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ABSTRACT

Control and Simulation Investigation of Wing Rock Phenomenon

Zeng Lian Liu, Ph. D.

Concordia University, 2004

Wing rock phenomenon is manifested by a limit cycle oscillation predominantly in roll
about the body axis. This self-induced rolling oscillation is highly annoying to the pilot
and poses serious limitation to the combat effectiveness. The maneuvering envelope of an
aircraft exhibiting this behavior is also seriously restricted because the maximum angle of
attack (AOA) is often limited by the onset of wing rock before the occurrence of stall.
This thesis deals with the control and simulation investigation of wing rock phenomenon

by the five new control schemes for the different assumptions of wing rock model.

First, a variable phase control scheme, based on the results of energy analysis of wing
rock hysteresis, is developed for wing rock suppression. Its main advantage is small
control power need. For the tracking control of wing rock at a fixed AOA, fuzzy PD
control is then designed; however, if wing rock suffers from external disturbance, fuzzy
PD control exhibits a big tracking error. To overcome this disadvantage, variable
universe fuzzy PD control is proposed to achieve the precise tracking control. For the
tracking control of wing rock with a time-varying AOA and uncertainties, the NDOFEL
scheme, a nonlinear disturbance observer (NDO) combined with a feedback-error-

learning (FEL) strategy, is proposed for a class of time-varying nonlinear systems with

iil



unknown disturbances, where the nominal model of wing rock control is assumed
available. The proposed NDOFEL not only extends the NDO into time-varying nonlinear
systems but also improves the precision of tracking control. Finally, because aircraft at a
high AOA operate in nonlinear flight regimes in which the dynamics are very complex,
aircraft’s wing rock model is usually unavailable. A reinforcement adaptive fuzzy control
scheme is presented to guarantee the stability of the closed-loop system and the

convergence of the tracking error.

The proposed control schemes emphasize stability, robustness, and simplicity such that

they can be applied for on-line learning and real-time control. Numerical cases in each

scheme are used to confirm the effectiveness and robustness of the proposed schemes.
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Chapter 1

Introduction

1.1 Limit Cycle Oscillation

Limit cycle oscillation (LCO), as described in Reference [1], is a term that has come into
widespread use since the mid-1970s to describe the aeroelastic response of certain aircraft
and external store configurations that encounter sustained, periodic, but not
catastrophically divergent motion in portions of the flight envelope. In practice, the term
LCO ignores the origin issue and simply describes the nature of the motion associated
with the phenomenon. Specifically, the amplitude of the motion is cyclic (repetitive in a
given period of time) and oscillatory (the amplitude varies above and below a mean
value). What this means is that LCO in its purest form is characterized by sinusoidal

motion.

Dimitriadis and Cooper in Reference [2] explained the mechanism by which limit cycles
are created. Around a stable limit cycle, only a certain amount of energy is drawn from
the free stream; as a result, when a system undergoing such an LCO is displaced to a
higher energy state, it cannot maintain its energy level and winds back on the limit cycle.

If the system is at a lower energy state, it receives more energy than it is dissipated by the



damping and moves up to the limit cycle. On the limit cycle, the rate of energy input
from the free steam is equal to the rate of energy dissipation, resulting in a stable periodic

motion.

The stability of LCO is based on stability principles of nonlinear systems. If a system has
a nohlinear stiffening term, in most occasions the amplitude of oscillation will grow until
an LCO is reached. LCOs, though stable in the sense of Lyapunov, are not asymptotically
stable. This means that although the final state is bounded, the system will not
asymptotically approach its original equilibrium point as time grows. In addition, Patil et
al. in Reference [3] pointed out that LCOs can be induced by certain disturbances, if it is
sufficiently large, even when the given equilibrium state is stable. Basically, if the
disturbances are not small, the response of LCO cannot be predicted by linear system

theories.

Because of the nonlinearities involved, classical linear flutter analysis techniques fail to
predict the onset of LCO. Although no instance of a structural failure has ever been
reported, when an LCO has suddenly and rapidly grown in amplitude, it is unclear at
what level the divergent behavior will have stopped, or if it will have stopped at all short
of a structural failure. Especially for fighter aircraft, LCOs can be highly annoying to the
pilot and may pose serious limitation to the combat effectiveness. Besides, Katz in
Reference [4] explained the case of jet-engine airplanes with high swept wings. The angle
of attack (AOA) of the airplanes must increase to obtain reasonable landing speeds.

Under such high AOA landing conditions, both flight tests and experimental data have



indicated that lateral instabilities in the form of LCO may be presented. Therefore, the

efficient control of LCO is a very important issue.

Most LCO investigations of aircraft are concerned with two aspects: aeroelastic systems
and lateral flight dynamics. References [5-11] are some examples of LCO research in

other engineering fields.

1.2 Aircraft’s Limit Cycle Oscillations

1.2.1 LCO in Aeroelastic Systems

In aeroelastic systems, which study the interaction of structural, inertial, and aerodynamic
forces, limit cycle behavior occurs in level flight and during elevated aircraft load factor
maneuvers. Ko et al. in Reference [12] described this type of LCO. For a typical LCO,
the amplitude is constant only in stabilized flight conditions. Once above the onset speed
and accelerating to a new higher speed, the amplitude of the LCO grows. The motion
appears to be diverging until the new target speed is reached. When the speed is again
stabilized, the motion will become sinusoidal, but with bigger amplitude than it had at the
earlier speed. Some engineers consider this phenomenon to be closely linked to classical
flutter characterized by the loss of system damping due to the presence of unsteady

aerodynamic loads.

Denegri in Reference [13] provided flight test results and a detailed description of the

aircraft/store LCO phenomena. LCO flight test of a fighter aircraft with external stores



shows three distinct categories of response behavior as follows:

(a) Classical flutter behavior is characterized by the sudden onset of high-amplitude
wing oscillations.

(b) Typical LCO is characterized by the gradual onset of sustained limited amplitude
wing oscillations where the amplitude progressively increases with increasing
Mach number and dynamic pressure.

(c) Nontypical LCO is characterized by the gradual onset of sustained limited
amplitude wing oscillations where the amplitude does not progressively increase

with increasing Mach number.

1.2.2 LCO in Lateral Flight Dynamics

Flight at a high AOA allows for enhanced maneuverability and increased lift during
takeoff and landing. In this flight condition, the acrodynamics of aircraft is dominated by
separated flow, vortex shedding, and possibly vortex breakdown. These unsteady
aerodynamic effects at a high AOA generate LCO in roll, which in some case is coupled
with yaw oscillation. This phenomenon is called as Dutch-roll LCO. However, this
motion, as claimed in Reference [14], becomes more of a pure rolling motion as the AOA
is increased. In flight tests, Ross in References [15-16] observed that the Dutch roll
oscillation is stable at a low AOA and does not diverge completely at a large AOA, but
exhibits a limit-cycle type motion with a constant amplitude in angle of bank of 30° or so.

The researchers in References [17-18] analyzed the characteristics of this motion.

On the other hand, wing rock phenomenon, as defined in Reference [19], is manifested by



an LCO predominantly in roll about the body axis. The control of many aircraft at a high
AOA is limited by wing rock phenomenon. High-speed civil transport and combat
aircraft can fly in conditions where this self-induced oscillatory rolling motion is
observed. Shue and Agarwal in Reference [20] asserted that such oscillations lead to a
significant loss in lift and can cause a serious safety problem during maneuvers such as
landing or takeoff. The maneuvering envelope of an aircraft exhibiting this behavior is
also seriously restricted because the maximum incidence angle is often limited by the

onset of wing rock before the occurrence of stall.

The researchers in References [21-26] investigated large-amplitude wing rock
phenomena. With AOA increasing, normal wing-rock limit cycles build up gradually in
amplitude, whereas large-amplitude wing rock results from a jump at a saddle-node
bifurcation point of the periodic solutions. Ananthkrishnan and Sudhakar in Reference
[21] explained that inertial and kinematical coupling terms are primarily responsible for
the jump in limit cycle amplitude while the aerodynamic nonlinearities cause the onset of

wing rock and restrict the unstable Dutch roll model to a limit cycle.

However, the mechanism that leads to these LCOs is not clear. Kurdila in Reference [27]
claimed that, in part, this might be attributed to the difficulty in understanding the nature
of the contributing nonlinear structural and nonlinear aerodynamic interactions that
account for the LCO motion. From this point of view, Figure 1.1 is drawn to interpret the
interaction of aircraft structure and aerodynamics to produce some LCOs in the following

forms:
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Figure 1.1 Interaction of aircraft structures and aerodynamics

(a) Pitch and plunge LCOs (in aeroelastic systems),
(b) Dutch-roll LCO (combining with roll and yaw motions), and

(c) Roll LCO (wing rock phenomenon).

In this thesis, we will focus on the control and simulation investigations of wing rock

phenomenon. Of course, these investigations could also be applied in the other LCO

controls of aircraft.

1.3 Wing Rock Phenomenon

Wing rock phenomena in the literature can be traced back to Ross’s research paper in
1972. Ross in Reference [15] described this “nonlinear motion” experienced by the

Handley Page 115 research airplane. Nelson and Andrew in Reference [28] reported that



wing rock phenomenon is not limited to a few aircraft; in fact, over 13 modern aircraft
have been documented to exhibit this phenomenon. Levin and Katz in Reference [29]
explained that the principal source of wing rock is the wing itself. To understand wing
rock phenomenon, most researchers focus on the wing rock of free-to-roll delta wing
models. It is interesting to note that only those delta wings whose leading-edge sweep is
75° or more to exhibit wing rock. Moreover, it is generally accepted that only thin, highly

swept slender delta wings exhibit wing rock.

The wing rock phenomenon of a thin, sharp-edged 80° delta wing model has received
considerable attention in the literature. At a high AOA, the 80° delta wing model loses
roll damping. On receiving a disturbance, the model starts oscillating and its amplitude
builds up rapidly, as shown in Figure 1.2. Even a small disturbance in the form of wind-
tunnel turbulence or flow unsteadiness is usually sufficient to initial the rocking motion.

Such wing rock in References [30-31] is often called a self-induced wing rock.

$ou
o
T T T ¥ 1

e
; o
LZENS WAN S 2

i

0 5 10 15 20 25 3

f sec

Figure 1.2 Free-to-roll test wing rock at AO4 =30° [28]



However, aircraft configurations not having highly swept delta wings but featuring
fuselages with long, slender forebodies, even when the wing is removed, are also known
to exhibit wing rock. This type of wing rock in References [30-31] is called forebody-
induced wing rock. It may also be noted that thin, sharp-edged rectangular wings of very
low aspect ratio, usually less than 0.5, also exhibit wing rock, which is generated by the

dynamic motion of the side edge vortices.

Figure 1.3 shows some wing tunnel test results on the 80° delta wing models in the

literature. When 20° < 404 <60°, the models exhibit wing rock, but the oscillation

amplitude at the same AOA is different due to the different free-to-roll apparatus.

—e— Nguyen et al(1 98;)
—a— Levin & Katz(198, &
—A— Arena & Nelson(1994)
—e— Guglieri et al (1997)

Amplitude in roli (deg)

...............................................

15 20 25 30 35 40 45 50 655 60 65
Angle of attack (deg)

Figurel.3 Some wing-rock experimental results

In Figure 1.3, we have also observed some difference in the AOA of the onset of wing

rock. Various researchers measure the AOA at which the onset of wing rock. The main



reason for these variations is believed to be the bearing friction in the free-to-roll
apparatus. If the bearing friction is high, the wing rock starts at a higher AOA because a
larger destabilizing aerodynamic moment is necessary to set the model rolling. In fact, in
free flight, it will exhibit wing rock at a much lower AOA than measured in the free-to-
roll tests. It is interesting to observe that the limit cycle amplitude is reached within a

few oscillations. The maximum amplitude and the frequency of wing rock vary with the

AOQA.

Pamadi and Bandu in Reference [30] indicated that a loss of damping in roll at a high
AOA makes a configuration susceptible to wing rock but does not necessarily generate a
sustained wing rock. Some additional aerodynamic causes are necessary to generate a
sustained wing rock motion. The various causes that have been identified so far are:
(a) Nonlinearities in lateral-directional aerodynamic characteristics,
(b) Aerodynamic hysteresis in the variation of rolling moment with sideslip/roll
angle, and
(c) Nonlinear variation of roll damping such that negative damping (destabilizing)
exists at low values of sideslip/roll angle and positive damping (stabilizing) at

higher values of sideslip/roll angle.

1.4 Problem Definition

One of the most common dynamic phenomena experienced by slender wing aircrafts
flying at a high AOA is the phenomenon known as wing rock. Wing rock phenomenon is

a complicated motion that typically affects several degrees of freedom simultaneously.



However, as the name implies, the primary motion is an oscillation in roll. This rolling

motion is a self-induced motion characterized by a limit cycle behavior

In general, wing rock phenomenon investigation is based on numerous experimental
observations. The experiments demonstrate the role of the leading edge vortices in
driving the motion. Katz in Reference {4] explained the experimental results that the
rolling moment versus roll angle indicates a reversal of the hysteresis near the edges of
the loop compared to its center, providing clues about where the motion is being driven

and where the motion is being damped.

Wing rock mathematical modeling is based on the parameter identification of
experimental data. The simplified geometries in free-to-roll tests exhibit stable limit
cycles and correctly reproduce the dominant effect of primary wing vortices. Most
researchers use the mathematical models of some LCOs with one-degree-of-freedom

(one-DOF) to describe wing rock phenomenon.

As for wing rock control approaches, we may choose forebody blowing methods or
nonlinear control algorithms. By comparison, nonlinear control algorithms obviously

show high potential in inexact dynamic model and uncertain operating environments.
In this thesis, we will study the nonlinear control schemes of wing rock phenomenon that

has the different model assumptions. These assumptions are:

(a) The mathematical model of wing rock phenomenon is known at different AOAs,
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as many researchers have done numerical studies about wing rock suppression.
(b) The mathematical model is a known time-varying nonlinear system with AOA.
(c) The mathematical model is a known time-varying nonlinear system with
unknown disturbances.
(d) The mathematical model is an uncertain nonlinear system with unknown
disturbances; but we know its nominal model.
(e) Not only the mathematical model is an uncertain nonlinear system with unknown
disturbances, but also its nominal model is unavailable because the analytical

modeling of wing rock is very difficult to be obtained for real aircraft.

We are interested in the following two problems about wing-rock control without and
with disturbances.

(a) Suppressing control: achieve the system output to be zero roll angle, ¢(¢) =0,

and zero roll rate, ¢(r) = 0, to suppress wing rock.

(b) Tracking control: achieve the system output to follow a desired trajectory.

1.5 Literature Review

Wing-rock control methods reported in the literature can be classified into two groups:

forebody blowing methods and nonlinear control schemes.

1.5.1 Forebody Blowing Methods

Wing rock phenomenon is caused by the wing vortices, the forebody vortices, or an
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interaction between these two vortices. The loss of damping in roll at a high AOA
initiates the wing rock, and some form of vortex-asymmetry-switching mechanism
sustains it as an LCO. Therefore, the key to suppressing wing rock by passive
aerodynamic methods is to manipulate the vortices so that the vortex-asymmetry-
switching mechanism is suppressed and the vortices are forced to assume a symmetric
disposition. The researches in References [32-37] employed this technique to achieve

wing rock suppression.

1.5.2 Nonlinear Control Schemes

Generally, if physical systems are inherently nonlinear, these nonliearities lead to the
systems not described by linear representations. Moreover, nonlinear control laws, as
claimed in Reference [38], can improve control precision and widen stability boundaries
when flight must be conducted at high angles or high angular rates and when the control
actuator limits must be challenged. Various nonlinear control schemes in the literature
have been tried to control wing rock. Some of the prominent approaches are: 1) adaptive
control, 2) neural networks, 3) optimal control, 4) fuzzy logic control, 5) robust control, 6)
bifurcation analysis, and 7) sliding mode control. Each of these approaches is briefly

described below.

1) Adaptive Control
An adaptive control system, as defined in Reference [39], is a feedback control system
intelligent enough to adjust its characteristics in a changing environment so as to operate

in an optimal manner according to some specified criteria. To date, most adaptive flight
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control designs have addressed the issue of the uncertain aerodynamic effects within the
context of linear control. Calise and Rysdyk in Reference [40] assured them that aircraft
of the future will benefit from an adaptive control system based on the full nonlinear
dynamics of the vehicle while avoiding prohibitively complex gain scheduling. Therefore,
there is presently a strong interest in the development of adaptive control methods that
are applicable to flight control problems where the aircraft characteristics are poorly

understood or are rapidly changing.

Monahemi and Krstic in Reference [41] used the tuning function method of adaptive
backstepping to develop a wing-rock regulator. They have claimed precise tracking and
maximum performance can be achieved if there is sufficient rolling moment derivative.
Araujo and Singh in Reference [19] presented the variable structure model reference
adaptive control of wing-rock motion, using only input and output signals. Gazi and
Passino in Reference [42] proposed direct adaptive control scheme and dynamic structure
fuzzy systems for wing-rock control problem. Ordonez and Passino in Reference [43]
also developed a direct adaptive control method with a time-varying structure using a

Lyapunov approach to construct the stability proof.

2) Neural Networks

Neural network (NN) control has great potential since artificial NNs are built on a firm
mathematical foundation that includes versatile and well-understood mathematical tools.
It is suitable for nonlinear dynamic systems and offers powerful control mechanisms in

conjunction with NN-based system identification techniques. Furthermore, the authors in
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References [44-45] showed that NN function as highly nonlinear adaptive control
elements offers distinct advantages over more conventional linear parameter adaptive

controllers in achieving desired performance.

Singh er al. in Reference [46] presented conventional adaptive and neural adaptive
control methods for wing rock control. A radial basis function network is used for
synthesizing the controller and an adaptation law is derived for adjusting the parameters
of the network. Joshi et al. in Reference [47] also proposed a single neuron control
scheme for wing rock suppression. They have demonstrated the robustness by
suppressing wing rock not only in the software simulation but also in the real-time

experiments conducted in a wind tunnel on an 80° swept back wing.

3) Optimal Control
Optimal control, as defined in Reference [48], tries to find a feasible control such that the

system starting from the given initial condition transfers its state to the objective set to

minimize a performance index.

Luo and Lan in Reference [49] used Beecham-Titchener’s averaging technique to derive
an optimal control input for wing-rock suppression. Since the control input is a function
of time, an approximate state-variable feedback control input is obtained using the least-
squares method. Rogers in Reference [50] presented an algorithm for determining the
optimal constant coefficients directly and applied to parameter optimal control of wing

rock. Besides, Shue et al. in Reference [51] proposed nonlinear optimal feedback control
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using the Hamilton-Jacobi-Bellman (HJB) equation. The control of wing rock is
asymptotically stable in the large, as both the closed-loop Lyapunov function and
performance index are positive definite. Recently, Tewari in Reference [52] presented an
optimal control scheme and considered self-induced rolling motion, yawing motion, and

an aileron actuator model.

4) Fuzzy Logic Control

Fuzzy logic control (FLC) uses fuzzy set theory. Control decisions can be generated
based on the fuzzy sets and functions with rules. The authors in References [53-54]
indicated that fuzzy control has attracted increasing attention, essentially because it can
provide an effective solution to the control of plants that are complex, uncertain, ill-
defined, and have available qualitative knowledge from domain experts for their
controllers design. This ability of FLC’s makes them suitable for control applications to

plants like aircraft that have nonlinear dynamics and operate in uncertain environments

Tarn and Hsu in Reference [55] developed a rule-based fuzzy controller for wing-rock
suppression. They have employed the fuzzy sets of three terms for the fuzzification of the
control variables and presented numerical results at two AOAs to demonstrate the
robustness of the fuzzy controller in small initial conditions. Sreenatha et al. in Reference
[56] presented the design and implementation of FLC for wing-rock suppression. The
forty-nine fuzzy rules are tried out with the delta wing model in the wind tunnel. The
numerical and experimental results indicate the effectiveness and robustness of the FLC.

Lim and Sreenatha in Reference [57] analyzed the stability and robustness of FLC using
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Liapunov’s theorem. In addition, Nho and Agarwal in Reference [58] presented a fuzzy
model-based predictive control strategy. The control action can be obtained by an error-
minimized optimization procedure. The adaptive network-based fuzzy inference is

employed as an adaptive predictor for the future state values.

&) Robust Control

Controlled system robustness, as described in References [59-60], is the ability to
maintain satisfactory performance in the presence of parametric or structural uncertainties
in either the aircraft or its control system. All controlled systems must possess some
degree of robustness against operational parameter variations. The design of a robust
control system is typically based on the worst case so that the system usually does not
work at optimal status in the sense of control performanée under normal circumstances.
Once the controller is designed, the parameters do not change and control performance is

guaranteed.

Crassidis in Reference [61] presented the robust control approach of nonlinear systems,
which employs an optimal real-time nonlinear estimator to determine model-error
corrections to the control input. This synthesis method is used in conjunétion with a
variable structure controller to suppress wing-rock motion. Stalford in Reference [62]
investigated the control of wing rock using the robust control theory for linear uncertain
systems. Shue and Agarwal in Reference [20] also proposed a nonlinear H. robust

method to control wing rock.
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6) Bifurcation Analysis

The dynamic characteristics of complex systems can be investigated through the solution
of their governing nonlinear differential equations. This analysis is performed by
calculating all steady states of the differential equations. The stability of the dynamic
system at each steady-state condition is determined by the local staBility of the linearized
system around the steady state. A system is defined to be locally stable if the real parts of
all the linearized eigenvalues are negative. Stability changes are characterized by a
crossing of the imaginary axis of one or more eigenvalues between successive steady
states. These stability changes result in qualitative changes in the system dynamics,
which is called bifurcation [63]. A particularly important example is the Hopf bifurcation
that occurs when a complex-conjugate pair of eigenvalues crosses the imaginary axis.

Thus a Hopf bifurcation indicates a point at which LCO behavior starts.

Liebst in Reference [64] used bifurcation theory and root-locus techniques to analyze a F-
15 model and found that an effective control scheme to delay the onset of wing rock is to
combine roll rate and sideslip fixed gain feedback. Goman and Khramtsovsky in
Reference [65] performed the design of a global stability augmentation system for severe
wing-rock motion by using bifurcation diagrams. The nonlinear control law is derived,

considering both local stability characteristics and domains of attraction.

7) Sliding Model Control
The technique of sliding mode control (SMC) is a natural extension of the concept of

variable structure systems (VSS). The VSS philosophy, as discussed in References [66-
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68], can be considered as one in which the system trajectories in the state-space are
forced to slide along a switching manifold by the application of discontinuous control.
The system trajectory is maintained on the manifold and is rendered insensitive to
uncertainties in the process. This is clearly of use for systems in which the model is

poorly defined or time varying.

Based on variable structure control (VSC) theory and the direct method of Lyapunov,
Jafarov and Tasaltin in Reference [69] designed robust flight laws for a simplified aircraft
model F-18. They have applied the derived control laws for the tracking and positioning
of longitudinal dynamics of the F-18 aircraft model. In addition, Singh et al. in Reference
[70] designed a flight control law based on VSC for a simplified F-14 aircraft model.
They have derived the control law for the control roll angle, lateral velocity, and yaw rate

in spite of aerodynamic parameter uncertainty.

Fernand in Reference [71] presented discrete sliding mode control (DSMC) for nonlinear,
autonomous, single input, one-DOF plants modeled by continuous or discrete equations.
The DSMC system of wing rock can remain asymptotically stable at a sampling

frequency of five times the open-loop fundamental frequency.

1.6 Motivation

The research of limit cycle problems dates back to the early investigations of Poincare’
in the 1880’s. Unfortunately, a very few resuits have been found even though it was

restricted within the analysis to small-amplitude limit cycle behavior. On the other hand,
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in many engineering fields, see References [5-11], the limit-cycle phenomenon is usually
observed. These phenomena like friction usually cause the loss or degradation of the

system function. Therefore, the limit-cycle phenomenon research is an important and

challenging issue.

In aerospace industry, most modern fighters are required to have high performance
capabilities for enhanced air superiority. Such requirements necessitate aircraft at a high
AOA to operate in nonlinear flight regimes in which the dynamics are very complex. For
example, Ericsson in Reference [72] summarized these challenges into three critical
issues.

(a) Cause and effect of asymmetric forebody flow separation with associated
vortices: the coupling between vehicle motion and flow separation is the cause of
experimentally observed forebody-induced nose-slice and coning motions, as
well as of the associated vortex-induced wing rock phenomenon.

(b) Effect of asymmetry and breakdown of leading edge vortices: for slender delta
wings (A >75°%) vortex asymmetry is the flow mechanism causing the observed
large amplitudes of slender wing rock, and vortex breakdown is the flow
mechanism setting the upper limit of the wing rock amplitude.

(c) Effect of vehicle motion on dynamic airfoil stall: the observed large difference in
dynamic stall characteristics between pitching and plunging airfoil oscillations is

caused by the opposite moving wall effects.

The challenge extends the present knowledge to include the coupling between novel
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aerodynamic controls and the vehicle dynamics of agile aircraft operating at a high AOA.
Ericsson in Reference [73] also stressed the increased interest in improving the safety and
handling qualities of highly maneuverable fighter airplanes and of very slender space-

plane configurations results in a focused effort to study wing rock phenomena.

Ko et al. in Reference [12] pointed out that many researchers have examined the
nonlinearities inherent in structural models. However, efforts to examine nonlinear
aeroelasticity and active control strategies are limited. Surprisingly, less progress has
been made in active control methodologies for these inherently nonlinear dynamic
phenomena. Even in the case where it is known that LCOs may be observed in real flight
envelopé, and éctive control methodologies are employed to attenuate response, there are
very few analytical results that characterize the stability of the closed-loop system.
Owing to the highly nonlinear nature of the flight dynamics at a high AOA, wing rock
phenomenon is not well understood. No satisfactory method has been developed by the

aircraft industry to solve this problem.

Additionally, note that many wing rock control schemes in the literature used a simple
80° plate plane delta wing model with small disturbance or without disturbance. My
efforts try to expand this model into a real aircraft model by using different assumptions.
Meanwhile, I will propose some new suppressing control and tracking control schemes.
In this thesis, the following five issues have been focused on:
() To understand wing-rock phenomenon, most researchers investigate the
characteristics of wing-rock aerodynamics such as vortex flow, vortex

breakdown, and locations of vortex breakdown. But, in this thesis we study the
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(b)

©

(d)

(€

phase plane and energy mechanism of wing rock phenomenon, and then find a
relationship between the rate of wing rock energy change and wing rock
hysteresis loops.

Based on above results of energy analysis, we try to use a phase control
algorithm to suppress wing rock phenomenon in such a way as to force the rate
of energy change less than zero, that is, dE/dt<0. Since the phase control
algorithm of open-loop linear systems is limited, we seek the variable phase
control method of closed-loop nonlinear systems to remove the effect of wing
rock hysteresis such that wing rock phenomenon can be suppressed.

To control wing rock phenomenon, we first choose fuzzy PD control method to
achieve a satisfactory performance if external disturbance is ignored. If the
disturbance is considered, then its performance is limited.

If aircraft fly in a moderate or high AOA environment, the real wing rock model
should include a time-varying part, non-modeled dynamics, and external
disturbance. These factors offer a challenge to nonlinear control theory. Variable
universe fuzzy PD control is proposed to achieve the tracking control of wing
rock with unknown disturbance. Furthermore, a new learning control scheme,
NDOFEL, is proposed to control a class of time-varying nonlinear systems with
unknown disturbances, but the nominal model is available.

Note that the wing rock model is based on the parameter identifications of the
free-to-roll test data of a simple 80° flat-plate delta wing. In fact, the test results
of Reference [74] for four military aircraft show that aircraft’s wing rock at a

high AOA is a very complex, uncertain, and time-varying nonlinear system. This
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implies that the wing rock model of real aircraft and its nominal model are
unavailable. For this case, a reinforcement adaptive fuzzy control scheme is

proposed to guarantee the robustness and stability of the control system.

The control schemes to be proposed should have the following features:
(a) Have stable online learning ability;
(b) Quickly track the desired trajectory;
(¢) Maintain high control performance in the presence of disturbances and
uncertainties such as parameter variations and non-modeled dynamics;
(d) Guarantee stability of the control system by Lyapunov theorem;
(e) Use simple tuning algorithms for real-time control; and,
(f) Alleviate the chattering problem of sliding-mode control.
Besides, all control algorithms should be simulated by Matlab/Simulink software of Math

Works Inc. to verify the effectiveness of the proposed control schemes.

1.7 Contributions of the Thesis

Over the past thirty years, there has been a continuously increasing interest in the
investigation of wing rock phenomenon. Even though a number of extensive
investigations in the source, behavior, fluid mechanism, modeling, prediction,
suppression, and control strategy have been carried out, there is not a valid control

solution in aircraft industry.

22



In this thesis, further research is made on both the mechanism and the control schemes of

wing rock phenomenon. The following contributions have been achieved:

()

(b)

©

(d)

Presented a phase plane analysis of wing rock phenomenon and gave numerical
simulation results.

Proposed an energy analysis method of wing rock hysteresis and established a
relationship between the rate of energy change of wing rock phenomenon and the
wing rock hysteresis.

Proposed a variable phase control scheme of wing rock phenomenon and
extended the phase control of open-loop linear systems into a variable phase
control of closed-loop nonlinear systems.

Proposed a fuzzy PD control scheme with four fuzzy rules for wing rock

_ suppression.

()

®

(&

Proposed a new variable universe fuzzy PD control scheme for wing rock
tracking control with unknown disturbance.

Proposed a new learning control scheme, NDOFEL, for a class of time-varying
nonlinear systems tracking control with unknown disturbances. The proposed
NDOFEL not only extends nonlinear disturbance observer into time-varying
nonlinear systems but also improves the precision of tracking control.

Proposed a new reinforcement adaptive fuzzy control scheme if aircraft’s wing
rock nominal model is unavailable. The proposed algorithm is derived by
Lyapunov theorem to ensure the stability of the closed-loop system and the

convergence of the tracking error.
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Part I
Wing Rock Phenomenon Analysis and Variable

Phase Control

The objectives of Part I are to present wing rock models, to analyze the phase plane of
wing rock phenomenon, and then to develop a variable phase control scheme to suppress

wing rock with hysteresis.

1. Wing Rock Models

In order to suppress wing rock phenomenon, the mathematical model of wing rock should
express the main behavior and nature of wing rock phenomenon. Various researchers in
References [75-89], based on the test investigations of an 80" slender delta wing in
References [77, 79-80, 82, 84-87], have proposed the one-degree-of freedom (one-DOF)
models. These models are obtained by using a parameter identification approach of
experimental data. Among these models, the analytical model of wing rock phenomenon
proposed by Guglieri and Quagliotti in References [88-89] provides more information at

different AOAs and with different Reynolds numbers than other models do.
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2. Phase Plane Analysis of Wing Rock Phenomenon

As mentioned above, the analytical model of wing rock phenomenon is a one-DOF
nonlinear differential equation. To understand and analyze this phenomenon, we need to
determine the properties of the solution of the nonlinear differential equation. Phase
plane analysis is an effective tool because the phase-portrait is the aggregate of all
trajectories and therefore represents all possible solutions. Through a study of
singularities in the phase plane, we have considerable insight into the qualitative aspect of
the solution. A graphical representation of the location of the singularities and the types
of solution curves near them present a picture in compact form of all the solutions that
may exist. It shows what kind of changes may occur as the variables in the system take

on all possible values, both large and small.

The phase plane analysis results of wing rock phenomenon have shown that wing rock is
a typical nonlinear system with a soft self-excitation. This means that small-amplitude
initial conditions lead to motions that grow to the stable limit cycle and large-amplitude
initial conditions lead to motions that decay to the limit cycle. The further analysis shows
that wing rock phenomenon on the entire phase plane exhibits three equilibrium points:
an unstable focus at the origin and two saddle points at nonzero equilibrium points. Based
on the Lyapunov stability theory, we conclude that the wing-rock limit cycle is stable but

not asymptotically stable,

3. Hysteresis Mechanism of Wing Rock Phenomenon

The most useful and general approach for studying the stability of nonlinear systems is
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Lyapunov’s theory. Using Lyapunov’s direct method, we analyze the relationship of the
energy variation and hysteresis of wing rock phenomenon. The results show that within
the center loop of hysteresis, the mechanical energy is increasing; outside the center loop,
the energy is decreasing; on the boundary between the center loop and the two outer
loops, the energy is constant. Thus, the exchange of energy during one cycle is equal to

zero. This is the primary explanation of wing rock phenomenon.

4. Variable Phase Control

The hysteresis analysis of wing rock phenomenon provides clues about where the
phenomenon is being driven and where the phenomenon is being damped. Based on the
hysteresis mechanism of driving wing rock phenomenon, a variable phase control scheme
has been proposed to compensate wing rock hysteresis so as to suppress wing rock

phenomenon.

It should be noted that the phase control method focuses on the phase shift or
compensation of the output signal while ignoring the magnitude compensation of the
signal. To suppress wing rock phenomenon with nonlinear nature, we have proposed the
variable phase control scheme of wing rock phenomenon not only to keep the benefits of

the phase control but also to compensate the magnitude distortion.
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Chapter 2

Wing Rock Models

In this chapter, we introduce one-degree-of-freedom (one-DOF) wing rock models in the
literature, and then numerically simulate the wing rock behavior, which is studied and
controlled in this thesis. This chapter is organized as follows: In Section 2.1, we recall
one-DOF analytical models of wing rock phenomenon. To exhibit the wing rock behavior,
we provide some numerical simulation results of wing rock models in Section 2.2.

Section 2.3 summarizes this chapter.

2.1. Wing Rock Models

To describe the motion of an airplane, it is necessary to define a suitable coordinate
system for formulation of the equations of motion. Figure 2.1 shows a body axes

coordinate system for the aircraft with delta wing.

It is necessary to understand that at a high AOA the roll motion about the body axis

reduces the effective AOA and builds up the sideslip as given by the following equations

a = tan”' (tan o cos @)
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B =sin”' (sin o sin ¢)
where o = AOA, o 1is the angle between the x-body (roll) axis and the vector V, and ¢ is

the roll angle about the x-body axis, as shown in Figure 2.1.

zZ(w)

Figure 2.1 Body axes coordinate system for delta wing
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Figure 2.2 Schematic representation of a delta wing on a free-to-roll sting [80]
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Ifg=0and a=0, then B=0; if =90° and & =0, then f =0 . Thus, at extreme
roll angles, all AOAs get converted to sideslip. This is a relation between angle of attack

(AOA), sideslip, and roll angle in reference [90].

In the literature, the modeling of wing rock phenomenon is normally conducted based on
80" swept delta wing models in the free-to-roll tests. For example, Figure 2.2 shows a
wing model, a uniform, plat, and thin wing, supported on a free-to-roll sting, which is

used in the free-to-roll test of Reference [80].

The modeling of wing rock in Reference [80] is based on the following basic equation:

_pUZSh
21

ped

¢ C, + D¢ 2.1)

where ¢@(¢) is the roll angle, p is the density of the air, U, is the speed of the freestream, S
is the plan form area, b is the chord, C; is the roll-moment coefficient, /., is the mass

moment of inertia of the wing around the midspan axis, D is the constant.

Mathematically, the phase plane representation of wing rock motion shows that wing
rock phenomenon is dominated by nonlinear damping and a relationship established with
one-DOF analytical models. Moreover, the analytical models are verified by using a
parameter identification approach of experimental data. The main models in the literature

are summarized in Figure 2.3. The major difference among the models is in the assumed

form of C,.
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—p Model of Hsu and Lan (1985)

One-DOF wing rock models —pwt———yme NModel of Nayfeh et al {1989)

g Nlodel of Guglieri et al. (1997)

Figure 2.3 Analytical models of wing rock

1) Model of Hsu and Lan

Hsu and Lan in Reference [78] proposed the following model
$=Ly+sinalyp+Lp+sinal,|gp+L, |H 22)

where §(f) is a roll angle, @ =404, L,, L,, L,, L,;, and L, are constants. They have

p0> ~pp>

taken L equal to zero and have not provided the values of other constants.

Following the model of Hsu and Lan, we write the rolling moment around the midspan

chord as

C =ag+a,d+aglp+a,dp 2.3)

Substituting Equation (2.3) into Equation (2.1), and rearranging the result, we obtain
§+0°9 = g +b,|glg + by plp 24)
where @’ =-Ca, =sinaL,, u=Ca,-D=1L,-D, D=0.001, b =Ca, =sinal,,

b,=Ca, =L, ,and C=pUlSh/I, =0354.

pp?

However, the model of Hsu and Lan cannot predict more than one equilibrium point and
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roll divergence. The addition of a cubic term to the moment expression in Equation 2.3
leads to additional equilibrium points and to the prediction of roll divergence. We call

this as the modified model of Hsu and Lan.

G, :a1¢+a2¢5+a3l¢|¢+a4l¢;l¢+as¢3 (2.5)
Substituting Equation (2.5) into Equation (2.1) leads to
b+’ = ug+blglp + b, |g|p + b,p° 2.6)

where b, = Ca; and other parameters remain the same in Equation (2.4).

2) Model of Nayfeh, Elzebda, And Mook

Nayfeh et al. in Reference [80], instead of expressing the rolling moment coefficient in

Equation (2.3), used the following form

o =a1¢+az¢5+a3¢3 +a4¢2¢+as¢52¢ 2.7
which leads to a governing equation of the form
¢'5+w2¢=ﬂ¢5+b1¢2¢+b2¢¢52 +by¢’ (2.8)

The values of the coefficients a; in Equations (2.4) and (2.6) for different AOAs are

shown in Table 2.1.

Table 2.1 Coefficients for wing rock models

AOA ai a; as as as

21.57 | -0.04207 | 0.01456 | -0.18583 | 0.24234 | 0.04714

22.5° | -0.04681 | 0.01966 | -0.22691 | 0.59065 | 0.05671
25" | -0.05686 | 0.03254 | -0.3597 1.4681 | 0.07334
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3) Model of Guglieri And Ouagliotti
Guglieri and Quagliotti in References [88-89] also developed an analytical nonlinear
model of wing rock, based on parameter identification of experimental data. Figure 2.4

shows the experimental setup.

The free-to-roll experiments were performed on a delta wing for AOA from 21%0 45°, ¥
from 15 m/s to 40 m/s, Reynolds number from 486000 to 1290000. The model was an
80° delta wing with sharp leading and trailing edges, made in aluminum alloy. The
dimensions are root chord ¢ = 479mm, span b = 169mm, and thickness 12mm. The wing

longitudinal body axis and the bearings axis coincide.

~ Sideview
Ralling bearing Enender

{rass flow plans
Qight sheet)

Figure 2.4 The experimental setup [89]
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The model was connected to a horizontal shaft supported by rolling bearings. To
minimize the friction of the angular transducer, an optical encoder, linked with the
rotating shaft using an elastic joint without backlash, measured the motion of the wing.
The digital signals generated by the encoder, which identify the sign, the increment and

the zero crossing of ¢(f), were conditioned by an electronic device consisting of an

incremental counter and a 12 bit digital/analog converter.
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Figure 2.5 The coefficients a, in Equation (2.9)
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The differential equation describing wing rock in References [88-89] is given by
§Z+ao¢+a1¢+azl¢|¢+a3¢3 +a4¢2¢=0 (2.9)
where a, (i=0, 1, 2, 3, 4) are the parameters relative to free-to-roll experiment conditions.

A typical set of coefficients g, at Reynolds number =636000 is illustrated in Figure 2.5.

2.2. Simulations of Wing Rock Model

2.2.1 Fixed AOAs

Figure 2.6 illustrates the behavior of typical wing rock at AOA =32.5°. Although given
initial condition is very small, ¢(0) =0.1° and ¢(0) =0, uncontrolled wing rock motion
can still develop into LCOs with time. This implies that a very small disturbance is

enough to cause wing rock motion. Similarly, Figure 2.7 shows the simulation results at

the other fixed AOAs, that is, 404 =25° 27.5% 30°, 35°, 37.5°, 40°, 42.5°, and 45°,

respectively, at the initial condition #(0) =1° and $(0) =0.

2.2.2 Time-Varying AOAs

To structure a time-varying wing-rock model, we use a cubic interpolation functions to
pass a smooth curve plotted in Figure 2.5 with AOA, which is a piecewise constant
model with interpolation per 0.5°. Figure 2.8 shows the numerical simulation results of

the model with time-varying AOAs from 25° to 45° or with time from =0 to =2000 time

steps at the initial condition ¢(0) =31° and ¢(0) =0.
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2.3. Summary

In this chapter, we have introduced the one-DOF wing rock models in the literature and
then numerically simulated the wing rock behavior at fixed AOAs and with time-varying

AOAs.
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Chapter 3

Limit Cycle Analysis of Wing Rock Phenomenon

In this chapter, we will analyze the limit cycle characteristics of wing rock phenomenon.
This chapter is organized as follows: We introduce the geometric method of obtaining
general information about the behavior of a nonlinear system in Section 3.1 and the limit
cycle analysis of the nonlinear system in Section 3.2. In Sections 3.3, we present the
phase plane analysis of wing rock phenomenon and the corresponding graphic results.

Section 3.4 summarizes this chapter.

3.1 Geometric Method

In this section, we briefly introduce a geometric method, as described in Reference [91].

1) Basic Notions

Because exact solutions of nonlinear equations of motion are generally unobtainable, the
geometric method will be useful to study the fundamental qualitative characteristics of
motion. The basic idea of the geometric method, which makes it possible to obtain
general information about the behavior of a nonlinear system, is as follows:
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X, + F(x), o ,x,,%,,%,)=0, i=12,-n
where F(---) satisfy the conditions of existence and uniqueness of a solution with

prescribed initial conditions.

If we adopt a two-dimensional space defined by x(f) and x(¢), the point {x(¢,),x(¢,)} at
any given time #; will represent the state of the system. The point starts from
P, ={x(t,),x(t,)} determined by the initial conditions and moves along a curve over time.
These points form a path and a plane, referred to as a trajectory and a phase plane
{x(t),x(¢)}, respectively. From the shape of the path and the direction of motion of the

point over time, we can draw a conclusion on the qualitative characteristics of the

nonlinear system.

/-

(a) (b)

Figure 3.1 Trajectories on phase plane

In fact, the phase portrait represents all possible solutions since it aggregates all

trajectories. For example, Figure 3.1(a) illustrates that the motion of points {x(t),x(#)} is
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oscillatory and that x(¢) and x(¢) tend to zero with time, even though we do not have an
explicit solution for x(¢) . Figure 3.1(b) gives another example, where the closed

trajectory shows that a periodic solution for x(¢) exists.

Moreover, the motion tendency of the point in the neighborhood of an equilibrium point
(x(t) = x(t) = 0) gives us our first intuitive view of stability problems. Let us take Figure
3.1 as an example. Since x(t) >0 and x(t) >0 as t > in Figure 3.1(a), the
equilibrium point must be stable. We qualify this system as asymptotic stability. In
Figure 3.1(b), because all neighbbring trajectories approach the closed trajectory as

t — o, the corresponding periodic solution in this system is stable.

2) Singular Point

The singular point of a differential equation is fundamental in determining the properties
of the equation solution. Through a study of singularity, we will have considerable
insight into the qualitative aspect of the solution. In fact, a type of the singularity presents
a picture in compact form of all the solutions that may exist. As usual, a study of

singularity is a combination of analytical and graphical approaches to the problem.

Consider the more general autonomous system of the form

{5‘1 = f,(x),%;)

X, = f,(%,%;)

3.1

where fi(x1, x2) and f2o(x;, x;) are polynomials in terms of x;(f) and x»(f), and the initial

condition f1(0,0) = £2(0,0) = 0 is satisfied.
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We will examine the qualitative characteristics of this system by introducing the state-

plane {x,(t),x,(t)}. In the case of Equation (3.1), if x,(f) and x,(t) are related to each

other by x,(f) = x,(f) , then the state-plane is referred to as phase plane.

Equation (3.1) can be rewritten as follows:

dx, - S (x15%,)
dx,  fi(x),x,)

(3.2)

First, we consider a particular point on the state plane, the point satisfies the conditions
J1(x,(0),x,(0)) = f5(%,(0), x,(0)) = 0 (3.3)

At this special point, the field direction is undefined, that is

In the case of Equation (3.1), this point coincides with the origin, x,(0) =x,(0)=0. In

mathematics, this particular point is called a singular point; on the other hand, in

mechanical applications, we refer to it as an equilibrium point.

Next, if we separate the linear terms in functions f|(x,,x,) and f,(x,,x,), we can

rewrite Equation (3.1) into the following form:

{5‘1 =a,x +a,x, + g(x,%,) (3.4)

Xy =ayx, +ayx, +8,(x,x,)
where a; (i, j =1,2) are constant coefficients, and g,(x,,x,) and g,(x,,x,) are high

order polynomials higher than the first. It has been shown by Poincare that Equation (3.4)

has the singularities same as those of the simplified linear equation. In other words, the
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linear terms of Equation (3.4) will play a predominant role for small values of x;(f) and

x2(0).
X, =a,x, +a,x
{ . 1 35441 1242 (35)
Xy =ayuX, tanX,
For this linear system, we can write a particular solution in explicit form
x, = 4e*, x,=4,e* (3.6)

Substituting Equation (3.6) into Equation (3.5), we obtain the homogeneous algebraic

equations for 4; and 45:

{Al (a;, —A)+ 4,a,, =0 G.7)

Aiay + 4y(ay —4)=0

To assure nonzero solutions for A, and A4;, we set the characteristic determinant of

Equation (3.7) equal to zero:

_ % -4 ay
A= =0 (3.8)
ay  an-—4

and obtain a second order polynomial for A:
A —Aa,, +ay)+a,a, —a,a, =0 (3.9

Equation (3.9) yields the desired exponent:

a,+a

/1=ini\/%(a” +ay)’ —a,ay, +a,ay, (3.10)

Finally, we discuss the three types of singular points relative to wing rock analysis.
(a) The singular point is called a saddle point if both characteristic roots 4, A, are
real but have opposite signs. The behavior of trajectories around a saddle point in
Figure 3.2(a) shows an unstable singular point.
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(c) Singular Points on the state-planes — a saddle point

X
i

o)

[ 2]

(b) Singular points on the state-plane — an unstable focus

(c) Singular point on the state-plane — a center

Figure 3.2 Examples of singular points
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(b) The singular point is called a focal point if both roots A,, A, are complex-

conjugates (4, =atio,a#0,w#0). If a<0, the trajectories in Figure

3.1(a) approach the singular point; if & >0, they moves away it, as shown in
Figure 3.2 (b). Therefore, the focal point can be either asymptotically stable or

unstable depending on the sign of the real part of the characteristic roots.

(c) The singular point is called a center if the two characteristic roots 4,, A, are

3.2

3.2.1

purely imaginary, as shown in Figure 3.2(c), where the points on the state plane
neither depart from nor approach the origin. If they start in its neighborhood, they
will remain close to the origin. Thus the center is merely stable, not

asymptotically stable.

Limit Cycle Analysis

Limit Cycle

As illustrated in Figure 3.1(b), the phase portrait shows a closed curve on phase plan.

Trajectories inside the cure and those outside the curve all tend to the curve while a

motion started on this curve will stay on it forever, circling periodically around the origin.

This curve is an instance of the so-called “limit cycle” phenomenon, which is a unique

feature of nonlinear systems.

A limit cycle can be stable or unstable, depending on whether the paths in the

neighborhood of the limit cycle converge toward it or diverge away from it. They can

result from either soft or hard self-excitation. Figure 3.3 illustrates an example of soft-
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excitation. Physically, this phase portrait may represent a system that has excessive gain
for the small signals and the output builds up in an unstable manner. With large signals,

the output also approaches the stable limit cycle from the outside, as discussed in

Reference [94].

4l
N

Figure 3.3 Phase portrait of soft self-excitation

3.2.2 Limit Cycle Existence
We now discuss the existence of limit cycles of the system described in Equation (3.4).
To avoid solving this equation, we may seek help from the energy equation dE/dt. The

only information we do have concerning energy is that the exchange of energy during one

cycle is equal to zero:

dE =0 (3.11)
|

where 4 denotes integration along the closed trajectory. Unfortunately, Equation (3.11)

is of no benefit in our effort to establish the existence of limit cycles.

Here, we give a famous Poincare-Bendixon theorem:
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If a half-trajectory (for ¢ > ¢, or t <t,) remains in a finite domain D without approaching

a singular point, then C is either a closed trajectory or approaches such a trajectory.

In the case of a ring-shaped domain D bounded by two concentric circles C; and C; in
Figure 3.4, sufficient conditions for the existence of at least one closed trajectory are:
(a) Those trajectories enter D; through every point on C; and Cs,

(b) There are no singular points either in D or on C; and C;.

Figure 3.4 The shaded domain D, assures existence of at least one closed trajectory

3.3 Phase Plane Analysis of Wing Rock Phenomenon

Note that it is possible for a system trajectory to correspond to only a single point. Such a
point is called an equilibrium point. As we shall see later, many stability problems are

naturally formulated with respect to equilibrium points.

Definition: A state X is an equilibrium point of the system if once x(¢) is equal to x, it

remains equal to x for all future time.
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Mathematically, this means that the constant vector x satisfies f(x)=0. Equilibrium

points can be found by solving the nonlinear algebraic equations above. A nonlinear

system usually has several (or infinitely many) isolated equilibrium points.

In discussing the phase plane analysis of wing rock phenomenon, two points should be
kept in mind. Phase plane analysis of nonlinear systems is related to that of linear systems
because the local behavior of a nonlinear system can be approximated by the behavior of
a linear system. However, nonlinear systems can display much more complicated patterns
on phase plane, such as multiple equilibrium points and limit cycles. The following is the

detail discussions about the phase plane analysis of wing rock.

Let x,(f) = ¢(f) and x,(¢) = #(t) ; we first rewrite Equation (2.9) as a system of two first-

order equations:

X, =X,
{, (3.12)

Xy = —ayX%, —ayX, - ay|x,|x, —asx] —a,xlx,
To find the equilibrium points, we put
X =x,=0 (3.13)
It follows that
x =0, *.-a,/a, (3.14)
The nonzero solution exists only when a, /a, <0. From Figure 2.5, we know it is true for
the AOA from 25°to 45° because of ap>0 and a3 <0. We use the data in Figure 2.5 to

calculate the two equilibrium points, +./—a,/a, , at different AOAs. With the AOA
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increasing from 25°to 45, the points move toward the origin ( x, = 0.9837 — 0.4737).

To determine the character of the motion in a small neighborhood of these equilibrium

positions, we introduce the following small perturbations, as introduced in Reference

[92].

{xl =X, T Y (3 15)

X, =U,

where x)¢ is the coordinate of an equilibrium position (x29 =0 at all equilibrium points).

Substituting Equation (3.15) into Equation (3.12) and retaining only linear terms in u,(f)

and u,(?) in the result, we have

u =u,
{. (3.16)

2 2
u, = —(a, +3asxi)u, —(a, +a,x;p)u,

or the form of matrix

| 0 1 u, 317
U, - —(a0+3a3x,20) —(a1+a4x120) U, G179

The eigenvalues of this system are

Asdy =3[—(a, +a,x3) £ (a, +a,x3)" —4a, +3a,x3) ] (3.18)

At the origin (x;9= 0), Equation (3.18) reduces to
A hy =L(-a, tif4a, —a*) (3.19)
Using the data in Figure 2.5, we find that a; < 0 and 4ay > a;® for the AOA from 25% to

45° and A, and A, are complex conjugates. Therefore, the origin of wing rock motion is

an unstable focus.
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Likewise, we can determine the character of the motion in a small neighborhood of the

nonzero equilibrium points ( x, = +,/—a,/a, ). Substituting x, = x,, = *+/—a, /a, into
q p 1 0/ g X 10 0/4;

Equation (3.18), we obtain

1 _ a,a a,a
A Ay ==[( - -a;)t (8a, +(a, - : 4)2] (3.20)
2 a, a,

Regardless of the sign of a, —a,a, /a, , both eigenvalues are real, one is positive and the

other is negative, which means the two equilibrium points away from the origin. Thus,

whenever nonzero equilibrium points exist, they are always saddle points.

The above results obtained at 404 = 32.5° are illustrated in Figure 3.5, where the entire
phase plane is constructed by numerically integrated Equation (3.12), as introduced in
Reference [93]. First, there are three equilibrium points marked as s1, s2, and s3 in Figure

3.5 (a). With Equation (3.14) and the data in Figure 2.5, the three points are
X, =0, +59.46° (3.21)

Next, we have observed that any motion initiated at a point in the shaded region will
diverge, not oscillate, which means that the wing will continuously execute complete
revolution. We have also observed that any motion initiated at a point in the unshaded
region will converge onto the limit cycle, which means that small-amplitude initial
conditions lead to motions that grow to the stable limit cycle and large-amplitude initial
conditions lead to motions that decay to the limit cycle. Finally, we have provided the

added trajectories for many different initial conditions in Figure 3.5(b).

52



Case: ADA=32.5 deg
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(b) Many trajectories on phase plane

Figure 3.5 Phase planes obtained by numerical integration at 404 =32.5°
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If we compare Figure 3.5(a) with Figure 3.3, we can conclude that wing rock

phenomenon is a typical nonlinear system with soft self-excitation.

On the other hand, we introduce the free-to-roll test results of wing rock on 80° swept
delta wing models reported in Reference [89]. The effect of initial conditions on model

time domain response is depictured in Figure 3.6. The mathematical model predicts roll

divergence for initial release roll angles ¢(0) > 60° that is not consistent with the

1000
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Figure 3.6 The phase plane plot for different initial conditions: comparison of

experimental (top) and analytical (bottom) results at 404 =32.5° [89]
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available test results. This discrepancy can be related with the divergence of the restoring
moment due to the softening term a,¢’ in Equation (2.9) that underestimates the wing
dihedral stability for larger roll displacements. Anyway, limit cycle characteristics and
build-up dynamics are accurately predicted for realistic release roll angles ¢(0) < 60°.

From this point of view, we can say that the analytical and graphical results are in

agreement with the test results.

3.4 Summary

In this chapter, we have introduced phase plane analysis, which is a graphical method
used to study second-order nonlinear dynamic systems and allows us visual examination
of the global behavior of systems. We have also illustrated an example of soft self-
excitation and discussed the existence of limit cycles. Finally, we have obtained the entire
phase plane of wing rock phenomenon, based on perturbation techniques and numerical
simulations. If ¢(0) <60°, we can conclude that the analytical results are in agreement

with the test results.
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Chapter 4
Hysteresis Mechanism Analysis of Wing Rock

Phenomenon

In this chapter, we will theoretically analyze the hysteresis mechanism of wing rock
phenomenon. This chapter is organized as follows: Section 4.1 is an introduction. In
Sections 4.2, we briefly introduce Lyapunov’s stability theory. In Section 4.3, we analyze
the relationship between wing rock energy variation and wing rock hysteresis and then
present some numerical simulation results fér the cases of fixed AOA and time-varying
AOA. In Section 4.4, we also presented some test results of wing rock phenomenon in the

literature. Section 4.5 summarizes this chapter.

4.1 Introduction

Many modern combat aircraft often operate at subsonic speeds and high angles of attack.
At a sufficiently high AOA, these aircraft become unstable and enter into an LCO,
mainly rolling motion known as wing rock in References [4, 75, 78, 88]. In practice,

high-speed civil transport and combat aircraft can fly in conditions where this self-
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induced oscillatory rolling motion is observed. More importantly, wing rock phenomenon
can be highly annoying to the pilot and may pose serious limitations to the combat
effectiveness of the aircraft. Therefore, the control of wing rock phenomenon of aircraft

is an important issue.

Considerable research has been conducted on the motion of 80° swept delta wing to help
understand the fundamental mechanisms causing wing rock, as shown in References [4,
78-80, 82, 84-86, 88-89]. Free-to-roll tests are usually used to determine build-up and
limit-cycle characteristics of wing rock. These test results reveal the magnitude of limit
cycles of wing rock varying with AOA, as depicted in Figure 1.3. In addition, the
tracking tests of the primary vortex positions in the cross-flow plane in References [78-80,
82, 84-86, 88-89] provided the data to understand the driving mechanism of wing rock.
These authors found that hysteresis existing between the roll angle and the rolling
moment provides clues that help us explain wing rock phenomenon. The researchers in
References [4, 79, 82, 84-86, 88-89] observed this hysteresis, noticed the three loops
during one cycle, and explained this observation. The work done by the rolling motion is
driving the oscillation during the central loop since the aerodynamic motion acts in the
direction of the wing rolling motion, whereas the oscillation is being damped during the

two reverse outer loops.

In this chapter, we will use Lyapunov’s direct method theoretically to analyze the

hysteresis mechanism of wing rock phenomenon instead of physical insight.

57



4.2 Lyapunov’s Stability Theory

4.2.1 The Basics of Lyapunov’s Theories

The most useful and general approach for studying the stability of nonlinear systems is
Lyapunov’s theory. The theory mainly addresses the question of stability of any system,
linear or nonlinear systems. It is well known that for any stable system, there is always a
point where the motion of such a system will converge after some disturbance, whereas
there is none for an unstable one, thus resulting in motion divergence even under very
slight disturbances. In dealing with stability problems, Lyapunov’s stability theory
appears in two versions, the Lyapunov linearization method (first method) and the
Lyapunov’s direct method (second method). Lyapunov’s direct method gets more
application in nonlinear systems because it is the most important tool for nonlinear

system analysis and design.

Since nonlinear systerﬁs may have much more complex and exotic behavior than linear
systems, the mere notion of stability is not enough to describe the essential features of
their motions. A number of more refined stability concepts such as asymptotic stability,
exponential stability, and globally asymptotic stability are needed. We introduce these
stability concepts formally and explain their practical meanings below. Let us first

introduce the basic concepts of stability and instability.

Definition 4.1: The equilibrium state x =0 is said to be stable if, for any R =0, there
exists » >0, such that if “x(O)”<r , then ||x(0)||<R for all +>0 . Otherwise, the

equilibrium point is unstable.
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Essentially, the definition states that the origin is stable, if, given that we do not want the
state trajectory x(0) to get out of a ball of arbitrarily specified radius Sz, a value can be
found such that starting the state from within the ball S, at time ¢ = 0 guarantees that the
state will stay within stay within the ball Sy thereafter The geometrical implication of

stability is indicated by curve 2 in Figure 4.1.

Curve 1 - asymptotically stable
Curve 2 - marginally stable

Curve 3 - unstable

Figure 4.1 Concepts of stability

In practice, Lyapunov stability is not enough. We need to check the asymptotically stable.

Definition 4.2: An equilibrium point 0 is asymptotically stable if it is stable, and if it

addition there exist some r >0 such that |[x(0)]| < » implies that x(f) -0 as t — 0.

Definition 4.3: If asymptotic (or exponential) stability holds for any initial states, the
equilibrium point is said to be asymptotically (or exponentially) stable in the large. It is

also called globally asymptotically (or exponentially) stable.

4.2.2 Lyapunov’s Direct Method
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The basic philosophy of Lyapunov’s direct method in Reference [95] is the mathematical
extension of a fundamental physical observation. If the total energy of a mechanical
system is continuously dissipated, then the system, whether linear or nonlinear, must
eventually settle down to an equilibrium point. Therefore, we may conclude the stability

of a system by examining the variation of a single scalar function.

Nonlinear spring and damping

kyx+ ka

NN NN

VAV ARV A Ay Sy Ay Sa A

Figure 4.2 A nonlinear mass-damping-spring system

Let us take an example from Reference [96] to illustrate this method. Figure 4.2 shows a

nonlinear mass-damping-spring system, and the dynamic equation of this system is

m5 + blx[x + kox + kx’ =0 (4.1)

where b]%| is nonlinear damping, and k,x +k,x’ is a nonlinear spring term.

The total mechanical energy of the system is the sum of its kinetic energy and its

potential energy.
V(x)=Lmi + [ (o + box*y e = Lmit o Lo+ Lt 4.2)
2 2 2 4

Comparing the definitions of stability and mechanical energy, we can easily see some
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relations:
(a) Zero energy corresponds to the equilibrium point (x(¢) = 0, x(¢) =0).
(b) Asymptotical stability implies the convergence of mechanical energy to zero.
(c) Instability is related to the growth of mechanical energy.

These relations indicate that the stability properties of the system can be characterized by

the variation of the mechanical energy of the system.

The rate of energy variation of the system is obtained by differentiating Equation (4.2)

with Equation (4.1)
V() = mik + (kox + k,x* )i = H(—bx[x]) = —b|5c|3 4.3)
Equation (4.3) implies that the energy of the system, starting from some initial value, is

continuously dissipated by the damper until the mass settles down, that is, until x(t) = 0.

Lyapunov’s direct method is based on a generalization of the concepts in the above mass-
spring-damper system to more complex systems. Faced with a set of nonlinear
differential equations, the basic procedure of Lyapunov’s direct method is to generate a
scalar “energy-like” function for the dynamic system and to examine its time variation. In
this way, conclusions may be drawn on the stability of the set of differential equations

without using the stability definitions or requiring explicit knowledge of solutions.

4.2.3 Lyapunov Function and Theorem
The energy function in Equation (4.2) has two properties:

(a) Itis strictly positive unless state variables x(¢) and x(¢) are zero.
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(b) The function is monotonically decreasing when the variables x(f) and x(t) vary
according to Equation (4.1).

In Lyapunov’s direct method, the notions of positive definite function and Lyapunov

function formalize above two properties, respectively.

Definition 4.4 A scalar continuous function ¥(x) is said to be locally positive definite if
V(0)=0 and, in a ball Sgg, x#0, then V(x)>0. If ¥(0)=0 and the above property

holds over the whole state space, then V(x) is said to be globally positive definite.

Definition 4.5: The nonlinear system, x =f(x,), is said to be autonomous if f does not
depend explicitly on time, that is, if the system’s state equation can be written
x =f(x) 4.4

Otherwise, the system is called non-autonomous.

Definition 4.6: If, in a ball Bgy, the function V(x) is positive definite and has continuous
partial derivatives, and if its time derivative along any state trajectory of system (4.4) is
negative semi-definite, that is, ¥'(x) <0, then ¥{(x) is said to be a Lyapunov function for

the system (4.4).

Liapunov’s direct method relies on a test function, called the Liapunov function, to
determine the stability characteristics of the system. Liapunov stability theorems usually

have local and global versions.
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Theorem 4.7: (Local stability) if, in a ball Bg, there exists a scalar function V(x) with
continuous first partial derivative such that

(a) ¥(x) is positive definite (locally in Bgg) and

(b) V(x) is negative semi-definite (locally in Bgo),
then the equilibrium point 0 is stable. If, actually, the derivative ¥(x) is locally negative

definite in Sgy, then the stability is asymptotic.

Theorem 4.8: (Global stability) Assume that there exists a scalar function V of the state
x(#), with continuous first order derivatives such that

(a) (x) is positive definite

(b) V(x) is negative semi-definite (locally in Bro)

(©) V(x) > was x| o.

then the equilibrium point at the origin is globally asymptotically stable.

4.3 Hysteresis Mechanism of Wing Rock Phenomenon

In this section, we use the above theories and analytical methods to study wing-rock

hysteresis mechanism and then show the numerical results.

First, the wing-rock model in Equation (2.9) can be written in the following form:
b+ (ay +a,)f|+ap?)p+(ap+a9’) = 0 (4.5)

Let x,(t) =¢(t) and x,(t) = #(t) and rewrite Equation (4.5) in a state-variable form:
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X, =X,
{ _ (4.6)

X, =—(aq, +a, Ile"' a4x12 )x, —(agx, + a3x13)

Equation (4.6) is further expressed in the phase-trajectory equation:

de, —(a,+a, I, |+ a,x))x, = (apx, +ayx;))
- 4.7)
dx, X,
By integrating Equation (4.7) and substituting x, (t) = x,(¢) , we have
!
1x? +U(x)=C~ I(a] +a,x, |+ ax) )xydt (4.8)
0

where U(x,) = j(aoxl +a,x; )dx, is the potential energy and C is an integral constant.

As discussed in References [91, 96], we define E(f) as the total mechanical energy of the
system:

E=1x2+U(x) (4.9)
By differentiating Equation (4.8), we obtain the rate of change of the total energy E(¢):

dE
o —(a, +a, |x2 ’ +a,x})x: (4.10)

Equation (4.10) shows that the total energy E(f) is not a constant, and increases or

decreases according to the sign of (g, + g, |x2 l +a,xl)xl.

Next, we turn our attention to the hysteresis of wing rock. Substituting Equation (4.5)

into Equation (2.1) and taking D =0, we obtain a C, — ¢ relationship to described the

hysteresis

C, =~(ap+ag+a,lfé+a,4’ +a,6'9)/k (4.11)
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where &k =

; these parameters are defined in Equation (2.1).

To illustrate the behavior of hysteresis, we simulate the build-up phase of hysteresis in
Figure 4.3(e) and the full hysteresis in Figure 4.3(f), and draw arrows indicating the

developing direction of hysteresis over time. Note that Figure 4.3 is simulated at

AO04 =32.5°, in the initial conditions ¢(0)=0.1° and $(0)=0, and with k~1/30.

Finally, we analyze the relationship between the dE/dt and the hysteresis of wing rock.
Note that @, <0, a, >0, and a, >0 (except AOA4 =45°) in Figure 2.5.

(@ If x,#0 and dE/dt =0, then x, =+X,. We define this roll angle X; as a
critical angle, marking X, in Figure 4.3(b) and B and C in Figure 4.3(f), which
lies on the boundary between increasing energy and decreasing energy and is an
important parameter to design variable phase control described in the next
chapter. If x, =0 and dE/dt =0, then x, =+¢__, we mark them as A and D in
Figure 4.3(%).

(b) If x, #0 and |x1| < X,, then dE/dt > 0; this means that the wing-rock motion is
absorbing energy and developing a single-loop hysteresis in a clockwise direction,
as shown in Figures 4.3(e) and in the center loop BC of Figure 4.3(f). If x, #0

and |x,| > X, then dE/dt <0, this implies that the motion dissipates energy and

develops two additional outer-loop hysteresis, as shown in the outer loops AB

and CD of Figure 4.3(f) where the direction of the motion is anticlockwise,
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(c) Similarly, the role of x, can be analyzed because the relationship éf xy and x; is
constrained by wing rock to limit cycles, as shown in Figure 4.3(b). If
|le >—(a, +a,x; )/a2 or Ile <—(a, + a“xlz)/a2 , then dE/dt >0 or dE/dt <0,
respectively. With Equation (4.5), it is easy to see that in this case a roll damping
has a variable sign.

We now explain wing-rock mechanism by the limit-cycle energy analysis:

(a) During the wing-rock build-up phase, the oscillation is unstable and energy flows
into the system (dE/dt > 0) as in Figure 4.3(e). The aerodynamic moment acts
on the direction of the wing rolling motion. Wing rock exhibits the central-loop
hysterests in a clockwise direction.

(b) After the build-up phase, wing rock exhibits another two outer loops hysteresis.
The direction of the motion is anticlockwise as in Figure 4.3(e), which means
that the energy is being dissipated (dE/dt <0), and the system tends to stable.

(c) During the limit-cycle phase, the balance of the energy exchanged by the system

over an oscillation period confirms that wing-rock limit cycle is dynamically

stable (cjdE =0).

As for the time-varying wing-rock case, we simulate this in the same conditions as we

mentioned in Section 2.2.2. Figure 4.4 shows time-varying wing-rock behavior.
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Figure 4.3 Wing rock behavior
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Dynamic behavior of wing rock varying with ACA
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Figure 4.4 Time-varying wing-rock behavior

71

2000



From above Figures 4.3 and 4.4, we have observed some difference. The following
discussion is based on comparison between wing rock with time-varying AOA and wing
rock with fixed AOA.

(a) In Figure 4.4(a), the boundary curve of the roll angle varies with AOA, which is
different from the results shown in Figure 1.3, where the boundary curve of the
roll angle obtained from each fixed AOA.

(b) The shape of wing-rock hysteresis in Figure 4.4(b) varies with time. First it
shows single loops, next bigger three loops, and then smaller three loops. The
hysteresis in Figure 4.3(f) is formed first with single loop and then with stable

three loops.

(c) Some differences in dE/dt can be observed. In Figure 4.4(c), the system absorbs
and increases energy from #=0 to t=1000 time steps. After #>1000 time
steps, the rate of energy change is decreasing until about ¢ =1500 time steps.
When ¢ > 1600 time steps, the rate increases again. By comparison, in Figure
4.3(c) the system absorbs the energy during 0 <¢ <750 and then it shows the

constant rate of energy change and keeps stable LCOs.

Finally, we exhibit all the shapes of wing rock hysteresis at other fixed AOAs like Figure
4.3(f). In Reference [100], we have simulated the hysteresis at nine different AOAs,
404=25", 27.5°, 30°, 32.5%, 35, 37.5, 40°, 42.5°, and 45°, in the initial conditions
$(0)=0.1" and $(0) =0, as shown in Figure 4.5. We have observed that wing rock

hysteresis all shows the three loops: a center loop and two reverse outer loops, even

though some loops are very small.
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Figure 4.5 Wing rock hysteresis at the nine different AOAs

Test Results of Wing Rock Phenomenon

In Section 4.3, we have analyzed the relationship of the energy variation and hysteresis of

wing rock and presented some numerical simulation results. In this section, we further

present some test results of wing rock in the literature.
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Katz and Levin in Reference [82] presented the histogram of the normal force coefficient
versus roll angle during wing rock limit cycles of a A =76° delta wing with a small
A =80° canard, as shown in Figures 4.6. In this particular experiment, the sting balance
was stationary while the wing was undergoing limit cycle roll oscillations. The data in
Figure 4.6 show that the dynamic normal force is less than its steady state value

multiplied by cos¢ , implying a loss of lift during the limit cycle.

10+

9r =35 deg
Re=0.3x10%

C,

2, deg

Figure 4.6 Histogram of the normal force coefficient

during the wing rock limit cycle [82]

The hysteresis loop of the side force during the same experiment is presented in Figure
4.7, which shows a slight increase toward the side of the downward rolling wing. Both
figures demonstrate a significant hysteresis loop, which changes direction at the larger

rolling angles, creating additional ‘outer loops’.

74



0.4p T

0.3 -

o2k e = 35 deg
Re = 0.3 x 108

@, deg

Figure 4.7 Histogram of the side force coefficient during the wing rock limit cycle [82]

Also, this trend can be demonstrated in Figure 4.8 from Reference [85] by calculating the
roll acceleration during the roll limit cycle for an 80° delta wing. The authors indicated
that the inner loop encloses the area in a clockwise sense and the loop traverses in the
direction of increasing time. The positive area corresponds to the addition of energy to

the system, and the negative area implies extraction of energy from the system. Therefore,
the positive loop for |#(r)<20° is destabilizing, and the outer lobes for
20° < |p(r)| < 55° are stabilizing. If the net area in Figure 4.7 is positive, the amplitude of

the oscillatory motion increases and leads to a divergence. If the net area is negative, the
oscillatory motion decays gradually (damped oscillation). If the net area is zero, it is a
case of constant amplitude or limit cycle motion. It may be observed that the net area of

the histogram is close to zero, confirming that the wing rock is an example of LCO.
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Figure 4.8 Typical wing rock hysteresis [85]

4.5 Summary

In this chapter, after introducing the Lyapunov’s stability theory, we have proposed the
energy analysis approach to analyze the hysteresis mechanism of driving wing rock
phenomenon. First, the rate of energy change of wing rock phenomenon is derived. The
hysteresis loops, based on a defined critical angle, are divided into two parts: a center
loop (dE/dt > 0) and two reverse outer loops (dE/dt < 0). Then we have presented the

simulation results and test results of wing rock hysteresis. The analytical results are in

agreement with the observation of free-to-roll tests.
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Chapter 5

Variable Phase Control of Wing Rock

Phenomenon

In this chapter, we want to use the analytical results of Chapter 4 to suppress wing rock.
Variable phase control issues of wing rock will be addressed. This chapter is organized as
follows: Section 5.1 is the introduction, the variable phase control scheme is designed in
Section 5.2, the simulation results of wing rock suppression is presented in Section 5.3,

and Section 5.4 summarizes this chapter.

5.1 Introduction

Recently, considerable research has been conducted on the motion of 80° swept delta
wing to help understand the fundamental mechanisms causing wing rock. The researchers
in References [4, 79, 82, 84-86, 88-89] have observed that the hysteresis existing between
the roll angle and the rolling moment provides clues for explaining wing rock mechanism.
In addition, we have theoretically analyzed the hysteresis mechanism of wing rock in
Chapter 4. Wing rock phenomena indicate the three-loop hysteresis during one cycle.

Based on a defined critical angle, the three loops are divided into two parts: in a center
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loop the energy flows into the system (dE/dt >0) and in two reverse outer loops the
energy is being dissipated (dE/dt < 0). On the boundary between increasing energy and

decreasing energy, dE/dt =0.

Now, the question is how to use these research results in the literature to control wing
rock. The natural way of controlling wing rock phenomenon is directly to apply a

hysteresis compensation approach to remove wing rock hysteresis effects.

In this chapter, a variable phase control (VPC) scheme is first proposed to suppress wing
rock with hysteresis, inspired by the hysteresis mechanism of driving wing-rock motion
studied in Chapter 4. The conception of the phaser proposed by Cruz-Hernandez in

References [97-98] is adopted to design the vériable phase control scheme.

The main objective of this chapter is to investigate the variable phase control to suppress
wing rock with hysteresis. We will develop a variable phase control scheme to
compensate the hysteresis effects of wing rock. To suppress wing rock completely, both
the phase and the magnitude of hysteresis should be compensated. The suppression of
wing rock with hysteresis will be demonstrated in six cases in order to verify the

effectiveness and robustness of the proposed method.

5.2 Variable Phase Control

5.2.1 Phase Control
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In general, the effects of hysteresis can be seen as a phase lag between a periodic input
and a corresponding output. The natural way of correcting this lag is to reverse its effect.
When a periodic input signal with period 7 is applied to a system with hysteresis, the
output signal generally has the same period T as the input signal does but is shifted in

some phase. In our wing-rock case, the output signal of wing-rock motion is complex and

can be approximated by y(at—¢)=a, + Z[ak cos(kat) + b, sin(kawt)]. If this signal is

k=1
referenced to the input u(¢), all the components of y(¢) are shifted by some angle. It is
possible to speak of phase shift between the input signal and the output signal. First of all,

we introduce the concept of the phaser in References [97-98].

Definition: A phaser Ly, is an operator that shifts a periodic input signal by a constant

angle @ >0 and has unity gain.

In the frequency domain, the phaser can be expressed as

L,(j@)=a+jb, |L,(jo)=1, and ZL,(jo)=¢ (5.1)

The basic idea of phase control can be explained with Figure 5.1, where a phaser Ly is

connected in series with a plant. If the plant is with hysteresis, the phase of the output
signal y(¢) will be shifted by —¢_ <0 with respect to the control input signal u(f); if the

phaser is used as a controller, then the phase of the control input signal u(f) will be

shifted by ¢ >0 with respect to the input signal r(f). If we design this phaser to make

with ¢ = ¢, , the compensation can be obtained because one block cancels the other.
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Figure 5.1 Hysteresis compensation

5.2.2 Variable Phase Compensation

In Figure 4.3, we have observed that when the wing rock develops into an LCO, it will
exhibit three loops of hysteresis: a center loop and two reverse outer loops. The loop in
the center resembles single-loop hysteresis with saturation; the two outer loops are
symmetric but have a reverse phase angle. Therefore, the overall hysteresis compensation
involves two types of phasers: a positive angle ¢, > 0 for the center loop and a negative
angle ¢, <0 for the outer loops. These angles can be obtained considering each loop

independently from the other.

A variable phaser controller, based on the input signal Ir(t)[ to switch from one phaser to

the other, is given by

Ly(joy(jo) iflrl<X,

. : : (5.2)
L,,(jo)y(jw) if 1r| >X,

u(jw) ={

where ZL,,(jo)=¢, >0, ZL ,,(jw)=p, <0, and X, is the critical angle defined in

Section 4.3, where a change in the orientation of the loop occurs. It should be noted that

when |r(t)| > X,, the phaser L ,,(jw) is introduced in order to speed the oscillation

attenuation, even if in this situation dE/df <0.
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Obviously, the single-loop hysteresis during the build-up phase of wing rock like in

Figure 4.3(e) is a special case, which means ZL ,,,(jw)=0.

5.2.3 Variable Phase Implementation

The phaser defined in Equation (5.1) is an ideal phaser. But we can approximately
implement it by applying two important properties of the phaser described in References
[97-98]: superposition and noncausality. Superposition follows from linearity.
Noncausality prevents direct online implementation. Thus two linear filters are adopted to

approximate the two phasers as

" _
St Pras Tt DSt P

L) == . for ¢, >0
s"+ ql,n_ls" +o.+q,5+ 4, (53)
s" + s+ p, s+ '
LphZ (s) = _ Pana _ PriST Doy for ¢, <0

$"+qy,,8" +tqy, 5+,
where the coefficients p,, and g,, are determined such that the phase of the filters is
almost constant around the design parameters ¢, and ¢, within the input signal frequency
range @ =[w, ®,]. In other words, if we know the phase angles ¢; and ¢, we can

calculate all the coefficients of Equation (5.3), which is described in detail in the

Appendix A.

To design the phaser, the angle ¢ is the sole parameter we need to know. In a close-loop
nonlinear system, it is difficult to find this angle. In general, the bigger the angle ¢ is, the
faster will the system response be, but a too large value of ¢ can cause instability. If a

small @ is chosen, wing rock motion will develop into some small LCOs. One simple
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method is to choose a big ¢ and then to adjust this angle by evaluating control
performance. As for the frequency range @ =[w, w,] of compensation, because lower

harmonic components usually have bigger coefficients, a low frequency range should be

selected in order to obtain a better phase compensation.

In this study, we choose a six-order linear approximation for phaser @, =36° in the
frequency range [w, w,]=[0.01 1] and design it as

s +1.6525° +0.7709s* +0.1259s> + 0.007455% + 0.00015s + 0.00000075

L., (s5)=
i (5) s +3.017s° +2.325* +0.5477s% +0.05108s% + 0.0015s + 0.00001579

(5.4)
The Bode Diagrams of phaser 36° in the frequency range [w, @,]=[0.01 1] are plotted

in Figure 5.2.

Bode Diagrams

a0

201L

P hase (deg) Magnitude (dB)

10} 102 10-1 10% 101
Frequency (rad/sec)

Figure 5.2 Bode Diagrams of phaser ¢, =36° in the frequency [, ®,]=[0.01 1]
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For the phaser ¢, for simplicity, let the phaser @, = —p, = -36°; similarly, we have

§% +1.6525% +0.7709s* +0.1259s* +0.00745s2 + 0.00015s + 0.00000075

Lphl(s)= 6 5 3 3 2
s° +0.7665s” +0.2658s" +0.02618s" +0.001122s° + 0.000012s + 0.00000004

(5.5)

Note that the different phasers have only the different values of ¢,’s in the denominator.

We should point out that the order of linear approximation usually depends on the value
of phaser ¢. If ¢ is big, we need a high order linear approximation; otherwise, it will
affect the compensation effect. Besides, the method of variable phase control we consider
above focuses on the phase shift or compensation of the output signal, whereas ignoring
the magnitude compensation of the signal. The magnitude compensation will be

discussed in the next section.

5.2.4 Implementation of Variable Phase Control
Before implementing the variable phase control scheme to suppress wing rock with
hysteresis, we need to address two issues: the input signal of the phaser and the

magnitude compensation of the phaser.

Input signal of the phaser: The wing rock hysteresis in Figure 4.3 is seen as the phase
shift between the rolling moment coefficients and the roll angle, that is, C, = f ($,9).

However, it is not the input-output relationship of the wing rock model given in Equation
(2.9). We cannot directly use the variable phase control technique without the rolling

moment information. Fortunately, we could obtain the term £C; from Equation (4.11) as
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the input signal of the phaser.

The magnitude compensation of the phaser: As mentioned earlier, the phaser only
corrects the phase distortion of the system while ignoring the magnitude distortion. To
suppress wing rock completely, both the phase and the magnitude need to be

compensated. For this purpose, a phaser gain, k, 21, is applied in the control system. In

general, the bigger the phaser gain £, is, the faster will the system response be, but a too
large value of k, can cause overshoot, or even instability. In addition, we have observed
that the system with a big &, is more sensitive to the output measurement noise than the

system with a small £,.

Control structure: In Figure 5.1, the phaser is connected in series with the plant, which
forms an open-loop control system. To suppress wing rock, we need the closed-loop
control system and then propose the variable phase control scheme of wing rock, as

shown in Figure 5.3. In this control structure, phasers Lpni(s) and Lpny(s) are switched
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Figure 5.3 The variable phase wing rock control diagram
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depending on the sign of dE/dt, k, is the phaser gain, and £C; is the input signal of the
phaser. The overall control law in Figure 5.3 can be expressed by the sum of two terms:

u =-kC, +u,,, the linearizing control law and the phaser control law with magnitude

compensation.

5.2.5 Wing Rock Control Model
The differential equation of describing wing rock control in References [46-47, 49] is
given by

é=(pU2Sb/2I_)C, +u (5.6)
where ¢(f) is the roll angle, p is the density of air, U, is the freestream velocity, S is the

wing reference area, b is the chord, I, is the mass moment of inertia, u(f) is the control

input, and C;is the rolling moment coefficients written as
C, =by +b,+b,f+b;|d|d+b,4° +b,6°9 (5.7)

where the aerodynamic parameters b; (i =0,1,2,3,4) are the time-varying functions of

AOA.

Substituting Equation (5.7) into Equation (5.6), we have

é5+a0¢+a1¢5+a2|¢5’¢+a3¢3 +a,p’d=u (5.8
where a,(i =0, 1, 2, 3, 4) are the parameters relative to free-to-roll experiment conditions
given in References [88-89]. A typical set of coefficients a, is depicted in Figure 2.5. The

other set of coefficients g, can be found in References [88-89].
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5.3 Simulation Results

The control objective is to suppress wing rock. This means to achieve the roll angle
#(t) =0 and the roll rate ¢(¢) =0 when wing rock phenomenon occurs and commanded
signal is ¢ =¢ =0 . Besides, the numerical simulations of wing rock control are

implemented in Matlab and Simulink environments. Figure 5.4 shows the corresponding

Simulink block diagram.
D i hysterasis

wing-rock model —
3 phi angle O

Controller Out —

—wiin u x1
” out! b—plint Qw2 % L|[@)
In2
—
ou3 |22
phase plane
(a) The control system block diagram
Phaser
Out1
u(s)
& D)
In2
iy x1
®2

dE/ dt o

(b) The controller block diagram

Figure 5.4 Block diagrams of wing-rock control scheme in Simulink
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The following six cases are used to verify the proposed variable phase control scheme, as

shown in Reference [101].

Case 1: AOA=32.5", k;=1, ¢; = -, = 36°
To compare the performances achieved with the linearizing control law u(t) = —kC, and
the overall control law u(f) = —kC, +u,, , the uncontrolled wing-rock motion is allowed

to exhibit some LCOs, and then the controller is activated to suppress wing rock
phenomenon, as shown in Figure 5.5. From this simulation, we have observed that if the

system is with the control law u(¢t) = —kC,, it is unstable; if the system is with the control

law u(t) = —kC, +u,,, it is stable and can suppress wing rock quickly.

Case 2: The same as Case 1 except k; =6
When we simulated Figure 5.5(b) in Case I, we observed that the control system is

unstable in some initial conditions where they imply dE/dt > 0, for example, ¢0) =0 and

$(0) = ¢_max (t), as illustrated in Figure 5.6(b). If we modify the phaser gain from k; =1 to
k; =6, then the proposed scheme can guarantee the control system stability and the system
states tend towards zero with time, as shown in Figures 5.6(a) and 5.6(b). Figure 5.6(c)
shows the corresponding dE/dt decreasing to zero over time, which reveals that the
variable phase control essentially makes the system energy dissipative. Figure 5.6(d)

displays the corresponding control input u(f). If we compare this u(f) with the u_, (f)

~ —-0.9 of Reference [102], we draw a conclusion that the proposed control scheme needs

only a very small control input, which is important for aircraft control at a high AOA.
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Case 3: The same as Case 2 except AOAs

This case will verify the robustness of the proposed variable phase control method.
Assume the initial condition of wing rock to be ¢(0) =5° and #(0) =0. The controller
can be activated at any time, say at ¢t =800 time steps. Although the controller parameters
remain the same as Case 2, the proposed control scheme can suppress the different wing

rock motions at other fixed AOAs, that is, 404 =25°,27.5°,30°,35°,37.5°, 40°,

42.5°, or 45°, as shown in Figure 5.7.

Case 4: Single-phaser control (A04 =32.5°, k; =6, ¢, =36°)
This simulation demonstrates a special case. We hope to suppress wing rock at the
beginning of wing rock motion. In fact, single phaser ¢, = 36° can easily achieve this

aim because the wing rock motion during this time exhibits a single-loop hysteresis, as
illustrated in Figure 4.3(e). If the phaser is activated at ¢t = 600 time steps, Figure 5.8(a)
shows the comparison outputs between the control system and the uncontrolled system,
and Figure 5.8(b) indicates the corresponding change of dE/dt. From Figure 5.8(c), we
have observed that once the phaser is activated, the direction of hysteresis loops will
change from clockwise (the system absorbing energy) to anticlockwise (the system
dissipating energy). We mark S as a starting point and draw arrows indicating its
direction. Similarly, in Figures 5.5(b) and 5.6(a), regardless of the starting point at the
outer loops or the center loop of hysteresis, the hysteresis development in all cases is

forced to move in anticlockwise direction until the wing rock is completely suppressed.
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Figure 5.8 Wing rock phase control for Case 4

Case 5: Comparison of different order phasers (A0A =32.5°, k, =1, ¢, = -@, =36")

In this case, we compare the compensation performance of different order phasers. We
take an example of the six-order phaser approximation in Equations (5.4) and (5.5) and a

one-order phaser approximation designed as L, (s)= (s +0.0075)/(s + 0.0285) for
phaser ¢, =36° and L,,(s)=(s +0.0075)/(s +0.00195) for phaser ¢, =-36".

Assume the initial condition is ¢(0) =42° and $(0)=0. We have simulated the wing

rock suppression with above two kinds of phaser approximations and observed that the
response of the system with the one-order approximation is much slower than the
response of the system with the six-order approximation, as shown in Figures 5.9(a) and

5.9(b), respectively.
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Case 6: System output with the measurement noise
Lastly, we illustrate a case of the variable phase control with the output measurement

noise. Aassume a band limited white noise disturbance to be added to the system output

variables, for example, #¢) with the noise (its power is 10, sample time is 0.05, and seed
is 23341) and () with the noise (its power is 10, sample time is 0.05, and seed is

23341). The other parameters are the same as we simulate Figure 5.9(b). Figure 5.10
shows that the response of the control system is almost the same as Figure 5.9(b) except
the small error at the equilibrium because the rate of signal and noise is lower. This result

implies that the control system can work well with the measurement noise.
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5.4 Summary

In this chapter, a variable phase control scheme has been developed to suppress wing
rock with hysteresis at various AOAs and any initial conditions. After discussing the
phase control scheme, we have designed the variable phase control scheme of wing rock
suppression to compensate the phase and the magnitude for each part of the hysteresis.
Simulation results show that the proposed control scheme, in nature, can guarantee wing-
rock motion always to dissipate energy such that wing rock phenomena can be
suppressed. The main advantages of proposed method are simple design and calculation,
small control power need, and robustness. Therefore, the proposed control scheme may

be an effective approach for wing rock suppression.
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Part 11
Intelligent Control Schemes of Wing Rock

phenomenon with Unknown Disturbances

In Part I, we have presented wing rock models, investigated wing rock phenomena on
phase plane, analyzed the energy mechanism of wing rock hysteresis, and then proposed
the variable phase control scheme to suppress wing rock phenomenon with hysteresis. In
Part II, we will devote to the problem of nonlinear controls of wing rock phenomenon
with unknown disturbances. In the following Chapters 6-8, we will detail two types of
fuzzy control schemes, the NDOFEL scheme, and reinforcement adaptive fuzzy control
scheme. In this introduction section, we will discuss some general issues involved in
nonlinear controls, emphasizing the intelligent control schemes of nonlinear systems with

disturbances.

Generally, the objective of control design can be stated as:
Given a physical system to be controlled and the specifications of its desired behavior,
construct a feed back control law to make the closed-loop system display the desired

behavior.
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In accordance with this design objective, we consider some key issues. First, we define
two basic types of nonlinear control problems: suppressing and tracking. Next, we
discuss the specifications of the desired behavior of nonlinear control systems. Finally,

we briefly recall and remark the involved major methods of nonlinear controls.

1. Nonlinear Control Problems
When aircraft fly in a high AOA region where the aerodynamics is unstable, nonlinear
effects in aircraft flight dynamics are significant. Therefore, nonlinear control schemes

are necessary to achieve the desired performance of aircraft in a large flight envelope.

Generally, the tasks of control systems can be divided into two categories [94]:
suppressing (or regulation, or stabilization) and tracking (or servo). In suppressing
control problems, a control system, called a regulator (or a stabilizer), is to be designed so
that the state of the closed-loop system will be suppréssed around an equilibrium point.

The control of wing rock suppression belongs to this type of problem.

The design objective of tracking control problems is to construct a controller so that the
system output tracks a given time-varying trajectory. The tracking controls of wing rock
try to make an aircraft fly along a specified roll path. To facilitate the analytic study of
suppressing and tracking control design in this thesis, let us provide some formal

definitions of suppressing and tracking problems.

Asymptotic Suppressing Problem: Given a nonlinear dynamic system described by
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x=f(x,u,t)
find a control law u(f) such that, starting from anywhere in a region in D, the state x(f)

tends to 0 as t— o .

Note that in the above definition, we allow the size of the region D to be large; otherwise,

the suppressing problem may be adequately solved using linear control.

Asymptotic Tracking Problem: Given a nonlinear dynamic system described by
x=f(x,u,?)
y =h(x)
and a desired output trajectory x4(f), find a control law for the input u(f) such that,
starting from any initial state in a region D, the tracking errors e(f) = y(f) - x4(¢) go to zero

while the whole state x(f) remains bounded.

When the closed-loop system is such that proper initial states imply zero tracking error

for all the time,
yi)=x,(¢) Vt=0
the control system is said to be capable of perfect tracking. Asymptotic tracking implies

that perfect tracking is asymptotically achieved; similarly, exponential tracking

convergence can be defined.

Finally, we discuss the relation between suppressing and tracking problems. Normally,

tracking problems are more difficult to solve than suppressing problems. Because in
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tracking problems the controller should not only keep the whole state suppressed but also
drive the system output toward the desired output. In fact, suppressing problems can be

regarded as a special case of tracking problem, which means a desired trajectory x(f) =0.

2. Specifying the Desired Behavior

In linear control, the desired behavior of a control system can be systematically specified,
either in the time-domain or in the frequency domain. However, systematic specification
for nonlinear system is much less obvious because the response of a nonlinear system to
one command does not reflect its response to another command, and furthermore a

frequency-domain description is not possible.

As a result, for nonlinear systems, we often look instead for some qualitative
specifications of the desired behavior in the operating region of interest. Computer
simulation is an important complement to analytical tools in determining whether such
specifications are met. To achieve the desired performance of wing rock control, we
need to consider the following characteristics:

(a) Stability must be guaranteed for the nominal model (the model used for design),
either in a local sense or in a global sense. The region of stability and
convergence are also of interest.

(b) Robustness is the sensitivity to effects that are not considered in the design, such
as disturbances, measurement noise, unmodeled dynamics, etc. The system
should be able to withstand these neglected effects when performing the tasks of

interest.
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(c) Accuracy and speed of response may be considered for some “typical” motion
trajectories in the region of operation. Appropriate controller design can actually
guarantee fast tracking and very small tracking errors.

(d) Simplicity and reliability may be an aim of control system design. Among all
feasible designs, we should prioritize to use a simple and reliable controller so
that it can be applied for practical control. This also means considering the
number and type of actuators and sensors and designed controller complexity for

the low cost of a control system.

We need to do some explanations. Stability does not imply the ability to withstand
persistent disturbances of even small magnitude. The reason is that stability of a
nonlinear system is defined with respect to initial conditions, and only temporary
disturbances may be translated as initial conditions. The effects of persistent disturbance
on nonlinear system behavior are addressed by the concept of robustness. In addition, the
above qualities conflict to some extent, and a good control system can be obtained only
based on effective trade-offs in terms of stability/robustness, stability/performance,

simplicity/performance, etc.

3. Control schemes of nonlinear systems with disturbances

The tracking control for uncertain nonlinear system with disturbances is a challenging
problem. There is no general method for this problem. We will briefly discuss several
useful control methods such as sliding-mode control, adaptive control, fuzzy control,

neural network control, and neuro-fuzzy control.
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On the other hand, in pure model-based control, the control law is designed based on a
nominal model of the physical system. In practice, the model is usually imprecise. The
model imprecision may come from actual uncertainty about the plant or from the
purposeful choice of a simplified representation of the dynamics of systems. From a
control point of view, modeling inaccuracies can be classified into two major kinds:
parametric uncertainties and unmodeled dynamics. It is well known that modeling
inaccuracies can have strong adverse effects on nonlinear control systems. Three major
approaches to dealing with model uncertainty are sliding-model control, adaptive control,

and fuzzy control.

3.1 Sliding-Mode Control

Sliding-mode control (SMC) is a kind of robust nonlinear controls. Robust control can
handle model uncertainties associated with time varying systems. The goal of robust
system design is to retain assurance of system performance in spite of model inaccuracies
and changes. A system is robust when it has acceptable changes in performance due to
model changes or inaccuracies. Hence, a robust control system exhibits the desired

performance despite the presence of significant plant uncertainty.
The most significant property of SMC is its robustness. Loosely speaking, when a system
is in a sliding mode, it is insensitive to parameter changes or external disturbances.

Clearly, SMC is a good candidate for tracking control of uncertain nonlinear systems.

In practical application, a pure SMC suffers from the following main disadvantages. First,
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there is the problem of chattering, which is the high-frequency oscillations of the
controller output. Second, SMC may employ unnecessarily large control signals to
overcome the parametric uncertainties. Last, but not the least, there exists appreciable

difficulty in the calculation of what is known as the equivalent control.

For enhancing the performance of SMC, we are interested in intelligent controls such as
fuzzy logic, neural networks, evolutionary computing, and other techniques adapted from
artificial intelligence. These methodologies provide an extensive freedom for control
engineers to exploit their understanding of the problem, to deal with problems of
vagueness, uncertainty, or imprecision, and to learn by experience. Therefore, they are
useful tools for alleviating the problems associated with SMC. In other words, the new
control scheme from SMC combining with some intelligent control techniques usually

has a better performance than only SMC does.

3.2 Adaptive Control

Many dynamic systems have constant or slowly varying uncertain parameters. Adaptive
control is an approach to the control of such systems. The basic idea of adaptive control
is to estimate the uncertain plant parameters on-line based on the measured system
signals, and use the estimated parameters in the control input computation. In short, it can

be regarded as a control system with on-line parameter estimation.

The basic objective of adaptive control is to maintain consistent performance of a system

in the presence of uncertainty or unknown variation in plant parameters. Since such
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parameter uncertainty or variation occurs in many practical problems, adaptive control is
useful in many industrial fields. These include robotic manipulation, aircraft and rocket

control, chemical processes, power systems, ship steering, and bioengineering.

In practice, the adaptive control system is often used to handle time-varying unknown
parameters. The time-varying plant parameters must vary considerably slower than the

parameter adaptation. This is often satisfied in most practical cases.

Generally, adaptive control is superior to SMC in dealing with uncertainties in constant
—
or slowly varying parameters. The basic reason lies in the learning behavior of adaptive
control systems: an adaptive controller improves its performance as adaptation goes on,
whereas a robust controller simply attempts to keep consistent performance. Another
reason is that an adaptive controller requires little or no a priori information about the
unknown parameters, whereas a robust controller usually requires reasonable a priori
estimates of the parameter bounds. Actually, SMC may be combined with adaptive
control, leading to robust adaptive controllers in which uncertainties on constant or

slowly-varying parameters is reduced by parameter adaptation and other sources of

uncertainty are handled by robustness techniques.

However, for the case of the time-varying wing rock with unknown disturbances we will
consider in the latter Chapters 7-8, a pure adaptive control is limited. There is reason to
seek some new control schemes with effective algorithms to guarantee the robustness and

stability of the time-varying control system.
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3.3 Fuzzy Logic Control

Fuzzy logic control (FLC) is much closer in spirit to human thinking and natural
language than the traditional logical systems. Basically, it provides an effective means of
capturing the approximate, inexact nature of the real world. Viewed in this perspective,
the essential part of FLC is a set of linguistic control rules related by the dual concepts of
fuzzy implication and the compositional rule of inference. In essence, FLC provides an
algorithm that can convert the linguistic control strategy based on expert knowledge into
an automatic control strategy. It may be viewed as a step toward a rapprochement

between conventional precise mathematical control and human-like decision.

Besides, FLC has the ability to perform effectively even in situations where the
information about the plant is inexact and the operating conditions are uncertain. This
ability of FLC makes it suitable for control applications to plants like aircraft that have

nonlinear dynamics and operate in uncertain environments.

We should point out that the control performance of FLC, to some degree, depends on the
fuzzy membership functions and rule-base. For a complex nonlinear system, several
dozen fuzzy rules based on expert knowledge usually are needed in the control scheme,
which makes the fuzzy design to be a tedious and time-consuming process. However, in
this thesis we propose to use only four fuzzy rules instead of several dozen fuzzy rules in
the control system. Meanwhile, we have developed adaptive algorithms or the NN with
on-line learning algorithms to modify the parameters of fuzzy membership functions and

to generate rule base from zero. The details are provided in Chapter 6.
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3.4 Neural Network Control

Of the many different intelligent approaches, neural networks (NNs) appear to be
growing in popularity due to the fact that are potentially capable of coping with some of
the difficulties associated with conventional control approaches, such as computational
complexity, presence of nonlinearities, and uncertainty. Their massively parallel
architecture permits computation to be performed at high speeds. Because they can
approximate nonlinear maps to any desired degree of accuracy, they possess at least the
capacity to identify nonlinear dynamic systems. The fact that various rules are currently
available for the adjustment of the parameters of the network on the basis of observed
behavior implies that the networks can deal with uncertainty. In view of the versatility,
neural networks have emerged as very powerful tools for designing intelligent control

systems.

Generally, NN control strategies can be broadly classified into off-line and on-line
scheme based on how the parameters of the network are tuned. When the neural
controller operates in an on-line mode, it has no a priori knowledge of the system to be
controlled, and the parameters of the network are updated while the input-output data is
received. However, in the off-line control, the network’s parameters are determined from

the known training pairs, and then those parameters are fixed for control purposes.

3.5 Neuro-Fuzzy Control

FLC provides an effective means of capturing the approximate, qualitative aspects of

human reasoning and decision—making processes. However, without adaptive capability,
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the performance of FLC relies exclusively on two factors: the availability of human
experts and the knowledge acquisition techniques to convert human expertise into

appropriate fuzzy if-then rules and membership functions.

In practice, control engineers consider NNs as a tool for function approximation, self-
learning and adaptive algorithms. The self-learning features of NNs are applied in
learning the system dynamics, thereby tuning the controller parameters accordingly to
provide a satisfactory or desired control response. Of course, it can be used in fuzzy
inference systems. As a result, a fuzzy inference system can not only take linguistic
information from human experts, but also adapt it using numerical input/output pairs to
achieve better performance. This gives fuzzy inference systems an edge over NN,

which cannot take linguistic information directly.

Neuro-fuzzy control is especially suitable for the adaptive flight control where the system
dynamics is dominated by the uncertain nonlinearities. In addition, among different
choices of network structures, Gaussian function neural network shows its potential for

on-line identification and control and thus arouses much interest.
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Chapter 6

Fuzzy Control of Wing Rock Phenomenon

In this chapter, we first design the fuzzy proportional-derivative (PD) control for wing
rock suppression and then propose the variable universe fuzzy PD control for wing rock
tracking control with unknown disturbances. This chapter is organized as follows: A
fuzzy logic system (FLS) is introduced in Section 6.1. In Section 6.2, the fuzzy PD
control of wing rock phenomenon is designed. In the case of wing rock undergoing
unknown disturbances, the variable universe fuzzy PD control scheme is proposed to

track a desired trajectory in Section 6.3. Section 6.4 is the summary of this chapter.

6.1 Fuzzy Logic Systems

A FLS is a static nonlinear mapping between its inputs and outputs. Figure 6.1 plotted
from Reference [103] shows this system where the system inputs are x, € X, (i1, 2 ...,
n) and the outputs are y, € ¥, (=1, 2 ..., m). x; and y; are “crisp”, that is, they are real

numbers, not fuzzy sets. Then the fuzzification block converts the crisp inputs to fuzzy
sets. Next, the inference mechanism uses the fuzzy rules to produce fuzzy conclusions.

Finally, the defuzzification block converts these conclusions into the crisp outputs.
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Figure 6.1 Fuzzy logic systems [103]

For discussing convenience, we also give several notions related to a FLS:

Universes of Discourse: The crisp sets X; and Y; are called the “universes of discourse”

for x; and yj, respectively.

Linguistic Variable: For the fuzzy system, linguistic variables denoted by X, are used to
describe the inputs x;. Similarly, linguistic variables denoted by y, are used to describe

outputs y;.

Linguistic Values: Let A’ or B/ denote the 7™ linguistic value of the linguistic variable
X, or y, defined over the universe of discourse X; or Yj, that is,
A ={A’:j=1,2.. N}

B.={B/:j=1,2.. M}

RS

Linguistic values are generally as “positive large,” “zero,” “negative big,” etc.

Linguistic Rules: The mapping of the inputs to the outputs for a fuzzy system is in part
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characterized by a set of condition/action rules, or If-Then form,
IF premise THEN consequent 6.1)
Usually, the inputs of fuzzy system are associated with the premise, and the outputs are

associated with the consequent.

Membership Functions: The function u(x;) associated with A’ that maps X; to [0,1] is

called a “membership function.”

6.2 Fuzzy PD Control of Wing Rock Phenomenon

As we know, the fuzzy logic control has the ability to perform effectively even in
situations where the information about the plant is inexact and the operating conditions
are uncertain. This feature of the fuzzy logic control makes it suitable for controlling

plants like aircraft that have nonlinear dynamics and operate in uncertain environments.

In the literature, Tarn and Hsu in Reference [55] developed a fuzzy controller with 9
fuzzy rules for wing rock suppression. Sreenatha ef al. in Reference [56] presented the
design and implementation of a FLC for wing rock suppression. The forty-nine fuzzy
rules are tried out with the delta wing model in the wind tunnel. Malki et al. in Reference
[104] derived an analytical structure for this fuzzy PD controller and also studied
bounded-input/bounded-output (BIBO) stability analysis of a nonlinear fuzzy PD
controller with small gain theorem. Mohan and Patel in Reference [105] presented the

discrete version of this research.
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In this preliminary study, fuzzy PD control is used for suppressing wing rock and

tracking a constant roll angle or trajectory, as examined in Reference [102].

6.2.1 Properties of Conventional Linear PD Control
To begin with, we recall that the PD control law is described by

u(t) =K ,e(t) + K (1) (6.2)
where K, and K, are the proportional and derivative gains of the controller, respectively,
and e(?) is the error signal defined by e(f) = r(t) — x(¢) in which r(¢) is the reference

signal and x(¢) is the system output.

Equation (6.2) can be written as
e=———e+—u (6.3)

Let u = 0, u >0, and u <0, respectively. We can draw three straight lines on phase plane,
as shown in Figure 6.2, where H denotes the distance between a line u = 0 and lines u # 0
and can be expressed as

H=——o (6.4)

JK; +K?

From the Figure 6.2, we can outline the properties of the PD controller on phase plane:
(a) There is the “zero line” on which the controller output is equal to zero.
(b) The control output is positive (negative) in upper (lower) part of the zero line.
(c) The magnitude of the control output is linearly proportional to the distance H
from the zero line in Figure 6.2.

These properties are useful to design a fuzzy PD control system.
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Figure 6.2 Phase-plane expressions of PD control

6.2.2 Fuzzy PD Control

Fuzzy control system design usually includes four parts: 1) fuzzification, 2) fuzzy rule-

base, 3) fuzzy inference, and 4) defuzzification. The structure of fuzzy PD control is

shown in Figure 6.3.

L R e B T T

y

Fuzzification |'

Rule-base :u(,t) " x(f)
Fuzzy inference | 4 P Plant >
Defuzaficaticon :

e e e e e e W

Figure 6.3 Fuzzy PD control diagram

1) Fuzzification
The two input variables are the error e(f) and the rate of its change é(¢), and the one

output variable u(f) is fed to the controlled plant. Membership functions of e(f) and é(¢)
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are shown in Figure 6.4(a). Each has two membership values: positive and negative,
whereas u(f) with a singleton membership function has three values: positive, negative

and zero, as shown in Figure 6.4(b).

Negative  Zero  Positive
' SR TR 3

e

(a) Inputs e(¢) and é(¢) (b) Output u(r)

Figure 6.4 Membership functions

Next, we discuss the universes of fuzzy variables. Let X, =[-L L](i=1,2) be the

universes of input variables e(f) and é(¢). To employ the same membership functions on
the two inputs, two scaling factors, Kp and K, are introduced to magnify input signal
values. Similarly, let Y =[-H H] be the universe of output variable u(f). The constants

L and H, which are used in the definition of the membership functions in Figure 6.4, are
chosen by the designer, according to the value ranges of the error, the rate of its change,

and the output signal. After being determined, they are fixed.

2) Fuzzy Rule Base
Based on the defined membership functions, the corresponding fuzzy rule-base is

specified as follows:
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RI: IF e(f)=ep AND é(t)=rp THEN output =op
R2: IF e(f)y=ep AND é(t)=rn THEN output =oz
R3: IF e(t)y=en AND é(t)=rn THEN output =on
R4: IF e(t)y=en AND é(t)=rp THEN output =oz
where ep is denoted as a positive error, en as a negative one, rp as the rate of positive

error change, rn as the rate of negative error change, op as a positive output, 0z as a zero

output, and on as a negative output.

What is the reason for establishing these fuzzy rules? We give an illustrational
explanation in Figure 6.5, assuming the output error signal of wing rock control to be an
approximate sinusoidal wave. In addition, for suppressing control the reference signal is
r(t)=0; thus, we have e(t)=r(t)—x(t)=-x(t) and é(t)=rF({)—x(t)=—x(t) . This
explanation relates to the sign of input variables e(f) and é(¢) with time as follows.

(a) For Rule 1: In phase I, the condition ep =e >0 implies that x <0, and the
condition rp =¢é >0 implies that x < 0. In this case, the controller should drive
the system output upward. We let output be op.

(b) For Rule 2: In phase II, the condition ep =e >0 implies that x <0, and the
condition rn=¢é<0 implies that x>0 . In this case, the controller will
automatically perform the expected task to drive the system output toward zero.
Thus the controller needs not to take any action; we can set output to be oz.

(¢) For Rule 3: In phase III, the condition en =e <0 implies that x >0, and the
condition rn = ¢ <0 implies that x > 0. In this case, the controller should drive

the system output downward. We let output be on.
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(d) For Rule 4: In phase IV, the condition en =e <0 implies that x >0, and the

condition rp = é > 0 implies that x < 0. In this case, the controller is driving the

system output toward zero. It is similar to Rule 2 that we set output to be oz.

elf)

1 14 m w

Input e{£) =0 >0 <0 =0
Input &(t) =0 <) =0} >0
Outpot #(2) op 0z on oz

Figure 6.5 The four different phases of the output error signal

3) Fuzzy Inference
Fuzzy inference is the process of formulating the mapping from a given input to an
output by using fuzzy logic. This mapping provides a basis from which decisions can be
made. Mamdani’s fuzzy inference method is the most commonly used fuzzy
methodology. Consider Max-Min composition with Mamdani implication for the four
fuzzy rules with two antecedents.

R IFeisA;AND éis B;THEN u is C; i=1,2,3,4.

If the crisp inputs are @y and by, the firing strength ¢, of the rules is computed by
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@, = A,(a,) N B,(b,). Each rule conclusion is obtained by C; =(c, " C,). The entire

system conclusion is obtained by C* =(C, U C, UC, UC,).

4) Defuzzification
Defuzzification is a process to convert the fuzzy set obtained from an inference
mechanism into a single value. Perhaps the most popular defuzzification method is the

centroid calculation or COG, which returns the center of the area under the curve.

K e
‘ i
I, Ic, 1€, Ic,
L
Ic, | Ic, ;
Ic, | C
" 1, ic, S 0
0 o
Ic, Ic, |
Ic, Ic,
e, | I,
L
I Cr)s } CN ICI b2 IC}u
-L 0 L

Figure 6.6 Regions of possible input combinations (ICs) [104]

All possible input combinations (ICs) of ‘e(f)’ and ‘ é(t)’ are shown graphically in
Figure 6.6 from Reference [104]. The control rules, the membership functions, and IC

regions are used to evaluate an appropriate fuzzy control law to each region.

By employing the formula of center of gravity, we can obtain the closed-form fuzzy PD

control law
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U() = t g (1) 65)

LK e(t)+K é(t
where U g, (£) = (K pe(t) * K,e(0) in IC), IC4, ICs, and ICs.
2L- K, |e(t)))
LK e()+K ,é(t
_ LR, < (L) in IC,, IC3, ICq, and IC.
2L~ K, |e(n))
= (—l:i%@ in IC9 and IC16.
L+K e(t .
=£2—Pe()) in ICo and IC,,.
- w—f—df@ in IC}5 and IC5.
-L+K e(t
= E———2£—(—)2 in IC14 and IC15.
=L or -L in IC17 or IC19.
=0 in IClg and IC19.

Figure 6.7 Output surface views of fuzzy PD control
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In addition, using Fuzzy Logic Toolbox, we can see the entire output surface of the fuzzy
PD control in Figure 6.7, which implies that the entire span of the output set is based on

the entire span of the input set, u(t) = f(e,é) . With the number of fuzzy rules increasing,

the output surface in Figure 6.7 will become smoother surface.

6.2.3 Stability Analysis

There are a considerable amount of efforts devoted to the stability analysis of fuzzy
control systems in the literature. As for the fuzzy PD control system, Malki et al. in
Reference [104] presented the bounded-input/bounded-output (BIBO) stability analysis

with small gain theorem. The following is the stability statement.

Theorem: A sufficient condition for the nonlinear fuzzy PD control systems to be stable is
that the given nonlinear process has a bounded norm (gain) |N|| < and the parameters

of the fuzzy PD controller, Kp, K4, and K, satisfy

yKM Ku

T K V] <1 (6.6)

where y =min{l, H}, K, =max{K,, K,}, K, =max{K,M,, K,M,},

M, = sup|e(nT)|/T, M, = sup%—|e(nT)—e(nT—T)| <2M,, and T is the sampling
n20 nxl

period.

6.2.4 Simulation Results
Wing rock suppression is used as an example to illustrate the performances of the

proposed fuzzy PD control. The control model has been given in Equation (5.8).
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The following three cases are used to illustrate the effectiveness of the proposed
controller. The parameters of the controller in Equation (6.5) are designed as L =+ 0.7

rad, Kp =1, K;=0.07, and H = £3.2.

Case 1: The comparison of three control schemes

In this case, we compare the proposed control scheme with the schemes in References
[55-56] to suppress wing-rock at a big initial roll angle, for example, ¢(0)= 55"
and ¢(0) = 0. The simulation results of three different control schemes are shown in
Figure 6.8, including the output responses ¢(¢) and the control inputs u(f). The results

show that the proposed fuzzy PD controller gives a better regulation as compared with
Reference [55] and has similar performance as compared with Reference [56] where 49

fuzzy rules are used.

Case 2: Tracking constant trajectory r(t) = —10°

To verif& the tracking performance of the proposed fuzzy PD control, we assume the
desired constant trajectory #(f) = —10° at the initial condition ¢(0)=43" and ¢(0)=0.
The controller can be activated in any time, for example, at r+ =200 time steps. Figure
6.9(a) shows the output response of the wing rock control, and Figure 6.9(b) shows the

same output response on phase plan. The results show that the proposed control scheme

can track a constant trajectory.
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(a) Reference [55] with 9 fuzzy rules
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(c) The proposed controller with 4 fuzzy rules

Figure 6.8 Comparisons between three fuzzy controllers

121



¢(r)(deg)
50 ™ T ™ T r
40 : : L :
30}
20
10
0
10
20
30
40
50

0 50 100 150 200 250 300

Time steps

(a) Output response

#(t) (rad/sec)
0.06

0.04

0.02¢

Ot

002t

0.04¢

0.08 e Y
B0 40 20 0 20 40 60

¢(t) (deg)

(b) Output response on phase plane

Figure 6.9 Tracking r(f) = -10° at ¢(0) = 43° and #(0) =0
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Figure 6.10 Simulation results at the nine different AOAs

Case 3: Suppress wing rock at different AOAs
To verify the robustness of the proposed controller, we use the proposed controller to

suppress wing rock phenomenon at nine different AOAs, assuming the initial condition
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as ¢(0) =5%and (15(0) =0 and the controller activated at + =1000 time steps; of course,

you can choose any initial time. Even though the parameters of the proposed fuzzy PD
controller are fixed and the AOA in Equation (5.8) vary in a wide range from 25° to 45°,

wing rock phenomenon can be quickly suppressed, as shown in Figure 6.10.

Observations.
(a) The fuzzy PD controller can switch control actions in Equation (6.5), which
depends on the change of input signals with time. Moreover, the control action in
Figure 6.7 is always continuous and smooth.
(b) The designed fuzzy PD controller, by nature, is a nonlinear controller, that is,
u(t) = f(e,é) . In contrast, the conventional PD controller is a simple linear
controller.

(c) The fuzzy PD control has better robustness than the conventional PD control.

6.2.5 Conclusions

We have designed a fuzzy PD control scheme for wing rock control. First we have
discussed the properties of conventional PD controller, which leads to the design of fuzzy
PD controller. Next we have presented the numerical simulation results to verify the
effectiveness and robustness of the proposed fuzzy PD control. Even though the proposed
fuzzy PD control uses only four fuzzy rules, the numerical simulation results show that
the proposed control scheme is simpler and more effective than the schemes of

References [55-56] to control wing rock phenomenon.
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6.3 Variable Universe Fuzzy PD Control

6.3.1 Introduction
For a large class of second order nonlinear systems, the fuzzy PD control is designed with

respect to phase plane determined by error e(f) and the rate of error change é(f)
according to the states x(¢) and x(¢). As discussed in Section 6.2.4, the fuzzy PD control

has a nonlinear regulation law and is better than the conventional PD control. However, if
the system suffers from some disturbance, the fuzzy PD control exhibits a big steady-

state error, in essence, because of lacking an integral component in the controller.

In the literature, the selection of appropriate membership functions in FLC is an
important issue because a change of fuzzy membership function may alter the
performance of the fuzzy controller significantly. Several algorithms of tuning of the
fuzzy membership function have been proposed in References [106-109]. These
algorithms have an important characteristic of global tuning of the fuzzy membership
functions, but they need off-line preprocessing or need repeated simulations. Moreover,
to improve the precision of fuzzy control, we usually rely on adding the number of fuzzy

rules, which makes the fuzzy design a tedious and time-consuming process.

In this study, variable universe fuzzy PD scheme, based on an interpolation mechanism
of FLS, is utilized for the on-line tuning of fuzzy membership functions to improve the
tracking precision and robustness of the control system with several fuzzy rules when the

system undergoes unknown disturbances.
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To verify the effectiveness of the proposed method, we demonstrate the suppressing and
tracking control of wing rock motion with unknown disturbances, which include un-

modeled dynamics and external disturbances.

6.3.2 Fuzzy Control with Switching Mechanism

1) Control Scheme

As discussed in Section 6.2.4, the fuzzy PD control is a nonlinear controller and has
better performance than the conversional PD control. But when the system is near steady
state, the fuzzy PD control can be interpreted as an approximation of a linear PD
controller (see Appendix B in detail). If the control system is with disturbances, the

system output may lead to an unaccepted error.

To improve the tracking precision and robustness of the fuzzy PD control in the steady
state of the system, we propose a variable universe fuzzy control algorithm, which can be

considered as a fine controller.

The developed control strategy, as illustrated in Figure 6.11, is limited to a second-order
nonlinear system such as the wing-rock motion. A switching mechanism in this scheme is
introduced. In the initial control stage, the tracking error usually has a big value, that is,
|e(t)| > e,, where ey is a switch threshold value given by designers, the task of the control
system is to eliminate the tracking error. During this stage, the fuzzy PD control designed
in Section 6.2.2 with fixed membership functions is used. In fact, it is a coarse controller.

The aim of the fuzzy PD control is to keep the fast adjustment. When the system tends to
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the steady state, and the output signal enters in a small error range, )e(t)léeo, the

controller is switched to a fine fuzzy controller, that is, the variable universe fuzzy

control.

Figure 6.11 Variable universe fuzzy PD control diagram

2) Variable Universe Fuzzy Control
A so-called variable universe means that some universes, such as input universes .X; and
X; and output universe Y, can respectively change along with the changing of variables

e(?), é(t) and u(f). In References [110-111], they are expressed as:

X(@=[-a,(e)L a,(e)L] (6.7)
Xy(@)=[ra, (L a,(e)L] (6.8)
Y(w)=[-pw)H pu)H] (6.9)

where ,(e), a,(é) and Ku) are called contraction-expansion factors of the universes Xj,

X5, and Y, respectively. Being relative to variable universes, the original universes Xj, X,
and Y are naturally called initial universes. Figure 6.12 shows an example of variable

universe of input variables.
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Figure 6.12 Contracting/expanding universe L

Now, the problem is how to select ¢, (e), a,(¢) and Ku) to design variable universe
fuzzy control. Generally, a function a: X —[0, 1], e > a,(e) and é > a,(é) is called a
contraction-expansion factor on X, =[-L, L] if it satisfies the following axioms [111]:

(a) Duality:Vee X,, VéelX,, o,(e)=a,(—e) and a,(é) =a,(-€);

(b) Near zero: a,(0)=¢, >0 and ,(0) =¢, >0 (& and & are very small constants);

(c) Monotonicity: ¢, and «, is strictly monotonically increasing on [0, L];

(d) Normality: a,(+L)=1 and o, (£L)=1.

For the fuzzy control with two input variables and one output variable, the following

contraction-expansion factors are suggested:

o[
al(e)—81+(L (6.10)
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a,(é)=¢, + @ ’ (6.11)
2 2 L

Ble,é) = (e (), (&))" (6.12)
where 0<7,,7,,7; <1 and &, ¢, >0 is a very small constant, for example, taken as

g =¢&,=0.001.

The structure of variable universe fuzzy control is the same as shown in Figure 6.3 except
the different gains Kp and K, as well as the variable universes L and H, as shown in
Figure 6.4. The reason for using different gains Kp and K, in the different controllers is
that when the controller switch to the fine fuzzy controller, the gain Kp should be changed
to a small value and the gain K should be changed to a big value in order to reduce
overshoot and to make the system stable. For example, we choose the new gains Kpr =

Kp/m and Kyr=mx K, , where m >1 and is a constant.

Based on the new gains, the variable universe algorithm is used to modify fuzzy universe

parameters L and H, whereas the fuzzy rules will keep the same at the all time.

3) The Switching Control Law

The proposed variable universe fuzzy PD controller can be expressed as

u(t) = {”f"”y O > (6.13)

U g (1) |e| <e,

where u ;.. (¢) is defined in Equation (6.5), and u,, (¢) is defined as:
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L(a,(e)K pre(t) + a,(é)K ;- (1))
2(2B(e,€)H — K pJe()))

U (0) = in ICy, ICs, ICs, and ICs,

_ L@ (9K pee() + @, (&)K (1))
2(2B(e,)H — K, [e(t)))

in ICz, IC3, IC6, and IC7,

- ﬂ(e’é)H; K pe(t) in ICy and IC ),
_ B, é)H; Kpre(®) in IC10 and IC,
_- ﬂ(e’e')ﬁ; + KopéD) in IC;; and IC)3,
_-B, é)f; + Kpre(t) in ICy4 and ICys,
= B(e,é)H or - B(e,é)H in ICy7 or IC)o,
_0 in IC5 and IC;s.

6.3.3 Wing Rock Control Model
To evaluate the proposed control scheme, we modify the control model of wing rock

phenomenon in Equation (5.8) as
b+ap+ap+aldd+ad’ +ap’=u+d (6.14)
where a,(i=0, 1, 2, 3, 4) are the parameters illustrated in Figure 2.5, u(¢) is the control

input, and d(¢) includes the un-modeled dynamics and external disturbance.

6.3.4 Simulation Results
In this section, we will simulate the control of wing rock phenomenon with unknown

disturbances. In particular, we compare the simulation results of variable universe fuzzy
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PD control in Figure 6.11 with the previous fuzzy PD control in Figure 6.3.

Before simulation, we design some parameters of the controller:

(a) The switch threshold value in Equation (6.13) is e, = 0.02rad or 1.15°
(b) For the fuzzy PD controller, u . (), we choose L= % 0.7 rad, Kp =1, K =0.3,
and H = £20.
(c) For the fine controller, u jine () > WeE choose L = + 0.7rad, m=4, Kpr =1/4, Ky
=0.3x4, H = £20, and other parameters 7, =0.9, 7, =7, =0.1, & =0.001, and
g, =0.001.
Assume to track a time-varying trajectory xd(#)=10° +5°sin(0.012%) or a constant
trajectory xd(f) =10° under a time-varying disturbance d(f) =1.5sin(27) +sin(5at) or a
constant disturbance d =2 to evaluate the proposed control scheme. The initial condition

is #(0)=2"and $(0) =0 at 404=32.5°. We allow the uncontrolled wing rock to have

some LCOs and then activate the controller, for example, at  =1000 time steps.

The following five cases are used to illustrate the effectiveness of the proposed controller.

In each case, we compare the tracking errors of two fuzzy PD control schemes.

Case 1: Suppression control with xd(t)=0 and d =0

In this case, the output responses of two control schemes are almost the same, as shown
in Figure 6.13. This result means that the two control schemes have almost the same

performance and both of the tracking errors are e(t) ~ 0.
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Figure 6.13 Fuzzy control for wing rock suppression

Case2: Tracking control: xd(t) =10° and d =0
Assume to track the desired constant trajectory xd(f) =10° without the disturbances. The

simulation results show that the tracking error of the fuzzy PD control is }e(t)) <0.01°

while the tracking error of the proposed control scheme is ’e(t){ <0.0002°.

Case3: Tracking control: xd(t) =10° and d =2

Assume to track the same constant trajectory xd(t) =10° as Case 2 except the constant
disturbance d =2. Figure 6.14(a) shows the tracking error of the fuzzy PD control to be
le(r)| <13.355° while the tracking error of the proposed control scheme is |e(r)] < 0.061°,

as shown in Figure 6.14(b).
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(b) Tracking errors |e(t)| <0.061° of the proposed controller

Figure 6.14 The response comparisons of tracking xd(#) =10° with the disturbance d =2
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Figure 6.15 The tracking error |e(r)| <1.1° of the fuzzy PD control for

tracking xd(t) =10° + 5° sin(0.012¢) under d(¢) =1.5sin(2at) + sin(57z)
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Figure 6.16 The tracking error |e(t)| <0.0005° of the proposed controller for tracking

xd(t) =10° + 5° sin(0.01¢) under d(¢) =1.5sin(27t) + sin(57¢)
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Figure 6.17 The tracking error [e(t)} <8.1° of the fuzzy PD control for tracking

xd(t) = 5° sin(0.012¢) under d(f) =1+1.5sin(27¢t) + sin(57)
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Figure 6.18 The tracking error —0.05 < e(t) <0.1° of the proposed controller for

tracking xd(¢) = 5° sin(0.012) under d(f) =1+1.5sin(27) + sin(57t)
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Case4: Tracking control: xd(t) =10° +5°sin(0.012¢) and d(t) =1.5sin(2at) + sin(57¢)
Assume to track the desired time-varying trajectory xd(f) =10° +5°sin(0.012¢) under
the time-varying disturbance d(¢) =1.5sin(2m)+sin(52¢) . Figure 6.15 shows the

tracking error of the fuzzy PD control to be |e(t)| <1.1° while the tracking error of the

proposed control scheme is |e(t)] <0.0005°, as shown in Figure 6.16.

Case 5: Tracking control: xd(t) = 5°sin(0.012) and d(t) =1+1.5sin(27z) + sin(57)

Assume to track the desired time-varying trajectory xd(¢) = 5°sin(0.01z¢) under the
complex disturbance d(¢t) =1+1.5sin(2m)+sin(52) , which include a constant
disturbance and a time-varying disturbance. Figure 6.17 shows the tracking error of the

fuzzy PD controller to be ]e(t)' <8.1° while the tracking error of the proposed scheme is

—0.05 < e(f) <0.1°, as shown in Figure 6.18.

6.3.5 Conclusions

A variable universe fuzzy PD control has been proposed to improve the precision and
robustness of wing rock tracking control with unknown disturbances. In this new scheme,
when the tracking error is bigger, we take the advantage of the fast and simple adjustment
of fuzzy PD control to reduce big tracking errors; when the tracking error enters into the
small range, we take the advantage of fine tuning of variable universe fuzzy control. The
simulation results show that the proposed control scheme has much better tracking
performance and robustness than the fuzzy PD control scheme. The main features of the

proposed method are precise tracking and fast responses with only four fuzzy rules.
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6.4 Summary

In this chapter, after brief introducing .fuzzy logic systems, two fuzzy control schemes
have been proposed to control wing rock phenomenon. The numerical results show that
the two control schemes almost have the same performance if the disturbance of wing
rock phenomenon is ignored, but if the disturbance is considered, the variable universe
fuzzy PD control has much better tracking performance and robustness than the fuzzy PD

control.
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Chapter 7
The NDOFEL Control of Time-Varying Wing

Rock Phenomenon

In this chapter, a new learning control scheme, called NDOFEL, based on a feedback-
error-learning (FEL) control strétegy combining with a nonlinear disturbance observer
(NDO), is proposed for a class of time-varying nonlinear systems with unknown
disturbances. The nominal model of wing rock phenomenon in this scheme is assumed
available. This chapter is organized as follows: Section 7.1 is an introduction. The
NDOFEL design is then presented in Section 7.2. Next, we discuss the time-varying
wing rock control model in Section 7.3. Finally, Sections 7.4 is the simulation results of
time-varying wing rock phenomenon with unknown disturbances, and Section 7.5 is the

summary of this chapter.

7.1 Introduction

It is well known that tracking control for uncertain nonlinear systems with disturbances is

a challenging issue. To achieve good tracking, the three mechanisms for nonlinear control
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systems with uncertainties and disturbances are usually applied as summarized in
Reference [112]: adaptation, plant-inversion, and high-gain. In general, direct adaptive
algorithms, based on the system performance, adjust the control gains and require little
knowledge of system structures and parameter values. However, the control input might
become large. In addition, adaptive control methods, as studied in Reference [113], may
be limited to a nonlinear system with constant disturbances. Inverse control methods
based on input-output linearization presented in Reference [114] focus on canceling
known nonlinearities and achieving response characteristics, but the robustness to
modeling errors is a serious problem. High-gain approaches such as SMC could

guarantee stability but have chattering problems and also require large control inputs.

A disturbance observer (DO) is another approach of dealing with disturbance problems.
But, the designs of most disturbance observers are based on linearized models or using
linear system techniques, as shown in References [115-117]. There are several pieces of
work where the applications of the disturbance observer for the nonlinear friction
compensation are reported [118-121]. Recently, Chen ef al. in Reference [122] have
proposed a new nonlinear disturbance observer (NDQO) for robotic manipulators. The

uncertainties and disturbances can be integrated into a lumped disturbance term d(f)
where they assume d(f) =0 in Reference [122]. If d(f) =0, then the performance of the

nonlinear disturbance observer will be limited.

On the other hand, if the uncertainties and disturbances in control systems are reduced

into a small range, a neural network (NN) control with the feedback-error-learning (FEL)
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strategy, first proposed in References [123-124], could be used. This control scheme is
adopted because it has the advantage of generating the desired control input, but the
neural network does not require initially off-line training. In practice, different neural

network algorithms with the FEL strategy were applied in References [125-128].

In this study, inspired by both the NDO algorithm and the neural network control with the
FEL strategy, a new learning control scheme, NDOFEL, is proposed to control a class of

time-varying nonlinear systems with unknown disturbances.

In the NDOFEL, we take two steps to estimate the time-varying disturbance term d(¢) for
improving the precision of tracking control. The nonlinear disturbance observer is first
used to estimate d(f); as a result, the observer error does not converge to zero but to a
small range. To reduce the observer error, a sliding-mode fuzzy neural network (SFNN)
with the FEL strategy is then applied to estimate the error so that the output of the plant
follows the desired trajectory. This SFNN with on-line learning algorithms derived from
Lyapunov methods is developed to modify the parameter of fuzzy membership functions
and to generate rule-base from zero. The presented SFNN algorithm is motivated by the
following reasons:
(a) The most significant property of sliding-mode control is its robustness, but this
approach suffers from inherent chattering problems.
(b) Fuzzy logic control provides human reasoning capabilities to capture
uncertainties that cannot be described by precise mathematical models. However,

most fuzzy controllers have difficulties in determining suitable fuzzy control
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rules and membership functions, and trial-and-error tuning procedure is time-
consuming.

(c) The connection structure of neural networks provides powerful abilities such as
adaptive learning, parallelism, fault tolerance, and generalization, but neural
networks need off-line preprocessing.

The proposed SFNN algorithm combines the advantages of different methods, and at the
same time it tries to overcome the drawbacks of each individual method. Furthermore,

the new algorithm is required to be simple, stable, and fast for real time control.

The tracking control during wing rock phenomenon with unknown disturbances is used
as an example to illustrate the application of the NDOFEL. As mentioned earlier, wing
rock phenomena occur at low-speed high AOA and high-speed moderate AOA. Although
some control schemes in References [41, 46-47, 49-51, 55-57, 100-102] can suppress
wing rock phenomenon, the tracking control performance may be poor if wing rock
motions suffer from some uncertainty and disturbance. For this reason, we propose the
NDOFEL to achieve the goal of precise tracking control of time-varying wing rock with a

lumped disturbance term d(f).

7.2 NDOFEL

7.2.1 Problem Statement

Consider a class of time-varying nonlinear systems with unknown disturbances of the

form
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X=f(x,0)+A+u(t)+d, (7.1)
where the scalar variable x(¢) is the output of interest, x(f)=[x %]’ eR? is the state
vector, f(x,t) = f,(X)+Af(x,¢) in which f, (x) is the known function and Af(x,f) is

the unknown function variation, A(f) is the non-modeled dynamics, u(f) is the control

input, and d(¢) is the unknown external disturbance.

Equation (7.1) can be written in the nominal model form
i=f(x)+u+d (7.2)
where d(f) represents a lumped disturbance, that is

d=A(x,t)+A+d,

To estimate the time varying lumped disturbance term d(¢), we first design the nonlinear

disturbance observer to estimate d(¢).

7.2.2 Nonlinear Disturbance Observer Design

The objective of this section is to design an observer such that the estimation c?(t)
yielded by the observer approaches the disturbance term d(f) under any x(f), x(¢), and

telt,,o).

Rewrite Equation (7.2) as
d=xX—-f,(x)-u (7.3)

Then, a disturbance observer can be proposed
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d=—Ld+L(E-f,(x)—u) (7.4)

where L >0 is an observer gain.

However, in most applications, it is difficult to obtain the acceleration signal X(¢) due to

measurement noise. The disturbance observer cannot be implemented. For this purpose,

the disturbance observer can be modified as a nonlinear disturbance observer.

First, we need to define an auxiliary variable

Y

z=d-Lx (7.5)
Invoking Equation (7.4) with Equation (7.5), we have
z==Lz-L(f,(x)+u+ LX) (7.6)

Then, the nonlinear disturbance observer is given by

d=z+Lx (7.7
z==Lz-L(f,(x)+u+ Lx)
Now, define the observer error
e,=d—-d (7.8)

The observer error equation can be derived from Equations (7.3), (7.5), (7.7), and (7.8) as

6 (ty=d—d
=d—z-L%
=d-L(-z—- f,(x)—u— L +%) (7.9)
=—L(d-d)+d
=—Le,()+d
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In Equation (7.9), if d(f)=0, the observer error is with the desired exponential
convergence rate by choosing the observer gain L >0, that is, e, () = 0. However, in

this study, we assume d(f) = 0. As a result, e4(¢) does not converge to zero but to a small

range. To further estimate e (¢), we will study the SFNN with a learning algorithm.

7.2.3 SFNN Algorithm

The SFNN with on-line learning algorithms relates to sliding-mode control, fuzzy logic

control, and neural networks.

To begin with, define the tracking error vector
E=[x,-x]" =[e ¢] (7.10)

where x,(f) =[x, %,]” € R?, x(¢) is a desired trajectory, and e({) is a tracking error.

The researchers in References [129-134] claimed that sliding-mode control is one of the
effective nonlinear robust control approaches since it provides system dynamics with an
invariance property to uncertainties once the system dynamics are controlled in the

sliding mode.

To estimate the observer error e(f), we choose E(f) in Equation (7.10) as the input signals

of the SFNN and define a sliding surface as
S(E)=¢é+ Ae (7.11)

where A >0 is a strictly positive constant. Since bounds on s(E) can be directly translated
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into bounds on the tracking error vector E(f), the scalar s(E) represents a true measure of
tracking performance. We can choose s(E) as the input variable of the fuzzy systems as
used in Reference [129]. In this way, we can reduce the size of fuzzy rule-base. For
example, if each of two fuzzy variables e(f) and é(f) has 5 linguistic variables, then there
are 25 fuzzy rules. By comparison, if s(E) is chosen as the input variable with 5 linguistic

variables, only 5 fuzzy rules are needed.

The discontinuous control is designed by fuzzy control methods such that the system
enters in the sliding mode s(E) =0 and remains it forever. The well-known conditions
s —» 0 and s§ <0 are used as discussed in Reference [135]. When the error trajectory
approaches the switching surface, s — 0, the output signal of fuzzy control should be
small; when the error trajectory is not near the switching surface, the large output should

increase the reaching rate, as explained in Reference [130].

In this case, a fuzzy rule-base is specified as

Ri: IFsis A, THEN u,isr;, i=1,2,...,h (7.12)
where s(F) is a input linguistic variable with a linguistic value 4; defined on the universe
of discourse seS, s(E) uses Gaussian membership functions, ,(s)

=exp[—+(s -c,)’ / o], where c;and o; represent the center and width of membership

functions, respectively, wu, is the output linguistic variable with singular membership
functions, r; are the singleton actions, and # is the number of total rules.

The fuzzy control rules in Equation (7.12) can be implemented by

u, =3 p.(5,0,,¢)xT, (7.13)
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where the fuzzy base function is

exp[-L(s—¢,)/o?]
3" expl-i(s—c,)?/o?]

pi(s,0,,¢,) = (7.14)

To reduce the number of learning premise parameters in Equation (7.13), inspired by the
fuzzy variable (contracting/expanding) universe method discussed in detail in Section 6.3,
the input variable universe S varies only with the width parameter o, s € S(o), and other
parameters are obtained by a simple algebra relationship. For example, a proper and
initial membership function can be defined as

g, =0=2 (7.15a)

cpi=-(h-1)0, ...,c4=-40, ,=-20, 1=0, c3=20, cs =40, ..., cp,= (h-1)o  (7.15b)

For example, if we design # =5 in Equation (7.15), Figure 7.1 will illustrate the fuzzy
base function in Equation (7.14), where Figure 7.1(b) shows the fuzzy base function of a

contracting universe ¢ =1 against the initial universes ¢ =2 in Figure 7.1(a). It should be

0.8}

06}

0.4t

0.2t
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Figure 7.1 The fuzzy base function comparison of the different universes

noted that the membership functions are updated iteratively and automatically because a
change in the membership functions may alter the performance of the fuzzy controller

significantly.

Finally, a feedforward three-layer neural network is constructed to achieve the on-line

learning of the SFNN parameters. With Equation (7.15), Equation (7.13) can be written

in the matrix form
u, = w'e (7.16)

where WT=[r1 r, - r]and O=[p(s,0,0) p,(s,0,—20) -- p,,(s,a,(h—l)a)]T.

7.2.4 NDOFEL Structure

Using the universal approximation theory [136-137], e/f) can be approximated by the

SFNN through the on-line learning
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e, =W'0 +¢, : (7.17)
where W is the optimal weight vector of ¥, ©" is the optimal parameter vector of ®, and

¢, is the inherent approximation error. According to the approximation theory, &, can be

reduced by increasing the number of fuzzy rules. It is reasonable to assume ¢, is bounded.

If there exists a control law
u' =KE-W7'® ~¢ +%, - f,(x)~d (7.18)

where K = [k1 k, ] are the constant gains.

Substituting Equation (7.18) into Equation (7.2), with Equations (7.8), (7.10), and (7.17),

we obtain
E+ké+ke=0 (7.19)
where s +k,s +k, is a Hurwitz polynomial. Thus, u"(f) is called the ideal control law

and can guarantee perfect tracking, that is, x(¢) = x,(¢), if x(0) =x,(0).

Let u,(f) = KE in Equation (6.18) and u,(t)=W"® =¢é,(¢) denotes the output of the
SFNN to estimate e (f). The total control input u(¢) of the nonlinear system (7.2) is
u=u, —u, +x" - f,(x)~d (7.20)

Figure 7.2 shows the proposed NDOFEL control structure.
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Figure 7.2 The proposed NDOFEL diagram

7.2.5 Error Dynamics

Substituting Equation (7.20) into Equation (7.2), with Equations (7.8), (7.10), (7.16), and

(7.17), we obtain the error dynamics
e =-KE-W'® -W'®+¢,) (7.21)
Let W=W" -W and ® =©" —©. The error dynamics can be written as
e =—KE-W'O+W O+W ®+¢,) (7.22)

where (WO +W O +W'®) is the learning error.

For convenience, Equation (7.22) can be denoted as

E=AE+BW O+W'O+W ®+s,) (7.23)
0 1 - 0 10
where A=| : “ | s stable matrix, and B = :
0 o --- 1 0
“k -k, - —k -1
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7.2.6 Stability Analysis and Adaptive Laws
The following Lyapunov candidate function is chosen

V({t)=LE"PE+LW"RW +L0"AO

(7.24)

where P =P is a symmetric and positive definite matrix and satisfies the following

relationship

PA+A"P=-0

(7.25)

where Q is a symmetric positive definite matrix, and R and A are non-negative definite

matrixes.

The derivative of Equation (7.24) is given by

V(t)=L(E"PE+E"PE)+ W RW + & A®

Substituting Equations (7.23) and (7.25) into Equation (7.26), we have

V(t)=-LE"QE + &' B" PE + ® WB" PE + ®"WB' PE
+ ©'WBTPE + W RW + B AD
=—LE"QE +(®"W +¢")B" PE
+®&7 (WB' PE + A®)+ W' (OB PE + RW)

If in Equation (7.27) we choose

o~

W =-R"'®@B"PE

®=-A"WB'PE

then

V(t)=-LE"QE+(@®"W +¢!)B"PE
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The higher order item ®“W is neglected and ("W + &) is bounded by a constante,, .

¥V can be demonstrated negative as follows:

V©) S =2 |El b QL] +|El i (PIBl

= =BV @B+ Bl (P

When
24_ (P
|E| > ﬂ(—)gﬁ =E, (7.31)
ﬂ’min (Q)
we can obtain
V<0 (7.32)

If the control system satisfies the condition in Equation (7.31), we can draw a conclusion

that the overall control system is stable, the tracking error is convergent, E(¢) — 0 as

t = o, by application of Barbalat’s lemma given in Reference [96], and the uniform

ultimate boundedness (UUB) of the tracking error can be achieved.

As we know, W=W —W and ®=0" —© with " =0 and ©" ~ 0, we can obtain the
adaptive laws of the parameters from Equations (7.28) and (7.29) as
W =R'©B" PE (7.33)

® = A'WBT PE (7.34)

Finally, if the approximation error is very large at the initial learning phase, the

parameters of the network may drift to infinity. To avoid this situation, we modify the
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control law in Equation (7.16) as

Y- {WTG), if le|<e, 735)

"0 if ‘el > e,
where ey is an important threshold value. We suggest choosing a little bigger value than
maximum led (t)l. Equation (7.35) means that during the initial learning period or when
1e(t)‘ >e,, the control law (7.20) is simplified as u =u, +x{" - f, (x)—c} and achieves

fast but coarse tracking. When |e(t)| < e,, the overall control law achieves fine tracking.

7.3 Time-Varying Wing-Rock Control Model

In practice, since aircraft at a high AOA operate in an unstable aerodynamic region, it is
quite difficult to obtain the model of aircraft’s roll dynamics. It is reasonable to assume
the practical model of wing rock phenomenon to include time-variable aerodynamics part,
non-modeled dynamics, and external disturbances. Therefore, we define a lumped

disturbance term d(¢) = Af(x,t)+ A +d, to denote the three parts and add d(¢) to the

right side of Equation (5.8).

According to above discussion, the time-varying wing-rock control model for 80° swept

back wing in Equation (5.8) is modified as
¢'+a0¢+al¢+a2‘¢‘¢+a3¢3 +a,’d=u+d (7.36)

where a,(t) (i=0, 1, 2, 3, 4) are the time-varying parameters illustrated in Figure 2.8.
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7.4 Simulation Results

We first choose the wing rock model at AOA =32.5° as a nominal model and assume

L=10, K =[3 2],andh=5.1fg{g 2} andA{O 12},thenp=ﬁ ;]Then

the adaptive laws (7.33) and (7.34) in the SFNN control can be obtained as
W= [-mp(e+2¢) —mp,(e+2¢) —myps(e+2¢) —n,p,(e+2€) —15ps(e+ 2¢)]"  and

® = -1 r,(e +2¢) where 7, (=1,2,3,4,5,6) are learning rates. The reason for choosing

r3(¢) is that it is more effective than the other ri(¥) (i=1,2,4,5).

The numerical simulations of wing rock tracking control are implemented in Matlab and

Simulink environments. Figure 7.3 shows the corresponding Simulink block diagram.
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Figure 7.3 Simulink diagram of the NDOFEL for wing rock control
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Figure 7.3(a) The NDO diagram
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Figure 7.3(b) The control subsystem diagram

The following six cases are used to illustrate the effectiveness and main features of the

proposed controller.

Casel: The suppressing control with u, = KE
Figure 7.4 shows the simulation results at ¢(0) = 2° and $(0) = 0, where the controller is
activated at =800 time steps. Obviously, the control law u () = KE =3e+2¢ can

suppress wing rock. However, if the plant undergoes some disturbance, for example, the

disturbance is d(f) = 2sin 2zt +sin5at +1.5, the output response of control system will

have an unreceptive steady-state error up to 50°, as shown in Figure 7.5.
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Figure 7.4 The output response of wing rock suppression with u_(f) = KE
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Figure 7.5 The output response of wing rock suppression with u, (1) = KE

under d(t) =2sin 27t +sin Szt +1.5
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Figure 7.6 The output response ]e(t)| <2° of wing rock suppression with

u=u,+x" — £ (x)—d under d(f) =2sin 27 +sin 57 +1.5

Case2: The suppressing control with u_(t) = KE and the NDO

If we use the control law u =u_ +x{" — £, (x) ~d to suppress wing rock phenomenon
under the disturbance d(f) = 2sin 27 +sin 52 +1.5, the steady-state error 50° in Figure

7.5 will be reduced into |e(t)| < 2°, as shown in Figure 7.6.

Case3: The tracking control with u (t) = KE and the NDO
Assume to track the desired trajectory x,(f)=40°sin0.1z¢ at the initial condition

#(0) = 40° and $(0) = 0. Figure 7.7 shows that the control law u =u, +x{ - f,(x)-d
under the disturbance d(f) =2sin2a +sin5a +1.5 can reduce the tracking error into

le()| <3.1°.
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Roll angle (deg) vs. time steps

Figure 7.7 The output response |e(t)| <3.1° of tracking control without the SFNN

under d(t) =2sin2at +sinS5at +1.5

Roll angle (deg) vs. time steps

Figure 7.8 The output response |e(t)l <1.5° of tracking control without the SFNN

under d(¢) =1.5
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Case4: The same as Case 3 except the constant disturbance d(f)=1.5

In this case, to verify the performance of the NDO, we repeat the simulation of Case 3
but with the constant disturbance d(f)=1.5, which implied d(f) = 0. If we use the control

law u=u, +x0 - f,(x) - d in the control system, the error |e(t)| <3.1° in Figure 7.8 can

be reduced into the small error range |e(t)| <1.5°, as shown in Figure 7.8. If we choose a

bigger observer gain L, the tracking error will be smaller, and the control system will

exhibit a better control performance.

To further reduce the tracking error, the proposed NDOFEL scheme is used in Cases 5
and 6 for the tracking control during time-varying wing rock phenomenon with unknown

disturbances.

Case5: The NDOFEL control

To demonstrate the NDOFEL performance, we simulate the above Case 3 by using the

proposed NDOFEL, instead of the control law u =u_ +x% — f,(x) —d . Assume A =40 in

Equation (7.11), e =5° in Equation (7.35), the initial learning parameters of the SFNN to

belocn rn rnr rl=[2 00 0 0 0],and the learning rates to be 7, =0.5, m,

=0.5, 173=0.8, 74=0.5, 15=0.5, and 7¢=0.05. When the simulation time is up to 50 time

steps, the parameters of the SFNN after the learning are [c n, r, r, r, 1]
=[0.05 129 9.19 -220 049 0]. Figure 7.9 shows that the tracking error of the time-
varying wing rock motion with unknown disturbances is reduced from |e(r)| <3.1° into

the small range |e(t)! <0.05°.
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(a) Tracking control output ( |e(t)| <0.05°%)
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(b) Control input u(r)

Figure 7.9 The NDOFEL tracking control for x, (f) = 40° sin 0.1
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Figure 7.10 The output response |e(t)| <1.8° of tracking control without the SFNN
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(a) The tracking control output (—0.02°<e<0.1%)
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Case 6: The same as Case 5 except the constant trajectory

In the last case, we assume to track the desired constant trajectory or angle, for example,
x,(t)=-20° at the initial condition ¢(0)=30° and $(0)=0. After the 50 time-step
learning, the parameters of the SFNN change from the initial learning parameters

fon n rnnr rl=20000 0t[020 334 1275 -129 -1.7 0]. If we
use the control law u=u_+x” — f.(x)-d , Figure 7.15 shows the tracking error
|e(t)|<l.80 ; but, if we use the proposed NDOFEL control, the tracking error

le(r)] <1.8° can be further reduced into the small range —0.02° < e(f) <0.1°, as shown in

Figure 7.11(a). Figure 7.11(b) is the corresponding output response on phase plan, and

Figure 7.11(c) is the corresponding the control input.

7.5 Summary

A novel learning control scheme, NDOFEL, has been proposed to control a class of time-
varying nonlinear systems with unknown disturbances. In this scheme, we have taken two
steps (the NDO and the SFNN) to estimate the system uncertainties and disturbances. The
proposed NDOFEL not only extends the NDO into time-varying nonlinear system, but
also improves the precision of tracking control. Lyapunov stability theory is used to
derive the updating law of the parameters of the SFNN. The developed SFNN scheme is
a simple, stable, and fast learning algorithm such that it can be applied for on-line
learning and real-time control. The tracking control during wing rock phenomenon with
disturbances is used to demonstrate the NDOFEL performances. Several cases have been

used to show its tracking precision, disturbance rejection, and robustness.
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To sum up, the proposed NDOFEL has the following features:
(a) Stable online learning ability,
(b) Quickly tracking the desired trajectory,
(¢) Maintaining high control performance in the presence of uncertainties and
disturbances,
(d) Guaranteeing asymptotical stability of the control system by Lyapunov theorem,
(e) Tuning only one fuzzy premise parameter, and

() Alleviating the chattering problem of SMC.
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Chapter 8
Reinforcement Adaptive Fuzzy Control of Wing

Rock Phenomenon

In this chapter, a new reinforcement adaptive fuzzy control scheme is proposed for the
tracking control during wing rock phenomenon with uncertainties and disturbances. In
this scheme, we assume aircraft’s wing rock nominal model unavailable and then derive
an adaptive fuzzy control law with a reinforcement-learning (RL) strategy. This chapter
is organized as follows: After the introduction in Section 8.1, we provide some
preliminary knowledge ih Section 8.2. The proposed reinforcement adaptive fuzzy
control is designed in Section 8.3. Numerical simulation results of wing rock tracking

control are given in Section 8.4. Section 8.5 summarizes this Chapter.

8.1 Introduction

In the previous Chapters 5-7, several nonlinear control schemes have been developed for
wing rock suppressing or tracking control, based on the analytical models (2.9) from the

free-to-roll test of 80° flat-plate delta wing. However, this analytical model may not be
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suitable for practical aircraft tracking control. For example, Owens ef al. in Reference [74]
reported that recent free-to-roll test results for four military aircraft (AV-8B, F/A-18C,
pre-production F/A-18E, and F-16C) at transonic conditions have shown that five types of
rolling motions are observed during the tests, and these test results are in agreement with
flight test data on all four military aircraft. The test results indicate that aircraft’s wing
rock phenomenon is a complex, uncertain, and time-varying non-linear system so that its
precise analytical modelling is unavailable. Therefore, to guarantee the robustness and
stability of the control system, a new reinforcement adaptive fuzzy control scheme is

proposed for suppressing or tracking the wing rock phenomena.

Fuzzy logic control (FLC) has recently emerged as one of the most active and fruitful
approaches to control complex nonlinear systems. The motivation is often due to the fact
that the knowledge and dynamic behavior of systems are qualitative and uncertain, so the
fuzzy set theory appears to provide a suitable representation of sﬁch knowledge, as
described in References [138-140]. In this study, the variable universe technique based on
an interpolation mechanism of FLS, as discussed in detail in Section 6.3, is applied to
modify the premise parameters of FLS but keep fuzzy rules the same. The remarkable
advantage of the variable universe fuzzy control is that it not only needs several fuzzy
rules but also keeps a high approximate precision, especially suitable for on-line learning

and real time control of control systems.

As to the consequent parameters of FLC, on the other hand, the adaptive law is derived to

compensate the uncertain dynamics of wing rock. The learning capability of the adaptive
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control in References [54, 141-142] can be achieved by employing an FLS. We design an
appropriate adaptation law to tune the parameters of the function approximator. However,
the adaptive control systems are usually limited that the time-varying plant parameters
must vary considerably slower than the parameter adaptation, and adaptive control
methods, as claimed in Reference [113], may be limited to constant disturbances. To
obtain fast and precise on-line adaptive ability for the time-varying wing rock
phenomenon of aircraft in the uncertain environment, we need to combine the adaptive
control law with a reinforcement-learning (RL) strategy in References [143-145] to tune

the consequent parameters of the FLC.

The RL stratagem, as discussed in References [143-147], can be used to learn the
unknown desired outputs by means of the controller receiving a reinforcement signal
(reward or punishment) according to the last action it has performed in the previous state

and then the controller adjusting itself with suitable evaluation of its performance.

However, the proposéd approach has several important differences from the work of
Reference [146] for robots and Reference [147] for friction compensation.

(a) The reinforcement signal is simply equal to the performance measurement,
r(t)=s(t) , but the A(f) varies with an error signal e(f) in performance
measurement function s(¢) = é(t) + A(e)e(t). By comparison, the adaptive critic
element (ACE) in Reference [146] was used to generate a reinforcement signal
vector to tune the fuzzy system; the two functions of performance measurement

signal in Reference [147] were used to construct a reinforcement signal.
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(b) The universe of premise parameters of the fuzzy approximator is modified by a
variable universe technique to improve the interpolation precision of the FLS. On
the contrary, fixed fuzzy basis functions were used in Reference [146] and fixed
sigmoid activation functions were used in Reference [147].

(¢) In the FLS, we use only four fuzzy rules. By comparison, 81 fuzzy rules were
used in Reference [146], and 40 hidden units in neural network were used in

Reference [147].

In addition, the proposed reinforcement adaptive fuzzy control algorithm is derived by
Lyapunov theorem to ensure the stability of the closed-loop system and the convergence
of the tracking error. In particular, the uniform ultimate boundedness (UUB) of the

tracking error with this controller is guaranteed.

The novelty of the proposed control scheme is mainly on the simplicity, robustness, and
stability of the control algorithm so that it can be applied for on-line learning and real-
time control. Three cases of the time-varying wing rock control under unknown

disturbances are used to confirm the effectiveness and robustness of the proposed scheme.

8.2 Preliminaries

1) FLS
As mentioned in Section 6.1, an FLS is mainly concerned with imprecision and
approximate reasoning. The fuzzy inference engine uses the fuzzy IF-THEN rules to

perform a mapping from an inpuf linguistic vector x(¢) = (x,,-++,x,) €U =U, x---xU,
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c R” to an output variable y(¢) € V' < R . The ith fuzzy rule is written as
R': IF x,is4/and ... and x, is4, THEN yis w' 8.1)

where 4; is a fuzzy variable and w' is a singleton number.

If the fuzzifier is a singleton, the inference engine adopts a minimum operator, and the

defuzzifier is a center average, then the fuzzy system can be formulated by

ZN wi,ui

y(x) =" : =WTd(x) (8.2)
i M

where ' = min(g (x,), -, 4, (x,)) , 4, is the membership function value of fuzzy
variable x;, N is the number of fuzzy rules, W' =[w' w® --- w"]is the adjustable

consequent parameter vector, and ® =[®' &* ... ®"]" in which @' = ' / le u

is the fuzzy basis function.

2) Variable Universe Technique
As described in Section 6.3, a variable universe means that some universe

U,=[-1, Lj] can change along with changing of variable x (¢) , where L, is a
constant determined by designers according to the change range of x (¢) , which means
U, =[-a,(x)L, a,(x)L,] (8.3)

where &, >0 is called a contraction-expansion factor of the universe U .

The triangle membership functions are chosen in this work. We denote P and N as fuzzy
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subsets of the input variable x () and define the membership functions u,(x;) and

Hy(x;) as
0 x, <—Lj
pp(x,)=4(x,+L)/QL) -L,<x,<L, (8.4)
1 X, >Lj
My (x;)=1=pp(x;) (8.5)

The following contraction-expansion factor in this chapter is suggested
a,(x)=¢ +(x|/L) (8.6)
where & is a very small constant for computing efficiency, for example, taken as &=

0.001, and 0.1 <7, <1 is suggested.

3) Reinforcement Learning

To use RL strategy, we first need to understand its basic idea by comparing with

supervised learning.

In supervised learning, also called “learning with a master”, the learning system knows
the error that is committed at all times. For each input vector, the corresponding desired

output is known. This difference between the actual and the reference output can be used

to modify parameters.

In RL, or “learning with a critic”, the received signal is the sanction (positive, negative or

neutral) of a behavior; this signal indicates what you have to do without saying how to do

169



it. The agent uses this signal to determine a policy permitting to reach a long-term

objective.

Another difference between these two approaches is that reinforcement learning is
fundamentally on-line because the agent’s actions modify the environment to determine

the policy that will maximize the future rewards.

Figure 8.1 depicts the general process of RL from Reference [148]. At time step ¢, the

agent is in state x(¢), and then it chooses one of the possible actions in this state, a(f).
Next, it applies the action to produce a new state x(¢ +1) and to obtain the receipt of the
reinforcement (). At time step t+1, repeat above actions or stop if the new state is a

terminal one.

20
Agent ¢ 1)

a()

DR
Emvmonment #+1)

Figure 8.1 Modeling of interaction between the agent and its environment

where [IEI represents a delay [148]

The objective of RL is to discover a control policy, a mapping from states to control
actions. There is no direct evaluation of the selected control action. Instead, an indirect

evaluation is received in terms of satisfaction or dissatisfaction of the control objectives.
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RL can discover such control policy that maximizes the reinforcement received.

A general scheme realizing this type of RL consists of two units: the critic (evaluation
unit) and the controller (action unit). The task of the critic is to predict the future system
performance. The prediction is needed to obtain a more informative signal (internal
reinforcement), which can be used to adapt the critic and the controller. In simple RL
problems, it is sufficient that the critic predicts one step ahead. When the critic has
learned to predict the future system’s performance, the controller can be trained to
establish an optimal mapping between the system states and the control actions in the

sense that the control performance is best.

4) Wing Rock Behavior of Military Aircraft at Transonic Conditions
Authors of Reference [74] have recently analyzed transonic free-to-roll and static wind
tunnel tests for four military aircraft: the Av-8B, the F/A-18C, the pre-production F/A-
18E, and F-16C. These tests have been conducted in the NASA Langley 16-Foot
Transonic Tunnel as a part of the NASA/Navy/Air Force Abrupt Wing Stall Program.
During the free-to-roll tests, a wide variety of rolling motions have been observed. The
motions can be categorized into five types.
o Type I — Limit-cycle wing rock. This motion is characterized by wing rock for
which the amplitude range is fixed and does not vary with time.
o Type 2 — Wing rock with nearly constant frequency, but more prominently
recognized by varying amplitude.

o Type 3 — Occasional damped wing drop and wing rock. Occasional means there
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may be many seconds between wing drop/rock events where there is not any
significant lateral activity.
o Type 4 — Frequent damped wing rock and wing drop. Type 4 tends to occur more
often during the heart of the stall.
e Type 5 — Divergent wing rock and wing drop. The motion of Type 5 is determined

by the static and dynamic stability.

With the exception of having a perfect limit-cycle wing-rock motion, rolling motions of
all five types were observed during the test. Obviously, wing rock phenomena of aircraft
at a high AOA are complex, uncertain, and time-varying nonlinear systems. Generally, a
satisfactory analytical model cannot be obtained for such systems. Thus, we can assume
that wing rock model of aircraft is a second-order unknown nonlinear system with the

lumped disturbances term d(¢).

5) Nonlinear Systems

Consider second-order nonlinear systems of the form

()= f(x)+u(t)+d@) 87)
y(t) = x(¢)
where f(X) is an unknown nonlinear continuous function, x(¢) =[x, (¥) xz(t)]T =

[x(r) %@)] e R? is the state vector of the system, d(¢) is an unknown external

disturbeince, u(t)€ R and y(¢) € R are the input and output of the system, respectively.
Moreover, we assume that f(x) and d(f) to have upper bounds f(x) and 4, that is,

|f(®)| < f(x) and |[d(r)| < d, respectively.
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8.3 Controller Design

The control objective in this chapter is to use the adaptive fuzzy control method

combined with RL strategy such that the system output x(¢) can track the desired

trajectory x,(¢) =[x, %,]” in the condition of uncertainties and unknown disturbances.

The tracking error e(¢) and performance signal s(#) can be expressed as:
e(t)=x,(t)~-x() (8.8)
and
s(t) = e(t) + Ae)e(r) 8.9)
Assume Ae) =k, / ([e| +¢&,), k, is a given positive constant, and ¢, is a small constant,
for example, let £, =0.2. We should point out that the idea of varying A(e) is similar to

tuning the slope of sliding surface, as used in References [149-150]. The larger it is, the

faster will the system response be. But a too large value of A(e) can cause overshoot, or

even instability. It would, therefore, be advantageous to adaptively vary the slope in such

a way that the slope increases with the decreasing errors.

It is typical to define a performance signal s(¢) as a performance measurement; when the

performance signal s(¢) is small, the system performance is better. With Equations (8.7)

and (8.8), the derivative of s(¢) in Equation (8.9) can be obtained as
sS@)=gX)—u)-d() _ (8.10)

where the unknown function g(X) is given by
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g(X) = %, (t) + A(e)e(t) + A(e)e(t) + f(X) (8.11)

where X(¢) =[%,(1) e(®) x@)] .

We assume that the terms A(e)é(r)+A(e)e(t)— f(x) in Equation (8.11) can be
represented by an ideal fuzzy approximator term W ®(x) as follows

gX) =%, (1) + W d(x) + &(x) (8.12)
where &(x) is the neural network approximation error, W™ =[w, w, -+ w,]is an
ideal weight matrix, and &(x) is a fuzzy base function. The function g(X) can be
identified by a following terms (see Appendix C in detail):

(%) = &, (1) + W' &(x) (8.13)

Define the control law

u(t) = Ks(t) + §(X) - d(2) (8.14)
where K represents the fixed gain in the overall control scheme, g(X) is the output vector
of the fuzzy approximator, and d (t), see Equation (8.17), is the robustifying term to
attenuate disturbances. It should be noted that Ks(¢) in Equation (8.14) is similar to a PD

controller, which can maintain the system stability; thus, the weight values can be
initialized to be zero. This means that there is no need off-line learning or trial and error

phase. Figure 8.2 shows the architecture of the proposed wing rock control scheme.
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Figure 8.2 The reinforcement adaptive fuzzy control diagram of wing rock

Substituting Equation (8.14) into Equation (8.10), we obtain the closed-loop dynamics as
$(6) = —Ks(t) + §(X) + d(t) — d(f) (8.15)
where the approximation error g(X) is denoted as
E®) =g(®-§® =W d(x)+&(x) (8.16)
with W =W —W and the robustifying term is given by
d(¢) = dsign(s(t)) (8.17)
As we see, Equation (8.15) implies that the overall system is driven by the functional

estimation error g(X) and disturbance error ¢, (¢) = d BH-4d@).

To achieve fast and precise tracking of an uncertain nonlinear system, the incomplete
experts knowledge may not be enough. RL strategy is used in the adaptive fuzzy control
scheme. In RL, an internal evaluator called the critic, which can predict the future system

performance, is used. This prediction is needed to obtain a more informative signal
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(internal reinforcement), which can be used to adapt the critic and the controller, as

explained in Reference [151].

We assume a special case of reinforcement signal to be
r(r) = s(t) (8.18)

where r(f) is used to update the weight vector W . Before the stability analysis, we have

two assumptions:

(a) |]W|| - <W, with a known W, (the Frobenius norm is defined by

W), =tr@@™ w1 = > wh);

ij oY

(b) The approximate error and disturbance error is bounded, that is,

e—d+d{$ab.

Theorem: If the weight tuning law provided for the fuzzy approximator is
W = r(6)K, () - 1K, s (8.19)

where K, is a positive and diagonal constant matrix, 77 is a positive constant, and the r(¢)

given by Equation (8.18) is the reinforcement signal, then the control input u(f) given by

Equation (8.14) guarantees that the s(¢) and W are uniformly ultimately bounded (UUB).

Proof: Define the Lyapunov function candidate
V(t)=1s+Ler(W KW} (8.20)

with W =W -W . Evaluating the time derivative of V(t) along the trajectories of the

weight tuning laws in Equation (8.19) yields
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V(t) = 55+ tr (T KW (8.21)

Substituting Equations (8.15) and (8.17)-(8.19), noting that W=W- W with W =0, into
Equation (8.21), we can rewrite it as
V() =s(-Ks+W O ~d+d)—tr# K. (7K, D - 7K., |s|i?)}

=—Ks* +sW D +sg, ~tr{rW" O —n|sf7 "W} (8.22)
=—Ks* +s¢&, + n{s|tr{I/I~/TW}

Applying the matrix inequality WW < “W”F W, — ”W Ii , Equation (8.22) becomes

V()< -Ks® +s¢g, + n|s|(”W“F [/ “W||2F)
4 (8.23)
<—Ks* =nls{(7| -, /2)" - &, Jn-W} 4}

Therefore, ¥ (¢) is guaranteed to be negative as long as either Equation (8.24) or (8.25)

holds.

|s| = (g, +nW} /4)/K = B, (8.24)

7\, 27, 2+ e, /n+m]} ][4 =B, (8.25)

Clearly, from inequalities in Equations (8.24) and (8.25), we can define compact set Q:

Q= {(s}

VI7||F)] 0 <s|< B, and ”W”F <B,}. By Lyapunov theory, for s(t,) and
W(to)eQ , there exists numbers T(B;, By, s(ty), VIN/(tO)) such that Osls(t)|SB and
“W“F < B, forall t>t+T. In other words, ¥(s,) is negative outside the compact set

Q, and then s and W are UUB. ad
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8.4 Simulation Results of Wing Rock Control

8.4.1 Wing Rock Model

In Section 8.2, we assume the mathematical model (8.7) of wing rock phenomenon

contains the unknown continuous nonlinear function f(x). To confirm the effectiveness

of the proposed scheme, we regard the differential equation (7.36), a time-varying wing
rock motion with the lumped disturbance d(¢), as the wing rock model. Equation (7.36) is

then rewritten as:
§ =—~(aup+a+a|fp+ap’ +a,p’d)+u@) +d0) (8.26)
Comparing Equation (8.26) with Equation (8.7), we can see that the unknown term

JS(X)= (a9 + a1¢ +a, ’¢|¢ + a3¢3 + a4¢2¢) .

8.4.2 Simulation Results

To evaluate the robustness of the proposed control scheme, we assume the lumped
disturbance d(¢t) =2sin2a +sin5mz +1.5, which is added in the close-loop system at
t =20 time steps for all cases. The initial condition we choose is ¢(0)=40° and
$(0)=0. The parameters used in this simulations are L, =0.7 rad, L, =1 rad/sec,
g =¢,=0001, and 7, =7, =0.9 in Equation (8.6), k, =10 and &, =0.2 for solving

A(e),and 7=0.01, K, = K =50, and n = 0.08 in Equation (8.26).
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The numerical simulations of wing rock tracking control are implemented in Matlab and

Simulink environments. Figure 8.3 shows the corresponding Simulink block diagram.

We are interested in the following three cases for the suppressing and tracking control of

wing rock phenomenon with unknown disturbances.

Casel: Wing rock suppression

We first verify the suppressing control of the proposed control scheme. Figure 8.4(a)
shows the output response of wing rock control on phase plane. The results show that the
proposed control scheme can suppress wing rock quickly and then maintains the states at

the equilibrium point with the error 0 < e(f) <0.14°, even though the system is time

varying and with disturbances. Figure 8.4(b) shows the corresponding control input, and

Figure 8.4(c) shows the stable four updating weights over time.

0 10 20 30 40
Roll rate ¢(r) (rad/sec) versus @(¢) (deg)

(a) Wing rock suppression on phase plan
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(b) Suppressing control input u(¢)
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WW4-hat(t)

5 : L .
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(c) Weight updating W™ () =[W, W, W, W,]

Figure 8.4 Wing rock suppression for Case I
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Case2: Tracking control for x,(f) = 40° sin 0.05
In Case 2 and Case 3, we will verify the tracking performance of the proposed control
scheme. Assume to track the time-varying trajectory x, () = 40° sin0.057¢ . Figure 8.5(a)

shows that the proposed control scheme can achieve satisfactory performances, where the
outi)ut roll angle follows the desired trajectory almost simultaneously. If the disturbance

is added in the time-varying system at ¢+ =20 time steps, the control output keeps almost
same performances with the error |e(r)| < 0.15°. Figure 8.5(b) shows the corresponding
control input. The weight updating is shown in Figure 8.5(c), where we observe that the

four weights with respect to the four fuzzy rules alternately make a big tuning when the

system states enter the different phases.

0 10 20 30 40 50
Roll angle ¢(¢) (deg) versus time steps

(a) Wing rock tracking control for x,, (f) = 40° sin 0.057
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(c) Weight updating W™ (1) =[W, W, W, W,]

Figure 8.5 Tracking a time-varying trajectory x,(¢f) = 40° sin 0.057¢

Case3: Tracking a constant trajectory x,(t) = -20°
In fact, tracking a constant trajectory in wing rock phenomenon usually results in a big
tracking error. Figure 8.6(a) shows the output response of tracking x,(#) = -20° on phase

plane. Figure 8.6(b) shows that if the disturbance is added in the system, the proposed

control scheme can reject disturbances and can maintain the tracking error in the small

range |e(t)| <0.23°. Figure 8.6(c) shows the corresponding weight updating.

185



18}

185
-19
135
-20
-205
-21
-21.5
-22

-20 0 20 40
Roll rate ¢(t) (rad/sec) versus @(¢) (deg)

(a) Tracking x,(t) = —20° on phase plane
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(b) Output response @(¢)
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Figure 8.6 Tracking a constant trajectory x,(¢) = —20°

8.5 Summary

A new reinforcement adaptive fuzzy control scheme has been proposed for wing-rock
tracking control in which we assume aircraft’s wing rock nominal model unavailable.
The fuzzy approximator is used to identify the unknown nonlinear function. The variable
universe technique is applied to modify the premise parameters of the approximator. Its
consequent parameters can be tuned by the reinforcement adaptive law, which is the on-
line adaptive algorithm derived from Lyapunov stability theory. Therefore, all the signals
in the closed-loop system are bounded even in the presence of the uncertainties and
disturbances. Simulation results confirm the effectiveness and robustness of the proposed
scheme. Even though the fuzzy approximator uses only four fuzzy rules, it can achieve
precise tracking. Moreover, if the system is with the disturbances, it can still maintains

high tracking performances.
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Chapter 9

Discussions and Future Work

9.1 Discussions

The increased interest in improving the safety and handling qualities of highly
maneuverable fighter airplanes and very slender space-plane configurations results in a
focused effort to study the phenomenon of wing rock. In this thesis, we have studied the
phase plane of wing rock phenomenon, the mechanism of wing rock hysteresis, and the
suppressing and tracking control problems during nonlinear wing rock phenomena
without and with the unknown disturbances. More important, we have emphasized the
control and simulation investigation of the time-varying wing rock with unknown

disturbances for the practical environment consideration of aircraft at a high AOA.

Based on the different control objectives, the control issues of wing rock phenomenon in
this investigation are divided into two parts:

(a) In Part I (Chapter 2-5), we have introduced one-DOF wing rock models,

investigated wing rock phenomena on phase plane, analyzed the hysteresis

mechanism of wing rock phenomenon, and then proposed the variable phase
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(b)

control (VPC) scheme to suppress wing rock with hysteresis.

In Part II (Chapter 6-8), the nonlinear control problems of wing rock
phenomenon with uncertainties have been studied, especially for the tracking
control of the time-varying wing rock phenomenon with unknown disturbances.
These control schemes include fuzzy PD control, variable universe fuzzy PD

control, the NDOFEL control, and the reinforcement adaptive fuzzy control.

Some important discussions from this study can be summarized as follows:

(a)

(b)

At present, the description of wing rock phenomena is based on numerous tests
observations. In these free-to-roll tests, an 80° flat-plate delta wing is used to
develop some one-degree-of-freedom (one-DOF) wing rock models. Most
control schemes of wing rock phenomenon in the literature focus on the
suppressing problem of the typical limit-cycle wing rock. They usually assume
that the wing rock model is known and has no disturbance. Their work helps us
understand wing rock control design.

As for the mechanism of wing rock motion, through the free-to-roll tests of 80°
slender delta wing at a high AOA, most researches think that hysteresis (as
discussed in Chapter 4) with three loops provides clues about where wing rock
phenomenon is being driven and where it is being damped. They have observed
that one central loop of hysteresis indicates that oscillations are unstable and the
energy from the free steam flows into the system to drive the wing rolling motion.
On the contrary, another two outer loops of hysteresis make the system to be

dissipated and stable, resulting in limit-cycle wing rock phenomenon.
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(d)

(e)

However, above test observations lack of mathematical analysis. Based on
Lyapunov’s direct method, the method of energy analysis of limit-cycle wing
rock phenomenon is proposed in order to derive the rate of energy change of the
phenomenon, dF/dt, and then to analyze the hysteresis mechanism of wing rock
phenomenon. A defined critical angle divides the wing-rock hysteresis into two
parts: absorbing energy where the motion is being driven and dissipative energy
where the motion is being damped. Numerical simulations reveal much more
information of dE/dt, as shown in Figures 4.3 and 4.4.

Based on the above analytical method, it is easy to bethink of hysteresis
compensation approaches from which we find a solution to compensate wing
rock hysteresis to suppress wing rock phenomenon. Inspired by the work of
Cruz-Hernandez in References [97-98], which deals with open-loop linear
system compensation for piezoceramic actuators, the variable phase control
scheme is developed for the closed-loop nonlinear control of wing rock with
constant AOAs, as discussed in Chapter 5. The simulation results have shown
that the proposed control scheme may be an effective control approach for wing
rock suppression. The main features of proposed scheme are simple design and
calculation, small control power need, and good robustness.

It should be noted that the current requirements for fighter aircraft demand a high
degree of agility and unlimited capability at high AOAs, and the capability to get
a first shot has become extremely important in air combat. In view of this, the
suppressing control of wing rock phenomenon is not enough, so we need to study

its tracking control problems. Even though some nonlinear control schemes in
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the literature have been presented, they may not be suitable for tracking problems,
especially for real aircraft at a high AOA with uncertainties (such as time-
varying aerodynamics parameters and un-modeled dynamics) and unknown
disturbances. In fact, the tracking control for uncertain nonlinear system with
unknown disturbances is a challenging issue.

FLC has recently emerged as one of the most active and fruitful approaches to
control complex nonlinear systems. The motivation is often due to the fact that
the knowledge and dynamic behavior of systems are qualitative and uncertain.
The fuzzy set theory appears to provide a suitable representation of such
knowledge. This feature of FLC makes it suitable for controlling plants like
aircraft that have nonlinear dynamics and operate in uncertain environments.
Thus, the fuzzy PD control is designed to suppress wing rock, as presented in
Chapter 6. Unfortunately, the output response of control system exhibits a bigger
steady-state error if the system suffers from unknown disturbances. The variable
universe fuzzy PD control is then proposed to overcome this disadvantage. The
main advantages of the variable universe fuzzy PD control are precise tracking
and fast responses with only four fuzzy rules.

For the time-varying wing rock phenomenon with unknown disturbances, it can

be described in the nominal model adding a lumped disturbance term d(¢),

which includes the system uncertainties and unknown disturbances. If d(t) = 0,

then some nonlinear control methods such as adaptive control, fuzzy control, and

nonlinear disturbance observer can be used to achieve wing rock tracking control.

If d(r) # 0, but it has bounds, there are no any control methods reported in the

192



literature by the author knowledge. In this thesis, inspired by the nonlinear
disturbance observer algorithm and neural networks with the feedback-error-
learning strategy, a novel learning control scheme, NDOFEL, have been
proposed to control a class of time-varying nonlinear systems with unknown
disturbances. In the NDOFEL, the big trackihg error can be reduced by two steps:
the nonlinear disturbance observer algorithm and the sliding-mode fuzzy neural
network (SFNN) algorithm, as designed in Chapter 7. Six cases are used to show
the many advantages of the NDOFEL.

(h) In practice, the aircraft’s wing rock phenomena reported in Reference [74] are
very complex, uncertain, and time-varying nonlinear systems. This means that
aircraft’s wing rock nominal model is unavailable. Under these circumstances,
new design tools and approaches have to be explored. For this reason, the
reinforcement adaptive fuzzy control has been proposed in Chapter 8. In this
scheme, the unknown nonlinear function can be represented by the fuzzy
approximator. The variable universe technique is applied to modify the premise
parameters of FLS for improving its interpolation precision, and the derived
adaptive law combining with a RL strategy is applied to tune its consequent
parameters. Several numerical simulation cases have been presented to show its

tracking precision and disturbance rejection.

9.2 Recommendations for Future Work

Possible areas of future work that emerge from this thesis include:

1) Research the mechanism of wing rock phenomenon.

193



2)

3)

4

5)

6)

Even though the hysteresis is used to explain wing rock phenomenon, analysis results
are not enough. For example, how to obtain a real-time critical angle? What are
important factors to affect the uncertainty of rolling motions?

The variable phase control scheme needs some further research. The related

questions may include:

(a) In the phase control design, some parameters such as the phase angle ¢, input
signal frequency range w =[@; @], and phaser gain are important to control
design. The questions are how to use adaptive approaches to obtain these
parameters and to obtain a valid variable phase control scheme for the time-
varying wing rock control of aircraft.

(b) The stability of the phase control also needs to be proved mathematically.

The stability of variable universe fuzzy PD control needs to be proved

mathematically.

The NODFEL algorithm is a valid scheme for tracking control, but we need to know

the nominal model of wing rock phenomenon. The related questions may include:

(a) How to identify this nominal model?

(b) How to obtain multi-DOF NDOFEL scheme?

The reinforcement adaptive fuzzy control scheme seems to be good for the system

with uncertainty and disturbance, but the results we derived is only for a second-

order nonlinear system. The general solution for nth-order nonlinear systems needs to
be derived and proved.

In above control schemes, actuator (or aileron) dynamics is not included in the close-

loop control systems.
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7) From the point of view of entire aircraft flight dynamics, wing rock modeling should
be integrated with the multi-DOF model of aircraft. Of course, nonlinear control
schemes should also be extended to the multi-DOF LCO control such as Dutch roll
limit cycle control.

8) Last, but not the least, all control algorithms may be tested on aircraft to evaluate

their stability, robustness, accuracy, simplicity, and reliability.

In conclusion, this thesis has addressed the control and simulation issues of wing rock
phenomenon, especially for the tracking control problems of the system with
uncertainties and disturbances. The five new schemes of wing rock control in this thesis
have been proposed. The novelties of the proposed control schemes emphasize the
stability, robustness, and simplicity of the algorithms so that they can be applied for on-
line learning and real-time control. Many numerical simulation cases presented strongly
support the proposed algorithms. Finally, we should point out that LCO phenomena are
very common in the nonlinear dynamics of aircraft. The proposed algorithms may be
used to solve these LCO problems. Thus, we still have a lot of work need to do in the

future.
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Appendix A

A Six-Order Approximate Phaser

The form of the six-order linear filter is given by

For a given frequency o =[w,
the zero can be found. The location of the first zero z; is located somewhere behind the

location of w, ; for example, z, =@, — @, /4. The remainder of the zeros will be located

between o, and w, .

shown in Figure Al.

s®+ps’ +..+ ps+p,

L. (s)=
pa S s+ q.8° +..+qs+q,

They are logarithmically equally spaced between w, and w,, as

Figure A1 Six-zero logarithmical equal space

The values of the p,'s are obtained using the values of the zeros:
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nums) =(s+2z,)(s +2,) (s + 2, )(s + 2, )(s + 25 )(s + z¢)

(A2)
=5°+p,s’ +p,s* + pys* +p,st +ps+p,
Substituting s = j@ into Equation (A1), we have
.o\ (ja))6 + ps(ja’)5 + p4(ja))4 + p;(ja))3 +p2(ja))2 + P Jjo+ p,
Lph(]w)— . \6 . \5 . \4 . \3 RY .
(jo) +4,(jo) +q,(jo) +q,(jo) +q,(jo) +q,jo+4,
_o’+pot - p0t +py )+ jpso® - pio’ + po) (A3)
Fo°+q.0" -q,0" +q,)+ j(g,;0° - q,0° + q,0)
- (K1K3 +K2K4)+j(K2K3 —K1K4)
K} +K}
where K =-0°+p,0'-p,0*+p,, K, =p,@’ - p,@’ + po,
K,=-0°+q0"'-q,0° +q,,and K, =q,0° -q,0" +q,0.
The phase angle of the transfer function is
K K,—-K K
ZL,(jo)=D(w)=tan™| 22124 (Ad)
KK, + KK,

Substituting the values of K3 and K, into Equation (A4), we obtain

(-o° + q4a)4 - %wz +q,)[tan@(@))K, - K;)]+ (qsws - q3w3 +qo)[tan(@(w))K, + K;]=0

Let K = tan(®(w))K, ~ K, and K, = tan(P(w))K, + K, ; we have
-K0° + K,q,0° - K;q,0° + K,q, + Kq50° — Kq,0° + Kq,0=0 (A5)

The unknown variables in Equation (AS) are the ¢,’s and .

We can make the value of the phase angle equal to ¢ at the values where the zeros are
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located. If w =[w, ®,], then we have £ZL  (jo)=P(w)=¢ and tan(P(w)) = tan(p) .

The following set of equations are then obtained

- K7216 +K7214q4 —K7212Q2 +K,q, +Ksz1SQ5 "KsZ13Q3 +K,z,9, =0
“K7zz6 +K7Z;‘14 —K7Z§q2 +K,q, +Kszjq5 _Kszg‘h +K;z,9, =0
) _K7Z§) + Kﬂ:‘]a —K7Z32‘J2 +K,q, +Ksz35% —Ksz§q3 +Kyz;9, =0

K.zt +K,ziq, - K,z}q, + K K,zlq, —K,z,q, + K =0 (A6)
— 42y 72494 — 849249, + K4, + KgZ,qs — BgZuqs + Kg2,q, =
—K7z§ + K7Z;q4 _K7252‘I2 + K, q, +KsZ§q5 —K823q3 + K259, =0
- K7Z§ +K722q4 "K7262‘I2 +K,q, +Ksz§qs “Kszg% +Kyz4q,=0
where K, =tan(p)K, - K, and K, =tan(p)K, + K.
Equation (A6) can be re-ordered in the form Ax =C
| ; Kyz _K7zl2 -—ngf K7214 Kszfj(q(f rK7zl6w
, Koz, -K,z; -Kgzy K23 Kz q, K,z;
6
Kyz, _K7Z§ _Kszg K7Z; Kszzf 192 $=<K7z3 ? (A7)

2 3 4 5 K.z8
Kyz, -K,z;, -K,z; K,z, K;z;||1 724
2 3 4 5 6
Kez, —K,z; -Kgz; K,z; K,z |94 K,z
2 3 4 5 L 6
Kszg —K,zg —-Kyzg Kozg Kezg |\9s) K, zg )

-~

~

NN XN R RR

-~

Now, the values of the g;’s can be obtained.
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Appendix B

The Relationship of Fuzzy PD Control and PD

Control

The following material is adopted from the Chapter 10 of Reference [110].

Let X =[-E,E] and Y =[-EC, EC] be the universe of input variables and V =[-U,U]

be the universe of output variables. Denote 4 ={4},.c, » B={B,}us, and
D ={D;}cispisj<q) » TeSPeCtively, the peak point of 4;, B; and Dj; satisfying that
—E<x <x;<-<x,<E,-EC<y <y, <<y, LEC, -U<su, <u, < <x,

<U. Here A4, and B; are defined by triangular membership functions. 4, B, and D form a

reference rule base R:
If x is 4;and y is B;, then u is Dy, (B.1)
where i =1,2,---, p, j=1,2,--+,q . The fuzzy PD control based on Expression (B.1) can be

shown as the following interpolation function:

u(t) -F (x(), ¥(1)) = i Zq:ﬂ,u (g (YO 4y (B.2)

i=l j=I
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Theorem: Let x(t) =e(t) and y(t) = de(r)/dt , then a fuzzy PD control is a piecewise PD
control with mutual affection between x(¢) and y(¢) and with translation coefficients as

the following:

A polgl
u(t)=F (), y() = 3. > u"(t) (B.3)
=l j=
where
K (x(0)+ Tg y(0) + T x(Oy(@) + TED), %, < x(t) S x,,.
u(i,f) (t) — Y; < J/(f) < Yiu (B4)

0, otherwise
and i=12,-,p—1, j=12,-.,g—1; K&, TS?, TS, and T\ are, respectively, the
proportional gain, the differential time constant, the time constant of mutual affection
between x(t) and y(¢), and the translation coefficient, in [x,,x,,,1x[¥,,V:,;]- Especially
let (x,, y,,) be the origin of x -< vy plane, that is, x,=0=y,, then
TY%D = IO = 7YV =09 2 0; thus, when i=i, -1, iy, and j=j, -1, j,,
Expression (B.4) can be simplified as follows:

KD (x(@) + TS y(0) + T x(Dy(8)), x, < x(8) < x,,,
u(f) = Y, SYO) S Y, (B.5)
0, otherwise

Remark 1: Tt is not difficult to learn that PD control
u(t) = K, (x(t) +Tp y(1)
is a plane passing through the origin in xyu space, which means that it is of linear

regulation law. However, fuzzy PD control is a piecewise quadratic surface passing
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through the origin in the space, in which the whole surface can approximate a nonlinear
regulation law. So whole merit of fuzzy PD control is much better than the PD control.
But in the neighborhood of the origin, as the translation coefficients are zero, there exists
(i, /) such that
u(t) = u® () = K§ (x(0) + T3 (6) + T x(0) (1)) (B.6)
At this region, lx(t)| and 1 y(t)| are so small that the higher order terms T.5” x(£)y(¢) can
be omitted, so we have
u(t) =u () = K& (x(t) + T3 (1) ®B.7)
This means that the fuzzy PD control is approximately a PD control in the neighborhood

of the origin. Hence, the weakness of PD control is inherited by the fuzzy PD control in

the neighborhood.

Remark 2: This gives us a conclusion about the effectiveness of fuzzy PD control. In the
e‘arlier stage of control processing, the effect of fuzzy PD control is better than the effect
of PID control, especially on inhibiting over-regulation. But when (x(¢), y(¢)) is in the
neighborhood of the origin, from Expression (B.7), we know that fuzzy PD control is

approximately PD control. Of course, the PD control cannot be better than PID control.
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Appendix C

Fuzzy Approximator for Triangular Input

Membership Functions

In Chapter 5 of Reference [152], Spooner et al. stated that a continuous function may be
uniformly approximated by a cowntinuous piecewise linear function. Since the set of
continuous piecewise linear functions is a subset of the set of all piecewise liner functions.

This fact, however, leads us to the following important theorem.

Theorem 1: Fuzzy systems with triangular input membership functions and center

average defuzzification are universal approximators for f € g(1, D) with D ={a,b].

Besides, Zeng and Singh in Reference [153] discussed the approximation problem of
SISO fuzzy systems. They used pseudo trapezoid-shaped (PTS) membership function.
Obviously, triangular-shaped membership function is a special case of PTS membership

function.

For a SISO fuzzy system, the fuzzy basic functions (FBFs) are given by
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B(x)=4,(x)/Y" 4,(x), xeUcR, i=12,N (C.1)
and the fuzzy system can be written as

f)=Y" B(x)y, xeUcR (C.2)

Now, we introduce the approximation property and convergent property of fuzzy systems
in Equation (C.2). We assume that g(x) is the desired experiential or heuristic control or

decision in U =[a,b].

Theorem 2. Basic approximation property: Suppose that fuzzy sets 4, (i =1,2,---,N) in
U =[a,b] are normal, consistent and complete with PTS membership functions
A (x)=A4,(x;a,,b,,c;,d,) (i=12,---,N) and 4, < 4, <--- < 4,,; and fuzzy system
N
f@=3" By,
and B,(x) (i =1,2,---,N) are FBFs. Then for a given real function g(x) in U =[a,b],

lg(x) = f(0)| =]g(x) -y,

, xeM(B)= [di—l ’ai+1] (C3)

lg(x) - f(x)| = |g(x) = B,(x)y; = B, ,(X)Y:sy |

(C4)
= max{|g(x)—y,.|, g(x) =y}, x € F(B,,B,,,) =la,,,d,]

Remark 1: Theorem 2 gives a very clear view of the approximation mechanism of fuzzy
systems. Such an approximation mechanism is quite similar to the approximation
mechanism in mathematical approximation theory. This approximation idea is especially
suitable for the practical cases where we know what a good control or decision is in some

part of the input space but we are not clear what in some other part of the input space.
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Theorem 3. Uniform approximation property: Suppose that fuzzy sets 4, (i =1,2,---,N)
in U =[a,b] are normal, consistent and complete with PTS membership functions
4,(x)=4,(x;a;,b,,c,,d)(i=12,---,N) and 4, < 4, <--- < A ; and fuzzy system
N
fx)=3 By,

and B,(x) (i=1,2,---,N) are FBFs. For a given function g(x) in U =[a,b], if

& = sup |g(x)~y,|, & =max{e |1<i< N}, (C.5)
xeM (B;)
then
suglg(x) - fx)|=¢ (C.6)

Remark 2: Theorem 3 can be used in the following two ways: 1) to check whether the
designed system has the required accuracy; 2) as a guide, to redesign the fuzzy sets C;

(i=1, 2, ..., N) in the fuzzy rule base.

Theorem 4. Uniform convergent property: Suppose that fuzzy sets 4, (i=1,2,---,N) in
U =[a,b] are normal, consistent and complete with PTS membership functions
A,(x)=4,(x;a;,b,,c;,d,)(i=12,---,N) and 4 <4, <--<4,
0 =max{d, —aq, | 1 <i < N} ; and fuzzy system

f()=3 B,

and B,(x) (i =1,2,---,N) are FBFs. For any continuous functions g(x) in U =[a,b], if
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m, = min g(x)<y, <M,

1

xela;.d;| (C7)
= nllazhg(x), i=12,---\N
then
}si_rgsug!g(x) — f5(x)|=0 (C.8)

Remark 3. Theorem 4 means that the fuzzy system f, 5 (x) converges to the desired

(control or decision) function g(x) when the modulus of the partition 4,45, 4,

tends to zero under some appropriate conditions.
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