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Chapter 1

Introduction

Fault diagnosis and identification have been widely researched during the
recent years due to the increasing demand on reliable operation of safety
critical control systems, such as autonomous vehicles. The main tasks of fault
diagnosis are to detect and isolate occurring faults in order to avoid overall
failure of the monitored system and any catastrophes involving human
fatalities and material damage [1].

The basic idea in fault detection system is to generate signals that reflect
inconsistencies between the nominal and faulty operating conditions. Such
signals known as residuals are usually calculated using a number of
analytical methods [2].

The monitoring of faults in feedback control system components (sensors,
actuators, etc) has to be known as fault detection and isolation (FDI). This
can be achieved with two main approaches, namely model-based and process
history-based using either qualitative or quantitative modeling [1], [2], [3].

The schematic diagram in Fig. 1.1, presents a detailed classification for the



diagnostic methods that are extensively researched during the last decades.

Model-based approaches use prior mathematical information about the
system to model the normal process. Based on some fundamental
understanding of the physics of the monitored process, the model can be
developed. This understanding is expressed in terms of mathematical
functional relations between the inputs and the outputs of the system in
quantitative models (differential equations, state space methods, transfer

functions, etc) [3], [4], [5].

Diagnostic Methods

Process Model-Based Process History-Based

Quantitativ Qualitative /\ o
Qualitative Quantitative

Extended /\
Kalman Filter QTA
Observers Causal Models Abstraction SE?;:;t
Hierarchy Y Neural
S Networks
Parit
¥ opace L Statistical
Diagraphs Qualitative
Physics Functional

Fault Trees Structural PCA/PLS  Statistical
Claseifiers

Fig. 1.1 Classification of diagnostic algorithms [3]

Quantitative model-based methods are based on parameter estimation, state
estimation or parity space concepts; the philosophy behind these approaches

are that a fault will cause changes to certain physical parameters and



measurements, which in turn will lead to a change in certain model
parameters or states. The faults can be detected and isolated by monitoring
the estimated parameters or states. A prior knowledge is assumed about the
relationships between the faults and the model parameters (which
parameters are likely to change and how they changed) or states (how many
state variables and their possible physical significance) [5].

Patton et al. [5] summarized some special properties of the quantitative
model-based FDI methods, based on their experience with real processes and
simulations as follows:

Parameter Estimation

Model structure must be known

- Suitable especially for multiplicative faultst and additive faultst on
the input and output signal.

- Uniquely detectable for various parameter changes

- Very small changes are detectable, which includes the detection of
slowly developing as well as fast developing faults

- Possible deep fault diagnosis (physical coefficients)

- Possible on-line real-time application, if not very fast processes

State Estimation

- The model structure including parameters must be known rather

t These are changes (abrupt or gradual) in some plant parameters. They cause changes in the
plant outputs which depend also on the magnitude of the known inputs [6].

f These are unknown inputs acting on the plant, which are normally zero and which, when
present, cause a change in the plant outputs independent of the known inputs [6].



accurately

- Suitable especially for additive faults, mostly multi-output signals
required

- Very fast reaction after sudden faults

- Only some parameter changes detectable (depends on selection of state
variables and lumping with other parameters)

- Possible on-line real-time application for fast processes, if not too
many observers required

- No input signal changes required for additive faults (but then some
parameter changes, e.g., time constants, not detectable)

- Mostly only relatively large faults detectable

Parity Equations

In

- Model structure and parameters must be known and must be fit the
process well

- Suitable especially for additive faults

- Very fast reaction after sudden faults

- Possible on-line real-time application for fast processes

- No input signal changes required for additive faults (but then some
parameter changes not detectable)

- Some faults can be small to be detected (e.g., additive faults and
gains),and some must be large (e.g., time constants)

contrast to the quantitative models, in qualitative models-based the



relationships among system variables and parameters are used to describe
the system behavior in qualitative terms such as causalities and IF-THEN
rules. The qualitative model can be developed either as qualitative causal
models or abstraction hierarchies. The knowledge in the casual models can be
represented qualitatively in various forms, such as diagraphs, fault trees or
qualitative physics, more detailed regarding these methods can be found in
[71.

Another diagnostic approach is based on the process history of the monitored
system. In this approach, it is assumed that a large amount of historical
process data is available. This data can be transformed and presented as a
prior knowledge to a diagnostic system through different methods which are
known as feature extraction. The extraction process can be either
quantitative or qualitative in nature. Qualitative history information can be
extracted mainly by expert systems and qualitative trend analysis (QTA).
Trend analysis and prediction fepresent important parts of process
monitoring and supervisory control. QTA often provides valuable information
that facilitates reasoning about process behavior. Most malfunctions cases
leave a distinct trend in the monitored actuator or sensor. These distinct
trends can be utilized suitably in identifying the underlying abnormality in
the process; so that, an early faults detection can be accomplished by a
suitable classification and analysis of process trends which leads to a quick

control [8].



Fault diagnosis using rule-based expert systems needs an extensive database
of rules and the accuracy of diagnosis depends on these rules. Expert system
tasks are time consuming due to the necessity for a huge amount and
detailed database of rules and many process experts. Also, it suffers from the
uniqueness of knowledge and the necessity for rules updating when large
industrial plants are considered [4].

Fuzzy logic is now being investigated as powerful modelling and decision
making tool for nonlinear FDI systems. Fuzzy logic methods for fault
diagnosis problem belong to the sub-class of rule-based expert system; it can
express expert knowledge in terms of natural language statements. It has the
potential to formulate the qualitative relationships among the model
variables of the process being monitored using IF-THEN rules. Fuzzy sets
perform a smooth interface between the qualitative variables involved in the
rules and the numerical data at the inputs and outputs of the model. The
appealing feature of fuzzy logic is that its ability to deal with imprecise facts
or noisy data and is therefore suited for applications where complete
information about fault and system is not available to the FDI designer [1],
(51, [4], [9].

Decision making stage in FDI system, is a logic decision process that
transform the residual signals into qualitative statements. Therefore, the
problem of decision making can be treated in a novel way with the aid of

fuzzy logic [9]. The principle of residual evaluation using fuzzy logic can be



fulfilled in three steps .Firstly, the residuals have to be fuzzified, then they
have to be evaluated by an inference mechanism using fuzzy IF-THEN rules,
and finally they have to be defuzzified. The introduction of fuzzy logic in
decision making stage can improve the reliability of FDI methods for real
industrial processes [10], [11], [13].

Statistical and non-statistical classifiers represent the main methods used to
extract quantitative history information, main statistical feature extraction
methods are principle component analysis (PCA), partial least squares (PLS)
and statistical pattern classifier. Quantitative feature extraction approaches
essentially formulate the diagnostic problem-solving as a pattern recognition
problem. The objective of pattern recognition is the classification of data
vectors into predetermined classes, but the classification task in statistical
methods can be done using knowledge of a prior class distribution [8]. For
more details, authors in [3], [7], and [8] have reviewed fault diagnosis
problem ibn three parts.

Of particular interest to us are neural networks which are an important class
of non-statistical classifiers. Recently, neural networks have been researched
extensively in literature, and they have been employed successfully in
pattern recognition as well as system identification [12], [14], [15], [18] and
proposed as powerful technique in fault diagnosis problem-solving [19], [22],
The appeal of neural networks and its application to fault diagnosis that has

been studied in [16], [17], [23], are due to their capabilities to cope with



nonlinearities, complexities, uncertainties, and noisy and corrupted data.
Neural network constitute suitable modeling tool for representing highly
nonlinear processes.

Generally, it is more advantageous to develop a nonlinear neural network
based model for a range of operating conditions rather than to develop a bank
of linear models, each developed for a particular operating point, therefore
rendering neural networks as ideal tools for generating residuals [3].
Alessandri [20] has proposed a fault diagnosis technique for nonlinear
systems based on using a bank of neural estimators and applied it to
diagnose actuator and sensor faults in a small unmanned underwater
vehicle. The diagnosis algorithm was accomplished by means of neural
network estimators, which provides estimates of parameters that describe
actuator, plant, and sensors fault.

Karpenko et al. [21] has presented two methodologies to solve the FDI
problem using feedforward neural networks. Firstly; the network assigns
each vector of input data to a specific class of operating condition (either
normal or faulty). The size of the output layer grows as the number of
possible fault classes increases. But the neural network in the second
methodology estimate the magnitude of each faulty condition, and only one
neuron is required for each failure mode in the output layer of the trained
network. As a result the size of the network can be reduced significantly.

Various developed FDI approaches show different properties with regard the



diagnosis of different faults in a process. The capabilities of FDI system can
be enhanced by taking the advantages of combining these methods
(quantitative and qualitative methods). This combination can also minimize
the disadvantages of the two approaches; particularly, it is important to
reduce or eliminate the ambiguity in qualitative reasoning. Hence, main
future research directions are toward combining these methods together to
provide highly reliable diagnostic algorithms. For example, fuzzy logic can be
used together with state space models or neural networks [1].

A recent research activity has focused on the integration of neural networks
and fuzzy logic through a neuro-fuzzy system for nonlinear FDI systems. The
goal is to integrate the neural network learning ability with the explicit
knowledge of fuzzy logic. The underlying concept is to structure a neural
network, which can model the nonlinear systems efficiently, in a fuzzy logic
format. Therefore, the network can be trained more rapidly and will provide
explicit description about the causes of the faults. There are several possible
approaches reported in the literature of combining fuzzy logic and neural
network [9], [18].

Another form of integration can be obtained using a model-based method
with fuzzy logic to formulate the so-called fuzzy observers. The main idea is
to use the Takagi-Sugeno (T-S) fuzzy model which describes the nonlinear
dynamic system by a number of locally-linearized models. According to the T-

S model, a non-linear dynamic system can be linearized around a number of



operating points. Each linear model represents local system behaviour

around the operating point and is described by fuzzy IF-THEN rules [9].

1.1 Desirable Characteristics of a Fault Diagnostic

System

Fault diagnosis area has a variety of approaches than can fulfill the
diagnostic requirements. So that it is useful to identify a set of desirable
characteristics that a diagnostic system should possess in order to compare
the proposed approaches against such a common set of requirements or
standards.

Venkatasubramanian et al. [3] presented a set of desirable attributes that the

diagnostic system should possess ideally, as following:

1. Quick detection and diagnosis

The reaction of the diagnostic technique should be fast enough to detect and
diagnosis process malfunctions with reasonable small delay after their
existence to prevent any serious consequences. The fulfillment of quick
response goal in the face of Various faults means that the diagnostic
algorithm should be sensitive to noise, disturbances and modeling error,
which could lead to a conflict with the toierable performance goal under

normal operating conditions.

10



2. Isolability

It can be defined as the ability of the diagnostic algorithm to differentiate
between various faults. The isolation performance depends on the physical
properties of the plant, on the size of faults, noise, disturbance and modeling
uncertainties, and on the algorithm design. Further, some faults can not be
1solated from other ones because they act on the physical plant in an
undistinguishable way. There is a trade-off between the isolability and the

rejection of the modeling uncertainties.

3. Robustness

It refers to the ability of the diagnostic algorithm to operate under the
presence of noise, disturbance and modeling uncertainties, with minimal
false alarms. Also, being robust means the performance of the diagnostic

technique degrades gracefully instead of failing totally and abruptly.

4. Novelty identifiability

The Criterion behind this attribute can be defined as the ability of the
diagnostic algorithm to decide under current conditions, whether the function
of the monitored process is normal or not, and if not, whether the cause of
abnormality is known malfunction, or an unknown (novel) malfunction. The

designer expect that the diagnostic algorithm has the capability to recognize

11



the occurred novel faults and not misclassify them as one of the known

malfunctions or as healthy operation.

5. Explanation facility

In addition to being capable to identify the source of malfunction, a diagnostic
algorithm should also provide detailed information and explanation on how
the fault originated and propagated to the current situation, which requires
the ability to reason about the cause and effect relationships in the process.
The operator decision and evaluation relies on the diagnostic system
recommendations, so that the diagnostic system has to justify its
recommendations. Moreover, a comprehensive explanation should be
provided by diagnostic system such as, why certain hypotheses were proposed

and why certain others were not.

6. Classification error estimation

A prior estimate on the classification error that can occur i1s a great
characteristic that the diagnostic system could provide. Integrating the user’s
confidence on the reliability of the diagnostic algorithm is an important
practical requirement. Such error estimations would be useful to project
confidence level on the diagnostic decisions by the system which make the
user feels more comfortable for the reliability of the system recommendations

during its operation.

12



7. Adaptability

The diagnostic algorithm should be adaptable to various changes that could
happen to the monitored process over the time, these changes could refereed
to external inputs act on the process it self , structural changes, disturbances
or even to changing in the environmental conditions. The diagnostic system
should be possible to gradually develop its scope, whenever more information

becomes available as new cases and problems emerge.

8. Multiple fault identifiability

The capability of the diagnostic system to identify multiple faults is an
important and at the same time it is difficult task due to the interacting
nature of most faults, especially for nonlinear systems, where the diagnostic
system may not be able to use the individual fault patterns to model the
combined effect of the faults. Moreover, for large and complex processes, it
would be combinatorially forbidden to design separate diagnostic systems for

various multiple fault combinations.

- 9. Modeling requirements
The amount of modeling requirements is an important factor in development
of a diagnostic classifiers and it should be as minimal as possible, in order to

perform fast and easy deployment of real-time diagnostic classifiers.

13



10. Storage and computational requirements

Fast real-time algorithms, usually, requires less complex computational
implementations and might need high storage requirements. The diagnostic
system should be able to compromise reasonably between the system

performance and the above mentioned requirements.

1.2 Contributions of the Thesis

In this thesis, our goal is to develop a solution for the problem of fault
detection and isolation in the actuator system of the ACS of a satellite based
on neural networks approaches. The tasks of FDI have been fulfilled through
two stages.

A neural residual generator is an essential part in order to generate residual
errors that can reflect the real behavior of the monitored process with respect
to it’s working under normal conditions. This process is then followed by an
adaptive neural classifier that is utilized to perform the isolation task by
evaluating the generated residuals from the neural estimator in order to
provide one with detailed information about occurred faults, such as the
occurrence time and its location.

The contribution of this thesis in solving the above problems can be
summarized as follows:

1. Developed a generic three-axis stabilized satellite control model based

on the reaction wheels with no momentum under Matlab-SIMULINK

14



environment. Three separate PD controllers were designed and
employed to command the three reaction wheels for control of each
satellite axis.

2. Developed a dynamic neural network residual generator based on the
Dynamic Multilayer Perceptron Network (DMLP). The developed
neural observer is applied to the reaction wheel model that is
commonly used as an actuator in the attitude control subsystem of a
satellite. A linear model-based observer acting as a residual generator
is also developed based on the linear model of the reaction wheel in
order to serve as a benchmark for the comparative analysis.

3. Developed an adaptive neural network classifier based on Learning
Vector Quantization (LVQ) network to be utilized as an isolation
methodology.

4. The capabilities and advantages of our proposed dynamic neural
network and adaptive neural classifier schemes are demonstrated
under different fault scenarios and compared with a standard model-

based approach.

1.3 Thesis Overview

The organization of this thesis 'is as follows. A neural FDI scheme 1s
developed in Chapter 2 and a dynamic neural network structure and an

adaptive neural classifier are introduced in details. An overview about the

15



ACS is presented in Chapter 3 in addition to modeling of a generic three-axis
stabilized satellite control based on the reaction wheels and with no
momentum bias using Matlab-SIMULINK. Various faulty scenarios and the
corresponding simulation results for the application of our proposed dynamic
network and adaptive neural classifier are presented in Chapter 4. In order
to demonstrate and illustrate the capabilities of our proposed fault detection
approach, a comparative evaluation of the results is performed using as a
benchmark a linear model-based observer. Finally, conclusions and

recommendations for future work are provided in Chapter 5.

16



Chapter 2

Neural Fault Detection and

Isolation (FDI) Algorithm

Model-based FDI approaches rely on the mathematical models of the plant to
identify the inconsistencies between the nominal and faulty operations.
However, it is well known that construction of mathematical models for
complex and nonlinear systems can be quite difﬁcult and time consuming.
Furthermore, a great deal of experimentation is generally required to
validate the model-based approaches. Due to the limitations and difficulties
with the model based approaches [4], [11], [21], in this thesis we will
investigate an alternative approach that is.based on using artificial neural
networks. In this approach a neural FDI scheme, as depicted in Fig. 2.1., will
be developed and employed to perform the detection and isolation tasks of the
diagnostic system using two different structures of neural networks which

can be summarized as follows:

17
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Fig. 2.1 General structure of neural FDI scheme

. Fault Detection

Fault detection or residual generation task represents the key part in FDI
algorithm. The fulfillment of this task is depending mainly on the modelling
of the dynamic behaviour of the monitored process, which can be performed
by constructing a Dynamic Neural Network (DNN). The constructed neural
networks, is called neural residual generator, should have the ability to
identify all known modes of operations under healthy and faulty conditions.
In other words, the generated residual error signals by the neural observer
should have the ability to distinguish between the faulty and non-faulty mode
of operation.

. Fault Isolation

Isolation task can be done by evaluating the generated residual signals from
the neural observer, and each residual can be treated as pattern referred to a
specific fault. So that the problem of fault isolation can be seen as pattern

recognition or pattern classification; the idea beyond the residual evaluation
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is to extract fault information from the residual itself in order to know which
fault has happened and when. The neural classifier is constructed based on
the static neural network. Dynamic properties are not necessary to perform

the task of residual evaluation.

2.1 Dynamic Neural Networks in Literature

Recently, a great deal of attention has been paid to dynamic neural networks

due to their capabilities in modeling, identification of nonlinear dynamical

systems, control and filtering application [18], [24] ], [25]. On the other hand,

many = engineering applications are still focused on using static neural

networks as pattern classifiers or non-linear function approximators. The

static mapping between the input-output is well suited for pattern

recognition applications. Both of the input and output vectors are

independent of time. However, these kind of neural networks suffer from the

following drawbacks [26]:

@) The information flows from neuron A to B, to C never comebacks to A
in feedforward networks.

(ii))  The structure of an artificial neuron is not dynamic in nature and
performs a simple summation operation, and

(i) The static neuron model doesn’t take into account the time delays that
affect the dynamics of the system. Time delays are the inherent

characteristics of biological neurons.
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Unlike static neural networks, dynamic neural networks employ extensive
feedback between the neurons of a layer, and/or between the layers of the
network. This feedback implies that the network has local memory
characteristics. Because of feedback paths from their outputs to the inputs,
the response of dynamic neural networks is recursive. That is, the weights
are adjusted, the output is then recalculated, and the process is repeated. For
stable networks, successive iterations produce smaller and smaller output
changes until eventually the output become constant.

In addition to better representaﬁon of biological neural systems; DNN offers
better computational capabilities compared to static ones [26].

Recently, several approaches are proposed to introduce dynamic properties to
artificial neural networks. The obtained dynamic neural structures can be
mainly classified into two categories: the first category encompasses dynamic
neural structures which are developed based on the concept of single neuron
dynamics as an extension of static neural networks, while the second
category encompasses dynamic structure that developed based on the
interaction between excitatory and inhibitory or antagonistic neural

subpopulations [26], [29].

2.1.1 Dynamic Neuron Structures Based on Single

Neuron Dynamics

Based on the concept of single neuron dynamics as an extension of static

neural networks, there are four different structures that have been

developed:
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I. Recurrent Neural Network

Recurrent neural network, is one of the first dynamic neural network models
which is introduced by Hopfield. This model consists of a single layer network
included in a feedback configuration with a time delay as shown in Fig. 2.2.
y(k) and y(k+1) represent the states at instant 2 and k+1, xo represents the
initial value, W(k) denotes the vector of the neural weights, ¥[.] is the
nonlinear activation function and z-1 represents the time delay units which
are used to learn the dynamics of the system. Thus the network is fed with
current and delayed values of the process outputs. The order the system
dynamics must be known beforehand in order to specify the number of time

delay units [26], [28].

Static neural network

_______________________________________________

Fig. 2.2 State space model of the Hopfield neural structure [28]

Recently, however, multi-layered recurrent neural networks have been used
for many applications. Hopfield neural model has been widely used in many
applications such as system identification and control, robotics, machine

vision, pattern recognition and associative memories. In spite of the
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interesting applications that recurrent neural network have been used for,
the basic architecture of the neuron is static; that is, the neuron simply
provides a weighted integration of the synaptic inputs over a period of time.
In other words, there are no dynamical elements within the structure of the

neuron [26], [28].

II. Brain-State-in-a-Box (BSB) Neural Model

The BSB Neural model is a positive feedback system with amplitude
limitation. It consists of highly interconnected set of neurons that fed back
upon themselves. The BSB operates by using the built-in positive feedback to
amplify an input pattern, until all neurons in the structure are driven into
saturation. From the dynamic point of view, the BSB can be viewed as a
discrete linear system in a saturated mode. The main difference between the

BSB and usual discrete system is that the linear system is defined on

R™ while the BSB model is defined on closed n-dimensional hypercube.

Feedback Factor Unit Delay
B |e —p 21 |
Px(k) x(k)
o[ W WA &1
Weight Matrix Nonlinearity

Fig. 2.3 Block diagram of the BSB model [26]
The BSB model is shown in Fig. 2.3, and is defined by equations (2.1) and

(2.2),
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y(k)=x(k) + PW x(k) (2.1)

x(k+1) = ¥ly(k)] (2.2)

where W denotes weight matrix, x(k) is the state vector of the model at

discrete time % , W[.] is a piecewise linear function and P is a small positive
constant called feedback factor.

A natural application for the BSB model is clustering. This follows from the

fact that the stable corners of the unit hypercube act as point attractors with

well-behaved basins of attractions. Consequently, the BSB model may be

used as an unsupervised clustering algorithm, with each stable corner the

hypercube representing a cluster of related data [26], [30].

III. Tim-Delay Neural Networks (TDNN)
It 1s possible to use a static network to process time series data by simply
converting the temporal sequence into a static pattern by unfolding the
sequence over time. From a practical point of view, it is possible to unfold the
sequence over finite period of time. This can be accomplished by feeding the
input sequence into a tapped delay line into static neural network
architecture. Architecture like this is often referred to a Tim-Delay Neural
Networks (TDNN). It should be noted, however, that the TDNN is a
feedforward network; it attains dynamic behavior by virtue of the fact that
each synapse of the network is designed as a Finite Impulse Response (FIR)
filter. The TDNN neural structure has been used in many applications such

as text-to-speech conversion, system identification and control of nonlinear
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dynamical systems and phoneme recognition [26]. Authors in [31] have
developed four different structures of the adaptive form of the time delay

neural networks for identifying different classes of nonlinear system.

Iv. Dynamic Neural Unit (DNU)
The DNU is a dynamic model of the biological neuron. It consists of a second
order dynamics whose output constitutes the argument to a time-varying
nonlinear activation function. Thus, the DNU performs two distinct
operations: (i) the synaptic operation and (ii) the somatic operation. The
synaptic operation involves the determination of the optimum feedforward
and feedback weights, while the somatic operation determines the optimum

gain (shape) of the nonlinear activation function for a given task [26].

Nonlinear activation
function

y(k)

\¢——— Neural dynamics

Fig. 2.4 Basic structure of DNU [34]

The DNU comprises of memory elements (delay operators), and feedforward

and feedback synaptic weights representing a second-order dynamic
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structure followed by a nonlinear activation function as shown in Fig. 2.4
which can be described by the following difference equation:

Y(R) = apgx(k)+a;x(k —1)+ayx(k —2)-byy(k —1)-b,3(k — 2) (2.3)
where x(k) denotes the neural input, a = [@o a1 a2] and b = [bo b1] are the
vector of adaptable feedforward and feedback weights. The nonlinear
mapping operation on the output of the dynamic structure, ¥(k), yields a
neural output y(k) given by:

y(k)=Y(g, 3(k)) (2.4
where Y[.] is some nonlinear activation function, and gsis the somatic gain,

the parameter which controls the slope, of the activation function [32], [33].

2.1.2 Dynamic Neuron Structures Based On Neural

Subpopulations

The neural network structures described in the earlier section consider the
behavior of a single neuron as the basic computing unit for describing neural
information processing operations. Each computing unit in the network is
based on an idealized neuron. An ideal neuron is assumed to respond
optimally to the applied inputs. However, experimental studies in neuro-
physiology show that the response of a biological neuron appears random,
and only by averaging many observations it’s possible to obtain predictable

results. However, mathematical analysis has shown that these random cells
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can transmit reliable information if they are sufficiently redundant in
numbers [26].

The total neural activity generated within a tissue layer is a result of
spatially localized assemblies of densely interconnected nerve cells called
neural population, or neural mass. The neural population is comprised of
neurons, and its properties have a generic resemblance to those of individual
neurons. But it is not identical to them, and its properties can not be
predicted from measurements on single neurons. This is due to the fact that
the properties of neural population depend on various parameters of
individual neurons and also depend upon the interconnections between
neurons. The study of neural networks based on single-neuron analysis
precludes the above two facets of biological neural structures. The conceptual
gap between the functions of single neurons and those of numbers of neurons,
a neural mass, is still very wide. Each neural population may be further
divided into several coexisting subpopulations. A subpopulation contains a
large class of similar neurons that lie in close spatial proximity. The most
common neural mass is the mixture of excitatory (positive) and inhibitory
(negative) subpopulations of neurons. The excitatory neural subpopulation
increases the electro-chemical potential of the postsynaptic neuron, while the
inhibitory subpopulation reduces the electro-chemical potential. The
minimum topology of such a neural mass contains excitatory, inhibitory,

excitatory-inhibitory (synaptic connection from excitatory to inhibitory), and
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inhibitory-excitatory (synaptic connection from inhibitory to excitatory)
feedback loops. Based on this hypothesis, a neural model named P-N neural
processor was proposed for machine vision applications, and a dynamic
neural processor (DNP) also was proposed for robotics and control

applications [26], [35].

ue(k)

k
wilk) ———» | 1k)

wir

Fig. 2.5 Structure of Dynamic Neural Processor (DNP) [33]

The DNP consists of two DNUSs coupled in excitatory and inhibitory modes as
depicted in Fig. 2.5. The total inputs incident on the excitatory and inhibitory

neural units are described by equations (2.5) and (2.6) respectively,

xe(k) = we ur(k) + weeye(k-1) wE yik-1) - 6 (2.5)

x1(k) = wiuik) + wnyrk-1) werye(k—1) - 61 (2.6)
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where wr and wi, are the weights associated with the excitatory and
inhibitory neural inputs respectively, wge and win represent the self-synaptic
connection strengths, wir and wgr represent the inter-neuron synaptic
strengths, and 6g and 6, repfesent the thresholds of excitatory and inhibitory

neurons respectively [33].

2.2 Proposed Dynamic Neural Network for Fault

Detection Problem

The main feature of a dynamic neural network is its capability of internally
generating and embedding memory. This ensures that the network with its
dynamic properties will be responsive to time varying signals. Dynamic
properties can be introduced into a standard Multilayer Perceptron (MLP)
network by two means. Since the neuron models in MLPs are static,
introducing multiple recurrent connections with delays between layers
provides one with a possible mechanism to change the static MLP network
into a dynamic one. On the other hand, an alternative approach is to
augment an Infinite Impulse Response (IIR) filter to the neuron structure in
order to generate dynamics, resulting in a Dynamic Neuron Model (DNM), as
obtained in [36], [37], [38] , and [39].

For our proposed dynamic neuron a linear IIR filter and a nonlinear
activation module are incorporated. Taking into account the embedded

dynamic characteristics of a neuron will therefore make it unnecessary to
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introduce any global feedback structure. Consequently, simple feedforward
architecture may be utilized for the development of the learning algorithm,
and contrary to recurrent neural networks the stability analysis of the
network is more straightforward.

As a matter of fact a dynamic neural network is often called locally recurrent
globally feed-forward networks. In recent years, this kind of neural network
has been successfully applied in process modeling and system identification
[27], [34], [36], [37], [39], [40] and several fault diagnosis applications [29],
[38], [41], [42], [43], [44]. One of the basic and fundamental training methods
for the above specific dynamic network is the Extended Dynamic Back-
propagation Algorithm (EDBA) [36]. Furthermore, starting from a relatively
small structure we may develop an optimal architecture for the proposed
dynamic network by incrementally increasing the number of hidden neurons

until desired performance specifications are obtained [45], [46].

2.2.1 Dynamic Neuron Model (DNM)

A generalized structure of the dynamic neuron model that is proposed in [38]
is considered here. The structure of the proposed dynamic neuron is a
generalization of the conventional static model accomplished by adding an
Infinite Impulse Response (IIR) filter to the neuron transfer function. Such a
model with internal filter dynamics introduces appropriate dynamics for the

neuron mapping and “transfer function”.
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Fig. 2.6 General structure of the DNM with Pinputs [43]

(b0)
N

x(k)

Fig. 2.7 Structure of second order IIR filter [34]

Due to the introduction of the internal filter, the general neuron activity will
now depend on its internal states and therefore, the neuron does indeed
process past values of its own activity y(k) and its inputs uy(k) for p=1,2,...,P,
where P is the number of the inputs and % is the discrete time steps
(samples). Fig. 2.6 shows the structure of the proposed neuron that is
designated as the Dynamic Neuron Model (DNM), with P inputs; also the
three main operations are performed in this dynamic neuron structure. First,

the weighted sum of the inputs is calculated according to the expression [43]:

P
x(B)=wTulk) = prup(k) (2.7)
p=1
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where w = [wi1 w2 .. wp]T denotes the input-weight vector, P is the number of
inputs, and w(k) = [ui(k) wuok) .. up(k)]T is the input vector (T denotes the
transpose operator). Hence, the computed weighted sum of the inputs x(k) is
passed through the IIR filter. The corresponding characteristics of the filter

can be described by the following difference equation:
§k) =Y bx(k—i)-) ay(k—i) (2.8)
i=0 i=1

where x(k) denotes the filter input, a = [a1 a2 ... an]T and b = [bo b1.. ba]T are
feedback and feedforward paths weighted by the vector weight, n denotes the
filter order, and j(k)denotes the filter output. In our proposed dynamic
neural network, the filters under consideration are LTI dynamic systems of
second order as shown in Fig. 2.7.
Consequently, the neuron output can be formulated as:

y(k)=F(g - y(k)) (2.9)
where F() is the nonlinear activation function that produces the neuron

output y(k) and g is parameter of the activation function defining its slope.
Due to the adaptive nature of the parameter g, the dynamic neuron can
better model the biological neuron. Thus, the proposed dynamic neural
network is more elastic. Introduction of the slope parameter g to the
activation function operation can be very helpful, particularly in the case of
nonlinear squashing activation functions, i.e.! sigmoidal or hyperbolic
tangent. In the case when the magnitude of the data is large, the activation

function drives into its own saturation range and response of the neuron
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could become a constant value or a signal with negligible small amplitude.
This is a very undesirable effect, which can be compensated by application of
the adjustable slope parameter g [40].

Owing to the neuron’s internal dynamic properties the DMLP processes the
modeled system measurements at the currant time instant k thereby
reducing the input space of trained network in comparison with the Elman
and other recurrent DML networks. The dynamic MLP under consideration

doesn’t require past values of the process measurements [36].

2.2.2 Extended Dynamic Backpropagation Algorithm

The proposed dynamic neural network can have the same structure as a
standard feedforward backpropagation network. The calculated output error
is propagated back to the input layer through the hidden layers containing
dynamic filters, Where the extended dynamic backpropagation algorithm can
be defined and it can operate in both modes of training, that is, on-line or off-
line [13].

Consider a M-layered network with the same dynamic neurons described by

the differentiable activation function F(-). In Fig. 2.8, Sm denotes the number
of the neurons in the m-th layer and u(k)is the output of the s-th neuron of

the m-th layer at discrete time 2 (m = 1...M, s = 1... Sn). The activity of the s-

th neuron in the m-th layer is defined by [36]:
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Fig. 2.8 The M-layered feedforward neural network [36]

Based upon a given set of input-output training pairs, the main objective of

the learning process is to adjust all the unknown network parameters; which

include the weight matrix (w), the filter parameters matrix (a, b), and the

slope parameter matrix (g); where

|

Weight matrix (w1 m=1... M,s=1...Sm,p=1... Sm1
Filter feedback parameter matrix[a :m=1... M,s=1...Sm,i=1...n
Filter feedforward parameter matrix [b :m=1... M,s=1...8m,i=0...n

Slop parameter matrix [g]':m=1...M,s=1... Sm

In both static and dynamic neural networks, the objective is to determine an

adaptive algorithm or a rule which adjust the parameters of the network
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based on the network on a given set of input-output pairs. The idea of error
backpropagation is widely applied for that purpose in static context with
extension to dynamic ones. To define an EDBP algorithm, the standard
approach can be applied. Assuming that unknown parameters vectors w, a, b
and g are considered as elements of a parameter vector v, the learning
process involvés the determination of the vector v* which optimizes a
performance index J based upon the error function e(k) which may be defined

as [36]:

1& s 1& 2
I == ek == (5, (k) - (k) (2.11)
23 25

where e(k) denotes the output error defined as a difference between the
desired response yq(k) and the actual response y(k).

The adjustment of the parameters of the s-th neuron in the m-th layer
according to the EDBP algorithm has the form:

vi'(k+1)=v"(k)+ 1o, (RS (k) (2.12)
where v = [w, a, b, g] represents the unknown generalized parameter vector,

n is the learning rate, J." is the generalized output error which is described

below for both hidden and output layers, and S[(k)denotes the sensitivity

function for the elements of the unknown generalized parameter v.
The generalized output error is described as follows [36]:

e  Hidden layers generalized output error:

S,

m+l

SR =Y (8N k)gr b W F (51 () (2.13)

zs
z=1
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Output layer generalized output error:

5 (k) =e,(R)F (5" (k)

In turn the sensitivity function S;,(%) is defined as follows:

Sensitivity with respect to weight parameter w;;:

n

S (k)=g" (Zb{;‘uz‘(k—i)—iagsxs(k - i))
i=1

i=0
Sensitivity with respect to feedback parameter a :
S, (k) =—-gly;' (k—i)
Sensitivity with respect to feedforward parameter &7 :
Sy (k) =glx](k—1)
Sensitivity with respect to slop parameter g;":

S™ (k)= (k)

network adaptable parameter as follows:

Hidden layers parameters:
- Weight parameter w;;:

S,

wr(k+1) =w?(k)+ 77[ 3 (O R b W F ( y;';(k)))
z=1

g (ib;:u;;(k i)=Y arsy (k —i))
i=1

i=0
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(2.15)

(2.16)

(2.17)

(2.18)

Based on equations (2.12) — (2.18) we may rewrite the updating laws for each

(2.19)



~  Filter feedback parameter « :

=1

a(k+1)=a](k)- 77(2((5"‘“(k)g;'“’lb'"+1 mOF (&{:(k))jgs ¥ (k1) (2.20)
—  Filter feedforward parameter b :
Sass ,
b (k+1) =bs'"(k)+77(z (6 (k)gr by twi R (&ﬁ(k)))g;"x;"(k -1) (2.21)
z=1

-~ Slop parameter g.":

=1

grk+1) = g;“(k)+77(z(5’"*1(k)g;"”b”‘” R (&ﬁ(k)))&”‘(k) (2.22)

e Output layer parameters:

—  Weight parameter wy,

wl(k+1) =wh (k) +7(e, (k)F(yM(k)))gs( brum(k i)~ Za"‘S’” (k- ) (2.23)

is p
- Filter feedback parameter a;,

ol (k+1)=al(k)—n(e,(R)F (7" (k) gl 57 (k ~i) (2.24)
-  Filter feedforward parameter b :

br (k+1) =] (k) + (e, (R)F (7 (k))) grx(k —i) (2.25)
- Slop parameter g :

gr(k+1) =gl (k) +7 (e, (RIF (7 (k) 77 (k) (2.26)
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2.3 Proposed Static Neural Network for Fault Isolation

Problem

As mentioned at the beginning of this chapter the classification duties will be
performed by a static neural network. The static neural classifier will treat
the residual error signals generated from the neural observer as patterns and
so that the pattern classification is achieved.

In pattern classification the first and most important stage is feature
extraction. The extracted feature from the content of the input data, which
will be classified, is obtained ordinarily in an unsupervised manner. The self-
organizing map (SOM) is well suited for the purpose of feature extraction,
particularly if the input data are generated by a nonlinear process.

The actual classification is the second stage of pattern classification, during
this stage the extracted features from the input data are assigned to
individual classes. While the SOM has the ability to perform the
classification task too, the recommended procedure for best performance can
be obtained by integrating it with a supervised learning scheme for the
second step of classification. The mixed combination between a supervised
and an unsupervised technique (SOM) yields the basis of an adaptive pattern
classification that is hybrid in its nature [47].

An adaptive pattern classifier can be obtained through using a learning
vector quantizer as a supervised learning scheme. As shown in Fig. 2.9 the

second stage of adaptive pattern classification is provided by learning vector
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quantizer, which provides in its turn, a mechanism for the final fine tuning of

a feature map which is performed by a SOM algorithm.

Self Organizing Learning Vector
Input Data > Feature Map :> Quantizer

i

Teacher

Cl£s£ ialbils

Fig. 2.9 Block diagram of adaptive pattern classification [47]

The structure of a Learning Vector Quantization (LVQ) network can be
constructed using two layers as showﬁ in Fig. 2.10; a first competitive layer
and a second linear layer. The competitive layer learns to classify input
vectors while the linear layer transforms the competitive layer’s classes into
predefined target classifications. We refer to the classes learned by the
competitive layer as subclasses and the classes of the linear layer as target
classes. Both the competitive and linear layers have one neuron per (sub or
target) class. The constructed classifier has a simple structure and a non-
complicated training algorithm [47, 48].

In the LVQ network, each neuron in the first layer is assigned to a class, with
several neurons often assigned to the same class. Each class is then assigned
to one neuron in the second layer. The number of neurons in the first layer,
S1, will therefore always be at least as large as the number of neurons in the

second layer, S2, and usually will be larger [30], [48].
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Fig. 2.10 The architecture of LVQ network [48]

The network input of the first (competitive) layer of the LVQ will be

ul =-|W! - p| (2.27)
or, in vector form,
i 2| |
| b P | (2.28)
[

where W! represents the input weight matrix, { denotes the corresponded
neuron, and p represents the input vector. The output of the first layer of the
LVQ is given by

y' = compet(u') (2.29)
Therefore the neuron whose weight vector is closest to the input vector will

output one, and the other neurons will output zero. Thus, the winning neuron
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indicates a subclass, rather than a class as in competitive networks. There
may be several different neurons (subclasses) that make up each class.

The second layer of the LVQ network is used to combine subclasses into a
single class which is done by the weight matrix W2. The columns of W2
represent subclasses, and the rows represent classes. W2 has a single 1 in
each column, with the other elements set to zero. The row in which the 1
occurs indicates which class the appropriate subclass belongs to, in other
words,

w? =1=>Subclass i is a part of class &

The combining process of subclasses to form a class allows the LVQ network
to create complex class boundaries which overcome the limitations of the

standard competitive layers [30], [48].

2.3.1 LVQ learning

The learning in the LVQ network combines competitive learning with
supervision. The learning in the competitive layer is based on a set of
input/target pairs:
{p1, t, {pz, to, ..., {pQ, tQ}

Each target vector has a single 1. The rest of its elements are 0. The row in
which the 1 is existed indicates the proper classification of the associated
input.

Before learning occurs, each neuron in the second layer is assigned to an

output neuron. This generates the matrix W2. Typically, equal numbers of
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hidden neurons are connected to each output neuron, so that each class can
be made up of the same number of convex regions. All elements of W2 are set
to zero except for the following:

If hidden neuron i is to be assigned to class &, then set w;, =1

Once W2 is defined, it will never be altered. The hidden weights W! are

trained with a variation of the Kohonen rule.

The LVQ learning rule proceeds as follows:

— At each iteration, an input vector p is presented to the network, and the
distance from p to each prototype vector is computed.

—  The hidden neurons compete, neuron i* wins the competition, and the
i"th element of y! is set to 1.

—  Then, y! is multiplied by W2 to get the final output y2, which also has
only one nonzero element, &%, indicating that p is being assigned to class
k*.

—  We adjust the i*th row of W!in such a way as to move this row closer to
the input vector p if the assignment is correct, and to move the row away
from p if the assignment is incorrect.

—  if p is classified correctly, ( yz. =Z,. =1), then we compute the new value

of the i*th row of Wlas:

wh(q) =wh(g -D+a(p(q) -w;(g 1)) (2.30)
— if pis classified incorrectly, ( y% =1# t.=0), we compute the new value

of the i*th row
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wi(q) =w:(g -1 -alplg)-w:(g ~1) (2.31)

where a is the learning rate. The result will be that each hidden neuron
moves towards vectors that fall into the class for which it forms a subclass,

and away from vectors that fall into other classes [30], [48].

2.4 Conclusions

In this chapter, the neural fault detection and isolation scheme has been
presented which is based on two different neural architectures, namely, static
and dynamic neural network. A review on dynamic neural networks
structures has been reported. Dynamic Multilayer Perceptron (DMLP)
network has been proposed as a fault detection tool. Also, the learning vector
quantization network has been proposed as fault isolation tool. In the next
Chapter, a review on the Attitude Control Subsystem (ACS) of a satellite will
be presented along with a detailed description of the Matlab-SIMULINK
model of the ACS that has been developed in this thesis. Afterwards, in
Chapter 4, simulation results will be presented under different actuator

failures scenarios.
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Chapter 3

Modeling of Attitude Control

Subsystem (ACS) of a Satellite

Generally, satellites have provided various classes of service to mankind in
both of military and civil missions; such services as: weather forecasting,
providing communications to any point on the face of the earth and many
other missions.

The satellite is traditionally subdivided into eight subsystems, and each
subsystem 1s responsible to perform specific functions. A highly simplified
functional satellite block diagram is shown Fig. 3.1. This diagram is a useful,
concise way to visualize the relationships between the satellite subsystems.
Rich details regarding satellite structure and subsystems can be found in
[49], [51], [52], and [53].

In this chapter we will focus on modeling of one of the important spacecraft’s

subsystems which is the attitude control subsystem (ACS).
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Fig. 3.1 Simplified spacecraft block diagram [49], [51]

3.1 ACS Overview

Attitude control deals with the orientation of the spacecraft axes with respect
to an inertial reference frame. An instantaneous spacecraft attitude is
commonly described by a pitch angle, a roll angle, and a yaw angle.
Spacecraft attitude is measured as an angular deviation of the spacecraft
body axes from the inertial coordinates. The attitude control subsystem
controls the vehicle body axes such that the error in pitch, roll and yaw
angles are within defined limits.

The attitude control task can be divided into three subtasks:

1- Measuring attitude, which is done by attitude sensors such as

gyroscope;
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2- Correcting attitude, which is done by torqures or actuators such as
thrusters and reaction wheel; and

3- A control law, which is software that determines the magnitude and
direction of torque in response to a given disturbance.

The ACS, conceptually simple is a classic feedback control system as shown

in Fig. 3.2. If the spacecraft drifts off the desired attitude, the sensors detect

the error; the control law determines the magnitude of the response and

directs an actuator to correct it [49].

Sensors
Gyros Attitude Errors Correction Actuators
Sun Sensors @ Reaction Wheels
Thrusters

Horizon Sensors
y

Computer
Control law

A 4

Fig. 3.2 Attitude Control Operation [49]

3.2 ACS Actuators

3.2.1 Reaction Wheels

The reaction wheel is in essence a momentum transfer and storage device
which provides reaction torque to the vehicle and store angular momentum.

It's simply small rotating flywheel driven by an internal DC motor, which
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exchange momentum with the vehicle by changing wheel speed. While the dc
motor reduces wheel speed, the reaction wheel momentum is dumped by
holding the vehicle stationary with thrusters, or magnetic torquers. The use
of reaction wheels permits fine and damped attitude control. A zero
momentum configuration can be obtained when the reaction wheels are
placed on each of the three principles axes, the control law for each axis will
be linear, however, it is common practice to add a redundant wheel by placing
a fourth wheel in a position oblique to all axes. The function of this
arrangement is to accommodate any single wheel failure by the oblique
wheel, which is more efficient than providing three redundant wheels [49],

[50], [52].

3.2.2 Momentum Wheels

The main difference between the reaction wheels and momentum wheels is
speed bias because the flywheels are designed to operate at biased and
nonzero speed. Spacecraft can be stabilized using momentum bias system by

placing a momentum wheel along pitch axis [49], [52].

3.2.3 Control Momentum Gyros (CMGs)

CMGs may be used instead of reaction wheels for high torque applications;
they are single or double-gimbaled wheels spinning at a constant rate. A

control torque on the output axis of the spacecraft can be obtained by
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applying a commanded force to the input of the gyro. Its disadvantages comes
from their heavy weights and large size, more power consuming with respect
to reaction wheels, they are seldom used on smaller spacecraft. Necessity for
complex control law and a desaturation mechanism, also, are considered as

other disadvantages [49], [52].

3.2.4 Magnetic Torquers

Also it’s called torque rods, a torque rod is simply a wire coil wrapped around
a rod and it takes the advantage the magnetic filed of earth to generate a
correcting force on a spacecraft. These devices perform desaturation for
momentum-exchange systems and compensation for the spacecraft’s residual
magnetic filed or attitude drifts for minor disturbance torques. Because of
their dependency on earth’s natural magnetic filed, they are not usable for

deep space missions [52], [53].

3.2.5 Thrusters

Most spacecraft use thrusters as an actuators; they provide momentum to the
spacecraft by ejecting mass overboard in the form high veldcity exhaust gas.
Three types of thrusters are in use, which are cold gas, monopropellant
hydrazine and bipropellant. Thrusters can be used directly to control the
spacecraft attitude or used as momentum desaturation actuators for the

reaction wheels [52], [53].
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3.3 Attitude Control Techniques

The criteria of choosing the controlling technique of a spacecraft depending
mainly on how we define the attitude control subsystem requirements. The
most common ACS techniques, along with typical characteristics are

discussed below [49], [52], [53].

3.3.1 Spin Stabilization

A basic passive technique is that of spin stabilization. In this mode the entire
spacecraft spins around the axis with highest moment of inertia. A spin
stabilized spacecraft takes the advantage of inherent resistance of a spinning
body to disturbance torques. If no external disturbance torques are
experienced, the angular momentum vector remains fixed in space, constant
in both magnitude and direction. If a disturbance torque occurs that is
parallel to the momentum vector, the spin rate will be affected but not the
attitude. Thrusters are used to correct the spin rate. Disturbance torques
perpendicular to the momentum vector will cause the spin axis to precess;
thruster force can be used to remove precession.

Spin stabilization is useful in a number of special cases where reliability and
simplicity are more important than operational flexibility. Also it takes the
advantage of being low cost, modest pointing accuracy and minimal
maneuvering. Sensors gyros, momentum exchange devices, and onboard

computers are unnecessary on a spinner. Substantial cost and mass savings
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result. While their disadvantage appears in the low accuracy 0.3 — 1° in

addition to the tight control of moments of inertia is required [49], [52], [53].

3.3.2 Dual Spin

Dual-spin stabilization 1s a compromise design where the spacecraft has two
sections spinning at different rates about the same axis (Galileo is an
example of dual-spin spacecraft). Normally one section of the spacecraft, the
rotor, spins rapidly to provide angular momentum while de-spinning is
performed by the second section, stator or platform, to keep one axis pointed
for antenna and instruments toward the earth or sun. By combining
inertially fixed and rotating sections, dual-spinners can accommodate a
variety of payloads in a simple vehicle. Providing both scanning and pointing
capabilities can be considered as advantage for dual spinning but it’s suffer
from the following disadvantages; sensitivity to mass properties, if the
accuracy is required then the cost and complexity can equal or exceed three

axis method (which will be discussed in the next section) [49], [52], [53].

3.3.3 Three-Axis Stabilization

Spacecraft stabilized in three-axes are more common today than those using
spin or gravity gradient. This method of stabilizing maintains actively the
vehicle axis system aligned with a reference system, usually inertial

reference (gyros) or nadir reference. The control torques about the axes of
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three-axis system come from combinations of ACS actuators. Many

advantages can be obtained such as:

. Unlimited pointing capability in any direction — nadir, inertial, sun,
scanning — and provides the high pointing accuracy, limited only by
sensors accuracy, which reaches more than 0.001°,

. Ability to provide rapid maneuvering,

) Accommodating large power requirements,

. Unlimited payload pointing.

) Most adaptable to changing mission requirements

In spite of the mentioned advantages, three-axis method is the most

expensive one, also its hardware are complex, heavy, consumes high power,

expensive and failure sources. Spacecrafts that have used three-axis
controlled include Magellan, Hubble telescope and Global Positioning System

(GPS) [49], [52], [53].

3.3.4 Gravity-Gradient

Gravity-gradient technique utilizes the inertial properties of the spacecraft to
keep it pointed towards the Earth, which is based on the fact that elongated
object in a gravity field tends to align it's longitudinal axis through the
Earth’s centre. In order to work this technique, it is necessary that the
gravity gradient torques are greater than any disturbahce torque; this

criteria can be done in orbits lower than 1000 Km. Also it is necessary for the
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moment of inertia about x and y axis to be much greater than the moment of
inertia about z axis. Note that gravity gradient doesn’t stabilize yaw axis and
it does only pitch and roll axes. It is common practice to use a momentum
wheel with its axis perpendicular to orbit plane to provide stiffness in yaw.
Gravity-gradient control torques are small at best. Slow oscillation caused by
disturbances can be prevented by adding an active damping. Gravity-
gradient stabilization is useful when long life and high reliability are
required and pointing requirements are modest. GEOSAT is one of the

spacecraft which is controlled by gravity gradient [49], [52], [53].

3.3.5 Momentum Bias

In this technique a momentum wheel is used to provide stiffness in two axes
and control the wheel speed provides control in the third axis. Particularly,
this system is useful for nadir pointing spacecraft using wheel speed to hold z
axis on nadir. The advantages appears in simplicity and good ability for long-
life mission, also its cheaper that a three-axis system and it offers good
pointing in one axis ( usually pitch) and poor pointing accuracy in the other
wheel axes (usually yaw and roll). Compared to the three-axis control,
momentum biases cannot achieve its pointing accuracy. Table 3.1

summarizes several different methods of spacecraft control [52].
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TABLE 3.1
SUMMARY OF ATTITUDE CONTROL TECHNIQUES [52]

Method Accuracy Remarks

Spin Stabilization 0.3 -1° Passive, simple, low cost, inertially oriented

Gravity Gradient 13 Passive, simple, low cost, central-body

oriented
Reaction Wheels 0.01° Quick, coastally, high precision
CMGs 0.1° High authority, quick, heavy, costly

Near-earth usage, slow, light weight, low

Magnetic Torquers 1-2 cost

3.4 Space Vehicle Disturbance Torques

In outer space, unmanned space vehicles are expected to operate under
significant and numerous disturbances in terms of relative and absolute
magnitude which affect the space vehicle orientation, mass properties, and
design symmetry. Estimation of the influences of these disturbances is an
essential part of the ACS design. More precisely, disturbance torques affect
actuator size and momentum storage requirements. Four types of worst case
disturbance torques and the simplified equations of its estimation are
provided in [52], these disturbances are:

o Gravity Gradient

. Solar Radiation

. Magnetic Field

. Aerodynamics
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3.5 Developed ACS Model

As discussed earlier in this chapter, an attitude control subsystem is

composed of three major parts:

- Attitude sensors, which provide direct measurements of spacecraft
attitude.

—  Feedback control system, which corrects measured attitude to desired
attitude.

—  Actuators, which provide a corrective control torques.

Disturbance
Torque
Desired Actual
Attitude PD . | Reaction Wheel Satellite Body |Attitude
'(i) ™ Controller "] Dynamics Dynamics i

Fig. 3.3 Single axis attitude control feedback system [49]

For preliminary design phase, a single axis attitude control for pitch axis is
considered as illustrated in Fig. 3.3. Each block in the attitude control
feedback system is described mathematically by a transfer function. We
assumed an ideal sensor without delays in the ACS, i.e. a unity feedback gain
will be presented instead of the sensor dynamics in the feedback path.
Unknown external disturbance torque is presumed to act on the spacecraft

[52]. The transfer function which describes the dynamics of the reaction
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wheel, as provided in equation (3.1), is calculated based on the linear model
of the reaction wheel that is presented in [53].

G,K,s
G,K.K, +7,
s4—d—te v
J

R(s)= (3.1

Note that all variables in equation (3.1) are defined and given in Table 3.2.

TABLE 3.2
CONSTANTS OF ITHACO’S (TYPE A) REACTION WHEEL [54]

Variable Nomenclature Unit  Value
J Flywheel inertia N.m.sz2 0.0077
Ga Driver gain AN 0.190
K: Motor torque constant N.m/A 0.029
K. Motor back-EMF constant Virad/s 0.029
K Over-speed circuit gain V/rad/s 95
Ws Over-speed circuit threshold rad/s 690
7, Coulomb friction N.m  0.002
N Number of motor poles - 36
B Motor torque ripple coefficient - 0.22
Rin Input resistance Q 2.00
Torque command range \Y% +5
Ky Voltage feedback gain VIV 0.50
Py Quiescent power W 3.00
W, Torque noise high pass filter frequency rad/sec  0.20
0, Torque noise angle deviation rad 0.05
Ry Bridge resistance Q 2.00

The importance of this transfer function comes from the necessity of

preliminary design phase fulfillment of the ACS. While the transfer function
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of the linear satellite body dynamics is given by equation (3.2). Finally, the
controller is designed and tuned based on the ACS requirements. Detailed

description for each dynamics is given below.

3.5.1 Satellite Body Dynamics

A rigid and decoupled system is assumed by expressing the satellite inertia
matrix about the principal axes which leads to a linear body dynamic transfer

function given by equation (3.1),

1
I s°

yy

G(s) = (3.2

where I,y is the body moment of inertia of the satellite pitch axis

3.5.2 Reaction Wheel Dynamics

The nonlinear model of the reaction wheel will be presented in this section.
The angular momentum stored in the flywheel, H, is the product of the
flywheel inertia, and the wheel speed @, simply as:

H=Jo (3.3)

Net torque (z,,), which is developed by the reaction wheel can be defined as
the difference between the motor torque (r,), and all the torques due to
friction, torque noise and motor disturbances (rd ).

T t:z’ _Td (3.4:)

ne m
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The reaction torque applied to the spacecraft is equal and opposite to the net

torque which accelerate or decelerate the flywheel. So that the reaction

torque can be derived at any time based on the Newton’s second law from the

negative rate change angular momentum, which leads to the derivative of the

flywheel inertia and the flywheel polar as [54]:

. oH Jw dw
Reaction torque = 7, =———=— o) _ ~J (3.5)
ot ot dt
EMF Torgue Limiting
Abs Ke
Hb(I)=1for1>0
Hb(I)=0forI<=10 vbus -
\R\irl‘ Hb Thbus wier 1

Vbus

Hf (V) =0forv >0
Hf (V) =1forv <=0

Command Voltage

Hf

Motor Torque Contr

e

ol

Gd* Wd*exp(-wdt)

Torque Noise

Motor Disturbance
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Fig. 3.4 Detailed Reaction Wheel (RW) block diagram [54]
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The schematic diagram of the RW, as shown in Fig. 3.4, allows us to obtain a
detailed relationship in the ACS of the satellite to be used for a high fidelity
mathematical model. Typical RW parameters for the ITHACO’s standard
(type A) are provided in details in Table 3.2 [54].

The developed model is subsequently used for fault diagnosis in the ACS
system including the nonlinear attitude dynamics model of the satellite.

The RW model modified in order to include fault injection capabilities that
will be presented and investigated in the next chapter. Further details of

each block and its function are provided below [54].

Motor Torque Control

The motor control torque block consists of a voltage controlled current source
with gain G4 and a motor with torque constant K: (as shown in Fig. 3.4). The
function of this block is to generate a motor current that is proportional to the
torque command voltage and td Convert this current into torque through the
motor torque constant K; according to equation (3.6),

K = Zmotor (3.6)

t Imotor
Speed Limiter
The function of the speed limiter block (as shown in Fig. 3.4) is to prevent the

reaction wheel from any operation under unsaved speed by sensing the wheel

speed using analog tachometer circuit speed and supply it into torque
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command voltage through an appropriate negative feedback whenever the

wheel speed exceeds a threshold value of the speed w, .

EMF Torque Limiting

At low bus voltage conditions, if the wheel runs at high speed, motor torque
may be limited due to the increasing back-EMF, K., of the motor. From a
disturbance standpoint, it should also be noted that the available motor
torque will at that point be coupled directly to the bus voltage, and any
fluctuations in bus voltage will be sensed as torque disturbance. It’s clear
from equation that the bus current is dependant on motor current, wheel
speed, and bus voltage,

_I’R, +0.04|I|V,, +P,+ol,k, 57
bus — V. -1 .

bus

1

When there is no power drawn from the bus, the voltage drop in the filter
input resistance which caused by the bus current can be eliminated by the

step function, Hb which included inside the EMF block diagram as shown in

Fig. 3.4.

Bearing Friction
There are two components of the friction in reaction wheel:

- Viscous friction(z,) which is generated in the bearings due to the bearing

lubricant and it has strong dependency on temperature also it varies
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with the wheel speed and it can be calculated using the following
formula:

mN.m
rad/sec

0.0002

O,

(3.8)

T, = (0.049 - T+ 30°C))

- Coulomb friction (z,), is constant with polarity dependence on the

direction of rotation of the wheel. It is caused by rolling friction within

the bearings, and it’s independent of wheel speed and temperature.

Torque Noise

Torque noise is a very low frequency torque variation from the bearings due
to lubricant dynamics. It is a function of lubricant behavior and it has the
most significant effect on satellite pointing. It can be specified as a deviation
from the ideal location of the rotor at any constant speed. This noise can be
modeled mathematically as a sine wave at the high pass filter frequency by
the following Equation:

T, = Jﬁaa)a2 sin @t (3.9

The equation’s constants are specified in Table 3.2.

Motor Disturbances
In reaction wheels, the motor torque can be a source of very high frequency
disturbances due to the motor excitation and the magnetic construction. Two

kinds of motor disturbances are introduced when a brushless DC motor is

59



employed in the reaction wheel; which includes torque ripple at the
commutation frequency and a cogging at frequency corresponding to the
number of poles and rate of rotation. Torque ripple can be defined as the
amount of variation in the motor torque due to the commutation method and
the shape of the back-EMF, the amount of the spacecraft disturbances due to
this kind of torque is highly dependant on torque ripple frequency. The
following equation has been implanted inside the block of the motor
disturbances

7,00t = Bsin(3Nax) (3.10)

ripple
While cogging torque disturbance is completely eliminated due to the design
of the ironless armature motor of ITHACO’s (type A) reaction wheel. Further

details about the RW model can be found in [54].

3.5.3 ACS Controller

A more commonly used control law is a position-plus-derivative controller,
described by:

T, =-K,6-K,0 (3.11)

where T.is the control torque, @ is the error signal (difference between actual
and desired attitude),d is the time derivative of the error signal, and Kp, K4
are the proportional and derivative gains respectively. The derivative gain of
the controller is necessary as the space environment has no physical damping

which provides damping and reduces the angular excursion.
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The gains of the PD controller are selected based on satisfying the ACS
performance requirements such as a steady-state pointing error of 0.2° with

settling time in less than a minute.

3.56.4 Developed 3-Axes ACS Model

In this section, a three-axis stabilized satellite control technique based on the
reaction wheels and with No Momentum Bias will be considered. Three
separate PD controllers will be employed to command the 3-RWs for control
of each satellite axis. In order to make the developed three axis ACS model as
realistic as possible, nonlinear and coupled ACS equations of motion are
considered in addition to the nonlinear reaction wheel model which is
presented in [50].

Firstly, we will start with Euler's equations (3.12), (3.13), and (3.14) which
describe the general attitude motion of a vehicle body frame aligned with the
principal axes, in which case the products of inertia are zero (the

corresponded inertia matrix is given in equation (3.18)), about its center of

mass [50],
Tt 0,= O+ oo, 1) (3.12)
ty+ 1= ol + oo, -1,) (3.13)
t,+ 1,= o, + oo, -1.) (3.14)
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From these equations it may be seen that the cross coupling will potentially

be present, where (z,,,7,,,7,,) represent the disturbance torques which act on
the satellite about roll, pitch and yaw axis respectively, (rx,ry,rz) represent

the developed torques due to the motion on each axis, (I,I ,I ) represent

y?
the body moment of inertia of the satellite along x, ¥, and z axes respectively,

and (a)x,a)y,a)z) represent the angular velocity directed along x, ¥, and z axes

respectively. We may rewrite equations (3.12), (3.13), and (3.14) as following:

1
o, =}._(rdx + 7, - o0d,-1)) (3.15)
5 =L I -1.) (3.16)
, —I——(rdy+ T, = 00l — 1, ) .

Yy
5 = aI,-1_) (3.17)
, ——I——(rdz+ 7,- ool -1, ) .

Based on equations (3.15), (3.16), and (3.17) we developed a 3-axes ACS
model using Matlab-SIMULINK environment as shown in Fig. 3.5. Note that,
in our developed ACS model, the values of the moment of inertia of the
satellite body along x, y, and z axes are given in the decoupled satellite

inertia matrix (I,) as stated in equation (3.18)

0
I =0 I. 01(=|0 15 0 (3.18)
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Fig. 3.5 Developed 3-axes ACS model using Matlab-SIMULINK blocks

3.6 Conclusions

In this chapter, the Attitude Control Subsystem (ACS) of a satellite has been
reviewed along with a detailed description of the three-axis ACS model that
has been developed in this thesis under Matlab-SIMULINK environment.
Different ACS actuators and techniques have been presented in details.
Afterwards, in Chapter 4, fault detection and isolation algorithm will be
applied and the corresponding simulation results will be presented under

different actuator faults scenarios.
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Chapter 4

Detection and Isolation of Actuator

Faults for the ACS of a Satellite

As an extension to our published works in [44] that have been done on a
single axis ACS model; in this chapter we will apply and investigate our
developed neural FDI algorithm on a three-axis ACS model. As mentioned
earlier in Chapter 2, the neural FDI scheme can be constructed using two
types of neural networks in order to detect the simulated actuator faults in
the ACS and provide detailed information about the time and location of each
corresponded fault. The components of the developed neural FDI scheme are
depicted in Fig. 4.1, which designed specifically for the purpose of detecting
and isolation various reaction wheel faults in the attitude control subsystem
of a satellite. The structure of our developed neural FDI scheme can be

explained as following:
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- Neural Observer Structure: this observer is constructed based on the
dynamic neural network because this kind of neural network Wﬂl deal
directly with the behavior of the dynamic system (reaction wheel) to
identify all known modes of operations under healthy and normal
conditions. The purpose of the neural observer is to provide an error
signal that can distinguish between the healthy and faulty operation
conditions.

- Neural Classifier Structurell the task of this neural structure can be
fulfilled based on the static neural network. Dynamic properties are
not necessary to perform the task of residual evaluation. The output of
the neural residual observer is analyzed by the classifier in order to
provide enough details about the occurrence moment of each
simulated fault and its location.

Disturbance Torque

Actual
Satellite Body |Attitude
Dynamics v

Desired

Attitude PD
’ (Z) ™ Controller

A

ACS Actuator
(RW)

\ 4

Fig. 4.1 Structure of neural FDI scheme for a satellite’s single axis ACS

The implementation of the neural FDI scheme consists of three stages:

- System Identification
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- Fault Detection

- Fault Isolation

4.1 Model-based System Identification

In order to justify the capability of our proposed neural approach, we
developed and implemented a model-based linear observer (LO), which we
treat as a benchmark fault detection strategy.

The development of the fault detection benchmark for the ACS actuator has
been done based on the linear model of the reaction wheel that is presented
in [53].

State Space Model of RW Dynamics

2
W)

>x'=Ax+Bu‘=#

Mi=At+Bu+L(y-3)]

T

Linear Observer

Fig. 4.2 Schematic diagram of the RW and linear observer (designing phase)
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Basically, as shown in Fig. 4.2, the observer acts as a reaction wheel; it has
the same dynamics of the reaction wheel that described by differential
equation. Also the input of the RW (x) which is the torque command voltage

represents the same input of the linear observer. In order to make the
estimated states (X ) approach the values of the actual states (X ) of the

linear observer, an additional term (L) is employed to compare the actual

measured output of the RW (¥ ), which is the reaction torque, to the

estimated output (¥ ).
The state space representation of the dynamics of the reaction wheel and the

linear observer are given by equations 4.1 and 4.2 respectively.

x=Ax+Bu (4.1)
y=Cx+Du '
i =Af +Bu+L(y—9) (4.9)

Cx +Du

y
where, A represents the system matrix, B the input vector, C the .output
vector and D represents the input-output ratio vector, also L represents the
observer gain vector. Note that our system is Single-Input, Single-Output

system (SISO).

From the transfer function of the RW linear model as given in Equation 3.1

in Chapter 3, we can find the values of each matrix as following:

A= _G,K.K, +TU:l
J
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(e

C =[1]
D =[G,K,]
The key part in designing phase of linear observer is choosing the observer
gain vector (L) to make the dynamics of the estimator to be much faster than
the open loop dynamics of the RW itself. Using Ackermann’s formula, we

placed the poles of the observer four times farther to the left than the

dominant poles of the RW system. This has been done using Matlab function

acker.

4.2 Neural-based System Identification

#| Reaction Wheel * >
ya(k)
Lol +
R Dyna—rﬁlc y(k) o e(k)
v Neu;al’ Network ’\EJ
/ L
’
( Learni
i arning |
Algorithm |

Fig. 4.3 Identification scheme for the nonlinear RW model using DNN

System identification task represents the most important part in the FDI
algorithm. The identification configuration is shown in Fig. 4.3. It is clear

from this configuration that the DNN needs just one input in order to
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construct a suitable identification model and produce an output y(k). During
this task, the network of dynamic neurons is applied to modeling the normal
behavior of the ACS actuator for each satellite axis (roll, pitch and yaw
separately), two subtasks have to be done also, which include the training

and the testing of the proposed DNN approach.

4.2.1 Training Phase

The modeled ACS actuator, RW, along each satellite axis has one input
(torque command voltage) and one output (reaction torque) and it’s simulated
in order to generate input-output training data pairs to be used for training
purposes. The training process for the dynamic networks was carried out
using an extended dynamic backpropagation algorithm for about 10,000 time
samples (msec) for each axis. Preprocessing steps are performed for the
networks inputs and targets so that all the input-output data vectors are
normalized in the range [-1, 1].

The learning algorithm is initialized with small random values for the
network parameters except for the IIR filter's denominator coefficients, they
are initialized to zeros. The neurons in the dynamic network structure all
have embedded second order IIR filters with one hidden layer of hyperbolic
tangent activation functions and linear activation functions for the output
layer. The learning rate parameter was set to 0.05. Furthermore, starting

from a relatively small structure we may develop an optimal architecture for

69



the proposed dynamic network by incrementally increasing the number of
hidden neurons until desired performance specifications are obtained.

The characteristics of the learning phase are summarized in Table 4.1. For
Roll and Pitch axes, the best results were obtained with the network
structure Ni.61 which means; one input, 6 neurons in the hidden layer, and
one neuron in the output layer, while the best results with the network
structure Ni-9-1 were obtained for Yaw axis. The performance of each network
during the training phase for each satellite axis is depicted in Fig. 4.4,

indicating that the networks are trained quite well.
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Fig. 4.4 Learning curves for the Dynamic Neural Network; (a) Roll axis (b)
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TABLE 4.1
CHARACTERISTICS OF THE LEARNING PHASE

Satellite Network Number of Performance Filter
Axis Size Iterations Index Order
X-axis 1-6-1 20,000 0.0139 20d Order
Y-axis 1-6-1 20,000 0.0467 2rd Order
Z-axis 1-9-1 12,000 0.0167 2nd Order

4.2.2 Testing Phase

The representation capabilities of the trained networks are evaluated
through generalizing them with other data sets that were not seen previously

by the each network.
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Fig. 4.5 Testing phase of the DNN for X-axis: (a) Output of the actual and

neural model, (b) Generated residual error

Figs. 4.5, 4.6, and 4.7 show the testing phase of the dynamic network
estimator for each corresponding axis. As seen in Fig. 4.5, the output of the

neural network follows the actual output of the model perfectly, and it's
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Y-axis

(b)

confirmed by the corresponding error signal, which indicates that the neural

residual generator has strong capability in detecting fluctuations that could

happen in the input signal of the ACS actuator, i.e. torque command voltage.
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Fig. 4.7 Testing phase of the DNN for Z-axis: (a) output of the actual and

neural model, (b) generated residual error

Also as seen in Figs. 4.6 and 4.7, the output of the residual generator follows

the actual output of the actuator quite well, which indicates that the neural

models are capable of detecting changes in the reaction wheel input signal.
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Note that the difference between the response of the actual and the neural
model in each axis is due to the error between the actual and the estimated
reaction torque signal when the noise is present.

A quantitative summary for the Figs. 4.5, 4.6, and 4.7 of testing phase that
has been done on a specific attitude reference setting are given in Table 4.2.

TABLE 4.2
QUANTITATIVE SUMMARY OF TESTING PHASE FIGURES

. . Testing Steady State Steady State
Desired Attitude Samples Time (msec) Residual Error
®rer = 18° (Roll angle) 10,000 4,500 0.0075
Oret = 15° (Pitch angle) 10,000 4,000 0.249
Wt = 10° (Yaw angle) 10,000 4,000 0.275

4.3 Actuator Faults Detection

The constructed residual generators are applied for the purpose of fault
detection in the satellite’s reaction wheels. Different types of fault scenarios
under worst case noisy working conditions are considered and have been
injected to the closed loop attitude controlled system in each satellite’s axis.
The process for making fault detection decisions can be accomplished by
using a simple threshold technique for each axis as shown in Table 4.3; so
that any deviation from this range will be considered as a fault. This
threshold was selected after performing a number of simulations under
different operating settings to guarantee that our proposed approach will
work successfully with minimal false alarms. Table 4.4 provides detailed

information about different attitude settings and their residual error signals.
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TABLE 4.3

THRESHOLD RANGES FOR EACH SATELLITE AXIS

Satellite Axis Threshold
Roll axis 0.005 - 0.010
Pitch axis 0.246 — 0.252
Yaw axis 0.274 - 0.276
TABLE 4.4

SIMULATION RESULTS OF DIFFERENT ATTITUDE SETTINGS

Simulation No. Desired Attitude Residual Error
Drer = 9° 0.070
1 Oret = 12° 0.240
Wier = 5° 0.250
Drer = 90° 0.070
2 Orer = 12° 0.240
Wt = 5° 0.270
Drer = 9° 0.080
3 Oret = 90° 0.270
Wer=5° 0.270
Drer = 9° 0.080
4 Oret = 12° 0.250
Wt = 90° 0.280
Drer = 60° 0.040
5 Oret = 30° 0.140
W et = 45° 0.270
D = 90° —0.030
6 Oret = 75° 0.170
Weer= 85° 0.120
Dper = 18° 0.0075
7 Orer = 15° 0.249
Wrer= 10° 0.275
Drer = 30° 0.020
8 Orer = 18° 0.250
Wier = 25° 0.230
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4.3.1 Bus Voltage (VBus) Fault Scenario

For low bus voltage conditions, it is important to note that the motor torque
may be limited at high speeds due to the increasing back-EMF, K., of the
motor. From a disturbance standpoint, it should also be noted that the
available motor torque will at that point be coupled directly to the bus
voltage, and any fluctuations in bus voltage will be sensed as torque
disturbance [54].

First, a low bus voltage (50% drop of nominal value) faulty scenario was
injected at the time 9,000 msec for Roll axis, while the injection time was
7,000 msec for Pitch axes, and 8,000 msec for Yaw axis as shown in Figs. 4.8,
4.9, and 4.10 respectively. Note that the fault diagnosis is principally
performed during the steady state response of the satellite as any large
transitory variations may be mistakenly be treated and flagged as faults. As
shown in Fig. 4.8, e.g. the steady state response of the residual generator for
the RW is reached after approximately the 4,000 msec in Roll axis.

The results in Figs. 4.7(a), 8(a), and 9(a) clearly show that the proposed
dynamic neural network residual generator is successfully capable of
recognizing and determining the presence of a fault that is very close to the
time that the actual fault has occurred in the corresponding axis while other
axes work normally and they generated normal residual error which
emphasis that each network is trained very well and it dose generate a
normal residual error when there is no occurred faults inside its monitored

system.
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Fig. 4.8 Residual error signals in case of Vpys fault in X-axis:
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Discrats Time

(a)

(a) Neural observer output (b) Linear observer output
linear observers is shown in Figs. 4.8(b), 4.9(b), and 4.10(b), which shows that

Next, linear model-based observer was implemented in each axis in order to
compare the results of the proposed neural observers. The output of the



X-axis

X-axis

the designed observer is not capable of unambiguously detect the presence of
the fault. It is clearly seen that the residual generated by the model-based

approach has converged back to its normal condition while the fault has
persisted in the RW. Table 4.5 summarizes this fault scenario quantitatively.
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Fig. 4.9 Residual error signals in case of Vpys fault in Y-axis:
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Fig. 4.10 Residual error signals in case of Vpys fault in Z-axis:

(a) Neural observer output (b) Linear observer output

It is clear in Table 4.5 that the detection speed of the neural observer is very

also the same thing in the

?

high and there is no delay time in fault detection
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linear observer but its disadvantage that the steady state errors are zero
before and after faults under the existence of the fault.

TABLE 4.5
QUANTITATIVE SUMMARY OF Vgys FAULT SCENARIO FIGURES

50% drop of nominal Vpys value in each axis
§, .9 T;;J:?EZEC) T]i)nize(crilig:c) Steady State Residual Error
5

= é DRN 1O | DNN | LO Normz?lNI:‘aulty Normaf‘OFaulty
X | 9,000 | 9,000 | 9,000 | 9,000 | 0.0075 | —0.550| 0.0 0.0

XY 0.249 0.250 0.0 0.0
Z 0.275 0.275 0.0 0.0
X 0.0075 0.007 0.0 0.0

Y|[Y]| 7,000 | 7,000 | 7,000 | 7,000 | 0.249 |-0.265| 0.0 0.0
Z 0.275 0.275| 0.0 0.0
X 0.0075 0.007{ 0.0 0.0

Z|Y 0.249 0.250 | 0.0 0.0
Z | 8,000 | 8,000 | 8000 | 8,000 | 0.275 |-0.120| 0.0 0.0

4.3.2 Motor Current (Im) Fault Scenario

As mentioned in Chapter 3, the generated motor current from motor control
torque block is proportional to the torque command voltage and the current is
converted into torque through the motor torque constant K: Therefore, any
injected fault in the motor driver gain will be reflected directly as fluctuations
in the motor current and as result in the motor torque. A faulty scenario 1s

presented to the motor driver so that a low current (50% of the normal peak
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result the supplied torque to satellite axes from the RW is decreased by the
same percentage. The capabilities of our proposed dynamic network residual
generator and a model-based linear observer in detecting this kind of fault

value for X & Y axes and 70% for Z-axis) faulty situation is obtained and as a

are depicted in Figs. 4.11, 4.12, and 4.13 respectively.
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Fig. 4.12 Residual error signals in case of I, fault in Y-axis:

(a) Neural observer output (b) Linear observer output

As can be observed from these figures; that the neural observer is able to

clearly detect the injected fault directly without delays, while the linear

residual generator has failed completely in detecting the severe motor
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current faults. A normal residual error has been generated from other

healthy axes neural observers (X and Z). This confirms that just the faulty

axis indicates a fault and no false alarms are present in the nominal axes.
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A quantitative summary for motor current fault is provided in Table 4.6. This
table confirms the capabilities of the neural estimator numerically in
detecting sever motor current faults in all satellite axes, while the linear
observer has failed completely in performing the detection task.

TABLE 4.6
QUANTITATIVE SUMMARY OF Iy FAULT SCENARIO FIGURES

50% drop of nominal peak I, value in X & Y axes and 70% in Z-axis
% Q% T;?:((:It;(;:c) T?;Ze(cg(s):c) Steady State Residual Error
g DRN - LO DNN | LO Norm:li)lNl;I‘aulty NormafOFaulty
X | 8,000 | 8,000 | 8,000 | 8000 | 0.0075 { —0.120| 0.0 0.0
X|Y 0.249 0.250| 0.0 0.0
Z 0.275 0.275| 0.0 0.0
X 0.0075 0.005( 0.0 0.0
Y| Y| 6,000 6000 | 6000 | 6000 | 0.249 0.354| 0.0 0.0
Z 0.275 0.275 0.0 0.0
X 0.0075 0.007| 0.0 0.0
Z|Y 0.249 0.250( 0.0 0.0
Z | 7,000 | 7,000 [ 7,000 | 7,000 { 0.275 0.465{ 0.0 0.0

4.3.3 Viscous Temperature (7,) Fault Scenario

Due to the unknown working environment of the RW in the satellite in outer
space, the friction model is designed to work under a limited range of
temperatures. Since the bearing viscosity is temperature dependent in the

friction model of the reaction wheel, thus means any fluctuation in the
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temperature will be reflected as fluctuations in the drag torque. A simulated

temperature fault was considered which resulted in an increasing of 74.5% in

the nominal produced viscous torque for X-axis, and a decreasing of 49.5%

and 44.3% for Y-axis and Z-axis respectively.
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The dynamic neural network residual generator, as demonstrated in Figs.

4.14(a). 4.15(a), and 4.16(a), detects the injected temperature fault rapidly.

This indicates that the predicted output of each dynamic neural network

clearly deviates from the output of the actual system. Figs. 4.14(b), 4.15(b),

and 4.16(b), show that the linear residual generator has yielded very poor

performance in detecting the temperature faults.
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residual error so that there is a possibility of having some false alarms when

Due to the fact that the temperature fault residual error are close to normal

the residual error deviates from the threshold setting.



Viscous temperature fault scenario is summarized quantitatively in Table

4.7. During this fault scenario the neural observers have shown that their

capabilities in detecting even small various injected faults in all satellite axes

that could not detected by model-based observers.

TABLE 4.7
QUANTITATIVE SUMMARY OF 7, FAULT SCENARIO FIGURES

74.5% increasing in X-axis and a decreasing of 49.5% and 44.3% for Y-axis
and Z-axis respectively.
§> @ Tg:ff%g(:;c) T?;Zefgzgc) Steady State Residual Error
5
©
a é DNN'| LO | DNN Lo Normall)NNFaulty NormaflOFaulty
X| 8,000 | 8,000 | 8,000 | 8,000 | 0.0075 | -0.0075| 0.0 0.0
XY 0.249 0.250 | 0.0 0.0
V/ 0.275 0.275 0.0 0.0
X 0.0075 0.007| 0.0 0.0
Y|[Y{ 8000 | 8000 | 8000 | 8,000 | 0.249 0.245| 0.0 0.0
Z 0.275 0.275| 0.0 0.0
X 0.0075 0.007|{ 0.0 0.0
Z|Y 0.249 0.250 | 0.0 0.0
Z | 8,000 | 8,000 | 8,000 | 8,000 | 0.275 0.272| 0.0 0.0

4.3.4 Double Sequential Faults Scenario

Due to the severity of double faults, in this section we considered a double

faulty situation that injected in both the voltage bus and motor driver gain

circuits sequentially. For X-axis, a low bus voltage (50% drop of nominal

value) fault was injected at the time sample 7,000 msec, which is then
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followed by a low motor current (50% drop of nominal peak value) fault

injected at the time sample 10,000 msec as shown in Fig. 4.17. For Y & Z

axes, a low I fault (70% and 60% drop of nominal peak value respectively)

was injected firstly then followed by an over Vpys fault (100% and 75%

increase of nominal value respectively) as shown in Figs. 4.18 and 4.19.
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Fig. 4.18 Residual error signals in case of double sequential faults in Y-axis:

(a) Neural observer output (b) Linear observer output

The dynamic neural network residual generator, as demonstrated in Figs.

4.17(a), 4.18(a) and 4.19(a) detects the injected double sequential faults

rapidly. This indicates that the predicted output of the dynamic neural
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y

network clearly deviates from the output of the actual system. Figs. 4.17(b)

4.18(b) and 4.19(b) show that the linear residual generator observer has

failed completely in detecting the severe double faults.
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(a) Neural observer output (b) Linear observer output
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Quantitative measuring for the

injected double

sequential fault

is

summarized in Table 4.8. The severity of the double sequential fault is

confirmed by measured values from the fault scenario figures. Also, the quick

response of the neural diagnostic technique is shown quantitatively without a

delay time.

TABLE 4.8
QUANTITATIVE SUMMARY OF DOUBLE SEQUENTIAL FAULT SCENARIO FIGURES

X, 50% drop of nominal Vgys value + 50% drop of nominal I, peak value
Y, 70% drop of nominal I, peak value + 100% increase of nominal Vgys value

Z, 60% drop of nominal I, peak value + 75% increase of nominal Vpys value

Injection Detection .

P Time (msec) Time (msec) Steady State Residual Error

& . . . DNN LO
S1E | E |21 2 =% 3 |253
5| = a B £ = | & |8|5|&
B | = % 5 E 5 = ol - R By
— ™ — N 3 E 3 | E
Z i N Z ™ o
X| 7,000 | 10,000 | 7,000 | 10,000 { 0.0075|-0.55{-066] 0 } O | O
X|Y 0249 [ 02501025611 00 {O
Z 0275 10275102751 0| 0 {0
X 0.00751 0.007 | 0006 | O | O | O
Y|Y| 5000 9,000 | 5,000 | 9,000 { 0.249 | 0.500 { 0650 { O | O | O
Z 0.275 | 0275 102751 0 [ 0 | O
X 0.0075 | 0.007 | 0.006 | 0 [ 0 | O
ZiY 0.249 |1 0.250 [ 02561 | 0 | O | O
Z| 5,000 | 9,000 | 5,000 | 9,000 | 0.275 | 0.395 | 0510 0 | O | O

4.3.5 Double Concurrent Faults Scenario

The second type of considered double faults scenario is the concurrent faults

which is the most sever fault type that has been injected in the actuator
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subsystem compared with other fault types. This fact can be observed from

Figs. 4.20, 4.21 and 4.22, where this fault was injected in the voltage bus and

motor current circuits of each satellite axis simultaneously. Note that we

considered the same faults percentages that applied in previous double fault.

X-axis

X-axis

0.015F ~ - — —
02

6000 8000 10000 12000
Discrete Time

4000

2000

Y-axis

0.02
0.0151- — — — —

1
'

i
i

8000

1
1.

8000

A mm— e —mm— - — = ]
Discrete Time

12000

10000

2000

Y-axis

B R e it SRS S

04f - —

f
1
!
!
1
©
<

0.8

08f -~~~

08f - ~ - -
1

Joug [enp(sey

Jou3 Enppey

6000 8000 10000 12000

Discrete Time

6000 8000 10000 12000
Discrete Time

4000

2000

jou3 [enpisey

1 ' \ i l ) !
i | ' 1 | 1
t ' t | | l
] | l 1 | | m
bl nlaliat et Bt S e
' ! 1 t 1 1 -
1 1 I 1 1 ]
1 ' t 1 1 1
.axrnnrnu|».lur||ﬁnun--m
) | [ ! 1 1
) ) i ) 1 1
I 1 t ) ) 1
® 1 [ ' ) 1 i
- R S lrlu_llu.lllm
M l I l 1 )
1 1 | 1 1
I l : i i
' | 1 1 |
e e i Kl |11|_|||_|..|m
1 1 ) 1 1
1 ' s \ )
' ' ' i i
t 1 t 1 i
S R T === A _¢|J|||m
1 1 ) 1
1 i i i i 1
1 t 1 i i l
! i 1 3 h 1 t o
5 ¢ 5 8 ° 8§ & ¢ 8
° S o S S Q@ 5 <
40113 Enpisey
T ] I I T .m.
! ! ) 1 i [
1 0 i ) s )
l ) ) i ¢ i
l,.\r||k||L|||_||1r||Ft||m
1 1 1 1 ! ! 2
l ) 1 1 ) i
1 1 l 1 1 )
l l 1 1 l I
l||T||+||L|||_|«|T||+|||m
1 1 i 1 l 1 ®
1 l ' 1 1 1
1 l t ' 1 I
1.3
- T B R S R m
H I T Bl l r T !
] i i 1 1 | 1 s
1 1 I 1 I 1
' 1 l l ) I
i s i ! l
F--ri-v ) T m
1 ) l 1
1 1 1
1 1
L - i | m
o~
~ =]
o

Discrote Time

Discrete Time

(b)

(a)

Fig. 4.20 Residual error signals in case of double concurrent faults in X-axis:
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Fig. 4.21 Residual error signals in case of double concurrent faults in Y-axis:

(a)

(a) Neural observer output (b) Linear observer output

The characteristic of the generated residual signals from double concurrent

faults have a large transient time in addition to a large overshoot and a

steady state error compared with other fault types. Again, the capabilities of
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the intelligent neural observers are shown through observing Figs. 4.20(a),

4.21(a) and 4.22(a). While the linear observers have failed completely in

detecting this sever fault as shown in Figs. 4.20(b), 4.21(b) and 4.22(b).
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Fig. 4.22 Residual error signals in case of double concurrent faults in Z-axis:

(a) Neural observer output (b) Linear observer output
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A quantitative summary for double concurrent current faults is provided in
Table 4.9. The capabilities of the neural estimator are shown quantitatively
in detecting sever DC faults in all satellite axes, while the linear observer has
a normal residual error value with persisting of the sever faults and it
completely fails in detecting the double concurrent faults.

TABLE 4.9
QUANTITATIVE SUMMARY OF DOUBLE CONCURRENT FAULT SCENARIO FIGURES

X, 50% drop of nominal Vpys value + 50% drop of nominal I, peak value
Y, 70% drop of nominal I peak value + 100% increase of nominal Vgus value
Z, 60% drop of nominal I, peak value + 75% increase of nominal Vpys value

B @ TiIrrx?:((::;(;gc) T]i)nizefg;):c) Steady State Residual Error

5

2 é DRN DRN Normeg NNFaulty NormalLOFaulty
X 7,000 7,000 0.0075 | —0.660| 0.0 0.0

XY 0.249 0.250 0.0 0.0
Z 0.275 0.275 0.0 0.0
X 0.0075 0.007 0.0 0.0

Y|Y 5,000 5,000 0.249 0.650| 0.0 0.0
Z 0.275 0.275 0.0 0.0
X 0.0075 0.007 0.0 0.0

Z\Y 0.249 0.250| 0.0 0.0
Z 5,000 5,000 0.275 0.510( 0.0 0.0

4.4 Actuator Faults Isolation

As shown in previous sections, we injected various faults scenarios in the
actuator subsystem and the first task of FDI system has been fulfilled. In this

section we will apply an adaptive neural classifier directly after the neural
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observer in order to classify each generated residual error signal to get the
information from theses signals, like which fault has occurred and when. In
order to perform the isolation task of the neural FDI system, the adaptive
neural classifier has to be trained on the residual error signals that are
generated from the neural observer, and then the classifier is ready for
validation where predefined classes have to be assigned.

Normally, we have two modes of operation; healthy and faulty mode. The
healthy mode is assigned for one class, while the faulty mode is assigned for
three classes as shown in following Table 4.10.

TABLE 4.10
MODES OF OPERATION AND ITS ASSIGNED CLASSES

Mode of Operation Assigned Class
Normal 1 1000
Motor current fault 2 0100
Bus voltage fault 3 0010
Viscous temperafure fault 4 0001

Three LVQ networks are constructed and trained for the purpose of fault
isolation in each axis. The generated residual errors from neural observer are
transformed into input vector to the trained networks. The learning process
was carried out with learning rate parameter of 0.10 using Matlab Neural
Network Toolbox; the applied classifiers have a simple structure and a non-

complicated training algorithm. For each satellite axis classifier (X, Y and Z),
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the best results were obtained with the network structure Ni.s2« which
means one input, 32 neurons in the first competitive layer and 4 neurons in
the second linear layer. Thus, we have 32 subclasses in layer 1 that are then
assigned to one of 4 output classes by the 4 neurons in layer 2.

In this thesis, the constructed classifiers are employed for isolating only
single faults that have been injected in the RW along each satellite axis, as
voltage bus faults, motor current faults and viscous temperature faults.

Note that the classifiers are principally performed during the steady state
response of the satellite as any large transitory variations may be mistakenly
be flagged as faults and this is indeed the case for all the simulation results

that are shown in the next sections.

4.4.1 Isolation of VBus Faults

The performance of the classifiers along each satellite’s axis is depicted in
Figs. 4.23, 4.24, and 4.25. As seen in these figures, the bus voltage is
detectable and isolable completely and with no time delay in each axis. Also
each classifier output does provide detailed information about the time and
the location of the injected faults. Figs. 4.23(b), 4.24(b), and 4.25(b) show
clearly that the behavior of the classifiers is normal before occurring of Vpus
fault and then it responded quickly at the instant of fault occurring to
indicate that at this moment there is a fault (e.g. 8,000 msec in X-axis) and it
belongs to class 3 which is a voltage bus fault class. Quantitative summary

for this fault isolation is provided in Table 4.11.
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4.4.2 Isolation of Im Faults

Second type of single faults is motor current fault. As can be observed from

Figs. 4.26, 4.27, and 4.28, the motor current fault is detectable and isolable

completely and with some time delay in each axis.
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Because of the transit response of the generated residual error as shown in
Figs. 4.26(a), 4.27(a), and 4.28(a), during the rise time the residual error is
close somehow to the normal situation and it is classified badly to a normal
behavior which produce some delay in isolating the motor current fault as
shown in Figs. 4.26(b), 4.27(b), and 4.28(b). This fact is summarized

quantitatively in Table 4.11.
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4.4.3 Isolation of 7, Faults

Last isolation is concerned with a viscous temperature fault and as shown
previously that this fault is detectable with some false alarms.
Unfortunately, the adaptive neural classifier has failed in recognizing this
type of fault and it is not isolable because of the closeness of its residual
error vector to the normal operation vector at all times it is misclassified as

normal behavior as shown in Figs. 4.29, 4.30, and 4.31.
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Note that the performance of the adaptive classifier is depending on the
magnitude of the generated residual error. This means that the performance
will be more reliable when the residual error signals of the isolated faults are
close to the residuals that have been used during the training of the neural
classifier. But if the classifier is applied to isolate new faults that its
residuals are far from the trained one then the percentage of wrongly
classified system behaviours are increased and the reliability of the classifier
is decreased. This fact was verified after we performed a number of
simulations that have not reported in thesis.

TABLE 4.11
QUANTITATIVE SUMMARY OF ISOLATION FAULTS FIGURES

Fault' Faulty Axis .Injection Detection . Delay
Scenario Time (msec) | Time (msec) | Time (msec)
X, 50% drop 8,000 8,000 0.0
VBus Y, 50% drop 7,000 7,000 0.0
Z, 50% drop 8,000 8,000 0.0
X, 50% drop 8,000 8,065 65
Inm Y, 70% drop 6,000 6,367 367
Z, 70% drop 7,000 7,289 289
X, 74.5% increasing 8,000 - -
7, Y, 44.3% drop 8,000 - -
Z, 49.5% drop 8,000 - -

All isolation figures are summarized in Table 4.11, which provides details

about the injection time of each fault and its detection time also. In addition
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to the amount of time delay that took by classifier to isolate motor current
faults while voltage bus fault was isolated quickly without time delay. This
shows the capability of the intelligent approach in isolating various fault

types using neural network with a mixed structure between supervised and

unsupervised learning.

4.5 Conclusions

In this Chapter, various single and double fault scenarios are considered, and
the neural Fault Detection and Isolation (FDI) scheme is applied to the
actuator subsystem of a satellite. Two neural structures are employed in
performing the FDI system tasks. The capabilities of the intelligent approach
is demonstrated and compared with a model-based linear observer as bench
mark. Finally, the discussions of each simulation results are provided under

each section due the large amount of simulation results.
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Chapter 5

Conclusions and Future Work

5.1 Thesis Summary

In this thesis, the problem of fault detection and isolation is solved using an
artificial intelligent approach. Due to their capabilities to cope with
nonlinearity, complexity, uncertainty, and noisy and corrupted data, neural
networks are employed in this thesis to solve the problem of Fault Detection
and Isolation (FDI) for the Attitude Control Subsystem (ACS) of a satellite.
The neural FDI model was developed and applied to detect and isolate the
injected faults in the Reaction Wheel (RW) which is often used as an actuator
in the attitude control of a satellite. Since there are three actuators that
provide reaction torques for three coupled axes in the satellite, we
constructed three neural FDI Models. Each FDI model consists of two neural

architectures and it is responsible for a possibly faulty actuator.
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The first architecture (neural residual generator) was developed based on
dynamic neural networks in order to identify the normal and abnormal
modes of operation; and then to detect different types of simulated faults in
the RW model. A dynamic neural network residual generator is constructed
based on the Dynamic Multilayer Perceptron Network (DMLP) in order to
generate residual signals that can distinguish between the faulty and non-
faulty situation. A generalized embedded structure for the dynamic neuron
model is considered in the DMLP network.

The second architecture (adaptive neural classifier) was developed based on
the static neural networks. The fulfillment of isolation stage in FDI algorithm
has been done using a simple and non-complicated structure of Learning
Vector Quantization (LVQ) network as an adaptive neural network classifier
which provided detailed information about the occurrence time and the
location of various simulated faults.

A generic three-axis stabilized satellite control model based on the reaction
wheels and with no momentum bias has been developed using Matlab-
SIMULINK. Three separate PD controllers were designed and employed to
command the three reaction wheels for control of each satellite axis. In order
to make the developed three axis ACS model as realistic as possible,
nonlinear and coupled ACS equations of motion are considered in addition to

the nonlinear reaction wheel model.
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In this work, five faults scenarios have been considered and simulated during
the steady state period. In the first fault scenario, a low bus voltage fault was
injected in the back-EMF circuit of the reaction wheel. This kind of faults was
considered due to the sensitivity of the generatedlreaction torque from the
RW when the bus voltage is decreased. Second fault scenario was injected in
the circuit of motor torque control. Low motor current fault was considered
and as a result, a shortage in the supplied RW torque will affect the satellite
control. Third fault scenario was injected artificially in the bearing friction
model, a viscous temperature fault was considered as abnormal behavior in
the RW. Fourth and fifth fault scenarios were injected in both circuits of
motor current and bus voltage and considered as double sequential and
double concurrent faults respectively.

From the simulation results shown it can be concluded that the dynamic
neural residual generator has produced a very reliable performance in
detecting various single and double faults that have been injected into the
actuator subsystem. Even small faults that could lead over time to a serious
damage in the monitored system were being detected by the intelligent
observer.

Comparisons with a linear model-based observer acting as a residual
generator are also included to demonstrate the capabilities and advantages of
our proposed dynamic neural network scheme. We have shown that the

performance of the linear residual generator was indeed poor and
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unacceptable in detecting all the injected faults, justifying and necessitating

the additional computational burden that is associated with a dynamic

neural network-based approach.

Also the simulation results have shown the ability of the diagnostic system to

differentiate between different failures. Two types of the single faults were

isolable. In other words we can say that bus voltage and motor current faults

were detectable and isolable while the viscous temperature was detectable

but not isolable, unfortunately.

5.2 Recommendations for Future Work

Our plans for future research have many directions:

>

Since the proposed EDBP algorithm in this thesis usually finds one of
the local minimums, which lead to the necessity for optimal
algorithms of global optimization, e.g. evolutionary algorithms,
simulated annealing algorithms, and adaptive random search
stochastic method, to overcome the problem of getting stuck in local
minimum through training. Furthermore, improving the quality of
identification will result in improving the quality of fault diagnosis
process.

Another future Developing an advanced isolation technique that could
isolate both of single and double faults, such as nonlinear (feedforward

neural network) classifiers and Neuro-Fuzzy (NF) systems
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> In the considered ACS model, we may also include more cross

coupling, in order to capture the real behavior of such highly nonlinear

dynamical system.
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