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ABSTRACT

The Disaggregation of Whole-House Electric Load into the Major End-Uses
Using a Rule-Based Pattern Recognition Algorithm

Linda Farinaccio

The focus of this thesis is the development of a residential end-use energy estimation model
which is based on the disaggregation of the monitored whole-house electric load. The data used to
develop the model involves a one-time intrusive monitoring period to collect rapid-sampling
interval data of demand for each major appliance load and the whole-house for a period of one
week for one dwelling. The data applied to test the model consists of only the whole-house
demand for a period of two weeks. The model identified is a rule-based algorithm applying
pattern recognition techniques. The model is developed to scan the whole-house electric demand
profile and to detect a predefined appliance energy signature. The results are presented in terms of
the appliance daily demand profile and energy use. The benefits of this approach are that the
frequency and time of usage of an appliance can be estimated without regard to the energy-related
habits of the household occupants, their social or demographic characteristics, or the thermal
characteristics of the dwelling. Moreover, the model is conceptually simple and versatile because
of its rule-base platform. Artificial neural networks are investigated as a possible alternative to
some of the rules developed as part of the Pattern Recognition Algorithm. A neural network
model is developed as a preprocessor to the Pattern Recognition Algorithm with the aim to detect
the ON and OFF occurrences of an appliance from the whole-house demand profile based on one
week’s worth of training data. Commercially available neural network models with different
architectures and training parameters are applied in this study. Both approaches show a promising
potential for application in residential buildings. Both models developed are characterized by low

cost, modest data collection needs, and no occupant-related information required.
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1. INTRODUCTION

Knowing the breakdown of actual energy use of residential customers by end-use has
become an important issue for many entities involved in the energy market. This information is
used in the development of many applications ranging from demand-side program development
and delivery, and forecasting the impact of these programs on future energy scenarios by utilities
to diagnostic tools to implement cost-effective energy conservation measures by homeowners.
Although, there is an abundance of data regarding whole-house energy use, along with supporting
audit information there is limited data regarding energy consumption by various end-uses.

Large-scale demand-side management programs are often sponsored by utility companies
and/or government agencies as a means to meet consumer demand within their present energy
generating capacity and to carry out regulated demand-side planning, forecasting, and program
development. The information needed about residential customers’ energy use patterns is often
lacking in the planning stages of these programs. As a result, the potential effectiveness of the
measures carried out as part of these programs can often fall short of their expected targets.
Furthermore, large-scale programs will typically rely on monitoring of whole-house energy use to
quantify the impact of these programs due to the high cost and level of customer intrusiveness
that is associated with traditional submetering techniques. Again, this is a significant drawback
for these programs because whole-house monitoring alone often fails to disaggregate or single-
out the effect of individual energy conservation measures.

With the advent of deregulation of electric markets in North America, the average
homeowner increasingly stands to benefit from better, clearer, and more usable information about
their energy use patterns and costs. To date, revenue meter bills sent by their utility is their only

source of information about the actual energy they use. The more information consumers have,



the more incentives they may have to implement energy conservation measures. In some cases,
energy usage will drop simply by increasing consumer awareness as to their energy use patterns.

The competitive energy market that is enfolding in the United States and eventually in
Canada will spawn a new and much more technologically sophisticated energy industry where
information will be key. One of the major issues in markets that have already been deregulated is
metering and having access to customer usage patterns. This issue will directly impact the
consumer in many ways. That is, the more information that is available to utilities, the better they
will be able to target their customers and offer appropriate energy conservation measures and rate
structures.

With these aspects in mind, research into new techniques for data collection, bill analysis,
and visualization is evolving rapidly. The primary purpose of collecting and analyzing residential
end-use data is to provide energy planners with useful information on how energy is actually
consumed in homes, as well as, provide insights about factors that may affect energy
consumption. Although, the findings of this research appear to offer greater benefits for utility
companies, government agencies, and energy service companies; homeowners also stand to
benefit from such research findings. The potential consumer market developments stemming

from the availability of end-use energy consumption data include:
» A screening tool to identify customers with high potential for energy savings and offer to

them rebate programs or energy saving incentives (increasing the cost-to-benefit ratio for

these programs ensures their success, hence, continuation);

* A tool to build a detailed database that can be used for planning, forecasting, and marketing

future residential energy efficiency programs;
= A method to screen candidates for time-of-use rate programs;

* A comparative assessment from which energy indices and performance targets for new and

retrofitted houses can be determined; and

*  An educational tool to help consumers understand their energy use patterns and increase their

sensitivity to conserving energy.
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In response to these needs, the research presented in this thesis has the objective of
developing an end-use energy estimation model, based on the disaggregation of the monitored
whole-house electric demand. Two possible model structures identified are (i) a rule-based
algorithm using pattern recognition techniques, and (ii) an artificial neural network. The models
present different strengths and weaknesses in their ability to disaggregate energy consumption.

The pattern recognition approach attempts to recognize the patterns of energy consumption
of the various appliances in a dwelling. To do so, a rule-based algorithm is developed to scan the
whole-house electric demand profile and to detect the expected signal response to the activation
or disactivation of selected appliances. This approach requires extensive analysis of the training
data in order to extract the features of appliance electric usage patterns. The benefits to using this
approach are that the frequency and time of usage of an appliance can be estimated without
regard to the energy-related habits of the household occupants, their social or demographic
characteristics, or the thermal characteristics of the dwelling. Moreover, this approach is
conceptually simple as an analytical tool, and versatile because of its rule-base platform.

The second approach, neural network processing, attempts to classify the various activations
within the whole-house demand profile as the ON or OFF activation of a given appliance. To do
so, the networks investigated are trained using one week’s worth of energy use data for the
appliance. Various pattern recognition and classification networks are considered for their
applicability towards recognizing appliance energy usage patterns. Commercially available neural
networks models with different architectures and training parameters are investigated to best
process the data available in order to achieve acceptable network accuracy. What is interesting
with this approach is not so much whether or not the network can provide accurate resuits, but
rather to gain a better understanding of the energy signature features which drive the particular

neural networks.



The training data used for both approaches consists of the electric demand profile for the
whole-house and appliances of interest for one week. Whereas, the testing data used consists of
only the electric demand profile for the whole-house. The two approaches presented are
characterized by low cost, modest data collection needs during the application phases, and no
occupant-related information required. The key to the approaches presented is a high sampling
resolution of the monitoring data, which allows the detection of ON and OFF activations of
individual appliances. The algorithms can be used for households from any geographic region or
customer mix. Although the focus of this work is on the disaggregation of residential energy
loads, the techniques developed can also be applied to the disaggregation of commercial and

industrial energy loads.



2. LITERATURE REVIEW

This chapter presents the results of an extensive literature review on the application of
residential end-use energy data, and the major contributions by researchers to obtain this data. To
begin, the need for end-use load data for load-shape forecasting and analysis of various demand-
side management options is discussed. Then existing methods for estimating residential end-use
loads are presented and the strengths and weaknesses of each of these methods are discussed.
This chapter also discusses neural network applications related to building energy use.

The main sources of information include published articles from energy and building-related
scientific journals, publications posted on the Internet, and published reports from utility funded
studies. [t was observed that the bulk of the research performed was conducted by researchers at
the Lawrence Berkeley National Laboratory of the University of California and the Electric

Power Research Institute in the United States.

2.1 The Need for End-Use Load Data

End-use load data is an important factor in the planning efforts of many electric utilities. It
provides detailed time-of-use information and a means of evaluating the impact of various types
of utility demand-side programs. The types of programs range from information dissemination
and weatherization audits to financial incentives, in the form of loans and rebates, for
weatherizing or purchasing more efficient appliances. Energy professionals and policymakers
need quantitative information on retrofits to make decisions, develop recommendations, and
improve program planning. Audit tools to assist in selecting retrofit options and optimal sizing
techniques for installing heating, ventilating, air-conditioning equipment based on theoretical

considerations must eventually be based on or validated with measured performance data. An



ultimate goal for the users of such tools is to be able to identify appropriate and cost-effective
retrofits for individual homes.

In the absence of direct end-use metering (also referred to as submetering), whole-house
load shapes are disaggregated into-their various components by means of systematic comparisons
[1]. For example, consider two customers who are identical in all aspects, except one has an
electric water heater and the other does not. This pair of customers is used to infer, by
subtraction, an end-use load shape for the water heater. By disaggregating several whole-house
load shapes for each appliance in this manner, an average for the population of customers is
obtained. Once this is done, the variation across customers due to factors such as appliance
saturation or demographic and economic characteristics is utilized in a statistical model to deduce
the effect of customer characteristics on the whole-house load shape. The result of which is a
relationship between household characteristics and a set of parameters that can then be used to
rebuild the load shapes. However, there is evidence that the seasonal variation in nearly all
residential end-use load shapes precludes metering periods of less than one year from producing
accurate end-use load shape resuits [2]. This can be a major concern when trying to reduce the
duration and cost of metering projects.

Several utility funded conservation programs, designed to encourage customers to use
electricity more efficiently, have been implemented in recent years and continue to be developed
due to regulated energy efficiency activity [3]. However, utilities have considerable uncertainty in
assessing the net impacts of their investments in these conservation programs [4]. The results
from one study indicate that the average measured energy savings achieved by conservation
retrofits installed in a large number of single-family homes in the United States was
approximately two-thirds of the average predicted energy savings. On an individual house basis,

the difference is even greater, and in some cases, post-retrofit energy savings were negative [3].



Whole-house metering fails to capture the savings for individual conservation savings if the
interaction between measures in various subsystems is significant. For example, energy savings
due to efficient lighting will increase the winter space heating loads, while decreasing the summer
cooling loads. Thus, accurate estimates of the impacts of demand-side programs are required in
order to evaluate their cost-effectiveness relative to supply-side options.

One approach to disseminate information to consumers about their energy use patterns is to
provide them with a more informative energy bill. The goal of this strategy is to create a more
energy-conscious consumer, who will be better equipped to make informed decisions about how
to save energy in their home. One study reports energy savings of about 10 percent during a
three-year study of homes in Oslo, Norway [6]. There are greater costs associated with more
frequent and informative billing methods, but it is estimated that these costs are minimal in
relation to the potential energy savings. The types of feedback information tested are: frequency,
medium that attracts the consumer’s attention, presentation of the information in the bill, and a
comparative standard which gives the consumer a basis for benchmarking. A breakdown of the
whole-house energy use into the major end-uses was not tested. However, researchers expect this
type of information will lead consumers to have a better understanding of their energy use
patterns.

Most weatherization programs assess energy savings by comparing the monitored data for
the house in question against that of a reference house representing conventional energy use. This
approach enables a controllable basis for comparisons, and by normalizing operational conditions
and weather data, the energy savings of conservation measures, as a whole, can be evaluated.
However, the impact of individual measures can not be evaluated using this approach.
Furthermore, the issue of separating the naturally occurring energy savings and the program-

induced conservation effects remains unresolved.



22 Existing Approaches of Estimating Residential End-Use Loads

Traditional approaches to estimating end-use loads in the absence of metered data fall into
one of the following three categories: (i) engineering approaches, (ii) statistical approaches,
including conditional demand analysis methods, multiple regression-based methods, and
objective classification methods, and (iii) hybrids of basic modeling approaches. Each of these
approaches is discussed in Sections 2.2.1 through 2.2 3.

Traditional load metered data is the most reliable source of end-use load data. However, the
main drawback in using this approach to estimate end-use loads is that it presumes that energy
usage will be similar to historical pattens. Thus, it does not allow for changes in economic,
demographic, or appliance conditions over time. As a result, state-of-the-art load monitoring
techniques have recently developed, referred to as non-intrusive load monitoring of appliance
energy signatures. Three such techniques: (i) the Non-Intrusive Load Monitor, (ii) the Heuristic
End-Use Load Profiler, and (iii) the Non-Intrusive Appliance Load Recognition Algorithm are
presented in Section 2.3.2.

Another new, yet less proven technique than non-intrusive load monitoring involves the
implementation of artificial neural networks. Energy-related applications of neural networks are

presented in Section 2.4.

2.2.1 Engineering approach

Engineering models combine “a priori” knowledge or assumptions about frequency of
appliance use and behavior such as thermostat settings, with models of the building envelope
based on first principles of thermodynamics or appliance efficiency. The disadvantage of these
models is that they often require extensive building audits, which can be time-consuming and not

cost-effective.



Examples of engineering-based models are: (i) HOT2000 developed by Natural Resources
Canada [7], and (ii) DOE2.1E developed by the United States Department of Energy (8].
HOT2000 is a simulation software that can be used for single-family buildings only. It is mostly
well suited to estimating the heating and cooling requirements of houses. DOE2.1E is the
software of choice in the industry for simulating the whole building energy consumption of
multifamily or commercial buildings. The heat gains and losses through walls, roof, floors,
windows, and doors are calculated separately and the heat transfer through the building envelope
is computed using response factors which account for thermal mass, placement of insulation, sun

angle, cloud cover, building location and orientation, and other architectural features.

2.2.2 Statistical approach

Statistical approaches are distinguished by their use of historical data and statistical
techniques. They attempt to describe end-use loads as functions of economic, occupant, dwelling,
and appliance characteristics, and weather variables. These methods do not require exhaustive
data collection, hence, may reduce modeling costs. In using historical data, they are able to adjust
to different geographic regions. Three common statistical methods are: (i) conditional demand

analysis, (ii) multivariate regression analysis, and (iii) objective classification analysis.

Conditional demand analvsis

Conditional demand analysis (CDA) is based on econometric models of residential building
energy use which may be presented as a function of the demographic characteristics of the
household and the economic system of the electric service market. This approach implies that
energy consumption patterns are a complex technical and social phenomenon and, thus, to fully
understand this phenomenon, they must be viewed from both engineering and social science

perspectives. Most of the work done on CDA has been concerned with the aggregate demand for



electricity rather than the end-use energy demand of individual households. CDA explains the
cause and effect of energy use to the extent that the variables are all assumed independent, show
variation across the modeled sample, and are statistically significant. This approach does not
allow fundamental parameters, such as, appliance efficiency to be changed over time.

An example of CDA used at the household level is Modéle d’estimation de la
consommations d'électricité developed by Hydro-Québec as part of the study Etude sur le
comportement énergétique des ménages québécois. This study consisted of determining the
residential electric consumption by end-use for approximately 3000 dwellings in the province.
From the results of the study, researchers were able to develop simplified spreadsheet-type
models for estimating the electric energy consumption and distribution within a dwelling, based

on key socio-demographic characteristics of the dwellings, and building and equipment types.

Multivariate regression analvsis

Multivariate regression analysis (MRA) is the most widely used approach to model whole
house and end-use level energy use. This approach involves identifying a least-squares regression
model between the energy consumption, for example, actual metering data and the predictor
variables. The most common predictor variables are climatic parameters, such as, daily average
outdoor temperature and solar radiation levels.

MRA is relatively simple, easy to implement, and has been used in numerous studies.
Unfortunately, the resuits generated by these models in estimating end-use load shapes are poor.
Due to the nature of regression methods, the peak demand observations tend to be flattened out,
such that predicted values are less extreme than actual values [9]. Thus, regression-based models
can not be accurately used to estimate an appliance’s electric demand profile.

The most popular energy-related regression-based model is the Princeton Scorekeeping

Method (PRISM) developed at Princeton University’s Center for Energy and Environmental
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Studies [10]. The PRISM software was initially developed with the purpose of normalizing
energy consumption for the purpose of comparing pre- and post-retrofit energy use levels. It uses
actual billing data for all fuel types of a minimum of one year, along with the actual degree-days
(heating or cooling) for the billing period, and the long-term degree-days to determine a weather-
adjusted index of energy use, referred to as Normalized Annual Consumption. The model
generates three building-specific parameters: (i) base-level consumption, as a measure of the
constant usage of lights and appliances in the house; (ii) reference temperature, as a measure of
the average outside temperature at which the house’s heating system begins to operate; and (ii)
heating (or cooling) slope, as a measure of the effective heat-loss rate of the house and the
efficiency of the HVAC system. An underlying assumption made by PRISM is that space heating
(or cooling) is the only temperature-dependent end-use in a dwelling. In general, it has been
found to give satisfactory results for long-term heating consumption but the three estimated
building parameters could show large errors.

MRA models have often been faulted as a means of analyzing building energy use because
of the potential for significant collinearity between the prediction variables. That is, simplified
models that are based on only a few variables have been observed to have systematic bias even if
they are associated with high coefficients of determination (R? [11]. For example, events
affecting only one parameter are not likely to occur in isolation. Thus, if a regression variable that
is correlated with another regression variable is omitted from the model then a strong bias may
occur in the parameter estimates. This can lead to improper interpretation of the relative
importance of the various physical regression parameters, which may result in a model with
unstable regression coefficients (depicted by low t-statistics for individual regression
coefficients). Researchers generally agree that multicollinearity effects are likely to yield
misleading models when correlation among regression variables is extremely high. However,
there is no consensus as to the extent of acceptable collinearity (e.g. R? = 0.90 or 0.95) among

regression variables.
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To address this issue some researchers have used principal component analysis (PCA) to
preprocess multivariate data. Essentially, this statistical technique takes a group of (n) correlated
variables and re-expresses them as another set of (n*) uncorrelated variables, each of which
represents a linear combination of the original regression variables. The uncorrelated variables,
known as principal components (PC), are ordered so that the first PC explains the largest factor of
the variation of the original data, the second PC explains the second largest factor, and so on. If
the original variables are highly correlated, then the PC of the first variable will be so significant
that all other variables can be ignored in the MRA. As a result, the number of regression variables
in the model can be reduced with little loss in the model’s goodness-of-fit.

Principle Component Analysis is used extensively in such fields as social sciences, but it is
seldom applied for building energy analysis. Examples of energy-related studies which have
applied PCA techniques include: determining the relationship between daily residential space
heating and meteorological variables for four dwellings [12], identifying and clustering
residential customers based on their air-conditioner energy use profiles [13], and developing a
tool to arrive at an overview representation of monitored hourly energy use in an office building

over one year [14].

Obijective classification analysis

Objective classification models use a combination of principal component analysis and
cluster analysis to identify typical weather-day types, and then analyze patterns of energy
consumption by weather-day type. These models are used by utilities to forecast energy load
requirements. Also, since this approach provides a better understanding of the cause and effect
relationship of energy use than most traditional models, it is used as a tool for weather

normalization.
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A study was reported which consisted of the analysis of commercial building data for
patterns of energy consumption by weather-day types obtained using temporal synoptic index
methodology [15]. In this study various weather-day types were used to define the load shape for
a building type based on the HVAC system characteristics and the climatic conditions at the
building site. Another study reported using a form of objective classification analysis to explore a
weather normalization method for estimating the energy savings due to a building retrofit [16].
The results indicate that the normalized energy consumption can be calculated using the energy
signature and the number of hours of occurrence for various outdoor temperature bins, provided
that the annual energy signature of a building remains constant for all subsequent years. The latter
implies that no major modifications to the building are performed during the subsequent years
which could change the energy use patterns of a building.

An advantage to applying objective classification techniques is the ability to recreate hourly
or yearly load profiles from the energy signature. This feature enables researchers to investigate

the changes in patterns of energy consumption due to varying building conditions.

2.2.3  Hybrid of basic modeling approaches

In response to the deficiencies of the approaches aforementioned, researchers have
recognized that the strengths of any of these models may be combined. For example, conditional
demand models or regression-based models are used to establish baseline consumption to match
utility billing data and determine a building’s energy signature. Then engineering models are
applied to predict the impact of various energy-efficiency measures. At least four distinct hybrid
end-use load shape estimation models have been developed and tested, they include the:

(i) Statistically Adjusted Engineering Model (SAE) [17],

(i) Residential Energy Consumption Analysis Program (RECAP) [18],
(iii)  Residential End-Use Energy Planning System (REEPS) [19], and
(iv)  End-Use Disaggregation Algorithm (EDA) [20].



With the exception of RECAP and EDA, both REEPS and SAE are utility-level models that
do not address the end-use energy usage and load profiles at the whole-house level. RECAP can
provide customers with estimated end-use energy savings. EDA can also provide this
information, but detailed house simulations, in addition, to monitored hourly load profiles are
required. The SAE model differs from the others, in that, statistical approaches are used to
allocate the differences in loads. Whereas, in the last three models presented, deterministic
approaches are applied which establish a direct physical link between loads and their causes.
With the exception of RECAP, developed by the consulting group XENERGY in the United
States, all the models were developed by researchers at the Lawrence Berkeley National

Laboratory at the University of California.

Statisticallv Adjusted Engineering Model

The motivation for the Statistically Adjusted Engineering (SAE) model is that the loads for
each end-use are used as explanatory variables in conditional demand models of observed
customer-level loads. The estimated coefficients of these variables are then used to statistically
adjust the initial engineering loads to reflect the customer’s actual total loads. In other words,
statistical approaches are used to allocate the differences in loads.

Field test results show that SAE can represent a substantial improvement over engineering
loads for certain end-uses, whereas, for other end-uses, it seems to add error to the engineering
loads. For instance, space heating estimates are improved, whereas, estimates for the stove,
refrigerator, and clothes dryer are made worse. The reason for these findings is attributed to the
methods used by engineering methods to estimate end-use loads. For example, engineering loads
for air conditioners are based on principles of thermodynamics under certain behavioral

assumptions. Whereas, the engineering loads for stoves, refrigerators, and clothes dryers are
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based primarily on previous end-use metering results, and domestic hot water heating loads are

based partly on principles of thermodynamics and partly on previous metering studies.

Residential Energy Consumption Analvsis Program
The Residential Energy Consumption Analysis Program (RECAP) combines both statistical

and engineering analyses to estimate electricity and gas consumption by end-use for individual
households. First, whole-house energy consumption is reconciled with actual bills for a specified
period. Then, RECAP uses linear regression to determine initial heating/cooling and base load
consumption. In parallel to this step, expected usage estimates for heating, cooling, and other
major end-uses are developed using customer survey data, utility-level end-use load data, and
engineering/behavioral models. Any error in the bill reconciliation is allocated to the individual
end-use estimates based on a statistical algorithm that recognizes that some of the initial estimates
are known with greater certainty than other non-metered estimates.

Due to the extensive database requirements, RECAP is mainly geared towards large-scale
utility demand-side management programs. Whereby, it can provide customers with estimates of
end-use energy and cost information, recommendations for the most efficient use of electric and
gas appliances (in generic terms), and an evaluation of the alternative rate options offered by the
utility. In Québec, RECAP was used by Hydro-Québec in their 1991 Eko-Kilo Program, in which

1.4 million questionnaires were completed.

Residential End-Use Energy Planning Svstem

Similar to RECAP, the Residential End-Use Energy Planning System (REEPS) uses a micro-
simulation approach for estimating utility-level energy use based on the simulated action of a
sample of individual households. The model’s output is used for strategic planning and marketing

support, in addition to traditional electricity sales forecasting. The general REEPS forecasting
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framework consists of using a set of market drivers that describe forecast period appliance
standards, demand-side management policy, customer characteristics, energy prices, and weather.
These drivers, mainly, appliance size, appliance efficiency, and appliance usage are used in a set
of behavioral and consumer choice models. Combined with consumer counts, REEPS generates

estimated energy sales by end-use and customer segment.

End-Use Disaggregation Algorithm

The End-Use Disaggregation Algorithm (EDA) is an engineering method which primarily
utilizes the statistical characteristics of measured short-interval (hourly) whole-building electrical
load and its inferred dependence on temperature. Weather-sensitive end-uses, for example, space
heating and cooling, are treated separately from non weather-sensitive end-uses. The
disaggregation is done in two steps. First, preliminary end-use profiles are developed for the
building of interest using on-site survey data and the DOE-2 energy analysis software. The initial
end-use profiles are then reconciled with the measured whole-building hourly loads. The
reconciliation is done on an hourly basis for two seasons (winter and summer) and for two-day
types (weekday and weekend or holiday). EDA can assign higher confidence factors for any
given end-use for any scheduled hour. For example, if lighting were metered, confidence in that
end-use would be high, so EDA would not aiter the initial lighting profiles estimated. The
underlying motivation for EDA is that the correlation of monitored whole-building loads to
monitored weather conditions is greater than with respect to simulations for weather-sensitive
end-uses.

The Engineering Calibration Approach (ECA™) was developed by the engineering group
RLW Analytics and the Electric Power Research Institute’s Center for Electric End-Use Data in
the United States [21]. Much like EDA, ECA integrates statistical sampling of hourly whole-

building and end-use metering with site-specific DOE-2 modeling. The main difference between
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EDA and ECA is that ECA also uses visual data analysis for the reconciliation of end-use loads.
That is, once hourly load shapes for one year for a sample of buildings have been produced, data
leveraging is then applied to extrapolate the load shapes to a target population using supporting
audit and billing information. -

The main advantage that ECA presents over traditional metered load data methods is its
flexibility. Since the data is stored as models, it is easy to manipulate the data to perform ‘What-
If scenarios. Unlike traditional load data, which is only a snapshot of a building’s energy
performance. On the down side, both the EDA and ECA approaches rely on submetered energy
data to improve the results of their methods over traditional modeling approaches. For large-scale

utility demand-side management programs this is not always feasible or cost-effective.

23 Energy Load Monitoring Approaches

Energy load monitoring studies generally fall into one of two categories: (i) utility load
research and (ii) utility issues research. The first category, utility load research, is generally
concerned with whole-house energy use. For example, the average energy use of a representative
sample of houses is characterized by using a small number of metering points in each house.
Applications of load research studies include cost-of-service studies, customer class load studies,
and rate design research [22]. Whereas, utility issues research is generally oriented towards
understanding the performance of specific types of houses, systems, and component technologies.
The goal of these types of studies is to address building energy efficiency, energy conservation
and demand-side management related issues. Applications of issues research monitoring include
energy end-use monitoring, technology assessment, and diagnostic measurement.

Both categories of energy load monitoring apply some form of traditional load monitoring
technique. Traditional monitoring techniques have been faulted for their intrusive nature due to

the physical placement of sensors on individual appliances. This poses as an intrusion onto the
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occupant’s property. As an alternative, researchers have developed non-intrusive techniques of
load monitoring. Non-intrusive load monitoring techniques are based on the analysis of appliance
energy signatures. Similar to building energy signatures, appliance energy signatures are
developed to depict the pattern of electricity usage of an appliance based on high-resolution level
electrical demand data. An appliance signature is defined as a measurable parameter of the
whole-house demand profile that gives information about the operating state of an individual
appliance in the whole-house load. Like building signatures, appliance signatures are assumed to
remain constant for the life of the appliance given that no modifications are made or malfunctions
occur. The main advantage of defining appliance signatures in terms of whole-house demand
levels is that, afterwards, only a single monitoring point in the house is required to continue to

gather the appliance load information.

2.3.1 Intrusive load monitoring techniques

Submetering is the most reliable source of data to validate engineering or statistical models
used to estimate end-use load shapes. However, the capital cost of submetering, the expense of
installation, its intrusive nature (as seen by the occupants), and the cost of retrieving the data
combine to make this approach somewhat undesirable for gathering extensive end-use load data.

Also, as energy markets throughout North America become increasingly deregulated, the
requirement for interval energy load data for all types of customers has created an emergence of
sophisticated wireless data and customer communication solutions enabling access to real-time or
quasi real-time customer energy usage patterns [23]. This transformation in the market has

rendered traditional revenue metering techniques obsolete.
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2.3.2 Non-intrusive load monitoring techniques

Compared to intrusive load monitoring techniques, non-intrusive load monitoring has a
number of advantages. In particular, the non-intrusive nature of the equipment may increase
consumer acceptance and decrease financial liability. Other advantages of this method include no
restriction on the number of channels of data that can be recorded, and being less costly more
sites can be monitored, reducing the potential for bias in small sample sizes. A disadvantage is
that most small appliances operating at 100 Watts or less, continuously variable appliances (e.g.
light dimmers), and appliances which operate constantly (e.g. clocks) are often not recognized
using these techniques. However, with the exception of lighting, these appliances do not appear
to be significant energy consuming appliances. More importantly, there is a greater potential for
undetected error using non-intrusive techniques because the whole-house load is disaggregated
analytically, rather than physically using separate sensors as in most traditional monitoring
techniques.

All non-intrusive monitoring techniques are based on the analysis of some type of appliance
energy signatures. The simplest appliance signature is defined as a two-dimensional vector
representing step-changes in the measured power levels of an appliance over time. Most
residential appliances can be appropriately modeled using steady-state signatures. Steady-state
signatures have several advantages compared to transient signatures, mainly: (i) they provide a
continuous indication of an appliance’s operating state, thus, making it easier to detect a change
in state, (ii) the sum of the power changes in any cycle of state transitions (ON to OFF / OFF to
ON) is always zero for most residential appliances, and (iii) the energy signatures are additive
when two occur coincidentally.

Power is one type of energy signature, but several other parameters can be used to define the
appliance signature. For example, direct current, harmonic current, and alternating current can all

be used to define the energy signature of a steady-state appliance [19]. The most appropriate
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signature basis for residential appliances is alternating current at the utility frequency of 60 Hertz.

Three models of non-intrusive load monitoring are presented:

(i) Non-Intrusive Appliance Load Monitor developed by researchers at the Massachusetts

Institute of Technology, -

(ii) Heuristic End-Use Load Profiler developed by the group Quantum Consulting, Inc. in
California, and

(iii) Non-Intrusive Appliance Load Recognition Algorithm developed by researchers at

Concordia University.

The Rule-Based Pattern Recognition Algorithm presented in Chapter 4 is an original

contribution toward the same goal as these three models.

Non-Intrusive Appliance Load Monitor

The Non-intrusive Appliance Load Monitor (NALM) is a micro-processor based device,
initially developed in 1984, to sample the total electrical load of residential dwellings at a high
speed to determine when appliances switch ON and OFF {24,25,26]. The prototypical NALM
consists of five steps: (i) current and voltage measurements using a one second sampling interval,
from which real and reactive power are calculated, (ii) detection of ON and OFF events, (iii)
clustering of similar events, (iv) matching of ON and OFF events over time, and (v) equipment
identification. When an appliance switches ON or OFF, power levels change and a new steady-
state power level is established. The difference between two steady-state power levels defines an
event. These events are then clustered, whereby, events within an established tolerance of real
and reactive power are considered to be associated with one or more appliances with the same
characteristics. ON and OFF events for similar types of appliances yield clusters of similar
magnitude but opposite sign, from which pairs of clusters are used to construct a time-series of

ON and OFF events. Appliance identification is done by comparing the power levels of typical

20



appliances whose characteristics are known. To date, the NALM has a restricted set of target
appliances, excluding small appliances, continuously variable appliances, and appliances that
operate constantly.

Preliminary results indicate that estimated NALM energy consumption is usually within +10
percent of the metered appliance loads. The stove typically yields higher error results due to many
simultaneous events that go undetected. A possible source of error with this device may be due to
incorrect installation of the device. The NALM must be mounted onto an existing meter socket
and the secondary voltage and current sensors (those from the NALM) must be connected in
phase with the primary voltage and current sensors (those supplying the house). The NALM
attempts to increase its success over other traditional pattern recognition approaches by looking at
both the real and reactive components of power.

Researchers in Japan have been able to apply the same technique of the NALM to residential
gas appliances [27]. The method consists of a Smart Gas Meter equipped with a pulse meter, a
data logger, and a software. The gas meter translates the movement of the diaphragm into a cyclic
crank rotation and then transmits it to a digital indicator. One crank rotation is set equal to the
minimum value of mechanically distinguishable unit of flow. A magnet attached to the gas meter
emits an electronic pulse as the crank rotates. Another device detects the pulse and is connected
to a microcomputer in the Smart Gas Meter. The gas use of individual appliances is then detected
based on the volume of gas that flows between two pulses through a standard size meter, and a set
of heuristic rules about the flow rate and duration of various gas appliances (based on house-
specific audit information). This method is about 95 percent accurate.

The need for real-time energy scorekeeping has led the companies Borlinge Energi and
Daltek in Sweden to develop the Kronometer™ ([28]. It is being marketed as an “energy
awareness device” that is plugged into any household power socket and communicates via the

main supply line (using power-line data transfer technology) with a data-logger that is connected



to the house’s primary electric meter. The Kronometer is being tested in about 100 single-family
dwellings. Early results indicate that in households in which the device is installed, average
energy consumption has decreased by 15 to 20 percent just because users learn to recognize the

cost of each appliance as it is tumed ON and OFF.

Heuristic End-Use Load Profiler

The Heuristic End-Use Load Profiler (HELP) is a proprietary software consisting of a rule-
based disaggregation algorithm [29,30,31]. The software, used by approximately 30 to 40 users,
is mainly oriented towards electric utilities [32]. The algorithm uses premise-level data, such as,
audit of appliance loads, customer appliance ownership data, and customer behavioral
assumptions to construct estimated end-use load profiles. On a daily basis the algorithm scans the
whole-house load profile and records the shape, timing of day, magnitude, and duration of all
significant changes in the whole-house load. Next, the algorithm determines which of these
changes correspond to the appliance considered based on general load profile knowledge. In cases
where two or more major end-uses have similar demand levels, HELP distinguishes between
them based on behavioral assumptions regarding the usage of these appliances (e.g. time of day,
length of usage, and pattern of usage). The algorithm is implemented using a decision tree. A
significant advantage of this method is that it can be used by utilities from any geographic region
or customer mix, as long as there is existing load research data from which to extract the
characteristics of the appliance connected loads.

HELP is used to produce load profiles for residential air-conditioning units, HVAC
equipment, and water heaters. For instance, in an air-conditioning study for 40 households across
four months, the average air conditioner energy consumption estimate differed from the actual

energy consumption by less than 10 percent. The peak value of the disaggregated air-conditioning



load profiles when averaged over all households for ail 40 days differed from the actual peak by

less than 5 percent.

Non-intrusive Appliance L.oad Recognition Algorithm
The Non-intrusive Appliance Load Recognition Algorithm (NALRA) developed by

researchers at Concordia University [33,34] also consists of using premise-level data and
previously defined operating characteristics of the appliance connected loads to detect ON and
OFF appliance activations. The operating characteristics considered are one-dimensional, in that,
they define the state of the appliance at a single point in the whole-house load profile. Thus, it is
assumed that the appliance energy signature is depicted entirely as steady-state (ON or OFF). A
key feature of the NALRA is the signal filtering techniques that are applied to “clean-up” the
whole-house load profile, in order that the operating characteristics of the appliances may be
detected. Results based on a one-week training period and a test period of up to 72 days for a
single dwelling indicate that the NALRA yields acceptable estimations of end-use energy

consumption.

24 Neural Network Approach

A more recent approach for modeling electric demand consists of using artificial neural
networks (ANN). Neural networks have drawn significant attention for their ability to learn from
training data and exhibit some capability for generalization beyond the data that is presented to
the network. Instead of requiring explicit “a prior” rules or knowledge, the rules in an ANN are
extracted, learned, and applied within the system. This enables the network to determine causal
relationships amongst a large number of parameters apparent in the energy signature profiles of

buildings and appliances.



The most common type of ANN is the Back Propagation Neural Network. This network is
applied in a large number of applications in various fields, such as, signal processing, pattern
recognition, and classification. It is also used for energy demand predictions. In fact, the need for
accurate load forecasts has made the utility industry one of the major users of neural networks
[35,36]. The results of one study show that the ANN used was able to interpolate among the load and
temperature patterns of training data to perform acceptable short-term load forecasting. Another
study demonstrated the applicability of neural networks to perform long-term load forecasting for a
Middle Eastern electric uiility [37]. Compared to other regression-based methods applied by
researchers in this study, the ANN allowed for more flexible relationships between temperature and
electric load patterns, thus, yielded improved results.

In a building energy prediction competition organized by the American Society for Heating,
Refrigerating, and Air-Conditioning Engineers (ASHRAE) in 1993, five of the six most
successful models used varying neural network techniques [38]. The objective of the competition
was to identify the most accurate method for making hourly energy use predictions based on two
sets of measured energy and environmental data. No description of the building or other details
about the data was made available to the participants. A key factor for the success of all of the
models is that the training data sets included most of the variation in energy use to be predicted.
This characteristic of ANN can sometimes be a significant drawback if appropriate historical data
is not available. A second competition was held by ASHRAE in 1995 with the aim to evaluate the
most effective empirical models for modeling hourly whole-building energy baselines for the
purpose of measuring savings from energy conservation retrofits. Again, the results showed that
neural networks can provide an accurate model of a building’s energy use if the appropriate
training data is available [39,40].

A Back Propagation Neural Network model was used to model occupant behavior in a
single-family dwelling, in terms of a predicted domestic hot water load [41]. The neural network

estimations were then integrated with building climate energy demand predictions generated by
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commercial dynamic energy simulation software. The study revealed that the annual energy
predictions based on building-climate correlation were improved by 15 to 20 percent by including
some knowledge of the occupant behavior for the domestic load.

Other building energy-related applications of neural networks include assessing HVAC
system retrofits for commercia! buildings [42], and building process control and energy
management [43,44,45]. Most of the literature on the latter application describe how researchers
use neural networks as process models that, in tumn, are used to examine the behavior of the
process and determine controller outputs that would produce the desired feedback signal. The
main advantage of using neural networks in place of traditional energy prediction models is the
neural network’s ability to generalize in cases where the driving building parameters can not be
clearly identified (e.g. no apparent correlation exists between variables), or when model input
values are expected to extend beyond a model’s boundary conditions.

The most common inputs for neural networks used to predict demand levels are climatic
data, such as, radiation levels, wet- and dry-bulb temperatures, and wind-speeds. In some cases,
characterizations of the function and operation of the building have also been used as neural
network inputs. For example, occupancy schedules, production data, and room temperatures have
all been investigated as acceptable neural network inputs [46]. Significant for all these
applications are large data sets, which include most instances of variation of the model’s input
variables. In practice, however, it is difficult to first, identify, and secondly, to perform extensive
measurements of all parameters that describe the energy demand patterns of occupants for each
household.

An alternative approach to disaggregating whole-house electric load using neural network
techniques is presented in Chapter 5. This method seeks to investigate whether common neural

network techniques can be used to detect energy signature profiles for different appliances based



solely on their inherent pattern characteristics apparent to the neural network. This approach

eliminates the need for collecting extensive and costly external energy-use parameters.

2.5 Conclusion

The analysis of available publications related to the existing models for estimating end-use
energy consumption has led to the following objectives for the research that is presented in this
thesis.

= Achieve better statistical accuracy than most traditional disaggregation approaches.

= Level of homeowner intrusiveness must be minimal.

s Reduce training period of typical end-use load research projects.

s Allow for real-time applications to take advantage of current emerging remote data
applications (e.g. Internet).

s Adoption of existing data logging equipment of low cost, and simple installation methods
instead of custom hardware and experienced installers as with the NALM.

= Develop algorithms that are robust, yet flexible enough so as to allow researchers to cost-

effectively improve the models, as well as, adapt the work to other appliances.
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3. DESCRIPTION, COLLECTION, AND ANALYSIS OF MONITORED
DATA

31 Description of the Case Study House

The data that is used to develop the algorithms was obtained by the detailed monitoring of a
single-family home in Montreal. The house was built in 1947 and has a total heated floor area of
158.6 m? and four occupants. The house has two above-ground floors, a finished basement, and a
ground-level garage. The primary heating source is an oil-fueled central hot water system. Two
backup electric baseboard heaters are also available. The domestic hot water heater and all other

appliances are operated by electricity.

3.2 Data Loggers

The monitored data consists of interval electrical current measurements for each selected
appliance. The current measurements were obtained using a clamp-on current transducer (CT),
models AG6OFL or A70FL from Amprobe Instruments, and recorded using a SmartReader 3 data
logger from ACR Systems Inc. (Figure 3.1). In the case of appliances that are not connected to
dedicated plugs, the clamp-on CT was installed on a line splitter. The CT is a split-core
configuration allowing installation without disconnecting the load. The data was downloaded
manually, every 6 days, using the TrendReader Software package from ACR Systems Inc.
TrendReader automatically processes the logger data, and assigns a time and date to each
sampling interval. The monitored data was then exported to Microsoft® Excel spreadsheets, in

which the data was analyzed.
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Figure 3.1 Schematic of monitoring equipment [47]

The manufacturer’s specifications include a maximum working voltage of 660 Volts of
alternating current (AC), and a measurement accuracy of either 4% of the full-scale amperage
plus 0.4 Amps if the maximum current is 100 Amps, or £1% of the full-scale amperage plus 0.4

Amps if the maximum current is 25 Amps. Table 3.1 lists the amperage range selected for each

monitored appliance.

Table 3.1 Current probe range selected for each monitored appliance

End-use Number of lines Range selected
(Amperage)

Main electric line enterfing the house (called ‘total’) 2 100 each line
Refrigerator 1 25
Domestic hot water heater 2 100
Clothes dryer 2 25 each line
Clothes washer 1 25
Dishwasher 1 25
Stove 2 100 each line
Baseboard heater 2 25 each line




33 Description of the Monitored Data

The monitored data consists of measurements of alternating current (AC) at a 16-second
interval. The real power for AC is the product of voltage, current, and power factor, whereby the
power factor is calculated as the cosine of the phase shift angle () between the voltage and the
current (Equation 3.1). Implicitly, power factor is the ratio of the real power (expressed in Watts)
to the total or apparent power (expressed in Volt-Amperes). The Total power is comprised of a
real power component (able to do work) and a reactive power component (produces no work).

Real power is the basis upon which utilities bill customers.

Real Power (Watts) = Voltage (Volts) x Current (Amps) x Power factor, where Power factor = cos @
3.1

Assuming that the appliance receiving power from an AC power source behaves as an
electric resistor, that is, the current passing through it is proportional to the voltage drop across it,
both the current and voltage are in phase, thus, the phase shift angle (®) is 0 degrees, and cos(®)
is 1. Hence, purely resistive loads have a power factor of one, indicating that real and apparent
power are the same. In this case, the real power component is proportional to the voltage times
the current, and the reactive power component is zero. Given that the sampling interval captures a
full iine cycle, then the demand at any given sampling interval is obtained from the measurements

using Equation 3.2.

Demand, (Watts) = Current, (Amps)x Volitage (Volts)
3.2)

Where, Current; is the electrical current, expressed in Amperes, at time-step (7); and Voltage is
the voltage drop across the appliance, and it is equal to 240Voilts (2 x 120Volts) for the hot water

heater, baseboard heater, stove and clothes drver, and 120 Volts for other monitored appliances.
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The utility voltage is generally known to vary between 105 Volts to 127 Volts at any given
time for residential loads [48], however, Equation 3.2 assumes that the voltage remains constant.

Herein, the demand refers to the level at which electricity is drawn at each sampling interval,
expressed in Watts. Whereas, the load refers to the amount of electric power that is drawn over an
interval of time, expressed in Watt-hours.

As loads vary from purely inductive to resistive and to capacitive, the phase angle also varies
from -90° to 0° to +90°, thus, the power factor varies from 0 to 1. The algorithms presented in
this study are based on the assumption that the power factor of the monitored inductive
appliances is very close to 1, indicating that these appliances behave as resistive loads. Resistive
loads in a house include domestic hot water heaters, stoves, and baseboard heaters, whereas,
inductive loads include refrigerators, clothes washers and dryers, and dishwashers.

The daily energy use for each monitored appliance is obtained by integrating the appliance

demand across the sampling intervals for the selected day using Equation 3.3.

Energy useyonroren = i (Demand, x At) (Vétt - hours)
in]

3-3)

Where, Demand; is calculated using Equation 3.2; At is the time interval at which the
electrical current is monitored (16 seconds); and (n) is the total number of sampling intervals for
the day (At is 16 seconds thus (7) is 5400).

For the dwelling considered, measurements are made on the following electric circuits: (i)
main supply line to the house (herein called ‘Total’), (ii) domestic hot water heater, (iii)
refrigerator, (iv) stove, (v) clothes washer, (vi) clothes dryer, (vii) dishwasher, and (viii) two

backup baseboard heaters (Table 3.1).




Figure 3.2 illustrates a “snapshot” of the variation of the Total demand profile, as well as, the
demand profiles of individual appliances in use for a period of one hour during a weekday
evening (October 15, 1996). The Total demand is composed of each of the end-uses illustrated,
that is, the domestic hot water (DHW) heater, stove, baseboard heaters, and refrigerator, as well

as, miscellaneous plug and light loads that are not monitored individually.
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Figure 32 Monitored end-use demand profiles during a one-hour period on a weekday evening

From Figure 3.2, we can conclude that the peak in the Total demand profile at time 18:47 is
caused by the almost simultaneous activation of the DHW heater, stove, baseboard heater, and
refrigerator. Therefore, if the whole-house profile is considered and analyzed as a system of
disaggregated components, the impact of each appliance on the Total demand profile becomes

more evident. Moreover, it is seen that each appliance’s demand profile is directly reflected on



the Total demand profile. Whereby, any change in the profile of the Total demand indicates a
status change (ON or OFF) of an appliance in the house.

The complete monitoring period extended from February 1996 to February 1997. The
present study uses data collected during a six-day training period, from October 14™ to the 19*,
1996 in order to develop the prototypes for the Pattern Recognition Algorithm and the neural
network models. This period is referred to as the training period. In this case, a six-day period
was selected because it includes each weekday and one weekend day type. The idea in
determining the length of the training period is to observe sufficient appliance cycles over a short
time period that is representative of long-term appliance energy signatures.

Both approaches are tested using two separate data periods. A six-day period, November 20"
to the 25", 1996 is selected to test the near-to-date applicability of the algorithms. Near-to-date
refers to the period of time between the date of the training data and the testing data. A seven-day
period, January 6" to the 12%, 1997 is selected to test the far-to-date applicability of the

algorithms. The two periods together are referred to as the testing period.

3.3.1 Correction for measurement error in the monitored data

The monitored data was observed to have minor inconsistencies due to malfunctions in the
data loggers. To minimize this measurement error, the Total load is corrected. Whereby, if the
aggregate demand of the individual appliances is less than the Total demand, for time-step (2),
then the Total demand is substituted by the value of the aggregate demand of the individual
appliances at time-step (/). A comparison of the monitored and the corrected Total energy
consumption for each day in the three data periods considered is presented in Table 3.2. On
average, the correction factor is 9.3% for the training data, 5.6% for the November testing data,

and 3.3% for the January testing data.



Table 3.2 Measured and corrected total energy use

Month Day | Monitored Total Corrected Total Correction
energy use enesgy use factor
(kwh) (kWh) (%)
Octaber 14 476 491 3.1
15 74 29.1 6.1
16 230 . 25.3 9.9
17 3.1 25.1 8.9
18 194 20 132
19 2.6 31.8 74
Average 9.3
November 20 241 261 8.3
21 330 46 5.0
22 2.3 35 76
23 38.1 39.6 39
24 41.1 428 39
25 58.7 61.6 48
Average 5.6
January 6 276 280 16
7 375 388 34
8 44 456 26
9 313 329 53
10 404 47 33
1 86.0 86.7 0.8
12 142 15.0 57
Average 33




3.4 Statistical and Graphical Analysis of the Monitored Data

This section presents a brief statistical and graphical analysis of the monitored data in the
aim to demonstrate that the three data periods (one for training and two for testing) selected do
not have similar energy consun;ption or demand patterns. It is important to validate this
assumption because it precludes any possibility of predisposition of the models to accurately
disaggregate the total load. To this end, the monitored data is assessed at four levels: (i) daily

Total energy use, (ii) peak load duration, (iii) hourly Total energy use, and (iv) daily appliance

energy use.

3.4.1 Daily Total energy use

For the first level of comparison, four indices are used to compare the monitored data from
the training period and the two testing periods: (i) energy load, (ii) energy use share, defined as
the percentage of the appliance load to the Total load, (iii) time-of-use share, defined as the ratio
of appliance ON time to total time in a day, and (iv) the number of appliance activations or
positive state changes. The results of this comparison are presented in Table 3.3 for the DHW

heater and Table 3.4 for the refrigerator.



Table 3.3 Monitored data of the DHW heater for different data periods

Training day Energy load Appliance energy | Appliance time-of- Number of

[kWh] use share use share appliance

activations
10/14 — Monday 239 0.49 0.26 13
10/15 - Tuesday 1.1 0.38 0.10 13
10/16 ~ Wednesday 122 0.48 0.11 10
10/17 - Thursday 10.2 0.41 0.09 10
10/18 - Friday 8.6 0.39 0.08 1
10/19 — Saturday 16.0 0.51 0.19 13
11/25 ~ Monday 10.0 0.38 0.10 13
11/26 - Tuesday 158 0.46 0.15 13
11/27 — Wednesday 201 0.64 0.19 10
11/28 - Thursday 10.7 0.27 0.10 12
11/29 - Friday 221 0.52 0.21 12
11/30 - Saturday 30.7 0.50 029 15
01/06 — Monday 16.2 0.32 0.15 7
01/07 - Tuesday 16.9 044 0.16 1
01/08 — Wednesday 224 049 0.21 14
01/09 - Thursday 112 0.34 0.1 1
01/40 - Friday 19.0 0.46 0.18 14
01/11 - Saturday 39.6 0.46 037 15
01/12 - Sunday 8.7 0.39 0.16 4

Table 3.4 Monitored data of the refrigerator for different data periods

Training day Energy load Appliance energy | Appliance time-of- Number of

[kWh] use share use share appﬁapce

activations
Oct 14 — Monday 5.2 0.11 0.62 36
Oct 15 — Tuesday 56 0.19 0.56 36
Oct 16 — Wednesday 586 022 0.56 36
Oct 17 - Thursday 55 0.22 0.55 39
Oct 18 — Friday 57 0.26 0.57 36
Oct 19 — Saturday 45 0.14 0.57 K]
11/25 — Monday 58 022 0.59 34
11/26 - Tuesday 55 0.16 0.56 36
11/27 - Wednesday 5.2 0.17 0.54 38
11/28 - Thursday 54 0.14 0.56 37
11/29 - Friday 54 0.13 0.56 7
11/30 ~ Saturday 59 0.10 0.60 33
01/06 — Monday 55 0.11 0.56 25
01/07 — Tuesday 55 0.14 0.55 38
01/08 - Wednesday 55 0.12 0.55 40
01/09 - Thursday 59 0.18 0.60 7
01/10 - Friday 64 0.15 085 31
01/11 - Saturday 6.3 0.07 0.63 3
01/12 - Sunday 59 0.19 0.59 41




As expected the energy share is significantly higher for the DHW heater than for the
refrigerator. For example, for October 18 the DHW heater energy share is 0.39 or 39% of the
Total electric energy use for that day, whereas, the refrigerator energy share is only 26%.
However, for the same day the refrigerator ON time is greater than the DHW heater ON time by
over seven-fold, that is, 0.57 and 0.08, respectively. Also, the range of variation of the energy
share for the refrigerator across all days, 0.19 (0.07 to 0.26), is half of that for the DHW heater,
0.37 (0.27 to 0.64). Whereas, the range of variation of the time-of-use share for the refrigerator,
0.11 (0.54 to 0.65), is less than half of that for the DHW heater, 0.29 (0.08 to 0.37). Lastly, the
number of appliance activations for each day is an indication of the frequency of usage of the
appliance. The difference in the values for the two appliances indicates that DHW heater usage is
more sporadic than the refrigerator usage during these monitored days.

Based on these results there is no identifiable trend in the day-to-day energy use, in terms of
load and time-of-use, for either the DHW heater or the refrigerator. However, as expected, the
results suggest that the day-to-day energy use variation is more apparent for the DHW heater than
the refrigerator. This is likely due to the fact that varying occupant activity and external factors

have less of an impact on the refrigerator than the DHW heater energy use.

3.4.2 Peak load duration

For the second level of comparison, the peak load duration is assessed by comparing the
Total electrical load factor (ELF) for each day for the three data periods (Figure 3.3). The load
factor is defined as the ratio between the actual daily electricity consumption and the amount that
would have been used if the usage had stayed at the occupants’ peak demand level for the entire

day (Equation 3.4).
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Where, Demand; is calculated using Equation 3.2; Demand av is the average Total demand
for the day, expressed in Watts; (n) is the number of sampling intervals for the day; and At is the

sampling interval (16 seconds).
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Figure 3.3 Daily electrical load factor for the Total load for all data periods

The results indicate that the load factor varies by data period, as well as, by day of the week.
Thus, there is no underlying trend in the monitored data depicting the peak load duration of

appliance usage.




3.4.3  Houwrly Total energy use

To gain a better understanding of how whole-house electricity is consumed, both the daily
and the hourly patterns are considered. The hourly energy use profile (expressed in kilowatt-hours
or kWh) is presented in Figure 3.4 for the training period; Figure 3.5 for the near-to-date testing
data; and Figure 3.6 for the far-to-date testing period to illustrate the varying energy demand
patterns of the occupants throughout the day.

Although, the hourly profile exhibits an expected diurnal pattern of energy use, the
magnitude of the peak loads varies somewhat. In addition, it is noticed that during the nighttime
hours of 01:00 to 05:00 the energy use varies somewhat across the three data periods. This
suggests that the hourly patterns of energy use in the house, across different days, are due to

random rather than systematic occupant behavior.
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Figure 3.4 Hourly Total load profile for each day of the training period



Total energy use (kWh) November 25, 1996 Total energy use (kWh) Novermber 26, 1996

9 9
6 - -
3 T

1 12 Hour of day 23 1 12 Hourof day 23
Total energy use (kWh) November 27, 1996 Total energy use (kWh) November 28, 1996

9 g - 9 1

1 12 Hour of day 23 1 12 Hour of day 23

Total energy use (kWh) November 29, 1996 Total energy use (kWh) Novermber 30, 1996
9 9
|
6. 6
3. 3.
0 . S ! 0 im : :
1 12 Hour of day 23 1 12 Hour of day 23

Figure 3.5 Hourly Total load profile for each day of the near-to-date testing period
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Figure 3.6 Hourly Total load profile for each day of the far-to-date testing period
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3.4.4 Daily appliance energy use

From the results of the previous sections, preclusion of any tendency in the daily and hourly
total energy use patterns can be made. The same assumption must also be justified for each end-
use individually. Consider Figure 3.7, the range of daily energy use for each monitored appliance
is illustrated for the three data periods.

The results show that the DHW heater’s energy consumption varies the most among the
monitored appliances, that is, from about 5 kWh/day to almost 40 kWh/day. This is likely due to
varying household activity. The second highest variable appliance is the baseboard heater. This is
likely due to varying heating requirements as the outside temperature changes considerably
during the shoulder month of October, as well as, to people’s thermal preferences. The values
illustrated suggest that the aggregate sum of the two baseboard heaters can vary from 0 to 12
kWh for one day. The energy use of the remaining monitored appliances: refrigerator,
dishwasher, clothes washer, and stove vary between 0 kWh/day and approximately 6 kWh/day.
The OTHER end-use represents the residual load, that is, the total load minus all the monitored
end-use loads. This category includes miscellaneous plug loads and lights. At the end-use level
the monitored data does not have any inherent trends with regards to energy consumption or

demand patterns across different days.
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Figure 3.7 Ranges of end-use energy consumption for all days in the data periods

Figure 3.8 and Figure 3.9 present a sample of demand profiles plotted against time for the
refrigerator and DHW heater, respectively, as monitored during the training day of October 15%,
1996. Note that the profiles for the two appliances are presented on different scales. Each profile
depicts one appliance cycle. The tick marks on the horizontal axis of the figures represent the
number of sampling intervals for each cycle. Typically, the refrigerator cycle duration is longer
than the DHW heater cycle duration. The refrigerator profiles generally appear to be more
discrete than the DHW profiles because the number of fluctuations appears to be less. The data
markers (highlighted using gray boxes) at the start and end of each profile illustrate the number of
intervals sampled before the appliance achieved its steady-state mode of operation. In the
following chapter, this aspect is further discussed in the aim of recognizing the ON and OFF

occurrence of an appliance. There are not two appliance cycles that depict identical patterns.
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35 Regression Analysis

This section presents the results of a regression analysis of the monitored data. The goal of
this exercise is to assess the relationship between the energy consumption of any two appliances,
and an appliance and the Total enc;rgy consumption of the house. If appropriate relationships are
found based on the training data, then a function is defined, which is then used to estimate the
energy consumption for the testing periods.

The correlation coefficient is used to assess the relationship between individual end-use
loads and the total load. The analysis is done for two units of measurement, that is: (i) appliance
energy share of the total load, and (ii) appliance energy consumption. The correlation coefficient
(r) is calculated using Equation 3.5. If large values of daily energy use for one appliance are
associated with large values of daily energy use for another appliance, then (r) is positive.
Whereas, if small values of daily energy use for one appliance are associated with large values of
daily energy use of another appliance, then (r) is negative. In the case that the two appliances are
unrelated, then () is close to zero. The results for the training data are presented in Table 3.5 for

the energy shares and Table 3.6 for the energy consumption.

O xy

(r)xv = —_—
Gx- Oy

1 2 1 1 2
where, GOy =;Z(xi_“x)(yi-“'Y)' 02=;Z(X,-—Px)2.a"d 0'\3 = ;Z(Yi_p‘Y)

(3.5

Where, X; is the energy use of appliance X for the day (i); Y; is the energy use of appliance
Y for the day (i); p, is the average daily energy use of appliance X for all days in the training
period; and py is the average daily energy use of appliance Y for all days in the training period.

The fact that the analysis yields different results based on the unit of measurement of the

end-use, that is, as a function of the energy share or the unit energy consumption, indicates that
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the type of energy usage patterns of the appliances are different. For instance, the correlation
between the refrigerator energy use share and the total energy use is very strong (r = -1.0).
Whereas, the correlation between the refrigerator unit energy consumption and the total energy
consumption is weak (r = -0.4). Therefore, it appears that the refrigerator energy use is somewhat
constant, irrespective of the household activity.

In comparison, the correlation between the DHW heater energy use share and the total
energy use share is weak (r = 0.3). Whereas, the correlation between the DHW heater unit energy
consumption and the total energy consumption is strong (r = 0.9). In this case, it appears that the
DHW heater energy share is somewhat constant indicating that the level of household activity,
which influences the total energy use, also influences the DHW heater energy use. Since the
DHW heater is the largest contributing appliance to the Total load, an increase in the DHW heater
energy use is apparent on the Total load. Whereas, an increase in the refrigerator energy use may
be overshadowed by increases in energy use of other appliances in the house.

Another significant relationship between end-uses is found for the clothes washer and the
stove. For both bases of comparison, the interdependency is strong (r = 0.9 from Table 3.5 and
Table 3.6). The clothes washer is also well related to the Total energy use based on energy share
(r =0.7 from Table 3.5) and energy use (r = 0.8 from Table 3.6), as is the stove based on energy

shares (r = 0.7 from Table 3.5) and energy use (r = 0.9 from Table 3.6).
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Table 3.5 Correlation coefficient (r) for appliances based on energy use shares

i Y Refrigerator DHW heater Dishwasher | Cloth. Washer Baseboard Stove
Refrigerator ' R
DHW heater - -03
Dishwasher 04
Cloth. washer Q7
Baseboard 06
Stove 08
Total -1.0

Table 3.6 Correlation coefficient (r) for appliances based on unit energy consumption

zf, L Refrigerator DHW heater Dishwasher | Cloth. Washer Stove

Refrigerator | FO e

DHW heater 0.5’7 )

Dishwasher 04

Cloth. Washer 0.0

Baseboard 07

Stove 0.2

Total 04

For appliances that yield a significant correlation to the Total load, a regression analysis is
used to estimate the appliance energy use based solely on the Total energy use of the house.
Various correlation functions are tested. The best-suited function is selected based on the highest
goodness-of-fit, expressed by the coefficient of determination (R?). For example, an R? of 0.9
indicates that 90 percent of the variation of the total energy consumption is directly related to the
appliance energy consumption. The functions selected for the refrigerator and the DHW heater
are illustrated in Figure 3.10. The results show that an exponential function best describes the
energy share data of the refrigerator, whereas, a power function is best suited to the energy use

data of the DHW heater.
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These functions are then used to estimate each appliance’s energy use for the two testing
periods. The results are shown below in Figure 3.11.
Mbnitored refrigerator energy share (%) : wb'inred OHW heater energy use (WAday)
40 > [45 -
: : l" ¥ ; "”
. e i o
; '/" P ’,,’
30! -~ P o
o ,/' : i 30 . 8,
= 1
P e drd -
; ; o a . g ; e
120 2 -~ L [= 0
{ ‘ ”’U o H ! i 1 A A'I”
: ! t" A a N B’c
o B FRLTE &
s -as b e
10 - Slsgdaal .| [ ’in 0 a testing data 1
;a7 igtestngdata2 . | e Qtesting data 2
S ; : <0
. d ! ,"
0: ’1' RN I
0 5 10 15 P0 15 30

" 3 20 25
Estimated refrigerator energy share (%)

i Estimated DHW heater energy use (WAtvday)

Figure 3.11 Comparison of the regression analysis results and the actual monitored data for

the refrigerator and the DHW heater




For the refrigerator, the unit error in estimating the daily energy share varies from -11.2% to
3.8% from the actual energy share. For the DHW heater, the relative error in estimating the daily
energy use varies from -6.7% to 3.2% of the actual energy consumption.

Acceptable estimates of the™ contribution of these two appliances (DHW heater and
refrigerator) to the total energy consumption of the house can be obtained by using the
relationships developed from the training data. However, this approach is based on the
assumption that all factors that affected the energy use during the training period will remain
constant throughout the testing periods. For example, if the number of occupants or their energy
related habits should change, then the relationships derived from the training period are no longer
valid. Moreover, a regression analysis approach can not provide additional information about the
pattern of end-use energy consumption, such as, the number and the duration of appliance
activations, and the corresponding energy consumption for different time intervals during the day
(e.g. from 6:00 AM to 9:00 AM or from 6:00 PM to 10:00 PM).

Both approaches presented in the following chapters, pattern recognition and neural network
techniques are developed with the aim to overcome this limitation. That is, an approach is
presented that is not contingent on the behavior of household occupants, or any of their social or
demographic characteristics provided that the major energy contributing appliances in a house are

not replaced.
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4. A RULE-BASED PATTERN RECOGNITION ALGORITHM TO DIS-
AGGREGATE THE TOTAL ELECTRIC LOAD INTO THE MAJOR END-
USES
The objective of the work présented herein is to demonstrate that end-use load data can be

obtained by applying a pattern recognition approach to disaggregate the whole-house load data.
Whereby, the whole-house electric load is disaggregated into its major end-uses by detecting
individual appliance loads from rapid sampling of whole-house current levels. The results are
presented in the form of daily load profiles and energy consumption for each major end-use. This
chapter presents the development of the generic algorithms for both the DHW heater and the
refrigerator. Subsequent to the initial development of the algorithms, a testing process is carried
out to validate the algorithms by comparing their results with the results of the monitored
appliance data.

The recognition of the various appliance energy signatures within the whole-house demand
profile consists of two phases: (i) a one-time calibration (or training) process required to tune the
generic algorithms, previously developed, to the characteristics of electric demand of the
particular house under investigation; and (ii) an application (or testing) phase. During the
training phase, the electric demand is monitored at the main electric entrance of the house and at
selected appliances of interest. During the application phase, only the electric demand at the main
electric entrance is monitored.

The generic algorithms are developed from the analysis of monitored data over a training
period of one week on a test house. From the training data, a random sample of events
corresponding to the selected appliances is selected. The response signal of the Total demand
profile due to the activation and disactivation of selected appliances is assessed. This information
is referred to as the appliance’s energy signature (or demand profile), and is translated into pattern

recognition rules. The generic algorithms can be applied to other houses given that the



algorithm’s parameters are modified, through a training process, to fit the electric characteristics
of appliances for a house. The transferability of the generic algorithms to houses other than the
test house has not been tested within the scope of the work presented herein.

The algorithms systematically apply a set of rules to recognize the operation of the selected
appliance from the Total demand profile. Figure 4.1 illustrates a schematic representation of the

overall process of development and testing of the algorithms.

> Average
I steady-state
demand
Monitored Total load and Monitored Total load Estimated
appliance load energy
i, >' use
Set of pattem
recognition rules Estimated ')
Development of energy — load profile
signature and generic
algonthms
— 2 4 ¢ - — 4
Training process Testing / application process

Figure 4.1 Flowchart of the algorithm development process for both appliances

The algorithms are based only on monitored data and do not require information to be
provided by the occupants about the usage of the appliances. The training data consist of
monitored data from a six-day period, from October 14% to the 19%, 1996. The testing data
consists of monitored data from two separate data periods: (i) a six-day period in November 0"
to the 25%) 1996 to test the near-to-date applicability of the algorithms, and (ii) a seven-day
period in January (6™ to the 12™) 1997 to test the far-to-date applicability of the algorithms. Near-
to-date and far-to-date refers to the period of time between the date of the training data and the
testing data. Results are also presented for the training period in order to determine the minimum

error inherent in the algorithms.
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The Total load for the case study house is disaggregated into the following categories: (i)
domestic hot water heater, (ii) refrigerator, and (iii) other. Separate algorithms for the DHW heater
and the refrigerator are developed. These two end-uses are selected for disaggregation because they
appear to be the most important, in terms of their share of the Total load. Figure 4.2 shows the
contribution of each individually monitored appliance to the Total load for the six-day training

period in October.

Miscellaneous
plugs & lights .
13% A

Refrigerator
21%
Stove
(range & oven)
5%

Baseboard
heating
11%

Clothes washer
1%
Dishwasher

1%

Domestic hot
water heating
48%

Figure 4.2 Average energy shares for each end-use monitored during the training period

Combined, the DHW heater and the refrigerator consume more than two-thirds (69%) of the
electricity used in the whole house. The miscellaneous plugs and lights load is the residual load
once the individual monitored loads are subtracted from the Total load. A clothes dryer was

present in the house, however, it was not operated during the training period.
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The algorithms for the DHW heater and the refrigerator are presented separately in Sections
4.1 and 4.3, respectively, followed by a discussion of each algorithm’s results in Sections 4.2 and

4.4.

4.1 Algorithm for the Estimation of the Energy Use for Domestic Hot Water Heating

Domestic hot water heating can be a large expense in a household’s energy bill. With the
increased use of convenience appliances such as dishwashers and washing machines, and with
increased regard towards lifestyle, the costs of water heating have risen significantly over the last
decade. A survey of household energy use in Québec indicates that the average DHW heater
energy consumption for single-family detached dwellings is 5130 kWh/year [49]. This level of
energy use corresponds to 88,220 litres/year or an average of 242 litres/day of hot water,
assuming a constant inlet water temperature of 10°C and a supply water temperature of 60°C.

The amount of energy used to heat water is dependent upon several factors, including: (i) the
number of persons in the household and their personal habits, (ii) the types of water-using
appliances and their frequency of use, (iii) the thermostat setting on the storage tank, and (iv) heat
losses from the storage tank, piping system, and leaky faucets. The nonlinear nature of these
factors and their variation across houses poses a large obstacle to accurately estimate the
contribution of the DHW heater load to the total load of a house based on traditional methods.

To circumvent this problem, the DHW heater load is obtained from the recognition of the
DHW demand profile within the Total demand profile using a top-to-bottom rule-based
algorithm. The application of the algorithm is outlined in Figure 4.3. The algorithm consists of
three stages: (i) the detection of ON and OFF appliance events by their respective energy
signatures, (ii) the estimation of the appliance’s demand profile, and (iii) the calculation of the
appliance’s energy load. The notation (S) is used to indicate the status of the rules, whereby S is 1

if the rule passes and S is 0 is the rule fails or is nul.
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The first stage of the algorithm involves the application of five rules. These rules are used to
identify all possible start and end events from the Total demand profile. The first rule, or the
state change detection rule (labeled HW1), is applied to determine a preliminary set of possible
start and end events based solely on the detection of a given step-increase or decrease in the Total
demand profile. The following three rules: the profile vector norm rule (labeled HW2), the
number of data points rule (labeled HW3), and the Total demand rule (labeled HW4) are then
applied to each possible event. An aggregate and weighted score of the performance for these
three rules is then attributed to each possible event. This score is used to confirm or refute the
occurrence of an event as recognized by the first rule (HW1). With the exception of the number of
data points rule, the outcome of the scores of the profile vector norm rule and the Total demand
rule can not directly refute an event. Next, the minimum score rule (labeled HWS) is used to filter
out the weak events from the data set of possible events, that is, those events with low aggregate
scores. The remaining set of selected start and end events proceed to the second stage of the
algorithm, in which the daily demand profile of the DWH heater is constructed, and the daily load

duration is estimated.

57



/ﬁonitored Total demand proﬁy
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Stage 3:

Estimated DHW heater load

Figure 4.3 Flowchart of the Pattern Recognition Algorithm for the DHW heater
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The second stage of the algorithm consists of three constraining rules: the highest scoring
event rule (labeled HW6), the minimum ON and OFF interval rule (labeled HW7), and the
minimum Total demand rule (labeled HW8). Unlike the first stage of the algorithm where the
rules focus on the detection of the-appliance energy signature, the aim of this set of rules is to
verify that the DHW heater ON periods estimated in the first stage of the algorithm are consistent
with the frequency of appliance usage observed from the training data. Similar to rule HW1 and
HW3, these rules are applied on a pass or fail basis. That is, an event is either confirmed as a start
event or it is recognized as a false start event. If it is recognized as a false event it is eliminated
from the data set of possible events. Consecutive start and end events are then linked together to
obtain the sequence of activation periods of the DHW heater. Once the ON and OFF periods of
the appliance are determined, the DHW heater energy consumption for the duration of the day is

calculated using Equation 4.1.

Energy use = fj S; x Atx Demand,zpage

i=l

(Watt- hours day)
@.1)

Where, S; is 1 indicating the appliance is estimated to be ON at time-step (i) else S; is 0; At is
the sampling rate, that is, the time interval at which the Total demand is monitored (16 seconds or
1/225 hour); and Demandueuce: is the average electric demand of the DHW heater observed from
the training data, and is 4455 Watts.

The estimated DHW heater demand profile is obtained by plotting Demand avewse for all
estimated ON intervals of the appliance against time. Although the duration of the appliance load
is obtained from the analysis of the ATotal profile, the appliance demand is assumed to be
constant, equivalent to the average electric demand observed from the training data.

The algorithm processes the energy signature of an appliance cycle using three separate

segments: the start, middle, and end of each cycle (Figure 4.4). The boundaries for each segment
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of the appliance energy signature are determined based on distinct changes in the demand profile
during a cycle. For example, it is noticed that significant changes in the ATotal profile occur
during the first six time-steps of a cycle in the case of a start event, and in the last six time-steps
of a cycle in the case of an end event. The middle or steady-state segment remains approximately
constant, therefore, this portion of the cycle is not distinguishable in the ATotal profile. Hence, the
algorithm identifies the start and end events separately, and then joins the times of consecutive
start and end events to obtain a sequence of load intervals when the DHW heater is estimated to
be in use. An appliance cycle is described by the complete duration of a load from start to end.
Whereas, an event is described by a change in status of an appliance, that is, either from OFF to
ON or ON to OFF. Thus, by definition, a cycle consists of two events: an ON event (herein

called ‘start’) and an OFF event (herein called ‘end’).

Total demand (W) ATotal demand (W)
7000 - Start profile - 6 End profile - " 4000
time-steps r—Total 6 time-steps i
-
5600 -
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4200 - i —4Total
| !
i ! el it - 10
2800 - i !
| | f
: ; |
! i Middie . 2000
1400 - '
: |
o < DHW heaterisON —— > _ | 4000
Sampling interval

Figure 4.4 Decomposition of a DHW heater energy signature
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The appliance energy signature is developed as a function of ATotal, whereby ATotal is the
difference in Total demand levels, and is calculated as (Total; - Total; ;). This way the effects of
other loads in the energy signature are expected to cancel out, except in the case of two
simultaneous ON or OFF events. Thus, an assumption in the development of these algorithms is
that there are no simultaneous events occurring (e.g. no more than one appliance is turned ON or
OFF at any given time). This implies that an end or start event is not masked by the end or start
event of another appliance. In Figure 4.4, the Total demand is read on the left axis, whereas, the
difference in the Total demand (or ATotal) is read on the right axis.

Sections 4.1.1 to 4.1.8 describe the eight rules that compose the DHW heater algorithm.

4.1.1 Rule HW: State change detection

The state change detection rule scans the ATotal profile for any step-increase or decrease that
is within the range of variation monitored during the training period. This “a priori” information
is determined by analyzing the ATotal demand levels at the start and end of a random sample of
DHW heater cycles from the training data.

Explicitly, the state change detection rule states:
IF: (X wnsmaar < (X; + Xiws ) € Xuacsmar) THEN: S;=1

ELSEIF: (Xunvao = (Xn + Xas) 2 Xuaao) THEN: S,=1 ELSE: nul

HW1

Where, x; is the step-increase observed in the Total demand profile at time-step (i) and is
calculated as (Total; — Total;.;); X, is the step-decrease observed in the Total demand profile at
time-step (n) and is calculated as (Total, — Total,.;); X wvsr is the minimum step-increase
observed from the training data for (x; + X;-;) at the start of a cycle (2348 Watts); X wvoo is the
minimum step-decrease observed from the training data for (X, + X,.;) at the end of a cycle (-4200

Watts); and X wxsmar and X wxao are artificial upper and lower limits imposed by the algorithm
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(9999 and -9999 Watts); S; is 1 indicating a possible start event at time-step (i); and S, is 1

indicating a possible end event at time-step (n). Since the DHW heater has the highest demand of
the appliances monitored, imposing upper limits on the step-increase or decrease is not necessary.
However, this is a generic algorithm that will be used to recognize other appliance energy
signatures as well, thus, upper limits are included in the rule structure. In summary, if the first
part of rule HW1 yields, a start event is recognized at time-step (/). Whereas, if the second part of
rule HW1 yields an end event is recognized at time-step (n).

The step-increase considered by rule HW1 is the sum of two consecutive time-steps (x; and
X;+1), rather than just one time-step (X;). Similarly, the step-decrease is the sum of (x, and X,.;),
rather than (X,) alone. The reason being that although, electric water heaters are steady-state
appliances which are depicted by discrete state-changes - due to the small sampling interval
selected, start or end events are sometimes measured as continuously transient events composed
of two consecutive step-increases or decreases. Figure 4.5 illustrates two examples of start
profiles as measured for the DHW heater. One profile depicts one step-increase to the steady-state
demand, whereas, the other profile depicts two consecutive step-increases to the steady-state
demand. Also, a two step-increase may not necessarily be linear, as is the case shown in Figure
4.5. The likelihood of this behavior appearing in interval monitored data decreases as the

sampling interval increases.
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Figure 4.5 Comparison of two start profiles as measured for the DHW heater

The prototypical Pattern Recognition Algorithm is applied to the data on a daily basis with
no regard to the transfer of results from one day to the next. Therefore, if an appliance is activated
before 12:00 PM and operates into the following day, rule HW1 will not be able to detect the
appliance within the ATotal demand profile on the second day because it did not detect an initial
ON event. For the current prototype of the algorithm, if an appliance is in use during the first

time-step of the day, the status of the appliance for rule HW1 is input manually, whereby, S; is 1.

4.1.2 Rule HW2: Profile vector norm

The profile vector norm rule consists of calculating the vector norm of an appliance’s energy
signature (expressed as ATotal) with respect to the average start or end energy signature observed
from the training data. This rule is based on the observation that the DHW heater start and end
profiles are, in terms of pattemn and demand level, distinguishable from those of other major

appliances in the house. Figure 4.6 shows typical energy signatures for each of the six appliances
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Figure 4.6 Typical appliance energy signatures for each monitored appliance
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monitored, as a function of ATotal. The highlighted points on each profile illustrate the start and

end boundaries considered by the algorithm.

The amplitude of the DHW heater signature distinguishes it from that of any other monitored

appliance. The baseboard heater, dishwasher, and clothes washer all reveal intermediary step-

decreases before the end of the cycle depicting multi-state operation. It is noticed that the stove’s

energy signature has the most fluctuations, which is likely due to the flickering heating elements.

The average start and end demand profiles of the DHW heater observed from the training

data are listed in Tables 4.1 and 4.2. Negative values in the start profiles or positive values in the

end profiles suggest that either another appliance turned OFF or ON during that sampling interval

or that there are fluctuations in the load due to varying utility voltage.

Table 4.1 Start demand profiles for the DHW heater (expressed as ATotal — Watts)

Time- Pure profiles Mixed profiles Average | Standard
step Profle | deviation
1] 2 | 3] 4 | 5 ] & 1. ] 2 | 3 ] 4 Ci
() 4757 4920 4704 1491 3910 3861 3678 2682 2620 2097 3472
(i+1) 0 -54 135 3212 847 870 0 2154 3621 0 1079
(i+2) 0 0 2z 27 0 0 81 0 ] 0 8
(i+3) 0 0 0 0 0 27 -27 0 0 27 8
(i+4) 0 0 0 27 0 27 0 244 -766 z7 a3
(i+3) 0 0 0 0 0 0 0 0 -807 27 83
Norm-6 687 752 635 | 1190 209 190 452 549 | 1167 715 583 233
Norm-5 75 113 104 71 75 76 438 115 838 1 oMo 133 76
Table 4.2 End demand profiles for the DHW heater (expressed as ATotal - Watts)
Time- Pure profiles Mixed profiles Average | Standard
step Profie | deviation
1 | 2 | 3 | 4 ] 5 | & 1 | 2 3 | 4 Ca
(n-3) 27 54 2 0 0 54 27 0 81 27 -3
(n-#) -27 0 0 0 0 54 27 27 27 -2 8
(n-3) 0 0 0 0 0 0 0 27 27 27 -3
(n-2) 27 0 rig 7 0 0 -27 0 0 0 5
(n-1) 0 -2379 -1833 874 3266 -3370 27 0 -3169 -2748 -1761
(n) 4785 -2541 -3033 -3829 -1491  -1469 | 4733 4813 -1034 -2201 -2993
Nom-6 719 254 32 362 614 658 730 719 576 403 507 195
Norm-5 788 286 60 398 673 721 gag 788 676 450 564 212
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The profiles are grouped as either pure or mixed based on whether the appliance start or end
event occurred alone or concurrently with other appliances in the house. Both pure and mixed
profiles are considered in the algorithm so as to determine probable ranges of performance
criteria for the data which includes-the effects of random noise in the Total demand profile.

As a result of the relatively small sample size selected, a robust average demand profile is
required, that is, one that is unbiased to large variations in a small fraction of the data. For this
reason, the sample profiles are examined visually and any unusual profiles are excluded. For
example, in Table 4.1, mixed profiles (3) and (4) are not considered in the average start demand
profile for the time-steps (#) and (i+/).

The vector norm, defined as the distance between the average start or end profile and a
possible start or end profile, is calculated using two approaches. The first approach is to consider
the first six time-steps from a start event at time-step (i) (labeled norm-6 in Tables 4.1 and 4.2),
and the second approach is to consider the first two time-steps from a possible start at time-step
(9 as one point and the next four time-steps as separate points (labeled norm-5 in Tables 4.1 and

4.2). Norm-6 is calculated using Equation 4.2 and norm-$ is calculated using Equation 4.3.

Norm-6. = \/((X, “C P+ Xy <Co P+ (X,0p -Cra P+ (X3 =Crus P+ (X0 ~Cine 2 +(Xips -Cous )2)
a 6

@.2)

Norm-5. = \W(’(f + X541 )=(C; +C ) P+ (X,0z ~CiuaP +(Xiy3 -Cris P+ {Xina ~Crns P + (X105 'Ci+s)2J
a 5

@3)

Where, X; is the step-increase observed in the ATotal demand profile at the time-step (i); and

Ci is the average start demand profile listed in Table 4.1. To apply Equations 4.2 and 4.3 to an end

event, the sequence of time-steps {i, i+/, i+2, i+3, i+4; and i+3} is substituted by {n, n-1, n-2, n-




3, n-4, and n-3}, where, (n) is the time-step at which a possible end event is identified by rule
HW 1; and C, is the average end profile listed in Table 4.2.

The results shown in Table 4.1 indicate that those profiles with a one step-increase pattern
yield higher values for norm-6 (687 Watts) than for norm-5 (75 Watts) because the average demand
profile characterizes a two step-increase pattern. Thus, to reduce the norm value for these
profiles, time-steps (i) and (i+) for start events, and time-steps (n) and (n-I) for end events are
aggregated and evaluated as one point, rather than individually. As a result, the average standard
deviation for the sampling group for norm-5 (76 Watts) is considerably lower than the average
standard deviation for norm-6 (233 Watts). Since a vector norm with a small value is desired,

norm-5 is selected as the basis of evaluation for the profile vector norm rule.

Explicitly, the profile vector norm rule states:
IF:(nonn—S. < nom-5 THEN: Scoreermmz = 1
I

REFERENCE-START )

nom—5
ELSE: Scoreoimn = REFERENCE -START

norm -5,
HW2

Where, norm-5; is calculated using Equation 4.3; and NOM-Srzmacesar is 285 Watts, and is
calculated as the average vector norm (133 Watts) plus two standard deviations (2 x 76 Watts) for
a sample of start profiles observed from the training data (Table 4.1). To apply rule HW2 to an
end event, nom-5; is substituted by norm-5,; and NOM-Seemrencesmnr is substituted by NOM-Sremence-
a0, Where NOM-Sremaceeo is 776 Watts, and is calculated as the average vector norm (564 Watts)
plus one standard deviation (212 Watts) for a sample of end profiles observed from the training
data (Table 4.2). A higher tolerance is accepted for the start profile than the end profile because
the standard deviation of the sampling set is more restrictive for the DHW heater start profiles

than for the end profiles.
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4.1.3  Rule HW3: Number of data points

The number of data points rule evaluates the number of time-steps in a possible start and end
demand profile whose demand level fall between the maximum and minimum demand levels
established from the training data. This rule is developed to reinforce DHW heater events that do
not score well in rule HW2 because their profiles deviate from the expected or average demand
profile observed from the training data. This allows for some tolerance between the expected
profile (verified by rule HW2) and the measured profile to account for noise, variability in the
Total demand profile, or the concurrent start or end event of some other appliance. The maximum
and minimum demand levels, summarized in Table 4.3, are determined using the same random

sample of pure start and end profiles listed in Tables 4.1 and 4.2.

Table 4.3 Maximum and minimum demand profiles for the DHW heater (Watts)

Time-step Start profile Time-step End profile
Maximum Minimum Maximum Minimum
(N 4920 1492 (n-2) 28 0
(i+1) 3213 55 (n-1) 0 -3371
(i+2) 28 -28 (n) -1470 4785

Figure 4.7 illustrates these ranges for both the start and end profiles. Only the first three
time-steps of the start and end profiles are considered in rule HW3 because the 4® 5% and 6®
time-steps, generally, depict steady-state power draw. These time-steps are zero or near zero in

the ATotal demand profile, hence, it is difficult to recognize them.
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Figure 4.7 Maximum and minimum start and end demand profiles for DHW heater

Explicitly, the number of data points rule states:
IF: (X wnestarr-l S X < X mx-smz‘m) and (x westarT-2 S Xjivy S X Mx-smir-z) and (X ansTart-3 S Xiv2 < X nx.srm-s)

THEN: Scorewas = 1and S;=1

ELSEIF: 2 out of the first 3 time-steps of a start profile fall between the maximum and minimum demand
levels and
(nom-5; < NOM-5 wax-staar )

THEN: Scoresws = 0.5and S; =1 ELSE: Scorenws = 0 and S;=0
HW3

Where, X wwsarr-1 is 1492 Watts; X wnsurr2 is =55 Watts; X wnvsusra is —28 Watts; X ucsmar-1 iS
4920 Watts; X uwwsmr-2 is 3213 Watts; X wstanr-3 is 28 Watts; norm-5; is calculated using Equation
4.3; and nomM-Swxswar is 1141 Watts, and it is selected as the maximum vector norm of pure and
mixed start profiles observed from the training data (Table 4.1). To apply rule HW3 to an end
event, the sequence of time-steps {i, i+/, i+2} is substituted by {n, n-1, n-2}; X wesmar-1, X wstarr-2,
X westanr-3, X wacsirr-t, X wocstar-2, and X wsmar3 is substituted by X unant, X wvao2, X uvao3, X wxao1,

X wxeno2, and X woo3; NOM-5; is substituted by nom-5,; and nOM-Swxsmer is substituted by norm-
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Suao, Where, NOM-Swuwao is 800 Watts, and it is selected as the maximum vector norm of pure

and mixed end profiles observed from the training data (Table 4.2).

4.1.4 Rule HW4: Total demand ~

The Total demand rule reinforces the recognition of a DHW heater event when the Total

demand level is high. This rule is based on the assumption that the probability of recognizing a

start or end event of the DHW heater increases as the Total demand increases. Figure 4.8

compares the demand levels, illustrated as one standard deviation above and below the mean, for

each monitored appliance. The results indicate that the DHW heater has the highest demand level

among the monitored appliances.
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Figure 4.8 Demand levels for different end-uses observed from the training data

In some instances, the Total demand may be due to the concurrent operation of several end-

uses, other than the DHW heater, whose demand levels add up to be equal to the demand level of
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the DHW heater alone. The results of an analysis of the Total demand during DHW heater ON
and OFF periods from the training period is presented in Figure 4.9. The results show that there is
a clear distinction between the two following scenarios: (i) a DHW heater in use alone
(represented by the upper line), and (ii) the concurrent operation of several other appliances

(represented by the lower line).
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Figure 4.9 Comparison of the Total demand for DHW heater ON and OFF periods

The difference in the Total demand for the two inner extremes of the line profiles in Figure
4.9 is significant (approximately 2000 Watts). Thus, assuming that the monitored data is normally
distributed, when the DHW heater is ON, the probability that the Total demand is less than the
lower limit of the top line shown in Figure 4.9, corresponding to the mean minus two standard
deviations (i - 20), is very low (<2.5%).

The scoring scheme for rule HW4 is evaluated using a continuous unipolar function with an
asymptotic variation when the Total demand approaches a very low or a very high level, defined

by two standard deviations above or below the mean. This function is plotted in Figure 4.10.
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Explicitly, the Total demand rule states:

HW4

Where, A is 0.0017845 and it is calculated by considering that 95% of all measurements of
the Total demand are within the mean plus or minus two standard deviations; TL; v is the average
Total demand for time-step (i) and it is calculated using Equation 4.4; and the constant p is 5782
Watts and corresponds to the average Total demand observed during DHW heater ON periods
from the training data.

The maximum Total demand observed is 7432 Watts, and it is assigned a score of 0.95 out
of 1.0. This value is illustrated in Figure 4.10 by the point of coordinates x = 7432 and y = 0.95.
The average Total demand (i) observed is 5782 Watts, and it is assigned a score of 0.5 out of 1.0.

This value is illustrated in Figure 4.10 by the point of coordinates x = 5782 and y = 0.50.
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Figure 4.10 Continuous unipolar function used to evaluate rule HW4
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TLi+ +TLi¢ +TLi¢ +TLi¢
TLi,avg =( 2 3 4 4 5 )

4.9)

Equation 4.4 does not consider the time-steps (i) and (i+/) to calculate TL;,,, because the
demand monitored during the first two time-steps is not representative of the steady-state demand

level.

4.1.5 Rule HW3: Minimum score

Before proceeding to the second stage of the algorithm, the data set of possible start and end
events is evaluated using the minimum score rule and the aggregate score of rules HW2, HW3,
and HW4. Rule HWS5 consists of two parts — the first part calculates the aggregate score of each
possible event, and the second part applies a filter to remove false events that typically are
characterized by low scores.

The aggregate score for each start or end event is normalized to a value between 0 and 1,
using rule-specific weight factors. These factors are selected so as to maximize the score of actual
events and minimize the score of false events. This concept stems from the Generalized Deita
Rule that is used in neural network applications to train a Back Propagation Network. Whereby,
the neural network’s connection weights are adjusted to reduce the output error based on the
difference between the produced and target model outputs. Similar to the Generalized Delta Rule,
the weight factors for rule HW5 are determined based on the performance of actual start and end
events observed from the training data. Whereby, the average contribution of each rule’s score to
the aggregate score for actual events is determined (Table 4.4). For instance, for the training day
of October 14, the average contribution to the aggregate score for actual start events is 0.35 for
rule HW2, 0.38 for rule HW3, and 0.27 for rule HW4. The applied weight factors for start and

end events are 0.40 for rule HW2, 0.40 for rule HW3, and 0.20 for HW4.



Table 4.4 Selection of weight factors for rule HWS

Training day START events END events
(October 1995) Wimz Wima : Wine : Wimwz: Wina: Winse
vector norm # points Total load vector norm # points Total load

14 0.35 0.38 0.27 043 0.31 0.26

15 040 0.41 0.19 0.41 0.40 0.19

16 042 043 0.15 043 043 0.15

7 040 0.41 0.19 043 0.41 0.15

18 0.39 0.40 0.21 0.43 044 0.13

19 037 0.39 0.24 0.46 0.32 0.22

Average 0.39 0.40 0.21 043 0.39 0.18

Weight applied 040 0.40 0.20 0.40 0.40 0.20

Actual start or end events observed from the training data, typically, yield fairly high scores -
on average 0.8 out of a maximum of 1.0 with an average standard deviation of about 0.1 for start
events and end events. This indicates that, generally, the algorithms are able to recognize actual
DHW heater events with a high certainty, repeatedly. However, transient appliances, such as, the
stove or other miscellaneous plug loads, generally trigger false events because the demand of
these appliances may cycle as high as the demand of the DHW heater. In this case, the first stage
of the algorithm will signal the occurrence of a possible start or end event, which is in fact a false
event. Typically, these events yield low aggregate scores. Therefore, once the aggregate score is
normalized the second part of rule HWS applies a minimum cut-off score to remove false events
from the set of possible start and end events.

The cut-off score applied in the second part of rule HWS is selected to be equal to the
average aggregate score of actual events from the training period minus three standard deviations,
that is, 95% of all events are included. This is equal to a score of 0.513 for start events and 0.531
for end events. Hence, the rounded value of 0.500 is applied for both start and end events.

Figure 4.11 illustrates the scores of actual start events observed from the training data, at
three stages in the application of the Pattern Recognition Algorithm. The top figure illustrates the
range of aggregate scores for rules HW2, HW3, and HW4 if these rules are applied to all time-

steps in the training data. The second figure illustrates the range of aggregate scores for rules
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HW?2, HW3, and HW4 if these rules are applied to all time-steps in the training data that satisfy
rule HW1. The bottom figure illustrates the range of aggregate scores for rules HW2, HW3, and
HW4 is these rules are applied to only actual start events in the training data.

For rule HWS to be effective, the aggregate scores of actual events should increase
significantly as additional rules are applied, whereas, the aggregate score of false events should
decrease as additional rules are applied. In fact, this pattern is shown in Figure 4.11 — there is an
apparent trend of increasing average scores and decreasing maximum-to-minimum range of
scores. In this case, if a cut-off score of 0.5 is applied to the events in the bottom figure, with the
exception of the minimum score for October 14, 17 and 19, the score for all actual events exceeds

the cut-off score.
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Explicitly, the minimum score rule states:
IF: (SCOfe AGGREGATE; = Scoremmm)
where, SCore aoeantes = (Score wwz; X W w2 ) + (Score uwa; X Werws ) + (Score wwa; X Wirwa )

THEN: S; =1 ELSE:nut and S;=0

HWS

Where, ScOre ascreaarz; is the aggregate score for rules HW2, HW3, and HW4 for a
possible start event at time-step (7); SCOre curorr-staar is 0.5; Whwz is 0.4, Wiws is 0.4, and Whwa is
0.2; and S; is 1 confirming a DHW heater start event or S; is 0 refuting a DHW heater start
event. To apply rule HWS to an end event, SCOre assrecare,; iS Substituted by Score aseecate.;
Score curorrstarr is substituted by Score asorrenwo; and S; is substituted for S,, where, S, is 1

confirming a DHW heater end event or S, is 0 refuting a DHW heater end event.

4.1.6 Rule HW6: Highest scoring event

The highest scoring event rule verifies that the selected start event has the highest score
among events within a range of 30 time-steps before and after the event (i). Similarly, the rule
verifies that the end event selected has the highest score among events within a range of 30 time-
steps before and after the event (7). The reason for imposing this constraint is again to remove

false events that may have gone undetected so far.

Explicitly, the highest scoring event rule states:
IF: S; =1 and Scoreasmeasrei > MAX SCOreasseanre for the intervals {(i-30), ...,(i-1) and (i+1),...,(i+30)}

THEN: S; =1 ELSE:nul and S; =0
HW6

Where, S; is 1 confirming an appliance start event or S; is 0 refuting an appliance start event;
and SCOressean; is calculated using rule HWS. Similarly, to select the highest scoring end event
the range {(i-30),...(i-1) and (i+1),...,(i+30)} is substituted by the range {(n-30),...,(n-I) and

(n+1),...,(n+30)}; and S; is substituted by S,.
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The range of 30 time-steps before and after event (i) is selected based on the observation that
the minimum duration of activation of the DHW heater from the training period is 19 time-steps
(304 seconds) and the minimum time interval between consecutive DHW heater cycles is 13 time-
steps (208 seconds). Thus, the rounded value of 30 time-steps is selected as the minimum time
interval between any two events of the same type (e.g. ON/ON or OFF/OFF). Table 4.5 lists the

duration of ON and OFF periods for the DHW heater observed from the training data.

Table 4.5 Duration of ON/OFF periods for the DHW heater (time-steps)

Cycle October 14 October 15 Qctober 16 October 17 October 18
OFF ON | OFF ON | OFF ON | OFF ON | OFF ON
1 26 53 297 62 24
243 13 83 349 191
2 71 57 19 7 28
226 43 436 396 92
3 27 31 21 42 40
137 302 721 354 553
4 44 k) 20 26 21
116 400 543 1000 1034
5 40 89 20 27 26
2 738 635 868 472
6 49 pa:] 2 g 72
112 1104 550 344 488
7 37 2 51 226 54
98 565 401 427 48
g 94 54 50 23 70
128 A 84 59 85
9 7 38 20 7 44
146 27 1030 332 201
10 61 67 31
170 50 631
11 176 76 2
31 431
12 270 25
7 790
13 25 25
1346
Sample size 13 13 12 13 9 9 9 9 10 1
Minimum duration 29 2% | 13= 2 83 119 332 23 48 2

4.1.7  Rule HW7: Minimum ON and OFF interval

The minimum ON and OFF interval rule verifies that a proposed change in state of the
appliance (OFF to ON or ON to OFF) is in accordance with the usual pattern of usage of the

appliance, as seen during the training period. In essence, the rule verifies the previously estimated
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start and end events and confirms or refutes their occurrence based on the historical pattern of
usage. The rule states that a positive change in state of the appliance, that is, from OFF to ON is
likely to occur at time-step (i) if an end event occurs a minimum of 10 time-steps (160 seconds)
prior to the time-step (i). The threshold of 10 time-steps is the rounded value of the minimum
duration of inactivity (13 time-steps) of the DHW heater observed from the training data (Table
4.5). A negative change in state of the appliance, that is, from ON to OFF is likely to occur at
time-step (n) if a start event occurs a minimum of 15 time-steps (240 seconds) prior to the time-
step (n). The threshold of 15 time-steps is the rounded value of the minimum duration of activity

(19 time-steps) of the DHW heater observed from the training data (Table 4.5).

Explicitly, the minimum ON and OFF interval rule states:

j=MIN-OFF -TIME
IF:S; =1and Zsi—i =0 THEN:S; =1 ELSE:S; =S

HW?7

Where, S; is 1 confirming an appliance start event; S; is equal to S;; refuting an appliance
start event; and MIN-OFF-TIME is the minimum duration of inactivity (10 time-steps) for the DHW
heater. To apply rule HW7 to an end event, S; is substituted by S,; S;; is substituted by S, ;; and
MIN-OFF-TIME is substituted by MIN-ON-TIME, that is, the minimum duration of activity is 15 time-

steps for the DHW heater.

4.1.8 Rule HWS: Minimum Total demand

The minimum Total demand rule verifies that if the DHW heater is estimated to be ON, the
Total demand is at least as high as the minimum observed steady-state demand of the DHW
heater, as measured on the Total demand profile, and observed from the training data. To
illustrate the purpose of this rule, consider the case when an OFF event and the immediate ON

event of an appliance go undetected or have low scores - the algorithm will connect the previous
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ON event with the following OFF event. The resulting cycle could span hours if the appliance is

not operated for a long period, and yield a significant error in the estimated energy use.

Explicitly, the minimum Total demand rule states:

j=4 ”
IF:>°S, ;=4 and TL, < TLywromow THEN:S; =0 and S, =1 ELSE:nul
ij=1

HWS

Where, S;; is | indicating that the appliance is estimated to be ON for the time-step (i-/); TL..
is the Total demand at time-step (i-2); TL wsromom is the minimum Total demand (2748 Watts)
observed during DHW heater ON periods from the training data; and S; is 0 indicating that an end
event prior to time-step (/) has been missed by the algorithm and S, is | indicating that an end
event is assumed in order to minimize the algorithm error.

The minimum Total demand (TLuxtow.ow) applied in this rule is higher than the minimum
DHW heater demand (2748 Watts) observed during the same periods because the Total demand
may include one or more appliances operating concurrently with the DHW heater. However, it is
less than the average Total demand observed during DHW heater ON periods (5782 Watts)
applied in rule HW4, and the average DHW heater demand (4455 Watts) applied in Equation 4.1.
Rules HW8 and HW4 stem from the same basis, that is, that the Total demand is at least as high
as the demand of the DHW heater. But, rule HW4 is applied to possible start and end events only,

whereas, rule HW8 is applied to all time-steps between estimated start and end events.
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4.2 Discussion of Results for the Domestic Hot Water Heater

The Pattern Recognition Algorithm is applied to data from three periods: (i) the training
period of October 1996, (ii) the near-to-date testing period of November 1996, and (iii) the far-to-
date testing period of January 199-7. The ability of the algorithm to recognize and estimate the
DHW heater energy use is assessed based on the following three estimated performance indices:
(i) daily DHW heater energy use, (ii) daily DHW heater demand profile, and (iii) daily DHW
heater share of the Total load [50].

In summary, the DHW heater events, typically, are well defined in the Total demand profile
due their high demand level in comparison to other appliances in the house. The main source of

error in the testing data is the simultaneous events with the stove.

4.2.1 Daily DHW energy consumption

The error in estimating the DHW energy consumption is calculated with respect to the
monitored appliance energy consumption using Equation 4.5. The results are presented in Table
4.6, expressed as percent error and unit error of energy use. Negative percent errors indicate that
the algorithm underestimated the actual appliance energy consumption, whereas, positive errors

indicate an overestimation.

ESTMATED Energy use

Energy use

Energy use
Emor =

MMORED] x 100 (%)
MONITORED

4.5)

The average relative error in estimating the DHW heater energy consumption is calculated as
the arithmetic average for the group of days in each data period. This value is under 5% for all

periods, that is, -1.2%, 2.7%, and 4.7%. The average absolute error is defined as the average
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difference between the estimated and monitored appliance energy use, and is calculated using the

absolute value of the daily relative error. This value is under 7% for all periods, that is, 3.2%,

3.3%, and 6.7%.

Table 4.6 Daily DHW heater energy consumption error

Day Energy use Average demand Load duration Actual ON
intervals missed
% (kwh) % (Watts) % (time-steps) % (time-steps)
Training period: October 1996
14 =2 A05250) [ T T (28) |88 (118) 13.8_(166)
15 0.3 (0.03) 03 (-11) 05( 3 00 ( 0
16 -14 (0.17) -14 (63) 00 ( 0) 00( 0
17 0.2 (0.02) 08 (-36) 06 ( 3 02( 1)
18 5.8 (0.50) 02 ( 8 6.0 ( 26) 00( 0
19 0.7 (0.11) 05 (-22) 02 ( -2 6.8 ( 55)
Absolute average 3.2 (0.56) 0.7 ( 28) 29 ( 25) 35 (3
Relative average -1.2 {0.16) 0.7 (-28) 0.7 ( -16) 35 ( 37)
Near-to-date testing period: November 1996
25 I Read [ 219 [ 103(5)) 00 (.0
26 24 (0.38) 1.8 ( 78) 06 ( 5 01( 1)
7 1.8 (0.36) 1.6 ( 69) 02( 2 06 ( 6)
28 3.7 (0.39) 21 (92 56 (-31) 6.4 ( 35
patl 62 (1.38) 27 (116) 34 (39 00( Q)
30 -3.0 (0.92) 1.1 ( 48) 4.1 (-64) 13.7 (215)
Absolute average 3.3 (0.78) 19 ( 83) 40 ( 32 35 ( 43
Relative average 27 (0.49) 1.9 ( 83) 08 ( 1) 35 (43
Far-to-date testing period: January 1997
6 02 (0.02) 00( 1) 02( 1) 04( 2
7 6.9 (1.17) 0.1 (-16) 73 ( 62) 01 ( 1)
8 23 (051) 04 ( 4) 24 ( 27) 01 ( 1)
10 4.0 (0.76) 0.3 (-15) 44 ( 42) 00( 0)
1 -7.1 (281) 01 ( -5) -7.0 (-140) 9.3 (186)
12 TEETI06.045) |5 DR |EEENECR) | 00 (0
Absolute average 6.7 (1.07) 0.2 ( 63) 6.8 ( 55) 14 ( 27)
Relative average 4.7 (0.82) 0.1 ( 3J) 48 ( 15) 14 ( 27)

From Table 4.6, it would appear that there is a trend of higher error for the far-to-date testing
period than the near-to-date testing period and the training period. This would indicate that there
is a seasonal difference in the DHW heater’s energy signature, which the algorithm does not
capture. However, on an individual day basis, the errors are, in fact, fairly constant. For all testing

days, only 3 out of 13 days (23%) yield errors greater than 10% of the monitored appliance
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energy use. Including training days, only 4 out 19 days (21%) yield errors greater than 10% of the
monitored appliance energy use. Thus, the seasonal differences on a daily basis are not
significant.

The estimated DHW heater demand (Demandueac: = 4455 Watts) used in Equation 4.1 is
based on the appliance’s average monitored electric demand obtained from a sample of cycles
from the training period. In Table 4.6, Demand.euc: is compared to the monitored average demand
for each day in the analysis. The average absolute error for Demandaeus: is 0.7% for all periods,
that is, 1.9% for both the training period and the first testing period, and 0.2% for the second
testing period. On an individual day basis, the relative error for Demandueus: is constant within
each data period. For the first two data periods, Demandaenc: generally underestimates the actual
average appliance demand. But, Demandaeuce Overestimates the actual average demand for all
days in the November testing period. Although, the difference is minimal - this indicates that the
DHW heater does not always operate at a constant demand level throughout the year.

The accuracy of the estimated DHW heater load duration (obtained from the demand profile)
is more significant than the accuracy of Demandusus: to minimize the error of the daily DHW
heater energy use. For instance, all days in the analysis in which the daily energy use error
exceeds 10%, the load duration error also exceeds 10%, while the actual DHW heater ON
intervals missed is 0% for all but one of these days. Therefore, the algorithm applied to the DHW
heater is able to consistently recognize actual appliance events, but improvements should be made

to further filter out false events which cause the appliance load duration to be overestimated.

4.2.2  Daily DHW demand profile

The accuracy in estimating the DWH heater demand profile with respect to the monitored

demand profile, is assessed using four statistics. These statistics, summarized in Table 4.7, are the



coefficient of determination (R-squared), average standard deviation, average absolute error, and

average relative error.

Table 4.7 Daily DHW heater demand profile accuracy

Day R-squared Standard Average absolute | Average relative
deviation (Watts) error (Watts) error (Watts)
Training period: October 1996
14 0.821 13 192 107
15 0.988 2 16 -1
16 0.996 1 15 7
17 0.989 2 13 1
18 0.935 4 30 -21
19 0.861 10 104 5
average 0.932 5 62 16
Near-to-date testing period: November 1996
25 0.887 6 54 -53
2 0.988 3 18 -16
27 0.935 2 16 -15
28 0.929 5 38 16
29 0.962 5 57 -57
30 0.765 16 312 39
average 0.921 6 33 -14
Far-to-date testing period: January 1997
6 0.985 4 11 -1
7 0.924 7 63 49
8 0.972 5 39 -21
9 0.840 8 82 75
10 0.953 6 49 32
11 0.883 13 213 117
12 0.890 8 23 -38
Average 0.921 7 69 -14

The coefficient of determination of the estimated DHW heater demand profile, calculated
using Equation 4.6, varies between 0.765 and 0.996 for any given day. This indicates that the
estimated profile tracks the monitored profile fairly well, whereby, the closer R-squared is to one,

the better is the fit between the estimated and monitored demand profiles.



4-6)

Where, (n) is the total number of time-steps in one day based on a sampling interval of 16
seconds (7 = 5400).
The average standard deviation of the estimated DWH heater demand profile, calculated

using Equation 4.7, varies from 1 to 16 Watts of the monitored demand for all days.

Standard deviation =1 i (Demand

n i=l

;T Demand (Watts)

2
MONITORED ESTIMATED / )

4.7

The average absolute error of the estimated DHW heater demand, calculated using Equation

4.8, varies from 11 to 312 Watts (0.2% to 7.0% of Demandaeuce:) of the monitored demand for all

days.

n

2 |Demand . o, —Demand e,

Average absolute emor = = - (Watts)

4.8)

The average relative error of the estimated DHW heater demand, calculated using Equation
4.9, varies from -75 to 117 Watts (1.7% to 2.6% of Demandueucs) of the monitored demand for all

days.

Average relative eror = (Watts)
4.9)




The residual demand profile for the DHW heater, that is, the difference between the
monitored and estimated demand profiles for each time-step, is presented in Figure 4.12 for one
training day (October 14) and one testing day (November 25). A positive residual indicates that
the algorithm underestimated the -appliance demand, whereas, a negative residual indicates that
the algorithm overestimated the appliance demand. The residual profile for the training day shows
about an even number of positive and negative residuals, whereas, the testing day shows only
negative residuals. The largest cluster of residuals for both days is close to zero. These residuals
correspond to events that the algorithm successfully recognized as being either ON or OFF. In
this case, the residual is due to the difference between the estimated DWH heater demand and the
monitored demand. The second largest cluster of residuals extends up to approximately +2500
Watts. These residuals correspond to events that the algorithm successfully recognized as being
either ON or OFF, but that the start or end demand profiles consist of a two step-increase or
decrease (discussed in Section 4.2.1). In this case, the residual is due to the difference between
the estimated DHW heater demand and the actual incremental demand. The third and smallest
cluster of residuals extends up to +4455 Watts. These residuals correspond to events that the
algorithm incorrectly estimated to be either ON or OFF. The training day profile has 166 missed
(positive) points and 48 false (negative) points; the testing day profile has no missed points and
53 false (negative) points. Note, that the scale of the Figure 4.12 is too small to distinguish each

point separately.
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Figure 4.12 Residual profile for the DHW heater for a training and testing day

87



4.2.3  Daily DHW heater share of the Total load

The ratio of the DHW heater energy use to the Total energy use of the house is called the
energy share of the appliance, and is calculated using Equation 4.10. The energy share is a more
appropriate basis for the purpose of predicting end-use energy consumption than the unit energy
consumption because the energy share may include nonlinear factors of energy use that can not
be singled out and captured in the unit energy use, but that are necessary to estimate the appliance

energy consumption (previously discussed in Section 3.5).

Energy use puw
Energy use rora

E nergy share =( ) x 100 (%)

4.10)

The unit error of the DHW heater energy share is calculated using Equation 4.11, and the
corresponding percent error is calculated using Equation 4.12 with respect to the monitored DHW
heater energy use. The results are presented in Table 4.8. Negative errors indicate that the
algorithm underestimated the actual energy share, whereas, positive errors indicate an

overestimation of the energy share.

. 3

Unitemor = (Energy sharemmTED - Energy sharemomT ORED ) (%)
4.11)
(Energy sharecsnuatep — Energy share )
Percenterror = MONTOR® 2 (%)
Energy share
MONIT
4.12)

For any given day, the unit error in estimating the DHW heater energy share is fairly low,
varying from -5.1% to 5.5%. For each data period, both the average absolute unit error and

average relative unit error of the appliance energy share is less than 2.5%.




Table 4.8 Daily DHW heater energy share of the Total load error

Day Monitored Estimated Percent error Unit efror
energy share Energy share
(%) (%) (%) (%)
Training period: October 1996
14 48.7 -~ 436 -10.5 5.1
15 382 384 0.5 02
16 48.3 477 -12 0.6
17 40.6 405 02 0.1
18 39.0 413 59 23
19 50.5 50.2 06 03
Absolute average 44.2 436 32 14
Relative average 442 436 -10 06
Near-to-date testing period: November 1936
25 84 432 125 48
26 458 46.8 22 1.0
7 639 65.1 19 12
28 269 259 37 -1.0
29 51.6 54.8 6.2 32
30 499 48.4 -3.0 -15
Absolute average 456.1 474 49 21
Relative average 46.1 474 27 13
Far-fo-date testing period: January 1937
6 324 325 03 0.1
7 437 46.7 6.9 30
8 48.1 50.2 22 1.1
9 34.1 396 16.1 55
10 45.6 47.4 39 1.8
1 45.7 49.0 72 33
12 285 315 10.5 3.0
Absolute average 39.9 424 6.7 25
Relative average 399 424 6.7 25

4.2.4  Usefulness of the set of rules for the DHW heater

The results of a sensitivity analysis of the impact of each rule on the DHW heater
algorithm’s results are illustrated in Figure 4.13, 4.14, and 4.15 for each of the data periods. The
sensitivity analysis focuses on the following three indices of accuracy: (i) daily DHW energy
consumption (Section 4.2.1), (ii) daily DHW demand profile (Section 4.2.2), and (iii) daily DHW
heater energy share (Section 4.2.3). The analysis starts by applying only rule HW1 to the data,

that is, assuming that a start or end event occurs at each time-step whose step-increase or decrease
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is within the recognized limits for the DHW heater (labeled run 1). For the next runs, a new rule

is added to the previous set of rules, consecutively. Rule HW6, the highest scoring event rule, is

applied in conjunction with rules HW2, HW3, and HW4 because these rules assigned score,

therefore, the events need to be ranked using rule HW6. The order of rules applied in the analysis

is as follows:

Run I: Rule HW1 only.

Run 2: Rules HW1, HW2, and HW6.
Run 3: Rules HW1, HW2, HW3, and HW6.
Run 4: Rules HW1, HW2, HW3, HW4, and HW6.

Run 5a: Rules HW1, HW2, HW3, HW4, HWS5a, and HW6.

Run 5b: Rules HW1, HW2, HW3, HW4, HW5a, HW5b, and HW6.

Run 7: Rules HW1, HW2, HW3, HW4, HWS5a, HW5b, HW6, and HW?7.

Run 8: Rules HW1, HW2, HW3, HW4, HW5a, HW5b, HW6, HW7, and HWS.

Rule HWS, the minimum score rule is represented as two rules, the first part (HW5a)

consists of applying rule-specific weight factors and the second part (HW5b) consists of applying

a minimum cut-off score.
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Figure 4.13 Sensitivity analysis results for the DHW heater for selected training days
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Figure 4.14 Sensitivity analysis results for the DHW heater for selected near-to-date testing
days
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Figure 4.15 Sensitivity analysis results for the DHW heater for selected far-to-date testing days

Each rule has its own role in improving the accuracy of estimation. But, for individual rules
there is no discernable pattern of impact on the algorithm’s results, and not all rules influence the
data in the same way. For instance, for November 25, the addition of rule HW5b resuits in an
increase in the energy use error from 41.9% to 63.5%, by almost 22%. Whereas, for November
28 and 30, and January 11 and 12, the addition of rule HW5b results in a significant decrease in
the energy use error. Another example, is rule HW8 — it has the largest impact of all of the rules

for October 14, whereas, rules HW2 and HW4 have the largest impact of all the rules for October
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18. Therefore, the combination of all eight rules proposed is required to effectively minimize the

errors in the estimation of the DHW heater energy use.

43 Algorithm for the Estimation of the Energy Use for the Refrigerator

Excluding DHW heaters, residential refrigerators are the largest end-use of electricity in
American houses and, altogether, consume about 7% of that country’s electricity [S1]. The same
report estimated the 1993 energy consumption per refrigerator to be about 1100 kWh/year, based
on field measurements within northern regions of the United States.

The refrigerator load is recognized from the Total demand profile using a top-to-bottom rule-
based algorithm, similar to the DHW heater algorithm presented in Section 4.1. The application
of the Pattern Recognition Algorithm to the refrigerator is outlined in Figure 4.16. The
refrigerator algorithm consists of the same three stages applied in the DHW heater algorithm, that
is: (i) the detection of ON and OFF events by their respective energy signatures, (ii) the
estimation of the appliance’s demand profile, and (iii) the calculation of the appliance’s energy
use.

The first stage of the refrigerator algorithm consists of five pattern recognition rules to
identify possible start and end events as measured on the monitored Total demand profile. The
first two rules are the state change detection rule (labeled R1) and the baseboard false event rule
(labeled R2). The baseboard false event rule excludes those events that appear to be due to the
start-up of the electric baseboard heater. It is observed that the first or second time-step of a
baseboard event could yield similar characteristics as that of the refrigerator. Therefore, rule R2 is
applied to minimize the number of false events. Based on the application of Rl and R2, a
preliminary set of possibie start and end events is established. The following two rules: the profile
vector norm (labeled R3) and the number of data points (labeled R4) are then applied to each

event in the preliminary data set. An aggregate score of the performance of these rules is



attributed to each event using the minimum score rule (labeled RS) to confirm or refute the
possible event as recognized by the first four rules.

The remaining set of selected start and end events proceed to the second stage of the
algorithm, in which the daily demand profile of the refrigerator is estimated. To do so, the
algorithm applies the following three constraining rules: the highest scoring event rule (labeled
R6), the minimum ON and OFF interval rule (labeled R7), and the minimum Total demand rule
(labeled R8).

Consecutive start and end events are then linked together to obtain the sequence of intervals
during which the refrigerator is estimated to be operating. Once the ON and OFF periods of the
appliance are estimated, the refrigerator energy consumption for the duration of the day is then
calculated using Equation 4.1 presented in Section 4.1. Whereby, the average electric demand of

the refrigerator observed from the training data, that is, Demand aveuce. is 407 Watts.
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Figure 4.16 Flowchart of the PRA for the refrigerator
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Similar to the DHW heater algorithm, the refrigerator algorithm processes the energy

signature of an appliance using three separate segments: the start, middle, and end of each cycle.

Figure 4.17 illustrates an appliance cycle of the refrigerator expressed as a function of ATotal.
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Figure 4.17 Decomposition of a refrigerator energy signature

Recall from Section 4.1 that the boundaries for each segment are determined based on

distinct pattern changes in the Total demand profile during an appliance cycle. As seen in Figure

4.17, a spike at the beginning and end of each cycle distinguishes the refrigerator’s energy

signature (expressed as a function of ATotal) from that of other major appliances in the house.

This spike depicts the start-up and shutdown of the refrigerator’s compressor. Similar to the

DHW heater, it is found that significant changes in the ATotal profile are captured within the first

six time-steps of a cycle for a start event, and in the last six time-steps of a cycle for an end event.

The middle or steady-state segment is indistinguishable in the ATotal profile.
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Sections 4.3.1 to 4.3.8 present the eight rules that are specific to the refrigerator algorithm.
Detailed descriptions of the generic development of these rules are presented in the previous

sections, 4.1.1 through 4.1.8.

4.3.1 Rule RI: State change detection

The demand profile of the refrigerator, like the DHW heater, can occur as a one or a two

step-increase profile due to the relatively small sampling interval selected, as seen in Figure 4.18.
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Figure 4.18 Comparison of two start profiles as measured for the refrigerator

The first rule (HW1) of the DWH heater applied to the refrigerator can not adequately
distinguish a refrigerator’s ON or OFF event based only on a two step-increase template because
there are many appliances whose demand levels are within the same range as that of the
refrigerator. Therefore, rule R1 which is similar to rule HW1 applied for the DHW heater
(Section 4.1.1), is developed to recognize the ON and OFF events of a refrigerator based only on

a one step-increase template.
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Explicitly, the state change detection rule for the refrigerator states:
IF: (X wnstar < X S xm.s-mzr) THEN: S,~= 1

ELSEIF: (Xunoo = X» = Xuxoo ) THEN: S,=1 ELSE: nul

Whereby, X; is the step-increase cSserved in the Total demand profile at time-step (/) and
is calculated as (Demand; — Demand..;); X, is the step-decrease observed in the Total demand
profile at time-step (1) and is calculated as (Demand, — Demand,..,); X wx-smar is 80 Watts; X wx-
eno 15 —179 Watts; X uwcsurr is 753 Watts; and X oo is -621 Watts; S; is 1 indicating a possible

start event; S, is I indicating a possible end event at time-step (7).

4.3.2 Rule R2: Baseboard false event

Rule R2 is specifically developed to reduce the number of events falsely attributed to the
refrigerator that are due to the activation of the electric baseboard heater. Since the refrigerator’s
demand level may be equal to that of the first or second step-increase in a two step-increase
profile of the baseboard heater, rule R2 verifies that a possible start event for the refrigerator does
not occur immediately after a large step-increase in the ATotal profile. Similarly, in the case of an
end event, rule R2 verifies that a possible end event for the refrigerator does not occur

immediately before a large step-decrease in the ATotal profile.

Explicitly, the baseboard false event rule states:

IF:S;=1and (ATotal.; < Baseboard wssmar) THEN: S; =1 ELSE:nuland S;=0
R2

Whereby, ATotal;; is the difference in the Total demand profile at time-step (i-/), and is
calculated as (Total;; — Total..;); Baseboardwssuar is the rounded down value of the minimum step-
increase of the baseboard heater at time-step (i) observed from a sample of events from the

training data, and is 700 Watts. To apply rule R2 to a possible end event, Baseboardw.so is the
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rounded down value of the minimum step-decrease of the baseboard heater at time-step ()

observed from a sample of events from the training data, and is -700 Watts.

4.3.3 Rule R3: Profile vector norm

The profile vector norm rule for the refrigerator is similar to rule HW2 for the DHW heater,

described in Section 4.1.2. The average start and end demand profile of the refrigerator observed

from a sample of events from the training data is listed in Tables 4.9 and 4.10.

Table 4.9 Start demand profiles for the refrigerator (expressed as ATotal - Watts)

Time-step Pure profiles Mixed profiles
ol BS
ol 28
%+ 58
1 2] 3 4] s 6] 7] 8 1 ] 2134l ¢c
(i) 479 424 179 269 390 489 352 654 | 220 352 424 538 399| 9@
(i+1) 41 269 0 220 158 220 83 352| 214 83 238 155 73| 17
(i+2) 4 0 55 0 0 0 0 83 0 0 59 0 -2
(i+3) 0 o 0 T2 B 0 0 83 0 0 0o 2| 3
(i+4) 0 0 0 7 0 0 0 83| 48 0 4 0 0
(i+5) 4 0 0 0 0 0 0 0 0 0 59 o| 5
(i+(i+ny | 521693 | 179 489 | 548 ] 269 | 269 | 1006 | 434 | 269 | 662 | 693 | 554 | 224
norm-6 66| 41| 115| 64| 20| 165 107 ] 139| 78| 107| 39| 65| 98| 48
nom-5 27] 63| 69| 44 21| 128] 18| 211| 59| 128] 57| 70| 106 | 62

Table 4.10 End demand profiles for the refrigerator (expressed as ATotal - Watts)

Time-step Pure profiles Mixed

pofies | g2 | B2
s 2 S=
z2: [ 538

1 21 3] 456 ] 7 |88 1 | 2 Ca

(n-3) 0 0 0 0 0 0 0 0 0 0 0 0

(n-4) 0 0 0 72 0 38 0 0 0 0 0 4

(n-3) 0 0 0 72 0 -3 0 0 0 0 0 4

(n-2) 0 0 0 0 0 0 0 0 72 0 0 8
(n-1) 0 0 0 227 -1% 0 0 0 -155| -189 0 54 89
(n) 461 -89 548 269 352 289 -269 -269 269 | -179 196 | -331 81
{n+(n-1)) | 461 ] -269 | 548 | 49 269 | 269 | -269 | 424 | 179 ] 196 | 374 | 110
nom-6 27| 2| a@| m| s4| 3w| 27| 27| 45 51| 7 39 13
nom-5 39| 47| 78| 70| 77| 54| 47| 47| 36| 56| 85 58 14
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The standard deviation of the refrigerator start profile for the time-step (i) is 99 Watts. This
value is less than the standard deviation for the time-steps {i + (i+/)} (224 Watts) comrespondingto
a two step-increase. Similarly, the standard deviation of the refrigerator end profile for the time-step
(n) is 81 Watts. This value is less than the standard deviation for the time-steps {n + (n-1)} (110
Watts) correspondingto a two step-decrease. As a result, the standard deviation for the metric norm-
6 is smaller than the standard deviation for the metric norm-5, for both the start and end profiles.

Therefore, rule R3 is evaluated on the basis of norm-6.

Explicitly, the profile vector norm rule for the refrigerator states:
iF: (norm-6,. < nom-6

REFERENCE-START )

norm—=6 J

THEN: Score, g, =1 ELSE: Score .z =( nm@“m

Where, norm-6; is the vector distance between the possible start profile and the average
start profile listed in Table 4.9, and it is calculated using Equation 4.2; and nOM-Brererence-staar is
194 Watts, and it is selected as the average vector norm (98 Watts) plus two standard
deviations (2 x 48 Watts) for refrigerator start events observed from the training data. To apply
rule R3 to an end event, nom-6; is substituted by norm-6,,; and NOM-6rererence starr is substituted by
NOMM-Brererance-o0, Where NOM-Brermenceao is 65 Watts, and it is calculated as the average vector
norm (39 Watts) plus two standard deviations (2 x 13 Watts) for refrigerator end events

observed from the training data (Table 4.10).

4.3.4 Rule R4: Number of data points

The number of data points rule for the refrigerator is similar to rule HW3 for the DHW

heater, described in Section 4.1.3. The maximum and minimum demand levels used to evaluate
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rule R4 are summarized in Table 4.11 for both the start and end demand profiles of the

refrigerator.

Table 4.11 Maximum and minimum demand profiles for the refrigerator (Watts)

Time-step Start profile Time-step End profile
Minimum Maximum Minimum Maximum
(i) 179 654 (n-2) 0 72
(i+l) 220 820 (n-I) 227 0
(i+2) 83 0 (n) -548 -269

Explicitly, the number of data points rule for the refrigerator states:
IF: (X imesarr-1 < X;i < Xuanesmaar-1 ) @ X umsiamr2 € Xivy € Xwwsmaar2 ) 8N4 (X uwstanr-3 < Xiv2 < X waestarr3 )

THEN: Scorere=1 and S;=1

ELSEIF: 2 out of the first 3 time-steps of a start profile fall between the maximum and minimum demand
levels and
(norm-6; < NOM-Buax.start)

THEN: Scorers=0.5 and S;=1 ELSE: nul and Scorer¢=0 and S;=0
R4

Where, X wwsiar-1 is 179 Watts; X unsuar2 is —220 Watts; X unsnar-3 is —83 Watts; X wsuar-1 IS
654 Watts; X uxsarr-2 is 820 Watts; X wwsaw3 is 0 Watts; nom-6; is calculated using Equation 4.2;
and nOM-Buxsnar is 400 Watts and it is selected as four times the standard deviation of the average
vector norm for all pure and mixed start profiles observed from the training data (Table 4.9). To
apply rule R4 to an end event, the sequence of time-steps {7, i+/, i+2} is substituted by {n, n-/,
n-2}; X unsnaar-1, X unstarr-2, X uvsuaar-3, X wncsanr-t, X waestaar-2, and X wxsmar3 are substituted by X unoc-1,
X wnvoo2, X uneod, X wxact, X wwacz and X wxacs; and nom-6; is substituted by norm-6,, where,
norm-6, is calculated using Equation 4.2; and nOmM-Bususmar is substituted by nomM-Buxseo, Where,
normM-6uao is 77 Watts and it is obtained as the maximum vector norm for all pure and mixed end

profiles observed from the training data (Table 4.10).
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4.3.5 Rule R5: Minimum score

The minimum score rule for the refrigerator is similar to rule HWS for the DHW heater,
described in Section 4.1.5. Rule RS is applied to the preliminary set of possible start and end
events established by rules R1 and R2 and evaluated by rules R3 and R4. The first part of this rule
consists of normalizing the aggregate score of rules R3 and R4 to a value between 0 and 1 using
weight factors in an effort to maximize the score of actual events and minimize the score of false
events.

Rules R3 and R4 yield, on average, an equal contribution to the aggregate score (Table 4.12)
for both start and end events of the refrigerator. Therefore, the weight factor applied for each rule

is 0.5 for both rules R3 and R4 and for both start and end events.

Table 4.12 Selection of weight factors for rule RS

Training day START events END events

(October) Wha: vector nom Whe: # points Waa - vector norm Whe # points

14 0.49 0.51 0.56 0.45

15 0.49 0.51 0.56 0.44

16 0.48 0.52 0.54 0.46

17 047 0.53 0.54 0.46

18 0.48 0.52 0.55 0.45

19 0.45 0.55 0.57 043

Average 0.48 0.52 0.55 0.45

Rounded average 0.50 0.50 0.50 0.50

The second part of rule RS involves applying a minimum cut-off score to remove false
events from the set of possible start and end events. However, the confidence level of detecting
only refrigerator ON and OFF events from the Total demand profile is somewhat low. This is
mainly due to the proliferation of appliances within the same demand level as the refrigerator.
Figure 4.19 illustrates the range of aggregate scores for actual start and end events from the

training period.
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Figure 4.19 Scores for actual start and end events of the refrigerator

The same analysis for the DHW heater, illustrated in Figure 4.10, depicts an apparent trend

of increasing average scores and decreasing maximum-to-minimum range of scores for both start
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and end events. In comparison, this trend is not present in the refrigerator results. For instance, if
the same cut-off score that is applied to the DHW heater (0.5 out of 1.0) is applied to the
refrigerator, only the 10 percentile of aggregate scores for actual end events pass. Although, the
aggregate scores fair better for the start events than the end events, there are inconsistencies
among the training days, such that, a constant cut-off score can not be applied across all days and
yield good results. For this reason, a cut-off score of zero is applied for both start and end events

of the refrigerator.

Explicitly, the minimum score rule for the refrigerator states:
IF: (Score asrecates > Score asrorr-starr ) Whereby, Score areaates = (Score rs; X Wrs) + (Score re; X Wre)

THEN: S; =1 ELSE: nul and S;=0
RS

Where, Scor€curorr.siarr is 0; Wezand Wre are 0.5; and S; is | confirming a refrigerator start
event or S; is O refuting a refrigerator start event. To apply rule R5 to an end event,
SCOrescaneaare,; is substituted by SCOf@asarecaren; SCOM@cutor-sarr is substituted by Score curorr-eno; and
S, is substituted for S,, where, S, is 1 confirming a refrigerator appliance end event or S, is 0

refuting a refrigerator end event.

4.3.6 Rule R6: Highest scoring event

The highest scoring event rule for the refrigerator is similar to rule HW6, described in
Section 4.1.6. In the case of the refrigerator, rule R6 verifies that the selected start event at time-
step (/) has the highest aggregate score among events within a range of 40 time-steps before and
after the time-step (i). Similarly, the rule verifies that the selected end event at time-step (n) has
the highest aggregate score among events within a range of 40 time-steps before and after the

time-step (7).
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Explicitly, the highest scoring event rule for the refrigerator states:
IF:S; =1 and Scorecareasre > MAX SCOreoreair for the intervals of {(i-40),...,(i-1) and (i+1),...,(i+40)}

THEN: S, =1 ELSE:nul and S; =0

R6

Where, S; is 1 confirming a refrigerator start event or S; is 0 refuting a refrigerator start
event. To apply rule R6 to an end event, the range {(i-40),...,(i-I) and (i+1),....(i+40)} is
substituted by the range {(7-40),...,(n-I) and (n+1),...,(n+40)}; and S; is substituted by S,,
where, S, is 1 confirming a refrigerator end event or S, is 0 refuting a refrigerator end event. The
minimum thresholds are based on the observation that the minimum duration of activity of the
refrigerator from the training period is 31 time-steps (or 496 seconds), and the minimum interval
between consecutive refrigerator cycles is 13 time-steps (or 208 seconds). Thus, the rcunded
down value of 40 time-steps is selected as the minimum time interval between any two events of

the same type, that is, ON/ON or OFF/OFF.

4.3.7 Rule R7: Minimum ON and OFF interval

The minimum ON and OFF interval rule for the refrigerator is similar to rule HW?7,
described in detail in Section 4.1.7. Rule R7 states that to accept a positive change in state of the
appliance at time-step (7), that is, from OFF to ON, the appliance must have been estimated to be
OFF for a minimum of 30 time-steps prior to the time-step (i). Whereas, for rule R7 to accept a
negative change in state of the appliance at time-step (n), that is, from ON to OFF, the appliance
must have been estimated to be ON for a minimum of 30 time-steps prior to the time-step (n).
Table 4.13 lists the number of sampling intervals for ON and OFF periods of the refrigerator

observed during the training period.
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Table 4.13 Duration of ON/OFF periods of the refrigerator (time-steps)

Parameter Oclober14 | October15 | October16 | October17 |  October18
OFF periods

Average 58 58 58 57

Maximum 81 62 62 62 64
Minimum 29 K] 15 13 31
Standard deviation 6 - 4 4 5 4
5™ percentile VSIS v 22 50 52 48 51
Sample size 39 40 42 20
Average 74 75 69 80
Maximum 242 241 249 236
Minimum K7 | 3 K} 3B
Standard deviation 60 2 28 26 32
5 percentile 53 = 49 37 49
Sample size 31 I8 41 40 43 20

For both ON and OFF periods of the refrigerator, the minimum value for the 5" percentile of
observed intervals is selected. The minimum OFF activity observed is 37 time-steps and the
minimum ON activity observed is 34 time-steps - thus, the minimum of the two is selected.

However, to allow some tolerance in the rule, the rounded down value of 30 intervals is applied.

4.3.8 Rule R8: Minimum Total demand
The minimum Total demand rule for the refrigerator is similar to rule HW8 for the DHW

heater, described in Section 4.1.8.

Explicitly, the minimum total demand rule for the refrigerator states:

j=4

IF: Z Si-j =1 and TLi—Z < TLWN-TOTAL-REF THEN: S,- =0 and S,, =1 ELSE:nuI
ij=l
RS

Where, S, is 1 indicating that the refrigerator is estimated to be ON for the time-step (i+/);
TL,.. is the Total demand at time-step (i-2); TL wntomaser is the minimum Total demand (127 Watts)

observed during refrigerator ON periods from the training data; and S; is 0 indicating that an end
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event prior to time-step (i) has been missed by the algorithm and S, is 1 indicating that an end

event is assumed.

44 Discussion of Results for the Refrigerator

The refrigerator algorithm is evaluated on the same basis as the DHW heater algorithm,

described in detail in Section 4.2.

4.4.1 Daily refrigerator energy consumption

The error in estimating the daily energy use of the refrigerator with respect to the monitored
refrigerator energy use is calculated using Equation 4.5. The results are presented in Table 4.14,
expressed as percent error and corresponding unit error of energy use. The average relative error
for each data period is 1.9%, 6.0%, and -0.1%, whereas, the average absolute error for each data
period is 3.4%, 6.0%, and 7.7%.

The error in estimating the refrigerator electric demand (Demandueus= applied in Equation
4.1) with respect to the daily monitored electric demand is 1.6% (7 out of 407 Watts) for the
training data, 0.7% (3 out of 407 Watts) for the November testing data, and 1.4% (6 out of 407
Watts) for the January testing data. On an individual day basis, Demandweuwss generally
overestimates the actual refrigerator demand. For all testing days, the error in estimating the daily
refrigerator load duration exceeds 10% for only 4 out of 13 (31%) days. Including the training
period, the load duration error exceeds 10% for only 4 out of 19 days (21%) days.

The estimated refrigerator load duration and estimated demand both contribute equally to the
error of the estimated energy use. For example, the days in which the energy use error exceeds
10%, the estimated load duration error exceeds 10%, and the number of actual refrigerator
intervals missed also exceeds 10%. Whereas, the major source of error for the estimated DHW

heater energy use is the estimated load duration in terms of number of false intervals.
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Table 4.14 Daily refrigerator energy consumption error

Day Energy use Average demand Load duration Actual ON
intervals missed
% (kWh) % (W) % (intervals) % (intervals)
Training pesiod: October 1996
14 1.2(0.07) 0.7( <4) 05(-14) 12.9 (368)
15 0.2(0.01) A6( -7 1.8( 55) 6.6 (201)
16 -32(<0.18) 2.3(-10) 1.0(-29) 8.8 (268)
17 54(0.29) 1.4( 6) 6.9 (205) 3.3( 99)
18 0.6(0.03) 1.4( -6) 20( 63) 7.5(231)
19 9.5(0.54) 22(9) 11.9 (370) 5.8 (182)
Absolute average 3.4(0.10) 16(-7 4.0(108) 75(225)
Relative average 1.9(0.19) 16(7) 35(123) 7.5(225)
Near-fo-date testing period: November 1996
25 39(0.23) 0.1(-1) 40(120) 7.6(242)
2% 3.0(0.16) 0.4( 1) 26( 79) 10.7 (325)
2 43(023) 1.1( 4) 32( 93 9.6 (280)
28 89(048) 1.2( 4) 76(230) 130039
2 e S LECTUR,E toell 15(6) | T EA2A35) | = . 105(317)
30 1.9(0.11) 0.1(-1) 20( 64) 10.7 (346)
Absolute average 6.0(0.33) 0.7(2) 5.3 (160) 10.4 (317)
Relative average 6.0(0.33) 0.7 (3) 5.3 (160) 10.4 (317)
Far-to-date testing period: January 1997
6 04003 s - A2(5) [Gn 83T | 185(313)
7 1.3(6) 5.2 (-155) 17.8 (529)
8 A3(6) | T SAEBY [ - 108015
9 16(-7) 05( -17) ©105(33)
10 0.9(4) 1.3 ( 46) 11.5 (400)
1 =rrsaossy . (| e eaTeTey i 1 110(374)
12 £6.2(0.18) 2.0(-9) 4.4( 69) 14.6 (231)
Absolute average 7.7(0.07) 1.4( 6) 72( 75) 13.5(357)
Relative average £0.1(0.39) -1.4( 6) 1.3(202) 13.5(357)

4.4.2  Daily refrigerator demand profile

The statistics used to evaluate the accuracy of the estimated refrigerator demand profile are

described in detail in Section 4.2.2. The results for the refrigerator are presented in Table 4.15.
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Table 4.15 Daily refrigerator demand profile accuracy

Day R-squared Standard deviation Average Average relative
absolute error efror
(Watts) (Watts) (Watts)
Training period: October 1996
14 0.751 .24 70 3
15 0.851 16 42 -1
16 0.832 17 46 8
17 0.862 16 38 -12
18 0.826 18 47 -1
19 0.771 21 63 -23
average 0.816 19 51 4
Near-to-date testing period: November 1936
25 0.802 1.9 54 9
26 0.751 21 20 -18
27 0.765 20 18 17
28 0.652 24 38 16
29 0.656 24 57 57
30 0.764 21 64 Kic]
average 0.732 22 42 8
Far-to-date testing period: January 1997
6 0.715 22 69 24
7 0.700 23 75 15
8 0.660 24 84 -26
9 0.797 20 57 5
10 0.781 21 64 6
11 0.613 28 108 -39
12 0.752 22 33 8
average 0.717 23 70 -1

For any given day, the R-squared of the estimated refrigerator demand profile varies from
0.613 1o 0.862. For each data period, the average R-squared is 0.816, 0.732 and 0.717. The
average standard deviation between the estimated and monitored demand profiles varies from 1.6
to 2.6 Watts for all days. The average absolute error of the estimated demand profile varies from
18 to 108 Watts for all days, that is, from 4% to 27% of the average refrigerator demand observed
from the training data (407 Watts). Whereas, the average relative error of the estimated demand

profile varies from -57 to 39 Watts for all days, that is, from 14% to 10% of the average

refrigerator demand observed from the training data (407 Watts).
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The residual demand profile for the refrigerator, that is, the difference between the
monitored and estimated demand profiles for each time-step, is presented in Figure 4.20 for the
training day of October 14. A positive residual indicates that the algorithm underestimated the
demand level, whereas, a negative-residual indicates that the algorithm overestimated the demand

level. The residual profile shows about an even number of positive and negative residuals.
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Figure 4.19 Residual profile for the refrigerator for a training day

The largest cluster of residuals is close to zero. They correspond to those time-steps at which
the algorithm successfully recognized the events, but that the estimated demand differs slightly
from the monitored demand. The next largest cluster of residuals is found at approximately +407
Watts. These residuals correspond to those time-steps at which the algorithm did not recognize

the events. The training day illustrated has 367 missed (positive) intervals and 353 false
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(negative) intervals. The final cluster of residuals occurs between the previous two clusters. These
residuals correspond to those time-steps at which the algorithm successfully recognized the ON
and OFF events, but at which there is a two step-increase or decrease (discussed in Section 4.3.1).
Thus, the algorithm yields an error equal to the difference between the steady-state demand level

estimated (407 Watts) and the monitored start-up or shutdown demand level.

4.4.3  Daily refrigerator share of the Total load

The actual and estimated refrigerator share of the Total load, and the corresponding percent
error (calculated using Equation 4.12) and unit error (calculated using Equation 4.11) are listed in
Table 4.16. Negative errors indicate that the algorithm underestimated the actual energy share,
whereas, positive errors indicate an overestimation of the energy share.

For any given day, the unit errors are very low, varying from -1.2% to 1.7%. On a weekly
basis, the average absolute unit error of the estimated energy share is 0.6%, 0.9%, and 0.8% for
the training period, near-to-date testing period, and far-to-date testing period, respectively. The

average relative unit error of the estimated energy share is 0.6%, 0.9%, and 0.6% for each period.
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Table 4.16 Daily refrigerator share of the Total load error

Day Monitored Estimated Percent Error Unit error
energy share energy share
(%) (%) (%) (%)
Training period: October 1996
14 106 . 10.5 -12 0.1
15 193 19.3 0.2 0.0
16 22 215 3.2 0.7
17 218 230 54 12
18 258 259 0.6 0.2
19 15.9 174 9.5 1.5
Absolute average 193 19.6 34 06
Relative average 19.3 196 19 0.6
Near-to-date testing period: November 1996
pisl 22 230 39 09
26 158 16.3 3.0 05
27 16.8 173 43 0.7
28 136 14.8 89 1.2
Y| 125 14.3 139 1.7
30 85 97 19 0.2
Absolute average 150 159 6.0 09
Relative average 15.0 159 6.0 0.9
Far-to-date testing period: January 1997
6 110 99 -10.4 1.1
7 14.1 132 65 09
8 120 134 116 1.4
9 179 17.6 21 0.4
10 15.3 14.9 22 0.3
1 7.2 8.3 15.1 1.1
12 19.4 18.2 6.2 -1.2
Absolute average 138 136 77 0.8
Relative average 13.8 136 0.1 0.6

4.4.4  Usefulness of the set of rules for the refrigerator

A sensitivity analysis of the impact of each rule on the results of the refrigerator algorithm is
performed. The analysis focuses on the following three indices of accuracy: (i) daily refrigerator
energy consumption (Table 4.14), (ii) daily refrigerator demand profile (Table 4.15), and (iii)
daily refrigerator share of the Total load (Table 4.16).

The analysis starts by applying only rule R1 to the entire data set, that is, assuming that a

start or end event could occur at each time-step where the step-increase or decrease is within the



recognized limits for the refrigerator (labeled run 1). For the next runs, a new rule is added to the
previous set of rules, consecutively. Rule R6, the highest scoring event rule, is applied in
conjunction with rules R3 and R4 because these rules assign a score to the events, therefore, the
events are ranked using rule R6. The order of rules applied in the analysis for the refrigerator is as

follows:

Run 1: Rule R1 only.

Run 2: Rules R1 and R2.

Run 3: Rules R1, R2, R3, and R6.

Run 4: Rules R1, R2, R3, R4, and R6.

Run 5a: Rules R1, R2, R3, R4, R5a, and R6.

Run 7: Rules R1, R2, R3, R4, R5a, R6, and R7.
Run 8: Rules R1, R2, R3, R4, R5a, R6, R7, and RS8.

The results of the sensitivity analysis for selected days are illustrated in Figure 4.21. For the
days illustrated, rule R4 always reduces the number of actual refrigerator intervals missed by the
algorithm by an average of 16.5%. However, at the same time, R4 increases the error in
estimating the refrigerator energy use for two out of these four days by an absolute average of
4.5%. Similarly, R4 increases the error in estimating the total number of intervals estimated for
two out of four days by an absolute average of 6.3%.

Rules R7 and R8 significantly reduce the error in estimating the refrigerator energy use for
the days shown in Figure 4.21, by a combined absolute average of 14.2%. It appears there is a
trade-off between reducing the error in estimating the refrigerator energy use and the number of
actual refrigerator intervals recognized. The deciding factor as to which parameter to improve
upon depends on the intended use of the results. If obtaining the daily refrigerator load is of
greatest interest then the combination of all eight rules proposed is effective to minimize the

errors in the estimation of the refrigerator energy use.
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5. A NEURAL NETWORK APPROACH TO DETECT APPLIANCE
EVENTS WITHIN THE TOTAL DEMAND PROFILE

The objective of this portion of the research is to identify: (i) the features of neural networks
that enable them to successfully p;rform pattern classification which may be used to complement
or make more robust the Rule-Based Pattern Recognition Algorithm presented in Chapter 4, and
(ii) the differences in patterns of appliance energy signatures (in this case, for the DHW heater
and the refrigerator) which impact the neural network results.

A brief introduction to artificial neural networks is presented, and the basic characteristics
that define each of the three neural networks investigated in this study are discussed. Next, a
description of the data preprocessing techniques applied is discussed along with the network
parameters selected for this application. Lastly, the results of the three neural network models
used to detect start and end events are presented for the domestic hot water heater and the

refrigerator. These results are also comparatively assessed against similar results obtained using

the Pattern Recognition Algorithm.

5.1 Background

Unlike the Pattern Recognition Algorithm, which consists of a set of explicit rules, neural
networks draw upon knowledge or information that is inherent in the training data that is
presented to the network. Inspired from neuroscience, artificial neural networks (ANN) are able
to identify and learn patterns in data from examples, and thereafter generalize without prior
process understanding. They can discern patterns and relationships that are beyond the
capabilities of traditional methods like regression analysis. There are many types of ANN models.
Each model is, primarily, characterized by the arrangement of neural processing units and their

interconnections. A simple three-laver neural network is illustrated in Figure 5.1.
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Figure 5.1 Simple three-layer neural network

A neural network model can be described using three parameters: (i) the topology or
architecture, (ii) the leaming paradigm, and (iii) the learning algorithm [52]. The topology of a
neural network typically consists of an input layer that presents data to one or more layers of
hidden processing units, which in turn present processed data to an output layer. The input
processing units only receive external data from the user. The outputs received from a previous
layer of units can be thought of as a vector of data, to which a transfer (or activation) function is
applied, and the data is sent to the next layer of units. The direction in which the data is
transferred across proceséing layers defines the network as either a feed-forward, limited
recurrent, or fully recurrent network.

The learning paradigm defines the method that the network determines the appropriate
connection weights for a given set of training data. The two leaming paradigms investigated in
this study are: (i) supervised, and (ii) unsupervised. Supervised learning is the most common
training paradigm used to develop neural network classification and prediction applications, while
unsupervised learning is often used for clustering and segmentation of data sets.

The third defining component of a neural network is the type of learning algorithm that is
applied. Learning algorithms determine the contribution of error that is generated by each

processing unit in the network for each training pattern. This information allows the connection
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weights for each unit to be modified in the direction that will reduce the error. This process is
repeatedly applied for each training pattern until the desired error is achieved. Learning
algorithms used by neural networks replace the programming required for conventional models.

In this study, the NeuroShell 2.0 environment [53] was used to test the application of ANN
to detect the start and end events of appliances within the Total demand profile. The discussion
that follows presents the differences between the three types of neural network models applied in
this study. The three ANN models investigated are: (i) Back Propagation, (ii) Probabilistic, and
(iii) Kohonen. These models are selected based on preliminary evaluations of the number of

correctly classified events for a variety of models available in the NeuroShell 2.0 environment.

5.1.1 Back Propagation Neural Network

The Back Propagation Neural Network (BPN) is a feed-forward network with a supervised
learning paradigm that applies the Generalized Delta Rule learning algorithm or more commonly
referred to as the Back Propagation learning algorithm. The BPN is the most general-purpose and
commonly used neural network mainly because it is suitable for almost all applications,
particularly for classification, modeling, and time-series forecasting [54]. A BPN with supervised
learning can be described as a nonlinear minimization problem in which the connection weights
are the decision variables and the learning error (the difference between the estimated output and
the actual output) is the objective function. While, a BPN with no hidden layers is essentially a
linear multivariate regression model. Adding hidden layers to the network turns the linear
regression model into a nonlinear multivariate regression model.

The basic BPN (which is applied in this study) consists of three components: (i) the input
units, (ii) the hidden units, and (iii) the output units (Figure 5.2). The input units are presented to
the input layer and are propagated across the hidden layers to the output layer. This forward pass

yields an estimated output that is then compared to the actual output. The actual output is then
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subtracted from the estimated output and the difference is defined as the leamning error or error
signal. This error signal is then passed back through the neural network using the Generalized
Delta Rule learning algorithm. Whereby, the contribution of each hidden unit to the total error
signal and corresponding adjustment factors needed to produce the actual output are calcuiated.
The connection weights are then adjusted accordingly and the process is repeated until the desired

output accuracy is achieved.

Input Layer Hidden Layer Output Layer
Error Propagation

Connection weights
Input ( ) <>
Unlts O

Output Actual
Unit Unit
Activation Propagation
4’

Figure 5.2 Back Propagation Neural Network

While the NeuroShell 2.0 software enables the user to define several parameters, the
following two parameters appear to have the greatest impact on the BPN results: (i) the learning
rate and (ii) the momentum. The leaming rate determines the incremental magnitude of the
connection weight adjustments. The momentum controls the incremental magnitude of
oscillations in the connection weight adjustments. Whereby, its effect is to filter out any high-
frequency changes in the connection weight values which are caused by altering signed error

signals (positive vs. negative).
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5.1.2 Probabilistic Neural Network

A Probabilistic Neural Network (PNN) is a feed-forward network with a supervised leaming
paradigm that applies a Probability Density Function (PDF) to determine the most probable
output (Figure 5.3). Unlike the” BPN, which maps the input attributes into the various
classification categories, the PNN separates the input patterns into a user-specified number of
output categories based on probabilistic reasoning. Whereby, a Gaussian activation function is
applied on the hidden layers, and then the units for each possible output category are summed.

The category in the summation layer with the highest probability is deemed the winner.

Input Layer Pattemn Units = Hidden Summation Layer Output Layer
Input %é O
UnlB O % / ‘ E
most probable category

Figure 5.3 Probabilistic Neural Network

The main difference between a PNN and a BPN is that instead of adjusting the input layer
connection weights using the Generalized Delta Rule, each input training pattern is used as the
connection weight to a new hidden unit. Thus, PNN require that the number of units in the hidden
layer be the same as the number of training patterns presented to the network. This enables the
network to train more quickly on sparse data sets than more common iterative networks since

there are no connection weight adjustments [55]. For the data used in this study, training is
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instantaneous. However, for large training sets, significantly more computational time and effort
may be required.

The success of a PNN is highly dependent on the smoothing factor that is applied. Higher
smoothing factors produce more relaxed surface fits through the data, reducing the difference
between input and output patterns. For this study, NeuroShell’s calibration feature is used to
determine the optimum smoothing factor for the network. Whereby, the same smoothing factor is
applied for all connection weights, and whole range of smoothing factors are automatically tested,
and converge towards a value that maximizes the success of the network (Figure 5.4). The
measure of success for classifier-type networks like PNN is the accuracy of the classifier, defined

as the percentage of correct classifications made by the network.
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Figure 5.4 Convergence of smoothing factors for DHW heater and refrigerator start events

Advantages of applying a PNN over a standard BPN is that training is much faster, usually a
single pass through the training patterns. Also, new training data can be added at any time without
requiring retraining of the entire network. This feature of PNN is significant if the application is
going to be used for real-time estimations with occasional calibration monitoring periods to

ensure that the network is still valid. Lastly, because of the statistical basis of the PNN, the user
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can trace-back the basis for any decision made by the network. This reduces some of the “black-

box” of neural networks discussed in Section 2.4.

5.1.3 Kohonen Self-Organizing Neural Network

The Kohonen Self-Organizing Map Network (KNN) is a feed-forward network with an
unsupervised learning algorithm. An unsupervised neural network is called self-organizing
because it does not receive any direction (or feedback) to move toward the correct output.
Essentially, these networks look at the patterns of data and cluster them into a specified number
of categories (or feature map) such that similar patterns are grouped into clusters. Unlike the two
previous networks presented, the BPN and PNN, the KNN consists only of two layers of
processing units; an input and an output layer - there is no hidden layer (see Figure 5.5). Similar
to the PNN, the KNN requires a minimum of two output categories. Thus, the output of a possible
start event is defined as either an “ON event” or “not an ON event”. Similarly, the output of a

possible end event is defined as either an “OFF event” or “not an OFF event”.
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Figure 5.5 Kohonen Self-Organizing Neural Network

In the case of a KNN, the training process serves to determine an appropriate learning rate

and neighborhood size for the data. Whereby, the activation for each clustered unit is calculated



as the product of each input unit value by its corresponding connection weight, and then summing
all inputs received by a Kohonen Unit. Mathematically, this process can be described as the dot
product of the input vector and the connection weight vector. The Kohonen unit with the largest
activation is declared the “winner’> and as such its connection weight is adjusted to more closely
resemble the input vector just processed. The closeness of these two units is evaluated based on
their distance from each other, calculated using the Euclidean Distance Metric. The Euclidean
Distance Metric is calculated as the square of the distance (d) between the input pattern and the
weight vector for a unit and is represented as £(d)’. The basis for this comparison is the same as
that applied by rules HW2 and R3, the vector norm rule in the Pattern Recognition Algorithm
presented in Chapter 4. The winning unit is the Kohonen unit with the minimum distance from
the input vector, and as such requires the minimum connection weight adjustment. The magnitude
of the weight adjustment for the winning unit is determined by the learning rate applied. The
learning rate is the most sensitive variable in a KNN. For instance, if the learning rate selected is
too large then the network is not likely to stabilize.

In addition to the connection weights of the winning unit being adjusted, the weights of the
adjacent units within a neighborhood of the winning unit are also adjusted. Hence, the network
undergoes self-organization. The neighborhood size will slowly decrease as training progresses
until it is zero, meaning that only the weight of the winning unit is changed and that the clusters
of data have been defined. At this point, the connection weights represent a typical or prototypical
input pattern for the subset of data that fall within that cluster. This prototypical input pattern is
comparable to the average start or end demand profile (C; or C,) applied in rules HW2 and R3,

the vector norm rule.
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52 Data Preprocessing

The training data set is composed of 86,200 patterns assuming that all time-steps in one day
are possible start or end events (e.g. 24 hours x 60 minutes x 60 seconds + 16 seconds = 86,200
time-steps). To reduce the time and computational efforts required to train a network, a subset of
the training and test data is presented to the network. Preprocessing the data also serves to reduce
bias in the data due to the significantly higher ratio of non-events to actual start and end events.
Rules HW1 (described in Section 4.1.1) and R1 (described in Section 4.3.1) of the Pattern
Recognition Algorithm are used to preprocess the DHW heater and the refrigerator data,
respectively.

The input data for all three networks is scaled into the data range that the ANN can process
efficiently. Most ANN process data in the range of 0.0 to 1.0 or -1.0 to +1.0 depending on the
activation functions used by the network. If the input patterns are not scaled, then patterns with
very large magnitude swings would dominate or saturate the activation function. Since the
activation of a unit is governed by the total simulation received by a pattern, once saturation is
reached, changes in individual input units will yield little or no change in the result. A positive
connection weight will enhance a unit’s response to a signal while a negative connection weight
will suppress a unit’s response. Both the BPN and PNN require that the input data is scaled - the
functions applied are listed in Table 5.1.

The input patterns consist of one or more input units. The relative differences among the
individual input units can also be extracted and presented explicitly to a network. In this case, the
data may be normalized or scaled as a group relative to one another. For the input data used in
this study, it would be interesting to normalize the time-steps with respect to the first time-step.
This may increase the effectiveness of the ANN for the DHW heater because it will amplify
significant step-increases and step-decreases in the demand and minimize changes due to smaller

appliances in the house. This option is available for further research.
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Table 5.1 Summary of peural network parameters for the DHW heater and refrigerator data sets

Variable BPN | kNN | PNN
TEST SET PERCENTAGE 20%
NUMBER OF UNITS IN INPUT LAYER 6 6 6
SCALING FUNCTION F1.1] n/a = tanh(x), where x is the input unit
LEARNING RATE FOR ALL LINKS 09 0.5 na
MOMENTUM FOR ALL LINKS - 06 n/a n/a
NUMBER OF UNITS IN HIDDEN LAYER = 0.5(number of inputs + number of n/a = number of training patterns
outputs) + (number of training
pattems)®
ACTIVATION FUNCTION Gaussian = exp(-x?), where x is the na Gaussian = exp{-x%)
E(weighted connection values)
received from the previous layer
NUMBER OF UNITS IN OUTPUT LAYER 1 2 2
ACTIVATION FUNCTION Symmetric logistic = (2/(1 +et®)) - n/a Probability Density Function
1, where xis the Z(weighted
connection values) received from
the previous layer
SMOOTHING FACTOR nfa n/a DHW heater: start - 0.179688
DHW heater: end - 0.600000
Refrigerator: start - 0.331250
Refrigerator: end - 0.233203
NUMBER OF TRAINING EPOCHS n/a 100 nfa
SPECIFIED
CALIBRATION METHOD Momentum nfa Vanilla, iterative
STOPPING CRITERIA Number of events since last minimum average eror in test data >30,000

For both of the supervised learning networks, that is, the BPN and the PNN, a subset of the
training patterns are withheld from the training process and used as cross-validating data. This
enables the network to gauge its incremental performance, and terminate the training process
before the network is overtrained. Once a network is overtrained it functions as a lookup table
rather than a prediction tool, which is then unable to generalize when presented with data that

contains random variance.

53 Neural Network Architectures

The objective of this research is not to find the optimum configuration for each data set, but
rather to observe the impact on the ANN results due to the differences in the patterns of energy
signatures of the DHW heater and the refrigerator. Thus, the same network parameter values are

used for the following four networks developed: i) DHW heater — start, ii) DHW heater — end, iii)

124



refrigerator — start, and iv) refrigerator - end events. The proposed networks all contain six
processing units in the input layer corresponding to the first six time-steps of a possible start or
end event (as discussed in Section 4.1). The number of processing units contained in the output
layer depends on the topology of the network. For instance, the BPN performs feature mapping,
thus, one output unit is used. Figure 5.6 illustrates the layout of a BPN for one training pattern.
The PNN and Kohonen Networks are classification and cluster-type networks that require a
minimum of two categories. In this case, two output units, one denoting true positive (can be
compared to S; = 1 or S, = 1 in Chapter 4) and the other false positive (can be compared to S; =0

or S, = 0 in Chapter 4) are used.
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Figure 5.6 Example of a training pattern introduced to the BPN

When applicable, NeuroShell’s calibration feature is used to test the neural network’s
performance. This involves retaining a subset of patterns during training and processing them at
various iterations (or epochs) of the network’s training phase. This ensures that the ANN is able

to generalize the output unit for any given input unit, rather than memorize the input-output

relationship of each training pattern.



Building neural networks is an iterative process that demands a reasonable understanding of
the parameters of a particular network, as well as, lots of patience. The network parameters
presented in Table 5.1 are selected from several iterations of the networks and parameter
combinations. It is difficult to apply a systematic approach to building neural networks. In fact, a
common criticism of neural networks is the “black-box™ approach often used for building them. It
is deemed more of an “art-form” than a scientific process [56]. Nonetheless, an attempt is made to
characterize the developmental approach of arriving to the final three network architectures. This

approach is illustrated in Figure 5.7.
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Figure 5.7 Iterative process for building neural networks

Due to the significant noise in the data, achieving discrete output unit values of zero or one
is not always possible. For this reason, the BPN output unit values, computed as any number
within the range of [0,1], are rounded off so as to obtain discrete values of either zero or one. The
PNN automatically computes the number of correctly classified output units based on the higher

probability of each possible output value. The KNN does not provide accuracy statistics because



it is not presented with the actual outputs. In this case, the estimated output values are exported to

a spreadsheet, where they are then compared against the actual outputs.

5.4 Neural Network Accurac;' Results

The performance of the neural networks is assessed using two criteria: (i) the percentage of
actual events classified and (ii) the overall network accuracy. The percentage of actual events
classified is defined as the percentage of actual start or end events correctly classified by the
network. Whereas, the overall network accuracy is defined as the percentage of all events (actual
events and non-events) correctly classified by the network. The results for both performance
metrics are presented in Tables 5.2, 5.3, and 5.4 for the DHW heater, and Tables 5.5, 5.6, and 5.7

for the refrigerator for each of the three neural network models.

Table 5.2 BPN results for the DHW heater

Criteria Training period: Near-to-date testing Far-to-date testing period: Average
October period: November January
Start End Start End Start End
Actual events classified 9%85% 100 % 795% 100 % 926 % 958 % 944 %
NN accuracy 97.1% 98.7 % 828 % 789 % 842% 879% 88.3%
Table 5.3 PNN results for the DHW heater
Criteria Training period: Near-to-date testing Far-to-date testing period: | Average
October period: November January
Start End Start End Start End
Actual events classified 985% 100 % 819% 9.8 % 88.2% 944% 933%
NN accuracy 96.6 % 98.7 % 81.3% 778% 81.0% 73.8% 849%
Table 5.4 KNN results for the DHW heater
Criteria Training period: Near-to-date testing Far-to-date testing period: Average
October period: November January
Start End Start End Start End
Actual events classified 956% 69.6% 849% 556 % 89.7 % 479% 739%
NN accuracy 725% 711% 626 % 422% 723% 355% 594 %




Table 5.5 BPN resulits for the refrigerator

Criteria Training period: Near-to-date testing Far-to-date testing period: Average
October period: November January
Start End Start End Start End
Actual events classified 70.3% 162% 727 % 0% 419% 0% 335%
NN accuracy 826% 51.3% 83.2% 0% 78.3% 0% 492 %
Table 5.6 PNN results for the refrigerator
Criteria Training period: Near-to-date testing Far-to-date testing period: | Average
October period: Novemnber January
Start End Start End Start End
Actual events classified 974 % 98.3% 983 % 956% 846 % 86.5% 935%
NN accuracy 782% 79.6 % 78.1% 736 % 635% 70.3% 789 %
Table 5.7 KNN resuits for the refrigerator
Criteria Training period: Near-to-date testing Far-io-date testing period: { Average
October period: November January
Start End Start End Start End
Actual events classified 50.5 % 60.7 % 459 % 00% 67.5% 0.0% 374%
NN accuracy 46.7 % 428 % 311% 00% 348% 0.0 % 259%

The results indicate that, generally, the best results are obtained using a Probabilistic Neural
Network, whereby, the average model accuracy is 84.9% and 78.9% for all data sets for the DHW
heater and the refrigerator, respectively. The BPN accuracy fairs better for the DHW heater
results, but is unable to process any of the refrigerator test data for end event. In general, the three
network types yield higher accuracy results for the DHW heater data than the refrigerator data.
This is likely due to the greater variability observed in the refrigerator data than the DHW heater
data, thus, reducing the effectiveness of the network to learn the inherent patterns in the data.

The percentage of actual start or end events correctly classified is highest for the PNN for
both appliances, that is, 93.3% for the DHW heater and 93.5% for the refrigerator. In fact, the
PNN is the only network that is able to satisfactorily classify actual events for both appliances.
The two supervised networks, that is, the BPN and the PNN, are more suitable to classifying

energy signatures than the unsupervised KNN.



55 Comparison of the Neural Network and Pattern Recognition Algorithm

The comparison of the rule-based pattern recognition and neural network approaches is
based on the ability of each model to detect actual start and end events within the whole-house
demand profile, while minimiziné the number of false events. To do so, both approaches are
applied to same input data, that is, a sliding template of six time-steps in the Total demand profile
(defined in Section 4.1).

Tables 5.8 and 5.9 compare the actual events correctly classified by the “best” performing
neural network (in this case, the PNN) and the Pattern Recognition Algorithm (PRA) for the
DHW heater and the refrigerator, respectively. The percentages listed are calculated with respect

to the total number of actual start or end events within the period considered.

Table 5.8 Comparison of actual events correctly classified by the PNN and PRA for the DHW heater

Data set Training period: Near-to-date testing period: Far-to-date testing period:
October November January
Start End Start End Start End
PNN 98.5% 100% 81.9% 96.8% 88.2% 94.4%
PRA 94.5% 92.3% 98.6% 93.1% 98.1% 95.2%
Difference 4.0% 7.7% -167% 37% 9.9% 0.8%

Table 5.9 Comparison of actual events correctly classified by the PNN and PRA for the refrigerator

Data set Training period: October Near-to-date testing period: Far-to-date testing period:
November January
Start End Start End Start End
PNN 97.4% 98.3% 98.3% 95.6% 84.6% 86.5%
PRA 92.8% 63.4% 92.0% 48.1% 91.4% 59.6%
Difference 4.6% 34.9% 6.3% 475% £5.8% 26.9%

The results indicate that on average the PNN is less effective in detecting DHW heater
events than the PRA. Whereas, on average the PNN is more effective in detecting refrigerator
events than the PRA. The reason for this is that although the PRA can effectively isolate the
energy signature of an appliance, it’s ability to filter through noise in the data is not as effective

as that of the neural network. The results in Table 5.10 support this statement. Table 5.10 lists the



percentage of non-events of the refrigerator that are classified as actual events by each of the

models, with respect to the total number of actual events within the period considered.

Table 5.10 Comparison of false events incorrectly classified by the PNN and PRA for the refrigerator

Data set Training period: Near-to-date testing period: Far-to-date testing period:
Oclober November January
Start End Start End Start End
PNN 54% 31% 55% 91% 109% 6%
PRA 200% 60% 3% 110% 248% %%
Difference -146% 29% 32% -19% -138% -30%

The comparison of these results for both the neural network and PRA indicate that the PRA
yields a higher start and end event detection rate than the PNN for the DHW heater only. The
refrigerator - whose energy signature is often masked by noise from other appliances with similar
operating characteristics in the house - is more effectively detected using the neural network than
the PRA. In this case, further research should be carried out to investigate possibly integrating a

neural network, such as the PNN into the rules of the PRA.



6.0 RESEARCH CONTRIBUTIONS

Both the Pattern Recognition Algorithm and the Probabilistic Neural Network approaches
show a promising potential for the'disaggregation of the whole-house electric load into the major
end-uses in residential buildings. The models developed are characterized by low cost, modest
data collection needs, and no occupant-reiated information required. Moreover, the Pattern
Recognition Algorithm is conceptually simple and versatile because of its rule-base platform.
Additional rules can be easily and intuitively added to the Algorithm, and existing rules can be
modified for its application for other appliances not investigated in this study.

The domestic hot water (DHW) heater energy signature for both start and end events is,
typically, well defined in the Total demand profile due the appliance’s high demand level in
comparison to other appliances in the house. Thus, the DHW heater algorithm’s rules can be
allowed to be more constraining with less effort than the rules for other appliances that typically
have lower demand levels, such as the refrigerator. The main cause of error in the testing data for
the Pattern Recognition Algorithm is the simultaneous events with the stove in the case of the
DHW heater, and the electric baseboard heater in the case of the refrigerator.

Whether the refrigerator algorithm should be improved to bring the accuracy parameters of
the estimated demand profile within the same range as that of the DHW heater depends on the
intended use of the results. There is a trade-off between reducing this error and the complexity of
the algorithm. Given that the energy share errors are consistently low, it is determined that the

refrigerator algorithm is acceptable as presented herein.

6.1 Recommendations for Future Work

The transferability of the Pattern Recognition Algorithm among a variety of dwelling types

needs to be assessed. While most dwellings have a refrigerator, and there is a certain electrical



similarity among them owing to the economics of manufacturing and marketing, there is still a
wide range of variability. The extent and cause of this variability needs to be determined for a
representative share of the Canadian housing stock. In addition, a survey of most commonly
found large connected loads in a house is required. With this information, it may resuit that the
energy signatures of two or more major appliances, not present in the case study house, are not
distinguishable using the prototypical Pattern Recognition Algorithm. In this case, additional
rules should be integrated in the Algorithm. For instance, rules to verify the systematic load
behavior of an appliance, such as, the time-of-use, frequency of use within a day, and weather
dependence are possible variables to consider.

The preliminary results of the Probabilistic Neural Network indicate that the approach
should be further investigated with the aim of possibly combining or substituting some of the
rules in the Pattern Recognition Algorithm for the Probabilistic Neural Model in an effort to
increase the algorithm’s overall accuracy. The function of the neural network as part of the
Pattern Recognition Algorithm may be thought of as a subroutine or function. Whereby, the input
data is presented and processed by the neural network, and a data set of possible start and end
events are returned to the Pattern Recognition Algorithm for validation and estimation of the
appliance demand profile and aggregate load. Like the Pattern Recognition Algorithm, the

transferability of the Probabilistic Neural Network across a variety of dwellings must be tested.
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