A System Architecture and Implementation for Meshed Multicast in MANET using SIP

Ying Yu

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University
Montreal, Quebec, Canada

December 2004

© Ying Yu, 2004

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-16247-7
Our file Notre référence
ISBN: 978-0-494-16247-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT
A System Architecture and Implementation for Meshed Multicast in MANET using SIP

Ying Yu

Mobile Ad-Hoc Network (MANET) is an active topic of research for its potential of
providing pervasive services anywhere and anytime, even though some challenges need to be
handled first. In contrast to conventional networks, ad hoc networks are formed by a set of
devices that communicate without using a pre-existing network infrastructure.

Multicast is an efficient transmission scheme for supporting group communication in
networks. The concept of overlay networks enables multicast to be deployed as a service
network rather than a network primitive mechanism, allowing deployment over
heterogeneous networks without the need of universal network support.

In this thesis, we propose an overlay multicast framework to handle multicasts in MANET
environment in a flexible way. Our approach is using SIP to discover peers to set up a meshed
overlay network first, then overlay multicast trees are set up on demand. To cope with the
bandwidth limitation problem, the Dominating Set Based and Multi-Recipient routing are
adopted, so that the virtual meshed network topology gradually adopts the changes in the
underlying network in a distributed manner and the multicast tree is adapted to the updated
topology information accordingly. A prototype is built to evaluate the feasibility and

performance of the proposed framework.

iii

ACKNOWLEDGEMENTS

First 1 would like to express my deepest appreciation to my supervisor, Dr.Anjali
Agarwal, for her invaluable help, patience, guidance and support. 1 would also like to
thank all the professors with whom I have interacted during my studies at Concordia
University.

I would also like to thank my friends for their help, companion and fellowship. In
particular, thanks to Ms. Bin Qi and Mr. YuYong He.

Finally, I express my deepest gratitude to my parents; without their love, support and

encouragement I would never have reached this level.

Table of Content

LIST OF FIGURES VI
LIST OF TABLES X
LIST OF ABBREVIATIONS AND SYMBOLS X1
CHAPTER 1 INTRODUCTION 1
1.1 MOBILE AD-HOCNETWORKooctiiiiiiiieteiereiiee e et eceneeece e e evesesetsaeseaeensseassnrasanresnnns 1
1.2 OVERLAY MULTICAST (APPLICATION LAYER MULTICAST)....ccevoiiuiimiiceerieenreeteeieseesee e 2
1.3 OVERLAY MULTICAST {(APPLICATION LAYER MULTICAST) IN MANET...........ccococeeo. 5
1.4 SESSION INITIATION PROTOCOL (SIP) IN MOBILE AD-HOC NETWORKc..ceveeninne. 6
1.5 THE MOTIVATION OF OUR PROPOSAL......c..vviiiiiieeeieiettieecteeeetteeeteeseneenseeeneeeeeseneeesenearenn 7
1.6 ASSUMPTIONS IN OUR FRAMEWORKcovviiiiiiientiectteeeieeeineeeeeeienreesssseessseeeeeveseaseaees 9
1.7 INTRODUCTION TO SIP-BASED OVERLAY MULTICAST FRAMEWORKccccvveevneeennene. 10
1.8 ORGANIZATION OF THE THESISooouviittiiieieecetieecemecee e eeeteenteeeeeeeeeeee e e ene e nnennesensnenes 16
CHAPTER 2 THE SIP-BASED OVERLAY MESH NETWORK 17
2.1 INTRODUCTIONoooiiriiieireietreecrenreerreeeseeeessnseesveeessnsessssessssessssneasssessnssasssssesseesessneses 17
2.2 NETWORK ARCHITECTUREooooveieiirereereeeeeeareetveeeereceeeaseessesesssaessnnessessenssnesanesesssenens 18
2.2 1 FUull MESH .ottt ettt et e a e e 19
222 THCE ettt ettt ettt e e e sttt n et te e e e e eneen 19
2.2.3 CIUSLEIINE. ... eeeieeeie ettt sttt s e et e st st s e e cest e st sas e e et st e s e ese e e e eaes 20

2.3 THE GATEWAY NODE DECISION PROCESS.......ccocterrrereateeceieacsresersresresesssssesssnsseessssensnns 22
2.4 CREATING AN OVERLAY-MESHED NETWORKcccveieirtieienianrreeacseasnaesnseesansseesssvesssevass 22
2.4.1 The chosen SIP methods........ocoueeieinieeiecieceee e 23
2.4.2 Overview of OPerationc.ccccoeeeieriiriecreienicninceneeee oot s e esemsesesanesre seeos 24
2.4.3 The SUBSCRIBE Methodooccoiiiiiiiiceece ettt 27
244 The NOTIFY method.ottt e 31

2.5 LEAVING AN OVERLAY MESHED NETWORKoooiuimiriiieietiieeireeeeeeesreeenneneensesessnnseessnens 34
2.5.1 Graceful IeaVINEoociiiriiniieieee ettt ettt nees 34
2.5.2 Detection of abrupt diSCONNECHION........cc.eoeuiicrmmreteeterieere ettt st ee s 37

2.6 MAINTAINING AN OVERLAY MESHED NETWORKcccovetiaeieeiianirnoterinnanrieseesnssessenssnans 37
2.7 SUMMARYvimitiiiieicettrecene e e ctetcertereas e seae e as s e s e s s s st escaseeeaeescemenesara s asereensesesarnens 37
CHAPTER 3 NODE INFORMATION MANAGEMENT 39
3.1 INTRODUGCTIONutiiiiiiiiieeeeeiiicieeecereieereesreaesesiaseaserassreaasserareesassssrssassreressssnssasssaessneseess 39
3.2 THE HOST LISTS ..o ieitieeieeete et et te e mtee s ee s tresseeaa s s aeans e e eeaseseeesassemsesseseasanssaeaennees 40
B2 0 Profile LiSt ..ottt ettt e e 40
3.2.2 Non-Gateway NOdes ListS ..ottt eeeenne 42

3.2.2.1 SIP-Meshed Network Node List.........ccoonieeeeeeeeeeeeeeeeeeeeeeeeeee e 42

3.2.3 Gateway NOAes LiStS ..c.coceoerireeeiiireieeie ettt ettt et sa e et sserens 43
3.2.3.1 Non-Gateway Node Member Listcc.c.ooooeiiiiiiiiiiiceceeeeeeeceee e 43
3.2.3.2 Gateway Node Member List..........cccoceoiviiieeeeeeeeeeeeeee e 43

3.3 MEMBERSHIP MANAGEMENTc.coomimimeiiraeueireseteseasesseacanssesssesesse s sasssssssssssesssens 44

3.3.1 Network Membership Managementcccccooeviiiriiricenicrceee e 45

3.4 SUMMARY ...coiiiiieriennieeeseesseesee st setesesesta s s sste e st e st asssesasassesessmesnsessennassasnesstrssessessansean 46
CHAPTER 4 ALM GROUP MANAGEMENT 47
4.1 INTRODUCTIONccoviiiiieeeeieeeeteeeeseeteeeeetteeesereeseseesvesssasesssesessesesssesessseserasssessessrsssansseesas 47
4.2 INITIATING AN ALM GROUP.........eeeeetiiiieecceeeeeeieececteieseesiraeseesereeesebesseesesbeesssenessenns 50

4.2.1 The INVITE and NOTIFY MESSAZES ...ceevvemireerieieeiiieieteniteeenresesseestesseesenesees 50

4.2.2 Maintaining Group Membershipccoovieiiieerioenriceieeceecee e 55

4.2.3 Node information about ALM group..........ccceeiiieoeiiiiiieeieee e 56

4.3 JOINING AN ALM GROUPooetiieeieiiieiiieecetecesteeeeeereeresesaeesseseesaessnrensesesssesessnssnseses 58
4.4 LEAVING AN ALM GROUPcoeooitieiiieieteetee et eee e tes e se e sbe s e e et snesnaes 60
4.4.1 Leaving an ALM group gracefullycocoeeeeieiemmiiiieieeeee e 60
4.4.2 Leaving an ALM group abruptlyc.cooooiiieiiiiiieeece e 62

45 ROUTING INALM ..ottt st e en e eb e es et eeseaeemneaseseeersenseaseansens 63
4.6 SUMMARYoeoveeiiiiiieresieeteesesteessesateestsssessaessssaessessesssestessesssssaassnsssesssssassessessessnesnsens 64
CHAPTER 5 SIMULATION AND VERIFICATION 66
S.TINTRODUCTIONooooviiitieeiieieenieietesseseeaesessestessnessaesssssessesssessesessessssssssssnsassreassresseesees 66
STTTAIN SIP ...ttt ettt et s e st et ea st e st e st e e e e s eeansansenean 66

5.2 SIMULATED SYSTEM ARCHITECTUREcoooiiitiiieiimeieeeeeeireeeeseeseeeessnneseeesseseeesssssesssnsnnns 68

5.2.1 The MNSCIEEN ClaSSccvveeiireeriieieceeeieteeiie ettt s et et e e st eseeressnenseens 70

5.2.2 The NOQEVECtOr CLaSSccceevieeiiiieeniiiieiiee ettt reeseeeen e st e e s e sesnes 71

5.2.3 The MNSESSI0MN Cla8S....ocecteiiiiieiee ettt ettt es b ae e seeeeaeeas 71
5231 SIPINVITE ...ttt s et saa e s aess s 73
5232 SIPSUBSCRIBE.........ocooeieeiee ettt ene e 76
S5.2.3.3 SIPNOTIFY ...ttt ettt ees et ebe e st e s s seseaenaens 78
5234 SIPBYE... ettt et ettt ne s aean 79

5.3 VERIFICATION OF OUR APPROACH.........coutiiiiiiiitiiiiieeeeceeeeeceeettaeeeeaeeeeeeeeentbenaeaeseeennnes 81

5.3.1 Introduction to the Node Statesocevreriieeeiiiieceerece e esees 81

5.3.2 Test Actions DESIZN c.ceeeneiieciiiieiiciei et s ene e 84

5.3.3 Test Sequences DESIZIoovioiiiiiie e 86

5.3.4 The Verification Framework..........c.cooooiiii e 89
5.3.4.1 The format of Simulation Filecc.oocooiiiiiiiiiice e 89
5.3.4.2 The result verification.............ccceiiriieiiniii ettt et aene 92

5.4 ANALYSIS AND RATIONALE........coooiiiiiieeeeteie ettt s 92
5.4.1 The result verification........ooccoiiiiii et e 92
5.4.2 Framework COITECINIESSevuveeeeeriieriirteeterteeeeee st teetstes et be s eess et et et essansesaeerseas 93

5.5 SIP-ALM PERFORMANCEccviiiietrieiairiesesesieseestssesseeseemeeteeesesastesesesaeseesssaetasnenens 94

5.5.1 Data load of control overhead.............cccuroveiiiiiiiiiiiciiteee e 94
5.5.1.1 Traffic of periodic MESSAZESc.cevemrirueuiieicretrirte ettt es et menene 96

vi

5.5.1.2 Traffic in the Sroup ...c.cooceieve ittt 98

5.5.2 Message COMPATISOIL.......ccocueerieriruesieniasrecrseeesersesteetesseseessesetesesestaseseesesesessesens 100
5.5.3 Metrics on end host performanceccocooioeeiiroeiiiie e 102
5.5.4 Replicate DEteCtion.......c.couevveeieeieiiaeeeeceeeir ettt sa e 103

5.6 SUMMARYooouiriiriinrinteeeuteieirtetesten e s s st s see s e eesassssesscesessssessanssssasassssessasessesssssassans 104
CHAPTER 6 CONCLUSION AND FUTURE WORK 106
6.1 CONTRIBUTIONccuctiiiirieeneeeeeereeeeenreereeneeeeeneeeeseeesssessesessseen sassssesseernsesssesesssesnsenses 106
6.2 CONCLUSION........cecoetrerreeeestreeissrerasessecesrtessassrerasaneesssnssssessesassssassssesssssessanserseesrsnessen 107
6.3 FUTURE WORKcermiimimimitntinseeenteeests st st ees st s sseat s s st e e st s et st sttt st st e e enes 108
6.3.1 Internet INtErCONNECHION.c..coirmeeiieeeieicrcen ettt aeeees 109
6.3.2 QOS ISSUES ...coiiecveriieierc e e ete st e e e seteset e e re s sase s s ebs s e teesaesraen st enreesseenstenren 109
6.3.3 SeCUNIY ISSUES «cneenii ettt et 110
6.3.4 Failure of the leader of an ALM group.......cooooeeviiimeiniiecee e 11
REFERENCE 112

vii

List of Figures

Figure 1-1 Concept of virtual topology for overlay multicast in MANET [J..................... 6
Figure 1-2 Concept of our frameworkccocveeieiciciieiiecceceeeeiceeseeee e canena 11
Figure 1-3 Concept of our frameworkc.ooevioeiiieiiiiieiciceeceecece e 12
Figure 1-4 State diagram of the mobile nodes in SIP-ALM.cocoooiiiiiiniicicinee. 14
Figure 2-1 Network Architectures........cocceeiireeriininiee e s 19
Figure 2-2 An Example of the Network Structure in Our Framework...........c..c.ccvvvn.n. 21
Figure 2-3 A typical flow of SUBSCRIBE/NOTIFY messages in SIP.............ccccoaee... 24
Figure 2-4 Joining of a new node (MNG6) into a SIP meshed network.........cc...cceeennneee. 27
Figure 2-5 An example of SUBSCRIBE requestcoocoorieiceveeineeceeievesre e 28
Figure 2-6 Message sequence for peer discovery and gateway node decision................. 29
Figure 2-7 The network structure after MN6 joining..........ccocooveveeieinneicceirceee 30
Figure 2-8 An example of NOTIFY request from MN8to MN6...........c.coevnriiernnnnnn.. 32
Figure 2-9 An example of NOTIFY_d request (when MNG6 joins the meshed network). 33
Figure 2-10 Leaving of a mobile node (MNS8) from a SIP meshed network 35
Figure 2-11 An example of SUBSCRIBE request for a node (MN8) leaving SIP meshed

DIEEWOTK .ottt ettt se et eee sttt s ee s et st 36
Figure 2-12 An example of NOTIFY _d request (when MN§ leaves the meshed network)

From MNA 0 MINT ...ttt ettt vt e st et aen 36
Figure 3-1 An example of SIP-ALM graphcocooveirereeiieiireceeeeee e 41
Figure 4-1 The flow chart of the management in an ALM group.......co.ocovveirncnnnnne. 48
Figure 4-2 MN4 initiates an ALM ZrOUD........cooieriieieeeerieeeie e eeeiseeaeeene e eeneas 51
Figure 4-3 An example of INVITE requestcccoovveeierninnenceeeieece e 51
Figure 4-4 An example of forwarded INVITE request (by MN8)ccccoceeeiririevnrennnee. 54
Figure 4-5 An example of NOTIFY g request........coveveeeeeeeeieeeeeeieeieeceeeeen e 56
Figure 4-6 MN7 wants to join into an existing ALM groupcccceevevvevreremerieiveereneeenn. 58
Figure 4-7 An example of INVITE request with a “Join” header........c..ccccevverniennnnen. 59
Figure 4-8 An example of NOTIFY g request after a Join, sent to ALM group members

.. 60
Figure 4-9 An example of BYE F€QUESt.......cocuvvevirieriemienieriiieeeeieeeeteeeteiee e ese e seseeeenas 61
Figure 4-10 An example of forwarded BYE requestccooooiiiniiiinieeeee 62
Figure 5-1 JAIN SIP Architecture [] .ccooveovvemieeeeiee ettt e enaen 67
Figure 5-2 Creation of a JAIN SIP object []...covoerniinieeeenene e 68
Figure 5-3 SIP-ALM ArchiteCturec.ccoccoiiiiiiicec e 69
Figure 5-4 SIP-ALM StrUCIUIE ...c.c.eeviieiriiniree ettt ee et et eeser e sssa e sesaesnens 69
Figure 5-5 UML sequence diagram of starting operationsccccecceveervnerecrccrnenees 70
Figure 5-6 UML sequence diagram of creating SIP Request..........cocccovinincininieencncn. 72
Figure 5-7 Flow Chart of processing SIP INVITE Request.........cccocovvneeeecreereeececcinnen, 74
Figure 5-8 Sequence Diagram of processing received INVITE message........c.coceeeueecn. 76

viii

Figure 5-9 Flow Chart of analyzing received SUBSCRIBE messagecccooveeeercnnenes 77
Figure 5-10 Sequence Diagram of processing received SUBSCRIBE message for joining

.. 77
Figure 5-11 Flow Chart for processing received NOTIFY message........cccoveeveevevercvenens 79
Figure 5-12 Sequence Diagram of processing received NOTIFY message............ccun..... 79
Figure 5-13 Flow Chart for processing received BYE message........cccceceeeeveerecenneeneneaee 80
Figure 5-14 Sequence Diagram of processing received BYE messageooeevceeveeicenene 80
Figure 5-15 The state transition diagram of the verifierccooiiieniiiiniinncnnnn. 82
Figure 5-16 The State Transition in SIP-ALM framework.........cccccoevievevinrvenniennenrne 83
Figure 5-17 An example of a Simulation File........ccoccoocoieiiinniiniccienece e 90
Figure 5-18 The network topology used in our simulation............c.ecceeeveenrcrveecneenennnne 91
Figure 5-19 Number of messages vs. number of nodes when creating a network (HT

means Hierarchical Topology; FTT means Full-Flat Topology)cccovecevvreevirnennee 98
Figure 5-20 An example of overall signaling traffic with/without “Forward-To” extension

(MR means Multi-Recipient; NMR means Non-Multi-Recipient)cccccneeee. 100
Figure 5-21 A virtual ALM ZIOUPcooieiieiiniieieree et cne et e e et 101

Figure 5-22 An example of overall signaling traffic of maintaining multicast groups.. 102

List of Tables

Table 3-1 MNG’S Profile LiSt.....ccoovo et rt s inss e s e s ee s se e 41
Table 3-2 MN6’s SIP-Meshed Network Node List......cccoeeeieeeeeceninnieenenieneeeeeneeeneeen. 42
Table 3-3 Gateway MN4’s Non-Gateway Node Member Listccoeeevveeneiiiecceeennen. 43
Table 3-4 Gateway MN8’s Non-Gateway Node Member Listccooevmvinninvccennnnnne. 43
Table 3-5 Gateway MN4’s Gateway Node Member List........ccoccoveeeiinvcceinicenccnanennne 43
Table 3-6 Gateway MN8’s Gateway Node Member List........ccooeverieiiniiicneiieinns 44
Table 4-1 MNA’S Profile LiSt.......cooooieiecieiieeeceree et e e seva s e saneessanns 57
Table 4-2 MING’S Profile List ...coooviiiiriiiieieeee et e es e 57
Table 4-3 MIN4’s Non-Gateway Node Member List.......cccccoooveeeveicrveienccnnceereree e 57
Table 4-4 MN4’s Gateway Node Member List.........cccoovviveeiiviienceeereieceeeiie e 57
Table 4-5 MN6’s SIP-Meshed Network Node List.......c.oocovivevennrecenenreciencreeeennen 57
Table 5-1 List of State Transition EVENtS.......coccoeiiveineeeniieieecercecerterene e sess e 34
Table 5-2 SIP-ALM scenarios explored to be verifiedcccoooeieeiiirieiiicieeee. 85
Table 5-3 Test Sequence LIStS..... ..ottt ettt neas 87
Table 5-4 Packet sizes of SIP messages in SIP-ALMcccooiviimrineeienceee e 95

List of Abbreviations and Symbols

GMSNG

GLSNG

GMSG

MANET

NS

SG

SIP

SNG

UA

URI

Application Layer Multicast

Group Member and SIP Non-Gateway node

Group Leader and SIP Non-Gateway node

Group Member and SIP Gateway node

Mobile Ad-hoc NETwork

Mobile Node

Non-SIP node

SIP Gateway node

Session Initiation Protocol

SIP Non-Gateway node

User Agent

Universal Resource Identifier

xi

Chapter 1 Introduction

1.1 Mobile Ad-Hoc Network

Mobile ad-hoc network (MANET) [1] is an active topic of research for its promise to provide
ubiquity services anywhere and anytime, including providing a networking platform in the
absence of a fixed, central-managed infrastructure. MANETs replace the centralized
hierarchical administration structure of contemporary networks with a distributed approach to
routing, to security, to management and to application.

MANETs are useful in many application environments and do not need any infrastructure
support. Collaborative computing and communications in smaller areas (buildings,
organizations, conferences, etc.) can be set up using MANETs. Communications in
battlefields and disaster recovery areas are other examples of application environments. Ad
hoc network has also been regarded as an important part of the 4G Wireless System. The goal
of 4G is to provide a seamless and ubiquitous communication environment so that users can
accomplish their tasks and access information at any time, anywhere, and from any device [2].
Ad hoc networks can be used to extend base station's coverage to complement the
deficiencies of the infrastructure-based network. The increasing use of collaborative
applications and wireless devices may further add to the needs and uses of MANETs.

Mobile devices (also called as Mobile Nodes) form a MANET when they wirelessly

communicate with other nearby mobile devices without the support of fixed infrastructure.

The mobility of nodes means that a MANET’s topology changes frequently and dynamically,
where each node communicates over wireless channels, moves freely and may join and leave
the network at any time. Without the aid of any centralized administration to support the
monitoring of these network topology changes, mobile nodes must themselves track changes
in a decentralized manner.

Another serious impediment of MANET is the limited area that can be covered by mobile
application components using a wireless transmitter, hence a node communicates directly
with nodes within wireless transmission range and indirectly with all other destinations using
a dynamically determined multi-hop route, relying on other nodes to act as routers [3]. Thus,
multiple network hops may be needed for one node to exchange information with another
mobile node. Each node behaves as a router as well as an end host, so that the connection

between any two nodes could be a multi-hop path supported by other nodes.

1.2 Overlay multicast (Application Layer Multicast)

Network-level IP Multicast [4] communication was proposed a decade ago to enable
one-to-many or many-to-many communication as opposed to one-to-one supported by unicast.
Multicasting allows a sender to transmit voice, video and text to multiple receivers
simultaneously. When sending the same packet to multiple receivers, multicast improves
bandwidth utilization and involves lower host/router processing.

However, the use of multicast in applications has been limited because of the lack of wide
scale deployment and the issue of tracking group membership [5]. There are a large number

of applications whose requirements are substantially different from the design point of IP

2

multicast. Such applications include video-conferencing, multi-party games, private chat
rooms, web cache replication and database/directory replication. These applications usually
contain a small number of group members, and the groups (e.g. multi-party games) are often
created and destroyed relatively dynamically.

In order to meet the requirements of the emerging applications, a solution is needed for
multi-sender multicast communication, which scales for a large number of communication
groups with small number of members, and does not depend on multicast support in the
routers. Application Layer multicast (ALM, sometimes, also called as Overlay Multicast) [6]
addressed these concerns and is proposed as an alternative approach.

In ALM, the overlay network is built on top of the physical level, providing simple primitives
to hide the complexity of the underlying physical network topology, allowing any peer to
uniformly address any other peer on the network. Because an overlay network forms a logical
network consisting of multicast member nodes, the underlying network looks at the data
exchange between member nodes as a unicast communication. The change in physical
topology is transparent to the overlay members and they are required to provide multicast
functionality only [7].

Since the multicast support shifts from core routers in IP multicast to end systems in ALM,
end systems now implement all group communication functionalities, including membership
management, packet replication and distribution. Furthermore, it allows more flexibility in
customizing some aspects, e.g. data transcoding, error recovery, flow control, scheduling,
differentiated message handling or security, on an application-specific basis [8].

A straightforward advantage of using multicast in the application layer is that multicast
3

applications can be executed in networks that do not support IP layer multicast. It also allows
firewalls to handle better the traffic created by the multicast application [9]. Thus, ALM
offers accelerated deployment, simplified configuration and better access control at the cost of
additional (albeit small) traffic load in the network, because in an ALM session, only the
source and the destination nodes of the multicast session can sit on the end points of the paths.
All the participants are connected via a virtual multicast tree, that is, a tree that consists of
unicast connections between end hosts. The shift of multicast to end systems introduces
certain performance penalties, such as duplicate packets on physical links and larger
end-to-end delay than IP multicast [8].

In summary, the ALM approach differs in many respects from traditional IP multicast routing:

* A forwarding node in the overlay topology can be either an end host, a dedicated
server within the site, or an edge router. On the contrary, traditional multicast trees
only include core routers.

e With an overlay topology, the underlying physical topology is completely hidden. A
directed virtual graph is created between all the nodes.

e In traditional multicast, the membership knowledge is distributed in the multicast
routers. In an Overlay Multicast group, membership knowledge is known either by a
rendezvous point, the source, or everybody, or is distributed among members.

e The overlay topology is potentially under complete control.

As it was mentioned earlier, in overlay multicast group, each member node needs to keep
track of other members in its neighborhood. This can be done by a query to its “routing table”,

or by a periodic neighbor discovery operation. Each node records the status of its virtual
4

neighbors in the overlay topology. The entries are the link state information of all group nodes

obtained from virtual neighbors [6].

1.3 Overlay multicast (Application Layer Multicast) in MANET

Multicasting has become increasingly important in MANET because of the need for
collaborative applications among a group of mobile nodes. It is always advantageous to use
multicast rather than multiple unicast, because the bandwidth comes at a premium in MANET.
Therefore, combining the features of a MANET with the usefulness of multicasting, it will be
possible to realize a number of envisioned group-oriented applications [10].

Several multicast routing algorithms such as MAODV [11], ODMRP [12], AMRIS [13],
AMRoute [14], CAMP [15] have been proposed to support multicast in MANETSs. These
routing algorithms work at network layer. As demonstrated in these protocols, the absence of
a fixed infrastructure and the dynamical changes of connectivity and network topology make
robustness as a key issue for multicasting in MANET.

MANET and overlay multicast systems both exhibit a lack of fixed infrastructure and possess
no a-priori knowledge of arriving and departing users [16]. As we mentioned earlier, in -
Application Layer Multicast (ALM), the virtual topology can remain static even though the
underlying physical topology is changing. This function is suitable for applications used in the
typical, dynamic MANET. Moreover, as shown in Figure 1-1, it needs no support from the
non-member nodes, i.e. all multicast functionality and state information are kept within the
group member nodes only (like the peers in Overlay Network of Figure 1-1). Due to this

common nature, overlay multicast seems natural and attractive to be deployed for MANET

5

applications.

.

Mobile Node

P
P

- - -z--q -

Physical Network

Figure 1-1 Concept of virtual topology for overlay multicast in MANET {6]

1.4 Session Initiation Protocol (SIP) in Mobile Ad-Hoc Network

The Session Initiation Protocol (SIP) [17], defined by IETF, is an application-layer control
protocol that can establish, modify, and terminate multimedia sessions. These sessions can be
multimedia conferences, Internet telephone calls and similar application consisting of one or
more media types such as audio, video, whiteboard etc. Moreover, the leading wireless
technical forums (3GPP [18], 3GPP2 [19], and MWIF [20]), have agreed upon the SIP as the
basis for session (call) management of the Mobile Internet within UMTS. Therefore, SIP will
certainly be an integral part of the mobile Internet’s protocol architecture.

SIP is designed in a modular way so that it is independent of the type of session established
and of the lower-layer transport protocol deployed beneath it. SIP messages and the sessions
they establish can pass through entirely different networks.

Because of their mobility, nodes in MANET sometimes are configured into a meshed

topology. Therefore, SIP sessions in MANET could use full-meshed architecture. That is, in a
full mesh, every participant builds a signaling leg with every other participant and sends an
individual copy of the media stream to the others. This mechanism only scale to very small
groups, but requires no network support. Proposals for setting up and tearing down SIP
call-leg meshes have been made [21]. There is also some work done on full-mesh
conferencing [22].

The current SIP procedures are designed to be well suited for users within infra-structured
networks. But in ad-hoc networks, because there is no fixed, managed infrastructure, there is
no dedicated proxy, redirect and registration servers and users are not aware of each others’
presence and do not know others’ identities. Thus the common SIP procedures are not suitable
for ad-hoc network users. Not much work has been done to address this issue. A framework to

use SIP in ad-hoc networks was proposed [23].

1.5 The motivation of our proposal

As technologies of wireless communication improve, more and more software services and
mobile devices will exist in large numbers and will operate in a networked world where they
may not be sure about the other services and devices nearby beforehand, or about the state of
the network neighborhood as time goes. In such uncertain environments, individual
components will neced to discover and maintain awareness of their surroundings and to
configure and adapt themselves in response to changing situations.

The rapid growth of computation and network resources for end-hosts has enabled

peer-to-peer (P2P) computing and networking [24]. Multipoint communication achieved by

7

the end-hosts makes Application Layer Multicast (ALM) increasingly recognized. Multicast is
used for neighbor and service discovery in MANET because of [25]:

¢ the broadcast nature of wireless communication environment;

s the infrastructure-less feature of the mobile ad hoc networks;

¢ the one-to-many character of service advertisement and discovery.
Mobile ad hoc systems currently developed adopt the approach of not having a middleware,
but rather rely on each application to handle all the services it needs. This constitutes a major
complexity/inefficiency in the development of MANET applications [26]. The middleware
layer operates between the networking layers and the distributed applications, with the aim to
build on top of raw network services, higher level mechanisms that ease the development and
deployment of applications.
Among middleware services, service discovery and location play a relevant role in ad hoc
environments. Upon joining a self-organizing network, mobile nodes should be able to
explore the environment to learn and locate the available services. Current solutions on
service discovery assume (more or less) a fairly stable network since they are based on
centralized service registries. Several architectures for service distribution in ad hoc networks
have been proposed in literature. Many of them focus on the mechanisms for describing and
matching services, as well as the user interfaces for discovery applications [27].
Jini [28] and Service Location Protocol [29] provide the function of service advertisement
and discovery for wired networks. As mobile device have become more and more powerful, it
is natural to find a way to provide the service and corresponding neighbor discovery in

MANET.

Our goal is to investigate the use of SIP methods to support adapting the network topology
changes and provide a platform for service location and discovery in ad hoc networks.

SIP is adopted into our proposal because it is a very flexible protocol and can be easily
extended [30]. A user with multiple devices like a cell phone, desk phone, PC client and PDA
can rely on SIP to seamlessly integrate these entities for increased efficiency and productivity.
SIP is differentiated from similar communications protocols by its wide industry support,
providing a practical means of multivendor integration at the highest level of the protocol
stack — the application layer [31]. The “Event” header and the idea of Event package could
provide a way for SIP User Agents to get some service or event state notification, which could
be used for service advertisement and discovery.

Furthermore, since SIP is designated as the call control signaling for 3G Multimedia services,
more and more applications might be designed using SIP for 3G devices. So by using SIP
middleware for mobile nodes in MANET, we may adopt the same application structures and

functionalities for other kinds of mobile devices.

1.6 Assumptions in our framework

Our approach is based on some of the assumptions made for Mobile Ad hoc NETwork
(MANET). They are:
e An IP level connectivity exists in the ad-hoc networks. It is a valid assumption
considering most of the modern devices run operating systems that provide automatic
configuration techniques [27].

* FEach node selects unique URI and IP address by which it will be known in ad hoc

9

networks. This allows each node to be recognized by all other nodes in ad hoc
networks as a single entity regardless of which network interface they use to
communicate with it.
e There exists an underlying unicast routing protocol that can be utilized for IP unicast
communication between the neighboring multicast nodes.
¢ Al nodes wishing to communicate with other nodes within the ad hoc network are
willing to participate fully in the operations of the networks. In particular, each node
participating in the network should also be willing to forward packets for other nodes
in the network.
o Nodes do not continuously move so rapidly as to make the flooding of every
individual data packet the only possible routing protocol.
The application registration and notification mechanisms defined herein are not intended to be
a general-purpose infrastructure for all classes of application. For that reason, we provide a
SIP-specific middleware framework for applications in MANET, which is not so complex as
to be unusable for simple features, but which is still flexible enough to provide services.
Because a MANET is a collection of nodes forming a temporary network without the aid of
any centralized administration, where each node communicates over wireless channels,
moves freely and may join and leave the network at any time, SIP Registrar, Proxy and

Redirect servers are not required in our approach.

1.7 Introduction to SIP-based Overlay Multicast Framework

In this thesis, we propose a middleware system: SIP-Application Layer Multicast (SIP-ALM),

10

which works between the application and network layers of mobile nodes in MANET. Our
goal is to implement fundamental functions in a middleware and to provide some basic
functions for applications to be used in MANET networks.

As shown in Figure 1-2, SIP-ALM is an application level group communication middleware,
which does not rely on network infrastructure support and thus, allows accelerated
deployment and simplified configuration at the cost of a relatively small increase in traffic
load. It is used to build an ad-hoc overlay network allowing users to know each other,
especially to inform users of which multicast groups to join. It also provides a platform for
service discovery and location, for applications, such as entertainment; military and

post-disaster rescue applications, used in MANET.

Applications Applications

Application

SIP-ALM SIP-ALM

DSR, AODV... DSR, AODV... Network
IEEE 802.11,... 1EEE 802.11,... Data Link

Physical

Figure 1-2 Concept of our framework

This middleware system uses SIP messages to organize the overlay multicast groups for the
applications in MANET, which hides underlying network inconsistencies from distributed
applications and provides the applications with consistent views of a distributed execution.
Our proposed framework does not require any particular feature on participating devices
except the implementation of our middleware in mobile nodes (MNs). It provides the

following:

11

o allows peers to discover each other;
o allows peer to establish a meshed MANET;
¢ allows peer to organize Application Layer Multicast (ALM) groups in that MANET.
As shown in Figure 1-3, our middleware functions are divided into three parts:
e SIP Overlay Mesh function handles the creation and maintenance of the SIP overlay
meshed network;
e SIP ALM Group function is in charge of creating and maintaining SIP ALM group;

¢ Node List function is used to manage the node information.

SIP Application

| SIPALM Growp |

! !

SIP Overlay Mesh [Node List

MANET Routing protocol (such as, DSR)

Figure 1-3 Concept of our framework

Here we will describe the main ideas of the system briefly. The more detailed information will
be introduced in Chapters 2, 3 and 4.

Many of the proposed multicast routing protocols [10] construct multicast trees over which
information is transmitted. Using multicast trees is evidently more efficient than the brute
force approach of sending the same information from the source individually to each of the
receivers. However, due to the frequent and hard-to-predict topological changes of ad-hoc

networks, maintenance of a multicast tree to ensure its availability could be a difficult task.

12

Thus the idea of creating a multicast mesh is proposed.
A meshed network is a subset of the network topology that could provide multiple paths
between multicast senders and receivers. Redundancy in the paths helps maintaining routes
between senders and receivers, even if a mobile node in the mesh moves. Since a multicast
mesh could provide rich connectivity among group members, it improves the robustness and
survivability of the multicast in MANET. The middleware we propose has two main functions:
overlay meshed network construction and multicast group routing. It creates a SIP overlay
meshed network first, and then builds a multicast group and transfers application data to all
group members in a session.
Generally, an Application Level Multicast consists of three fundamental functions [24]:
e End-host discovery
e Overlay network construction
o The joining end-host saves received requests and responses in the meshed
host lists to keep trace of the neighboring nodes logically.
o Optimize the overlay network by maintaining and optimizing an overlay
network routing information
e Multicast routing
o Build multicast tree, perform routing (by the host list)
o Communicate with neighbors on overlay network
o Manage the information of neighbors
The SIP-ALM middleware constructs an overlay structure among participating Mobile Nodes

(MNs) in a self-organizing and fully distributed manner. MNs gather information of network
13

topology, builds application layer multicast groups and transfers application data to all
multicast group members. Thus we divide the states of the MNs in SIP-ALM as Non-SIP
node, SIP node and SIP-ALM node, as shown in Figure 1-4.

The Non-SIP node is the kind of mobile nodes, which does not have the SIP functionality or
does not start the functionality yet. SIP nodes are those nodes, which started the SIP-ALM
middleware. At this point, SIP nodes create or join in a SIP meshed network, but do not attend

any multicast group yet.

SUBSCRIBE with Expires = 0

Non-SIP node

SUBSCRIBE SUBSCRIBE

with Expires != 0 with Expires = 0

INVITE

y

SIP node . SIP-ALM node
BYE

Figure 1-4 State diagram of the mobile nodes in SIP-ALM.

SIP-ALM node (a SIP-ALM group member) shows that the mobile node is part of some
SIP-ALM group. Thus, it receives and sends data as it would in an IP multicast session; in
addition, it also forwards data to designated adjacent neighbors. Data eventually reaches all
group members through this relaying process, by the assumption that all members are
cooperative. In our access control module, the assumption that a group does not contain any
malicious member who intentionally blocks the data flows, is reasonable for our targeted
applications such as video conferencing, web replication, etc. Besides forwarding data on the

data plane, a group member may also monitor the performance of unicast paths to and from a

14

subset of other group members. This may be achieved by periodically sending probes to these
members and measuring an application level performance metric; in the current
implementation the round trip response delay.

Furthermore, it is expected that this mechanism would not be used in applications where the
frequency of reportable events is excessively rapid. A SIP network is generally going to be
provisioned for a reasonable signaling volume; sending a notification every time a MN’s
connection changes by one hundredth of a second could easily overload such a network [32].
Maintaining a routing tree for the purpose of multicasting packets when the underlying
topology changes frequently can incur substantial control traffic [15]. The mesh-based
approach is motivated by the need to support multi-source applications. Single-shared trees
are not optimized for the individual source and are susceptible to a central point of failure. An
altemnative to constructing shared trees is explicitly constructing multiple overlay trees, one
tree for each source. However, this approach needs to deal with the overhead of maintaining
and optimizing multiple overlays [33].

We decide to use core-based multicast group management to control the requests to be sent
* toward the core instead of being flooded to the entire network. Also in MANET, frequent
topology change and dynamic group membership often lead to substantial signaling overhead
in maintaining the global multicast session state information. When replicated unicast is used
for signaling transport, the number of messages between two SIP MNs is in accordance with
the number of recipients that are accessible over the second MN. In contrast, using multicast
only a single SIP message is sent between two SIP MNs.

The ALM group leader handles ALM group member registration and maintains the multicast
15

group. In order to achieve the latter, the leader performs the important functions of ensuring
connectivity among group members of this multicast group when members join and/or leave

the session and when network or host failures occur.

1.8 Organization of the thesis

The thesis is organized into six chapters as follows:

e Chapters 2 to 4 describe how to realize our proposed SIP-based application layer
multicast framework.

e In Chapters 2 and 4, we detail the procedures of using SIP SUBSCRIBE, NOTIFY,
INVITE and BYE methods to setup and maintain the overlay meshed network and
multicast groups respectively.

e In Chapter 3, we introduce the lists of node information, which are used in our
implementation to handle the membership transition in the network.

e Chapter 5 is concerned with detailing the requirements to successfully implement a
SIP ALM simulation.

e - Finally, Chapter 6 concludes the discussion with some insight for future work.

16

Chapter 2 The SIP-based Overlay Mesh Network

2.1 Introduction

SIP is a text-based client-server signaling protocol used to initiate, maintain and terminate
communication sessions. It also offers a discovery capability. If a user wants to initiate a
session with another user, SIP must discover the current host(s) at which the destination user
is reachable. This discovery process is frequently accomplished by SIP network elements such
as proxy servers and redirect servers which are responsible for receiving a request,
determining where to send it based on knowledge of the location of the user, and then sending
it there. To do this, SIP network elements consult an abstract service known as a location
service, which provides address bindings for a particular domain [17].

Normally, registration creates bindings in a location service for a particular domain that
associates an address-of-record URI with one or more contact addresses. A proxy server that
is responsible for routing requests for that domain then typically consults this location service.
Thus, when a proxy for that domain receives a request for Request-URI to match the
address-of-record, the proxy will forwar@ the request to the contact addresses registered to
that address-of-record.

However since MANET is an infrastructure-less network without centralized administration
structure, there are no pre-defined proxy servers and redirect servers. The discovery process

needs to be done in a different way.

17

Because MANET is on-the-fly network, the binding of a location service for contact
addresses is only important for the neighboring nodes. Since the MNs in MANET could move
freely, the most important thing for routing request in MANET is to store the routing
information, record the neighbors for each MN. We propose the saving of these bindings in
the host lists of the neighboring mobile nodes (MNs), as discussed in Chapter 3. Therefore
each MN knows how to route the request. When a MN receives a request, it checks its host
lists for the shortest route — the route with the smallest number of hops — to the destination.

As we mentioned in Section 1.7, our framework allows users to discover each other, to
establish a meshed MANET network and to organize Application Layer Multicast (ALM)
groups in that MANET network. It does not require any particular feature on participating
devices except the implementation of our middleware as SIP User Agent (UA). Registrar,
Proxy and Redirect servers are not required in our approach.

The SIP-ALM middleware framework we propose has two main functions: overlay meshed
network construction and multicast routing. We discuss the overlay meshed network
construction in the following sections. The multicast routing function will be explained in

Chapter 4. In Chapter 3, we introduce the host lists used for managing node information.

2.2 Network Architecture

In our proposal, one of our goals is to create an effective middleware system. Thus, we need
to choose a proper network architecture to achieve that. As displayed in Figure 2-1, there are
several alternative network architectures, such as full mesh, tree and clustering. We will

introduce them briefly and explain our choice for our SIP-ALM structures.

18

W e

a. Full mesh b. Tree

c. Mesh clustering d. Centralized clustering

Figure 2-1 Network Architectures

2.2.1 Full Mesh

As shown in Figure 2-1a, full mesh is a fully distributed architecture. There is no control point.
Nodes have the same responsibilities and they are directly connected to each other. Full mesh
directly reflects the peer-to-peer communication idea. It is applicable to some small-scaled

cases where there is no control node available.
2.2.2 Tree

The typical tree structure includes a root, some branches and some leaves. An example of tree
structure is shown in Figure 2-1b.The root is the ancestor of all the leaves. The leaves refer to
all the nodes except the root. Each leaf has a father and may have several sons. The branches
are the connections between nodes.

One of the advantages of this architecture is that information can be efficiently propagated
through it. A tree algorithm used in ad hoc networks is presented in [34]. A new node can

easily join in just by creating a connection with any node in the tree. Through a learning

19

procedure, all the ancestors will have the knowledge of the new node. This is done by
propagating information back to the root through the branches. “Node-leaving” is also not a
big problem. When any father node leaves, it just “delivers” its sons to its father. Another
advantage of this architecture is that it can be scalable. There is no limit in the growth of a
tree. In addition, there is much less connections between nodes than those found in full mesh.

However, the tree is an asymmetric architecture. The root plays a critical role for maintaining
the tree. It is subject to heavy burdens if the tree is big. It is hard to determine the most
powerful node as a root because in MANET, newly joined node may be more powerful than
the pre-existing one. In addition, it is difficult to reorganize the whole tree when a new node

joins and the old root cannot handle the tree anymore.
2.2.3 Clustering

Clustering, shown in Figure 2-1c and d, is a kind of architecture that divides a set of nodes
into different clusters and provides connections between them. Each cluster has a cluster head,
which is responsible for maintaining a list of cluster members and also connecting to other
clusters. Clustering is often used in communication networks [35] to handle the issues of
distributed computing. Similar to the tree, clustering can be easily scaled. It organizes large
number of nodes in small clusters and each cluster is self-governed. Clustering also provides
possibility for efficient information propagation. Since the cluster heads are all connected,
they can propagate information to each other. All cluster members can then get the
information from their cluster heads.

Compared with the tree architecture, clustering is more symmetric. That is, instead of

20

maintaining the table of all nodes, the burden of the root-node is shared by several cluster
heads. If new nodes are added and the cluster head is no longer capable of maintaining them,
it just splits the cluster into two smaller clusters. There is then the possibility to select the
most powerful nodes as cluster heads.

In our opinion, two possible types of clustering: centralized clustering and mesh clustering
can be used in our signaling system. Clusters in centralized clustering are organized in a
centralized manner. Heads are the center points of each cluster. In contrast, clusters in mesh
clustering are organized in a full mesh manner. Nodes have full mesh connections with each
other.

If we compare the two, the meshed one has a better fault tolerance while the centralized one
needs less signaling connections. Because of the mobility of the mobile nodes in MANET, we

use the mesh clustering architecture in our approach.

® SIPGateway Node
['] SIP Non-Gateway Node

MN9.~ Q Non-SIP Node

MNZ-,

Figure 2-2 An Example of the Network Structure in Our Framework

This kind of hierarchical network structure is used to reduce the amount of the transferred
routing information. Here, cluster header is called as gateway node, while cluster members

are called as non-gateway nodes. In our approach, gateway nodes are SIP gateway nodes.

21

Similarly, non-gateway nodes are SIP non-gateway nodes. Figure 2-2 displays an example of

the network structure used in our proposed framework.

2.3 The gateway node decision process

In SIP, every request is transferred in a request/response model, that is, whenever there is a
request sent out, a response would be sent back to confirm this transmission. Since
non-gateway nodes and gateway-node are always one-hop neighbors, it is not required for the
non-gateway nodes to send out all its neighbor information.

In our approach, once becoming operational in a SIP mesh, every MN initially sets itself to be
a gateway node. Then it broadcasts a request to join its one-hop neighbors. If no response is
received, it is the gateway node. Otherwise, it changes itself to non-gateway node and sets the
MN that has sent the correspondent response message as its source gateway node. If two MNs
respond, the one arrived first is its source gateway node.

The gateway selection process for each node existing in the meshed network begins when
there is a change in neighborhood. Each node will decide whether it should still be serving as
a gateway node, or become a non-gateway node by checking its members with its neighbors.

We will discuss the process in details in next section.

2.4 Creating an overlay-meshed network

The function of overlay meshed network construction is subdivided into the following [22]:
e Maintain and optimize an overlay meshed network including components;

e Communicate with other members;

22

¢ Manage the information and host lists of members.

RFC 3261, the core SIP specification, defines that a SIP request consists of a request line,
header fields and a message body. The header fields contain information about call services,
addresses and protocol features. The message body may contain anything. The core SIP also
defines six different method types, including INVITE, ACK, CANCEL, OPTIONS,
REGISTER and BYE. Due to the extension of the usage in SIP, a set of SIP extensions are
defined, for example, SUBSCRIBE and NOTIFY are defined in RFC 3265 [32]; INFOQ is
defined in RFC 2976 [36]; PRACK is defined in RFC 3262 [37]; UPDATE in RFC 3311 [38];
MESSAGE in RFC 3428 [39] and REFER in RFC 3515 [40].

Here we describe our choices for the SIP methods to achieve those functions in our

framework.
2.4.1 The chosen SIP methods

In SIP scheme, a SIP UA sends REGISTER request as the first step to register to a network.
Generally REGISTER method is used to register to the service and verify the identities of all
the elements in the network [17]. In infrastructure networks, a REGISTER request can add a
new binding between an address-of-record and one or more contact addresses. A client can
also remove previous bindings or query to determine which bindings are currently in place for
an address-of-record. So the most important function of REGISTER is to bind the current
location with the user’s URL But because MANET is only a temporary, infrastructure-less
network, this function may not be as useful as in the infrastructure network.

On the other side, SUBSCRIBE/NOTIFY methods in SIP are designed for event notification

23

to keep subscribed information updated. SIP UAs can subscribe to a remote SIP server and
request event notification from it. In case of an event, remote server will alert the MNs that an
event has occurred. In this way, SUBSCRIBE/NOTIFY requests are used to keep updated
information in the network. Because in MANET, it is critical to keep the updated information
of the MNs in the network, we use SUBSCRIBE/NOTIFY requests in our framework, instead
of REGISTER request, to set up the overlay network.

Here we explain how SUBSCRIBE/NOTIFY requests are used to create and maintain a SIP

meshed network.
2.4.2 Overview of Operation

The general concept of SUBSCRIBE/NOTIFY is that entities in the network can subscribe to
resource or call state for various resources or calls in the network, and those entities (or

entities acting on their behalf) can send notifications when those states change [32].

Subscriber Notifier

F1 SUBSCRIBE

F2 200 OK

F3 NOTIFY

F4 200 OK

F5 NOTIFY

F6 200 OK

Figure 2-3 A typical flow of SUBSCRIBE/NOTIFY messages in SIP
A typical flow of messages is demonstrated in Figure 2-3. The transferred messages between

a subscriber and a notifier are:
24

e F1 SUBSCRIBE - Request state subscription

e F2 200 OK — Acknowledge subscription

e F3, F5 NOTIFY - Return current state information

» F4,F6 200 OK — Acknowledge state information
Each node in our framework implements a neighbor discovery function started by sending out
a SUBSCRIBE message. The meshed network members periodically exchange host
information with their neighbors in a non-flooding manner so that the virtual meshed network
may constantly adapt to the changes in the underlying network topology. Therefore, by
looking at its own host lists, a member gets a view of the entire topology. This information
will be used to build multicast trees in ALM groups. We will discuss it in Chapter 4.
Usually multicast registrations are addressed to the well-known "all SIP servers” multicast
address "sip.mcast.net”. SIP MNs listen to that address and use it to become aware of the
location of other local users. This is appropriate for the MANET use. When a new SIP MN
wants to find other mobile nodes around, it sends SUBSCRIBE request with some
well-known multicast address. (In our implementation, we add “MN _user” as part of the
Request-URL) When the neighboring mobile nodes, listening at the default 5060 port, receive
such a request, they save node information of the sender of this SUBSCRIBE request. They
search the host lists for current stored information. If the relevant record does not exist, it will
be created. Then the MN returns a 200 (OK) response. The response contains Contact header
field values emumerating the URI of the responding MN. Upon receiving the 200 OK
response, the initiating MN stores the URI of the responding MN, as its one-hop neighbors.

The initiating MN waits to receive the corresponding NOTIFY message, it then updates its
25

own host lists. Therefore the original SIP MN becomes aware of the location of other local
users. Now it becomes a member of the SIP meshed network.
In general, registration records in host lists are soft state and expire unless refreshed, but they
may also be explicitly removed. A MN requests the immediate removal from the meshed
network by specifying an expiration interval of "0" in a SUBSCRIBE request. We will
describe the procedure of using SUBSCRIBE/NOTIFY to manage the membership of SIP
meshed network in more details in the following sections.
Generally SIP itself does not provide services. But it makes available to other protocols and
applications a set of primitives useful to implement services such as service location and
discovery platform. The “Event” header [41] added to the headers of SUBSCRIBE/NOTIFY
messages could be used to define event packages or services. In this way, the list of users
reported to the subscriber represents the complete user list. For example, the “Event” header
could be as follows:

Event: conference;recurse; type="membership,general”
Upon receiving the SUBSCRIBE message sent out on a SIP overlay network by a new node,
each receiving node performs service matching, contained in “Event” header.
Therefore, if we want to have the function of service discovery, we use the “Event” header as
part of the subscription information. Thus, a SIP meshed network is created among the MNs
supporting the same event packages or services. It is done in the following way:

e A SIP user agent has the feature of organizing, attending and leaving MANET. It

sends out a SUBSCRIBE request to the mobile nodes in its neighborhood when

needed.
26

e The neighboring nodes listens to such SUBSCRIBE request. If they also have such
feature, they store its information into their host list and reply with NOTIFY response
with its own host lists information.

Because in this thesis, we only propose to provide a basic middleware framework, we do not
discuss in detail the “Event” header, but only use the “presence” and “ leaving_SIP_network”

values of “Event” header for the purpose of managing a SIP meshed network.
2.4.3 The SUBSCRIBE method

In brief, when a SIP mobile User Agent wants to join an ad-hoc network, it generates a
SUBSCRIBE request and simply broadcasts it to search for the participating mobile nodes.
All existing SIP MNs should listen to a given port (5060, by default) and use it to receive the

SIP messages.

@ SIP Gateway Node
@ SIP Non-Gateway Node
(O Non-SIP Node

y

MN2 N SUBSCRIBE

Figure 2-4 Joining of a new node (MN®6) into a SIP meshed network
For example, as illustrated in Figure 2-4, when a SIP mobile User Agent (MN6) wants to join
the SIP overlay network, it simply broadcasts a SUBSCRIBE request to search for the nearest

participating mobile nodes with “Expire” header that includes the length of the valid

27

subscription.

The generated SUBSCRIBE request is shown in Figure 2-5. In the headers of SIP
SUBSCRIBE requests, a SIP request is routed according to its Request-URI. We use
“MN_user” here as a well-known parameter. The receivers of such request resolve it as a

request for the node information in the overlay network.

SUBSCRIBE sip:MN_user@example6.com SIP/2.0
Call-1D: 1537778812@exampleb.com

CSeq: 1537778812 SUBSCRIBE

From: <sip:S6@example6.com:5070>;tag=13433
To: <sip:MN_user@example6.com:5060>;tag=t1234
Via: SIP/2.0/UDP 132.205.46.227:5070;branch=29hG4bKc34225244c03edd0a7c90194¢738137f
Max-Forwards: 1

Expires: 3600

Event: presence

Require: ad_boc_list

Accept: application/cpim-pidf+xm}

Contact: <sip:S6@example6.com:5070>
Content-Type: application/adrl+xml

Content-Length: 0

Figure 2-5 An example of SUBSCRIBE request
A MN only needs to ask for the node information from the SIP MNs around it. Therefore,
“Max-Forwards” is set to 1, meaning this request is only for the one-hop neighbors. Other SIP
MNs’ information is obtained from the replied NOTIFY messages, as described later.
“Event” header specifies the type of event this SUBSCRIBE request subscribes to. Because
this request is used to join a SIP meshed network, “presence” is used in this case.
“Expires” header defines the duration of the subscription. For registering in a SIP meshed

network, default value “3600” is used.

28

MN7 MNS MN4 MN8
F1 SUBSCRIBE MNG6 wants to join
F2 200 OK ina MANET.
MNS8 is a non-gateway, it checks its
member list with that of its source
gateway to decide whether it should
Upon receiving set itself as a gateway.
NOTIFY d F3 NOTIFY
message from
MNS8, MN4 MNS8 informs
knows that MN8 F42000K MNG6 that MN8
has changed to F5 NOTIFY_d F5 NOTIFY d is the default
gateway node. =
source gateway
T F6 200 OK N F6 200 OK for MN6.
) F7 NOTIIFY_d F7NOTIFY_d . MN4 sends its
- fe—— > } NOTIFY_d
message back
F8 200 OK »le F8 200 OK to MNS.
—

Figure 2-6 Message sequence for peer discovery and gateway node decision

Figure 2-6 describes the sequence diagram for peer discovery and gateway node decision

process. Here, MN6 is the new MN that wants to join the network, while MN9, MNS8 and

MNT7 are the participating non-gateway nodes. MN8 receives the SUBSCRIBE request sent

by MN6. Thus no SIP response is sent back by any other nodes except MN8. Then MN8

compares its one-hop neighbors with those of MN4, which is MN8’s source gateway node.

Because MN8 and not MN4 is able to connect to MN6, MN8 assigns itself as a gateway node.

MNS then responds with NOTIFY message back to MN6. MNS informs its source gateway,

MN4, about that change by sending differential NOTIFY messages. The difference between

NOTIFY and differential NOTIFY messages will be discussed in the following sections.

After MNG6 joined the mesh network, MN8 becomes a gateway node. Thus there are two

clusters, as shown in Figure 2-7. According to clustering approach, MN8 will communicate

29

with MN7 via MN4.

@ SIP Gateway Node
@ SIP Non-Gateway Node
\\O Non-SIP Node

Figure 2-7 The network structure after MN6 joining

In our approach, each mobile node in the SIP meshed network contains a profile list of its
own information. It also contains host lists that include the information about other members
and active ALM groups of the network.

Participating nodes on receiving SUBSCRIBE requests store the new node’s information,
including the identity of the new node, in its SIP-Meshed Network Node List or
Non-Gateway Node Member List.

The SUBSCRIBE request is confirmed with a 200-class response to indicate that the
subscription has been accepted, and that a NOTIFY will be sent immediately. Non-200 class
responses indicate that no subscription or dialog has been created and no subsequent NOTIFY
message will be sent. We assume that all the MNs in the meshed network are willing to
participate fully in the protocols of the network; we do not focus on non-200 responses in our

study currently.

30

200-class responses to SUBSCRIBE requests will not generally contain any useful
information beyond subscription duration. It is obligatory for 200-class responses to
SUBSCRIBE requests contain an "Expires” header [32]. Their primary purpose is to serve as
a reliability mechanism. The "Expires” header in a 200-class response to SUBSCRIBE
indicates the actual duration for which the subscription will remain active (unless refreshed).
In our proposed network, the NOTIFY messages are important to let other MNs know its
status. In our framework, we decide that, unless the MN leaves the network, the NOTIFY

message will keep being sent out.

2.4.4 The NOTIFY method

As shown in Figure 2-6, upon receiving a SUBSCRIBE request, a participating MN responds
with a 200 OK message. The participating MN then immediately constructs and sends a
NOTIFY request to the subscriber.

Information about the available nodes, routing information and the active ALM group
information is included in the content of this NOTIFY message. This information will be used
to build multicast trees later. Upon receiving the NOTIFY message, the attached information
will be stored in the corresponding host lists. By doing so, the joining node, for example,
MNG6 in Figure 2-4, gets and stores other MNs’ information and becomes a member of the
virtual meshed, overlay network. The structure of generated NOTIFY request from MNS is
shown in Figure 2-8. <ProfileList> sector contains the information of the NOTIFY sender.

<HostList> sector contains all the nodes information in the mesh network.

31

NOTIFY sip:S6@example6.com:5070 SIP/2.0
Call-ID: 1537778812@example6.com

CSeq: 1537778812 NOTIFY

Max-Forwards: 1

Event: presence

Require: ad_hoc_list

Accept: application/cpim-pidf+xm]

Contact: <sip:S6@example6.com:5070>

To: <sip:S6@example6.com:5070>;tag=13433
From: <sip:S8@example8.com>;tag=f1222
Via: SIP/2.0/UDP 132.205.46.227;branch=29hG4bK0260c8e68ce8c5235c03b84dfd 1ce005
Content-Type: ad_hoc_list/adrl+xml
Content-Length: 783

<ProfileList>
<node uri="S8@example8.com” ip="10.20.20.8" gateway="S8@example8.com” Event-ID="pull"
GroupMembers="null" leader="false" changes="Y" time="null"/>

</ProfileList>

<HostList name = "S8@example8.com™

<node uri="S9@example9.com” gateway="false" Event-ID="pull" alive="true" changes="N"
from="S4@example4.com" hops="2" time="19:1:56.356"/>

<node uri="S6@example6.com” gateway="false" Event-ID="null" alive="true" changes="Y"
from="S6@example6.com” hops="1" time="19:2:5.372"/>

<node uri="87@example7.com” gateway="false" Event-ID="null" alive="true” changes="N"
from="87@example7.com" hops="1" time="19:1:56.841"/>

<node uri="S4@exampled.com” gateway="true" Event-ID="null" alive="true" changes="N"
from="S4@example4.com" hops="1" time="19:1:56.356"/>

</HostList>

Figure 2-8 An example of NOTIFY request from MN8 to MN6
It is said [32] that if all subsequent NOTIFY messages that correspond to the SUBSCRIBE
message contain the same "Call-ID", a "To" header "tag" parameter which matches the
"From" header "tag" parameter of the SUBSCRIBE, and the same "Event” header field, but
that do not match the dialog would be rejected with a 481 response. But because we use

NOTIFY message to find the neighbors’ information, we would like to know which MNs

32

respond to that SUBSCRIBE request. Thus, we use the responding MN’s URI, instead of the
predefined URI in the To/From field of the responding NOTIFY request.

The subscriber can expect to receive a NOTIFY message from each node that has processed a
successful subscription or subscription refresh. A NOTIFY does not terminate its
corresponding subscription; in other words, a single SUBSCRIBE request may trigger several
NOTIFY requests.

Once the notification is deemed acceptable to the subscriber, the subscriber returns a 200 OK
response to this NOTIFY message. Upon receiving such 200 OK message, the gateway node

knows that this receiver is still its one-hop neighbors in the meshed network.

NOTIFY sip:MN_user@example8.com SIP/2.0
Call-1D: 285530902@example8.com

CSeq: 285530902 NOTIFY

From: <sip:S8@example8.com>;tag=3433

To: <sip:S4@exampled.com>;tag=t1234

Via: SIP/2.0/UDP 132.205.46.227;branch=29hG4bK2a79df0{822766da5¢53d8d610c4df34
Max-Forwards: 1

Event: Presence

Require: ad_hoc_list

Accept: application/cpim-pidf+xml

Contact: <sip:S8@example8.com>
Content-Type: application/adrl+xml
Content-Length: 181

<HostList uri="S8@example8.com™
<node uwri="S6@example6.com" gateway="false” Event-ID="null” alive="true” changes=" "

from=""S6@example6.com” hops="1" time="19:2:5.716"/>
</HostList>

Figure 2-9 An example of NOTIFY _d request (when MNG6 joins the meshed network)
The periodic NOTIFY messages (called NOTIFY_d message in short) only contain the
differential host information. Ideally, in a stable network where the topology and membership

33

remain unchanged, only the first NOTIFY message needs to contain a content body with the
node information and all subsequent NOTIFY d messages would contain no body at all.
Reporting only the differences significantly reduces the message size. The example of

NOTIFY_d message from MNS is shown in Figure 2-9.

2.5 Leaving an overlay meshed network

Generally speaking, when a node wants to leave a SIP meshed network, it sends out a “leave”
message. The directly connected mobile nodes make the corresponding operations, in order to
adapt to the membership change and the network topology change.

In our framework, the periodic NOTIFY message is used as a secondary mechanism to detect
an absent peer. A SUBSCRIBE message with Expire equals to 0 is defined as the preferred
way for a MN to leave the network.

We explain the different scenarios for different leaving behaviors in Section 2.5.1 and Section

2.52.
2.5.1 Graceful leaving

When a .me;mber wants to leave a mesh gracefully, it notifies its neighbors and the information
is propagated to the rest of the mesh. In RFC 3265 [32], un-subscription is handled in the
same way as refreshing of a subscription, with the "Expires" header set to "0". A successful
un-subscription also triggers a final NOTIFY message with the “Subscription-state” set as
“terminated”. However in our case, this final NOTIFY message is not needed, since
un-subscription is only required when the mobile node tums off and shuts down the

application.
34

Thus in our framework, a natural way for a MN to leave the proposed network gracefully is a

SUBSCRIBE with the "Expires" of 0 to unsubscribe from the neighboring MNs.

MN3

@ SIP Gateway Node
e TTTTTS @ SIP Non-Gateway Node
N Non-SIP Node

~

NOTIFYd [SUBSCRIBE
with Expire:

N\,

A
SUBSCRIBE

Figure 2-10 Leaving of a mobile node (MN8) from a SIP meshed network

As shown in Figure 2-10, a MN that wants to leave an overlay meshed network sends out a
SUBSCRIBE request, with “Expire” equals to 0. It is a broadcast message sent from the
departing MN to its neighboring MNs. The MN is then removed from the host list of
neighboring nodes and is excluded from further forwarding computations. The departing MN
removes all information associated with the connections in the meshed network. MN6 now
needs to find its new gateway node.

Figure 2-11 shows an example of SUBSCRIBE request for a node leaving SIP meshed
network. The SUBSCRIBE request contains the “Event” field set as “leaving_SIP_network”
while the value of “Expires” set to “0”.

Figure 2-12 shows an example of propagating the information about MN8’s leaving, in this

case, to other remaining nodes. MN7, the receiver of the NOTIFY _d message, needs to delete

35

the record of MN6 and MN8 from its host list.

SUBSCRIBE sip:MN_user@example8.com SIP/2.0
Call-1D: 1141673825@example8.com

CSeq: 1141673825 SUBSCRIBE

From: <sip:S8@example8.com:5070>;tag=13433
To: <sip:MN_user@example8.com:5060>;tag=t1234
Via: SIP/2.0/UDP 132.205.46.227:5070;branch=z9hG4bK c9000b00d61397cf95198e43ea6135d0
Max-Forwards: 1

Require: ad_hoc_list

Accept: application/cpim-pidf+xm}

Contact: <sip:S8@example8.com:5070>
Content-Type: application/adri+xml

Event: leaving SIP_ Network

Expires: 0

Content-Length: 0

Figure 2-11 An example of SUBSCRIBE request for a node (MN8) leaving SIP meshed

network

NOTIFY sip:MN_user@example4.com SIP/2.0
Call-1D: 238268084@exampled.com

CSeq: 232112101 NOTIFY

From: <sip:S4@exampled4.com>;tag=13433
To: <sip:S7@example7.com>;tag=t1234

Via: SIP/2.0/UDP 132.205.46.227;branch=29hG4bK42¢9311878eca834326303480/b9b2a5
Max-Forwards: 1

Event: Presence

Require: ad_hoc_list

Accept: application/cpim-pidf+xmi

Contact: <sip:S4@example4.com>
Content-Type: application/adrl+xml
Content-Length: 329

<HostList uri="S4@example4.com™

<node uri="S6@example6.com” gateway="false" Event-ID="pull" alive="true changes=""Delete”
from="88@example8.com” hops="2" time="19:3:40.372"/>

<node uri="S8@example8.com” gateway="true" Event-ID="null" alive="true"” changes=""Delete"
from="S8@example8.com" hops="1" time="19:3:40.372"/>

</HostList>

Figure 2-12 An example of NOTIFY _d request (when MNS8 leaves the meshed network) from
MN4 to MN7
36

2.5.2 Detection of abrupt disconnection

An abrupt disconnection occurs when a MN moves out of the connection of any other node in
the network. This is detected through MNs monitoring each other’s status using a
ping-timeout mechanism. NOTIFY_d messages are sent periodically and receivers respond
with 200 OK messages. If a node in the host lists fails to send or respond NOTIFY_d
messages in a predetermined period, it is assumed to have left the network ungracefully. Then
the node will be removed from the host lists. It needs to broadcast the SUBSCRIBE request
again to restore the connection to the network.

If a SIP gateway node has not sent out NOTIFY d message or a SIP non-gateway node has
not responded to the periodic NOTIFY _d messages in a pre-defined period, the other nodes
consider the node as left. Thus the record is marked as “Delete”, the change is propagated in
the next NOTIFY_d message transmission, and finally the record is removed from its host

list.

2.6 Maintaining an overlay meshed network

When a mobile node is a SIP gateway node and it has members around, it will keep sending
NOTIFY differential messages to its one-hop neighbors periodically. All the network

topology changes are propagated in the content of NOTIFY_d message.

2.7 Summary

In this chapter we proposed a mechanism of using SIP SUBSCRIBE and NOTIFY requests to

create, maintain and leave a SIP meshed network in MANET. The detailed message formats

37

for SUBSCRIBE and NOTIFY messages are shown for MNs to join and leave the proposed

network. The idea of gateway nodes and non-gateway nodes is also introduced to reduce the

maintenance traffic. The following chapter will describe the mentioned host lists in detail.

38

Chapter 3 Node Information Management

3.1 Introduction

In an overlay network, node connectivity is mapped by a logical connective graph, and not by
a physical connective graph. The former is a sub-graph of the latter. Both graphs share the
same nodes, but the logical graph is missing some of the links, as illustrated in Figure 1-1.
Since there is no fixed infrastructure in MANET, all mobile nodes are required to compute,
maintain and store routing information [42]. A node’s location is distributed throughout the
network and maintained in nodes, which act as location servers for other nodes. A source node
uses this location information to forward packets to a destination node. Intermediate nodes
make local decisions to forward those packets.

To store the network and multicast group information, we propose the use of host lists in our
framework. To handle mobile node failures and a node leaving a group, these host lists are
refreshed periodically. The basic host lists in our approach are:

* The Profile List, which is used by every node in the meshed network for storing its
own information, such as, the group membership of the multicast groups it is in and
the connected source gateway;

e The Open Neighbor Set, which is used to store the information of other nodes in the
meshed network;

In our framework, each node maintains the routing information, and refreshes it at regular

39

intervals. Because of the low bandwidth, convergence to new, stable routes after dynamic
changes in MANET may be slow and expensive. For updating routing tables, each node
transmits control packets periodically, which constitute an inefficient use of network capacity.
To solve this problem, organizing members into hierarchies of clusters could achieve better
scaling properties. A concern with hierarchy-based approaches is that they complicate group
management, and need to rely on external nodes to simplify failure recovery [33]. Jie Wu [43]
proposed Dominating-Set-Based Routing to localize the routing information for adapting to
changes such as quick host movement. In this scheme, the Mobile Nodes (MN;.) are divided
as gateway nodes and non-gateway nodes. For gateway nodes, the SIP-Meshed Network
Node List is divided into the two following lists:
¢ The Non-Gateway Node Member List is used by hosts to store the information of its
members, which are the non-gateway nodes in its neighborhood, in the network;
e The Gateway Node Member List is used to store the information of other gateway
nodes in the network.

Host lists are explained in more details in the following section.

3.2 The Host Lists

We use an example of SIP-ALM graph. To make it simply, we re-draw Figure 2-7 as Figure
3-1, to describe the host lists. In this meshed network, MN4 and MN8 are working as gateway

nodes; MN6, MN7 and MN9 are working as non-gateway nodes.
3.2.1Profile List

The profile list is stored in every mobile node. It contains its own information and the
40

information of the attending multicast groups. It consists of information of active multicast

groups joined by this host. For example, the profile list of MNG6 is shown in Table 3-1:

® SIP Gateway Node
® SIP Non-Gateway Node
Non-SIP Node

Figure 3-1 An example of SIP-ALM graph

Table 3-1 MN6’s Profile List

Host Name (URI) IP Address Gateway Event Group Leader
-ID members

S6@example6.com 10.20.20.206 | S8@example8.com

Each SIP MN gains a SIP identity, which is a special type of Uniform Resource Identifier
(URI), called SIP URI, the “Host Name” field stores the MN’s SIP URI. “IP Address” may
also be used to address that MN.

If the MN is a gateway node, the MN’s host name will be filled into the “Gateway” field. If
not, the host name of its source gateway node will be stored in this field.

If the MN is an ALM group member, it will save the attending group’s identity in the
“Event-ID” field. The “Group members” field will list the host names of all the group
members in that group. The “Leader” field is marked as “N”, if the node is not the leader of

the ALM group. If the MN is the leader of an ALM group, in addition to saving the group’s

41

identity and its group members in the corresponding fields, it will mark “Y” in the “Leader”
field. If the MN does not attend any ALM group, the last three fields will be empty. We will

illustrate these three fields in Chapter 4.

3.2.2 Non-Gateway Nodes Lists

3.2.2.1 SIP-Meshed Network Node List

The SIP-Meshed Network Node List only exists in non-gateway nodes. It contains all the
mobile nodes information in the SIP-meshed network. The one saved in MNG6 is shown in

Table 3-2. It is created after receiving NOTIFY message from its source gateway, MN8.

Table 3-2 MN6’s SIP-Meshed Network Node List

Host Name (URI) From Gateway | Event-ID | Hops | Changes
S9@example9.com S8@example8.com N 3
S8@example8.com S8@example8.com Y 1
S4@exampled.com S8@example8.com Y 2
S7@example7.com S8@example8.com N 3

The “Event-1D” field is only filled for the record of the leader of that multicast group, instead
of marking it in all the group members. We will discuss it in detail in Chapter 4.

The neighbor information is updated periodically for its successful communications in
MANET. As we know, frequent topology change and dynamic group membership could lead
to substantial signaling overhead in maintaining such routing information. Except for the first
registration information, we only transfer the differential routing information in the periodical
NOTIFY_d messages in our approach. Thus we add the “Change” field to show whether a
change has been made in that record during the interval.

Generally, NOTIFY _d message is sent periodically. During the time, if there is any change in

that record, the Changes field will be set to “Y”’; and when that MN leaves the mesh, it will be
42

marked as “Delete”. So only the record with Changes field as “Y” or “Delete” will be sent out

in the next NOTIFY_d message.

3.2.3 Gateway Nodes Lists

3.2.3.1 Non-Gateway Node Member List

The Non-Gateway Node Member List is stored in gateway nodes only. It contains the
information of that gateway node’s members. It is the list of non-gateway nodes in its
neighborhood. For example, the Non-Gateway Node Member List s of MN4 and MNS§ are

shown in Table 3-3 and Table 3-4 respectively:

Table 3-3 Gateway MN4’s Non-Gateway Node Member List

Host Name (URI) From Event-ID Changes
S9@example9.com | S9@example9.com

S7T@example7.com | S7T@example7.com

Table 3-4 Gateway MN8’s Non-Gateway Node Member List

Host Name (URI) From Event-1D Changes
S6@example6.com | S6@example6.com

3.2.3.2 Gateway Node Member List

The Gateway Node Member List is also stored in gateway nodes. It contains the information

of other gateway nodes in the network. The Gateway Node Member List s of MN4 and MN8

are shown in Table 3-5 and 3-6:

Table 3-5 Gateway MN4’s Gateway Node Member List

Host Name (UR]) Members Event-ID | Changes
S8@example8.com | S6@example6.com

In the next section, we discuss how these host lists are used to compute, maintain and store

routing information in the meshed network.

43

Table 3-6 Gateway MNS8’s Gateway Node Member List

Host Name (URI) Members Event-ID | Changes
S4@exampled.com | ST@example7.com
S9@example9.com

3.3 Membership Management

It is important to keep the routing information updated in MANET. A location update
mechanism is required to exchange host information within a group of nodes. At the same
time, the location updates also serve as group membership refreshments to detect dead or
unreachable nodes. A node will be excluded from a source node’s destination list when its
membership is not refreshed over a certain time period [44].

A hybrid approach to location/membership update may be used, which includes in-band
update and periodic update. In-band update takes place when a node has data packets to send.
Consequently, other members of the multicast group will learn the sender’s location. Periodic
update kicks in when a node has no data packets to send for an extended period of time. In
that case it has to send out a special null packet to inform other nodes of its current location
[44]. Since other nodes use the host list information to construct the packet distribution tree,
up-to-date host list information will improve the optimality of the trees. We only discuss
signaling part in this thesis, therefore we only describe periodic update here.

As our middleware framework is divided as overlay meshed network construction and
multicast routing, we next describe the network membership management in Section 3.3.1.

The multicast membership management will be discussed in Chapter 4.

44

3.3.1 Network Membership Management

As we mentioned earlier, in our meshed network, there are two kinds of mobile nodes:
gateway nodes and non-gateway nodes. Different type of nodes contains different host lists.
The idea is, to reduce the burden of gathering and maintaining routing information. In our
framework, it leads to a more efficient use that only a subset of nodes sends the periodic
beacon message to keep the node information updated. These nodes in this subset act as
gateway nodes, which are used for routing by the rest of the nodes not in this subset [45].
Generally, if a meshed network member receives a SUBSCRIBE message from a new
neighbor, the node information is added to the SIP-Meshed Network Node List (for
non-gateway nodes) or the Non-Gateway Node Member List (for gateway nodes).

It is then decided whether its status of gateway nodes or non-gateway nodes should be
changed. In our framework, only gateway nodes send NOTIFY _d messages periodically. Its
members will use the 200 OK messages (which is mandatory in SIP for SIP requests) as its
“Alive” messages.

New node receives a copy of the existing host information for the SIP-Meshed Network Node
List (for non-gateway nodes) or the Non-Gateway Node Member List (for gateway nodes) via
the NOTIFY message. After that, it will get updated node inforamtion from its source
gateway by NOTIFY d message.

In our approach, every node in the meshed network is gateway node initially. After receiving
NOTIFY message, the new node changes its status to Non-gateway. After receiving a SIP

SUBSCRIBE message from a MN that wants to join the mesh, the receiving node adds the

45

sending MN into its neighbor list. If the receiving node is a non-gateway node as illustrated in
Figure 2-6, a Gateway Node Decision process is triggered. It compares its SIP-Meshed
Network Node List (including all the 1-hop neighboring nodes) with that in its own gateway
node. If there exist two unconnected neighbors, the node designates itself as a gateway node.
Otherwise, it changes itself to a non-gateway node. The decision is made each time a MN
joins or leaves the mesh.

A soft state approach is used to maintain the overlay network membership and associated
routes. Thus, the host lists are refreshed from time to time to maintain up-to-date membership
information by sending and receiving the differential routing information periodically to the
surrounding peers and its members. This is done by periodically sending the SIP NOTIFY d

message with differential routing information out to neighbors.

3.4 Summary

In this chapter, we introduce the host lists used in our framework. Besides Profile List,
non-gateway nodes also contain Open Neighbor Set, which stores all the nodes in the meshed
network. For gateway nodes, the SIP-Meshed Network Node Listis divided into Gateway
Node Member List and Non-Gateway Node Member List . The management of the network
membership is also introduced here.

The following chapter will focus on the issues about creating and maintaining Application

Layer Multicast group in MANET.

46

Chapter 4 ALM Group Management

4.1 Introduction

Through the combination of wireless communication ability and mobile devices, applications
of self-organizing, infrastructure-free, mobile networks are being developed in many domains:
educational, industrial, commercial and military. The most characteristic operation in these
domains is multicast, where messages are sent from one node to multiple recipients [46].
Because a Mobile Ad Hoc network (MANET) is a collection of nodes forming a temporary
network without the aid of any centralized administration, where each node communicates
over wireless channels, moves freely and may join and leave the network at any time,
full-meshed multicast groups are more suitable for providing reliable multicast data transfer.
In full-meshed multicast groups, each participant has a signaling connection with all other
participants.

SIP-ALM takes the centralized control approach to maintain the consistency and efficiency of
multicast groups. This design choice is made for admission control and reduced overhead
when a new member joins the ALM group. Thus, there is a leader for each group who is
responsible for the maintenance of the group and the reception of new joining participants.
The leader also sends the list of participants to all group members when there is any change in

the ALM group.

47

The function of multicast routing is subdivided into the following [47]:
e To build multicast trees and perform routing;
e To communicate with neighbors on the overlay network;

e To store and manage the information of neighbors.

MN_x : MN_y
Send INVITE Receive INVITE

Message Message
—
s
o v
]
g Send 200 OK
O back
=
-
<
[=
o : Forward the
o L | Received INVITE
© message
£

Cobect 200 OKs
—
[a)
=
[= %
=3
8 Receive
R NOTIFY_g
= message
-
<C
g Store the
[} Group
© Information
e
v.-------- ------ r-----.----.---------..---.-.
o Receive BYE Send BYE
g message message
| =
(O]
=
-4
< -
[Remove the f Remove the
© MN from Group Group
G>> Member List Information
5]
]
\—’/.-----.-----..-.---------.-------------.----

Figure 4-1 The flow chart of the management in an ALM group

48

As shown in Figure 4-1, in our proposal, the brief procedures of creating and maintaining an

ALM group are:

A MN multicasts an INVITE request to the known SIP MNs.

In the headers of the INVITE request, a new field “Event-1D” is added to identify the
ALM group it is initiating.

If other SIP MNs in the MANET want to join the group, 200 OK response will be
sent back, and the INVITE request will be forwarded to its neighbors. Otherwise, a
MN only works as a router to forward such request.

Upon collecting 200 OK response within a certain period, the leader will generate and
send a NOTIFY message with the information of all the group members to its
members.

Such NOTIFY message is sent only when the group membership is changed, that is, a
MN joins or leaves the group.

If a MN wants to leave an ALM group, it will multicast a BYE message to all the
group members.

The abrupt disconnection of a MN is detected on the meshed network layer, whenever
a group member notices some group member has left the network without notice, it

multicasts the membership change to all the group members.

The leader of an ALM group is the MN that initiates the ALM group formation or another

MN that replaces the initiator in case of the original one disconnected. To distinguish ALM

groups, a Group-ID is assigned to each ALM group, when an initiation message is

49

constructed.

‘We explain the above procedures in more details in the following sections.

4.2 Initiating an ALM group

4.2.1 The INVITE and NOTIFY messages

When a meshed network member wants to initiate an ALM group, the MN needs to send an
INVITE request to the MNs in the virtual, meshed MANET. It becomes the leader of the
ALM group. Its function includes admission control for group members and to maintain the
group membership. The initiated INVITE request asks each accepting MN to establish a
multicast session.

In our framework, the initiating node has the knowledge of the network topology; hence to
prevent flooding of messages in mobile ad-hoc network, it decides the multicast routes of
transferring control messages based on the meshed network topology. That is, when a MN
wants to send some data to multiple MNs, it finds the routes from the information in its host
lists. If the source is a non-gateway node, it will send the multicast data to its 1-hop neighbors
and its source gateway node. The gateway node will check its own host list and forwards the
data to its neighbors and its gateway nodes. The process continues until data is reached to all
the destinations.

For example, as shown in Figure 4-2, MN4 multicasts the INVITE request to initiate a
multicast group to all the members in its host lists (MN6, MN7, MN8 and MN9, in this case).
Because MN7, MN8 and MN9 are one-hop neighbor nodes of MN4, so MN4 sends out three

copies of INVITE request. MN6 will receive the forwarded INVITE request from MNS.
50

MN3

@ SIP Gateway Node
@ SIP Non-Gateway Node
O Non-SIPNode

INVITE

MNé6

(@]

MN2
S MN7
0

Figure 4-2 MN4 initiates an ALM group

INVITE sip:S4group@sip.manet.example4.com SIP/2.0
CSeq: 33 INVITE
From: <sip:S4@example4.com:5070> ;tag=13433

To: <sip:S4group@sip.manet.exampled.com:5060>;tag=11234

Via: SIP/2.0/UDP 132.205.46.231:5070;branch=29hG4bKb6a85a70b229aa4601068a43bal2937f
Max-Forwards: 70

Contact: <sip:S4@exampled.com:5070>

Forward-To: S8@example8.com S6@example6.com

Event-1D: 839872666@exampled.com IM

Call-ID: 839872666@exampled.com

Content-Length: 0

Figure 4-3 An example of INVITE request
The generated INVITE request to MN8 is shown in Fig 4-3. The Request-URI field is
constructed using the predefined part: “group@sip.manet”. For example,
“S4group@sip.manet.exampled.com” shows that this INVITE request is an ALM initiation
request sent from MN4. When a MN receives an INVITE request with this kind of
Request-URI, it deduces that this request is a multicast group initiation message and is for

every MN in the network. If the MN wants to accept this request, it will reply 200 OK back to

51

the originator of this request. If there are other SIP URIs in Forward-To field, then it will add
its URI in the Record-Route [17] field and forward this message to other nodes, which are
listed in the Forward-To field. If it does not want to accept the request, it only forwards this
message to other listed nodes and also adds its URI in the Record-Route field. Forward-To
field [47] will be discussed shortly.

The main tasks of signaling (that is SIP in this case) are initiation, maintenance and
termination of the communication. Signaling information is usually distributed to all
participants in a multiparty communication. Because of its size, SIP signaling information
should be distributed in the most efficient way.

A multi-recipient request [48] is proposed to contain SIP URIs of each request recipient in the
message headers. The request is sent over unicast in Overlay Multicast network and do not
require any support on the network layer, but only on the application layer.

The “Forward-To” header is proposed as a multi-recipient request for multicasting SIP
messages to many recipients. In “Forward-To” header, the SIP URIs of all the recipients are
listed. If the request for some of the SIP URIs should be routed to the same next hop server,
the reciueét is sent as a multi-recipient request with corresponding SIP URIs in the
“Forward-To” header field. Thus on the same connection between two MNs, the same
messages only traverse once. The signaling traffic would be reduced.

Thus, when a MN is asked to send a message to MN addresses, it looks in its local host lists
to see if it has routes to those MNs. That is, when a MN receives a message, the detailed
process is the following:

e Perform a host list lookup to determine the next hop for each of the destinations listed
52

in the header of the message.

e Partition the set of destinations based on their next hops.

e Replicate the packet so that there is one copy of the message for each of the next
hops.

* Modify the list of destinations in each of the copies so that the list in the copy for a
given next hop includes just the destinations that ought to be routed through that next
hop.

e Send the modified copies of the message to the next hops.

The route is ordered from the next hop to the final destination MN. Because the routing
information may become obsolete at any point, in order to complete the message delivery, the
route discovery is done hop-by-hop. That is, each router checks its own host list to find the
next hops for the destination peers and if the message is received by one destination peer, the
address will be removed from the messages’ destination list. Because the messages will go
along the multicast tree and be checked at each hop, there should be no loop and recurrent
messages generated. In the example shown in Figure 4-3, because the communication from
MN4 to MN6 is via MN8 and MN8 belongs to the same route, the Forward-To header is:
Forward-To: S8@example8.com S6@example6.com.

In this case, upon receiving the INVITE message, MN8 modifies the Forward-To field and
forwards the message. As shown in Figure 4-4, each forwarded INVITE request also contains
a record in the “Record-Route” field listing the address of each intermediate node through
which this particular copy of the INVITE message has been forwarded.

When a node receives the INVITE message and wants to join, it returns a 200 OK message to
53

the initiator of the ALM group using the route listing in the Record-Route; when the initiator
receives this 200 OK message, it caches this host in its profile list to be used in sending

subsequent packets to this destination.

INVITE sip:S4group@sip.manet.example4.com SIP/2.0

CSeq: 33 INVITE

From: <sip:S4@example4.com:5070> ;tag=13433

To: <sip:S4group@sip.manet.example4.com:5060>;tag=t1234
Via: SIP/2.0/UDP 132.205.46.231:5070;branch=29hG4bK13dc0102¢05c5311e81817c49d00e25e
Contact: <sip:S4@exampled.com:5070>

Event-ID: 839872666@example4.com IM

Call-ID: 839872666@example4.com

Record-Route: <sip:S8@example8.com:5600>
Max-Forwards: 69

Forward-To: S6@example6.com

Content-Length: 0

Figure 4-4 An example of forwarded INVITE request (by MN8)

In addition, this receiving node appends its own address to the route record in the INVITE
message and propagates it by transmitting it as a local multicast packet (with the same
Call-ID).

For the headers of the INVITE request we propose to add a new field called “Event-ID”. This
field contains the identity of the init.iating ALM group for which this MN is the leader. The
“Event-ID” represents an ALM multicast group assigned upon creation.

Because there is no centralized administration in MANET, it is not possible to acquire some
assigned distinguished Event-ID from some certain server. Since the Call-ID of the SIP
requests in SIP sessions is generally unique, in our approach, we use the Call-ID of the first

INVITE request and the provided service type to construct the value in Event-1D field. For

54

the example shown in Figure 4-3, the Event-ID is: “839872666@example4.com IM”, where
“839872666@exampled.com” is the Call-ID of the INVITE request sent by
S4@exampled.com to initiate an ALM group; “IM” is the service name provided by that
group. The Event-ID value is used for routing group control messages and is used by MNs for

sending “Join” requests. We will describe this more shortly.
4.2.2 Maintaining Group Membership

Membership of an ALM group is dynamic over the lifetime of a group due to processes
joining, leaving, failing or disconnecting. All the group members are responsible for tracking
the changes to the group and reporting these changes to the members of the group. It is done
by sending NOTIFY_g message with a list of the current members of the group to the
members of the group.

To make the multicast groups in MANET robust and efficient, group members create
multicast trees over unicast tunnels [14]. Each node is aware of its group neighbors and
forwards data on the tree links to its neighbors.

When there are changes in ALM group membership, the group member, which notices them,
sends a NOTIFY g message to all the group members. Therefore all the group members keep
the updated group information about that group. The initiator of an ALM group waits for a
certain time to collect the 200 OK messages. It stores the names of the MNs, which responded
with 200 OK messages, as the multicast group members. When the timer is up, the group
leader sends a NOTIFY g message (the Event header is set as: “ALM Group Membership”.)

with the group member list to all the group members. By now, an Application Layer Multicast

55

group is set up. An example of NOTIFY _g message is shown in Figure 4-5.

NOTIFY sip:ALMGroupMembers@example4.com SIP/2.0
Call-ID: 839872666@example4.com

CSeq: 41 NOTIFY

From: <sip:S4@exampled.com>;tag=£3433

To: <sip:ALMGroupMembers@example4.com>;tag=t1234
Via: SIP/2.0/UDP 132.205.46.231;branch=29hG4bKcl ecaed fc55a1 630a497bbe3cectbaTl
Max-Forwards: 70

Require: ad_hoc_list

Accept: application/cpim-pidf+xml

Contact: <sip:S4@exampled.com>

Forward-To: S8@example8.com S6@example6.com
Content-Type: application/adri+xml

Event-ID: 839872666@example4.com IM

Content-Length: 175

<GroupMembers Event-ID="839872666@exampled4.com IM">
<member=S6@example6.com/>
<member=S4@example4.com/>
<member=S8@example8.com>
<member=S9@example9.com>

</GroupMembers>

Figure 4-5 An example of NOTIFY_g request

4.2.3 Node information about ALM group

As we mentioned in Chapter 3, there are some fields in host lists about ALM group

information. Below we use the example of Figure 4-2 to describe them. Here we assume that

MN6, MN8 and MN9 accepted to join that ALM group. If any SIP node does not accept to

join a group, it acts as a forwarding node that forwards messages to its neighbors.

The examples of Profile List are shown in Tables 4-1 and 4-2. Because they are in the ALM

group, 839872666@example4.com IM is filled into the Event-1D field and it lists all the group

members in the Group Members Field. MN4 is the leader of ALM group, so its Leader field is

56

“Y”. The Leader field of MNG6 is “N” instead.

Table 4-1 MN4’s Profile List

Host Name (URI) IP Gateway Event-ID Leader Group members
Address
S4@exampled.com 10.20.20.4 S4@exampled.com 839872666@exampled.com Y S6@example6.com
™M S8@example8.com
S4@exampled.com
S9@example9.com
Table 4-2 MN6’s Profile List
Host Name (URI) Ip Gateway Event-ID Leader Group members
Address
S6@example6.com | 10.20.20.6 S8@example8.com 839872666@exampled.com N S6@example6.com
™M S8@example8.com
S4@exampled.com
S9@example9.com

The “Event-ID” field is only filled for the records of the leaders of multicast groups, instead

of marking it to all the group members. Therefore, the Non-Gateway Node Member List

(shown in Table 4-3), and the Gateway Node Member List (shown in Table 4-4) do not have

Event-ID field marked. MN6’s SIP-Meshed Network Node List (shown in Table 4-5) has a

value in Event-ID field for MN4 record.

Table 4-3 MN4’s Non-Gateway Node Member List

Host Name (URI) From Event-ID Changes
S9@example9.com S9@example9.com
S7@example7.com S7@example7.com
Table 4-4 MN4’s Gateway Node Member List
Host Name (URI) Members Event-1D * Changes
S8@example8.com S6@example6.com N

Table 4-5 MN6’s SIP-Meshed Network Node List

Host Name (URI) From Gateway Event-ID Hops | Changes
S9@example9.com S8@example8.com N 3
S8@example8.com S8@example8.com Y 1
S4@exampled.com S8@example8.com Y 839872666@exampled.com IM 2
S7@example7.com S8@example8.com N 3

A MN may obtain the list of the active ALM groups (identified by Event-IDs and the leaders

of the groups in the record) from the periodic NOTIFY _d message. The leader of each group

is responsible for admission maintaining the growp membership. The leader is also

responsible for updating the list of group members upon any change in membership.

4.3Joining an ALM group

When a SIP MN wants to join an ALM group, it checks its host lists for the active group

information. Because it has the information of ALM group leaders, it knows where to send the

“Join” request.

MN3

SIP Gateway Node &
ALM group member

SIP Non-Gateway Node

Non-SIP Node

SIP Gateway Node

& ALM group leader
SIP Non-Gateway Node
& ALM group member

NOTIFY g

o ®8O0 @ D

INVITE with
oin header

Figure 4-6 MN7 wants to join into an existing ALM group
For example, MN7 wants to join an ongoing ALM group, as shown in Fig. 4-6. MN7 sends an
INVITE message with Join parameter to the leader of that ALM group, MN4 in this case. The
header of INVITE includes the “Join” header [49] with the value of “Event-ID”, which is the
ALM group identity that the MN wishes to join.
The “Join” header was proposed for logically joining an existing SIP dialog with a new SIP

dialog. This is especially useful in peer-to-peer call control environments. The “Join” header

58

contains information used to match an existing SIP dialog (call-id, to-tag, and from-tag). Here,
because we use the value of “Event-1D” to describe different ALM groups, we put the value
of Event-ID in the header. For the example as illustrated in Figure 4-7, the header of INVITE
contains the identity of the ALM group that the MN wishes to join (as: Join:
839872666@exampled.com IM, where “ 839872666@example4.com IM” is the Group ID of

that active ALM group.

INVITE sip:S4@example4.com SIP/2.0

Call-ID: 2084073988@example7.com

CSeq: 48 INVITE

From: <sip:S7@example7.com:5070> ;tag=f3433

Via: SIP/2.0/UDP 132.205.46.231:5070;branch=29hG4bKcfef3a841608b21¢008f4af27¢f9342a

Max-Forwards: 70

Contact: <sip:S7@example7.com:5070>

To: <sip:S4@example4.com:5060>;tag=11234

Join: 839872666@example4.com IM

Content-Length: 0

Figure 4-7 An example of INVITE request with a “Join” header

Because the ALM group leader is responsible for the admission control, the INVITE request
with a Join header is addressed to be sent to that group leader. The Request-URI is addressed
to S4@exampled.com for this example.
Upon receiving an INVITE with a Join header, the leader MN attempts to match this
information with a confirmed or early ALM group. If there is some control policy, the leader
also will check whether the request should be accepted. The leader in this case sends a

NOTIFY_g message as shown in Figure 4-8 to all the group members in that group including

the new group member. Otherwise if the request is not accepted, the leader rejects the

59

INVITE and returns a 481 Call/Transaction Does Not Exist response.

NOTIFY sip:ALMGroupMembers@exampled.com SIP/2.0
Call-1D: 839872666@exampled.com

CSeq: 50 NOTIFY

From: <sip:S4@example4.com>;tag={3433

To: <sip:ALMGroupMembers@example4.com>;tag=11234
Via: SIP/2.0/UDP 132.205.46.231;branch=z9hG4bK 8{12461384580add94b7979bad32d1f4
Max-Forwards: 70

Event: ALM Group Membership

Require: ad_hoc_list

Accept: application/cpim-pidf+xml

Contact: <sip:S4@exampled.com>

Forward-To: S9@example9.com

Content-Type: application/adri+xml

Event-ID: 839872666@example4.com IM

Content-Length: 202

<GroupMembers Event-ID="839872666@exampled4.com IM™>
<member=S6@example6.com/>
<member=S4@exampled.com>
<member=S8@example8.com/>
<member=S7@example7.com/>
<member=S9@example9.com/>

</GroupMembers>

Figure 4-8 An example of NOTIFY_ g request after a Join, sent to ALM group members

4.4 Leaving an ALM group

As SIP MNs in meshed network, an ALM group member may also leave the group gracefully

or abruptly. We will discuss these two cases in the following sections.

4.4.1 Leaving an ALM group gracefully

In our framework, a MN that wants to leave an ALM group sends 2a BYE message via its

gateway node to all the other group members in that group. Upon the reception of this

message, all the MNs remove it from the Group Members field in its Profile List.

60

For example, when MN9 wants to leave the multicast group, it constructs a BYE request and
sends it to all the members of that ALM group. The generated BYE request is shown in Figure

4-9.

BYE sip:ALMGroupMembers@example4.com SIP/2.0

Call-ID: 839872666@example4.com

CSegq: 61 BYE

From: <sip:S9@example9.com:5070>:tag=t1234

To: <sip:ALMGroupMembers@example4.com>;tag=f3433

Via: SIP/2.0/UDP 132.205.46.231:5070;branch=29hG4bK1b05d7f093927a8273bbb6dcfcd4946
Max-Forwards: 70

Contact: <sip:S9@example9.com:5070>

Forward-To: S4@exampled.com S6@example6.com S8@example8.com S7@example].com

Event-ID: 839872666@example4.com IM
Content-Length: 0

Figure 4-9 An example of BYE request

Here “ALMGroupMembers@example4.com” demonstrates that this BYE request is for
members of ALM groups. Since the sender of this request knows all the group members, it
will construct BYE requests to all listed group members. “S4@exampled.com”,
“S7@example7.com”, “S6@example6.com” and “S8@example8.com” which are listed in the
“Forward-To” header, are all the other members of the ALM group
“839872666@exampled.com IM”, which the MN wants to leave.
Upon receiving the BYE message, a MN performs the following steps:
e [t analyses the Request-URI first. Because it is a BYE message, it checks the SIP URI
list in the Forward-To field.
e If it is one of the recipients, it removes its own SIP URI from the list in the
“Forward-To” header and modifies its profile list accordingly.

e The MN then checks its host lists to decide the next hops for forwarding such

61

message. The message to the same SIP URIs will be sent only once using the
multicast recipient SIP extension. Each copy has a different Forward-To header field
depending on the recipients that are accessible to that MN.
Figure 4-10 displays the forwarded BYE request from MN4 to MN8 and MN6. MN4
generates another BYE request to MN7.

BYE sip:ALMGroupMembers@example4.com SIP/2.0
Call-ID: 839872666@exampled.com

CSeq: 61 BYE

From: <sip:S9@example9.com:5070>tag=t1234

To: <sipzALMGroupMembers@example4.com>;tag=3433
Via: SIP/2.0/UDP 132.205.46.231:5070;branch=2z9hG 4bK 1b05d7/0939f27a8273bbbbdcfcd4946
Contact: <sip:S9@example9.com:5070>

Event-1D: 839872666@example4.com IM

Record-Route: <sip:S4¢@example4.com:5600>
Max-Forwards: 69

Forward-To: S8@example8.com S6@example6.com
Content-Length: 0

Figure 4-10 An example of forwarded BYE request

Therefore, all the group members know the membership changes by receiving and processing

received BYE requests.

4.4.2 Leaving an ALM group abruptly

It is also possible that a MN is disconnected without sending a BYE message, that is, it moves
out of the connection with other nodes, or the wireless link of that MN is broken down. Under
these situations, the participants in that MANET do not receive any NOTIFY d or 200 OK
messages from that MN. After a given amount of time, they assume that MN has left the mesh
and mark its record as “Delete”. For gateway nodes, after sending NOTIFY_d message, the

MN’s record is removed from the gateway nodes’ host lists. The non-gateway nodes will
62

remove the record when reading it.

When an ALM group member receives the updated information, it checks whether the MNs
marked as “delete” is a member of the ALM groups it is in. If the result is yes, it will send the
information in a NOTIFY message to all other group members immediately. So other group
members can remove it from their member lists. If no, only the normal operations are needed
in the mesh part.

If a MN detects a connection failure, the detecting MN will try to connect to another route
based on its host lists. If it loses the connection with other MNs totally, it will re-send
SUBSCRIBE request to get the network information first. Then it re-joins the ongoing ALM

groups and so on.

4.5 Routing in ALM

A basic design aspect, in supporting the delivery of multicast traffic to mobile nodes, is
identifying the node to join the multicast tree associated with the requested group.

Due to the underlying mesh, there is no need for frequent tree readjustments, thus providing
robustness in a high mobility environment. Per-group trees are embedded in the overlay mesh,
and are formed as the union of the overlay routes from the group members to the root of the
tree. Group trees can be used to multicast messages to the group by checking the route
hop-by-hop to its destination. The multicast transfer could achieve low delay and introduces
low link and node stress [50].

The proactive table-based routing schemes require each of the nodes in the network to

maintain host lists to store the routing information, which is used to determine the next hop

63

for the packet transmission to reach the destination. Our framework attempts to maintain the
table information consistent by transmitting periodical updates throughout the network.
When a source sends out control information, it is forwarded hop-by-hop from the source to
the rest of the multicast group via unicast routing. This packet forwarding process is
guaranteed loop-less because a destination address will be taken out of the list whenever the
packet has reached the destination, therefore, it will not go back to that node again.
We choose to construct the multicast tree hop-by-hop due to the following reasons:
e It allows the intermediate nodes to utilize the latest location information of the
destination nodes in computing the tree;
e By caching a previously computed tree, the computation will not be duplicated when
the locations of the nodes have not changed between data packets.
When a MN receives a message, it checks its destination list. If this MN is one of the
destinations, it will store the message for further processing. Then remove itself from the
destination list and forwards the message to next hop according to the routing information in
its host lists.
Routing together with gathering and maintaining routing information poses a heavy burden on
the mobile devices. The Dominating Set Based Routing [51], where only gateway nodes need
to keep routing information, and the non-gateway node is adjacent to at least one gateway

node, is used to improve the performance.

4.6 Summary

In this chapter we propose a mechanism of using SIP INVITE, BYE and NOTIFY g requests

64

to initiate, maintain and leave a SIP ALM group in MANET. The detailed message formats
for INVITE, BYE and NOTIFY_g messages are illustrated here. The two new headers:
Forward-To and Event-ID, are also introduced to reduce the maintenance traffic and describe
ALM groups. The following chapter describes the simulation and verification of our proposed

system.

65

Chapter 5 Simulation and Verification

5.1 Introduction

The SIP-ALM framework is motivated by the need to support group communication among a
small group of hosts without relying on the IP multicast model. In this scheme, participants of
a multicast group are connected via virtual multicast routes, i.e. routes that consist of unicast
connections between end hosts. Each device installs a SIP-ALM application that facilitates
human interaction to initiate and manage multicast group membership.

We implement our framework as a proof of concept. Thus we can demonstrate the basic
functions of the system and can verify the integrity of the system. The program of verifying
our SIP-ALM framework is entirely relying on Java technology. The SIP part of the
implementation is using Java SIP Toolkit (implementing JAIN SIP API 1.1 specifications
[52]). The other components are coming from the Java domain. In this chapter, we discuss

some detailed information about the simulation and verification of our framework.
5.1.1 JAIN SIP

We selected Java because of its inherent portability to all the machines and the extensive offer
of packages, though the executable code is slower than what can be achieved by coding in C.
The Java language has been introduced by Sun Microsystems in 1995 with the purpose of

deploying dynamic content into web pages. The main idea was that of creating web pages that

66

not only contained static text and images, but also dynamic multimedia (video and animations)
supported by interactivity. Java has then extended its application to web server programming

and to software targeted for consume electronics (cell phones, PDAs, etc.). Java is a C/C++

based language.

The JAIN SIP APIs specifications have been proposed by Sun Microsystems to define the

entire set of Java interfaces for the SIP protocol. It provides an application layer interface for

sessions that use the SIP protocol for control signaling. The JAIN SIP architecture is shown in

Fig 5-1. The main elements are:

Stack

Network

Figure 5-1 JAIN SIP Architecture [53]

e JAIN SIP Stack: this interface defines the entry point to accept SIP requests from
lower network layers;

e JAIN Listening Point: a Java representation of the port that a SipProvider messaging
entity uses to send and receive messages. A SipProvider as a message entity may only
have a single Listening Point.

e JAIN SIP Provider: it is the entity which routes the input events towards the

appropriate JAIN SIP Listeners;

67

e JAIN SIP Events: the SIP messages are encapsulated as object events and relayed
from the SIP Provider towards the SIP Listener.
e JAIN SIP Listener: it is the entity that develops the application and manipulates
directly the events sent to the JAIN SIP Provider;
JAIN SIP is based on the SIP Factory model. It means that the introduction of an element
allows calling any proprietary implementation of the JAIN interfaces. This architecture
permits any application to obtain a proprietary JAIN SIP object, which refers to a particular
software implementation, by setting the appropriate implementation path.
The reference model is reported in Fig.5-2. Our simulation works mainly in the Setup

Function part.

Network

Figure 5-2 Creation of a JAIN SIP object [54]

5.2 Simulated System Architecture

As shown in Figure 5-3, the proposed SIP-ALM architecture is comprised of two layers: SIP
Mesh layer and ALM Group layer. The SIP Mesh layer has functionalities of registering to
other MNs and accepting registration. It also maintains the membership of SIP meshed

network and keeps the routing information updated.

68

GUT and High-Level Application Logic]

[EIP Mesﬂ [ﬁLM Grou;I

SIP-ALM Middleware

SIP stack

Java Runtime

Figure 5-3 SIP-ALM Architecture

The ALM Group layer is primarily responsible for providing a totally ordered multicast to the
upper layers based on simple send and receive operations to and from the underlying network.
As displayed in Figure 5-4, ALM Group Layer obtains the basic routing information from SIP
Mesh Layer. The creation of ALM groups is used to support the applications/services on the

upper layer. The same layer exchanges information with other peers.

Applications/Services
send receive send receive
ALM Group ALM Group
send receive send receive
SIP Mesh > SIP Mesh
send receive send receive

Underlying Network (Ad-Hoc Network)

Figure 5-4 SIP-ALM Structure

In our application simulation, we have the following packages:
e userlnterface: handles all the user interface, window, screens.

e debug: contains a class DebugUstilities to print out all the execution result in a log file.

69

e control: contains the class of calling the classes to execute SIP requests and responses;
control the operations of writing to and reading out from the memory.

* sipSessions: contains the classes of creating and processing SIP messages used in our
framework, such as INVITE, NOTIFY, SUBSCRIBE and BYE requests.

¢ nodeMag: handles different data structures to store the node information, and the
operations to execute on those data structures.

Next, we explain some primary classes, as shown in Figure 5-5, in the following sections.

5.2.1 The MNScreen class

The MNScreen class is the main class of our SIP-ALM simulation. When activating this class,
a window will be popped up. It provides the user-friendly interface for the users. Users select
a name for the simulation file to start the verification. It is also possible to check the MN

information here. It is the starting point of our simulation.

L MNSecreen

[j L‘m—] L“—q

input the name of
{ Simulation File

: ’L:’“ead the initial node
U -information and action
+lists into the memory
Start to execute tine action lists
l Read the node inft i)

+ and action lists out

] initialize the SIP confiuration
' and send the command for the
i corresponding operatigns

e

Figure 5-5 UML sequence diagram of starting operations

70

5.2.2 The NodeVector class

The NodeVector class is called for parsing input files, which are in XML format, and saving
the information into the different data structures in the memory. It is also called for reading or
storing the node information from/to the memory. Because we assume that our middleware
would be installed on mobile devices, to use vector, instead of databases, for handling the
routing information in the memory should reduce the valuable storage place and some
processing time for mobile nodes. It is for meeting the need to limit class instances on a
poorly performing environment such as a PDA.

The singleton pattern has been chosen for this class. The factors that led to this design are the
need of a single point of access to the host information in the vector for the integrity of the
information. When the constructor is called at the beginning, the object is already built. After

that, the same instance is always returned for manipulating.
5.2.3 The MNSession class

The MNSession class is another primary class of our implementation. It is used to create the
SIP object, just as shown in Figure 5-2. The MNSession is the connecting point between the
High Level API and the SIP Stack. The Provider/Listener model, as shown in Figure 5-1, is
used for sending/receiving of the SIP requests/responses. The MNSession class provides a
path for user to execute the service operations via SIP protocol. Each SIP request must be sent
through an instance of this class. Operation commands are coming from the DoActions class,
which executes the action lists in the simulation files.

By analyzing the operation commands, MNSession triggers the corresponding request

71

creation classes as shown in Figure 5-6.

MNSession A non-SIP node wants to join a SIP-ALM SubscribeRequestCreation

mesh/a SIP node wants to leave the mesh

return the created SUBSCRIBE request H
L:} nviteRe -B.' eation U

A SIP node wanis to initiate or join an ALM group

H return the created INVITE request

retumn the created BYE vequest>D

)

oo

I l Send the SIP request out.

Pop Request(is triggered by
i the incoming SIP requests.

Figure 5-6 UML sequence diagram of creating SIP Request

This class has the role of managing incoming requests from the SIP stack by creating SIP
Listener, Stack and Providers, as shown in Figure 5-2. The MNSession class also provides
methods for the stack to inform a user of incoming SIP requests/responses/timeouts.

The MNSession class must implement all the methods defined in the SipListener interface.
When one of the methods inherited from the SipListener interface is invoked, the MNSession
instance sends the request to the class that effectively manages that type of communication.
The methods of this class that manage incoming messages are the processRequest() and the
processResponse() method. The processRequest() method is called every time a new SIP
request is received by the stack. This action is performed by invoking the processRequest()
method on MNSession and passing it a parameter of type SipEvent. The SipEvent class is a

container for all the information regarding a SIP event. SIP events, for example, are the

72

receipt of a request, a response or a timeout. By performing checks on the attributes of the
SipEvent object the MNSession class can understand if the message is directed to the current
MN or not. The first check that is done in the processRequest() method is by checking the
type of request. The requests handled in our implementation are SIP INVITEs, SIP BYEs, SIP
SUBSCRIBEs and SIP NOTIFYs. The processResponse{() method manages received
responses as well.

An incoming request is processed by a server transaction, and then it is passed to our
SIP-ALM application. The MNSession class first processes any requests by analyzing the SIP
methods of those requests. Then by calling the corresponding request processing class, the
MNSession class triggers other classes to determine what to do and where to route the request.
An outgoing request for each next-hop location is processed by its own associated client
transaction. The MNSession collects the responses from the client transactions and uses them
to send responses to the server transaction.

Here we next explain the relevant operations used for different SIP request in more details.
5.2.3.1 SIPINVITE

A SIP INVITE request is sent to invite members to a.new group or join an existing ALM
group. In the first case, such SIP INVITE request contains “group@sip.manet” in its
Request-URI, and a new Event-ID header is added. In the setting up of an ALM group, the
user that receives an invitation will see a pop-up window on the display. The users then

decide whether to accept such initiation.

73

For the latter case, the request-URI of such SIP INVITE request will address to the leader of
that ALM group. There will be a Join header in such SIP INVITE request, whose value is the
Event-ID of that group. The flow chart of how SIP INVITE requests are processed is

displayed in Figure 5-7.

Receive an
INVITE
request

Request-URI
contains
group@sip.manet?

New Group Invitation Y

Store the group Add the new
information member into
\—g'—o'iz_/
Send 200 OK Send 200 OK
back to the back to the sender
sender of the of the INVITE
INVITE message message

Forwarded the
INVITE request

y
€|

messages to alf
roup members.

Figure 5-7 Flow Chart of processing SIP INVITE Request

The process of forwarding request follows these steps:
e Copy request - The copy of the received request contains all of the header fields from
the received request.
The Request-URI in the copy's start line should not be replaced. In some
circumstances, the received Request-URI is placed into the target set without being
modified.
e Max-Forwards - If the copy contains a Max-Forwards header field, the proxy must

decrement its value by one (1).

74

Record-Route — Generally, a Record-Route header field is inserted to remain on the
same path of future requests in a dialog created by this request (assuming the request
creates a dialog). It might be a mechanism to keep the route unique, by using SIP
URIs for unicast routing.

Because in MANET, mobile devices work as end hosts, as well as routers, this field is
not mandatory in our approach.

Add a Via header field value - A Via header field value must be added into the copy
before the existing Via header field values. The MNs in SIP mesh choosing to detect
loops have an additional constraint in the value they use for construction of the
branch parameter.

Loop detection is performed by verifying that, when a request returns to a router,
those fields having an impact on the processing of the request have not changed. The
value placed in this part of the branch parameter should reflect all of those fields
(including any Route, Proxy-Require and Proxy-Authorization header fields).

Forward Request to the next recipient.

The sequence diagram of processing received INVITE request is shown in Figufe 5-8. When

the receiving INVITE request is analyzed as a Group Invitation message. If the receiver

accepts it, an instance of UpdateGroup class is called to update the host information, and then

dump it to the memory. If there are SIP URIs in the Forward-To header, no matter whether the

receiver accepts it, an instance of InviteRequestForwarding class is called to modify and

forward the INVITE request.

75

e e N e N s

processRequest() receive |
. an SIP evenl, analyzes the!
: received SIP request

[The received request is an
INVITE request ; Send SIP
H response back

——

/U Dump the inf
if accepts, update the 7 10 the memory
group information

Figure 5-8 Sequence Diagram of processing received INVITE message
5.2.3.2 SIP SUBSCRIBE

SIP SUBSCRIBE request is created and sent when a MN wants to join or leave a SIP meshed
network. The difference of the SUBSCRIBE requests between those two cases is: for the join
case, the value of “Expires” should be some value other than “0”, and the value of the
“Event” header should be “presence”; for the leave case, the value of “Expires” will be “0”,
and the value of the “Event™ header will be “leaving_SIP_network”.

As we mentioned earlier, the MNSessions listen to SIP requests sent by other MNs. When
received by the processRequest(), SIP SUBSCRIBE requests are mapped by the MNSessio;l '
instance to the ProcessSubscribeRequest class. The flow chart of how SIP SUBSCRIBE
requests are processed is displayed in Figure 5-9.

When the receiving SUBSCRIBE request is analyzed as a “Join” request, some classes are
called consequently as shown in Figure 5-10. An instance of UpdateHostList class is called to

update the host information, and then dump the changes to the memory. It also verifies

76

whether this receiving MN is a gateway node. If it is, NotifyRequestCreation is called to

create and send NOTIFY message. Then PresenceService class is called to send NOTIFY_d

message periodically.

Receive a
SUBSCRIBE
request

Evert == “presence”
AND Expires =0

et N
leaving_SIP_n
ork” AND Expires.
==0
Y
Create a record in
the host lists
Mark the record as.
"Delete”

emove the recor
after creating STOP
NOTIFY dr

Figure 5-9 Flow Chart of analyzing received SUBSCRIBE message

zprntessRenuesto recelves v
: an SIP event, analyzes the
: recetved SIP request

IHN.S_esLQLTI [MLQ_S Bscmqg tzmm:ﬂ' I_o.q_N evworl Em&wg@ tsmm,

) Tsend SIP response
{ Therecelved requestis | back : Dump the :
1 3 SUBSCRIBE reguest fe—3 sinformation to the
H { memoty :
Update the user ;
L) information U

i H

U Create a coresgonding NOTIFY requst and send it back,(—,l

L

“ Setupa NOTiFY_TmER, to sen&:diﬂerermal NOTIFY re@eﬂ periodically

Figure 5-10 Sequence Diagram of processing received SUBSCRIBE message for joining

71

5.2.3.3 SIP NOTIFY

As we mentioned in the previous chapters, there are three kinds of NOTIFY requests in our

framework:

e On the receipt of a SIP SUBSCRIBE, the SIP-ALM application sends SIP NOTIFY
requests back to the initiating MN. In the content of this NOTIFY request, it contains
all the member list of this local MN.

e If a MN is a gateway node, the PresenceService instance sends SIP NOTIFY d
requests periodically. Unlike the NOTIFY request in the first case, its contents only
contain the differential information of the MN’s member list.

e When a group member notices that another group member has left the ALM group, or
a group leader received an INVITE request with Join header, it will update its host
lists and send a NOTIFY g request with the entire group member list to all the group
members.

When received by the processRequest(), SIP NOTIFY's is mapped by the MNSession instance
on the ProcessNOTIFY class. The Request-URI header is checked and the corresponding
operation is executed, as shown in Figure 5-11.

The sequence diagram of processing received NOTIFY message is shown in Figure 5-12.
ProcessNOTIFY is called to analyze the type of received NOTIFY message. For the normal
NOTIFY message and NOTIFY _d message, the content of the received message is analyzed
and stored in the memory. If it is a NOTIFY g message, an instance RequestForwarding class

is called for forwarding such message.
78

Receive a
NOTIFY
request

NOTIFY_g message Y / Request-URI \ N NOTIFY or NOTIFY_d message

\, ‘ALMGroupMembers® /

NOTIFY v

ge N q Y NOTIFY_d message

in the Forward-
To field

equest-URI is’
the MN's URI?

Analyze the coment
of NOTIFY and store

Forward this NOTIFY
request to other MNs
isted in Forward-To fiel

A S———
Analyze the content of
NOTIFY and update in

4 Send 200 OK back)

Figure 5-11 Flow Chart for processing received NOTIFY message

processRequest() receives
an SIP event, analyzes the
:received SIP request

=

Analyze the type of received NOTIFY
/U request, and send SIP response
back

Pa—

The received request is a
NOTIFY request

The received request is a NOTIFY_g
: request, update the group infomation
: and forward the modified request, if

1 there are URIs in Forward-To header

U For other NOTIFY request, analyze

the content of the received request
and vupdate the user information

Figure 5-12 Sequence Diagram of processing received NOTIFY message

5.2.3.4 SIPBYE

79

A BYE request is constructed by an ALM group member for leaving that group. It has

“ALMGroupMembers” as part of its Request-URI, and all other group members are listed in

“Forward-To” header.

Receive a
BYE request

Request-URI
contains
“ALMGroupMembers”

in the Forward-
To field

RS ———g
Update its group
information
orward this NOTIFY reques!)
to other MNs listed in Forward- g:n;lyeea’sn: ssage,

To field 9

Figure 5-13 Flow Chart for processing received BYE message

l MN§g§§ian—| LEzgcessﬂY§1 [LgaveALMGmug

! processRequest() receives H H
i an SIP event, analyzes the :
; received SIP request

I Rgggg;tFomrdinq

LNgggVecg o1

Send SIP : : i
The received request is /U b::k response : } H
2 BYE request H :
Update group : :
information

Dumnp the information |
to the memory

There are still URIs in Forward-Te header_‘:fomard the
modified BYE réquest H

Figure 5-14 Sequence Diagram of processing received BYE message

When a MN receives a BYE request, the procedure, shown in Figure 5-13, is executed to

80

terminate the involvement of the ALM group. The relevant classes are called sequentially, as

shown in Figure 5-14.

5.3 Verification of our approach

Implementing and testing an actual ad-hoc network is costly due to high complexity, required
hardware resources and inability to test them under a wide range of mobility scenarios. Not
only that the implementation will involve sophisticated system-level programming, but also
that a thorough test requires deployment of large-scale test-bed in various mobility patterns
[55]).

There have been previous attempts [56] [57] to describe full mesh conferencing for SIP by
Jonathan Lennox and Henning Schulzrinne. In {57], it is said that the primary difficulty in
verifying the full mesh protocol is that its behavior depends strongly on the order in which
events occur. We have similar issue in our case. For example, a MN should join a SIP mesh
first, and then it could initiate or join an ALM group. Therefore, we verify our proposed
framework by setting up different scenarios simulated as operating in MANET.

In the testing, the functionalities of our simulation were verified by logging and comparing to
the expected reéu]ts. By the log file, the applications’ progress is followed and any incorrect
functionality may be found.

Now we start to introduce the designed test cases and sequences used in our framework in the

following sections.

5.3.1 Introduction to the Node States

81

As we discussed in Chapters 2, 3 and 4, there are three kinds of node in our proposed

framework. As shown in Figure 5-15, the nodes are divided as: Non-SIP node, SIP node and

SIP-ALM node.
SUBSCRIBE with Expires = 0
Non-SIP node
SUBSCRIBE
SPIPSCMBE With Expires = 0
- join the mesh
SIP Node INVITE - initiate the ALM group | _ SIP-ALM node
Gateway Node Group Leader
[
Checking thie neighbor set, when BYE - Jeave the ALM group 1 .
neighborhogd changes. When informed or
The one with more neighbors is nohces’Groug
designated 4s gateway node. Leader’s leavipg
Accept the INVITE request
INon-Gateway Nodd Group Member

Figure 5-15 The state transition diagram of the verifier

A more detailed state transition in our proposed SIP-ALM framework is drawn in Figure 5-16.
The notation for expressing transmissions and receptions is: a question mark (?) identifies an
input event - the reception of a message; an exclamation mark (!) identifies an output event -
the transmission of a message [58].
The states mentioned in Fiéuré 5-16 are:

e NS means Non-SIP node,

e SNG means SIP Non-Gateway node,

e SG means SIP Gateway node,

¢ GMSNG means Group Member and SIP Non-Gateway node,

* GLSNG means Group Leader and SIP Non-Gateway node,

e GMSG means Group Member and SIP Gateway node,
82

¢ GLSG means Group Leader and SIP Gateway node.
Generally, as listed in Table 5-1, twenty-two state transition events could be executed to
transfer one state to another. And also, a state transition happens in a certain order.
As we could see from Figure 5-16 and Table 5-1, behaviors of the proposed framework
depend strongly on the order in which events occur. Thus, we decide to design every test case
correspondent to each event and then put the simulated actions in different sequences to
simulate different scenarios for protocol verification. In this way, the verification is optimized

in order to keep verification tractable on standard hardware.

ISUBSCRIBE
with Expires=0

\SUBSCRIBE
with Expires=0

ISUBSCRIBE
with Expires=0

SUBSCRIBE with Expires=0}
[there are other non-gateway
mernber nodes)

'SUBSCRIBE with Expires=0j
[pew node connects to other

'SUBSCRIBE
with Expires=0

?SUBSCRIBE with Expires=0
new node only connects to this node]

2INVITE/2000K or
HNVITE with Join header/

2INVITEN2000K or
HNVITE with Join header/

Figure 5-16 The State Transition in SIP-ALM framework

The number of members in the simulated meshed network and ALM group is not more than

six, and most of the actions are done among five members.

83

Table 5-1 List of State Transition Events

ID | State Sending Message | Receiving Additional Condition | Successor
Message State
1 |NS SUBSCRIBE - - SG
2 |NS SUBSCRIBE NOTIFY - SNG
3 |SG SUBSCRIBE - - NS
with Expires=0
4 | SNG SUBSCRIBE - - NS
with Expires=0
5 18G - SUBSCRIBE No other non-gateway | SNG
with Expires=0 | member nodes
6 |SG - SUBSCRIBE There are other | SG
with Expires=0 | non-gateway member
nodes
7 | SNG - SUBSCRIBE New node only| SG
with Expires=0 | connects to it
8 | SNG - SUBSCRIBE New node connects to | SNG
with Expires=0 | other node already
9 [|SG INVITE 200 OK - GLSG
10 | SG 200 OK INVITE - GMSG
It | SG INVITE with | 200 OK - GMSG
Join header
12 | GMSG | BYE - - SG
13 | GMSG | SUBSCRIBE - - NS
with Expires=0
14 | GLSG BYE - - SG
15 | GLSG SUBSCRIBE - - NS
with Expires=0
16 | SNG INVITE 200 OK - GLSNG
17 | SNG 200 OK INVITE - GMSNG
18 { SNG INVITE with | 200 OK - GMSNG
Join header
19 | GMSNG | BYE - - SNG
20 | GMSNG | SUBSCRIBE - - NS
with Expires=0
21 | GLSNG | BYE - - SNG
22 | GLSNG | SUBSCRIBE - - NS
with Expires=0

5.3.2 Test Actions Design

Based on those possible actions, certain test actions are designed to verify each state transition
path. Table 5-2 lists all the simulated mesh actions executed by the verifier. Mobile Nodes are

named 1, 2, 3, ... , in order. In Column “Testing State Transition Events” of Table 5-2, the
84

testing events are listed for each action.

Table 5-2 SIP-ALM scenarios explored to be verified

ID | Source | Source Receiver | Receiver | Action Expected Result* Testing State
State State Transition Events

0 Simulationl.xml Refresh

1 4 NS JoinMesh 4-5G 1

2 4 SG LeaveMesh 4-NS 3

3 9 NS 4 SG JoinMesh 4-8G 9-SNG 2

4 9 SNG 4 SG LeaveMesh 4-SG 9-NS 4

5 4 SG 9 SNG LeaveMesh 4-NS 9-SG 3,7

6 |4 SG 9 SNG NoResponse 4-SG

4 SG 9 SNG NoRequest 9-SG

8 8 NS 4 SG JoinMesh 4-SG 8-SNG 2

9 7 NS 4 SG JoinMesh 4-SG 7-SNG 2

10 |7 SNG 8 SNG JoinMesh 7-SNG 8-SNG 8

11 |6 NS 8 SNG JoinMesh 6-SNG 8-SG 2,5

12 |6 SNG 8 SG LeaveMesh 6-NS 8-SNG

13 | 8 SG 4 SG LeaveMesh 4-SG 8-NS 3,6

14 14 SG StartALM 4-GLSG 9,10,17
6-GMSNG
8-GmSG

15 { 4 SG 7 SNG StartALM? 4-GLSG
9-GMSNG 7-SNG

16 | 4 SG 8 SG StartALM 4-GLSG
7-GMSNG 8-SG
6-GMSNG

17 |7 SNG 4 GLSG JoinALM 4-GLSNG 18
7-GMSNG
9-GMSNG

18 |9 GMSNG | 4 GLSG LeaveALM 4-GLSG 19
7-GMSNG 9-SNG

19 |8 GMSG 4 GLSG LeaveALM 4-GLSG 12
9-GMSNG 8-SG

20 |6 GMSNG | 8 GMSG LeaveMesh 4-GLSG 6-SNG | 20
7-GMSNG
8-GMSNG

21 |5 NS 7 SNG JoinMesh 5-SNG 7-SG 2,5

22 |9 SNG StartALM 4-GMSG 16
9-GLSNG
8-GMSG

23 |8 GMSG 4 GLSG LeaveMesh 4-GLSG 8-NS 13

85

|24 |8 |sc |4 LGLSG [JoinALM P-GLSG 8-GMSG | 11 J

Note:

1 - The scenario is that MN4 receives no response from MN9 to its NOTIFY _d. We still keep the state
in MN9, because for MND9, it still receives NOTIFY_d message from MN4.

2 — Because the combination of actions is different, the result could be different too. But the states of
the main actors, which are mentioned as the sender and receiver of an action, should be checked for the

expected result.

3 — For “Start ALM” cases, if no receiver is listed, it means all the mesh network members accept such
invitation. For example, in Action 15, since MN7 is the receiver, it refuses such invitation whereas

other non-receiver nodes accept the invitation.

As we could see State Transition Events 14, 15, 21 and 22 are not listed in Table 5-2. The
reason is when a group leader leaves the group, there should be one group member designated
as group leader. Further research is needed to select an algorithm for choosing the new group
leader, when the old one is leaving,

Also there are some additional test casts, like 6, 7, 15 and 16. For test cases 6 and 7, they
simulate the detection of abrupt leaving. For test cases 15 and 16, they verify the execution
when one node does not agree to join an ALM group.

5.3.3 Test Sequences Design

As we could see from Figure 5-16, there are pre-conditions for testing state transition events.
For example, for the state transition NS -> SNG, there should be a SG node to receive
SUBSCRIBE messages and respond with NOTIFY messages. Thus to test some designed test
cases, several tested actions should be run beforehand to meet those pre-conditions. That is
the reason we design action sequences for ordering purpose to cover the typical scenarios of
operations executed in our framework.

The executed test sequences in our verifier are listed in Table 5-3. The last test action in each

86

test sequence is the one need to be verified. The pre-conditions should be met before

executing the last test action; they correspond to the source state and receiver state of that test

action in Table 5-2. The testing paths are also listed to demonstrate the coverage of our

verification.
Table 5-3 Test Sequence Lists
ID | Test Sequence Pre-Condition Path Expected Result | Note
Taken

0 1 4-NS 1 4-SG

1 1->3 4-SG 2 9-SNG

2 1->2 4-SG 3 4-NS

3 1->3->4 4-SG 9-SNG 4 4-SG 9-NS

4 1->3->5 4-SG 9-SNG 3,6 4-NS 9-SG

5 1>3>6 4-SG 9-SNG 4-8SG 9-SNG There is no MN9
record in MN4’s host
lists.

6 1->3->7 4-SG 9-SNG 4-8G 9-SG There is no MN4
record in MN9’s host
lists.

7 1->3->8->9->|4-SG 7-SNG | 6 4-SG 7-SNG | To create a mesh in a

10 8-SNG 8-SNG clustering, the state of
S8 does not change
7 1->3->8->11 6-NS 8-SNG 6 6-SNG 8-SG
8 1>3->8->9->14-SG6-NS 7-SNG | 6 4-SG 6-SNG | To create two clusters,
10> 11 8-SNG 7-SNG 8-SG MN?7 connects to MN8
via MN4.
9 1->3->8->9->| 6SNG 8-SG 5 6-NS 8-SNG Also checks whether
11->12 the information of
MNG6’s leaving
transfers to other MNs

10 }1->3->8->9->1]4-SG8-SG 3 4-SG 8-NS Since MNS8 will not

11->13 send NOTIFY_d
message periodically,
MN6 should turn to be
SG.
11 | 1->3->8->9-> | 4-SG 6-SNG | 7,8,15 | 4-GLSG
11->14 7-SNG 8-SG 6-GMSNG
9-SNG 7-GMSNG
8-GMSG
9-GMSNG
12{1->3->8->9->1{4-SG 6-SNG | 7, 8,15 | 4-GLSG
11->15 7-SNG 8-SG 6-GMSNG
9-SNG 7-SNG 8-GMSG
9-GMSNG
1311->3->8->9->14-SG 6-SNG | 7, 8,15 | 4-GLSG
11->16 7-SNG 8-SG 6-GMSNG
9-SNG 7-GMSNG 8-SG
9-GMSNG
14 |1->3->8->9->]4-GLSG 16 4-GLSG
11->15>17 6-GMSNG 7-SNG 6-GMSNG
8-GMSG 7-GMSNG

87

9-GMSNG 8-GMSG
9-GMSNG
1511->3->8->9->|4-GLSG 17 4-GLSG
11->14->18 6-GMSNG 6-GMSNG
7-GMSNG 7-GMSNG
8-GMSG 8-GMSG 9-SNG
9-GMSNG
16 {1 ->3->8->9-> | 4-GLSG 10 4-GLSG
11->14->19 6-GMSNG 6-GMSNG
7-GMSNG 7-GMSNG 8-SG
8-GMSG 9-GMSNG
9-GMSNG
17 |1->3->8->9->| 4-GLSG 18 4-GLSG 6-NS
11->14->20 6-GMSNG 7-GMSNG
7-GMSNG 8-GMSNG
8-GMSG 9-GMSNG
9-GMSNG
18 |1->3->8->9->| 5-NS 7-SNG 6 5-SNG 7-SG Check the host lists
10> 11->21 about gateway nodes
MN4, MN7 and MN8
19 [1->3>8->9->|4-SG 6-SNG | 8, 14, | 4-GMSG Also need to check
10->11->22 7-SNG 8-SG {15 6-GMSNG forwarded INVITE
9-SNG 7-GMSNG message
8-GMSG
9-GLSNG
20 | 1->3->8->9->|4-GLSG 11 4-GLSG
11 ->14->23 6-GMSNG 6-GMSG
7-GMSNG 7-GMSNG 8-NS
8-GMSG 9-GMSNG
9-GMSNG
21 |1->3->8->9->|4-GLSG 9 4-GLSG
11->16->24 6-GMSNG 6-GMSNG
7-GMSNG 8-SG 7-GMSNG
9-GMSNG 8-GMSG
9-GMSNG

When executing these test sequences, aside from verifying the state transition to be executed
correctly, we also need to verify if the transferred network and group information is handled
correctly. For example, when a new node joins the meshed hefwork, all the nodes in the
meshed network should contain its record with correct topology information. That is the
reason that we have different test cases for same state transition event and run different test
sequences for the same testing paths. Checking the log after executing each test sequence
does the verification of node information.

Because we use test sequence to manage the state transition, it is done step by step. The

remaining case is to consider simultaneous action of the meshed network.
88

The only possible affected scenario is: when two SIP nodes initiates SIP function
simultaneously, they both think themselves as Gateway nodes and thus, responding to the
SUBSCRIBE request with NOTIFY message. If there are no other members under thoée two
nodes, then both of them change themselves to Non-Gateway nodes. This situation could be
changed when one node has other members. So this node sets itself as Gateway node and
sends with NOTIFY_d message periodically. So the lack of verifying simultaneous actions in

our framework does not affect the functional verification very much. -
5.3.4 The Verification Framework

To set up the simulation environment, the simulator maintains two items: firstly, the state of
the system, describing which MNs are in the SIP mesh network, the states of these MNs and
each MN's knowledge of the network topology; and secondly, a list of pending actions which
are to be executed, consisting of actions such as, joining the mesh, leaving the mesh, a MN
inviting other MNs to the group, joining existing groups, and leaving the group.

To start the test sequence for verifying our framework, we decide to use a Simulation File in

XML format, which has become a standard for data exchange.
5.3.4.1 The format of Simulation File

An example of simulation file is displayed in Figure 5-17; it is divided into host lists part and
action lists part.

As we mentioned earlier, the order in which events occur is quite important for verifying our
framework [56]. Thus, to simulate a particular scenario, the initial states of mobile nodes,

such as, which mobile nodes are in the simulation, each node’s status, are set up. In Figure

89

5-17, the host lists part is used to initialize the position and state of each MN in the network,
which creates a node graph as Figure 2-4. The host lists part consists of:

<?xml version="1.0' encoding="us-ascii'?>

<SimulationFile>

<HostTable>

<NODES>
<node id="9" uri=" " position="(40,40)" />
<node id="1" uri=" " position="(90,100)" />
<node id="2" uri=" " position="(40,160)" />
<node id="3" uri=" " position="(160,20)" />
<node id="4" uri=" " position="(160,160)" />
<node id="5" uri=" " position="(240,240)" />
<node id="6" uri=" " position="(500,140)" />
<node id="7" uri=" " position="(320,200)" />
<node id="8" uri=" " position="(300,40)" />

</NODES>

</HostTable>

<Action>
<issue id="0" source="Simulationl.xml" action="refresh"/>
<issue id="1" source="4" sourceState="NS" receiver=" " receiverState=" " action="JoinMesh" result="4-SG"/>

<issue id="2" source="4" sourceState="SG" receiver=" " receiverState=" " action="LeaveMesh" result="4-NS"/>

<issue id="3" source="9" sourceState="NS" receiver="4" receiverState="SG" action="JoinMesh" result="4-SG)
9-SNG"/>

<issue id="4" source="9" sourceState="SNG" receiver="4" receiverState="SG" action="LeaveMesh" result="4-SG
9-NS"/>

<issue id="5" source="4" sourceState="SG" receiver="9" receiverState="SNG" action="LeaveMesh" result="4-NS
9-SG"/>
</Action>
<Sequences>

<issue id="0" actions="1234 7" />
</Sequences>

</SimulationFile>

Figure 5-17 An example of a Simulation File

90

e <HostTable> - represents that its content will be stored into the corresponding host
lists in Vector.
¢ <NODES> - The content in this block lists the Node ID, position and URI, if it has.
All the information is used to draw the node graph in the main screen.
e If the Node ID starts with “S”, it has the SIP-ALM function and is in a SIP mesh. If
the Node 1D starts with “G”, it is in one or more ALM groups.
By reading the position of each node, a node graph will be drawn in the “SIP-ALM Node
Graph” area. As shown in Figure 5-18, each dot in the graph is a node. The node in the
lightest color is a normal MN without SIP-ALM function. The node may be a normal MN
without SIP-ALM function. It may be part of the SIP meshed network and may belong to

ALM groups.

1P_ALM Window

SPElinput Node ID we

s N

'\ SIP-ALM Node

Non-SIP Node \
' SIP Node

EMA

e selected Simutation Script Is: E¥mplementatiomSiPverifenSimulation xml S M
iThe simulation of HT-MR is started. r
a 1
: i
i i
: H
e L T e R R e e R e et i B e o T ‘

Figure 5-18 The network topology used in our simulation

91

An action list is also given for the actions to be taken. The action lists part consists of:
e <Action> - The content in this block lists the available actions.
e <Sequences> - Lists the executing sequence of actions

The test sequence is picked up from Table 5-3.

5.3.4.2 The result verification

Once an execution sequence has completed, the verifier validates the resulting state, as shown
in Figure 5-16. A resulting state is valid if it is the result listed in the last action item. Then the
verifier chooses the next execution sequence from the list, and continues until all actions have
been exhausted. If the resulting state is not what expected, the verifier prints an error message

and the exact sequence of actions and states that led to this outcome.

5.4 ANALYSIS AND RATIONALE

By different combination of execution sequences, our verification covers the typical scenarios
of operations executed in our framework. However, these simulations do not fully explore the
possibilities of the network status, as the potential size of the SIP mesh is, of course,
unlimited. In this section we will attempt to justify the belief that the cases considered
adequately cover all the possible ways that a network or group membership changes can

interact.

5.4.1 The result verification

Once an execution sequence has completed, the verifier validates the resulting state, as shown

in Figure 5-16. A resulting state is valid if it is the result listed in the last action item. Then the

92

verifier chooses the next execution sequence from the list, and continues until all actions have
been exhausted. If the resulting state is not what expected, the verifier prints an error message

and the exact sequence of actions and states that led to this outcome.

5.4.2 Framework Correctness

In our verification, the first point to consider is to ensure that knowledge of a member joining
and leaving the SIP mesh is always noticed to all other members of the mesh. In the execution
sequence 1 -> 3 -> §, this is clear. Once MN4 receives SUBSCRIBE request from MNS, it
will update its member list and send its host and member information in the responding
NOTIFY request. Thus, MN8 will get MN9’s information. Because MN4 works as a gateway
node, it sends NOTIFY d request periodically. In response to these NOTIFY d requests,
MN9 gets MN8’s information, etc.. And when executing sequence 1 -> 3 -> 8 -> 11, MN§
works as a gateway node too, it forwards MN9’s information to MN6 and forwards MN6’s
information to MN4. Then MN4 forwards such information to MN9. Thus eventually, all the
network members know that a node has joined the mesh and the route connecting to it.
Leaving from the mesh is similar. SUBSCRIBE with Expires = 0 messages are sent to every
direct neighboring MNs by leaving MN. Then the leaving information will be forwarded by
gateway nodes subsequently. If other neighboring nodes send data due to its out-of-date host
lists, the leaving node will send back a SIP 401 Gone response back to keep the sender of data
from sending it repeatedly.

Another point to consider is to ensure group messages are forwarded as expected. In the

execution sequence 1 -> 3 -> 8 -> 9 -> 11 -> 16, MN8 forwards INVITE request to MNG6,

93

even though it decides not to join. MNS§ performs gateway function for its member nodes.
And as we mentioned in Chapter 4, in ALM groups, to keep the knowledge of group
membership, a NOTIFY _g request or BYE request will be sent out to all the group members.
For example, in the execution sequence 1 -> 3 -> 8§ -> 9 -> 11 -> 15 -> 17, MN7 sends
INVITE request with “Join” header to the existing ALM group leader: MN4. After accepting
such request, MN4 sends NOTIFY_g requests to all group members. The knowledge of MN7
joining the ALM group is propagated to all other members in the ALM group.

Similarly, departure from the ALM group is straightforward. In the execution sequence 1 -> 3
-> 8-> 9 ->11 -> 14 -> 18, BYE requests are sent to every group member and group leader of
the ALM group. Because Event-lds distinguish instances of ALM group memberships, there
is no ambiguity between near-simultaneous departures and re-connections, and thus the

analyses of these two scenarios can be considered independently.

5.5 SIP-ALM performance

Several performance metrics have been defined to characterize performance and impacts on
the network [59]. Since we implement an application layer meshed network and mainly focus
on managing and maintaining the routing information, we only discuss control overhead in

this thesis.
5.5.1 Data load of control overhead

Maintaining the overlay topology has a cost. The metric of control overhead considered is in
terms of control information exchanged (number of messages processed).

Aside from sending SUBSCRIBE/NOTIFY requests for joining or leaving a SIP meshed
94

network, our proposed framework requires the exchange of periodic SIP messages in a limited
bandwidth environment. In general, the protocol overhead is measured mainly due to routing
and group management associated with the SIP-ALM application. Therefore, the protocol
overhead increases mainly proportionally to the size of the meshed network and that of ALM
groups.

Packet sizes for different messages are noted, as listed in Table 5-4.

Table 5-4 Packet sizes of SIP messages in SIP-ALM

Name of SIP Message Packet Size (bytes)
SUBSCRIBE 464
200 OK for SUBSCRIBE 337

NOTIFY with 1 profile list and 1 neighbor list | 640 (including content length: 193)

NOTIFY with 1 profile list and n neighbor list | 600 + (n * 40)

200 OK for NOTIFY 273
INVITE 416
200 OK for INVITE 375
ACK 349
INVITE with Join 395
200 OX for INVITE with Join 336
BYE 373
200 OK for BYE 290

As we see from Table 5-4, the packet size of SIP messages is noticeable. Thus, we try to find
ways to save resources on the limited bandwidth:

e In our approach, we use NOTIFY_d messages as “Keep Alive” messages. It also

performs neighbor discovery information distribution and is sent out periodically. So

except for the first NOTIFY message, the periodic NOTIFY_d messages only convey

nodes differential routing information in meshed network. This reduces signaling

95

traffic substantially.

e We also introduce Dominating Set Routing to reduce the number of exchanged
NOTIFY messages. Since not all the network members need to update all other
members’ information periodically and SIP messages are transferred in
Request/Response way, non-gateway nodes use the responding 200 OK message as
their “Alive” beacon messages in our framework. It allows us to reduce the number of
transmitted messages and the burden of messages in the ad-hoc network and therefore
improve the effective use of bandwidth.

In the following section, we make two kinds of comparisons. One is to compare our
hierarchical system with the flat topology approach. The purpose of this comparison is to
evaluate the scalability of our architecture. The other kind of comparison is to compare two
different ways of SIP message transmission in multi-hop environment. It is used to evaluate

the optimization of the control message transmission.
5.5.1.1 Traffic of periodic messages

In response to neighbor discovery by sending out NOTIFY and NOTIFY _d request, a node
may learn and cache mesh connections to other MNs. This allows the reaction to routing
changes to be much more rapid, since a node with multiple routes to a destination can try
another cached route if the one it has been using should fail. This caching of multiple routes
also avoids the overhead of needing to perform Route Discovery each time a route in use
breaks.

In our approach, the SIP nodes in MANET would implement NOTIFY/200 OK scheme as

96

some form of neighbor discovery to identify nearby mobile nodes with SIP application. This
neighbor discovery scheme is made proactive where it periodically checks for neighboring
devices or user initiated where the user set off the search.

As we listed in Table 5-2, the size of the headers in NOTIFY message is around 447 bytes.
The size of the content including one profile list and one neighbor list of a NOTIFY message
is 193 bytes. Its size including one profile list and four neighbor lists is 314 byte. So if all the
neighbor information is included in every NOTIFY message, the size of this NOTIFY
message would be large. To reduce some transmission load, except for the first time, only
differential information will be sent in NOTIFY messages. Thus, when creating a NOTIFY
message, the entire host lists is checked. Only the records marked with “Y” in the “Changes”
field, will be attached in the content of the NOTIFY message.

Compared to the normal NOTIFY message, the differential NOTIFY message reduces the
transferred message size as the size of the mesh network increases. It avoids excessive traffic
overhead of periodic transferred message since only updated node information is distributed.
Furthermore, using the Dominating Set Routing, the hierarchical network makes the packet
transmission effectively.

For example, there are N MNs in the mesh, so if there is no designated gateway nodes, to
exchange the topology information, N NOTIFYs will be sent. As the request/answer model of
SIP, N 200 OK messages will be transferred too. If there are M gateway nodes among those N
MNs, there will be M NOTIFYs sent by M gateway nodes, N 200 OK messages as we
suppose that all the MNs in the mesh get noticed. Thus by using the idea from Dominating Set

Routing, the number of transferred NOTIFY message is reduced by N-M.
97

Figure 5-19 displays the different number of messages by using and not using the idea of

gateway node.

Number of messages of creating a meshed network
140

120

=100

-3

]

3 %y mHT
s BFTT
s 60

E-3

£

Z 40

Number of Nodes

Figure 5-19 Number of messages vs. number of nodes when creating a network (HT means
Hierarchical Topology; FTT means Full-Flat Topology)

As demonstrated in our simulation, the number of transferring SIP messages for meshed
network management is reduced noticeably as the size of meshed network increases. The

bigger the size of that meshed network, the more effective it works.

5.5.1.2 Traffic in the group

The reason of using a group leader to handle joining requests is for the purpose of admission
control and to limit the control traffic needed for receivers to join multicast groups. Except for
the group members, the MNs in the mesh only store the ongoing ALM group information in
its leaders’ record. Otherwise, for keeping the integrity of the mesh information, changes in
multicast group membership have to be disseminated together with routing-table updates.
MNs hear such information from their neighbors and remember which neighbors belong to

which groups. Furthermore, every change made in the group membership will cause the

98

control information to flood between the gateway nodes in the mesh. This is because the
changes in group membership are important for the ALM group and should be informed as
soon as the changes are noticed. Actually this information is not mandatory for non-group
members. So even though sending join requests directly to group leaders need some extra
overhead than sending it to the nearest group members, its overall traffic would be less.

As we mentioned earlier, in ALM groups, BYE and NOTIFY _g requests are sent to all group
members. Since the senders of those two messages are members of ALM groups, they have
the list of all group members already. The messages could be sent in a unicast way or in a
multi-recipient way. In the unicast way, the sender sends the request to all the destinations
directly. In the multi-recipient way, when a MN receives such requests, it will check whether
it is the receiver of these requests, from the values in the “Forward-To” header. If not, the MN
will check its host lists and forwards such requests out.

With “Forward-To” header, the overall signaling traffic drops as the number of recipient
increases [60]. Instead of using unicast path between any two MNs, no matter how many
intermediate nodes it has, a multicast tree provides a single virtual path between any two
routers in the tree, the minimum number of copies per packet are used to disseminate packets
to all the members of a multicast group. For example, for a tree of N routers, only N-1 links
are used to transmit the same information to all the nodes in the multicast tree in a network
with point-to-point links.

The improved performance is shown in Figure 5-20. Thus, we deduce that in our
implementation, the more the number of group members is, the more efficient signaling

transfers by using “Forward-To” header.
99

Number of messages of creating an ALM group

235

g

2 30

£ MR
25

‘§ BNMR

22

5

215

-
o o

Node No.

Figure 5-20 An example of overall signaling traffic with/without “Forward-To” extension
(MR means Multi-Recipient; NMR means Non-Multi-Recipient)

5.5.2 Message Comparison

AMRoute [14] is an ad hoc multicast protocol that uses the overlay multicast approach. It
creates a per group multicast distribution tree using unicast tunnels connecting group
members. The protocol has two main components: mesh creation and tree creation. Only the
logical core node initiates mesh and tree creation.
AMRoute uses five control messages for signalling purposes and one data message format:
e JOIN_REQ: is broadcast periodically by a logical core for detecting other group
segments.
e JOIN_ACK: is generated by a tree node in response to receiving a JOIN_REQ from a
different logical core.
» JOIN NAK: is generated by a tree node if its application leaves the group.
e TREE CREATE: is generated periodically by a logical core to refresh the group

spanning tree.

100

e TREE CREATE NAK: is generated by a tree node to convert a tree link into a mesh
link.
e DATA MESSAGE: is generated by a sender on receiving data from a multicast

application.

SIP Gateway Node &
ALM group member
Non-SIP Node

SIP Gateway Node
& ALM group leader

SIP Non-Gateway Node
& ALM group member

o 0 ©

Figure 5-21 A virtual ALM group

Thus to initiate a multicast group in Figure 5-21, there are four JOIN REQ, four JOIN_ACK
and four TREE CRATE messages in AMRoute. The initiating messages in our proposed
framework are 4 INVITE and 4 200 OK messages.

‘There are two timers for a logical core in AMRoute to send JOIN_REQ and TREE_CREATE
messages periodically,. If we adopt the value of JON REQ SEND and
TREE _CREATE_SEND timers to 10 s [14], to keep the multicast group and routes, there will
be four JOIN_REQ and four TREE CREATE messages.

In our proposed framework, since MN4 and MN8 are gateway nodes, there will be five
NOTIFY _d and five 200 OK messages to keep the node information. The one additional

NOTIFY_d message is because there are two gateway nodes, two NOTIFY_d messages

101

transfer in the link between MN4 and MNS.

Thus, the number of signalling messages in AMRoute and SIP-ALM are comparable.
Moreover, in our proposed framework, those periodical messages do not only maintain
multicast group membership, but also meshed network information. Thus nodes in the meshed
network could organize more than one multicast groups with the same maintenance messages,
instead, in AMRoute, those periodical messages sent by the logical core is only used to
maintain that multicast group. As shown in Figure 5-22, as the number of multicast groups in
the same meshed network increase, for AMRoute the number of periodical messages

increases; for SIP-ALM, the number of periodical messages remains the same.

Number of periodical messages vs. Number of groups

HSIP-ALM
BAMRoute

15

Number of periodical messages
3

1 2 3
Number of groups in the same network

Figure 5-22 An example of overall signaling traffic of maintaining multicast groups

5.5.3 Metrics on end host performance

For the metrics of end host performance, it is the question of how soon the changes in

network membership can be found. It could be thought as the impact of the node mobility in

102

MANET. As we could imagine, as the node moves, it could be in and out of the connection
with other nodes. In this case, we will discuss about the ungraceful leaving, and the leaving
information transferred in the network.

In our approach, we use 2*NOTIFY TIMER as a timeout timer to detect the ungraceful
leaving of MNs. Whenever a group member notices the ungraceful leaving of another group
member, it will send a NOTIFY g message to inform all the group members. Then there will
be no data sent to it, until it re-joins. So the worst case is the packets sent during
(2*NOTIFY_TIMER + transmission time to source) are lost.

It is important to note that with higher density of nodes in a given area, there is more
overlapping between the coverage areas of nodes, which would result in better (multi-hop)
communication between member nodes and result in lower latency.

For the time of joining an ongoing ALM group, it is up to the number of hops between the
joiner and the group leader. It could be designed as any group member that may receive such
request, and then it will inform all the group members of this new member. But to think about
the possible admission control and the volume of maintaining information, we decide to use

group leader to handle this kind of request.
5.5.4 Replicate Detection

It is also possible that a MN received a message more than once. To eliminate the redundant
requests, the common way is to keep a record in MNs for the receiving requests. Once a
request is received, the MN will compare it with its records to decide whether this request is

received before or not. To use this method, it needs large memory resources to keep the

103

records, if this network is an active network.

In SIP, Via header records the intermediate router the SIP message has gone through. Thus
here, when MNs receive SIP requests, we check the IP addresses in the Via header. If the local
address is not in that field, that means the MN has not received such request before, so it will
process the received message. Otherwise, the received message will be discarded. Because the
simulation is done in one computer, the added IP address would be the same one. Thus, we
did not install the function in our verifier currently.

Also, for the SUBSCRIBE/NOTIFY message, we use the propagation control. Generally, the
propagated messages are associated with a Time To Live (TTL). In SIP, the parameter of
MAX-FORWARD is used to limit the number of elements a SIP request can traverse. Each
time a propagated message is received by a peer, its parameter is decreased by one. If the
request contains a Max-Forwards header field with a field value of zero (0), the message will
not be forwarded. Thus, SUBSCRIBE/NOTIFY message is only transferred to the neighbors,
with MAX-FORWARD equals to 1.

For the SIP messages used in maintaining ALM groups, because all the recipients are listed in
the “Forward-To” header, each receiver will remove its URI from that field. So the

duplication is prevented.

5.6 Summary

We implemented a SIP-ALM verifier that simulates the scenarios in creating, maintain and
leaving SIP meshed network and ALM group. We used JAIN SIP as the basis of the SIP

extension. We created test action list to verify the functionality of our proposed network.

104

Performance measurements are made and preliminary results are obtained from the simulation.
We compared the meshed clustering structure with flat topology in our architecture and
evaluated the multi-recipient method used in transferring multicast signaling.

Through the work, we can see that our proposed system is feasible to manage application
layer multicast group in ad hoc networks. By using mesh clustering structure, the number of
transferring SIP messages for meshed network management is reduced noticeably as the size
of meshed network increases. The bigger the size of that meshed network, the more effective
it works. In our proposed system, by adding “Forward-To” header in multicast signaling
messages, the overall signaling traffic increases slightly compared to the increase of the
number of recipient.

In this chapter, we also compare our proposed framework with AMRoute theoretically. In the
same meshed network, the number of periodical messages of maintaining one multicast group
in AMRoute and in SIP-ALM is comparable. Moreover, our proposed framework provides

better performance when there are more than one multicast groups in one meshed network.

105

Chapter 6 Conclusion and Future Work

6.1 Contribution

Multicast is an efficient transmission scheme for supporting group communication in
networks. The concept of overlay networks enables multicast to be deployed as a service
network rather than a network primitive mechanism, allowing deployment over
heterogeneous networks without the need of universal network support. In this thesis we have
presented a SIP-ALM middleware framework to be used for applications in ad-hoc networks.
The objective of this framework is to allow the users of ad-hoc networks to communicate with
each other and exchange application data by using SIP methods in an efficient way. In this
thesis, we have:
¢ Studied the performance difference with AMRoute;
e Analyzed possible network structures: full mesh, tree and clustering, in order to
reduce signaling volume;
e Implemented the SIP-ALM framework as an extension to SIP, one new header was
introduced for the group management purpose;
e Built a prototype to evaluate the feasibility and performance of the proposed

framework.

106

6.2 Conclusion

The main methods used in transferring SIP messages and routing information in our approach

are:

SIP SUBSCRIBE/NOTIFY messages to convey nodes routing information in meshed
network and multicast group. These members exchange information with the nodes
nearby and organize host lists in the memory.

Mobile Nodes are divided as gateway nodes and non-gateway nodes, as introduced in
Dominate Routing Set. Thus not all the network members need to record all other
members’ information, where only gateway nodes store all the routing information
and send NOTIFY message.

NOTIFY message performs the routing (including neighbor discovery) information
distribution using periodic updates, without using sequence numbers for updates
Updating routing table in the host lists is based on the shortest path. Each node selects
the shortest path to a destination in term of number of hops to reach that destination.
Upon the expiration of the lifetime of route without reception of another
NOTIFY/2000K message from the concerned node, this node has to be removed
from the host lists.

Multi-recipient way is used in SIP messages transferred among group members. With
all the destinations listed in the “Forward-To” header field, the same packets only

traverse a path once. Thus signaling traffic is reduced.

SIP messages inherently require a large amount of data to be exchanged. However, the

107

methods we adopt allow us to reduce the number of transmitted messages in the ad-hoc
network and therefore improve bandwidth use and decrease the collision probability. It also
resolves scalability issue due to the fact that it is based on multicast.

A SIP-ALM verifier is implemented to simulate the scenarios in creating, maintain and
leaving SIP meshed network and ALM group. The meshed clustering structure is compared
with flat topology in our simulation, and the multi-recipient method used in transferring
multicast signaling is also evaluated. Through the work, we can see that our proposed system
is feasible to manage application layer multicast group in ad hoc networks. By using mesh
clustering structure, the number of transferring SIP messages for meshed network
management is reduced noticeably as the size of meshed network increases; by adding
“Forward-To” header in multicast signaling messages, the overall signaling traffic increases
slightly compared to the increase of the number of recipient.

We also compare our proposed framework with AMRoute theoretically. In the same meshed
network, the number of periodical messages of maintaining one multicast group in AMRoute
and in SIP-ALM is comparable. Moreover, our proposed framework provides better

performance when there are more than one multicast groups in one meshed network.

6.3 Future Work

Meeting requirements for the general problem set of application is far too complex. In this
paper, we gave out the scheme to create and maintain multicast group problem using SIP in an
ad-hoc environment. Thus it leaves the simulation work to address the security issue and

evaluate the performance concerning the new scheme in future work. In all, our goal is to

108

design a new application scheme, which is an efficient framework to find, locate and evaluate
the service in vicinity required by client and fit for high dynamic environment.

The multicast transmission of SIP messages is still under research. Also further development
and implementation of this middleware may provide detailed information in using SIP

methods in ad-hoc networks. Here are some issues suggested for the future work.

6.3.1 Internet Interconnection

In our framework, we set up a subset organized by gateway nodes to share network topology.
The gateway node is assigned according to the number of its member nodes. Currently, there
is another kind of ad hoc network, which has one or more gateway to make connections
between the Internet and the ad hoc network. The existence of such gateway nodes could
allow packets to transparently be routed from the ad hoc network to nodes in the Internet and
from the Internet to nodes in the ad hoc network and achieve the seamless interoperation

between an ad hoc network and the Internet [61].

6.3.2 QoS Issues

Mobile multi-hop wireless networks introduce unique issues and difficulties for supporting
QoS in MANET environments. The issues are itemized as follows [62]:
¢ Node mobility: mobility of the nodes creates a dynamic network topology. Links will
be dynamically formed when two nodes come into the transmission range of each
other and are torn down when they move out of range.
e Route maintenance: the dynamic nature of the network topology and the changing

behavior of the communication medium make the precise maintenance of network

109

state information very difficult. Thus, the routing algorithms in MANETSs have to
operate with inherently imprecise information. Furthermore, in ad hoc networking
environments, nodes can join or leave at any time. The established routing paths may
be broken even during the process of data transfer. Thus, the need arises for
maintenance and reconstruction of routing paths with minimal overhead and delay.
SIP can be used to initiate a session that uses some other conference control protocol. Since
SIP messages and the sessions they establish can pass through entirely different networks,

how to realize the resource reservation capabilities is still under research

6.3.3 Security Issues

The nature of the provided services makes security particularly important. To that end, SIP
provides a suite of security services, which include denial-of-service prevention,
authentication (both user to user and proxy to user), integrity protection, and encryption and
privacy services.

To verify whether the MNs are the right users, some security methods could be adopted in
different level. For example, the MANET registration policy could be used during the
subscription period.

Even though there are some ideas about authentication in SUBSCRIBE process, like acting as
a proxy, using a "401(Bad Request)" response, or a "407 (Proxy Authentication Required)". If
authorization fails based on an access list or some other automated mechanism (i.e., it can be
automatically authoritatively determined that the subscriber is not authorized to subscribe),

the receiver should reply to the request with a "403 Forbidden” or "603 Decline” response.

110

Currently in SIP, even if an eavesdropper leamns the Call-ID, To, and From headers of a dialog,
they cannot easily modify or destroy that dialog if Digest authentication or end-to-end
message integrity are used.

But which way is more suitable for MNs in MANET still needs to be considered.

6.3.4 Failure of the leader of an ALM group

When a group leader wants to leave the group, it could send BYE message to the nearest
group members. Then the new group leader using the same Event-ID and Request-URI to
sends the NOTIFY g message to all group members.

It is possible that the leader of an active ALM group failed or disconnected abruptly. In the
profile list of each ALM group member, the Group Member field contains the list of
participants of the ALM group. Since it is based on the meshed network, the failure or the
disconnection of the leader of an ongoing ALM group should not disrupt the group. When a
group member notices that the leader is “missing”, it compiles a NOTIFY g message and
sends to all the group members.

This mechanism permits to keep the multicast group even if the leader fails, and in the case of

the fragmentation of the ad-hoc network.

11

Reference

[1] M.Gerla and J.T.Tsai, “Multicaster, mobile, multimedia radio network”, ACM-Blatzer
Wireless Networks, Vol.1, Issue.3, 1995, pp: 255-265

[2] B.G Evan, K Baughan, “Visions of 4G”, IEEE Electronics & Communications
Engineering Journal, Vol.12, Issue.6, Dec. 2000, pp: 293-303

[3] Parasant Mohapatra, Jian Li and Chao Gui, “QoS in Mobile Ad Hoc Networks”, IEEE
Wireless Communications, Vol.10, Issue.3, June, 2003, pp: 44-52

[4] S.Deering and D.Cheriton, “Multicast Routing in Datagram Internetworks and Extended
LANs”, ACM Transactions on Computer Systems, Vol.§8, Issue.2, May 1990, Pp: 85-110

[5] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec and Antony Rowston, “SCRIBE: A
large-scale and decentralized application-level multicast infrastructure”, IEEE Journal on
Selected Areas in Communications, Vol.20, Issue 8, Oct 2002, pp: 1489-1499

[6] Chao Gui and Prasant Mohapatra, “Efficient Overlay Multicast for Mobile Ad Hoc
Networks”, IEEE Wireless Communications and Networking (WCNC), Vol.2, Mar 2003, pp:
1118-1123

[7} Li Xiao, Abhishek Patil, Yunhao Liu, Linoel M.Ni, and A.-H Esfahanian, “Prioritized
Overlay Multicast in Mobile Ad-Hoc Environments”, IEEE Computer Magazine, Vol.37,
Issue.2, Feb 2004, pp: 67-74

[8] Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma, Marcel Waldvogel, “ALMI: An
Application Level Multicast Infrastructure”, In Proceedings of 3™ Usenix Symposium on
Internet Technologies & Systems, Mar 2001, pp: 49-60

[9] Reuven Cohen and Gideon Kaempfer, “A Unicast-based Approach for Streaming
Multicast”, IEEE INFOCOM 2001, Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, Vol.1, 22-26 Apr 2001, pp:
440-448

[10] Carlos de Morais Cordeiro, Hrishikesh Gossain and Dharma P.Agrawal, “Multicast over
Wireless Mobile Ad Hoc Networks: Present and Future Directions”, IEEE Network, Vol.17,
Issue.1, Jan/Feb 2003, pp: 52-59

[11] E.Royer, and C.E.Perkins, ‘“Multicast operation of the ad-hoc on-demand distance vector
routing protocol”, Proc. Of the 5™ ACM/IEEE Annual Conf. on Mobile Computing and

112

Networking, Aug 1999, pp: 207-208

[12] Sang Ho Bae, Sung-Ju Lee, William Su, Mario Gerla,, “The design, implementation, and
performance evaluation of the on-demand multicast routing protocol in multihop wireless
networks”, IEEE Network, Vol.14 , Issue. 1 , Jan-Feb 2000, pp:70 - 77

[13] C.W.Wu, Y.C.Tay, “AMRIS: a multicast protocol for ad hoc wireless networks”, IEEE
Military Communications Conference Proceedings, MILCOM 1999, Vol.1, 31 Oct-3 Nov
1999, pp: 25-29

[14] Jason Xie, Rajesh R.Talpade, Anthony Mcauley and MingYan Liu, “AMRoute: Ad Hoc
Multicast Routing Protocol”, Mobile Networks and Applications, Vol.7, 2002, pp: 429-439

[15] J.J.Garcia-Luna-Aceves and E.L.Madruga, “The Core-Assisted Mesh Protocol”, IEEE
Journal on Selected Areas in Communications, Vol.17, Issue.8, Aug 1999, pp:1380-1394

[16] Alexander Klemm, Christoph Lindemann and Oliver P.Waldhorst, “A Special-Purpose
Peer-to-Peer File Sharing System for Mobile Ad Hoc Networks”, Proc.IEEE Semiannual
Vehicular Technology Conference 2003, VTC2003, 6-9 Oct 2003, Vol.4, pp: 2758-2763

[17] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “Session Initiation Protocol”,
RFC 3261, June 2002.

[18] 3™ Generation Partnership Project (3GPP), http://www.3gpp.org
[19] 3™ Generation Partnership Project 2 (3GPP2), http://www.3gpp2.org

[20] Mobile Wireless Internet Forum,

http://www.openmobilealliance.org/tech/affiliates/mwif/mwifindex.html

[21] R. Mahy, B. Campbell, R. Sparks, J. Rosenberg, D. Petrie, A. Johnston, “A Call Control
and Multi-party wusage framework for the Session Initiation Protocol (SIP)”,
draft-ietf-sipping-cc-framework-02.txt, March 7, 2003

[22] Jonathan Lennox, Henning Schulzrinne, “A Protocol for Reliable Decentralized
Conferencing”, Proceedings of the 13™ International workshop on Network and operating
systems support for digital audio and video, NOSSDAV’03, June 1-3, 2003, pp: 72-81

[23] Hechmi Khlifi, Anjali Agarwal, Jean-Charles Grégoire, “A Framework to Use SIP in
Ad-hoc Networks”, IEEE CCECE 2003, Vol.2, 4-7 May 2003, pp: 985-988

[24] NodoKa Mimura, Kiyohide Nakauchi, Hiroyuki Morikawa and Tomonori Aoyama,
“RelayCast: A Middleware for Application-level Multicast Services”, Proc.3™ International
Symposium on Cluster Computing the Grid, May 12-15, 2003, pp: 434-441

[25] Liang Cheng and Ivan Marsic, “Service Discovery and Invocation for Mobile Ad Hoc
Networked Appliances”, Proc.2™® International Workshop on Networked Appliances

(IWNA’2000), Nov.30-Dec.1, 2000
113

[26] Marco Conti, Giovanni Turi, Gaia Maselli, Jon Crowcroft, Sven Ostring, Pietro
Michiardi, Refik Molva, Jose Costa Requena, Piergiorgio Cremonese, Veronica Vanni, Ivan
Defilippis, Silvia Giordano, Alessandro Puiatti, “ MobileMAN - Architecture, protocols and
services”, http://cnd.iit.cor.it/mobileMAN/deliverables/MobileMAN Deliverable DS5.pdf,
MobileMan Technical Report, Oct 2004

{27] Sumi Helal, Nitin Desai and Varum Verma, “Konark - A Service Discovery and
Delivery Protocol for Ad-hoc Networks”, Proceedings of the Third IEEE Conference on
Wireless Communication Networks (WCNC), Vol.3, March 2003, pp: 2107-2113

[28] Sun Microsystems, http://wwws.sun.com/software/jini/

[29] J.Veizades, E.Guttman, C.Perkins and S.Kaplan, “Service Location Protocol”, RFC 2165,

Internet Engineering Task Force, June 1997.

[30] J.Rosenberg and H.Schulzrinne, “Guidelines for Authors of Extensions to the Session
Initiation Protocol (SIP)”, draft-ietf-sip-guidelines-07.txt, October 27, 2004

[31] AVAYA Inc., “Evolving to Converged Communication with Session Initiation Protocol
(SIP)”, http://www1.avaya.com/enterprise/whitepapers/1b2337.pdf, white paper, February
2004

[32] A. B. Roach, “Session Initiation Protocol (SIP)-Specific Event Notification”, RFC 3265,
June 2002

[33] Yang-hua Chu, Sanjay GRao, Srinivasan Seshan and Hui Zhang, “A Case for End
System Multicast”, IEEE Journal on Selected Areas in Communications, Vol.20, Issue.8, Oct
2002, pp: 1456-1471

[34] Cristian Tuduce and Thomas Gross, “Organizing a Distributed Application in a Mobile
Ad hoc Network”, Proceeding of the Second IEEE International Symposium on Network
Computing and Applications (NCA’03), Apr 2003, pp: 231-238

[35] Barbosa e Oliveira et al., “Evaluation of ad-hoc routing protocols under a peer-to-peer
application”, in IEEE Wireless Communications and Networking (WCNC), March 2003,
Volume: 2, pp: 1143-1148

[36] S.Donovan, “The SIP INFO Method”, RFC 2976, October 2000

[37]1 J.Rosenberg, H.Schulzrinne, “Reliability of Provisional Responses in Session Initiation
Protocol (SIP), RFC 3262, June 2002

[38] J.Rosenberg, “The Session Initiation Protocol (SIP) UPDATE Method”, RFC 3311,
September 2002

[39] B.Campbell, H.Schulzrinne, C.Huitema, D.Gurle, “Session Initiation Protocol (SIP)

Extension for Instant Messaging”, RFC 3428, December, 2002
114

[40] R.Sparks, “The Session Initiation Protocol (SIP) Refer Method”, RFC 3515, April 2003

[41] J.Rosenberg, “A Session Initiation Protocol (SIP) Event Package for Registrations”, RFC
3680, March 2004

[42] Upkar Varshney, “Multicast Over Wireless Networks”, Communication of the ACM,
Vol.45, No.12, Dec 2002, pp: 31-37

[43] Jie Wu, “Extended Dominating-Set-Based Routing in Ad Hoc Wireless Networks with
Unidirectional Links”, IEEE Transactions on Parallel and Distributed Systems, Vol.13, No.9,
September 2002, Pp: 866-881

[44] Kai Chen and Klara Nahrstedt, “Effective Location-Guided Tree Construction
Algorithms for Small Group Multicast in MANET”, Proceedings of IEEE 21¥ Annual Joint
Conference of the IEEE Computer and Communications Societies, INFOCOM 2002, Vol.3,
23-27 June 2002, pp: 1180-1189

[45] Jie Wu and Hailan Li, “Dominating-Set-Based Routing Scheme in Ad Hoc Wireless
Networks”, Wlley Series on Parallel And Distributed Computing, Handbook of wireless
networks and mobile computing, 2002, pp: 425-450

[46] Thiagaraja Gopalsamy, Mukesh Singhal, D.Panda and P.Sadayappan, “A Reliable
Multicast Algorithm for Mobile Ad hoc Networks”, Proceedings of the 22" International
Conference on Distributed Computing Systems (ICDCS’02), 2-5 Jul 2002, pp: 563-570

[47] Nodoka Mimura, Kiyohide Nakauchi, Hiroyuki Morikawa, Tomonori Aoyama,
“RelayCast: A Middleware for Application-level Multicast Services”, 3rd International
Symposium on Cluster Computing the Grid, May 12-15, 2003, pp: 434-441

[48] Igor Miladinovic, Johannes Stadler, “Multi-Recipient Request in the Session Initiation
Protocol”, International Conference on Applied Informatics, Innsbruch, Austria, Feb 10-13,
Al PDCN 2003, Proceedings of the 21 IASTED International Conference APPLIED
INFORMATICS, pp: 801-806

[49] R. Mahy, D. Petrie, “The Session Initiation Protocol (SIP) "Join" Header”, RFC 3911,
October 2004

[50] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Antony Rowstron, “Scalable
application-level anycast for highly dynamic groups”, Technology and Business Models, 5%
COST264 International Workshop on Networked Group Communications, NGC 2003,
Munich, Germany, September 16-19, 2003, pp: 47-52

{51] Jie Wu and Hailan Li, “A Dominating-Set-Based Routing Scheme in Ad Hoc Wireless
Networks”, Telecommunication Systems, A special issue on Wireless Networks, Volume:18,
Issue 1, Sep 2001, pp: 13-36.

115

[52] Sun Microsystems, “The JAIN APlIs: Integrated APIs for the Java Platform”, White Paper,
2002

[53] Sun Microsystems, “JAIN Technology: Serving the Developer Community”,
http://java.sun.com/products/jain/jain0503.pdf, 2003

[54] Sun Microsystems, “JAIN Introduction”,
Jjp-sun.conysolutions/infra/jws/integration/pdf/MasafumiWatanabe.pdf, 2004

[55] Yongguang Zhang and Wei Li, “An integration Environment for Testing Mobile Ad-Hoc
Networks”, Proceedings of the 3 ACM intemnational symposium on Mobile ad hoc
networking & computing, MOBIHOC 02, June 9-11, 2002, EPFL Lausanne, Switzerland, pp:
104-111

{56] H.Schulzrinne and J.Rosenberg, “SIP call control services”,
draft-ietf-mmusic-sip-cc-01.txt, Internet draft, Internet Engineering Task Force, June 1999,

Work in progress

[57] Jonathan Lennox, Henning Schulzrinne, “A Protocol for Reliable Decentralized
Conferences”, NOSSDAV’03, June 1-3, 2003, Monterey, California, USA, pp: 72-81

[58] David Lee, Dongluo Chen, Ruibing Hao, Raymond E.Miller, Jianping Wu and Xia Yin,
“A Formal Approach for Passive Testing of Protocol Data Portions”, Proceedings of the 10™
IEEE International Conference on Network Protocols, ICNP’02, 12-15 Nov 2002, pp:
122-131

[59] Ayman El-Sayed, Vincent Roca, “A Survey of Proposals for an Alternative Group
Communication Service”, IEEE Network, Vol.17, Issue.1, January/February 2003, pp: 46-51

[60]} 1.Miladinovic, J.Stadler, “A simulation study of multi-recipient message in the Session
Initiation Protocol”, The 8" International Conference on Communication Systems, 2002,
ICCS 2002, Vol .2, pp: 977-982

[61] David B.Johnson, David A.Maltz, Josh Broch, “DSR: The Dynamic Source Routing
Protocol for Muiti-Hop Wireless Ad Hoc Networks” in Ad Hoc Networking, edited by
Charles E.Perkins, Chapter 5, Addison-Wesley, 2001, pp: 139-172

[62] Parasant Mohapatra, Jian Li and Chao Gui, “QoS in Mobile Ad Hoc Networks”, Special
Issue on QoS in Next-Generation Wireless Multimedia Communications Systems in IEEE

Wireless Communications Magazin, Vol.10, Issue.3, June 2003, pp: 44-52

116

