lines) show the
direction of flow. If we imagined observing an existing “natural” junction in a trail
in some forest or grassland after being used over a long time, we can correlate
the width of each lane to the traffic flow in it.

From this existing evidence of repetition, let us assume that we want to replace
this natural junction with a new paved road. Unless there is a problem that
necessitates change, we should design the new junction to look like the existing
one; that is how it has been successfully used over time. We can design the
width of the new traffic lanes as a solution to the lane width problem without
relying on complex formal methods to derive and validate the solution. The
problem, context, and solution elements are present here, and they have
matured over time. We have an excellent pattern. Repetition is present here as
discussed in the beginning of the chapter. The same junction can also be used

33

as a solution to the intersecting trails problem in other places with similar context
of use®.

Figure 5: The traffic junction form and pattern

Similarly, in presentation-oriented view of user interface patterns, interfaces are
observed over and over again, and repeated patterns are recorded to reflect the
successful interaction performed by users. Validation exists by nature of this
repetition. The behavior of users as to explain “why this is a successful
interaction” might follow, but it is not used as the main method of finding the
solution. Like the traffic junction example, designers did not invent or validate the

solution; they just observed an existing junction.

In the structure-oriented view, prevalent is software engineering, a pattern is
seen as a collection of interacting classes and objects. It works as a micro-
solution that can participate in the final design and implementation. Most of the
effort is directed towards a solution, with brief analysis of the problem and
context. More details are provided as to how a solution can be actually
implemented. The details of few classes or objects working together to form a

® This example is for demonstration purpose only. Civil engineers use formal methods to find and
validate a solution. In HCI, we still have few —if any- formal methods to find and validate a Ul

design, so the observation of repetition is still widely applicable in HCI domain.

34

solution is typical of this view. Often, the details of some classes and objects are
also provided in the form of platform-specific source code implementation
examples (object-level granularity). This view shows some examples down to the
tiniest details as made by experts. But it is also harder to create such a pattern,

as it requires a higher level of expertise than the presentation-oriented view.

While complete design solutions are considered coarse-grained and classes and
objects are considered fine-grained, patterns are seen as medium-grained
components in both views. They can be anywhere between these two ends of
granularity spectrum. They offer design suggestions that are “tested and true”,
thus alleviating the burden of formally predicting the success or failure of new
solutions. While both views rely on the concept of “tested and true”, there are

subtle differences.

&
Number of
Repetitions

riteracﬁah
Patterns

i

: / Design
2 ¥\ Patterns
Common ="

Complexity of
the Solution

Figure 6: Patterns’ complexity vs. number of uses

Figure 6 compares patterns based on the number of uses before a pattern is
named, and the complexity, or the “ingenuity” of the solution that underlie the
pattern. As stated in [GHJV95], design patterns originated as common sense
solutions known in the programming community. They were then improved and

35

refined by their authors over several development projects until they reached
their recent formats. They often have elegant and sophisticated ideas that are not
easy to come across by a novice designer. Interaction design patterns, on the
other hand, typically originate from authors observing many interfaces (Web and
software application) and recording the common behavior of users and the
common interaction idioms. Being used regularly, an interaction pattern would
likely indicate a “solution” to an issue, but not necessarily a complex one.
Moreover, while design patterns were used —and refined- few times by their
authors before being called patterns, interaction patterns are typically used many
more times —possibly several order of magnitudes- before being identified as
patterns. Figure 6 also explains the difference between design patterns,
interaction patterns and a “common sense” solution, which we can see as a low-
complexity solution that is used only a few times.

2.7.2 How many times: A Famous Question

Figure 6 can provide discussion visualization to the debate about the number of
uses of a solution before calling it a pattern. Some arguments call for a minimum
number of actual applications before a solution can be called a pattern (the rule-
of-three, [App00], however it is not specified if these applications should be done
internally by the pattern author, as in the Gamma collection or externally as used
by different interface examples, as in Welie’s collection. While the discussions
about numbers continues in different usability issues [BBC+03], some authors
[Fin02] argue that even without any repetition, a solution can be called a pattern

when it is “invariant” allowing it to be applied in different contexts.

Originally, Nielsen provided a mathematical model to argue for the sufficiency of
five users in usability testing [Nie93]. After great controversy, he recently called
for caution and pointed at the danger of quantitative studies [BBC+03] and
[NieO4]. He warned against using unnecessary numbers, calling it “number
Fetishism” in qualitative research. Therefore we believe that determining the

36

number of repetitions before validating a pattern should be left to individual

cases.

2.7.3 Internal Pattern Structure

Pattern contents have been presented to users in different formats. Christopher
Alexander captured the spirit of patterns in an organized approach in his
patterns. While written in text format, the text was structured around an implicit
algorithm, known as the Alexandrian Algorithm (HCIPattern.org).

If you find yourself in CONTEXT
For EXAMPLE,
With PROBLEM,
Entailing FORCES

Then For some REASONS,
Apply DESIGN FORM and/or RULE
To construct SOLUTION
Leading to NEW CONTEXT and OTHER PATTERNS

Following this algorithm, he built several patterns to help architecture designers
make use of his renowned insight and experience. The main components of each
pattern are clear. The text format and the implicit structure make it interesting to
read Alexander's patterns, and make them more interesting as you read them
again. We believe that he intended to provide a high quélity text that is meant to
be read by highly intellectual people, over and over again. That said, we also
believe that the text is less suitable when it comes to reading a growing number
of patterns written by new authors. Moreover, it is obviously hard to have tool

support for this highly intellectual text format.

37

The next milestone in design pattern development is attributed to the well-known
book of “Design Patterns” [GHJV95]. As shown in Figure 7, they used simple
graphical illustrations, UML diagrams and code segments. The book became an
unprecedented success that drew the attention to patterns as an effective way of

communicating experience to novice users.

Maze* MazeGame::CreateMaze (MazeFactory& factory)

{Maze* aMaze = factory.MakeMaze();

The quick brown fox...

O] Room* r1 = factory.MakeRoom(1);

Room* r2 = factory.MakeRoom(2);

Door* aDoor = factory.MakeDoor(r1, r2);

Weght Omedium @bkl ieoriokl

Slant Droman @italie :ioifics
Soe B[] st
@0

aMaze->AddRoom(r1);

aMaze->AddRoom(r2);

r1->SetSide(North,

factory.MakeWall());

ldbo st unfermlyorib

Figure 7: Presentation style of design patterns of GoF

Several contributions followed this work, and they varied greatly in their format. In
the domain of Human Computer Interaction, [Bor01] published his collection of
interaction patterns following the exact same template proposed by Christopher
Alexander. [CL98] built another collection of HCI patterns, named “Experience”
using same style. In their collection, they used a free narrative text to present
patterns. No template was explicitly used. However, their text was implicitly

structured the same way Alexander did in his format.

38

Common Ground [Tid97] and Amsterdam collection [Wei00] were other early
attempts to publishing more HCI patterns. Unlike Borchers’, Welie and Tidwell
used new templates. The major difference is that they used explicit format, and
provided names for each part of a pattern. They used different names, and order.
Table 1 depicts Van Welie’s template and compare it to Tidwell's. It is clear that
the basic ingredients are the same, though some labels and the order of the

labels started to vary from Alexander’s format and from each other.

Table 1: The names and order of pattern items in two collections

Attribute Vs. Author Van Welie Tidwell
Name Yes Yes
Problem Yes Yes
Forces No Yes
Context Yes (called When Use) Yes
Solution Yes Yes
Why Yes No
Examples No Yes
More examples Yes No
Bad examples No Yes
Known uses Yes No
Related pattern Yes No
Resulting context No Yes
Graphics and images Yes No

Other collections quickly followed the trend and were published on the Internet
and in books.

2.7.4 Inter-collection Structure

A way of organizing several patterns within a collection is to connect them
together in a network of patterns, with some hints about how they could be
combined together. This was applied in many pattern collections, either by
graphically illustrating the network, or by connecting some pattern together with
added text (e.g. pointers in a “Related Pattern” section of each pattern). It was

39

agreed upon that this network be called a “pattern language” which typically
covers all patterns in one collection. Most pattern authors connected their pattern

in a similar way.

2.7.5 Intra-collection Structure

As seen above, most authors imposed some structure within each pattern in their
collection (an algorithm or a simple template) as well as a structure between
patterns within the same collection. But as the number and formats of patterns

increased, the next logical step was to try to arrange the collections together.

Jan Borchers listed several links to other collections to guide users to them.
Other major players like Welie and Tidwell agreed to do the same thing.
However, this approach led to the creation of a complex ad hoc “pattern maze”
and large closed reference loops where users keep following some links in
closed circles [Gaf04].

There were other, more formal, attempts to put some structure between different
collections. Meszaros and Doble published a “Pattern Language for Pattern
Writing” [MD97]. They used a fixed template for their work, which was closely
similar to Alexander’'s, but explicit. The main goal of their collection was
proposing how to formalize the activity of writing pattern for all pattern authors, a
kind of meta-pattern language. For example they suggested the following
patterns:

- Pattern: Pattern (an abstract concept of when to write a pattern)

- Pattern: Pattern Language (an abstract concept of when to write a pattern
language)

- Pattern Structure Patterns (several guidelines for structuring pattern contents)

- Pattern Naming Patterns (unified naming conventions for patterns)

- Patterns for making Patterns Understandable (How to write data contents)

40

These meta-patterns were meant to suggest a standard concept for pattern
authors to writing patterns and pattern languages. The idea of providing abstract
concepts about patterns was not followed by further activities to apply the
abstraction in a common framework.

2.8 Fallacies Related to Misrepresentation

Patterns came with a promise that has been accepted among researchers; the
reuse of design knowledge. Logically speaking, there is nothing wrong with the
concept of using patterns as a means to abstract and encapsulate knowledge for
reuse. However, as we observe and analyze the actual practices associated with
this concept and implemented by several people, we can identify some of the
common, but inaccurate assumptions that underlie patterns and that are greatly
dependant on the way patterns are represented to their users.

To investigate that, we designed an experiment to observe pattern reuse in two
main parts. Part 1 was a lab experiment involving seven groups of volunteer
interface designers with a moderate experience in interface design (two or more
years). In this part of the experiment, we asked the participants to accomplish
simple tasks of specific patterns lookup, comprehension and reuse. In part 2 of
the experiment we observed and recorded the status and progress of pattern
generation and reuse activities over a three-year period ([Gaf04] and [Gaf045c]
as well as in appendix E). These informal investigations were useful in
quantifying the difficulties faced by novice pattern users trying to find and apply

patterns.

In part 1 of the experiment, we used some usability tests and inspection methods
to identify the status of pattern reuse and the dissemination process. For
example, we used heuristic evaluation as an easy, straightforward technique that

can be applied by experts to evaluate pattern reuse activities. Interface designers

41

were introduced to the advantages of pattern reuse, and then they were asked to
postulate some heuristics about how to find and use patterns in their own design
environment as well as within a common interface we chose. Designers were
asked to reuse patterns in the lab for both the arbitrary as well as the selected
interfaces to observe the validity of their heuristics. They were then asked to
evaluate if they were able to find suitable patterns and if they applied them in
designing both interfaces; the one we selected and the one they chose. The
selected interface helped us to evaluate HCI patterns reuse in the same domain
by different designers hence focusing on the interface as an invariant. The
arbitrary interfaces helped to evaluate the reuse in different domains hence
focusing on the expertise as an invariant (each designers chose the interfaces in
the domain they were most familiar with). Both cases lead to similar findings as

explained next.

2.8.1 Fallacy 1: Finding the Right Pattern is

Straightforward

In the experiment, we have observed a steady and even abrupt increase in the
number of pattern-related books on the site of Amazon.com. The number of
matches increased as follows:

Table 2: Pattern-related books at Amazon.com

Date Number of matches
June 2002 8633

January 2003 11852

January 2003(2 weeks later) 11857

March 2004 114, 101

September 2004 172, 140

Besides books, we also observed other categories that involved patterns. The
matches included books about patterns in virtually every imaginable domain

(some examples are textile and carpet patterns, emotional and psychological

42

patterns, children games as well as programming and design patterns; all mixed
together). We also observed that there were no concrete criteria offered to
narrow our selections of patterns. We used different keyword search to reduce
the number of hits without much success. In the March 2004 observation for
example, the smallest number returned from search refinements were still over
2500 books. Some refinements returned all the 114, 101 books. While it was
possible to rank the results according to different criteria (like the sales ranking,
or by author), some very good books about patterns were not observed in the
first five hundred results. In appendix E we provide more details about the
problems associated with ranking the results and other issues. An important
conclusion of the study is that “unless it is know in advance about a good book of
patterns or a pattern collection, it is unlikely to be located by a novice user’.
Another important conclusion is that “There are no tools that can help in
effectively locating patterns on the Internet”. Moreover, “when using the standard
search engines, there is no common cataloging or categorization concept in
place to help in the lookup for pafterns”. We conducted a similar study using
Google, and the results were similar. The problem is emerging and has been
recently recognized in other areas too. As reported in IEEE Spectrum journal in
November 2004, [Luc04] explains that attempts to look up specific contents on
the Web using Google returned 1.8 million hits in 0.2 seconds, and he

emphasizes that he “was impressed with the speed, but not the results”

Another observation of the study was the “wrong hits”. We present three

examples in Figure 8:

1. Under the keyword “Learning patterns”, we got an infant-to-toddler-rocker
chair with learning

2. Under the keyword “mathematical patterns”, we got “math, shape, and
patterns set” which was a game by Lego Dacta for children 4 years an up.

3. Under the keyword “menu patterns” we got several patterns from actual

restaurant menus.

43

By looking at the nature of these unwanted hits, we estimate that a considerable
number of useful HCI patterns could simply go unnoticed. Many patterns on the
Internet could be missed by users due to the lack of a suitable keyword. In the
study we show that the very high popularity of the word “pattern” has a major
effect on the ineffectiveness of text lookup.

WASH {7 DOWR!

Wik Lowi € S 8.
i shorata S, i e

(a) Learning patterns (b) Menu patterns (c) Math patterns

Figure 8: Search results from Amazon.com

2.8.2 Fallacy 2: Comparing Patterns is

Straightforward.

If we observe patterns, we find that different authors or communities use different
formats, elements and attributes, to describe their patterns. They are broadly
classified here into the three different sets shown in Table 3. This listing is by no

means conclusive and new sets are still emerging).

Even though we have different pattern properties, elements and attributes,
introduced by pattern authors, we have many similarities in the elements and the
order. The paradox is that novices, for whom the patterns are intended, are
confused by having different formats for documenting patterns in the market

44

place. The lack of common elements to describe patterns creates complexity and
ambiguity among pattern users and even educators and researchers. If we want
to promote the use of patterns we have to make them simple, easy to understand
and flexible to use.

Table 3: Different pattern attributes

BASIC Extended Elaborate
Name Name Name
Problem Intent Intent
Context Context Applicability
Forces Motivation
Also Known as
Solution Solution Structure
Participants
Collaborations
Resulting Context Consequences
Implementation
Examples Sample Code
Known Uses Known Uses
Related Patterns Related Patterns

This can be done only if pattern writers compromise to embrace the fact of
having a generalized format to describe the patterns. It is not the case anymore
that a pattern user will have to pick up and use only one collection. There are
several good collections out there. We can attribute the difficulty in understanding
and comparing patterns to the inconsistency of pattern formats. In 2003, Gaffar
et al. published a position paper in CHI workshop, calling for the unification of
formats [GSJS03]. After Collaborating with many HCI pattern authors including
Vanderdonckt, Tidwell, Welie, and Borchers as well as several researchers from
IBM, we collectively agreed on a common format for patterns, the Pattern
Language Markup Language PLML [FFQ3] for the first time. Later in the thesis,
we will provide more details on how we expanded this format into a generic

pattern model.

45

2.8.3 Fallacy 3: Implementing Patterns is

Straightforward

In many pattern representations, unlike the format of Gamma (GoF), there are
hardly any hints about implementation structure and strategies. If an object
oriented software developer wants to apply text patterns he/she might face a
major challenge in interpreting them into the implementation process. Therefore,
it would be helpful to have the implementation structure and strategies along with
examples, figures, and —ideally- sample code or pseudo code so that the
software developers can easily apply the pattern into their respective domain.
The use of patterns is consequently hampered by lack of implementation
strategies.

2.8.4 Fallacy 4: Patterns Explain the

Consequences of Using Them

Design patterns are defined as solutions; therefore users assume that a pattern
is a guarantee of solving a problem. The possible negative implications or
misapplications are not always considered. There are often consequences or
side effects that can arise as a pattern is applied. Some authors vaguely provide
a list of positive and negative implications. The consequences should be carefully
investigated and then made clear by providing a scientific analysis bases —for
example- on sound usability concepts and theories as well as empirical
validation. This is an important difference between a solution and a pattern, and
we believe it makes for good patterns. This can facilitate the patterns
authenticity, trustworthy and acceptability. For example, if a pattern is claimed to
improve the response time but also to overload the memory, this knowledge will
provide two-fold benefits to the users. First the user may decide to use it but will
be aware of checking the response time to validate the improvement. Second, if

46

users need to reduce memory loads, they might avoid using this pattern
altogether, which will save time and efforts and obviously the development cost.

2.8.5 Fallacy 5: Finding a Functional Combination

of Patterns is Straightforward

To solve any real world or complex problem we may need to apply a series of
patterns. Therefore, it is essential to have a consistent and complete list of
closely related or coherent patterns along with the pattern description. Even
though in some formats of patterns we do have this list, it is typically limited in the
sense that they are listed based within their own local collection, using narrow
domain of applications. Moreover, the lack of naming convention for the pattern
elements, which was discussed earlier, and having several aliases for some
patterns, makes the list of related patterns more complicated. For example,
“Experience” described by Coram T. and Lee J. [CL98], Figure 9, shows how
pattern relationships should be. While the names of the patterns are not clear in
the figure, our focus is on the complexity of the network connecting them. Being
sophisticated, it could take a long time to find out which patterns are related to
which or just to find out the root pattern. More importantly, it is not always easy to
figure out how to link this network to a comprehensive design process. With the
current number of patterns offered, users could simply switch to a less
sophisticated collection, without trying to understand the contents or the quality of

this work.

47

I Conwversational Tewt I

WamingSounds

Visnal Symbol{3)

Muktiple Settings(d)

Cooperating Wind o5

Clickable Symbols

ommand Control Genter(s)

Gard ¢ of Wind ows(6)

symbol Enplainations

Goal Driented Areas(?)

2¢n Garden I

Proanized D esktop

2.9

Dislog Bon

Rich Garden
| Conteut Sensitive Help I

Modeless Feedback Anea (8)

Figure 9: Maps of pattern relationships in Coram and Lee

Conclusion

In this analysis of the origin, definition and development of patterns, user

interface design patterns are considered within the bigger picture of patterns. HCI

patterns have shown to be useful in supporting Ul designers as an alternative or
an addition to working directly with HCI and usability experts or using design

guidelines [AMCO03], [Fin02]. Several pattern authors have supported this idea by

publishing

patterns to encapsulate best design knowledge and practices. Little

has been done, though, to ensure the effective documentation, representation

and delivery of these patterns to patterns users. The perception of pattern

48

languages is often limited to collection of statically connected patterns, in terms
of simple arrows. The majority of pattern users have difficulties locating useful
patterns, instantiating and applying them in their context. This chapter highlights
the problem of ineffective pattern reuse by identifying some of the fallacies
involved in finding and using patterns. We established that the effective reuse of
design knowledge is more than just publishing patterns using different formats.
Patterns should be appropriately documented to increase their usefulness,
usability and accessibility. Pattern users should be guided through the process of
reusing patterns.

The lack of common and standardized notation and a central repository for
patterns make it hard to achieve this goal. A further challenge is the lack of tool
support, which makes it difficult to capture, disseminate and apply patterns
effectively and efficiently. Tools need to be developed with three major objectives
in mind: First, as a service and support to Ul designers and software engineers
involved in Ul development. Second, as a research forum for understanding how
patterns are really discovered, validated, used and perceived. Third, to use as a
prototypical implementation that support every step of a complete patterns
lifecycle.

49

Chapter 3

Using Patterns to supplement Software

Architecture with Usability

ABSTRACT: Traditional interactive system architectures such as MVC and PAC
decompose the system into subsystems that are relatively independent, thereby
allowing the design work to be partitioned between the user interfaces and
underlying functionalities. Such architectures also extend the independence
assumption to usability, approaching the design of the user interface as a sub-
system that can be designed and tested independently from the underlying
functionality. This Cartesian dichotomy can compromise usability as
functionalities offered in the user interface can depend on the internal
architecture of the system. We give several scenarios to demonstrate this effect.
Based on our day to day experience with usability practitioners we model the
relationships between internal software attributes and externally visible usability
factors. We propose a pattern-based approach for dealing with these
relationships to enhance usability aspects of the system. We conclude by
discussing how these patterns can lead to model-driven approach for improving
interactive system architectures, and how these patterns can support the

integration of usability in the software design process.

3.1 Introduction

Software architecture is defined as the fundamental design organization of a
system, embodied in its components, their relationships to each other and the
environment, and the principles governing its design, development and evolution
(ANSI/IEEE 1471-2000, Recommended Practice for Architectural Description of

50

Software-Intensive Systems). In addition, it encapsulates the fundamental
entities and properties of the application that generally insure the quality of
application.

In the field of interactive systems engineering, architectures of the 1980s and
1990s such as MVC and PAC are based on the principle of separating the
functionality from the user interface. The functionality is what the software
actually does and what information it processes, thereby offering behavior that
can be exploited to achieve some goals. The user interface defines how this
behavior is presented to end-users and how users interact with it. The underlying
assumption is that usability, the ultimate quality factor, is primarily a property of
the user interface. Therefore separating the user interface from the application’s
logic makes it easy to modify, adapt or customize the interface after user testing.
Unfortunately, this assumption does not ensure the usability of the system as a
whole.

We now realize that system features can have an impact on the usability of the
system, even if they are logically independent from the user interface and not
necessarily visible to the user. Bass observed that even if the presentation of a
system is well designed, the usability of a system can be greatly compromised if
the underlying architecture and designs do not have the proper provisions for
user concerns [BJKO1]. We propose that software architecture should define not
only the technical interactions needed to develop and implement a product, but

also interactions with users.

At the core of this vision is that invisible components can affect usability. By
invisible components, we mean any software entity or architectural attribute that
does not have visible cues on the presentation layer. They can be operations,
data, or structural attributes of the software. Examples of such phenomena are
commonplace in database modeling. Queries that were not anticipated by the

modeler, or that turn out to be more frequent than expected, can take forever to

51

complete because the logical data model (or even the physical data model) is
inappropriate. Client-server and distributed computer architectures are also
particularly prone to usability problems stemming from their “invisible”
components.

Designers of distributed applications with Web interfaces are often faced with
these concerns: They must carefully weigh what part of the application logic will
reside on the client side and what part will be on the server side in order to
achieve an appropriate level of usability. User feedback information, such as
application status and error messages, must be carefully designed and
exchanged between the client and server part of the application, anticipating
response time of each component, error conditions and exception handling, and
the variability of the computing environment. Sometimes, the Web user interface
becomes crippled by the constraints imposed by these invisible components
because the appropriate style of interactions is too difficult to implement.

Like other authors [BJKO1] and [FB02], we argue that both software developers
implementing the systems features and usability engineers in charge of
designing the user interfaces should be aware of the importance of the intimate
relationship between these features and the user interfaces. This relationship can
inform architecture design for usability. With the help of patterns, this relationship
can help integrate usability concerns in software engineering.

In section 3.3 we will identify scenarios where invisible components of an
interactive application will impact on usability; we will also propose solutions to
each scenario. The solutions are presented in the form of patterns. Beyond
proposing a list of patterns to solve specific problems, we discuss our long-term
goal to define a framework for studying and integrating usability concerns in

interactive software architecture via patterns.

52

3.2 Background and Related Work

The concept of separating the view from the real object is relatively old. It reflects

the fundamental need of reducing system complexity while improving its quality.

In database domain, a clear separation between table and view help achieve
many goals [Gaf01]:

- Increase security by masking classified information in tables from the
views presented to unauthorized users.

- Reduce redundancy by storing atomic, normalized data in efficiently
designed tables while displaying them in different views according to
users’ needs

- Increase system flexibility by allowing the addition of new views as
needed without the need to change the actual tables which is a costly and
risky task

- Increase data integrity by limiting the changes to normalized tables and
simply updating the views as needed

This separation model is so deeply rooted in the concept of database that it is
supported not only at design level but also at the language level. Most query
languages offer direct manipulation to creating and manipulating tables and
views separately.

The same need for separation has been identified in software interfaces. A large
number of architectures for interactive systems has been proposed, e.g.,
Seeheim model, Model-View-Controller (MVC), Arch/Slinky, Presentation
Abstraction Control (PAC), PAC-Amadeus and Model-View-Presenter (MVP)
[BCK98]. Most of these architectures distinguish three main components: (1)
abstraction or model, (2) control or dialog and (3) presentation. The model
contains the functionality of the software. The view provides graphical user

53

interface (GUI) components for a model. It gets the values that it displays by
querying or receiving notification from the model of which it is a view. A model
can have several views. When a user manipulates a view of a model, the view
informs the controller of the desired change. Figure 10 summarizes the role of
each one of these three components for an MVC-based application.

The motivation behind these architecture models is to improve, among others,
the adaptability, portability, complexity handling and separation of concerns of
interactive software. However, even if the principle of separating interactive
software in components has its design merits, it can be the source of serious
adaptability and usability problems in software that provides fast, frequent and
intensive semantic feedback. The communication between the view and the
model makes the software system highly coupled and complex. Simplified
versions like the observer model have emerged to reduce this complexity, but
they don’t acknowledge the presence of dependencies between the model and

the views.

Model
[P . Encapsulates application [

state
State Query r - = Responds to state gueries

- Exposes:application
functionality

Change -'Notifies views of changes State
Notification Change
\ 4 View Selection :
Views Controller
- Renders the models < - Defines application
- Requests updates behavior
from models -'Maps user actions to
= Sends user events to — — —— =] model updates
controllers «-Selects vie for
- Allows a controller to User Events response
select views - One for each
functionality

—®» Method Invocations
- —b Events

Figure 10: The roles of MVC architecture components
(Sun Microsystems)

54

In general, these architectures lack provisions for integrating usability in the
design of the model or abstraction components. For example, Len Bass et al.
[BJKO1] identified specific connections between aspects of usability (such as the
ability to “undo”) and the model response (processed by an event-handler
routine).

3.3 |dentifying and Categorizing Typical

Scenarios

To study this intimate relationship between the model and the interface, we
proposed the following methodological framework to:

1. Identify and categorize typical design scenarios that illustrate how invisible
components and their intrinsic quality properties might affect the usability

2. Model each scenario in terms of a cause/effect relationship between (a) the
attributes that quantify the quality of an invisible software entity and (b) well-
known usability factors such as efficiency, and satisfaction. |

3. Suggest new design patterns or improve existing ones that can solve the
problem described in similar scenarios

4. lliustrate, as part of the pattern documentation, how these patterns can be
applied within existing architectural models such as MVC.

The first step in our approach for achieving usability via software architecture and
patterns is to identify typical situations that illustrate how invisible components of
the model might affect usability. Each typical situation is documented using a
scenario. Scenarios are widely used in HCI and software engineering [Car00].
Scenarios can improve communication between user interface specialists and
software engineers who design invisible components -- this communication is

essential in our approach to patterns. In this context, we define a scenario as a

55

narrative story written in natural language that describes a usability problem
(effect) and that relates the source of this problem to an invisible software entity
(cause). The scenario establishes the relationship between internal software
attributes that are used to measure the quality of the invisible software entity and
the external usability factors that we use for assessing the ease of use of the
software systems.

The following are some typical scenarios we extracted from our empirical studies
and from a literature review. Other researchers also proposed other scenarios
[BJKO1]. The goal of our research is not to build an exhaustive list of scenarios,
but rather to propose a methodological framework for identifying such scenarios
and to define patterns that can be used by developers to solve such problems.

The scenarios are therefore intended as illustrative examples.

Scenario 1: Time-Consuming Functionalities

It is common for some underlying functionalities of an interactive system to be
time consuming. The lack of several quality attributes can increase the time for
executing these functionalities. A typical situation is the case where a
professional movie designer expects the high bandwidth of high-speed Internet
access when downloading large video files, but the technology available for

Internet connection has lower speed, making downloading overly slow.

The user needs feedback information to know whether or not an operation is still
being performed and how much longer he will need to wait, but sometimes this
information is not provided. Feedback tends to be overlooked in particular when
the designers of the user interface and those developing the features are not in

the same team and that there is a lack of communication between them.

56

Scenario 2: Updating the Interface When the Model Changes its State

Usability guidelines recommend helping users understand a set of related data
by allowing them to visualize the data from different points of view. A typical
method is to provide graphical and textual representations of the same
underlying data model.

Whenever the data model changes, the underlying model should update the
graphical and the textual representations. Two main techniques to deal with this
issue are polling —where interfaces are designed to poll the system periodically
for changes- and broadcasting —where the system notifies the interfaces of new
changes. Depending on the nature and rate of changes, the cost of notification,
and the overall context of use, designers choose an optimal updating technique,
and select the rate of polling or broadcasting if applicable. In certain cases, the
system might not be designed to automatically update all views when one view
changes. This can result in inconsistent views that can in turn increase the user's
memory load, frustration, and errors.

Scenario 3: Performing Multiple Functionalities Using a Single Control

It is easier and more straightforward to use a dedicated control for each
functionality and in particular for critical functions, even at the expense of more
buttons and menus. This is the current practice in many standard functionalities
like File Save, Save As, and Print options. However, for complex domain-specific
functionality, this is not always the case. When a single control performs multiple
operations, it requires a complex menu structure and choice of modes, which
increases the likelihood of mode errors and other usability problems.

Unfortunately, there is a design tradeoff between simplicity in appearance and

simplicity in use. Aggregating several related functionalities under one control, or

in one procedure makes it easier for users to find and use them in one “click’,

57

and offer a lower number of total controls, increasing the learnability of the
system. This is a dangerous design trap as it clearly limits the flexibility of
interacting with the system and the effectiveness of accomplishing unforeseen
complex tasks. Alas, consumers (and organizations) make purchase decisions
based on appearance first, so this is a fundamental conflict [Nor02].

Scenario 4: Invisible Entities Keep the User Informed

We know that providing the user with an unclear, ambiguous or inconsistent
representation of the system's modes and states can compromise the user's
ability to diagnose and correct failures, errors and hazards, or even simply
interact with the system. This can happen when a system functionality allows the
user to visualize information that competes or conflicts with currently or
previously displayed information in other views. A well known example is when a
user opens a Microsoft explorer window to navigate the file system and the
available drives on the computer, then adds a USB memory stick (external
storage device) to the system. Depending on the version of the software, the
user may not be able to see the new addition in the current explorer window at
all, and they may have to open a new explorer window. In other cases, they
might not see it in the main window, but can see it under “My Computer” within
the main window, which is an inconsistency in displaying the system state. In
older systems that are patched up to support this new technology, the user can
remove the USB storage device but it remains displayed in the explorer window,
even if it is no more functional. All these cases vary by the version of the
operating system, and are especially seen in older versions where “true plug and
play” feature was not available. This feature is indeed challenging to implement
and requires modifications to the file explorer software to dynamically detect the
system state, and consistently refresh user’'s views. It is even more challenging
to modify older versions by new patches to accommodate this feature. Without

going into technical details, we can see the intricate relationship between the

58

interface and the underlying system and the confusion the inexperienced users
might go through in these situations.

To avoid such situations, it is important for the functionality developers to
accurately communicate the system's modes and states to the user interface
designer. Ignoring this informative feedback can lead to users making wrong
assumptions that may lead to inefficient or incorrect interaction. User interface
designers should inform the developers about all the tangible consequences

related to the states and modes of the systems.

Scenario 5: Providing Error Diagnostics When Features Crash

When a feature failure occurs due for example to exception handling, the
interface sometimes provides unhelpful error diagnostics to the user.

The user should be notified of the state that the system is currently in and the
level of urgency with which the user must act. The system feature should help
the user to recognize potential hazards and return the system from a potentially
hazardous state to a safe state. Messages should be provided in a constructive
and correct manner that helps restore the system to a safe state.

Scenario 6: Technical constraints on dynamic interface behavior

Particularly in Web-based transactional systems, technical and logistic
constraints can severely limit dynamic behavior of the interface within a highly
interactive page. It can therefore be difficult or impossible to design elements
that automatically update as a result of an action elsewhere on the same page.
For example, in a series of dependent drop-down lists “Country”, “Province” and
“City”, it may be challenging to automatically update “Province” as a function of
the “Country” selection without referring back to the server after each selection to
download the next dependant list. The complexity increases when combined with

59

business rules and restrictions. For example in an e-banking system, a user who
transfers money from her checking account to pay her credit card of the same
bank can see the new balance on the checking account immediately but keep
seeing the old credit card balance without update. While it might look like an
interface problem and the user might become upset when seeing the money
deducted from the checking account but not added to the credit card, the fact
might be that the bank policy explicitly prevents displaying credit card account
updated until they are manually verified; within 36 hours. A perfectly correct
interface would still display this inconsistency for the next 36 hours. A usable
interface would be aware of some business rules and hence of this potential
inconvenience. The user interface (client side) would simply notify the user of the
reason, saving her a lot of frustration, especially when many users are weary of
technology glitches or have less trust on Web based transactions than on teller-

based interactions.

These technical constraints against dynamism are often imposed in Web-based
client-server contexts due to the dictum that the business rules must be separate
from the user interface. Dynamic interface behavior of an interactive system can
require the user interface to have a degree of intelligence that incorporates
certain business rules, which conflicts with the “separate layers” dictum. In few
cases, the alternative is for the client to call the server more frequently to refresh
the page dynamically, but architects tend to avoid this approach because of the
presumed extra demand on bandwidth. In other cases, the only alternative is for
the client to call or visit the bank to inquire about the allegedly missing money.

We can see that a usable interface can be much more useful.

There is no easy solution to this problem. The most important principle in this
situation is to analyze user needs relating to dynamism before making
technology decisions that could have an impact on dynamism. Transactional
systems often require considerable dynamism, whereas purely informational

systems can often get by without dynamism in the user interface. If it is

60

unacceptable for business rules to immediately incorporate electronic
transactional changes (as one example) which will have an impact on the
interface behavior, then the interface should be aware of this business rule. it
would help to incorporate some business rules into the client side. In other cases,
business rules are confidential and can not be incorporated in client interfaces,
reducing the usability of interface. When fully dynamic behavior is not possible, it
would help to increase the network bandwidth so as to better support pseudo-
dynamic behavior, involving more frequent page refreshes through calls to the

server.

The preceding scenarios are used as an illustrative sample. In total, we have
identified more than 24 scenarios. Len Bass also described a list of 26 scenarios,
some of which were a source of inspiration for our work. Providing an exhaustive
list of scenarios is certainly useful from the industry perspective. However our
goal for this research is to better understanding and validate how software
features affect usability in general, and as such our focus is to model the
scenarios in term of a cause/effect relationship. This relationship connects the
quality attributes of invisible components with recognized usability factors.
Section 3.5 details this perspective.

34 Patterns as a Tool to Document

Scenarios

There are different ways to document common solutions to the recurring
problems described in the preceding scenarios, including patterns as detailed in
Chapter 2. As a start, we have used text format to formalize patterns. Since the
relationship between usability and internal software properties defines the
problem, it has been added into the pattern descriptions that follow. This
measurement relationship is what makes a pattern a cost-effective solution. In
short, if a pattern does not improve at least one of the factors described in the

61

measurement relationship, then it is not a good pattern for the problem described
in the scenario. This aspect is detailed in the next section.

The relationship between specific patterns within the same collection has been
intensively investigated. We explore this aspect in Chapter 4. Meanwhile, the
relationship between pattern concepts and activities in different domains has
received a fair share of attention. In this regard, our main focus is on the
correlation between software design patterns and interaction design patterns.
Zimmerman et al. [ZEBPO04] discuss it in some details. In Chapter 2, we
presented and discussed them from an analytical point of view. In this section we

compare them in the context of architecture-sensitive patterns:

Software design patterns. The aim of these design patterns is to propose
software designs and architectures for building portable, modifiable and
extensible interactive systems. A classical pattern of this category is the
Observer that acts as a broker between the user interface (views) and the model
[GHJV95]. When the observers receive notification that the model has changed,
they can update themselves. This pattern provides a basic solution to the
problem described in scenario 3.2.

Interaction design patterns, defined at the level of the graphical user
interface. These are proven user experience patterns and solutions to common
usability problems. A number of pattern languages have been developed over
the last few years as shown in Chapter 2.

Software design patterns, widely used by software engineers, are a top-down
design approach that organizes the internal structure of the software systems.
Interaction design patterns, promoted by human computer interaction
practitioners, are used as a bottom-up design approach for structuring the user
interface. We believe that these two categories of patterns can be used together
to provide an integrated design framework to problems described in our

scenarios. To illustrate how these diverse patterns can work together to provide

62

comprehensive solutions, in the following sections we describe our five scenarios
using interaction and design patterns.

Although a number of de facto standards have emerged to document patterns,

we use a simple description with the following format:

“‘Name” is a unique identifier.

“Context” refers to a recurring set of circumstances in which the pattern
applies.

“Force™ The notion of force generalizes the kind of criteria that we use to
justify designs and implementations. For example, in a straightforward, simple
study of functionality, the main force to be resolved is efficiency (resources
complexity) or effectiveness (task complexity). However, patterns deal with the
larger, harder-to-measure and conflicting sets of goals and constraints
encountered in the design of every component of the interactive system.

“Problem” refers to a set of constraints and limitations to be overcome by the
pattern solution.

“Solution” refers to a canonical design form or design rule that someone can
apply to resolve these problems.

“‘Resulting context” is the resulting environment, situation, or interrelated
conditions. Again, in a simple system this can be easily predictable, while in
complex interactive system it can be hard to find out in a deterministic way.

“Effects of invisible components on usability” which defines the relationship

between the software quality attributes and usability factors.

3.5 Software Design Patterns

The first pattern that we have considered is the Abstract Factory pattern which
provides an interface for creating families of related or dependent objects without
specifying their concrete implementations (e.g. The Toolkit class). In other words,
this pattern provides the basic infrastructure for decoupling the views and the

63

models. Given a set of related abstract classes, the Abstract Factory pattern
provides a way to create instances of those abstract classes from a matched set
of concrete subclasses. The Abstract Factory pattern is useful for allowing a
program to work with a variety of complex external entities such as different
windowing systems with similar functionality. A second pattern is the Command
pattern which complements the abstract factory by reducing the view/controller

coupling.

To complement these basic patterns we also introduce the Working Data
Visualization pattern.

64

Other relevant patterns we used include Event Handler, Complete Update, and

Multiple Update [San01]. We use them to notify and update views (scenario 1)
using traditional design patterns such as Observer and Abstract Factory. We
incorporated these patterns into the Sub-form pattern that groups the different
views in the same container, called the Form (Table 4). The Event Handler,
Complete Update, and Multiple Update patterns can be applied in two phases.
The first phase changes the states of the user interface models in response to
end user events generated by the visual components, and the second phase
updates the visual components to reflect the changes in the user interface model.
Since the update phase immediately follows the handling phase, the user

interface always reflects the latest changes.

Table 4: Example of design patterns

Pattern Problem Solution
Event How should an invisible component | Create and register a handler method
Handler handle an event notification | for each event from observable visual
message from its observable visual | components.
components?
Complete | How to implement behavior in the | Assume all (observer) visual
Update user interface to update the | components are out-of-date and
(observer) visual component from | update everything.
the model
Multiple How to implement changes in the | Each sub-form should notify its
Update model of sub-form to reflect parent | parent when it changes the model.
of sub-form, child of sub-form, | The parent should react to changes in
siblings of sub-form the sub-form via the Event Handler
and update its children components

65

via Complete Update.

Sub-form | How to design parts of user
interfaces to operate on the model
in a consistent manner

Groups the components that operate
on the same model aspect into sub-
forms.

The next example of software design patterns we propose is the Reduce Risk of

Errors pattern.

66

The last example of software design patterns is the Address Dynamic
Presentation pattern.

67

3.6 Interaction Design (HCI) Patterns

Many groups have devoted themselves to the development of pattern languages
as detailed in Chapter 2. We also adapted and used some of these patterns. The
first basic HCI pattern that we used is the Progress Indicator pattern [Tid97]. It
provides a solution for the time-consuming features scenario (scenario 1).

68

The second pattern is the Keep the User Focused pattern, which brings an
integrated solution to the problems described in scenarios 2, 3 and 4.

69

70

There is not a one-to-one mapping between software design patterns and HCI

patterns. The problems described in a specific scenario can require any number
of HCI and software design patterns, and each pattern may be affected by a
number of problems described in different scenarios. In our approach, we argue
that using a few patterns can be very valuable, even without an entire pattern
language.

3.7 Cause-Effect Relationships between

Software Elements and Usability

So far in this chapter we focused on specific ways in which internal software
properties can have an impact on usability criteria. In this section, we attempt to
provide a more general, theoretical framework for the relationships between
usability and invisible software attributes. In particular, among the huge or
potentially infinite number of ways that invisible components can affect usability,

our main goal is to understand whether there are specific places where we are

71

more likely to find these relationships or effects. Another goal is to verify whether
there is any structure underlying these relationships, which would allow us to

define a taxonomy of how usability issues arise from invisible components.

3.7.1 Traditional Model of Relationship between

Invisible Software Elements and Usability

Usability is often thought of as a modular tree-shaped hierarchy of usability
concepts, starting at the level of GUI objects, and abstracting progressively up
towards low-level usability criteria or measures and then into high-level usability
factors. Figure 11 illustrates this definition of usability and its relationship to
parallel “towers” of other software attributes.

Usability and
software quality

Maintainability, dependability,

Usabilit
y efficiency, etc.

Usability
factors

Usability
criteria

Software
objects

Figure 11: Traditional “twin towers” model of

usability and other software quality factors

Table 5 provides more detailed information on the software quality factors and
criteria referred to schematically in the right-hand branch of Figure 11. (In

72

principle, each quality factor would form a separate branch.) In our work, we
have adopted the software quality model proposed by ISO 9126. Table 5 is an
overview of the consolidated framework we have been using [SAKSO03]. The
table shows the criteria for measuring usability as well as five other software
quality factors including functionality, reliability, efficiency, maintainability and
portability. This measurement framework automatically inherits all the metrics
and data that are normally used for quantifying a given factor. The framework
helps us to determine the required metrics for (1) quantifying the quality factors of
an invisible software entity, (2) quantifying the usability attributes and (3) defining
the relationships between them.

Table 5: A partial vision of the ISO 9126 measurement framework

Software quality | Measurement criteria
factor
Functionality Suitability
Accuracy
Interoperability
Security
Reliability Maturity

Fault tolerance
Recoverability
Usability Understandability
Learnability
Operability
Attractiveness
Efficiency Time behavior
Resource
Utilization
Maintainability Analyzability
Changeability
Stability
Testability
Portability Adaptability
Instability
Co-existence
Replaceability

73

3.7.2 Taxonomy of Usability Issues Arising from

Invisible Components

Relationships between software attributes of invisibles components and usability
factors have two properties:

1 They are lateral relationships between the modules of usability and
architecture.
2 They are hierarchical relationships between two or more levels of

description, since usability properties are a higher-level abstraction based

on architectural elements.

Thus to understand the relationship, we need an approach that takes into
account both modularity and hierarchy.

In software engineering, software modules have two features that need to be
considered during design, namely coherence and coupling. Coherence refers to
how relevant the components of a subsystem are to each other, and it needs to
be maximized. On the other hand, coupling refers to how dependant a
subsystem is on other subsystems, and it needs to be minimized.

In a similar approach in “The Architecture of Complexity” [Sim62], Herbert Simon
discusses “nearly decomposable systems”. In hierarchic systems, interactions
can be divided into two general categories: those among subsystems, and those
within subsystems. In a simplified approach, we can describe a system as being
“‘decomposable” into its subsystems by basically assuming that we are fully
aware of all interactions between subsystems and that every thing has been
“taken care of”. At this stage we can go on with the studying and development of
each subsystem separately, relying on our limited model of interaction. However
as a more refined approximation, it is more accurate to speak of a complex
system as being “nearly decomposable’”, meaning that there are complex

74

interactions between the subsystems, and that after separation, these
interactions remain active and non-negligible.

Nearly decomposable systems have two properties:

1- Modularity: In the short-run, the behavior of each subsystem is
approximately independent of the other subsystems;
2- Hierarchy (or aggregation): In the long-run, the behavior of any one

subsystem depends only in aggregate way on the other subsystems.

These properties indicate that in reality, the traditional model of usability is
oversimplified. Although the usability subsystem is fundamentally different from
the architecture, Simon’s principle of nearly decomposable systems predicts that
it is possible for usability properties to be affected to some degree by
architectural properties. Figure 12 illustrates an interpretation of this alternative

model of usability.

Usability and @
software qugljty

\
e,
- “,

Usability @
AN

Usability ./
factors f. e

f)
/

@ Maintainability, dependability,
/ \\efﬁciency, efc.

i

@ Software quality factors

o

Usability o/ &
criteria @ &

S Software
® objects

Figure 12: Revised model of usability,

including possible types of cross-relationships with architecture (bold links)

75

In this figure, a node (usability property) at any level of usability can potentially be
influenced by nodes at any lower level of architecture, or conceivably even by
combinations of several different levels of architecture. Figure 12 is a first

approximation.

Simon’s second principle of near-decomposability states that subsystems
depend in only an aggregate way on other subsystems. This principle implies
that if architecture has an effect on usability, it will tend to be in an aggregate way
and therefore at a higher level of architecture, rather than through the effect of an
individual low-level architectural component. We interpret this principle to mean
that the effects of architecture on usability will tend to propagate from levels of
architecture that are closer to the level of usability, rather than farther away.

Therefore to refine the model, we will assume that the most likely relationships
occur between usability properties and the immediately closest lower
architectural level, and that more distant architectural levels have an
exponentially decreasing probability of having an effect on usability. The revised
model, based on this assumption, is illustrated in Figure 13. This model reflects a
more clearly recursive definition of usability.

Based on Simon’s principles of nearly decomposable systems, we can conclude

that these types of relationships between architecture and usability are the

exception to the rule, but frequent enough that they should not be neglected.

76

Usability and
software quality ™ -
7 .
Usability @, k“*, Maintainability, dependability,
A / efficiency, etc.
kY

‘,8(

Usability ./

Software quality factors
factors qualtly

A

Usability ‘5;” { e Software quality
‘{\L y Y 4
,g’ 1

criteria /1 criteria

.
L
FAR

s
“m-A Software
° objects

Figure 13: Most probable types of cross-relationships

between usability and architecture (bold links)

3.8 Application

This model provides a framework within which to visualize and explore these
exceptional ways that architecture can affect usability, so as to work toward a
more complete model of usability. The model is useful because it helps us know
where to look for, investigate, and experiment on relationships between
architecture and usability. Further progress will require detailing the hierarchies
on both sides of the tree, and considering each possible relationship between
nodes at proximate levels. Another goal will be to provide other heuristic
principles to further narrow down the likely interrelationships between these two
branches.

Table 6 provides examples of the specific types of relationships that occur in the
scenarios described in section 3.2. The second column refers to the invisible

object’s properties and software qualities identified in the right-hand branch of

77

figures 11 through 13, and the third column represents the usability properties
identified in the left-hand branch of those figures.

For example, scenario 1 can be modeled as a relationship that connects the
performance of the software feature with certain usability attributes such as user
satisfaction. It can lead to the following requirement related to scenario 1: “To
ensure an 80% level of satisfaction, the maximum acceptable response time of
all the underlying related feature should not exceed 10 seconds; if not the user

should be informed and a continuous feedback needs to be provided”.

Table 6: Relationships between invisible software entities and usability factors

Scenario Quality attributes of | Usability factors affected
invisible components

1. Performance User satisfaction

2. Integrity Visual Consistency

3. Functionality Understandability

4, Suitability Operability

5. Recoverability Attractiveness

3.9 Conclusion

In this chapter, we first identified specific scenarios of how invisible software
components can have an effect on the usability of the interactive system. Then,
we provided a list of patterns that solved the problems described in the
scenarios. This research effort can benefit software architecture designers and
developers, who can use our approach in two different ways. First, the scenarios
can serve as a checklist to determine whether important usability features
(external attributes) have been considered in the design of the features and the
related Ul components. Secondly, the patterns can help the designer incorporate

some of the usability concerns in the design.

78

More than defining a list of scenarios and patterns that describe the effects of
invisible software attributes on software usability, the long-term objective is to
build and validate a comprehensive framework for identifying scenarios. The goal
of the framework is to define these patterns as a relationship between software
quality factors and usability factors. In this chapter we have suggested different
HCI and software design patterns as solutions to the problems described in these
scenarios and in similar ones. Every pattern has a set of problems to be solved

and a set of goals to be achieved.

As designers gain a better understanding of the relationship between interaction
design patterns and software architecture patterns, this knowledge will affect the
evolution of standards in architecture design and GUI software libraries. Some
developers are making proper use of standard GUI libraries and respecting
interface design guidelines in a way that considerably increases the usability of
interactive applications. However, more can be done in this direction, and the
approach we have outlined in this chapter is an attempt to build a better and
more systematic understanding of how usability and software architecture can be

integrated.

79

Chapter 4

Patterns in Model-Based User Interface

Engineering

Abstract: In the previous chapter we showed the intricate relationship between
architecture and usability and how patterns can support this “invisible” yet
inseparable interplay between them. In this chapter we summarize another
experiment to evaluate pattern reuse and provide some proposals on how
patterns can supplement model based approaches in a comprehensive way. The
main idea behind model-based approaches for User Interfaces (Ul's) is to identify
useful abstractions that highlight the core aspects associated with the design of
an interactive system. However, certain limitations prevent mainstream
developers from adopting model-based approaches for Ul engineering. One such
limitation is the lack of reusability of design practices. To foster reuse in various
contexts of use, we introduce patterns as abstract Ul building blocks which can
be used to construct different models and then instantiated into concrete Ul
artefacts.

4.1 Introduction

The model-based approach was introduced to support the specification and
design of interactive systems at a semantic, conceptual and abstract levels, as
an alternative to dealing with low-level implementation issues earlier on in the
development lifecycle [Pat00]. This way, designers can concentrate on important
conceptual properties instead of being distracted by the technical and

80

implementation details. As a result, the increasing complexity of the user
interface is more easily managed. Moreover, the Ul architecture is simplified,
hence allowing for better system comprehension and traceability for future

maintenance in different context of use.

Unfortunately, model-based methods are rarely used in practice [Tra04]. One
major reason for this limitation is that creating several models, instantiating and
linking them together and then using them to generate more elaborate lower level
models is a tedious and very time-consuming work, especially when most of the
associated activities have to be done manually; tools provide only marginal
support. This presents an overhead that is unacceptable in many industrial
setups with limited resources, tough competition and short time-to-market. This
crippling overhead can be partially attributed to the fact that model-based
methods (for example TADEUS [TAD98], MOBI-D [MOB99] and TERESA
[TERO4]) lack the flexibility of reusing knowledge in building and transforming
models. At best, only few approaches offer a form of copy-and-paste reuse.
Moreover, many of these reuses involve the “reuser” merely taking a copy of a
model component and manually changing it according to the new requirements.
No form of consistency with the original solution is maintained [MLS98]. Copy-
and-paste analysis and the concept of fragmented design models are clearly
inadequate when attempting to integrate reuse in a systematic and retraceable

way in the model-based Ul development life cycle.

This practical observation motivates the need for a more disciplined form of
reuse. We will demonstrate that the reusability problems associated with current
model-based approaches can be overcome through patterns. They are usually
presented as a vehicle to capture the best practices and facilitate their
dissemination. Because patterns are context-sensitive, the solution encapsulated
in a pattern can be customized and instantiated to the current context of use
before being reused [AIS77]. Nevertheless, in order to be an effective

81

knowledge-capturing tool in model-based approaches, the following issues
require investigation:

¢ A classification of patterns according to models must be established. Such
a classification would distinguish between patterns that are building blocks
for models and patterns that drive the transformation of models, as well as
create a concrete UI.

e Providing tool support to assist developers when selecting the proper
patterns and help in instantiating them once selected, as well as when
combining them to create a model.

These two aspects are the essence of this chapter. After a brief overview of
existing model-based approaches, we will introduce how we have been
combining model-based approaches and several pattens to build a framework
for the development of user interfaces. A clear definition of the various models
used and an outline of the Ul derivation process are also given. Furthermore, we
will suggest how to enhance this framework using patterns as a reuse vehicle.
We will demonstrate how HCI patterns can be used as building blocks when
constructing and transforming the various models, and list which kind of HCI
patterns lend themselves to this use. We also demonstrate the potential of
supporting pattern combinations within the design process. A brief case study is

presented in order to validate and illustrate the applicability of our approach.

4.2 Background Work

In this section we provide an analytical review of the work on modeling and show
how it is proposed as a support to the design of user interfaces. We will also
highlight some identified shortcomings.

82

4.21 Model-Based User Interface Engineering

Model-based Ul development has been investigated for more than a decade. In
most approaches, model-based Ul design is defined as the process of creating
and refining models [Sil00], [VLF03]. Many models exist in order to describe the
user interface at different levels including task, user, presentation, dialog, and
platform models. Until now, no consensus has been reached as to which models
are the best for describing Ul's [Sil03] and which model can be instantiated and
transformed at each step to create a concrete user interface. Moreover, it is to be
noted that instead of automation (JANUS, [Bal96], AME [Mar96], most model-
based approaches (MOBI-D [MOB99], TERESA [TERO04] provide little support in
helping developers to interactively define the mappings between various models
in the design. Consequently, the mapping between models is done outside the
semantics of these models, and mostly manually. This is a tedious and error
prone practice that most designers prefer to avoid. We often end up with limited
local modeling or no modeling at all.

Constructing and transforming models is a very time consuming task even for
small size software. For larger systems, it becomes prohibitively expensive. It
requires different skills and knowledge about the various models. Unfortunately,
current approaches for model-based tools offer very limited -if any- support for
reusing model fragments or templates. Rine [RN0O] defined reuse as the use of
existing software artefacts or knowledge to create new software components.
Within the scope of model-based Ul development, reuse is particularly critical.
For example, developing the task model for a medium to large-size system that is
highly interactive and providing context-dependent Ul's is quite difficult, as shown
in Paquette [PS04]. Based on a case study, Paquette also observed that task
modeling becomes tedious when a task model is specified with all its necessary
details. However, these details are often crucial if task models are to be used as

a starting point for the evolution of the final Ul and for preliminary evaluations.

83

Furthermore, in order to incorporate a great level of details, the various models
may grow too large to be easily understood or fully comprehended. The MOBI-D
tool suite does not offer any functionality that allows importing model or design
fragments. Similarly, TERESA only supports cutting and pasting static task
fragments. Important tasks in knowledge reuse such as resolving name or
relationship conflicts are not supported either. In essence, starting a new project
means reinventing the wheel by building and linking all models from scratch.
Constraints have to be manually applied and reworked between models, leading
sometimes to inconsistencies that are only discovered in later design stages,
implementation, or testing. Almost no design reuse from previous works, in terms
of model fragments, is possible. Multiple views at various levels of abstraction

and granularity should be provided.

4.2.2 Patterns in Model Construction and

Transformation

As will be detailed here, Ul design patterns have the potential to provide a
solution to the reuse problem while acting as driving artefacts in the development
and transformation of models.

Similar to the rest of the software engineering community, the Human Computer
Interaction (HCI) design community has been a forum for vigorous discussion on
pattern languages for user interface design and usability engineering as shown in
Chapter 1. The goals of HCI patterns are to share successful HCI design
solutions among HCI professionals and to provide a common ground for anyone
involved in the design, development, evaluation or use of interactive systems
[BorO1]. Several HCI practitioners and interactive application designers have
become interested in formulating HCI patterns and pattern languages. A number
of concrete pattern languages for interaction design have been suggested, as
detailed in Chapter 2.

84

However, in order to facilitate their reuse and applicability, patterns should be
presented within a comprehensive framework that supports a structured design
process, not just according to the structure of each individual aspect of the
application (e.g., page layout, navigation, etc.), which is currently the case for
most HCI patterns. This demonstrates the virtue of using model-based design
approach in comparison to manual design practices. UPADE (Gaffar and Seffah
[GSO05]) is one attempt to seemingly integrate patterns in the design process.
Based on the UPADE tool, the approach aims to demonstrate when a pattern is
applicable during the design process, how it can be used, as well as how and
why it can or cannot be combined with other related patterns. Developers can
exploit pattern relationships and the underlying best practices to devise concrete
and effective design solutions. Details of UPADE are provided at the end of the
chapter

Similarly, the “Pattern Supported Approach” (PSA), Granlund and Lafrenier
[GL99] address patterns not only during the design phase, but throughout the
entire software development process. In particular, patterns have been used to
describe business domains, processes and tasks to aid in early system definition
and conceptual design. In PSA, HCI patterns can be documented according to
the development lifecycle. In other words, during system definition and task
analysis, it can be determined which HCI patterns are appropriate for the design
phase, depending on the context of use. However, the concept of linking patterns
together to put up a design is not tackled.

In addition, Molina et al. [MMPO02] found that existing pattern collections focus on
design problems, and not on analysis problems. As a result, he proposes the
Just-Ul framework, which provides a set of conceptual patterns that can be used
as building blocks to create Ul specifications during analysis. In particular,
conceptual patterns are abstract specifications of elemental Ul requirements,

such as: how to search, how to order, what to see and what to do. Molina also

85

recognized that the relatively-informal descriptions of patterns used today are not
suitable for tool use, a major problem identified in Chapter 1. Within the Just-Ul
framework, a fixed set of patterns has been formalized so they can be processed
by the “OliverNova” tool [CT04]. Eventually, the JUST-UI framework will use code

generation to derive a Ul implementation based on the analysis model.

Breedvelt [BPS97] discusses the idea of using task patterns to foster design
knowledge reuse while task modeling. Task patterns encapsulate task templates
for common design issues. This means that whenever designers realize that the
issue with which they are contending is similar to an existing issue that has
already been detected and resolved, they can immediately reuse the previously-
developed solution (as captured by the task pattern). More specifically, task
patterns are used as templates (or task building blocks) for designing an
application's task model. According to Breedvelt, another advantage of using task
patterns is that they facilitate reading and interpreting the task specification.
Patterns can be employed as placeholders for common, repetitive task
fragments. Instead of thinking in terms of tasks, one can think in terms of
patterns at a more abstract level. Such an approach renders the task

specification more compact and legible.

However, Breedvelt considers task patterns as individual static encapsulations of
a (task-related) design issue in a particular context of use. Concepts for a more
advanced form of reuse, including customization and combination, are not
presented. Our approach [GMS05] and [GSP05] has highlighted an important
aspect of the pattern concept: paftern combination. By combining different
patterns, developers can utilize pattern relationships and combine them in order
to produce an effective design solution. We will consider this principle in section
4.7 and suggest a tool for combining patterns. As a result, patterns become a

more effective vehicle for reuse.

86

4.3 PD-MBUI: A Pattern-Driven Model-

Based User Interface

In this section we provide a comprehensive view of different models used in the

activities related to Ul design. We organize them in a logical sequence to

collectively lead to a complete Ul design process.

4.3.1 Basic Concepts and Terminology

Pattern Driven Model-Based Ul, PD-MBUI aims to provide a pattern-driven and

model-based framework that consists of:

A set of models including task, domain, user, environment, dialog,
presentation and layout model. These models are defined in the next section.
A method for constructing these models while creating a concrete Ul

A set of HCI patterns that can be used in this construction. Examples of
patterns are discussed in 4.4.

A tool called the Pattern Wizard that helps user interface developers in using
patterns when constructing and transforming the various models to a concrete
user interface.

Another tool, UPADE demonstrates the potential of automating the

combination of patterns

Within our approach, we will be using some notions as defined here:

HCI patterns as a solution to a user problem that occurs in various contexts.
An example of pattern is Multi-Value Input Form [Pat00]. It provides a
solution to the typical user problem of entering a number of related values.

These values can be of different data types, such as “date,” “string” or “real”.

87

» User interface component such as button, windows, dialog boxes are
generally defined as object-oriented classes in Ul toolkit such as “Java
Swing”.

* An artifact is an object that is essential in order for a task to be completed.
The state of this artifact is usually changed during the course of task
performance. In contrast to an artifact, a tool is merely an object that supports
performing a task. Such a tool can be substituted without changing the task’s
intention [FDRS03].

Patterns Wizard

HCI ;
Pattern T
Library Ui

Designers:

Figure 14: PD-MUI framework

4.3.2 PD-MBUI Models

Figure 14 depicts the models we considered within our framework. We have
selected these models based on the fact that they have been largely cited in the
scientific literature [Sch96], [Pue97], [Tra02]. However, we spent some effort to
define them in such a way that they do not overleap and that the relationships

88

between them are also clearly stated. This is fundamental in order to know which
types of patterns are needed and when they may apply.

Domain

Phase

Environment

¥
Presentation

Phasell:

Phase |l

Figure 15: Models and their relationships in the PD-MBUI framework

The process of constructing these models distinguishes three major phases as
depicted in Figure 15:

The starting point of phase | is the domain model. This model encapsulates the
important entities of an application domain together with their attributes, methods
and relationships [Sch96]. Within the scope of Ul development, it defines the
objects and functionalities accessed by the user via the interface. Such model is
generally developed using the information collected during the business and
functional requirements stage. Two other models are then derived from this
model: user and task models.

The user model captures the essence of the user's static and dynamic
characteristics. Modeling the user's background knowledge is useful when
personalizing the format of the information (e.g. using an appropriate language
that is understood by the user). The task model specifies what the user does or

89

wants to do, and why. It describes, at an abstract meaning, the tasks that users
perform while using the application, as well as how the tasks are interrelated. In
simple terms, it captures the user tasks and system behavior with respect to the
task set. Beside natural language, notations such as GOMS and CTT are
generally used to document task models. The task model is constructed in
mutual relationship to the user model, representing the functional roles played by
users when accomplishing tasks, as well as their individual perception of the
tasks. The user model is also related to the domain since the user may require
different views of the same data while performing a task. Moreover, a relationship
must be formed between the domain model and the task model, because objects
of the domain model may be needed in the form of artifacts and tools for task
accomplishment.

The second stage starts with the development of the environment model. This
model specifies the physical and organizational context of interaction [Tra02]. For
example, in the case of a mobile user application, an environmental model would
include variables such as the users current location, the constraints and
characteristics presented by this location, the current time and any trigger
conditions specified or implied by virtue of the location type. This model also
describes the various computer systems that may run a Ul [Pra96]. The platform
model describes the physical characteristics of the target platforms, such as the
target devices’ input and output capabilities. Based on this model and the models
developed in the first stage, the dialog and the presentation model can be
developed.

The dialog model specifies when the end user can invoke functions and
interaction media, when the end user can select or specify inputs, and when the
computer can query the end user and present information [Pur97]. In particular,
this model specifies the user commands, interaction techniques, interface
responses and command sequences permitted by the interface during user
sessions. The presentation model describes the visual appearance of the user

90

interface [Sch96]. The presentation model exists at two levels of abstraction: the
abstract and the concrete presentation model. The former provides an abstract
view of a generic interface, which represents a corresponding task and dialog
model.

In the last stage, the “Layout Model” is realized as a concrete instance of an
interface. This model consists of a series of Ul components that define the visual
layout of Ul and the detailed dialogs for a specific platform and context of use.
There may be many concrete instances of layout models that can be derived
from a presentation and dialog model.

4.4 Proposed HCI Patterns and their

Description

As previously suggested in Figure 15, patterns are used to construct various

models. The following are the major patterns we considered:

- Task and feature patterns are used to describe hierarchically structured task
fragments. These fragments can then be used as task building blocks for
gradually building the envisioned task model.

- Patterns for the dialog model are employed to help with grouping the tasks
and to suggest sequences between dialog views.

- Presentation patterns are applied to map complex tasks to a predefined set of
interaction elements that were identified in the presentation model.

- Layout patterns are utilized to establish certain styles or “floor plans” which

are subsequently captured by the layout model.

The following table summarizes some of the patterns we considered.

91

Table 7: Pattern summary

Pattern Type Problem

Name

Browse Task The user needs to inspect an information set and navigate
a linear ordered list of objects such as images or search
results.

Dialog Task The user must be informed about something that is
requiring attention. The user must make a decision that
will have an impact on further execution of the
application, or the user must confirm the execution of an
irreversible action.

Find Task The user needs to find any kind of information provided
by the application.

Login Task The user needs to be authenticated in order to access
protected data and/or to perform authorized operations.

Multi-Value | Task The user needs to enter a number of related values. These

Input Form values can be of different data types, such as “date,”

[Pat00] “string” or “real.”

Print Object | Task The user needs to view the details related to a particular
information object

Search Task The user needs to extract a subset of data from a pool of
information.

Wizard Dialog The user wants to achieve a single goal, but several

[Wel00] consecutive decisions and actions must be carried out
before the goal can be achieved.

Recursive Dialog The user wants to activate and manipulate several

Activation instances of a dialog view.

[Pat00]

Unambiguous | Presentation | The user needs to enter data, but may be unfamiliar with

Format the structure of the information and/or its syntax.

Form Presentation | The user must provide structured textual information to
the application. The data to be provided is logically
related.

House Style | Layout Applications usually consist of several pages/windows.

[Tid97] The user should have the impression that it all shares a

consistent presentation and appears to belong together.

4.41

Pattern Instantiation and Application

In the previous section, we stated that patterns can be used as building blocks

for different models throughout the Ul development approach. For the

92

construction of models, the following process, which is part of the PD-MBUI, was
proposed to instantiate and apply patterns:

1. ldentification: A subset M’ of the target model M is identified thus: M’ c M.
This relationship should reduce the domain size and help focus attention on a

smaller, more pertinent subset for the next step.

2. Selection: An appropriate pattern P is selected to be applied to M’ By
focusing on a subset of the domain, the designer can scan M’ more effectively
to identify potential areas that could be improved through patterns. This step
is highly dependent on the experience and creativity of the designer.

3. Adaptation: A pattern is an abstraction that must be instantiated. Therefore,
this step has the pattern P adjusted according to the context of use, resulting
in the pattern instance S. In a top-down process, all variable parts are bound

to specific values, which yield a concrete instance of the pattern.

4. Integration: The pattern instance S is integrated into M’ by connecting it to
the other elements in the domain. This may require replacing, updating or

otherwise modifying the other objects to produce a seamless piece of design.
Variables are used as placeholders for the context of use. During the process of

pattern adaptation, these placeholders are replaced by concrete values
representing the particular consequences of the current context of use.

93

' Variable x !

Variable y...
<<Types>

Pattern A

£

x = Value 1
y = Value 2 |

<<Types>
Pattetn: A Instance

Figure 16: Interface of a pattern

Figure 16 shows the interface of pattern A. The UML notation for parametric
classes is used to convey that the pattern assumes two parameters (variables x
and y). In order to instantiate the pattern, both variables must be assigned
concrete values. In practical terms, the interface informs the user of the pattern
that the values for variables x and y must be provided in order for the pattern to
be used. In the figure, pattern A has been instantiated, resulting in Pattern A
Instance. In addition, UML stereotypes are used to signal the particular type
(role) of the pattern.

Patterns are often implemented using other patterns, ie., a pattern can be
composed of several sub-patterns. This pattern-sub-pattern relationship, based
on the concept of class aggregation, is presented in Figure 17. Pattern A consists
of the sub-patterns B and C. If we place patterns in this kind of relationship,
special attention must be given to the patterns' variables. A variable defined at
the super-pattern level can affect the variables used by the sub-patterns. In
Figure 17, variable x of pattern A affects the variables yy and zz of sub-patterns
B and C. During the process of pattern adaptation, variables yy and zz will be
bound to the value of x. As such, we observe how modifying a high-level pattern
can affect all sub-patterns.

94

<<Typex>

Pattern A
7

Varidble yy = x ! N Variable zz = x |
<<Typess [T B R
Pattern B Patierm ¢

Figure 17: Pattern aggregation

4.5 Constructing Models Using Patterns

In previous sections, we showed how patterns can be applied to models and how
they can be aggregated. This section provides an in-depth discussion of how
different categories of patterns can be used together when constructing the task,
dialog, presentation and layout model.

4.5.1 Patterns in Task Modeling

Patterns for the task model describe generic reusable task fragments that can
serve to establish the task model. In particular, instances of task patterns (i.e.,
already customized patterns) can be used as building blocks for the task model.
Examples of such patterns for the task model include: Find something, Buy
something, Search for something, Login to the system or Fill out an input form.

95

A typical example of a task pattern is Search [GSSF04]. The pattern is suitable
for interactive applications that manage considerable amounts of user-accessible
data. The user wants to have fast access to a subset of this data.

As a common and recurring solution, the pattern suggests giving users the
possibility to enter search queries. On the basis of these queries, a subset of the
searchable data (i.e., the result set) is calculated and displayed to the user. The
Multi-Value Input Pattern [PatO0] may be used for the query input. After
submission, the results of the search are presented to the user and then they can
either be browsed (Browse Pattern [Sin04] or used as input for refining the

search.
o Qk k
x”j - \ E&N
. o y, e,
e \\ x‘\»
- '\ .
Mf’” kY T
- it Fiels = Gubbiet {mwﬁtﬁm@gj"% % %{3= Object ‘ . omet:amm“

Figure 18: Interface and composition of the Search Pattern

As mentioned before, a pattern can be composed of several sub-patterns.
Appendix A elaborates more on this type of relationship. Figure 18 illustrates how
the Search pattern is composed of the sub-patterns Multi-Value Input and
Browse, as well as of recursive references to itself (Search*). It also
demonstrates how the variables of each pattern are interrelated. The value of the
“Object” variable of the Search Pattern will be used to assign the “Object’
variable of the Browse and Sub-Search Patterns. In addition, a subset of the

“Search” object attributes is used to determine the various “Input Fields” of the

96

Multi-Value Input Pattern, which is in turn responsible for capturing the search
query. During the adaptation process, variables of each pattern must be resolved

in a top-down fashion and replaced by concrete values.

The suggested task structure of the Search Pattern is illustrated in Figure 19. In
order to apply and integrate the task structure, the pattern and all its sub-patterns

must be instantiated and customized to the current context of use.

5. &, :
Multi - Vaiue Input Pattern Browse Search

Figure 19: Structure of the Search Pattern

- The top-down process of pattern adaptation can be greatly assisted by tools such
as wizards. A wizard moves through the task pattern tree and prompts the user
for information whenever it encounters an unresolved variable. Later in this
chapter, we introduce the Task Pattern Wizard, a tool that assists the user in

selecting, adapting and integrating task and feature patterns.

45.2 Patterns in Dialog Modeling

Our framework's dialog model is defined by a so-called dialog graph. Formally
speaking, the dialog graph consists of a set of vertices (dialog views) and edges
(dialog transitions). Creating the dialog graph is a two—step process: first, related
tasks are grouped together into dialog views. Second, transitions from one dialog
to another, as well as trigger events are defined.

97

In order to foster establishing the dialog model, we believe that patterns can help
with both grouping tasks to dialog views and establishing the transition between

the various dialog views.

A typical dialog pattern is the Recursive Activation Pattem [BPS97]. This pattern
is used when the user wishes to activate and manipulate several instances of a
dialog view. In practical terms, it suggests a dialog structure where, starting from
a source dialog, a specific creator task can be used to instantiate a copy of the
target dialog view. The pattern is applicable in many modern interfaces where
several dialog views of the same type and functionality are concurrently
accessible. A typical example of an application scenario is an e-mail program

that supports composing several e-mails concurrently during a given session.

S @
Bource Dialog View

‘Creator Task

Target Dislog View.oenen ..o}
=<Dialog»>
Recursive Activation

Figure 20: Presentation and one instantiation of Recursive Activation Pattern

In the left pane of Figure 20, we observe that in order to adapt (instantiate) the
pattern, the source dialog view and the corresponding creator task, as well as the
target dialog view must all be set. A specific instance of the pattern is shown in
the right part of Figure 20, simulating the navigational structure of Microsoft
Outlook when composing a new message. For this particular example, the visual
notation of a tool called the Dialog Graph Editor [FDRS03] was used.

08

4.5.3 Patterns in Presentation Modeling

The abstract portrayal of user interface is determined in the presentation model
through a defined set of abstract Ul elements. Examples of such elements are
Buttons, Lists or more complex aggregated elements such as trees or forms.
Note that all interaction elements should be described in an abstract manner
without reference to any particular interface components or environment.
Likewise, style attributes such as size, font and color remain unset, pending
definition by the layout model. Abstraction is a key to the success of presentation
model as it frees the designers from unneeded details and allows for more
efficient reuse on different platforms.

Patterns for the presentation model can be applied when describing the abstract
Ul elements. However, they can be more effective when applied for defining and
mapping complex tasks (such as advanced search) to a predefined set of
interaction elements. In this many-to-many interaction, patterns can provide

insight into proven solutions ready to reuse.

eI Fields }

<<Presentation>>
Form

<<Pregsentation>>
Unambiguous-Format

Figure 21: Interface of the Form Pattern
One illustrative example of a presentation pattern is the Form Pattern. It is

applicable when the user must provide the application with structural, logically-
related information. In Figure 21, the interface of the Form Pattern is presented,

99

indicating that the various Input Fields to be displayed are expected as
parameters. It is also shown that the Unambiguous Format Pattern can be

employed in order to implement the Form Pattern.

In particular, the Unambiguous Format Pattern is used to prevent the user from
entering syntactically-incorrect data. In conjunction with the Form Pattern, it
determines which interaction elements will be displayed by the input form. XUL
code will be produced for the most suitable interaction element, depending on the
data type of the desired input as shown in Figure 22. We elaborate on XUL and
“Velocity” tool later in section 4.6, Tool Support.

Datatype

(text field)

Datatype=Date (3 selection lists)
M‘
"300/930 B

Figure 22: The rendered interaction elements with three different instances

4.5.4 Patterns in Layout Management Modeling

In Layout Modeling, the abstract Ul elements of the presentation models are
physically positioned following an overall layout or floor plan, which yields the
layout model. Furthermore, the visual appearance of each interaction element is

specified by setting fonts, colors and dimensions.

100

There are two different ways in which patterns can be employed when defining
the layout model to reuse successful designs: (1) by providing a floor plan for the
Ul and (2) by setting the style attributes of the various widgets of the Ul. The
proposed solutions and the criteria of selecting between different designs depend
—among other factors- on the context of use, nature of the application and
satisfaction of users. Aesthetic and human behavior aspects can complicate the
design and make the final results unpredictable. Therefore, patterns come in
handy as shortcuts to analyzing some of these considerations by offering
solutions that have been used before with good results.

The layout planning consists of determining the composition of the Ul by
providing a floor plan. Examples of such patterns are the Portal Pattern [Wel00],
Card Stack [Tid97], Liquid Layout [Tid97] and Grid Layout [Wel00]. Figure 23
presents the floor plan suggested by the Portal Pattern, which is applicable for
web-based Uls. |

Figure 23: Floor plan suggested by the Portal Pattern [Wel00]
In the style planning, Layout Patfterns are beneficial when the style attributes of

the various widgets of the Ul must be configured. For instance, the House Style

Pattern suggests maintaining an overall look-and-feel for each page or dialog in

101

order to mediate the impression that all pages share a consistent presentation
and appear to belong together.

Figure 24 collectively portrays the Ul facets as they are modeled and reflects the
relevance between these models and the final result in form of one ore more user
interfaces. Task wizard helps improve the modeling process by receiving XUL
code and annotating it with patterns then returning another —improved- XUL code
and automatically rendering the interfaces.

lﬂ"-!llll-l'ﬂM

Interactive

inreractive

AR RS 2

Other
interfaces

cristoetic
rerdering

New interface l

Figure 24: A comprehensive view of a model based process

102

4.5.5 Patterns in Interface Architectural Modeling

Arranging the interfaces of a large system to collaborate together in a seamless
architecture and to allow for easy navigation and interaction with the whole
system can be a complex endeavor. In Figure 24 we showed the multiplicity of
models needed to move from task and user models into a final layout of an
interface with layout models. However, the resultant user interfaces related to a
cluster of tasks don't live in isolation. They work together as pieces of a larger
puzzle representing the complete interface model of the interactive application.
While this complete model is not easy to put down in one single figure or
document, architectural modeling of the overall interface arrangement helps
complete the design and understanding of this picture. Figure 25 gives a view of
a composite interface architecture which is made of different clusters of
architectural patterns. According to the navigational and interaction needs of
each cluster of the system interfaces, several arrangements can be used in
interface architecture like Grid Pattern and Sequence Pattern. While users do not
necessarily see the whole picture of interface architecture, they can feel the
effect of good interface design by being able to easily navigate and interact with
the system. Nonetheless, additional patterns like ‘Site Map Pattern” are intended
to provide the user with a visual summary of the overall interface architecture to
help them in navigation. In systems with extremely large number of interfaces (for
example large Websites like IBM or Yahoo and most commercial software
applications) the reliance on navigating the overall architecture is often not
enough to help users access all parts of the system. Therefore additional
navigational help is added. An example is adding a local “Search Pattern” to help
user go directly to relevant interfaces of the Website, or adding “Help Pattern” to
help users find desired functionality and their relevant interfaces as well as

guidance in using them.

103

Help Pattern Search Pattern

Site Map Pattern

Hierarchical Pattern

Seguence
Pattermn

Grid Pattem

Hierarchical
Pattern

Figure 25: A Composite pattern for a complete application.

4.6 Tool Support

Efficiently choosing and applying patterns requires tool support. By integrating
the concept of patterns in development tools, patterns can be a driving force
throughout the entire Ul development process. In response, we present a
prototype of a task pattern wizard that is designed to support all phases of
pattern application for the task model, ranging from pattern selection to
adaptation to integration. After parsing the pattern, the tool guides the user step
by step through the pattern adaptation and integration process. In what follows,
we provide a brief description of how the Task Pattern Wizard is used. Particular

104

attention is given to outlining how the tool supports each phase of pattern
application.

The generic user interface description language, XUL, has been selected as the
medium by which the presentation model and layout model are described. XUL
provides a clear separation between the high level user interface definition (in
terms of abstract widgets that comprise the Ul) and its visual appearance (the
final rendering in terms of layout and look-and-feel’). XUL is particularly well
suited to our approach because we also distinguish between the abstract
definition of the Ul (presentation model) and the actual visual appearance (layout
model). Since the presentation model is written in terms of XUL code fragments,
patterns for the presentation model are also used to generate XUL code as an
output. Each presentation pattern has been formulated as a XUL Velocity
template. Velocity is a Java-based template engine. The focus of the Velocity
Template Language is to describe the generation of any form of mark up code
such as XUL.

Technically speaking, the various XUL fragments of the presentation model are
merged in the layout model, resulting in aggregated XUL code. The loosely-
connected XUL pieces are nested and associated together. The way these
fragments are merged depends on the overall layout of the application. In
addition, any style attributes that are not set are bound with concrete values.
Because Velocity templates can be used to generate XUL fragments (for the
presentation model), they can also serve when aggregating XUL code.
Consequently, layout patterns are also formalized as Velocity XUL templates.

There are four main steps in applying patterns here:

® The layout refers to the arrangement of the user interface real estate. The “look” refers to the
rendering of each component; its shape and color, while the “feel” refers to how it behaves when
the user interact with it. The “look-and-feel” is often used by java to emphasize how same
interfaces look and behave differently on different platforms

105

Identification:

In the identification phase, we identify a node of an existing task structure to
which a pattern will be applied. After opening the XUL file, the Task Pattern
Wizard uses a tree element to display the task structure. Next, the user chooses
a node representing a particular task. The user is then prompted to decide how
the new task structure, brought in by the pattern, should be integrated into the
existing tree. Some characteristics of the new task structure can be integrated as
being optional and/or iterative. Optional tasks can be executed, but are not
mandatory. Iterative tasks can be repeated more than once. These two
characteristics are orthogonal to each other and any combination of them is
logically correct, but the user should decide on their correctness according to the
nature of each task and the context of use. In addition, the new task’s temporal
relationship with the other tasks can be defined. Figure 26 is a screenshot
showing the identification of a target node from the task model.

El-run_shop
“wcreste_shop

f=1-e_shopping

=R it procdue

check_jn_detail
- check_short
order_product
t---close_shop y ’ :
Domain Model: Shop fo s Enablest - Please select

User Madel: Shop Please select [
. |lenter_search_criterion .

Dialog for PC o g Cﬂnﬁyl"re‘r‘ltiu:‘.
Dialog for Mobile Phone . « s J———

Figure 26: The Task Pattern Wizard selection screen

Selection:

In the selection phase, an applicable pattern is chosen. In order to perform the
selection operation, the Task —Pattern Wizard presents the currently-opened
pattern according to the Alexandrian form [AIS77]. The pattern is displayed in
narrative form to suit human interaction at this stage. The user is presented with:

106

what issue will be solved, when the pattern can be applied (context), how it works
(solution) and why it works (rationale) to help them in their design decisions.

Adaptation:

Once the appropriate pattern has been chosen, it must be adapted to the current
context of use. Each pattern generally contains variables that act as placeholders
for context conditions. Different kinds of variables exist, such as “substitution
variables” and “process variables.”

Substitution variables are simply used as placeholders for certain values (such
as the task name). During the pattern adaptation process, the Task Pattern
Wizard will prompt the user to enter values for these variables. Then, each
occurrence of the substitution variable will be replaced (substituted) with this

value in a top-down process.

Process variables are used to describe the structure of the task fragment that will
be created by the pattern. For example, entering values in a form is very
repetitive. The same basic task (i.e., entering a value) appears over and over
again. Each peer task can be distinguished simply by its name and input type.
Thus, instead of describing each of these tasks individually, process variables
that indicate the number of respective tasks can be used.

After all variables have been defined, a pattern instance that can be integrated
into the task model is created.

Integration:

In the integration phase, the pattern instance is incorporated into the current task
model. In short, a new branch is added to the task tree or an existing branch is
replaced. The new modified task structure can then be saved in XUL format.
Within our tool set, XUL serves as a universal exchange format. This approach

107

enables tools such as the XIML-Task-Simulator and the Dialog Graph Editor
[FDRSO03] to further process the new task model.

4.7 Pattern Relationships

Many tentative solutions for pattern reuse have been proposed. Most of them
projected some relationships between patterns and then exploited them in
specific design frameworks. In their book “Design Patterns”, Gamma et al.
[GHJV95] underline the importance of relationships between patterns as an
essential part in understanding and using them. Zimmer [Zim95] implements this
idea by defining different types of relationships between the patterns of the
Gamma catalog. We provide more details of pattern relationships in appendices
A and B. Van Duyne et al. compiled their patterns [DLHO3] addressing many
aspects of web page design and emphasizing relationships between all 90
patterns. The patterns are arranged in 12 groups that exist at different levels of
hierarchy. The highest level is called “Site Genres,” which provides a convenient
starting point into the language and enables the user to choose the type of site to
be created. Starting from a particular site genre pattern, various lower patterns
are subsequently referenced. In this way, the authors have succeeded not only in
providing a starting point into their pattern language, but also in demonstrating
how patterns of different levels interact with each other. The organization of van
Welie's Interaction Design Pattern language [Wel00] is comparable to that of van
Duyne [DLHO03]. Van Welie also views web design as a top-down activity. The
user enters the language by selecting a “Posture Pattern”. According to Welie,
posture patterns describe the site's overall type or genre. The user can then
follow the references that lead to lower-level patterns, which have been placed at

the so-called “Experience,” “Task” and “Action” levels.

In order to facilitate their reuse and applicability within general design processes,
patterns need to be presented within a comprehensive framework that supports

patterns from different collections, independent of the structure and classification

108

of each pattern language, which is currently the case for most HCI patterns. This
demonstrates the virtue of using model-based design approach in comparison to
manual design practices. Patterns from different collections can be used together
in one design and can be integrated together if they have a common high level
model that guide designers in their design process. This can greatly help
automate the interoperability between them.

Despite its importance, pattern relationship information has been generally
underestimated, and is often presented as a small addition to patterns; mostly as
a simple pointer from one pattern to another. In [GSP05] we emphasize the
importance of relationship information between patterns, and show that
relationships can have more constituents than just directed arrows. Otherwise,
important information can go unnoticed and are only clear to the authors. We
state that “this part of information is generally implicit, and only clear to experts,
contributing to the difficulty of reusing patterns” In our framework for pattern
representation model, we clearly separate the pattern relationship part from
intrinsic pattern data, and present the former as extrinsic information that should
reside outside the internals of a pattern. Nevertheless, they are not physically
separated in another file; they are still represented as part of the overall pattern
data set, only in a logically different category. This allows for treating them as
separate entity with their own model that connects to and interacts with the
intrinsic pattern model. Following this principle, more information can be built
within the extrinsic part of patterns, the relationship information.

In [GSSF04] we demonstrate how we built the model of extrinsic information. We
represent extrinsic data as a binary relationship R; from pattern P, to pattern Py in
the form

(Ri, Px, Py)

Likewise, we represent ternary relationship as

(Ri, Px, I:)y Pz)

109

In the framework, we have not felt the need for using higher rank relationships.
Nonetheless, higher ranking relationships can be represented following the same
concept.

We give some examples of extrinsic binary relationships:

- (Subordinate, X, Y) if X can be embedded in Y. Y is also called superordinate
of X

- (Equivalent X, Y) if X and Y can replace each other

- (Competitor X, Y) if X and Y cannot be used together

- (Neighbor X, Y) if X and Y belong to the same pattern category (family) or to
the same design step as the described pattern

In [GSSF04] we emphasize that ternary relationships are generally more
complex, and contain more subtle information that could be easily overseen by
an inexperienced user. The concept of extrinsic data covers them equally

consistently. To demonstrate, we provide the following relationships:

- (Combine, X, Y, Z) if X, Y, and Z can be combined together in a design
artifact.

- (ExclusiveCombine, X, Y, Z) if X can be combined with either Y or Z, but not
with both of them at the same time. The notation is read “X exclusivecombine
yand Z’

It is worth mentioning that unlike “Competitor, Y, Z”, the “ExclusiveCombine, X,
Y, Z” denotes that Y and Z are only competitors in the presence of X. Appendix
A gives more insight into the pattern relationships. Appendix B shows how this
approach can be extended to facilitate ontology of patterns based on our
relationship model.

In [GMS05] we show how we used UPADE to expand this approach and put it
into work to demonstrate its feasibility. UPADE is a pilot project to test the
possibility of using pattern tools as design building blocks to highlight the

110

intricacy of pattern relationships and their mutual interaction. The feedback from
this project -collected from actual users and lab testing- has been used in
building. more comprehensive pattern dissemination and assimilation
environment for developers. In the next section we provide some details on
UPADE.

4.7 .1 UPADE Architecture and Basic Features

UPADE provides a unified interface to support the development of user interface
designs and improve software production. It is a prototype written in Java that
aims to support HCI pattern writers and user interface developers. By leveraging
the portability and flexibility of Java, UPADE enables developers to easily and
effectively describe, search, exchange and extend their own patterns as well as
those created by others. At the same time, UPADE offers an environment to
combine patterns, support their integration at high design level and automate
their composition.

UPADE Architecture

As a tool for automating the development of Ul designs, UPADE embodies
several functionalities. It helps both pattern writers and developers to use existing
relationship between patterns to define new patterns or create a design by
combining existing patterns. Moreover, in order to facilitate pattern combinations,
the tool supports different hierarchical, traceable design levels. In our case study
associated with UPADE, three levels are possible: Pattern Level, Design Level,
and Code Level. At the pattern level, developer can see description of patterns,
search a specific pattern, create a new pattern and save it into the database. At
the design level, developers can combine patterns, support the integration of
patterns at different design stages, replace one pattern occurrence by another
and validate the selected pattern compositions. Finally at code level, developers

can see the structure of the design in terms of classes, methods, associations

111

and inheritance relationships in a particular programming language. Additionally,
UPADE provides a mechanism to check and control how patterns are created or
modified. By using the database information, UPADE automatically examines the
patterns and offers a related feedback to the designer.

Feature Description

Each pattern describes a collection of elements that provide a solution to a
problem in a given context. The main user interface includes the following
components:

-“Browse” provides a description of existing patterns, some illustrated diagrams
and several practical examples. In this mode, UPADE produces and delivers
patterns information. The information is presented using the incorporated format
showing related design processes, pattern category, name, description and
examples. Categories are presented as a browse tree for navigation as shown in
Figure 27. By default, UPADE allows browsing patterns with their associated
process name. However, software developers can switch to browse by category.

-“Search” improves efficiency of using UPADE by accelerating the searching of
patterns. The search window presented to the developer offers two kinds of
search. Users can have a simple search for patterns by keywords. They can also
select from several advanced search criteria in the ‘Criteria Combo Box and

apply it.

-“Edit” helps developers create their own patterns or modify existing ones. Since
patterns are reusable components, a well-developed pattern should be saved for
reuse in other designs [FMW97]. UPADE allows developers to create new
patterns and associate new implementation rules -or constraints- with them. The
use of constraints allows developer to decide how certain patterns can be

combined with each other in the design mode.

112

Design Tab Browse Tree Control Menu Bar Drawing Pane

Figure 27: Navigating and selecting patterns

-‘Design” develops structured steps to combine patterns, support integrating
them at several phases of design, and verify their composition against the
combinations and relationship constraints suggested by pattern authors. As
shown before, besides describing a solution, a pattern also describes several
possibilities of how it can relate to other patterns and how it can be composed of
other patterns. The creativity of design is preserved by allowing designers the
freedom to mix different patterns together. The process of freely mixing patterns
together can be hard to verify in a complex network of patterns. Relationship
constraints guide users into avoiding “invalid” or “less preferable” combinations
and warn about unforeseen consequences. By offering verification of pattern
relationships, UPADE helps designers in selecting more appropriate
combinations during their design. The main interface of “Design” workspace is

separated into three areas:

113

- “Browse Tree Pane” is the section where developers can browse the entire
pattern collections in the UPADE database. They can expand any collection
to see the available patterns in it.

- “Control Menu Bar” is the menu for developers to control the drawing
process and create their custom design.

- “Drawing Pane” is the area where developers can compose patterns by

simply using drag and droop from the browse tree pane.

Practicing Pattern-Oriented Design

In “Design” mode, UPADE can support combination and organization of existing
patterns from more general to more specific details. For example, The Software
developer can embed “Page Managers” patterns into “Information Architectural’
patterns, and both “Navigation Support’ patterns and “Information Containers”
patterns into “Information Architectural’ patterns. Moreover, the designer has the
freedom to organize “Navigation Support’ patterns and “Information Containers”
patterns inside the layout; they can move, combine or delete them altogether.
These activities aim to explore how to organize and combine existing patterns to
customize and format the new ones. “Design” editor provides a mechanism to
check the validity of combined patterns using the set of constraints associated
with them. It examines the compatibility of certain patterns and gives the related

instruction to the designer.

114

Figure 28: Combining patterns in a new design

Once the “Design” Tab is selected (Figure 28), UPADE can help start a new

pattern-oriented design as follows:

- Pattern developers need to browse the tree in the “Browse Tree Pane” to
view available patterns.

- Then they can select a pattern and drag and drop it into the “Drawing Pane”
area.

- They repeat these two steps until all desired patterns are collected into the
drawing area.

- Next, by selecting “Link Mode” button, developers are guided to connect
each pattern to the others by choosing from different relationship types that
are available in the combo box of the control menu. While developers can
choose the way they want to connect patterns to generate their own design
and the type of relationships, UPADE will check the validity of all connections

selected by users and allow only valid ones. Users can override this

115

mechanism, but they are provided with the consequences of their selections
to help them take informed decisions. At the end, the developer can save the
new pattern composition map into XML format for use by other XML-

compatible tools.

UPADE is designed to be customized and extended, with the realization in mind
that some designers have achieved a local set of patterns and conventions for
style and structure, and only need a tool to assist them in creating new design
more quickly that honors those conventions. In our survey (appendix D) we have
collected feedback from several participants to support this claim. One of the key
features of UPADE is that developers have visual control with drag and drop

mechanism.

4.8 Conclusion

In this chapter, we demonstrated how HCI patterns could be delivered and
applied within model-based Ul development approaches (MBUI). Within our
proposed framework for Pattern Driven MBUI (PD-MBUI), patterns were
introduced to overcome the lack of model reusability and construction, which
represents one of the major limitations of existing model-based Ul development
frameworks. In particular, we illustrated how different kinds of patterns can be
used as building blocks for the establishment of task, dialog, presentation and
layout models. In order to foster applicability in different contexts of use, we
defined the general process of pattern reuse, in which patterns are abstractions
that must be instantiated. In addition, we described an approach for combining
patterns together within a design process, UPADE.

The applicability of the proposed pattern-driven model-based development
approach as well as combining them has been demonstrated through different
tools and case studies to validate the idea. We demonstrate the potential of

patterns to support model reuse in the construction of specific models and their

116

transformations. While this approach can be used to complement other modeling
approaches and support reuse, it would be less effective in manual design

processes where modeling approaches are not used.

Traditionally, patterns are encapsulations of a solution to a common problem. In
our research, we extended the pattern concept by providing an interface for
patterns in order to combine them. In this vein, we proposed the general process
of pattern application, in which patterns can be customized for a given context of
use. We then incorporated the pattern concept into the domain of model-based
Ul development. In order to foster reuse and avoid reinventing the wheel, we
demonstrated how task, dialog, presentation and layout patterns can be used as
reusable building blocks when creating the corresponding models, which are the
core constituents of our development approach.

In order to demonstrate the applicability of our approach, we developed a Ul
prototype for a hotel management application. An illustration is given in appendix
C. In this elaborate case study, patterns are identified and applied for each of the
models that were used during development. The main purpose of the example is
to show that model-based Ul development consists of a series of model
transformations, in which mappings from the abstract to the concrete models

must be specified and —more importantly- automatically supported by tools.

In the last chapter, we will expand the modeling concept into an integrated
pattern environment, IPE, which provides a framework to integrate this and other
tools into a generalized pattern driven development environment. This
environment supports different platform and programming languages. The
transformation between models is automated by the use of XML as a common
medium to communicate the modelling semantics between different models. This
helps tailor the application and corresponding models to different platform and

user roles.

117

Chapter 5

Towards an Integrated Pattern

Environment

Abstract: In the literature analysis of Chapter 2 we evaluated the current state of
pattern proposals within HCI community and how they are represented among
pattern authors. In chapters three and four, we experimented on the applicability
of HCI patterns in the design domain and provided two case studies of pattern
reuse to enhance usability within the architecture and to enhance interface
design. We also conducted a survey to evaluate the state of pattern reuse among
mainstream programmers. Based on these investigations and studies, we
propose a new approach for pattern engineering through an integrated pattern
environment. The environment is realized using XML and supporting models to
allow patterns to be used and manipulated within a programming environment
while keeping its original information contents and text format.

5.1 Introduction

Even when we have an effective representation, turning static descriptions of
patterns into useful, automated components that provide valuable resources and
knowledge for developers requires a combination of methodology and tool
support both for developing these new pattern artifacts and for using them.

Several pattern authors have valuable information and they spend efforts to write

them down for users. As we have seen so far, the mainstream programmers

118

often have little time to spend looking for patterns in books and on the Web. The
gap is well known and evident in the literature as we discussed in Chapter 1, and
as seen in the survey (appendix D). The large number of patterns and the
narrative formats add a cognitive load on pattern users and prevent them from
finding and using patterns to their full extent (we refer to it as the scalability
problems). Newer patterns also have little chance of making their way to the
mainstream (we refer to it as the visibility problem) and they often end up lost on
the Web. So far, we have identified the potential of patterns in different aspects
of HCI domain. We showed the synergy between patterns and modeling and how
they can work together as an enabling technology towards automation of pattern

reuse.

In this chapter we go one step further by proposing a new approach to enhance
pattern dissemination and reuse. This comes in the following steps:
-Define an information model for patterns that covers its main constituents
-Define the current pattern dissemination model and propose an extension
to it to enhance the pattern lifecycle
-Define a process to implement the pattern lifecycle
-Define models to support the process and help transform text patterns
into program components
-Provide an infrastructure to support pattern manipulation at runtime
besides their narrative format.

The process covers human activities as well as theoretical and technical aspects
that collectively work to move patterns from a narrative format towards a more
programmable format. This format allows patterns to be machine readable;
hence they can be processed by other software artifacts. In the meanwhile, the
semantics of patterns are preserved which allows the system to accurately
reproduce pattern in their original text format for human readers.

119

The infrastructure to support the process is an Integrated Pattern Environment,
IPE, which implements this idea. We look at the semantics of patterns and how
we can identify and formalize them in a generic model. This model is the core of
the proposed pattern lifecycle. It allows interacting with other software at the
code level resulting in machine readable patterns. The model needs to be well
defined to preserve the correct semantics of patterns and in the meanwhile to
allow for writing new software to interact with concrete interfaces provided by the
model. Following this approach, we see patterns as program objects or software
components as opposed to text documents. Instead of saving patterns as a large
monolithic text document or set of tagged text documents, we can save them as
objects that can be accesses directly by other software at runtime. In [GSPO5] we
show that the semantics of the pattern model allows for an efficient lookup and
transformation of pattern components according to their internal information
(intrinsic), their relationships to other patterns (extrinsic), or according to their

applicability within specific stages of design phases (assimilation).

5.2 A Schema for Patterns

The concept of a schema is used in many domains to present a high level,
common view of different artifacts, or low level details of them. In this section, we
present a high level schema of patterns based on our investigations in the thesis

so far.

5.2.1 Why a Schema?

To conveniently handle the entirety of available patterns within a pattern system
it is helpful to define and separate different parts of each pattern according to the
interest of the reader. A pattern classification schema that supports the
development of software systems using patterns should have the following
properties:

120

Simplicity: It should be simple and easy to understand, learn and use. A
complex schema would be hard to validate and will deter many users from
using it.

Obijectivity: Each classification criterion should reflect functional properties of
patterns, for example the kinds of problems the patterns address, the related
design phase and the context of applicability rather than non-functional
criteria such as the pattern author or whether patterns belong to a pattern
language or not.

Guidance: It should provide a ‘roadmap’ that leads users to a set of
potentially applicable patterns, rather than a rigid ‘drawer-like’ schema that
tries to support finding the one ‘correct’ pattern.

Generality: Like programming languages, the schema should be independent
of specific domain, platform or technology.

Extensibility: The schema should be open to the integration of new patterns
without the need for refactoring the existing classification.

5.2.2 The Proposed Schema

Based on our literature review of Chapter 2 and the feedback we obtained from

the empirical usability study (appendix E) as well as the survey (appendix D), we

suggest a schema as shown in Figure 29. This schema can be seen as relevant

to the end-user experiences, the HCl/usability expert and the software and Ul

engineers.

A pattern is a solution provided by an HCl/usability expert to a user problem,
which can occur in different contexts of use.

The forces, the consequences of the problems as well as the rationale for the
solution have to be detailed qualitatively

Usability/HCI engineers have to ground the patterns in the HCI theory and
principles. Ul Developers should also provide an implementation or strategies

for implementing the patterns. Consequences should be linked to usability

121

measures that provide a more objective way to assess the pattern’s
applicability.

This abstract schema shows the major issues related to patterns from the
perspective of different users. In it, each professional group is aware of its own
concerns as well as the others’. Therefore, each group may be able to address
the needs of the other groups while contributing towards patterns and pattern
languages. In this view, we are incorporating some concepts from different
pattern collections in order to reduce the communication gap between pattern
writers and software developers and to provide the object-oriented outlook of
patterns.

Writers
Solution —
Problem — ,
Strategies
Context — (Example,
Structure/ Piagram,
Architecture code)

Rationale Developers

Consequence

Related Pattems

HCl/Usability Engineers

Figure 29: A 3D presentation of pattern properties

This 3D abstraction highlights the major ingredients for documenting a pattern.
Table 8 provides a summary of the key components that can be used in different
pattern templates. This template could serve as a basis for future expansions to
serve different needs.

122

As discussed earlier, In [GSJS03] we called for an approach to generalizing the
format of patterns to facilitate the creation of a pattern database. As the idea was
discussed, we implemented the first attempt of this task together with major HCI
pattern authors (John Vanderdonckt, Martijn van Welie, Jennifer Tidwell and Jan
Borchers) and a research team from IBM. The resulting format, the Pattern
Language Markup Language (PLML) was created in the workshop to mark the
first step towards a common pattern format [FF03]. Since then, we went much
further into improving the presentation from a common but static presentation
(The PLML is a static format) into a dynamic runtime module. We then upgraded
PLML into the Generic Pattern Model (GPM) [Gaf05b] that offers the flexibility of
changing its components as needed. GPM is then used in a comprehensive
software development as will be shown later in this chapter.

Table 8: The proposed format of pattern documentation

Element Sub-Elements Requirements
Identification Name

Alias

Author(s)

Date

Category Patterns Classification

Keyword For Search

Related Pattern(s) Super-ordinate
Subordinate
Sibling/Neighboring
Competitors

Context of Use User Category of users, personas or
profile, etc.

Task Tasks are structured
hierarchically. All sub-tasks
should be originated from a root.

Platform Capabilities Information should be organized

and Constraints in device-independent way.

Problem Give a statement of the problem that this pattern resolves.

The problem may be stated as a question.

Forces Forces describe the influencing aspects of the problem and
solution. They are often represented as a list for clarity.
Solution Give a statement of the solution to the problem including

the rationale behind the solution. It could also provide the

123

references for further understanding.

Implementation Structure It’s a high level abstraction
done by visual modeling
notation.

Strategy Including Examples,
Figures, Sample code etc.

Consequences Trade-off and results of using the pattern. It could be

described by a list of Usability Factors/Criteria/Metrics.

5.3 A Database for Patterns

A common activity during pattern delivery is to put patterns on-line through the
Wéb or other Intranet facilities, a significant medium of communication. However,
as shown in the empirical study (appendix E) and in Chapter 2, the outcome is
much less than anticipated. We need more than just posting patterns online. Too
often, good patterns are hidden in Web pages that become severely underused
in the daily activities of interface designers. The Web page approach alone fails
to provide the means to access appropriate patterns as needed and does little on
the way of reusing them as an integral part of the development processes
[Gaf04] and [Gaf05c]. Even if pattern authors are actively discovering and writing
new patterns, it is difficult for users to keep pace with changes in the HCI
community at large just by searching the Internet. Designers and developers
often work under tight constraints and limited resources. Eventually, if software
developers have to manually read, analyze and understand every pattern in
details to select the ones they need, the pattern system becomes unmanageable,
even when it included useful patterns.

Together with tool support shown in Chapter 4, a database of patterns can
become a valuable resource that software developers and project managers
depend on for efficient information retrieval and reuse. Figure 30 gives a
schematic view of the concept of pattern database.

124

Forum for discussion

-Author/collectiol Generic Patterns
-Patterns Model

-Keyword search
-Design process
search

Customized

space for users

Figure 30: The auspice of database

As mentioned before, the goal would be to facilitate information retrieval and
reuse. As we promote the concept of database, we emphasize some advantages
attainable by using it [Gaf01]:

- Scalability: A separate database can store and manage larger data volume
than files attached to a specific application.

- Facilitate efficient updates: Unlike flat text files, a database categorize its
contents into tables or objects which help improve the lookup and editing of
contents

125

-Connectivity: Several applications can connect to the same database, reducing
the need for extra copies of data files and multiple updates (see integrity).

-Promote interaction with other software: A database can provide application-
independent information that can be called and used by several software tools
and applications

-Reliability: A database usually has advanced capability to enforce reliability
against mishaps like programmer errors and power outages

-Integrity: If properly designed, database can ensure integrity by having a single
copy of each data object so changes can be centralized to one place. This can
greatly reduce redundancy and inconsistency

5.4 A Suitable Data Type for Patterns

For every complex question there is a simple
and wrong solution.

Albert Einstein

Building a database to support pattern interoperability and automation is a
challenge. Databases support many kinds of data types and access method
[BCC+02], [Gaf01]. However, the underlying challenge is that for patterns, we
don't have a specific “data type” per say or a well defined access method.
Therefore, the first obstacle lies in the multitude of pattern formats and how to
model them as a data type. The text representation used by pattern authors
makes it unsuitable for database without modification. The modification can be a
simple “listing” of the title and subtities of each pattern before saving the
associated text chunks linked under each of them. However, this will have
negative effect on pattern lookup and automation. Without proper semantics, the
text lookup will remain manual, or by keywords at best. The empirical study

126

[Gaf04] and [Gaf05c] showed the inefficiency of this approach. Without
comprehensive modeling, tool support will not be feasible. Writing efficient tools
to process text documents is hard. In [GSP05], we investigated the “scale of
restriction” and showed that with less restrictions imposed on a schema or a data
model, it is harder to write tools that can automatically access and process

documents written using this model.

While text clusters can help store patterns in a database, we believe there is
more space for improvement. Saving patterns as “smart components” with well
defined semantics facilitates the interaction between these components and
other software that uses patterns, the “calling software”™. While these calling
software artifacts are not aware of a particular pattern they are calling, or the
particular constituent of a pattern, they are fully aware of the semantics of these
constituents and they know how to look for what they need inside the database.
In the end, if the calling applications can make the link between the behavior
needed to solve a problem and the behavior offered by a specific pattern, they
can make the selection and call that pattern. Modeling is the enabling approach
we apply to solve this challenge. Unlike concrete artifacts, models provide us
with a “look ahead” capability. By look ahead we mean that while specific
patterns are not known, a pattern model helps the calling software manipulate
the existing pattern model in their interaction. If the models provide clear
semantics that represent patterns well, software can interact with this model, and
query the database to look for suitable patterns that offer the desired semantics.
In appendix A we provide some examples of these semantics and demonstrate
how they can be used to build arbitrary algorithms to automatically process
patterns using external software tools.

When talking about a database, we don’t necessarily restrict our approach to a
centralized, Internet-based database that is globally accessed. Our survey

" Here we are using the famous Hollywood Principle “don’t call us. We will call you”

127

(appendix D) showed that local database could also be appreciated in closed
communities once they provide semantic modeling for patterns and facilitate
interaction with other software and tools. In [Gaf05a] and [GSP05] we show how
the concept of programmable patterns has been abstracted above this strategic
goal and has been adopted within the context of both a Web-based (global)
database and a local one.

The view of generic interoperability motivated us to build a generic data type for
patterns. As we investigated several pattern formats on the Web, we extracted
and analyzed the similarities and differences between them. Our analysis
revealed several observations that guided us in constructing the schema:

All patterns started with a pattern name and a pattern author.

- Patterns predominantly have three major components: the problem, the
context and the solution. We call them the “minimal Triangle”. The majority of
pattern definitions involve this triangle in some variation, making it the
common denominator between most pattern definitions. Appendix A provides
more details on it.

- Different authors added different items to the minimal triangle.

- The solution part also had some commonalties and differences inside them.

- All patterns had examples to show. They differed in where to put them in the
pattern. Some started off with an example as the very first part, while others
had their examples scattered throughout the pattern definition.

- Much of the data related to patterns lies not only within each pattern, but also

in the kind of relationships between different patterns. That is why most

pattern representations had some entries regarding the relationship between
each pattern and other patterns in the collection.

The above observations led us to build a generic schema to instantiate our
conceptual approach. The schema allows us to include patterns from different

collections in a programmable approach. This generic schema covers different

128

pattern formats in a structured predefined model. Concrete interfaces are derived
from this schema, hence allowing communication with other tools. We briefly
discuss some of these ideas below.

We divided the pattern representation into four main parts: head, body, relations,
and assimilations. They reflect the three main categories that we made distinct in
[GSPO05]. The head is an additional part that holds essential metadata about a
pattern. It contains the unique keys to a pattern (like a unique name and pattern
ID) as well as the pattern authors. The body contains the intrinsic information
about the pattern, while the relation part collects the information pertinent to the
relationship between this pattern and other members of the collection (the
extrinsic information). The assimilation part is used to hold variables that need to
be instantiated in a concrete design as shown in Chapter 4.

We elaborate on one part —the body- as an illustration. The body part has two
main subcategories, namely, the theory and the practice.

The theory part contains all information about a pattern as seen by the pattern
author(s), resulting from the author’s analysis and understanding of the pattern.
This part encourages pattern authors to express their insight and analysis of a
pattern. It contains the minimal triangle and other relevant information. The
minimal triangle refers to the triad problem, context, and solution, which are the
common denominator between most patterns and essentially the minimum
information for a useful pattern. While other theory items can be missing in any
pattern, we found that this triangle is critical for realistic pattern documentation
and reuse. Any missing one of the three parts can turn a pattern into a Trivial
Pattern (appendix A).

The practice part collects all information about a pattern as being used in practice

by the author and/or other users. This part encourages users by giving them real-

life examples or implementation strategies that they may want to follow, and

129

possibly other bad examples or pitfalls that they may want to avoid (anti-patterns
as discussed in Chapter 2). Figure 31 shows a view of this type.

This view is a high level abstraction that reflects the requirements of the pattern
model from the problem domain point of view, regardless of how it can be
implemented or on which platform. Due to its generic nature, we called it the
Generic Pattern Model, GPM [Gaf05]. Details of GPM role within the system are
given later in this chapter.

Pattern

Head Body |R,eiaﬁonsl I&slmllaﬁonl

Theory| Practice

) Bad Known
Example example

T RS
(] o] aona] | ml:..m _
i

Problem’ Igontextl w |Soluﬁo;|

Figure 31: The hierarchy of the GPM

5.5 Modeling a Complete Pattern Lifecycle

In the previous sections, we proposed a schema and discussed its usefulness
from a delivery perspective. Here we emphasize this idea and argue that a key
factor to increasing the usability and usefulness of patterns is the adoption of a
model for a complete pattern lifecycle. This would underwrite the activities that
should be taken when identifying a pattemn, documenting, delivering, applying

130

and maintaining it. Creating mechanisms to manage the overall pattern lifecycle
has received little attention in the HCI patterns community so far. Our
investigations and work as presented in the previous chapters provide a basis for
better understanding of the process of discovery, representation delivery and
applications of HCI patterns. However, the currently prevalent pattern
approaches can be divided into two major activities only: pattern discovery, and

pattern reuse.

- Pattern Discovery refers to the activity of writing patterns by domain experts.
- Pattern Reuse refers to the activity of applying patterns in a useful design as
recommended by pattern authors.

We could not find significant work on guiding the user through the activity of
finding the suitable patterns for reuse. This can have negative impact on
promoting pattern reuse (as shown in our empirical study, [Gaf04] and [Gaf05¢]
and appendix E). In this regard we introduce an intermediate logical layer
between pattern discovery and reuse, namely the dissemination process.

- Pattern Dissemination refers to guiding pattern users through the activities of
locating all useful patterns, selecting some of them using different criteria and

then applying them in different phases of design and implementation process.

Based on the empirical study and the proposal of the dissemination process, we
can now redefine the lack of effective pattern reuse as a symptom and not a
problem. The problem in this chapter is better identified as

1- The lack of a dissemination process
2- The lack of a common and programmable pattern representation to help in
combining and reusing patterns and pattern tools in practical design

environments.

131

Having attributed the problem to the current narrative format for documenting
patterns, we propose an approach to represent patterns as software components
by identifying and rewriting their semantics as a model for designers as well as
design tools. This model transforms text patterns into programmable objects with
well defined interfaces that reflect the knowledge underlying them. This makes
them accessible in any object oriented programming language as well as in XML
for tool interoperability. We also provide a framework that supports a

comprehensive dissemination process.

9.9.1 A Model for Pattern Lifecycle

In document-based description, we directly transform available data into text
documents that are instances of our information objects. In model-based
description, an additional layer is inserted between the data and the documents,
namely the modeling layer. We first design documents as abstract models, and
specify the desired structure, syntax and semantics using these models. We
describe the desired behavior of each model and the interaction (or
interoperability) between different models as well as the integration of these
models into different design processes and artifacts. During the modeling phase,
we can use sample or simulated data as well as algorithms and software tools to
experiment and validate the models. This modeling approach has many
advantages. At different design phases, it allows designers to manipulate
abstract models with just the right amount of information and integrate them into
their design artifacts without cluttering them with too many details. At the code
level, it enhances interaction and integration with the application source code
once data models have well known interfaces that accurately represent their
semantics. Moreover, scalability is enhanced by allowing tools to interact with
these models in an automated way, and in much greater numbers than the
human processing capacity with the narrative format. Looking up information
using different queries and search criteria will be greatly improved.

132

Figure 32 gives a simplified view of our approach, seen as an addition to the
current approach of pattern reuse. The lower box represents the current concept
and the upper box represents our system. The lower box has two layers. The
bottom layer is a virtual link between a domain expert (the source of experience)
and a pattern user (the destination of experience). This experience can be
transferred physically with direct, mentored interaction between both roles, or
through the next upper layer of the lower box, using patterns. In this model we
focus on patterns as the main method of dissemination process. A more
comprehensive model for other knowledge dissemination techniques (e.g.
[Cas97]) can include other means of knowledge transfer as discussed in section

2.1. Here we focus on modeling pattern lifecycle.

Dissemination pm@ @

8 2
g | Current Situaticb %
_.?g (Ad hoc dissemination) 123
o
< S
| |_Virtual Link
(or mentored interaction)

Figure 32: A model for pattern lifecycle

In the added third layer we apply modeling techniques to specify scalable
dissemination and assimilation processes. As narrative patterns are rewritten
according to the suggested models, they conform to our software system
specifications and thus offer the interoperable behavior. An Integrated Pattern
Environment, IPE, is the system that helps users get access to a large number of
patterns as software components, and offers the functionality needed to
efficiently manipulate them. To explain the idea, we abstract the concept of

133

Figure 32 into the lifecycle of patterns as shown in Figure 33. The key points of
this lifecycle are the dissemination process, the assimilation process, and the
Integrated Pattern Environment, IPE connecting these two processes together.

Design

If

1

I

i

1 Assimilation

: broees (Bt

:

1

]

!

I

1

I

1
1
1
I
1 New
1
1
v

Figure 33: The abstract lifecycle model

5.5.2 Defining the Dissemination Process

Dissemination refers to “the activities associated with delivering knowledge and
experience from pattern authors to pattern users —or designers”. For efficient
dissemination, we need to reduce the time spent by users in looking up patterns,
and the ability to locate all patterns that can be useful according to some search
criteria that a user can apply. So far, these activities have been left to the user.
Pattern authors simply publish their patterns, generally in books or on the
Internet and the dissemination process stops there. Some pattern authors
recognized the problem and added links within their collections to other
collections. This, however, adds to the confusion of the users as they see
similarities between collections. They get distracted or lost in the available maze
of patterns [Gaf05c]. In this context, we have defined the visibility problem that
new patterns suffer as “new patterns become diluted in huge pattern offerings
and hence get no significant chance of making their way to users”. This has been
confirmed by the results of our empirical study [Gaf04] and [Gaf05c].

134

Consequently, many designers limit their pattern repository to few patterns that
they already know, and rarely look for new patterns.

5.5.3 Defining the Assimilation Process

Assimilation refers to the design decisions made by pattern users as to how
selected patterns can be applied during different stages of design, and how they
can be combined together within the artifact being designed. As we have shown
in Chapter 2, pattern authors have often connected several patterns in their
collections and presented them in graphs showing patterns as boxes and
relationships as arrows. They generally suggested how each pattern could
interact with other patterns in an “approved” way. However, it is left up to the
pattern user to figure out how to incorporate patterns from different collections
and in different design phases as well as which patterns correctly belong to each
phase. On the other hand, we showed in Chapter 4 that existing modeling
approaches and design process allow specific integration of selected patterns
only. Generic tool support is essential in this stage to help users manipulate and
integrate patterns within a well defined pattern-oriented dissemination process
but also using patterns from other collections. Pattern components work as
objects that offer their semantics in XML as well as java/C# classes with well

defined interfaces to communicate with the design environment, the IPE.

5.6 High Level View of a Dissemination

System

Good people with a good process will outperform
good people with no process
every time.

Grady Booch

135

Software systems can be more successful when designed with an eye on their
context of use. Following a structured process that incorporates the context of
use can ensure relevant functionality and usable design. In planning for an IPE
as a software artifact, we adopt this concept by designing a process as a
technique for organizing and documenting the structure, activities, and flow of
data through our system.

Patterns Text and Graphics
Format
Models ’|:f> System][H:l Smart P;ate’tems XML Format
« Object Oriented Classes
Expert Help {Java, C++, C#)

Figure 34: Smart Patterns delivery system

Starting at an early phase of proof of concept, we will not clutter the system with
too many details. We present an abstract view first. [LM95] emphasize that
abstract representation of a system helped designers focus on the contents,
while too many details distracted them into discussions about unimportant
issues. We start by presenting the main components of our actual system as
shown in Figure 34. The system is intended to combine existing textual patterns
with models to produce programmable pattern objects, or “smart patterns”. Smart
patterns are pattern objects that are capable of communicating with other object
and tools in a runtime environment. Expert help is needed to manually collect
and rewrite existing patterns using the models. This manual help is performed at
the initial construction of the dissemination system and for adding more patterns
to it.

Pattern authors are strategically replaced by expert help performed on available
patterns. The idea is that we can not force pattern authors to write their patterns

directly into a dissemination system using any predefined format. They usually

136

prefer to not be bound to a specific layout. Therefore, the system allows patterns
in textual formats to be rewritten using the given models without losing any
information. They can be retrieved and restored to their original form or
manipulated as software objects. Finally, system designers and system builders
are not shown here as their roles are non-functional to the dissemination of

pattern knowledge.

5.6.1 The 7C’s Process

The central aspect of process oriented approach [Flo87] to automating pattern-
oriented design is its dependence on a predefined process. An established
design process instigates quality design by allowing designers to follow
structured methods in their activities. In our approach, we established the need
for both dissemination and assimilation processes. We implement the
dissemination process completely decoupled from any specific assimilation
process. This allows it to offer patterns that can be integrated simultaneously in
several assimilation processes. “Free patterns” that do not belong to any process
are hard to integrate in design. Similarly, “proprietary patterns” that are
specifically tailored to manually fit one design process using one specific
example defeat the main purpose of pattern generality and abstraction. We see
that a pattern can be integrated in several assimilation processes by properly
encapsulating its knowledge and presenting its behavior through a well defined
interface. Any assimilation process can then lookup pattern objects and select
the appropriate ones using different search criteria. The selected pattern
components can then be integrated in new designs or used to generate code

fragments.

We define the 7C’s as “a structured process with the main objective to replace
the huge cognitive load of manipulating HCI patterns with a dissemination system
of smart patterns”. The 7C’s process identifies both logical and physical aspects
of the system. A logical process focuses on what actions and activities need to

137

be done. A physical process complements the logical process by specifying the
roles associated with the process, and details who is going to do what [HGV02],
[WBDO01]. As part of the pattern reuse problem is associated with missing roles in
the dissemination activities (all left to the user), the 7C’s process addresses both
how these activities need to be done, and who should be doing each of them. In
short, the 7C’s process moves gradually from current unplanned discovery and
use of patterns into building an automated pattern collection. The process

comprises seven steps:

Collect: Place Different Research Work on Patterns in One Central Data
Repository

Despite the proliferation of research into HCI design patterns since the 1990’s,
there has been no successful attempt yet to unify these efforts or collections.
Numerous works on patterns have been developed in the HCl community,
however they are scattered in many different places. A central repository of
patterns will allow users to concentrate on knowledge retrieval rather than
spending time on search for patterns.

Clear Out: Change from Different Formats into One Style

Ideally, different works on patterns deal with different problems. However, as we
went through step 1, we were able to identify that some patterns are dealing with
different sides of the same problem (correlated patterns), some patterns are
offering different solutions to the same problem (peer patterns/competitors) and
some are even presenting the same solution to the same problem (similar
patterns), only in different collections with different presentation formats. Since a
large number of patterns have different presentation formats, it is difficult to
detect these redundancies or useful relations with other patterns until the user
has spent some unnecessary time with several of them. Putting patterns in a
unified format helps discover these relationships, put related patterns closer
together, and possibly remove the redundancies and inconsistencies.

138

Certify: Define a Domain and Clear Terminology

This activity is necessarily human-driven. While inferencing can find useful
relationships amongst patterns, the validation of good patterns will largely be a
matter of people assessing them against experiences and through use to decide
if they were “really good patterns”. We use a process similar to that of Answer
Garden [AM90] where new pattern proposals are routed to a distributed set of
experts in different usability areas. These experts can then provide feedback to
pattern writers, pointing them to similar patterns, and otherwise facilitating the

process of creating a useful set of patterns.

Contribute: Receive Input from Pattern Community

New patterns emerge all the time in many areas of the scientific community,
including HCI. It is very difficult to keep track of these emerging patterns.
Typically, it would take years before an expert can come up with a thorough
collection of patterns [AIS77], [GHJV95] or have time to update an existing
collection [Tid97], [Wel00]. Having a central repository for patterns help unify
pattern knowledge captured by different individuals in the future. Furthermore,
putting such a repository to use in actual design situations will help to spot areas
of design activities where there is a shortage of patterns so that they are made
available to the community. The “central” concept refers to either a community-
wide Web-based repository or a local repository within a smaller group of people.
In both cases, a repository will help unify the effort of collecting and contributing
to patterns.

Connect: Establishing Semantic Relationships between Patterns in a
Relationship Model

A significant part of knowledge associated with patterns lies in the relationships
between them. After the Clear Out step removes redundancies, the Connect step
is meant to build new connections between patterns. Finding and documenting
these relationships will allow developers to easily use patterns as an integral part

to develop applications instead of relying on their common sense and instinct to

139

pick up patterns that seem to be suitable. A proven model for the pattern
collection helps to define ontology for the pattern research area with all proper
relationships such as inference, equivalence and subsumption between them.

Categorize: Define Clear Categories for Patterns that Map them into
Assimilation Processes

Within the collection, we need to create pattern classifications or categories to
make them more manageable. The first goal of categorization is to reduce the
complexity of searching for, or understanding the relationship between patterns.
For example, some patterns are just abstractions of other patterns. The second
and more important goal is to build categories that can be mapped to different
design approaches and methodologies, and then put patterns under their
appropriate categories. This is the enabling technique to integrating patterns into
different phases of several design approaches. As explained earlier, decoupling
the dissemination and the assimilation processes allows same pattern to belong

to different categories and be used in different assimilation processes.

Control — Machine Readable Format for Future Tools

Defining pattern models that accurately represent pattern semantics through their
interfaces and rewriting patterns according to these models enhances the
process of automating Ul design using different assimilation processes. The
ultimate goal of the 7C’s process is to allow user to interact with the machine as
a viable partner that can read and understand patterns, and then process them in
an intelligent way. Having machine-readable patterns is the last step in the

process of pattern dissemination and the first step towards assimilating them.

5.6.2 The Integrated Pattern Environment, |IPE

While it can be seen as another “tool”, we can more accurately explain the notion
of IPE as a “unifying concept” that offers interoperable models, a notation to
implement these models using XML or any object oriented language, and an

140

underlying multi-tier information system to store the essential data and to offer

interaction with it.

Motivating the Use of XML

XML is becoming a ubiquitous standard in software connectivity. Not only does it

facilitate the communication between programs, but it has many advantages that

can enhance system capabilities and interoperability. The rich set of XML

technologies that can be applied with XML-compliant systems can have great

advantages added to the system

Storage: XML has proven its power as a markup language for
documenting structured information in different fields. Patterns can be
stored in an XML-compatible database. Using XML compatible
technologies like Cascading Style Sheets (CSS), XPointer or XSL, the
presentation of pattern documentation can be customized and delivered to
the developers (using XUL for example) or delivered as an HTML code for
rendering. While pure XML databases (commonly known as native XML
databases) suffer from efficiency and security problems, the XML
community provides many solutions to overcome these drawbacks.
Similarly, major vendors like Oracle provide XML support to non-XML
databases.

Interoperability: Several XML-based languages for Ul development have
been introduced recently including UIML (User Interface Markup
Language), XUL (Extensible User Language) UsiXML, and XIML
(eXtensible Interface Markup Language). XML allows communicating

between them at the code level.

Automation: XML is a good option for building pattern ontology that can

support some semantic reasoning such as when applying a pattern and

141

why other patterns can be used also. In appendix B we provide a case
study on pattern Ontology

The Role of XML in Pattern Automation

Every text can be rewritten in XML by simply adding markup tags to explain what
the subsequent piece of text is®. The mere fact that a document is written in XML
allows for some automatic processing to be applied to it using most programming
languages, while keeping it readable by humans. Simply stated, the contents of
the document can be “automatically manipulated”. This is often referred to as

document-oriented XML.

PTISIA AT LI LD LT F Ty pe

s x .
5 ML Modular Tteration """'-n
Hetworkdata 3 >
source b/ S oo
_ ~a XME ,
Java File Svst&ﬂl»\ * Java
: ; HTML classes

classes

RDBMS

p WML /"

' Unmarshalling

Marshalling

U ONEIUaSal

L DB ,
c¥ L PDF \

« Ck
1886 Textfile ™ SVG vkl
classes * \ \ classes

LDAP (Images, sound, ...} . RTF

Figure 35: The XML space

However, XML can offer much more than that. Goldfarb and Prescod [GP04]
explain that true interoperability requires not just interoperable syntax, but
interoperable semantics. If the XML document was additionally structure and built
according to a valid schema following predefined models that allow for

® To be more exact, the text also needs to be saved as a plain text document in ASCII format.
Simple software like notepad can do the job. Accordingly, all formatting and styling of the text will
be lost, but this is the essence behind XML: it focuses on the meaning of the text and not on the
formatting. Formatting can be annotated later to any XML document.

142

interoperability, the capability and the power of processing the data becomes
much greater as it becomes fully structured. This is referred to as data-oriented
XML and is intended mainly for automatic processing, not for humans to read. It
will be easier to write tools to manipulate the contents of a document. More
importantly, as explained earlier, it will open the gate to a large number of
available XML technologies to be directly applied to the document for automatic

processing.

To achieve universal data manipulation, the input to XML space is generalized
into abstract data source and the output to abstract data sink. Accordingly, any
data format can be seen as an “information source” that feeds into the XML
space by initially transforming it into XML (Figure 35). After the transformation
phase, the document can be rendered into the format of any “information sink” at
the output, or redirected back into the XML space for further transformation. This
allows several XML technologies to be pipelined in a modular way to generate
arbitrarily complex processing and rendering schemes.

Smart Data

The enabling key into this XML space is to represent data in a properly
expressive format that displays the desired structure and behavior in i,
regardless of any specific application. This can be referred to as “smart data”
contrary to smart applications. In smart applications, data is created through- and
belongs to- a specific application (e.g. Excel spreadsheets, MS Word or an
Adobe Acrobat document). Data is represented internally in different proprietary
formats and are accessible only by running the “owner” application. Transferring
data from one application to another requires knowledge of all details of
proprietary formats of both applications. For m applications, this could mean as
many as m*(m-1) transformations, a tedious and unpractical approach. Smart
data, on the other hand, present all semantics within data itself in the common,
non-proprietary format of XML. Any application or a tool can be seen as an

143

information source that exports its proprietary data once to XML space. Similarly,
applications can be seen as information sinks, and XML data can be imported by
them from the XML space. To cover all possible transformations, this needs to be
done only twice for each application; in and out of XML space. For m applications
to fully communicate, the total number of transformations is reduced to 2*m or
less (for bidirectional transformations). For a large m, this is a significant saving.
Following this concept, we use XML as the central representation of pattern
components, and we use tools to automatically transform them back and forth

between object oriented classes, text as well as other XML based languages.

5.7 The System Design and Implementation

In between the nice ideas...the vision,
and a working software product,
there is much more than programming

Philippe Kruchten

At this stage we zoom in at the system architecture by refining Figure 34 into
Figure 36. Looking at the data pathways depicted in this figure, we see that the
input information is now bypassed from the direct path (from pattern collections
directly to user) -marked as A- into the system pre-storage phase, the pattern
corpus, and then to the rest of the system -marked as B.

The Manual Processing block represents the manual activity by users to search
for patterns and read through the text, analyze its contents, and figure out which
patterns to choose and how to apply them in design. We compare the two
processes, referred to as A and B. If we considered them as two different
dissemination processes of patterns, we can refer to the Integrated Capability
Maturity Model, CMMI of the Software Engineering Institute to briefly evaluate
them.

144

Process A: it does not follow a particular approach of dissemination except
for relying on users’ manual processing (looking up patterns, understanding
them, and applying them in an ad hoc fashion). We evaluated this process to
be at CMMI Level 1 (Initial).

Process B: As suggested by the dissemination system, there is a process in
place to help users interact with patterns in a structured way. Moreover, this
process relies heavily on feedback, and is constantly changing, as seen in the
7C’s process within the system. When fully applied, we estimate it at CMMI/
Level 4 (Managed).

A S0wrent approach: manual and individual lockup and preparation by each user

B

XML Semantics
{ Pattem Corpus (and Behavior

Manual
Design
mm Models Process
{ Detivation\\ Interoperability i
; MGdU'at{Oé ;- Interface E
Y AML H
rt 3 -
N :
XuL ib H
UsIXML XML e Java, C# objects s
Il}l.- III;....'. ENmEEEER I.....IIIIIII..'.I." ;
Interaction Interface IPE * ?
o L LT TR RS
Assimilation
process
U 1 O x < E—fj O o O
Manual Predefined Text: it Stored dat Disol Alternpte
operation process document coliate ored gata Database isplay Preparation process

Figure 36: A comprehensive system to disseminate HC/ Patterns

145

In Figure 36 we show the main modules and the activities associated with them
as implemented in our system. We have three main subsystems: Input,
Processing and Output.

Input: The three input modules to the system are the pattern corpus, the data
models, and the structured expert support. The pattern corpus is a pre-processed
collection of useful patterns obtained from the available pattern collections. The
data models implement the aforementioned additional modeling layer as
explained in the pattern lifecycle model. These data models allow the rewrites of
patterns to be interoperable and machine-readable. The Structured Expert
Support, SES, is a methodical human activity that has two major activities:
Derivation, and Modulation. The former refers to reducing redundancies between
existing patterns, which is abundant in current collections. The latter refer to
rebuilding the derived patterns to conform to the defined models. We provide
more details of them later in this section.

Processing: The three input modules are collated together by applying the
system process (the 7C’s process) which defines the systematic activities
associated with the three input modules. It defines a step-by-step implementation
of processing the pattern corpus and applying structured expert support (SES) on
it according to the defined system models.

Output: The system process transforms the input into pattern objects called
“XML rewrites” to conform to the given models. XML rewrites are validated
against the semantics and behavior specified by these models. They are then
stored in an XMLDB, and are presented for interaction as a back-tier of the three-
tier system as shown on the right hand side aggregate within Figure 36. The
middle tier of the system represents the interoperability offered by the system in
the form of modular components that interact with the database and implement
any desired algorithms. These components can range from tools to read the XML
patterns and apply new functionality to a digital library that offers the contents of

146

the DB for browsing, lookup, or updating [GS05]. This layer also links the XMLDB
into existing tools that read XML documents and transforms them to XUL, UIML
or other specifications. Similarly, the layer allows for automatically transforming
patterns into objects in different object-oriented languages and back (marshalling
/ unmarshalling patterns). In our implementation, we automatically generate fully
functional java and C# objects from the XML patterns. These objects are then
used in java and .NET platforms as regular software objects that encapsulate
pattern information and behavior. The front tier of the system is the presentation
environment, which is the interface aggregating the available tools and using the
pattern objects directly. We briefly explain some of the key modules of the
system.

571 The Generic Pattern Model, GPM

The GPM defines a generic model to describe the structure and the functionality
of patterns at conceptual, high level semantics. It covers the necessary aspects
required for patterns. The standard behavior specified by the GPM allows for
common understanding and works as the middle ground between pattern writers,
tool writers and pattern users.

5.7.2 The Generic Pattern Type, GPT

The abstract view of the generic pattern model has to be implemented as
detailed and concrete data types needed for software implementation. The GPT
defines arbitrary, concrete implementations of the conceptual GPM depicted
earlier in Figure 31. According to different design requirements, programming
paradigms and platforms, each concrete instance of GPM is a GPT. GPT is a
well defined type as defined in strongly-typed object oriented programming
language, similar to integer, double and complex types. A concrete GPT is well
defined in the sense that all its constituent components and their primitive types
are well defined. While GPM is a conceptual model that helps abstract and
standardize pattern behavior, the GPT is a low level compiex type that

147

encapsulates pattern information and provides concrete interface which allows
access to all data and functionality of patterns. Each text pattern is rewritten as a
new object by declaring a new instance of the GPT. These classes are easily
transferred back and forth between object oriented paradigm, normalized
relational tables and XML using existing tools.

According to the selected programming paradigm, we implemented a concrete
GPT from the GPM in a variety of ways:

-In XML paradigm, we implemented a GPT as an XML schema and patterns
were written as XML documents that are validated against the schema

-In entity-relation (ER) paradigm, we implemented a GPT as an ER model that
was converted into relational database with tables holding pattern information

-In object-oriented paradigm, we implemented a GPT as class “pattern” that
aggregates different subclasses inside it. In their renowned book “design
Patterns” [GHJV95], Gamma et al. emphasize that whenever possible,
programmers should lean towards aggregation over inheritance. Therefore we
opted for implementing the GPT as an aggregate class in this paradigm.
Nonetheless, building a GPT from the abstract GPM using inheritance is
possible, albeit not efficient.

In all cases, building a GPT as a composite structure gives a great flexibility for
changes. When small modifications are needed, they can be limited to one part
of the GPT (for example one subclass) without the need to rebuild the whole
system. Great implementation flexibility is attained by building the GPT as a

complex aggregate type.

Automatic Transformation between Paradigms

Using available tools, we were also able to increase the flexibility of the system
by automatically transforming the same GPT between the three programming
paradigms mentioned above and between several platforms and languages. The

148

manual work of building a specific GPT was made only once as text patterns are
loaded into the system using a pattern loader tool. The tool accepts text patterns
using a graphical user interface. Patterns are transformed either into an XML
document (according to a validating GPT schema), as a complex java class, or
as a complex C# class. Several existing tools allowed us to automatically
generate the equivalent GPT's in the other two paradigms with the same
semantics. This allows for interacting with the same pattern in different
programming environments without losing or distorting any information.
Regardless of the free manipulation options, patterns are saved as one entity in
one persistent layer in the backend of the system.

5.7.3 The EXtensible Minimal Triangle, XMT

XMT allows for automating the manipulation of patterns using an extensible
repository of predefined keywords added to each pattern within the GPT. Tools
can be written to automatically process pattern contents according to the
semantics of XMT. For example, we can define an algorithm to compare pattern
similarity and equivalence by comparing the relationships between the keywords
of the problem, the context, and the solution of different patterns. A simplified
example to demonstrate the algorithm is that patterns that offer different solutions
to same problem in same context are considered equivalent patterns in the

algorithm of this tool. Additional details are given in appendix A.

5.7.4 The Progressive Abstraction Type Hierarchy,

PATH

PATH categorizes patterns in a hierarchy that maps directly to different steps of
software design process (please see the Categorize step of the 7C’s process).
This allows for effective selection and assimilation of specific patterns in each

stage of the design. The hierarchy is logically represented as a virtual tree, but

149

physically it is implemented by adding the category information of each pattern
into the GPT. A tool can then extract this information from the patterns and
render the hierarchy as a tree to the user. The more important function of this
model is for design tools to extract and link patterns into corresponding design
phases. Other hierarchies are being modeled to reflect categorizations proposed
by different pattern authors. As explained, patterns are then examined to see
how they can belong to each of these models. Additional details and

demonstration are given in appendix A.

5.7.5 Structured Expert Support, SES

Part of the problem identified with patterns is the large cognitive load to
understand and process patterns and apply them in an effective way. As we have
noticed in our empirical study, users encounter a large number of patterns in
many collections with several redundancies and ambiguities. In this work, we are
reorganizing patterns in two different ways:

Derivation

As pattern experts look at patterns in different collections, they instantly notice
several redundancies. Other redundancies are not immediately clear despite
their presence. Besides greatly confusing the reader, these redundancies
contribute to the bloated number of patterns offered to the user. After collecting
and analyzing tens of redundancies, we were able to define different categories
of them —from total to subtle redundancy- and develop structured procedures to
reduce them. The resulting, less redundant patterns can be seen as derivatives
of the original ones. This is a highly technical activity, and -if not well
parameterized- it can be subjective and even divisive. We see that controlling the
redundancies will alleviate some of the cognitive load of processing patterns, an
activity often left to the user as we highlighted. We also see that it is simply too

much for one novice user to do all that, and for each user to have to do it from

150

scratch; something very similar to “reinventing the wheel”. From our analysis, we
assert that four factors are adding up to making this part of expert support a
fruitful and cost-effective effort:

-We define the types of redundancies and how to remove them

-We delegate this activity to experts

-We combine the efforts of more than one expert due to the large number

of patterns, and the strong coupling between their contents

-We record the outcome of this cleanup process and present it to users

Modulation

After building models to improve pattern reuse, we utilize the help of pattern
experts to rewrite parts of the patterns to conform to these models without losing
the knowledge within patterns. We call this activity “modulating patterns”.

Looking to the fact of the multitude of pattern authors and collections, we can see
that it could be a difficult —if not impossible- task to convince pattern authors to
follow any structured process until it is “tried-and-true”. Therefore, we made a
tactical decision by rely on the Structured Expert Support to bypass this obstacle

and make it uncritical to the system inception and success.

5.8 The Multi-tier Software System

Figure 37 focuses on the architecture of the software as an essential part of the
overall pattern dissemination system. It is implemented as a three-tier system
composed of storage (back tier), processing logic (middle tier) and an interaction
layer (the front tier) [GS05]. The three layers working together, the supporting
models and the process, as well as the expert support work collectively to offer

the integrated pattern environment, IPE to designers [Gaf05].

151

AEERENER AN A AR R R RN R RN NN

*

Figure 37: The multi-tier software system

5.9 Conclusion

Despite the wide acceptance of patterns within HCI research community, the
current approach of pattern reuse is a simple process of publishing numerous
patterns using different media and leaving it up to HCI designers to do their best
in figuring out how to trace and apply them in new interfaces. From our
investigations and experiments we conclude that this unnecessarily represents a
cognitive load on designers who want to look for patterns and reuse them in their

design.

We suggested an addition to this current approach to help define and

standardize the process of pattern dissemination and assimilation which can lead

152

to an effective reuse of the knowledge contents within patterns. We proposed to
represent patterns as software objects that encapsulate pattern semantics and
allow interaction with them through their interfaces. We have developed several
prototypes under two broad categories, namely as an online digital library with
universal contributions, and as a personal digital library on personal computers
for small scale pattern collections. In both categories we prototyped several
options at the database level (persistent layer), the processing level (tools), and
the interface. The models and the associated notation are provided and adopted
to facilitate interaction with users and to pave the road for tool support to

enhance the system.

153

Chapter 6

Conclusion

This thesis investigated the way HCI patterns are currently represented with the
perspective to enhance their reuse in the design environment. The analysis of
patterns in the research community and pattern authors’ domain (Chapter 2) as
well as the experiments of pattern applicability in design environment (Chapters 3
and 4) lead to the proposal and the new approach of a comprehensive pattern
environment as shown in Chapter 5. We summarize our contributions to the field
of patterns within the scope of interactive software design, and our conclusions.
We also discuss some limitations to our approach that may open opportunities
for future work.

1 Pattern Reuse

To first explore and highlight their practical role in software, we studied and
showed new potential for patterns. They can provide better support for the entire
software development process of interactive systems, including the interface and
the underlying system. We analyzed the prevailing trend towards separating
interfaces from the rest of the software, and the widespread use of MVC and
other models to do just that. Then we proposed a number of scenarios to
highlight invisible and inseparable interactions between interfaces and the rest of
the system, and we looked at some negative consequences of separating them.
We showed how patterns can be used to shed new lights on this area and help

designers avoid this impact on the overall quality of using the system.

From this we conclude that in interactive systems —as commonly promoted-
complete separation of interface design from the rest of the system clearly has

154

negative effects on the quality of using the system. However, this separation is
inevitable to help mitigate the complexity of design. Patterns can help in
improving communication between designers of interfaces and those of the
underlying system. This warrants further research to collect more evidences,
analyze them and study their effect.

To further highlight the role of patterns and the dynamics of their reuse in current
interface design practices, we investigated model-based design approaches.
These are promising solutions to the difficulties associated with today’s highly
interactive, mobile and adaptive interfaces. We analyzed the models commonly
used and provided some potential for improvements by reconciling existing
model-based approaches and patterns.

From these domain studies, we conclude that the potential of applying patterns in
interface design is evident and strong. However, pattern reuse in the interface
design processes has always been local to a small set of patterns or few pattern
collections, and carried out only by few expert researchers and industrial gurus.
This defeats an important goal of patterns, namely disseminating experiences to
a wide range of designers to readily reuse them. Our survey indicated that
interface designers are familiar with only few HCI patterns and apply them
manually. With the growing number of HCI patterns, this approach is not scalable
to handle the large number of patterns available, and is not spreading to the
majority of programmers as originally intended.

Our investigations also lead to the finding that current ineffectiveness in pattern
reuse can be attributed to the way they are represented to interface designers.
Pattern authors write down immense amount of valuable knowledge in text
formats; only usable by human readers. Humans do have superior ability to read
text and understand its contents, meaning and perform sophisticated reasoning
about it; only in limited amounts. When we reformulate patterns in a machine

readable format, computers can come in handy to greatly increase the scalability

155

of pattern reuse. While many activities will still depend on human decisions, we
can apply several rule-based actions on patterns automatically; hence process
many more patterns in much shorter time. We demonstrated the idea using

several case studies and models.

2 Pattern Dissemination

We investigated the deficiencies associated with the current dissemination
methods of HCI patterns. We propose a comprehensive process to support it and
collect essential activities within one approach. Besides the proposal, we further
developed it into a comprehensive system that offers a concrete development
environment to developers.

A database for pattern has shown to be beneficial and essential in our
dissemination approach. We showed the added advantages of using our
machine readable format when retrieved from a central or local database.
Software tools have direct access to the database and different algorithms can
be applied. Using model driven architecture (www.omg.org/mda), we designed
the system architecture and the supporting models and activities from the
problem domain perspective (the user domain). Then we transferred this system
into the solution domain and implemented it as a working software to provide the
necessary infrastructure.

The results are attractive and encouraging, as seen in workshop discussions and
publications. The hierarchical pattern model GPM so developed covers a broad
range of patterns in a consistent way. The solution system is implemented as a
concrete pattern type (the Generic Pattern Type, GPT) with all the necessary
implementation details; again in multiple steps to separate the solution from
different programming paradigms and platform details. The modularity of the
system multi-tier architecture and the separation between the process and the

156

models allows for flexibility in implementing it in different ways ranging from a
local PC system to a Web-based large scale application.

In the end, text patterns are available as program objects for storage, processing
and tool support in three environments: object oriented programming, XML space
and relational model. Each of the three environments has great opportunities and
flexibility in processing patterns and adding value to their contents, and they are
all needed for our comprehensive pattern support, the Integrated Pattern
Environment IPE. As planned from the beginning, the IPE in non-intrusive in the
sense that it does not lose the original contents or format of patterns. Patterns
within the IPE remain available in their original text form besides the other

environments.

3 Limitations

Validating the concept of HCI patterns as a means of capturing and
disseminating design knowledge has not yet been proven in an objective and
tangible manner within the HCI community. To date, only some benefits have
been highlighted and studied.

It takes several years and many large experiments and concrete applications to
sufficiently demonstrate the usefulness of HCI patterns beyond doubts. These
studies are certainly beyond the scope of this thesis. However, we do believe
that the proposals made in this thesis pave the road for a more disciplined
process. We have shown that creating patterns is not enough to warrant their
reuse. We highlighted the cognitive load associated with their reuse and
proposed another way to alleviate this obstacle. Like many other proposals and
frameworks, it takes years before we can measure with confidence its
acceptance level within the community.

157

Future Work

The new models presented in this thesis are interesting from a performance

perspective. There is a need to expand the work in different directions.

1 Enriching the System

On the manual side, it takes enormous effort and time to compare patterns and
detect redundancies and inconsistencies. We demonstrated the kind of work
needed in this regard by finding tens of patterns that are identical or have many
parts in common. We also provided algorithms to define different types of
redundancies (appendix A). Many more cases are out there, and some are
already known; only to experts. They just don’t know what to do about them. We
provided the framework needed to do the next logical step of registering this
valuable knowledge about pattern similarities, redundancies and other
relationships and present them to the user the same way we present patterns to
them. This can be done within our framework, which is designed for that. It can
save users a lot of confusion and help them navigate through patterns in an
informed way.

On the tool side, we also presented examples of algorithms that work with our
framework. Parallel to essential manual work we explained in Structured Expert
Support, we provided several tools to help in pattern lookup (the dissemination
process) as well as pattern reuse within the design process (the assimilation

process).

We provided algorithms to help find identical and similar patterns. The
effectiveness of these algorithms can be greatly improved by extending the
“eXtensible Minimal Triangle, XMT". A rich repository of standardized keywords
for the problem, context and solution can improve the quality of the provided
algorithms. Similar work and advances in standardization of categories and

158

services have been made in other domains like Web Services and library
systems. Few categories (like book category and reader’s level) with only limited
number of keywords allow for a successful categorization of millions of books for
generic search besides search by author's name or titte. The same can be
extended to the XMT repository. Once a rich enough repository of standardized
keywords is built, the provided algorithms will return more significant results for
lookups. Algorithms allow for writing software that do useful job for us, in a much

higher capacity. More algorithms can be added to the system.

In the same regard, more categorization work needs to be added to patterns.
Several efforts have been recently done on categorizing patterns as shown in the
thesis, but like other valuable research; they end up buried somewhere. The
framework we are providing supports an environment that collectively includes
many categorizations within one pattern model. Existing categories need to be
collected and added as pointers within each pattern. As explained, the framework
allows for the same pattern to belong to different categorization schema and
collections. This can enhance reuse because a design process normally look for
patterns based on well known categories among other lookup criteria. We also
provided an example of a new categorization criterion based on the fact that
some existing patterns are only abstractions of other patterns. A user might get
confused thinking that they are just different patterns. The “Progressive
Abstraction Type Hierarch, PATH" gives some examples of these common
abstractions. More patterns need to be recognized according to this model. Each
of the stages in the hierarchy is linked to a corresponding design phase which

will help reduce the number of patterns looked up in each stage of the design.

2 Long Term Vision

One of our main goals for generic dissemination was to completely decouple
pattern representation from its reuse. We defined dissemination and assimilation

as two different processes and we separated them in our system. Previous works

159

have strongly coupled few patterns to one assimilation process, and provided
simple examples to demonstrate how they work together. The problem with the
strong coupling is that the given examples were fully aware of what they needed,
and they had previous information about the few patterns they were looking for,
defeating one of the main purposes of patterns, namely the dissemination of
“new knowledge”. On a large, general corpus of patterns within the HCI or any
other community, the strong coupling approach proved less useful; most of the
patterns outside the examples were ignored because they were “not visible”,
Even when some patterns were found, they simply “did not belong”. The “known”
patterns were fit manually, again reducing the chance of new tools to work on

patterns at large.

Once this problem was identified, our goal from the beginning was to generalize
the concept of patterns and to represent them in a generic way, independent of
any specific design process or example. This is similar —in a way- to providing a
programming language independent of any specific applications that can be
written with it. That said, we provided some examples and tools to work with our
generic approach. More design methods need to be able to call the generic
model and look for patterns in the database according to their specific needs and
to the semantics of the generic model. This is not a simple task, but we have
demonstrated that it is not impossible. And, we believe this is a better way to
approach patterns at large.

Reconciling Usability and the Architecture Models

In Chapter 3 we focused on specific ways in which internal software properties
can have an impact on usability criteria. We provided several examples to
validate our claim and show some negative consequences of decoupling
interfaces from the underlying systems and how to remedy them. We identified
them as scenarios and then represented them as patterns.

160

We provided a more general and theoretical framework for the relationships
between usability and invisible software attributes. We explored whether there
are specific places where we are more likely to find these relationships or effects.
More places can definitely be identified and added. The goal of the framework is
to define these patterns as a relationship between software quality factors and
usability factors.

We also explored the relationship and the mutual interaction between the
usability model and the architecture model of software systems. We simplified
and approximated it to be able to demonstrate our point. The relationship
between the two models is indeed important but complex. It warrants additional

research to identify more of its effects.

From Code Fragments to Implementation Strategies

There is usually more than one way to implement a specific pattern in different
software systems. Furthermore, given the wide variety of user interface styles
and development platforms, each pattern implementation can exist in various
formats. For example, the Web Convenient Toolbar pattern that provides direct
access to frequently used pages such as What’s New, Search, Contact Us,
Home Page, and Site Map, can be implemented differently for a Web browser
and a Personal Digital Assistant (PDA). For a Web browser, it can be
implemented as a toolbar using embedded scripts or a Java applet in HTML. For
a PDA, this pattern is better implemented as a combo box using the Wireless
Markup Language (WML). It becomes more convenient due to the PDA-related

limitations like screen area, bandwidth, memory and processor speed.

Empirical studies and day-to-day observations show that HCI designers and
software developers have no trouble translating a well-documented usability
pattern into a program block [FMW97] and [BFVY96]. It has been reported that
designers occasionally attempt to reinvent patterns by producing multiple

161

implementations. Changing a design could translate to extensive
reimplementation because different design choices in the pattern can lead to
vastly different programs.

To avoid the problem of reinvention, pattern authors and software developers
often include code samples of each pattern using several concrete solutions to
aid in the reuse. We can take a new approach by removing implementation
details from pattern documentation itself and by adding a strategy for pattern

application. This strategy is assigned the following properties:

A strategy defines one or more roles that may be mapped to concrete

components and their elements

- A strategy provides a mechanism for constraining which components and
elements may fill each role

- A strafegy define one of many possible implementations of a pattern solution

- Patterns are often composed of other patterns. A strategy addresses this

“pattern nesting” by being composed of other strategies. This scalability

allows the description of a complete pattern-oriented design.

A strategy is not required to be associated with one specific pattern. Again,
decoupling them is a key factor. A strategy may instead serve to define other
strategies. Each pattern may be associated with multiple strategies, each of
which defines one implementation of a pattern solution. A pattern is not directly
aware of its strategies because we do not wish to limit the number of strategies
available and the association of them to a pattern at just creation time. It is
conceivable that people other than the original author may later discover new
strategies for implementing a pattern.

162

Bibliography

[ACMO5]

[AIS77]

[AIX70]

[AIX79]

[AMOQ]

[AMBC98]

ACM technews "Viruses, Security Issues Undermine Internet"
Volume 7, Issue 809, June 27, 2005.

Alexander, C., Ishikawa, S., and Silverstein, M., "A Pattern
Language: Towns, Buildings, Constructions", Oxford University Press
publishing, New York, NY, USA, 1977.

Alexander, Christopher. "Notes on the Synthesis of Form", Harvard
University Press publishing, Cambridge, Massachusetts. USA, 1970.

Alexander, Christopher. "The Timeless way of building", Oxford
University Press publishing, New York, NY, USA, 1979.

Ackerman, Mark S. and Thomas W. Malone. Answer Garden: A tool
for growing organizational memory. Proceedings of the ACM
Conference on Office Information Systems, April 25-27, 1990,
Cambridge, Massachusetts, USA, ACM Press publishing New York,
NY, USA, pp. 31-39,1990.

Astrachan, Owen; Mitchener, Garrett; Berry, Geoffrey and Cox,
Landon. Design patterns: an essential component of CS curricula.
Proceedings of the twenty-ninth SIGCSE technical symposium on
Computer science education, Atlanta, Georgia, USA, p.p.153-160,
February 26-March 01, 1998.

163

[AMCO3]

[AppO0]

[Art00]

[Bac73]

[Bal9g]

[BBC+03]

[BCC+96]

Alur, Deepak; Malks, Dan and Crupi, John. Core J2EE Patterns: Best
Practices and Design Strategies. Sun Microsystems Core Design
Series, Prentice Hall PTR, Upper Saddie River, NJ, USA, 2003.

Appleton, B. Patterns and software: essential concepts and
Tterminology, 2000, retrieved May 7, 2003 from

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html.

Arutla, K. Tool support for pattern oriented analysis and design.
Master thesis, Department of Computer Science and Electrical
Engineering. University of West Virginia, Morgantown, West Virginia,
2000.

Charles W. Bachman. The programmer as navigator,
Communications of the ACM, volume 16, No. 11, pp 635-658,
November 1973.

Balzert, H. From OOA to GUIs: The JANUS System. Journal of
Object-Oriented Programming, pp. 43-47, February 1996.

Bevan, N.; Barnum, C.; Cockton, G.; Nielsen, J.; Spool, J.; and
Wixon, D. The "magic number 5": is it enough for Web testing?
Proceedings of CHI '03, International Conference on Human Factors
in Computing Systems, extended abstracts, April 5-10, 2003, Ft.
Lauderdale, Florida, USA, volume 5, issue #1, pp. 698 — 699, 2003.

Beck, K.; Coplien, J. O.; Crocker, R.; Dominick, L.; Meszaros, G.;
Paulisch F.; et al. Industrial experience with design patterns.
Proceedings of the 18" International Conference on Software
Engineering, IEEE Computer Society Press publishing, 1996.

164

[BCC+02] Butler G., Chen L., Chen X., Gaffar A., Li J, Xu L. The Know-It-All

[BCK9g]

[BCKO3]

[BFOO]

[BFVY96]

[BHO9]

[BJKO1]

project: A case study in framework development and eEvolution,
Chapter 6 in “Domain oriented systems development: perspectives
and practices”, Kiyoshi Itoh, Satoshi Kumagai (eds.), Taylor &
Francis; 1% edition, December 6, 2002, UK, 2002, ISBN 0-415-
30450-4, pp. 101-117.

Bass, Len; Clements, Paul; and Kazman, Rick. Software architecture
in practice, Addison-Wesley publishing, Reading, MA, USA, 1998.

Bass, Len; Clements, Paul; and Kazman, Rick. Software architecture
in practice, Second edition, Addison-Wesley publishing, Reading,
MA, USA, 1998.

Berners-Lee, Tim and Fischetti, Mark. Weaving the web: The original
design and ultimate destiny of the World Wide Web. Harper Collins
Canada publishing, Scarborough, ON, Canada; 2000.

Budinsky, F.; Finnie, F.J.; Vlissides, J.M. and Yu, P.S. Automatic
code generation from design patterns. Journal of Object Technology,
volume 35, issue No.2, 1996.

Brinck, T. and Hand, A.: What do users want in an HCI Website.
EACE Quarterly (European Association of Cognitive Ergonomics)
volume 3, issue no. 2, August 1999.

Bass, L.; John, B. E.; and Kates, J. Achieving usability through

software architecture. SEl, Software Engineering Institute report,
Carnegie Mellon University, Pittsburgh, PA, USA, March 2001.

165

[BKBOO]

Bouch, Anna; Kuchinsky, Allan; Bhatti, Nina. Quality is in the eye of
the beholder: meeting users' requirements for Internet quality of
service. Proceedings of the SIGCHI conference on Human factors in
computing systems. The Hague, The Netherlands, ACM Press
publishing, New York, NY, USA, pp. 297-304, 2000.

[BMMMO8] Brown, W. J.; Malveau, R.; MCCormick, H. W.; and Mowbray, T. J.

[BMR96]

[Bor00]

[Box79]

[BPS97]

Anti Patterns - Refactoring Software, Architectures and Projects in
Crisis: Wiley publishing, Chichester, West Sussex, England, 1998.

Buschmann. F.; Meunier, H.; Rohnert, P. S. and Stal M. Pattern-
oriented software architectures: A system of patterns, John Wiley
publishing, Chichester, West Sussex, England, 1996.

Borchers, Jan. A pattern approach to interaction design. Proceedings
of the DIS 2000; international conference on designing interactive
systems, August 17-19, 2000, New York, New York, USA. ACM
Press publishing New York, NY, USA, pp. 369-378, 2000.

Box, George. E. P. Robustness in scientific model building. In R. L.
Launer, and G. N. Wilkinson (Eds.), Robustness in statistics,
Academic Press publishing, New York. NY, USA, pp. 201-236, 1977.

Breedvelt, lilse M.; Paterno, Fabio; and Severiins, C. Reusable
structures in task models. Proceedings of DSVIS 97, Design,
Specification, Verification of Interactive Systems, Granada, Spain,
June 4-6 1997. Springer Verlag publishing, Granada, Spain pp. 251-
265, June 1997.

166

[Cal02]

[Car00]

[Cas97]

[CBE+04]

[CCO1]

[CDI+04]

[CHV00]

Calder, Neil. SLAC Houses world’s largest database. Stanford
University Report, stanford University, Stanford CA USA, April17,
2002.

Carroll J.M. Scenario-based design of human-computer interactions.

~ MIT Press publishing, Boston, MA, USA, September 2000.

Casaday, G. Notes on a pattern language for interactive usability.
Proceedings of CHI '97, the international conference on computer
human interface, human factors in computing systems. 18-23 April
1997, Atlanta, Georgia,
USA. ACM Electronic Publishing. Retrieved Mai 2, 2003 from
http://www.acm.org/sigchi/chi97/proceedings/short-talk/gca.htm.

Cockburn, A.; Baruz, A.; Engelund, A.; HANES, P. B. et al. Anti
Pattern. At http://c2.com/cgi/wiki?AntiPattern, retrieved May 20"
2004.

Collins Cobuild English Dictionary, Harper Collins Publishing,
Bishopbriggs, Glasgow, UK, 2001, ISBN 0-00-710201-1.

Challenger, James R.; Dantzig, Paul; lyengar, Arun; Squillante,
Mark S. and Li Zhang. Efficiently serving dynamic data at highly
accessed web sites, IEEE/ACM Transactions on NetWorking (TON),
ACM Press publishing, New York, NY, USA, Volume 12 , Issue 2,
pp- 233 — 246, April 2004.

Chambers, Craig; Harrison, Bill and Vlissides, John. A debate on

language and tool support for design patterns. POPL 2000, 27" ACM
conference on Principles of Programming Languages, January 19-

167

[CL98]

[CL99]

[CMMI02]

[Coc01]

[CPO6]

[Cra43]

[CTO04]

[DFG99]

21, 2000, Boston, MA, USA. ACM Press publishing, pp 277-289,
2000

Coram, T. and Lee, J. Experiences: A pattern language for user
interface design., 1998 Retrieved Mai 2", 2003 from
http://www.maplefish.com/todd/papers/experiences

Clancy, Michael J. and Linn, Marcia C. Patterns and pedagogy.
Proceedings of the thirtieth SIGCSE technical symposium on
computer science education, New Orleans, Louisiana, United States,
ACM Press publishing, New York, NY, USA, pp 37 — 42, 1999.

Capability Maturity Model Integration, version 1.1 (CMMI
SE/SW/IPPD/SS, VA1.1), SEl; Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, USA, March 2002.

Cockburn, Alistair. Agile Software Development, 1 edition, Addison-
Wesley Professional publishing, Boston, MA, USA, 2001.

Colleen M. K. and Pitkow J. E. Surveying the Territory: GVU’s Five
WWW User Surveys, The World Wide Web Journal, CA, USA,
volume 1, no. 3, pp 77-84, 1996,.

Craik, K. The Nature of Explanation. Cambridge University Press,
Cambridge, Massachusetts. USA, 1943.

OliverNova. CARE Technologies. Retrieved January, 2004, from
http://www.care-t.com/.

Dewan, Rajiv; Friemer, Marshall; Gundepudi, Pavan. Evolution of
internet infrastructure in the twenty-first century: the role of private

168

[Dia03]

[DLHO3]

[DNBO02]

[Dre02]

[DZS97]

[Erc00]

interconnection agreements. Proceeding of the 20th international
conference on Information Systems, Charlotte, North Carolina, USA,
ACM digital Library, Association for Information Systems Publishing,
Atlanta, GA, USA, pp. 144 — 154, 1999.

Diamond Bullet, Website Design: Web Survey Results, at
http://www.usabilityfirst.com/websites/web-survey-results.txl,
Retrieved March 21, 2003.

van Duyne, D. K,; Landay, J. A. and Hong, J. I. The design of sites.
patterns, principles, and processes. Pearson Education, Addison-
Wesley publishing, Boston, MA, USA, 2003

Dhyani, Devanshu; Ng, Wee Keong and Bhowmick, Sourav S. A
survey of Web metrics, ACM Computing Surveys (CSUR), ACM
Press publishing, New York, NY, USA, Volume 34, Issue 4 pp. 469 —
503, December 2002.

The Math Forum @ Drexel." http://www.mathforum.org/drexel/,
retrieved June 23", 2002.

DeLine, Robert; Zelesnik, Gregory and Shaw, Mary. Lessons on
converting batch systems to support interaction: experience report.
ICSE 97, proceedings of the 19th international conference on
Software Engineering, Boston, Massachusetts, USA, ACM Press
publishing, New York, NY, USA, 195 — 204, 1997.

Erickson, T. Lingua franca for design: Sacred places and pattern
languages, DIS 2000: Proceedings of Designing Interactive Systems,
New York, August 17-19 2000, ACM Press publishing, New York,
NY, USA, 2000.

169

[ET97]

[FBO2]

[FDRSO03]

[FFO3]

[FFS+04]

Erickson, T.; and Thomas, J. C. Putting it all together: Towards a
pattern language for interaction design: a Workshop on Pattern
Languages, in CHI97, March 22-27, 1997. ACM SIGCHI, ACM press
publishing, New York, NY, USA, volume 30, issue 1, pp. 17-23,
January 1998.

Folmer, E. and Bosch, J. Architecting for usability; a survey. Journal
of systems and software, Reed Elsevier publishing, Orlando, FI,
USA, Volume 70, issue 1, pp. 61- 78, 2002.

Forbrig, P.; Dittmar, A.; Reichart, D.; and Sinnig, D. User-centred
design and abstract prototypes. In proceedings of BIR 2003.
Perspectives in business informatics research, September 19-20,
2003, Berlin, Germany. SHAKER publishing, 2003, pp. 132-145,
September 2003.

Fincher, S. and Finlay, J. CHI 2003 report: Perspectives on HCI
patterns: Concepts and tools; introducing PLML. Interfaces, the
international journal of human computer interaction, British HCI
Group publishing, Winchester, Hampshire, UK, volume 56, pp. 26-28,
Autumn 2003.

Furtado, Elizabeth; Furtado, Vasco; Sousa, Kénia Soares;
Vanderdonckt, Jean; Limbourg, Quentin. KnowiXML: a knowledge-
based system generating multiple abstract user interfaces in USIXML
Proceedings of TAMODIA ‘04; the 3rd annual conference on task
models and diagrams, Prague, Czech Republic ACM Press
publishing, New York, NY, USA, pp. 121 — 128, 2004

170

[Fin02]

[Flo87]

[FMW97]

[FR82]

[Gaf01]

[Gaf04]

Fincher, S. Patterns for HCI and cognitive dimensions: Two halves of
the same Story ? PPIG 14th Annual Workshop, Brunel University, 18-
21 June 2002, In J. Kuljis, L., Baldwin & R. Scoble (Eds) pp 156-172,
2002..

Floyd, C. Outlines of a paradigm change in software engineering. In
Bjerknes, G.; Ehan, P. and Kyng, M (Eds.), Computers and
Democracy Avebury, England. Gower publishing co. Ltd., Aldershot,
England, pp. 193-210, 1987.

Florijin, G.; Meijers, M. and van Winsen, P. Tool support in design
patterns., Proceedings of ECOOP ‘97, 11th European Conference on
Object-Oriented Programming, Utrecht University, Jyvaskyla,
Finland, June 9-13 1997. In: Askit, M., Matsuoka, S. (Eds.) Lecture
Notes in Computer Science no. 1241 Springer Verlag publishing,
Berlin, Heidelberg, Germany, 1997.

Feldman, Michael B. and Rogers, George T. Toward the design and
development of style-independent interactive systems. Proceedings
of the 1982 conference on Human factors in computing systems.
NBS, National Bureau of Standards and ACM Washington DC
Chapter, Gaithersburg, Maryland, United States. ACM Press
publishing, New York, NY, USA, pp. 111 — 116, 1982.

Gaffar, Ashraf. Design of a framework for database indexes. Master
of Computer Science Thesis, Computer Science Department,
Concordia University, September 2001.

Gaffar. Ashraf. The other side of patterns: A user-centered analysis.

Preliminary results of Pattern Usability Study, presented at UPA:
Usability Professionals’ Association, Bloomingdale, lllinoy, USA in

171

[Gaf05a])

[Gafo5b]

[Gaf05¢]

[GHJV95]

[GJSS03]

conjunction with CRIM (Computer Research Institute of Montreal),
February 2004, available at
http://www.utilisabilitequebec.org/archives.htm.

Gaffar, Ashraf. Component-Based Generalized Database Index
Model, Encyclopaedia of Database Technologies and Applications,
Idea Group Publishing, Hershey, PA, USA, April 2005, ISBN 1-
59140-560-2, pp. 87-92.

Gaffar, Ashraf. The 7C’s: An iterative process for generating pattern
components. Proceedings of HCI International, the 11" International
Conference on Human-Computer Interaction, Las Vegas, Nevada,
USA, July 22-27, 2005, CD-ROM.

Gaffar, Ashraf. Des aiguilles dans une botte de foin: Une étude sur la
visibilité de L'information sur Internet. Final results of Pattern
Usability Study, presented at UPA: Usability Professionals’
Association, Bloomingdale, lllinois, USA in conjunction with CRIM
(Computer Research Institute of Montreal), March 2005, available at
http://www.utilisabilitequebec.org/archives.htm.

Gamma, E.; Helm, R.; Johnson, R. and Vlissides, J. Design patterns:
Elements of reusable object-oriented software, Addison-Wesley-
Longman publishing, MA, USA, 1995.

Gaffar, Ashraf, Javahery, H; Seffah, Ahmed. and Sinnig, Daniel. A
pattern framework for eliciting and delivering user centered design
knowledge and practices, proceedings of HCI International, the 10th
International Conference on Human-Computer Interaction ‘03, Crete,
Greece, June 24-27, 2003. Appeared in Julie Jacko and Constantine
Stephanidis, Human Computer Interaction: Theory and Practice,

172

[GL9Y]

[GMS05]

[GP04]

[GSO05]

[GSJS03]

[GSPO5]

Lawrence Erlbaum publishing, vol. 1, pp. 108-112, 2003, ISBN 0-
805-84930-0

Granlund, A. and Lafreniere, D. PSA: A pattern-supported approach
to the user interface design process, Position paper for the Usability
Professionals Association Conference, June 29-July 2, 1999,
Scottsdale, Arizona, USA.

Gaffar, Ashraf, Moha, Naouel and Seffah, Ahmed. User-centered
design process management and communication, Proceedings of
HCI International, The 11" International Conference on Human-
Computer Interaction, Las Vegas, Nevada, USA, July 22-27, 2005,
CD-ROM.

Goldfarb, C. F. and Prescod, P. The XML Handbook, 5th edition.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

Gaffar, Ashraf and Seffah, Ahmed. An XML multi-tier pattern
dissemination system, Encyclopaedia of Database Technologies and
Applications, Idea Group Publishing, Hershey, PA, USA, April 2005,
ISBN 1-59140-560-2, pp. 740-744.

Gaffar, Ashraf; Sinnig, Daniel; Javahery, H. and Seffah, Ahmed.
MOUDIL: A comprehensive framework for disseminating and sharing
HCI patterns. Short paper in CHI 2003 Workshop: Perspectives on
HCI Patterns; Concepts and Tools, Ft. Lauderdale, Florida, USA,
April 6-7, 2003.

Gaffar, Ashraf; Seffah, Ahmed, and van der Poll, John. HCI patterns

semantics in XML: A pragmatic approach, Proceedings of HSSE ‘05,
International workshop on Human and Social Factors of Software

173

[GSS03]

[GSSF04]

[GWC+00]

[HCG+96]

Engineering, in ICSE 2005, the 27" Intemational Conference on
Software Engineering, St. Louis, Missouri, USA, May 15-21, 2005,
ACM Press, New York, NY, USA, 2005, pp. 1-7.

Gaffar, Ashraf, Sinnig, Daniel; and Seffah, Ahmed. Towards a
universal forum for patterns, CUSEC '03, Canadian Universities
Software Engineering Conference, Montreal, Canada, January 16-18,
2003.

Gaffar, Ashraf; Sinnig, Daniel; Seffah, Ahmed and Forbrig, Peter.
Modeling patterns for task models. Proceedings of TAMODIA, 3rd
International Workshop on Task Models and DIAgrams for user
interface design, Prague, Czech Republic, November 15-16, 2004,
ACM Press, New York, NY, USA, pp. 99-104.

Graham, T. C. Nicholas; Watts, Leon A.; Calvary, Gaélle; Coutaz,
Joélle; Dubois, Emmanuel and Nigay, Laurence. A dimension space
for the design of interactive systems within their physical
environments. Proceedings of the conference on designing
interactive systems: processes, practices, methods, and techniques,
New York, NY, USA. ACM Press publishing, New York, NY, USA, pp.
406 — 416, 2000.

Hewett, Thomas T.; Baecker, Ronald; Card, Stuart; Carey, Tom;
Gasen, Jean et al. ACM SIGCHI Curricula for Human-Computer
Interaction, ACM Special Interest Group on Computer-Human
Interaction Curriculum Development ACM Press publishing, New
York, NY, USA, 1996, ISBN 0-89791-474-0.

174

[HCI02]

[HGV02]

[Hil 93]

[HLO4]

[HRO2]

[JGL9S8]

[JTVOQ]

Human-Computer Interaction encyclopedia article, history, biography
http://encyclopedia.localcolorart.com/encyclopedia/Human-
computer_interaction/ Retrieved March 6, 2002.

Hoffer, J. A.; George, J. F. and Valacich, J. S. Modern system
analysis and design. 3" edition, Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2002.

The Hillside Group, formed in 1993." http://hillside.net/, retrieved
June 23, 2002.

Jason |. Hong and James A. Landay An architecture for privacy-
sensitive ubiquitous computing, Proceedings of the 2nd international
conference on Mobile systems, applications, and services, Boston,
MA, USA, ACM Press publishing, New York, NY, USA, pp. 177-189,
2004.

Horrigan, John B. and Rainie, Lee. Getting serious online. Pew
Internet and American Life Project, Washington D.C., USA, retrieved
March 3", 2002,
www.pewinternet.org/Pdfs/pip_Getting_Serious_Online3ng.pdf

Johnson-Laird, P. N.; Girotto, V. and Legrenzi, P. Mental models: a
gentle guide for outsiders, 1998. Retrieved 17 April, 2004, from
www.si.umich.edu/ICOS/gentleintro.html

Jarvenpaa, Sirkka L.; Tractinsky, Noam and Michael Vitale.
Consumer trust in an Internet store information Ttechnology and
management, Kluwer Academic Publishing, Hingham, MA, USA,
Volume 1, Issue 1-2, pp. 45— 71, 2000.

175

[KBOO]

[Lay04]

[LCO8]

[Lin80]

[LMO5]

[LNHLOO]

[LucO4]

Kosala, Raymond and Blockeel, Hendrik. Web mining research: A
survey. ACM SIGKDD Explorations Newsletter, ACM Press
publishing, New York, NY, USA, Volume 2, Issue 1, pp. 1 — 15, June
2000.

LayNetworks Glossary, at
http://www.laynetworks.com/glossary/u.htm, Retrieved march 3%,
2004.

Lending, Diane and Chervany, Norman L. The use of CASE tools.
Proceedings of the 1998 ACM SIGCPR conference on computer
personnel research, Boston, Massachusetts, USA, ACM Press
publishing, New York, NY, USA, pp. 49 — 58, 1998.

Ling, Robert F. General considerations on the design of an
interactive system for data analysis. Communications of the ACM,
ACM Press publishing, New York, NY, USA, Volume 23, Issue 3 pp.
147-154, March 1980.

Landay, James. A. and Myers, Brad. A. Interactive sketching for the
early stages of user interface design. In proceedings of CHI 95, vol.1
pp. 43-50, 1995.

Lin, J. M.; Newman, W.; Hong, J.l.; and Landay, J. A. DENIM:
Finding a tighter fit between tools and practice for web site design.
CHI letters: Human factors in computing systems, CHI ‘00, pp. 510-
517, 2000.

Robert W. Lucky. Does Google like me? IEEE Spectrum: Tomorrow's
technology today, pp 136, November 2004.

176

[LVO3]

[Mar96]

[May05]

[MBO02]

[Mcc04]

[MD97]

[MJ98]

Lyman, Peter and Varian, Hal R. How Much Information 20037,
School of Information Management and Systems, University of
California at Berkeley, Retrieved on October 2004 from
http://www.sims.berkeley.edu/how-much-info-2003.

Martin, C. Software life cycle automation for interactive applications:
The AME design environment. Proceedings of CADUI '96, 2nd
International Workshop on Computer-Aided Design of User
Interfaces June 5-7, 1996, Namur, Belgium.

Maynes-Aminzade, Dan. Edible Bits: Seamless interfaces between
people, data and food. Proceedings of CHI ‘05, the international
conference for human-computer interaction, April 2-7, Portland,
Oregon, USA. ACM Press publishing, New York, NY, USA, 2005.

Mellor, S. J. and Balcer, M. J. Executable UML: A foundation for
Model-Driven Architecture, 1% edition. Addison-Wesley Professional
publishing, Boston, MA, USA, 2002.

McConnell, Steve. Code Complete, 2" edition, Microsoft Press
publishing, Redmond, WA, USA, 2004.

Meszaros, G. and Doble, J. A pattern language for pattern writing,
1997. Retrieved Mai 5", 2003 from
http://hillside.net/patterns/writing/patternwritingpaper.htm

Mahemoff, M. J. and Johnston, L. J. Pattern languages for usability:
An investigation of alternative approaches, Proceedings of APCHI,
third Asia-Pacific Conference on Human Computer Interaction, July
15-17, Hayama-machi, Kanagawa, Japan,1998.

177

[MJ99]

[MLO1]

[MLS98]

[MMO7]

[MMPO2]

[MOB99]

Mahemoff, M. J. and Johnston, L. J. The planet pattern language for
software internationalization. Proceedings of PLoP '99 annual
conference on Pattern Languages of Programs, August 15-18,
University of lllinois at Urbana-Champaign, Urbana, IL, USA.

Mahemoff, M. and Lorraine J. J. Usability pattern language: The
language aspect. In Hirose M. (ed.), Human Computer Interaction:
Interact ‘01, Proceedings of IFIP TC.13 International Conference on
Human-Computer Interaction, July 9-13, 2001, Tokyo, Japan.
Ohmsha publishing, Tokyo, Japan, pp. 350-358, 2001. |

Mens, T.; Lucas, C. and Steyaert, P. (1998,). Supporting disciplined
reuse and evolution of UML models. UML98: Beyond the notation,
June 3-4, Mulhouse, France, 1998.

Mendelzon, Alberto O. and Milo, Tova. Formal models of Web
queries. SIGMOD: ACM Special Interest Group on Management of
Data. Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART
symposium on principles of database systems Tucson, Arizona,
USA, ACM Press publishing, New York, NY, USA, pp134 - 143,
1997.

Molina, P. J., Melia, S., & Pastor, O. (2002). Just-Ul: A Model for
User Interface Specifications. In Proce. CADUI 2002, Valenciennes,

France, Kluwer Academics, May 2002.
MOBI-D. The MOBI-D interface development environment. Retrieved

February, 2004, from
http://smi-web.stanford.edu/projects/mecano/mobi-d.htm

178

[MQGS09]

[MR92]

[MSGO03]

[MSS+ 04]

[NEC98]

[New97]

Moha, Naouel; Qing, Lin; Gaffar, Ashraf and Seffah, Ahmed.
Enquéte sur les pratiques de tests dutilisabilité, IHM 2005, 17°
Conférence Francophone sur I'lnteraction Homme-Machine, 27 au
30 Septembre 2005, Toulouse, France.

Myers, B. A., and Rosson, M. B. Survey on user interface
programming. Human factors in computing systems, Proceedings of
SIGCHI' 92, Monterey, Ca., USA. ACM Press publishing, New York,
NY, USA, pp. 195-202, 1992.

Metzker, Edward; Seffah, Ahmed and Gaffar, Ashraf. Towards a
systematic and empirical validation of HCI knowledge captured as
patterns. Proceedings of HCI international, the 10th international
conference on Human-Computer Interaction 2003, Crete, Greece,
June 22-27, 2003, appeared in Julie Jacko and Constantine
Stephanidis. Human Computer Interaction: Theory and Practice,
Lawrence Erlbaum publishing, vol. 1, pp. 168-172, 2003.

McNaughton, M. C. M.; Szafron, D.; Schaeffer, J.; Redford, J.:
Parker, D. ScriptEase: Generative design patterns for computer role-
playing games. Proceedings of 19th International Conference on
Automated Software Engineering, Linz, Austria, September 20-24,
2004. IEEE Computer Society Press publishing, Washington DC,
USA, 2004.

NEC Research Institute. September 1998 search engine coverage
update, September 1998. Retrieved February 18", 2003, from

http://www.neci.nj.nec.com/homepages/lawrence/websize98.html.

Newman, William M. Better or just different? On the benefits of

designing interactive systems in terms of critical parameters.

179

[Nie93]

[Nie04]

[NL95]

[Non98]

[Nor02]

[Pato4]

Proceedings of the conference on designing interactive systems:
processes, practices, methods, and techniques Amsterdam, The
Netherlands, ACM Press publishing, New York, NY, USA, pp. 239 —
245, 1997.

Nielsen, J., and Landauer, T. K. A mathematical model of the finding
of usability problems. Proceedings of INTERCHI ‘93, joint conference
of ACM SIG-CHI and INTERACT, April 24-29, 1993, Amsterdam, The
Netherlands. ACM Press publishing, New York, NY, USA, pp. 206-
213, 1993.

Nielsen, J. Risk of quantitative studies. Alertbox, March 1 2004 issue,
retrieved July 20™, 2004 from
http://www.useit.com/alertbox/20040301.html.

Newman W. and Lamming M. G. Interactive System Design,
Addison-Wesley Professional publishing, Boston, MA, USA, 1995.

Nonaka, lkujiro and Takeushi, Hirotaka. A theory of the firm’s
knowledge-creation dynamics. Chapter 10 in: Chandler jr. Alfred D.;
Hagstrom, Peter and Sovell, Orjan. O. (eds) The dynamic firm: The
role of technology, strategy, organization and regions. Oxford
University Press, Corby, Northants, UK, April 1998.

Norman, D. Beyond the computer industry CACM, Communications
of the ACM, ACM Press Publishing, New York, NY, USA, volume 45,
issue 7, pp. 120, July 2002.

Paternd, Fabio. A formal approach to the evaluation of interactive
systems, ACM SIGCHI Bulletin, ACM Press publishing, New York,

NY, USA, volume 26 , issue 2, pp 69 — 73, April 1994.

180

[Pat00]

[PBO3]

[PC96]

[PCO4]

[PGO8]

[Por03]

[Pra96]

Paterno, Fabio. Model-based design and evaluation of interactive
applications: Springer Verlag publishing, Berlin Heiderlberg,
Germany, 2000.

Podlipnig, Stefan and B&szérmenyi, Laszlo. A survey of Web cache
replacement strategies, ACM Computing Surveys (CSUR), ACM
Press publishing, New York, NY, USA Volume 35, Issue 4, pp. 374
— 398, December 2003.

Pitkow J. E. and Colleen M. K: Emerging trends in the WWW user
population. Communications of the ACM, volume 39, no. 6, 1996

Porter, Ron and Calder, Paul. Patterns in learning to program: an
experiment. ACM International Conference Proceeding Series.
Proceedings of the sixth conference on Australian computing
education - Dunedin, New Zealand, Australian Computer Society
publishing Inc., Darlinghurst, Australia, Volume 30, pp. 241 — 2486,
2004.

Pemberton, L. and Griffiths, R. The timeless way: Making living co-
operative buildings with design patterns In co-operative buildings:
Integrating information, organization, and architecture. Lecture Notes
in Computer Science, Springer Verlag publishing, Darmstadt,
Germany, February 1998.

Portland pattern repository, survey results, retrieved on March 21%,
2003 at http://c2.com/cgi-bin/survey.

Prasad, S. Models for mobile computing agents. ACM Computer
Survey, volume 28, issue 4, 1996.

181

[PRCO3]

[PRCO4]

[Prs01]

[PS04]

[Pue97]

[RE96]

[Rog99]

[Rou81]

Pandey, Sandeep; Ramamritham, Krithi and Chakrabarti, Soumen
Monitoring the dynamic web to respond to continuous queries.
Proceedings of the ACM 12" international conference on World Wide
Web, Budapest, Hungary, SESSION: Web crawling and
measurement, ACM Press publishing, New York, NY, USA, pp. 659 —
668, 2003.

Pew Research Center, Washington, DC, USA.
http://pewresearch.org/

Pressman, Roger. S. Software Engineering, A practitioners
approach. fifth edition, McGraw Hill, New York, NY, USA, 2001.

Paquette, D. and Schneider, K. Interaction templates for constructing
user interfaces from task models. Proceedings of CADUI '04,
international conference on computer aided design of user interface,
January 13-16, 2004, Madeira, Portugal.

Puerta, A., A Model-based interface development environment.
Journal of IEEE Software, volume 14, p. 41-47, 1997.

Rheinfrank, J and Evanson, S. Design languages. In: Bringing design
to software, Winograd, Terry (ed.), ACM Press books and Addison

Wesley publishing, New York, NY, USA , pp 63-80, 1996.

Roget's 21 Century Thesaurus, Philip Lief Group, Inc., Dell
Publishing, New York, NY, USA. ISBN: 0-440-23513-8.

Rouse, William B. Human-computer interaction in the control of
dynamic systems, ACM Computing Surveys (CSUR) ACM Press

182

[RNOQ]

[Run93]

[SAKSO03]

[San01]

[SBG99]

[Scho6]

publishing, New York, NY, USA, Volume 13, Issue 1 pp 71 - 99,
March 1981.

Rine, D. C. and Nada, N. Three empirical studies of a software reuse
reference model. Journal of software practices and experiences,
volume 30, issue 6, May 2000. John Wiley & sons, publishing, New
York, NY, USA, pp. 685-722, 2000.

Runde, Audun S. The challenge of the Internet explosion: ideas for
staying ahead of the users. Proceedings of the 21st annual ACM
SIGUCCS conference on user services, San Diego, California, USA.
ACM Press publishing, New York, NY, USA, pp. 150 — 154, 1993.

Seffah, A; Abran A.; Khelifi A. and Suryn W. Usability meanings and
interpretations in 1ISO standards. Software Quality Journal, volume
11, issue 4, December, 2003.

Sandu D. User interface patterns. 8" conference on pattern
languages of programs September 11-15, 2001 Allerton Park
Monticello, lllinois, USA.

Schmidt, A.; Beigl, M.; and Gellersen, H.-W. There is more to context
than location. Journal od Computers and Graphics, volume 23, pp.
893-902, 1999.

Schlungbaum, E. Model-based user interface software tools - current
state of declarative models. Technical report of Graphics,
Visualization and Usability Center, Georgia Institute of Technology,
Georgia, USA, pp. 96-30, 1996.

183

[SEW02]

[SEW03]

[SGFS04]

[SGR+04]

[Sil00]

Search Engine Watch, Report 1: Getting serious online, March 3",
2002, at http:/www.searchenginewatch.com, retrieved on February
18™, 2003.

Search Engine Watch, Report 2: Getting serious online, One year
later, September 5", 2002, at http://www.searchenginewatch.com,
retrieved on February 18", 2003.

Sinnig, Daniel; Gaffar, Ashraf; Forbrig, Peter and Seffah, Ahmed.
Patterns, tools and models for interaction design, in Hallvard
Treetteberg, Pedro J. Molina, Nuno J. Nunes (eds). "Proceedings of
the first international workshop on making model-based user
interface design practical: usable and open methods and tools". Joint
conference of ACM intelligent user interfaces 2004 (1UI'2004) and
computer aided and design of user interfaces 2004 (CADUI 2004).
Funchal, Madeira, Portugal. January 13, 2004. CEUR-workshop
proceedings, Vol. 103, 2004.

Sinnig, Daniel; Gaffar, Ashraf; Reichart, Daniel, Forbrig, Peter and
Seffah, Ahmed. Patterns in model-based engineering. In proceedings
of CADUI 2004; 5th International conference on computer-aided
design of user interfaces, jointly with ACM IUI 2004; International
conference on intelligent user interfaces, Funchal, Madeira, Portugal,
January 13-16, 2004, pp. 197 — 210.

da Silva, Paulo Pinheiro. User Interface Declarative Models and
Development Environments: A Survey. In proceedings of 7"
international conference DSV-ID; Design, specification, and
verification of interactive systems. Limerick, Ireland, June 2000. In
Palanque, Phillip, and Paterno, Fabio (eds). LNCS Vol. 19486,

184

[Sim62]

[Smt70]

[SomO01]

[ST96]

[STL99]

[TAD9S]

[TAWO03]

Springer Verlag publishing, Berlin Heiderlberg, Germany, pp. 207-
226, 2000.

Simon, H. The architecture of complexity. Proceeding of American

philosophy society, volume 106, 1962.

Smith, Lyle B. A survey of interactive graphical systems for
mathematics. ACM computing surveys (CSUR), ACM Press
publishing, New York, NY, USA, Volume 2, Issue 4pp 261-
301, December 1970.

Sommerville, lan. Software Engineering. Sixth Edition, Pearson
Education, Addison Wesley, Harlow, Essex, England, 2001.

Smith, C. and Tabor, P. The role of art in design. In: Bringing design
to software, Winograd, Terry (ed.), ACM Press books and Addison
Wesley publishing, New York, NY, USA, pp 37-57, 1996.

Smith, Jeffrey D.; Takahashi, Kenji and Liang, Eugene. Living
Web: supporting Internet-based user-centered design. ACM
SIGGROUP Bulletin, ACM Press publishing, New York, NY, USA,
Volume 20, Issue 1, pp. 45 — 50, April 1999.

TADEUS. Task-based development of user interface software, 1998.
Retrieved February, 2004, from http://www.icg.informatik.uni-
rostock.de/~schiung/TADEUS/

Titchkosky, Lance; Arlitt, Martin, and Williamson, Carey. A

performance comparison of dynamic Web technologies, ACM
SIGMETRICS performance evaluation review, ACM Press

185

[TERO4]

[Tid97]

[Tra02]

[Tra04]

[UCBOO]

[VCBTO04]

publishing New York, NY, USA, volume 31 , issue 3 , pp. 2 - 11,
December 2003.

TERESA. Transformation environment for interactive systems
representations. Retrieved February, 2004, from
http://giove.cnuce.cnr.it/teresa.htmi

Tidwell, Jennifer. Common ground: A pattern language for human-
computer interface design, 1997. Retrieved January 28", 2003 from
http://www.mit.edu/~jtidwell/lcommon_ground.htm|

Traetteberg, Halvard. Model-based user interface design. Doctoral
thesis at Norwegian University of Science and Technology, Faculty of
Information Technology, Mathematics and Electrical Engineering,
Trondheim, Norway. 2002. |

Treetteberg, Halvard. Integrating dialog modeling and application
development, Proceedings of the international conference on
intelligent user interfaces 2004 (Ui 2004) and computer aided and
design of user interfaces 2004 (CADUI 2004). Funchal, Madeira,
Portugal. January 13-16, 2004.

UC Berkeley, Robust hyperlinks cost just five words each, at
http://www.cs.berkeley.edu/~phelps/Robust/papers/robust-
hyperlinks.html. Technical paper, web pages lexical code, January
2000.

Vanderdonckt, Jean; Chieu, Chow Kwok; Bouillon, Laurent and

Trevisan, Daniela. Model-based design, generation, and evaluation
of virtual user interfaces Proceedings of the ninth international

186

[VLF03]

[WBDO1]

[Win96]

[WPO05]

[WVEOQQ]

[WV03]

conference on 3D Web technology, Monterey, California 2004, ACM
Press New York, NY, USA, pp. 51 — 60, 2004.

Vanderdonckt, J.; Limbourg, Q.; and Florins, M. Deriving the
navigational structure of a user interface. Proceedings of INTERACT
‘03, the ninth IFIP TC13 International Conference on Human
Computer Interaction, September 1-5, 2005 Zurich, Switzerland, pp.
455-462, 2003.

Whitten, J. L.; Bentley, L. D.; and Dittman, K. C. System analysis and
design methods, 50 edition, McGraw Hill Irwin, New York, NY, USA,
2001.

Winograd, Terry. Bringing design to software, ACM Press books and
Addison Wesley publishing, New York, NY, USA, pp. 63-80, 1996.

Want, Roy; Pering, Trevor. System challenges for ubiquitous and
pervasive computing. Proceedings of the 27th international
conference on Software engineering St. Louis, MO, USA, May 17-19,
2005. ACM Press publishing New York, NY, USA, pp. 9 — 14, 2005.

van Welie, Martijn; van der Veer, G.C. and Eliéns, A. Patterns as
tools for user interface design. International workshop on tools for
working with guidelines, Biarritz France, 2000.

van Welie, Martijn. and van der Veer, C. G.. Pattern languages in
interaction design: Structure and organization. INTERACT ‘03,
Proceedings of INTERACT ‘03, the ninth IFIP TC13 International
Conference on Human Computer Interaction, September 1-5, 2005
Zurich, Switzerland.

187

[Wel00]

[YA99]

[ZEBPO04]

[Zim95]

van Welie, Martijn. Patterns in interaction design, The Amsterdam
collection. Retrieved July 8", 2002, from http://www.welie.com

Yacoub, S. and Ammar, H. Tool support for developing pattern-
oriented architectures, Proceedings of the 1st symposium on
reusable architectures and components for developing distributed
information systems, RACDIS'99, August 2-3, 1999, Orlando, Florida,
USA, pp 6658-670.

Zimmerman, J.; Evenson, S.; Baumann, K. and Purgathofer, P.
Workshop on the relationship between design and HCI. Proceedings
of the International Conference on Human Factors in Computing
Systems, CHI '04 extended abstracts on Human factors in computing
systems, April 24-29, Vienna, Austria 2004. ACM Press publishing,
New York, NY, USA, pp. 1741 — 1742, 2004.

Zimmer, W. Relationships between patterns In: Coplien, J.O. and

Schmidt, D.C. (eds.): Pattern languages of program design, Addison-
Wesley publishing, Reading, MA, USA, 1995. ‘

188

Appendices

Appendix A

Additional Semantics of the System

In this appendix, we show some semantics associated with the Generic Pattern
Model and some semantics of equivalent/identical relationship between patterns.
They are showing possible extensions of the system in form of tool-support on
top and outside the core system

The eXtensible Minimal Triangle, XMT

Our data models have syntax and semantics. The XML handbook [GP04]
explains that semantics can be further divided into semantic labeling of contents,
and abstract interoperable behavior as demonstrated in Figure 38.

Semantic labeling of
contents

Figure 38: The date constituents

Abstract interoperable behavior
(Language- independent)

189

In the GPT model (Chapter5), we defined the syntax of the generic pattern
template, and the semantic labels used for the syntax. Our work on XMT model
focuses on the abstract interoperable behavior, which involves the behavior
underlying the meaning of some of the tags we are using. We start by some
preconditions and definitions.

As explained earlier, the common denominator of all pattern definitions is ‘a
problem to a solution in a context’. Based on that, we defined the minimal

triangle as in Figure 39.

Definition: The Minimal Triangle is a representation of a pattern that has
the three elements: a problem, a context, and a solution. No other
elements are present in the minimal triangle.

The minimal triangle represents the core meaning of a pattern. Any

missing element of the three will result in a trivial pattern.

Definition: A ftrivial paftern is a pattern that has at least one empty

element from its minimal triangle.

o

Figure 39: The Minimal Triangle

Identical Patterns

Informally, identical patterns are the same pattern mentioned in different
collections. To be able to use some of our models, we introduce the following

formal definitions:

190

Precondition: Each pattern has a unique ID

Precondition: Each non-trivial pattern has an existing, non empty minimal
triangle (this can be inferred from the definition of trivial pattern).
Precondition: The following definitions strictly apply to non-trivial
patterns. For trivial patterns, the definitions can be ambiguous.
Precondition: Pattern_name(A) refers to a single object called “the name
of pattern A”, of type “string”.

Precondition: Pattern_ID(A) refers to a single object called “the
identification of pattern A”, of type “string”.

Precondition: Pattern_aliases(A) refers to the set of zero or more objects
called “the aliases of pattern A", of type “set of string objects”.
Precondition: There is a one-to-one correspondence between
Pattern_name(A) and Pattern_ID (A). We emphasize the word
“correspondence” to denote a “one-fo-one” and an “onto” function between
Pattern_name (A) and Pattern_ID (A). In other words, the inverse
relationship between Pattern_name(A) and Pattern_ID(A) is also a one-to-
one function.

Notation (from the set theory): (A) € (B) refers to the object A being an
element of the set of objects B.

These are important precondition that we will use in our next definitions to

disambiguate some patterns that are identical or similar at different degrees.

Some patterns are already connected to others, but the majority of them are not.

We have identified many of these redundancies.

Definition: /dentical Pattern
Pattern A is identical to pattern B, written A =B, if °

® This is a sufficient, but not a necessary condition. We can make it necessary by augmenting the

aliases set of each pattern with our findings of identical patterns

191

Pattern_name (A) = Pattern_name (B) or
Pattern_name (A) € Aliases (B) or
Pattern_name (B) € Aliases (A)

Similar Patterns

As in several other applications, it is sometimes useful to separate between the
look (the presentation) and the behavior. The same concept is used in separation
of java’s look and feel, contents and presentation in CMS (Content Management
Systems)and other models. We define the next pattern relationships based on a
similar concept: Patterns that look similar and act similar (identical- and similar

patterns), and patterns that look different but act similar (equivalent patterns).

Precondition: The next definition is based on the definition of the Minimal
Triangle.

Definition: The XMT repository specifies three finite sets of keywords
corresponding to the three MT items:

The first set defines the specific kinds of problems covered by the
patterns in form of reserved keywords.

The second set defines the specific kinds of contexts covered by the
patterns, in form of reserved keywords.

The third set defines the kinds of solutions covered by the patterns, in

form of reserved keywords.

Definition: The Extensible Minimal Triangle model refers to the three
parts problem, context, and Solution of a given pattern as presented in
the GPT and using a subset of reserved keywords elaborated in the
repository of the XMT model.

192

The extensibility comes as a key concept of the XMT. If new patterns are to be
added, and the keywords of any of its MT parts are not in the space of the XMT,
the XMT must be extended by carefully defining the new keywords and adding
them to the XMT repository. Using reserved keywords for context, problem, and
solution allows for automated text processing, a scalable solution. However, the
three items of the MT will have to be divided into a “brief’ part, containing the
reserved keywords, and an elaborate part containing the explanation and details
of each item. This is sometimes applied to the solution item by providing a

thumbnail solution “solution-brief‘ and an elaborate solution.

Definition: Similarity Criteria is a set of logical conditions that decide if a
pattern A is similar to a pattern B.

Definition: Similar Patterns (a similarity criterion)
Pattern A is similar to pattern B, denoted A = B, if '°
MT (A) = MT (B) (where MT denotes the minimal triangle)

Definition: Equivalent patterns (a similarity criterion)
Pattern A is equivalent to pattern B, denoted A = B, if
Problem (A) = Problem (B) and

Context (A) = Context (B)

We can see that an equivalence relationship is a superset of a similar
relationship.

Two issues arise:
-ldentical patterns are to be determined by pattern author (by including aliases to
a pattern either to refer to another known name, or another pattern), but will also

"% As in 4, this is a sufficient, but not a necessary condition

193

be complemented by our Structured Expert Support (SES) as shown in Chapter
5.

-Similar and equivalent patterns can be determined within the activity of SES in
two different ways:

Formally, by comparing the three MT items and applying the definitions of
similarity given above. Once patterns are modulated according to the XMT
model, this process can be automated using simple tools.

Informally, by manually selecting patterns according to SES similarity and

redundancy criteria (This structured activity is elaborated in Chapter 5)

The Progressive Abstract Type Hierarchy, PATH

Our previous models concentrate on semantically building patterns to allow for
automating algorithms that can process their knowledge contents. We also need
to be able to model the process of assimilating patterns as useful artifacts within
the design process. Often, in order to achieve that, we need to remove some
details that clutter the essence of patterns and blur the reason of using patterns
at early stages of design.

The PATH model organizes patterns from an assimilation point of view (as
opposed to the structural GPT and the behavioral XMT). Therefore it is located at
the assimilation part of the pattern lifecycle (Chapter 5). We look at patterns from
the way they can participate in a design process, so we define patterns to reflect

different activities in the design:

-Defining the intent

-Enumerating the actions that realize design intentions
-Choosing concrete objects to represent these actions
-Looking at some implementation (or a prototype) details

-Writing the source code or building visual programming objects

194

These sequential activities are some of the design steps that could involve
interaction with patterns. Using the PATH model, we can reorganize patterns to
reflect each of these steps as shown in Figure 40. Several patterns from different
collections already exist at all levels of abstractions depicted in this model, but
without mentioning this abstraction relationship between them. Users are often
confused when they try to figure out the difference between the “Go Back to a
Safe Place Pattern” and the “Bread Crumb Pattern”. They are simply the same
type of patterns at different levels of assimilation abstractions.

Examples “

-
i

Navigation, Feedback,

fatent Identification, Security, ..

Enumeration Navigation: Quick Access,
‘Go Back to a Safe Place, ...
Representation Go Back to a Safe Place: Home,
Back, Brﬁad(:mmm,

Implementation Bread Crumbs: Length, color,

, position, ...
T e
, Searce code Visual C++, Java, WML, ...
High level
analysis Cewaan

e

Figure 40: Snapshot of the PATH model

This PATH model is progressive in the sense that it provides additional details at
each lower levels of the model for the same pattern, and provides several
patterns as possible siblings at the same level with possible parents at higher

levels. The same pattern is hence presented at different level of the model by

195

aggregating several existing patterns in an is-a relationship. The levels of the
model map to stages of design process. The model will help in several ways:

-Putting patterns in a defined relationship will help reduce ambiguity

-At each stage of the design process, the selection of related pattern will
be reduced by limiting the selection of patterns to the relevant ones only
-Many patterns exist without their upper level abstractions. We need to fill
these semantic gaps by adding the missing pattern types to help group
patterns together in an assimilation tree without isolated clusters

-The assimilation process will be clarified and automated by descending
down the PATH tree and pruning out the unwanted selections

As a start, it is sufficient to focus on four levels of the assimilation process. Lower
levels of source code patterns are a natural part of this model, but there is no
need to add its associated patterns. Same applies to higher levels of the
hierarchy like the goals and objectives of the design that can affect the selections
and pruning of the PATH branches.

Structured Expert Support Implementation

Beside models, manual work is essential to both clearing out, and uploading
modeled patterns. Here we create new assumption set, and define some
activities to help build the new system.

To address the relationships between patterns as explained in the extrinsic data
part within the GPT [GSP05], we have defined two types of relationships:

Structural relationships

These are patterns that have some common structure (like a common MT;
or part of it).

196

Assimilation relationships
Those patterns are considered from the design process point of view. Two
patterns that are completely different in structure can still have an
assimilation relationship, like complementing or competing with each

other.

Argument

These two types might look orthogonal to each other, but -generally speaking-
we assert that structural relationships should be included as a subset of all
legitimate assimilation relationships. During the design process, patterns can be
replaced based on several criteria. Similarity of pattern structure is a criterion that
warrants the possibility of replacement. This concept will be demonstrated with
some examples later in the appendix. We will discuss this further with the issue
of redundancies and show the unwanted effect of structurally entwined patterns.

Gamma et al [GHJV95] emphasize in their book “Design Patterns” that defining
the contextualized relationship between patterns is a key notion in the
understanding of patterns and their usages. Zimmer [Zim95] implements this idea
by dividing the relations between the patterns of the Gamma catalog itself in 3
types: ‘X is similar to y”, “X uses Y’, and “Variants of X uses Y’. Based on
Zimmer's work, we showed in [GSS04] as in Chapter 5 some additional
relationships between patterns from an assimilation point of view, not a structural

one, we restate them here:

-Subordinate (X, Y) if and only if X is embeddable in Y. Y is also called
superordinate of X.

-Equivalent (X, Y) if and only if X and Y can be replaced by each other.
-Competitor (X, Y) if X and Y cannot be used at the same time for
designing the same artifact.

197

-Neighboring (X, Y) if X and Y belong to the same pattern category
(family) or to the same design step as the described pattern.

A major nuisance to our work on pattern relationships, and certainly that of other
users is the “noisy similarities” between patterns. We can visualize the
relationships between patterns as in Figure 41. Part of the similarity is a healthy
relationship of similar or equivalent patterns that can easily replace each other;
represented by the intersection area of the two ellipses. Several dissimilar
patterns have relationships like competitor. A considerable part of similarities,
however, has redundancies in it, and we excluded them from the concept of
pattern relationships. They are represented in the part of the “pattern similarities”
ellipse outside the relationships ellipse. According to our investigation on many

patterns, it is not easy to decide on the nature of the relationships in these cases.

To demonstrate, if we said that pattern A is a competitor to pattern B, and then
we have another pattern C which is slightly (or —in general- vaguely) similar to
pattern B, can we say that pattern C is also a competitor to pattern A. The
answer is that we have to resolve the vague similarity between B and C to
remove this ambiguity first. Logically speaking, this will not guarantee a solution
to the question. But if we were able to assert —for example- that pattern B and
pattern C have an inheritance relationship, we might assume that A and C are
likely competitors as well. If we were able to assert that pattern B and pattern C
are similar, then we can remove pattern C altogether. In many cases we found
that some patterns contain a full detail of other patterns with a slight addition and
often with a slight omission. Other similarities have more entwined structure that

has no clear answer. We provide more discussion in the next section.

198

Pattern

relationships

Similarities

Figure 41: Useful and noisy similarities

Inter-collection Redundancies, ICR

Entities should not be multiplied unnecessarily

William of Occam

Besides our automatic discovery approach through the XMT model, similar
patterns have been discovered and recorded manually. These two approaches
are going in parallel to complement each other as explained earlier. We have
identified many identical patterns and similar patterns with varying degrees of
similarity. In some cases we were able to identify patterns in different collections
that are exactly the same, but were presented by different authors under different
names, despite their identical analysis. This is an “easy work”, and these are
marked simply for removal. Other identical patterns are more difficult to locate.

The challenge comes with what we define as entwined patterns. They represent
another case of partially similar patterns that can be confusing and has to be
resolved. It is when two (or more) patterns have common features but each one
stil has a unique set of features. Despite the several types of entwining -
depending on the type of redundant features-They can all be logically

represented by the case of entwined brackets

{ Part of pattern A (common part } Part of pattern B)

199

In several domains, like in programming languages, this is generally not allowed.
In pattern domain, our observations show that this is one of the most confusing
redundancies between patterns. We need to dissolve these patterns either by
combining them into one pattern or separating them into two distinct patterns.

Note:

Analogous to the defined relationships of inheritance (is-a) and aggregation (has-
a) in object oriented programming, we also have pattern inheritance and
aggregation relationships. In patterns domain, these are not a problem of
similarity or a source of confusion; the former is addressed in the PATH model
earlier. The latter is a clear case of assimilation relationship. Connecting these

patterns together is done through the extrinsic data part of the GPT.

200

Appendix B

A Case Study on Pattern Ontology

As discussed in the thesis, the semantics of the generic pattern model is a key
issue towards scalable processing of patterns. The Semantic Web implements
the idea of having data on the Web defined and linked in a way that can be
processed interactively by both humans and machines, as explained by Berners-
Lee [BFOO]. Semantic Web technologies, such as RDF, DAML, and OWL are
built on top of XML, providing enhanced capabilities to express the meaning of
knowledge on the Web. The creation of ontologies is an explicit formal approach
to represent the objects, concepts and other entities in a specific domain of
interest and the relationships that hold true among them. This formal
representation facilitates the creation of agents that can compute while retaining
human readability.

Semantic pattern ontologies are specifically designed for computation by agents.
For example, the relationship that using one pattern requires the use of another
pattern can be represented in pattern ontology. In addition, inference engines are
built on top of the ontologies to retrieve and extract grounded facts that are
already declared in the ontology. Many such engines are capable of transitivity
and other inferencing capabilities. This provides a degree of intelligence in
finding relationships among usability patterns and can be used to find applicable

and/or useful patterns.
Relationships between patterns are complex and hard to formulate exhaustively.

Well known and well stated relationships can be automated in a design tool as

shown with UPADE. However, the implications of using patterns in known

201

combinations and the extent of proposing new combinations have no limit except
designers’ creativity. For experienced user interface designer who has a strong
background in HCI, new combinations can significantly increase the usability of
the Website. However, making sure that they work correctly is not an easy task in

particular for novice developers.

Home Page

| I Search l | Site map

Quick Search

Frequently
Visited Pages

Index Browsing

Executive Summary

Maintainer Info
Disclaimer

Figure 42: Typical HCI patterns applied in page layout

For example, Figure 42 describes how patterns could be combined in a design of
a home page. Some of the patterns are competitors while others are simply

similar.
We introduce a simplified practical example in Figure 43 to illustrate the role of

ontology for patterns. For the context of a large Web site, we have the three
patterns

202

-Site map
-Index browsing
-Home page

The following two relationships exist between them:

-Site map can be “combined with” index browsing.
-Site map can be “embedded in” home page.

..'....' embﬁd ..."'ln
Af., "o...
Home (e Index
Page Browsing

Figure 43: Deducing additional relationships

Using simple human common sense, we can deduce the following new
relationship from the two relationships we already have: ‘Index browsing can be
“embedded in” home page’. For a computer, however, we need to develop a
mechanism of structuring data and relationships in a suitable way before it can
arrive at the same conclusion as we did. Adding semantics alone is not enough.
We can add tags to tell that home page is a type of patterns, and that combined
with is a type of binary relations, but this is not enough to deduce the third
relation by a machine. We can have a schema for our document to specify that —
for example- a unique ID and at least one author must follow each pattern name
in our collection. Schema adds more structure to our patterns but is still not

enough in our case.

203

What we need is to be able to specify the semantics (semantic tagging as well as
the meaning) of each relation. Equally important, we need to specify the behavior
of each relation regarding its interaction with other relations (in other words, the
implications that can rise from mixing two or more relations). Ontology can help
in this case. It offers an infrastructure for representing data items (patterns in our
case) and relations between them in a precise way that emphasizes the meaning
of these relations. Logic and reasoning tools can then take over to formally
analyze the ontology, verify the existing relations, discover any contradictions,
and look for other relations that can be deduced from the existing ones. The
DARPA Agent Markup Language (DAML, at http://www.daml.org) reported 45
ontology-specific tools in 2002, mostly open source, that can help in this
approach. In 2005, this number has grown to 87 within a total of 243 XML tools
(http://www.daml.org/tools/). We have used several of them in our approach to
implement smart patterns. These 243 tools implement XML related technologies
as specified in the W3C specifications, the world wide authority responsible for
developing and maintaining the XML (http://www.w3.org/XML/). Besides
extracting the implicit information, Ontology can help in discovering where some
information might be missing and highlights the need for further investigations to
fill them.

The following example demonstrates this idea as depicted in Figure 44. For the
context of a small Web site, we have the four patterns

-Site map
-Index browsing
-Menu bar
-Home page

The following ternary relationship exist between them:

- In home page, site map must be “replaced by” menu bar

204

We can deduce that menu bar can be “embedded in” home page, but we
cannot tell if index browsing could be embedded in home page as well. The
reason is that we don’'t have enough information to know if it were possible. We
discover the need to check for a possible relation between menu bar and index
browsing. This missing piece of information is needed. If we found —for example-
that these two patterns can be combined together with no restriction, then we can
answer the question by deducing the relation: index browsing can be embedded

in home page.

? Index
‘lo'ovvvvoo,'ovovvvv’Bi.’/wsil}—%
= [

Figure 44: Missing information in pattern relationships

205

Appendix C

A Case Study on Pattern Assimilation

In this appendix, we provide a case study to support the reconciliation view we
proposed in Chapter 4. The management of a hotel is going to be computerized.
The hotel’'s main business is renting out rooms of various types. There are a total
of 40 rooms available, priced according to their amenities. The hotel
administration needs a tool capable of booking rooms for specific guests. More
specifically, the application’s main functionality consists of adding a guest to the
internal database and booking an available room for a registered guest.
Moreover, only certified guests have access to the main functionality of the

program. Eventually, the application would be running on WIMP-based systems.

Note that only a simplified version of the hotel management system will be
developed. The application and corresponding models will not be tailored to the
different platform and user roles. The main purpose of the example is to show
that model-based Ul design consists of a series of model transformations, in
which mappings from the abstract to the concrete models must be specified.
Furthermore, it will be shown how patterns are used to establish the various
models, as well as to transform one model into another. A summary of all
patterns used in this article can be found in Table 7 of Chapter 4.

The Task Model

Figure 45 depicts the coarse-grained task structure of the envisioned hotel
management application. Only high-level tasks and their relationships are
portrayed. An impression about the overall structure and behavior of the

206

applications is given. The structure provided is relatively unique for a hotel
management application. The concrete “realization” of the high-level tasks has
been omitted. The Pattern Task symbol is used as a placeholder representing
the suppressed task fragments.

A large part of many interactive applications can be developed from a fixed set of
reusable components. If we decompose the application far enough, we will
encounter these components. In the case of the task model, the more the high-
level tasks are decomposed, the easier the reusable task structures (that have
been gained or captured from other projects or applications) can be employed. In
our case, these reusable task structures are documented in the form of patterns.
This approach ensures an even greater degree of reuse, since each pattern can
be adapted to the current context of use.

>
tess Functionali
o

n] a8
Open Add Customer Open Booking Add Cystomer Ri

>

Enter Péfsona) Data Check Ayailability Enter BogKing Rarameter Book Print Confirmation

Multi-value Input Form Store Data Find Room Mutt-value Input Form Submit Confirm Booking

Figure 45: Coarse-grained task model of the hotel management application

The main characteristics of the envisioned hotel management application,

modeled by the task structure of Figure 45, can be outlined as follows:

Accessing the application's main functionality requires logging in to the system
(the login task enables the management task). The key features are “adding a

207

guest” by entering the guest's personal information and “booking a hotel room”
for a specific guest. Both tasks can be performed in any order. The booking
process consists of four consecutively-performed tasks (related through
“Enabling with Information Exchange” operators):

Locating an available room
Assigning the room to a guest
Confirming the booking

> wnh =

Printing a confirmation

The Login, Multi-Value Input Form, Find and Dialog patterns of table 7 can be
used in order to complete the task model at the lower levels. In the next section,
the application of the Find Pattern will be described in greater detail.

Completing the Find Room Task

The Find Pattern is essential to completing the “Find Room” task. In contrast to
the patterns already used in this example, the Find Pattern suggests a number of
options rather than providing a task structure. Figure 46 illustrates how finding an
object can be performed by searching, browsing or employing an agent,
depending on the pattern.

208

A h e e N
s ObjECE = Informiation |

<sFeatires>

Agent

Figure 46: Interface and structure of the Find Pattern

Within the scope of the hotel management application, the task of finding an
available room should only be performed by searching with query parameters, as
shown in the grey ellipse of figure 46. The “Information” variable of the Find
Pattern (in this case, a placeholder for the “Hotel Room” value) is used to assign
the “Object” variable of the Search Pattern.

The Search Pattern suggests a structure in which the search queries are entered
then the search results are displayed. Again, the Multi-Value Input Form Pattern
is used to model the tasks for entering the search parameters into a form. The
following search parameters can be used when searching for an available room:
“Arrival Date,” “Departure Date,” “Non- Smoking,” “Double / Single,” “Room
Type.” After submitting the search queries, the search results (i.e., the available
hotel rooms) can be manually scanned using the Browse Pattern or, based on
the search results, a refinement search can be performed by employing the
Search Pattern recursively. Within the scope of our case study, refinement

searches are unnecessary, and the search results should only be browsed.

According to the Browse Pattern, the list of objects (the hotel rooms) is printed,

after which it can be interactively browsed as an option. Details of the hotel room

209

can be viewed by selecting it. The Print Object Pattern is used to print out

object’s properties. It suggests using application tasks to print the object values

that can be directly or indirectly derived from the object's attributes. In the case of

the hotel management application, the following hotel room attributes should be

printed: “Room Number,” “Smoking / Non-Smoking,” “Double / Single,” “Room

Type,” and “Available Until.”

After adapting all patterns to suit the hotel management application, the concrete

task structure displayed in Figure 47 is derived. Note that the “Make Decision”

task has been added manually, without pattern support.

@

Find Hanom
/m\

Shogsults
Multi-vau® Input Form Submit Query W

R

Show Form pte e Print Hotel Room List

=>

. AR
Enter A Date Enter Room Type Select Hotel Room Show Deatjls fortsgtel Room

Choose Hotel Room Dismiss Hotel Room

Figure 47: Concrete task structure delivered by the Find Pattern

A first draft of the envisioned task model can be derived once all patterns have

been adapted and instantiated. At this point, first evaluations can be carried out.

For instance, the XIML-Task-Simulator [FDRS03] can be used to simulate and

210

animate possible scenarios. Results of the evaluation indicate that preliminary
modifications and improvements of the task model are possible.

Designing the Dialog Structure

After establishing the envisioned task model in our case study, the dialog models
can be interactively derived. In particular, the various tasks are grouped to dialog
views, then transitions are defined between the various dialog views. Since the
desired target platform of the hotel management application is a WIMP-based
system, a dialog view will be subsequently implemented as either a window or a

container in a complex window.

When designing the dialog graph for the hotel management application, we
designated the login dialog view as modal. After executing Submit, the “Main
Menu” dialog will be opened. As such, a sequential transition between both
dialog views is defined. From the main menu, either the “Add Guest” or “Search
Applicable Room” dialog view can be opened by a sequential transition. After
completing the “Add Guest” dialog view, the main menu will be re-opened. For
this reason, a sequential transition to the “Main Menu,” initiated by the “Store
Data” task, must be defined.

The application’s booking functionality consists of a series of dialog views that
must be completed sequentially. The Wizard dialog pattern emerges as the best
choice for implementation. It suggests a dialog structure where a set of dialog
views is arranged sequentially and the “last” task of each dialog view initiates the
transition to the following dialog view. Figure 48 depicts the Wizard Pattern’s
suggested graph structure.

211

Figure 48: Graph structure suggested by the Wizard Pattern

After applying the Wizard Pattern, the dialog views “Search Applicable Room,”
‘Browse Results,” “Show Details,” “Enter Booking Parameters,” “Confirm

Booking” and “Print Confirmation” are connected by sequential transitions.

However, the sequential structure of the booking process must be slightly
modified in order to enable the user to view the details of multiple rooms at the
same time. Specifically, this behavior should be modeled using the Recursive
Activation dialog pattern. This pattern is used when the user wishes to activate
and manipulate several instances of a dialog view. In this particular case, the
user will be able to activate and access several instances of the “Show Room
Details” dialog view. This pattern suggests the following task structure: starting
from a source dialog view, a creator task is used to concurrently open several
instances of a target dialog view. In our example, the source dialog view is
“Browse Rooms” and the “Select Room” task is used to create an instance of the
“Show Room Details” dialog view.

A premature exit should be provided to offer the user the possibility to abort the
booking transaction. In the hotel management application, this is achieved by the
“Confirm Booking” dialog view. At this point, the user can choose whether to
proceed with the booking or to abort the transaction. Another sequential
transition must therefore be defined: one which is initiated by the “Select Cancel
Booking” tasks and leads back to the main menu. The hotel management
application’s complete dialog graph, as visualized by the Dialog Graph Editor
tool, is depicted in Figure 49.

212

The next step is to evaluate the defined dialog graph. The dialog graph can be
animated using the Dialog Graph Editor to generate a preliminary abstract
prototype of the user interface. It is possible to dynamically navigate through the
dialog views by executing the corresponding tasks. This abstract prototype
simulates the final interface’s navigational behavior. It supports communication
between users and software developers: design decisions are transparently
intuitive to the user, and stakeholders are able to experiment with a dynamic
system.

Figure 49: Dialog graph of the hotel management application

213

Defining the Presentation and Layout Model

In order to define the presentation model for our example, the grouped tasks of
each dialog view are associated with a set of interaction elements, among them
forms, buttons and lists. Style attributes such as size, font and color remain unset

and will be defined by the layout model.

A significant part of user's tasks while using the application revolves around
providing structured text information. This information can usually be split into
logically related data chunks. At this point, the Form Presentation Pattern, which
handles this particular task, can be applied. It suggests using a form for each
related data chunk, populated with the elements needed to enter the data.
Moreover, the pattern refers to the Unambiguous Format Pattern, in conjunction

with which it can be employed.

The purpose of the Unambiguous Format Pattern is to prevent the user from
entering syntactically-incorrect data. Drawing on information from the business
object model, it is able to determine the most suitable input element. In other
words, depending on the domain of the object to be entered, the instance of the
pattern provides input interaction elements chosen in such a way that the user
cannot enter syntactically-incorrect data.

Figure 50 shows the windows prototype interface rendered from the XUL
fragments of the hotel management application’s presentation model for the
“Login,” “Main Menu,” “Add Guest” and “Find Room” dialog views. All widgets
and Ul components are visually arranged according to the default style.

214

77 Add Customer

|| Australia

Figure 50: Screenshots of visualized XUL fragments

In the layout model, the style attributes that have not yet been defined are set to
conform with the hotel management application’s standards. According to the
House Style Pattern (which is applicable here), colors, fonts and layouts should
be chosen to give the user the impression that all windows of the application
share a consistent presentation and appear to belong together. Cascading style
sheets have been used to control the visual appearance of the interface. In
addition, to assist the user when working with the application, meaningful labels
have been provided. The Labeling Layout Pattern suggests adding labels for
each interaction element. Using the grid format, the labels are aligned to the left
of the interaction element.

The layout model determines how the loosely connected XUL fragments are
aggregated according to an overall floor plan. In the case of this example, this is
fairly straightforward since the Ul is not nested and consists of a single container.
After establishing the layout model, the aggregated XUL code can be rendered
together with the corresponding XUL skins as the final user interface. Figure 51
shows the Ul rendered on Windows XP.

215

Figure 51: Screenshots from the hotel management application

216

Appendix D

A Survey on Pattern Reuse in Practice

Abstract. This Appendix reports the preliminary results of a survey on the
popularity of patterns among mainstream developers in industrial settings. Our
focus is on design patterns for interactive systems as identified early in the
design community [Lin80] and [Rou81]. They include the design and
implementation of user interfaces for highly interactive software systems. The
last few years have seen growing number of new Ul-related patterns. Numerous
research projects and articles focus on how patterns “should” be generated and
used [AIS77] and [Tid97]. We focus on the other end of the journey, namely how
patterns are “actually” being used. The primary contribution of this survey is to
investigate how patterns are perceived and applied in practical industrial settings
by software developers. Our goal is to identify the current state of affairs and
measure the effectiveness of existing pattern approaches and tools. Preliminary
results of the survey showed that patterns are less popular among designers
than commonly anticipated by research community, even after valuable
theoretical analysis and rich pattern literature are produced. The results reflect
the strong belief that patterns can indeed be helpful, however it shows a major
gap between this belief and the fact that only few pattern collections are popular,
generally the older ones. New patterns are much less popular regardless of their
quality. The survey also shows that the number of developers who are actually
applying patterns in their work is much less than the number of developers who

are just familiar with them.

217

Introduction and related work

This article reports the preliminary results of a survey to ask mainstream software
professionals about their practices with patterns. We focus on the development
of interactive systems, which involve the development of software systems with
user interfaces. Traditionally, the interface part received considerably less
attention than the underlying software system. Developers spent most of their
efforts focused on the underlying system; interfaces were then “thrown in” at later
phases of the development. This approach did not work well with the growing
complexity of software system. Moreover, the type of typical users expanded
from “experts only” with specialized training and sophisticated background to

“ordinary users” with much simpler background.

Several failures of good software systems were attributed to the poor design of
their interfaces, so researchers started calling for separation between the
interface and the applications, and for spending more time and expertise on the
interface design. Accordingly, we saw the emerging fields of user interface- and
interaction design grow rapidly. Interface-related patterns also emerged in books
and on the Internet and significant research and contributions have quickly
accumulated. Researchers used feedback from each other to build, validate and
improve theories about patterns and how they should be applied.

While pattern authors remained focused on discussing how patterns can be
used, we did not find significant studies on how these patterns are actually
perceived and applied in practice or how much they contributed to improving the
quality and usability of interfaces. Some surveys and studies were done on
interface design methods [Dia03], on users [CP96] and [PC96] as well as
interface usability and how to improve it [BH99]. Other surveys have focused on
existing pattern collections in research community [ML0O1] and [Por03]. We also
found empirical studies on how design patterns are perceived and promoted in
the academia as a pedagogic tool [PC04] and [CL99]. However, we found only

218

one survey made in 1996 on design patterns usage in practice [BCC+96]. The
need for more surveys is necessary to assess the large body of research that
has been done on patterns since then, and to examine the different directions in

which it is evolving.

Our research goal is to identify the current state of affairs of patterns, and to
measure how effective they are delivered and used in software industry. The
study enables us to reveal the strengths and weaknesses of pattern practices
and to measure the success or failure of current role of patterns in supporting the
Ul design process. This allows us to shed lights on some grey areas in patterns
and pattern tools and to have a better understanding of the needs of Ul
designers from a pragmatic point of view.

The Survey Structure and Population

The survey came in the form of a questionnaire divided in 8 sections totaling 20
questions. The first three sections were devoted to get some information about
responders and their work environment as well as sources of their professional
knowledge. Section 4 and 5 were designed to evaluate their general perceptions
and usage of guidelines and pattern. Section 6 and 7 enabled us to get more
detailed information about the practices of using patterns and tools in Ul design.
The last section collected feedback about existing and future research trends and
proposals. The survey was distributed during 6 months and sent as a broadcast
to selected professional mailing lists as well as personalized emails. We focused
on software professionals in industrial settings who are practically involved in the
development of software systems and especially in user interfaces. We targeted
large companies as well as medium size companies and consultants. The

qualified number of replies was 121.

219

Figure 52: The distribution of respondents

Analysis Method

The survey analysis is organized under three categories. First we ran a
frequency analysis on users’ profile as well as their work environment and
knowledge sources. We also evaluated the popularity of pattern collections and
tools. Next we cross-tabulated some questions to report the opinions and
practices of patterns among different respondents. All the data collection and
statistical analysis were done using SPSS (www.spss.com). Finally, we collected

all open-ended questions and analyzed them manually.

Summary of Survey Findings

The majority of replies (41.3%) came from developers with involvement in user
interfaces (Figure 52). 12.4% of all respondents were dedicated user interface

developers, 19% were system developers with no involvement in user interface

220

and 5% were web developers. While we only targeted industrial settings, we had
8.3% professors and 13.2% students in the replies, which reflect the fact that

some people from the academia are indeed working in the industry as well.

Who Develops the User Interface?

The analysis of work environment and responsibilities delegated to development
teams (Figure 53) revealed that while a high percentage of respondents worked
in user interface related teams (50%), only a minority (16%) worked exclusively
in interface development teams. The rest (34%) worked simultaneously in
software and interface development. It is clear that the promoted idea of separate
and dedicated teams for interface development and the underlying software
development did not make its way completely in the industry. However, we did
not correlate this to the size of the companies.

Software
R Interface
T Developers

Dedicated
Interface
developers

16%

Figure 53: The responsibilities delegated to development teams

221

When asked about some sources of professional knowledge, the Web was the
most commonly used source (86%). Academic training was next (76%), books
(63%), reuse of similar work (59%), professional training (46%), working with

mentors was the least popular at 27%.

The Current Practices of Guidelines and Patterns

While guidelines are generally considered an important support for designers,
only 2.5% take time to read them carefully and apply them. 23 % browse them
occasionally, and 66% don’t use them at all in their work. As for the popularity of
patterns, 77% were familiar with design patterns (GoF) and 40% with some Ul
patterns. However familiarity did not match the actual use of these patterns: only
15% used Ul patterns in industrial projects, showing that most developers know
about Ul patterns, but don’t use them.

The number of popular Ul pattern collections was also low. Only 7 collections
were known to the respondents, generally the early ones. Despite the popularity
of the web as a source of professional knowledge, many new Ul pattern
collections on the web were not known at all in the survey, regardless of their

quality as known in the research community. This certainly requires further study.

The Status of Pattern Tools

We identified similar gap regarding existing tools for patterns. Despite the
extensive research and rich publications of tool prototypes, only 10% of
respondents used tools. These were mostly general design (CASE) tools like
Rational Rose, Eclipse and Sun Java Studio, rather than specialized pattern
tools. Only 10 tools were reported in the survey, 6 of them were mentioned only

once.

222

The Mainstream Perception about Patterns

We also asked participants how they thought about patterns. The majority (59%)
saw them as an effective concept while 35% were not sure. Only 5% did not like

the concept of patterns altogether.

Conversely, when asked about the effectiveness of patterns in practice today,
only 29% found them useful in their design while 44% found them not useful.
Nonetheless, developers showed they still have faith on pattern; only 7% were on
the pessimist side about the future, saying that patterns will never be a real help
to developers. 36% were optimistic and believed that patterns will help future
developers while 56% were not sure. This shows that patterns are underutilized
in daily practices in the industry, but people still believe they are a good concept.
The difference between the high acceptability of patterns as an idea (59%) and
between finding them useful in design (29%) may indicate that we need to
support pattern reuse more actively. It points to the need to improve our

techniques to facilitate pattern reuse among industrial developers.

Conclusion

This survey presents the preliminary findings of, to the best of our knowledge, the
first survey on pattern practices in the industry in the last decade. A total of 121
software professionals and developers participated in the survey. The survey
focused on patterns outside the research community and sought the opinion of
interface practitioner. Based on the survey results, current practices of patterns
are reported, as well as some observations. The survey pointed at the problem of
patterns underutilization in the industry, contrary to what is expected by pattern
authors. We conclude that besides discovering new patterns, we need to develop
more techniques to improve existing pattern reuse and integration into the daily
activities of mainstream programmers. We also need more pattern tool support to
facilitate this reuse.

223

Appendix E
Broadcasting HCI Patterns on the Web:

Its effectiveness as a Dissemination

Method

Internet is large, and is growing fast. Its unabated growth and increasing
significance has resulted in a flurry of research activity to improve its capacity for
serving information more effectively [DNBO02]. It is hard to come up with accurate
estimation of its size or behavior. Several studies focus on estimating the current
size, and indicate a number of challenges associated with managing its
information contents [DFG99], [PB03]. Other studies focus on observing the
behavior and dynamics of the Web and how it is being used [TAWO03] [CDI+04].
[DNBO02] provide a detailed study of Web metrics commonly used to evaluate the
Web performance in a quantitative way. Web users also received a fair share of
studies. [BKB0OO] and [Run93] focus on the human factors and provide
measurements for the usability of Web pages (quality of use). We are interested
in the current methods of how pattern community, mainly pattern authors use the
Web as a medium to communicate and deliver patterns to mainstream users. In
the study we took measurements in several search experiments to observe the
changes in pattern-related searching on the Web, and evaluate how it has
changed during the 3-year span of the study.

224

Introduction

Internet is a major player in today’s information revolution. We are seeing an
unprecedented growth and ubiquity across many areas of research and industry.
It has grown so much that it is becoming hard to perceive or estimate its size,
contents or behavior. The term “Internet explosion” emerged over a decade ago
[Run93] when the Internet size was actually negligible compared to today's size
(Figure 54). The Internet has been recently dubbed “the Billion User network,
with no owner’ by ACM [ACM 05]. Many research communities rely on the
Internet for communication and knowledge dissemination, including pattern
researchers. Patterns are currently an active area, spanning many engineering
domains. Pattern authors often use the Web to broadcast their patterns to
potential users. In this study we investigate the effectiveness of this method for
delivering patterns. We focus on two main aspects: the size of information on the
Internet, and the popularity of Web search using keywords like “pattern”. When
combined together in one context, these two aspects shed new lights on the
dynamics of data retrieval from the Web and the inadequacy of current pattern
broadcasting practices. We can see how patterns behave during their journey
until they reach their users. We argue that in terms of Internet-based User-
Centered Design [STL99], we need a different approach than broadcasting. We
present some benchmarks taken during the last 3 years and identify some

shortcomings of current approaches

Who is Using the Internet?

The diversity of information on the Internet, and especially on the Web is
impressive. We can find answers, full articles or at least comments about virtually
any question or topic that crosses our mind; in fraction of a second. Besides
searching, Internet has served in connecting the world across all domains and
nations. It is quickly spreading across research, government and industrial

communities as well as at personal level. “Pew Internet & American Life Project”,

225

undertaken by Pew Research Center “http://pewresearch.org/” estimates in their
large scale report [HR02] that in 2002, over 72 million persons in USA alone went
online everyday, and that 29% (over 20 million persons) of them used a search
engine every day to find information.

The Rate: An Exponential Growth of the

Internet?

The direct estimation of the Internet size or dynamics can be a tricky task. We
can find numbers that give good indications about it in search engines. They use
web crawlers [CAL02], [LVO3] to access as many pages on the Web as possible
using exhaustive search and return them to search engine to be used in building
indexes for keyword search. The increase in index sizes can give use an idea
about the rate of Internet growth.

Search Engine Watch (www.SearchEngineWatch.com) has published several
charts about index size growth of some known search engines [SEW02] and
[SEWO03]. Between 1996 and 1999 the number of pages pointed at by search
engines grew from 20 to 150 million pages. In 2001 the reported number of
pages reached 600 million pages, and then grew to 1600 million pages the
following year. Instead of reaching saturation as anticipated, the size jumped to
3500 million pages within another year. The last reported numbers - almost a
year later- reached over 8100 million pages. While these numbers are growing at
a staggering level, they don’t seem to be leveling out soon. Figure 54 visualizes

the approximate rate of this growth.

226

Millions of pages
8000

6000

4000

2000

1996 1997 1998 1999 2000 2001 2002 2003 2004

[T

Figure 54: Internet indexes growth

While these numbers give a clear idea about the rough size of the Internet, and
its exponential growth rate, we can not rely on them for an accurate estimation of
the actual size of information on the web for several reasons:

-The indexes point to selected pages only. Different elimination criteria are used
to disqualify pages from inclusion on different index

-The number of pages gives no idea about the amount of information on each
page, or its contents ‘

The study [Gaf05c] provides more details on this point and discusses their
relevance to the growth rate

The Size: “How Much Information 2003?”

This was the title of a major study at the University of California at Berkeley, UCB
in 2004 [LV03]. The project spanned several years and involved many professors
and students. They gave accurate estimations of many aspects of the Internet

and the amount of information in it for the year 2003. The study estimates that we

227

produced 5 exabytes of new information in 2002 alone and that —more
significantly- the annual rate of growth of new information is 30%. This means
that we ware producing 11 Exabytes of new information in 2005 (please note that
this is not the entire body of information, but rather the new information produced
in 2005 alone). While we can explain that an Exabyte is 10" bytes, it is really
tricky to perceive this size of information. To translate it to a more conceivable
figure, we used the estimations provided in the same study and simply calculated

the following:

-A library floor of academic journals = 10 "' Bytes
-11 exabytes = 11* 10" bytes
(11* 10"®)/10 " = 11* 10" = {110 * one Million}

This shows that 11 Exabytes of information —if printed in books and journals-
would need one million academic libraries of 110 floors each (higher than the
Empire State building) filled with books in each floor. This explains the finding by
the same study that only 0.01% of the new information is printed on paper. It

would be simply impossible to manage the whole amount if printed.

The UCB study points out an important difference between “surface web” and
“deep web”. The first refers to static pages stored directly on servers as HTML
files with fixed contents. The Latter refers to web pages which are only generated
to the user on demand (at run time) while their information contents are
normalized and stored as other information files (like XML) or in databases.
Contents Management Systems (CMS) are emerging trend to increase our ability
to manage information contents of large web sites. In our system (Chapter 5), we
also propose to move patterns from text files to database as one of the much

needed improvements

While more information is better, we need to be able to handle them effectively.
Putting more information on the Internet may flood the Internet space and make it

228

harder to find quality or relevant information faster. We also run the risk of not
finding some existing information at all. Searching information might become
more difficult and search index will definitely grow bulkier and harder to maintain
and update. Similarly, new information will have less visibility in larger body of
information. We should be aware of the consequences associated with this
unprecedented and unconceivable growth, and readjust our approaches towards
the use of the Internet accordingly. We will focus on some of these
consequences on patterns in the next section

Pattern Broadcasting on the Web

The dynamics of Internet were paralleled by a similar -but much smaller- growth
in pattern research. Looking at the growth of the Internet, many pattern authors
have opted for the Web as the best means to broadcast their patterns to
prospective pattern users. Many research projects and experts posted patterns
and pattern-related articles on the Web to ultimately reach mainstream designers
outside the research community.

As part on an experiment, we asked 7 groups of participants to collect as many
pattern collections on the Web as possible within a specific time. Several
collections were not found by some groups, and no group was able to build a
universal set. Some collections were not found by any of the seven groups. The
common complaints were about being lost in huge number of links -some of them
going in closed circles of hyperlinks- and the huge number of irrelevant search
results returned by search engines. Some web pages contained over 70 links
each and some of these links pointed to other hyperlink-loaded pages. After few
clicks, some users simply lost track of their search ground. Parts of the findings
are presented in Chapter 2. Further study is needed to evaluate these resuits
and find if users just skipped some collections out of frustration, or due to being

overwhelmed, or if some collections are really hard to find.

229

Based on the information collected by the participating groups, we estimated the
total size of pattern-related information on the Web to be less than 50
Megabytes. Similarly, we estimated a size of 250 megabytes of information
currently available in books. In an average academic library, much more
information is available, but there is often an intricate cataloging system that
organizes them, and allow for effective search. This is not the case within the
‘pattern community. There is no system available for organizing pattern material
at large, besides linked pages or lookup by keywords. In the section “Keyword
Indicators” later in this appendix, we will look into the inadequacy of using
“pattern” in search by keywords.

We also ran several benchmark tests within the 3 years on search engines and
online book stores using common search keywords. The following trail of results
is one example of what we obtained from one search engine using the same

word:

29,700,000 matches in 0.73 seconds (on 02/2003)
35,300,000 matches in 0.28 seconds (on 02/2004)
43,500,000 matches in 0.19 seconds (on 02/2005)

The number of matching web pages —in tens of millions- shows that it is
impractical to look for patterns on the web by keywords. Too generic keywords
returned millions of results, and too specific key words made several relevant
Web pages disappear. Web Pages use different taxonomy for their research. As
discussed in the Thesis, there is no common agreement yet on the taxonomy or
classification of patterns and their related domains. Appendix F provides an
overview of some of the emerging standards like ISO and ACM.

We also observe that the search speed improved (from 0.73 down to 0.19, and

for more results), obviously due to improvements and investments in new

hardware technology. But the impracticality of the number of results is ignored.

230

No human can look up 29 million results, let alone 43 millions. There is no point
for us to keep improving our storage and processing capability, Internet
infrastructure, network bandwidth and index sizes just to get several more
millions of search results. We have to solve this scalability problem as well. The
software community is starting to become aware of this emerging challenge. A
similar study in an |IEEE journal in 2004 referred to the same problem [Luc04].
The author indicates that we assume that search engine ranking directs us to the
most relevant and informative Web pages, but that was not true. He explains that
in his search attempts, the first few hundred pages were “useless” and that the
actual page was possibly “somewhere down past the million mark in the list”. We
believe that we all share the same misleading perception to rely on the ranking of
the search engine. We can always use refined or specialized search, but as we
proposed in the term “pattern visibility”, in the absence of common taxonomy,
more relevant pages will disappear from the results as we use more specialized
search words.

Keyword Indicators

A major contributing factor is the fact that the word pattern is used in almost all
areas of life. The Study at UCB uses a “keyword Indicator” to estimate the
functionality or the context of each page by the presence of some keywords in
the page. For example if the page contained the word “search”, this may indicate
that the page belongs to a complex Website, and using “login” or “password”
indicate protected pages.

We need to evaluate the adequacy of the word “pattern” as a keyword indicator
to be used in simple or complex search for pattern-related pages. The Collins
Cobuild Bank of English [CC01] “reflects the whole range of today’s language”. It
provides one of the largest bodies of English language corpuses, which is used
to keep track and evaluate the English language dynamics and use. It currently
has about 500 million words in its archive, and is constantly collecting and

analyzing most of new English texts. While there is a large and rich vocabulary,

231

English uses fairly small number of words for most purposes. An average
dictionary will have few tens of thousand entries. Cobuild selects as few as
14600 words as those that “most people come across everyday”. Moreover, it
provides a 5 point rating of the commonality of these words; the frequency of how
people use each one. A 5-point word is used in almost every sentence we write
(e.g. is, has), and there are 680 words in this group. Unexpectedly, we found
that the word pattern is at the next highest level of popularity, receiving 4-point
rating. The total number of this group is only 1040 words. This puts pattern at the
same popularity level as other words in this group like “will’, “object” and
“normal” which we use in literally every article. This alone might explain the huge
number of pages returned from any web search as we look for patterns, but
strongly indicate the inadequacy of the word in a common Web search.

Furthermore, one thesaurus [Rog99] gives 38 other words that we use
interchangeably with the word pattern, like shape, type and copy, which means
that people simply replace any one of these commonly used words with the word
“Pattern” in different contexts. This observation draws attention to the
misconception that broadcasting good research on patterns will guarantee that it
will reach the mainstream developer. As part of this study, Chapter 2 discussed
some of these misconceptions in details.

Looking into the popularity of the word “pattern”, we can explain why any
keyword search that has it will return colossal number of hits, most of them are
irrelevant to pattern community.

To further investigate this aspect, we can measure the “total size of pattern
information on the Web, P;” compared to the “total size of all information on the
Web, W;". From the UCB study [LV03] we can calculate the total body of
information on the Web, W; to be over 785 Petabytes (785 * 10" bytes). We
earlier estimated P; to be 50 * 10° bytes. We can calculate the ratio Py/W; to be

232

around 10™"°, or 10 orders of magnitude less''. From that we conclude that since
the word pattern is very popular as a general purpose word, and by looking at the
small size of actual pattern information, there is only an insignificant probability of
finding relevant pattern information using random search on the Web. Many new
patterns remain invisible to mainstream users and do not show in a normal

search activity by interested new users.

The problem of effectively locating web pages has been recently identified in
other studies as well. University of California at Berkley [UCB0O0] provides
another study that proposes Web pages to be assigned a lexical code to make it
easier to locate them using keyword search. We need to investigate these
approaches and popularize them among pattern community to improve the

broadcast effectiveness.

Automated Search

The Internet is growing so much and so fast that it is becoming a double-edged
sward. As we have demonstrated, it can be useful if we sufficiently understand its
dynamics. It can also be misleading if we just keep dumping more knowledge
into it than it already has, hoping that whatever target audience we have in mind
will find our information “easily”. The study shows that this might not be the best
approach, especially for patterns. Patterns have to be able to find their users or
at least make themselves readily visible on the Internet. We need to find other
search methods than random search which is starting to show some weaknesses

with the growing size of both the Internet and the number of pattern collections.

" In this calculation, we compared similar values of Web pattern information and Web

information. In another comparison, we compared two other but also comparable values: total
pattern information (Web, journals and books) to the total information body we have today. The
results were close, at 11 orders of magnitude.

233

Solutions

Pattern communities and groups already exist as one solution towards guiding
users in their search for patterns, but we have shown that they are not well
organized, and they randomly point to each other back and forth. They also have
high fan out where each pattern page can have tens of links, each is loaded with
many other links, some pointing back to previous pages. Users end up in
frustration as they keep going in closed loops of links, or they may simply avoid
search attempts altogether.

The study proposes to modify the question “who can go through 43 million pages
looking for anything?” into “what can go through 43 million pages looking for
anything?” and the obvious answer would be “A Software”. Based on the study,
we propose to separate actual patterns from the rest of pattern literatures, and to
build suitable pattern semantics to allow for interoperability with software, not
only for lookup, but also for reuse. We see them as “smart patterns”.
Broadcasting patterns as text-based Web pages on the Internet does not result in
effective search and reuse. We can see the advantages of storing smart patterns
in a database that allow for accessibility and interoperability with other software.
Depending on the user's needs, the concept of pattern database is applicable
both for local database as well as for a community-wide database on the Internet.
We have demonstrated the feasibility of both approaches. Technical details are
presented in Chapter 5 of the thesis.

234

Appendix F

Key Terms and Concepts

The difterence between

the almost-right word and the right word
1s the difference between

the lightning bug and the lightning

Mark Twain

Similar terms have different definitions and understanding in different disciplines.
[Som01] explains ‘there is immense scope of misunderstanding because of the
different terminology used...” When it comes to interdisciplinary work, the lack of
common agreement becomes apparent and sometimes confusing. Special
attention is required to reduce this misunderstanding. In this section, we define

and discuss some terms and explain the view that we are adopting.

System Engineering: This term is used under very broad definitions, depending
on the system being built. [Som01] defines it as “an interdisciplinary activity
involving teams drawn from different backgrounds”. Although many phases and
activities of the system engineering process are similar, regardless of the system,
we should be cautious about the distinctive nature of software-based system
engineering, and carefully identify its unique elements. [Prs01] specifies that “a
high-technology system encompasses a number of elements: software,
hardware, people, database, documentation, and procedures”, and he
emphasizes that “system engineering helps to translate customer’s needs into a
model of a system that makes use of one or more of these elements”. This is a
fundamental definition to our work. We are working on five of these six elements,
namely software, people, database, documentation, and procedures, and we are

definitely using the sixth; namely hardware.

235

Software-Based System Engineering is concerned with applying system
engineering concepts to build a software system within the big picture of a
complete system. Somerville [Som01] refers to it as computer-based system
engineering

Interaction Design: Smith and Tabor [ST96] define it as “Designing the way
people interact with objects and systems, especially with computer software”.
The fact that computer software is “virtual” was a major driver for a lot of
research. Winograd [Win96] asserts that “inferaction design cannot dispense with
scientific method and engineering knowledge”. He emphasizes the essentiality of
merging them, but also the difficulties of doing that.

The domain of Human Computer Interaction HCI: As an emerging domain,
there is no concrete agreement yet on the definition and boundaries of HCI or on
the description of its interaction with other domains, many of which still have
unclear boundaries themselves. We give some commonly used definitions that -
while not the official or unanimously adopted ones- give a clear understanding of

some terms.

Human-Computer Interaction (HCI): [HCIO2] defines HCI as the study of
interaction between people (users) and computers. It is an interdisciplinary field,
relating computer science, psychology, cognitive science, human factors
(ergonomics), design, sociology, library and information science, artificial
intelligence, and other fields. Interaction between users and computers occurs at
the user interface, which includes both hardware (i.e. input and output devices)
and software (e.g. determining which, and how, information is presented to the

user on a screen).

As one of the authoring and most influential organizations in software

engineering, the Association for Computing Machinery, ACM (www.acm.org)

236

defines HCI as "a discipline concemed with the design, evolution and
implementation of interactive computing systems for human use and with the

study of major phenomena surrounding them” [HCG+96]

ACM attempts to delimit the scope of concerns of HCI, and to specify its
connections with other fields. It emphasizes that Human-Computer Interaction

has science, engineering, and design aspects, and is concerned with

-The joint performance of tasks by humans and machines

-The structure of communication between human and machine

-Human capabilities to use machines (including the learnability of interfaces)
-Algorithms and programming of the interface itself

-Engineering concerns that arise in designing and building interfaces

-The process of specification, design, and implementation of interfaces; and
-Design trade-offs

To help establish some internal boundaries within the domain, five interrelated
aspects of human-computer interaction are identified:

1- The nature of human-computer interaction, denoted “N”
2- The use and context of computers, denoted “U”

3- Human characteristics, “H”

4- Computer system and interface architecture, denoted “C”
5- The development process, denoted “D”

ACM provides a visualization of the main HCI constituents and the relationships
between them as shown in Figure 55.

237

Use and Context

Ul:Social Organization and Work [EIJT{IJ U3 Humarn-Machine Fit and Adaptation
U2 Application Areas
L Human Computer ~
(/’\ "~ (OCe° C2 Dialogue C4 Computer
Hi Human ‘o Techniques Graphics
Information e
Processing \j— D D ﬁ
C3 Dialogue C5 Didlogue
H2 Language ‘ Cernre Architecture
Communication H3 C1 Input and
and Interaction Ergonomics Qutput Devices <>
% X5
/ -
. ; S
D4 Example System_‘s-
D3 Bvaluation and Case Studies D2 Implementation
Techniques Techniques and Tools
D1 Design
Approaches
\ Development Process /

Figure 55: HCI as depicted by ACM

Expanding the Classical View of HCI:

While the classical view of Interaction is a Human using a graphical user
interface running on a desktop Computer, this view is changing rapidly in all its
three constituents; H, C, |. We need to generalize it into a less restrictive view:

The *human” is definitely changing from the stereotypical highly educated and
well trained user into the more relaxed view which include people from many
other domains, with no prerequisite on education, training or experience. This
also allows for the inclusion of special groups like children and persons with
disabilities.

238

The “computer” is also changing due to the unprecedented technological
advances in hardware and the drop in prices. Many consumer electronic gadgets
are miniaturized and computerized. A small device like a personal digital
assistant (PDA) that fits on the palm of a hand has more computational power,
storage capacity and screen resolution than the desktop of just a decade ago.
The integration of computers into other sophisticated systems like the cockpit of
modern aircrafts and cars shows the extent of the word computer.

The “interaction” is equally expanding from WIMP (Windows, Icons, Menus and
Pointing device) into stylus, voice, eye tracking and gesture interaction. The
concept of Graphical User Interface (GUI) is preceded by Tangible User Interface
(TUI). Just a year ago, people could not imagine “Edible User Interfaces” or EUI,
an ongoing research at Stanford University. In April 2005, it was presented at an
ACM conference, CHI 2005 [May05]. Again, the spread of computers into more
complex domains forces the interaction style to transcend its classical
boundaries.

HCI, CHI, and IHM:

Different literature uses either the HCI or the CHI acronyms. Generally speaking,
they refer to the same thing. HCI is now more widely accepted among
researchers while CHI is becoming outdated. In the francophone world,
“Interaction Homme-Machine” is a close French translation of HCI. It follows the
same trend of “human” preceded by “computer’. The computer is often referred
to as a computational machine, or simply a machine.

Interface

In its widest sense, the term interface denotes the logical or physical layer that
separates two objects. In computer science, we often regard an interface as the
point of communication between two objects. For example, in object-oriented

programming, an interface defines a formal way of interacting with a program

239

object and is often associated with abstract data types and encapsulation. Each
object can have one or more interfaces associated with it, hence offering multiple

points of communications.

User

A user is the ultimate source or destination of a message or the ultimate cause or
effect [Lay03]. In computer science, a user is not necessarily a human. A
software application can have another software or non-software system as a
user. The UML uses other terms like a role to abstract the concept of a user into
a functional point of view.

User Interface

In software engineering, we can view the user interface as the collection of
components of a computer system that the operator uses to interact with the
computer - the screen, keyboard, mouse, touch controls, as well as the virtual
controls displayed on the screen. Unlike the broader definition of “user” in
conjunction with software in general, the term user in ‘user interface” implicitly

narrows the interaction with computer system to a human.

In HCI domain, we refer to the user interface as the specific hardware and
operating software by which an operator executes procedures on computer and
the means by which the computer conveys information to the person using it; the
controls and displays. This view clearly put emphasis on the components as

well as the interaction itself.

End User

In software domain, an end user is a person who interacts with a software
application after it has been developed. The person uses the application to
accomplish specific tasks, but is not interested in computers per se (Brad Meyers
and David Maulsby, http://www.acypher.com/wwid/BackMatter/Glossary.html).

They are also referred to as interface users, or simply users.

240

Pattern User
Patterns are intended to disseminate design knowledge from experts to other
designers. A pattern user is a designer who uses a pattern as a guide to solve a

design problem similar to that explained in the pattern.

Usability: ISO 9241-11 defines usability as the extent to which a product can be
used by specified users to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use.

In this context, we can define the following three qualifiers used in the definition
of Usability:

Effectiveness
The accuracy and completeness with which specified users can achieve
specified goals in particular environments. Effectiveness measures the
degree of completing the tasks, regardless of the effect on resource
expenditure.

Efficiency
The resources expended in relation to the accuracy and completeness of
goals achieved. Efficiency often refers to the operating costs, but can also
refer to production. A more efficient car takes less fuel to drive, and more
efficient software take fewer resources to accomplish the work.

Satisfaction
The comfort and acceptability of the system to its users and other people
affected by its use.

It is important to emphasize the difference and the relationship between software
effectiveness and efficiency. More effective software will help users achieve more
goals in a more accurate way. More efficient software will consume fewer

resources to do the work. In many systems, the tradeoff is apparent between

241

both parameters. It is often the case that we can achieve most of the goals at an
acceptable cost, but the cost grows dramatically when we need to achieve all
goals with great accuracy. If we added the factor of satisfaction, we can say that
it might take more resources to operate more pleasant software. The study of
usability works to find a good equilibrium between them.

242

