NOTE TO USERS

This reproduction is the best copy available.

®

UMI

INVENTORY DATA WAREHOUSE SYSTEM
WITH LINEAGE TRACING FOR SMALL
RETAIL CHAIN

XIAOMING LUO
A THESIS
IN
JOHN MOLSON SCHOOL OF BUSINESS

PRESENTED IN PARTIAL FULFILLMENT OF
REQUIREMENTS
FOR THE DEGREE OF M.SC. (ADMINISTRATION)
CONCORDIA UNIVERSITY
MONTREAL CANADA

June 2005
©Xiaoming Luo, 2005

Concordia University

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10329-9
Our file Notre référence
ISBN: 0-494-10329-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Inventory Data Warehouse System with Lineage Tracing for
Small Retail Chain
Xiaoming Luo

A data warehouse is one of the best solutions to integrate information from
distributed, heterogeneous data sources. Different sized companies have different
types of information management systems. The data warehouses, which can
integrate these data sources together to provide summary views, are critical for
the business managers to make operation management decisions.

Besides the data views of the data warehouses, sometimes, the managers also
need lineage trace functions to get original data sources that contribute to the data
views. Currently, more than 80% of retail companies are small sized businesses
or business chains that consist of small sized companies. They need a data
warehouse that integrates all kinds of data sources with lineage trace functions to
improve their operations management.

Based on the analysis of the requirements of small businesses/business chains,
we use the data warehouse [1, 2, 5, 7] and lineage trace [6, 9, 10] approaches to
propose an information management data warehouse solution for the operation
management of the small businesses/ business chains. In the same time, we
develop an “Inventory data warehouse management system with lineage trace for
small business chains” demo system. In this thesis is that we main focus on the

implementation and demonstrating how to develop a local information

it

management component, how to integrate remote .heterogeneous data sources to
a data warehouse, how to develop a data warehouse management system with the
latest Java data engine technologies and the best performance/cost rate database
technologies, and also show how lineage tracing is used in the data warchouse
and how to implement it as well.

Key words: data warehouse, data view, lineage trace, and data source.

iv

Acknowledgements

I would like to express my special gratitude to all the people who gave me

the great help during this thesis.

I am greatly indebted to my supervisor, Dr.Dennis Kira, who gave me a
lot of helpful suggestions and encouraged my interest in my study. With his
patient advice and constant help, I learned much useful knowledge and
completed my thesis successfully.

I am pleased to thank Dr. Fassil NEBEBE and Dr. El Sayed ABOU
zEID as the examiners for the thesis. They gave me many useful comments

during the work.

Finally, my special thanks are also due to the faculties and staffs in the MIS
Department, John Molson Business School at Concordia University, who

provided the large support during my master program’s study.

Content

The List OF FIUIES....ccuiiriieeeeeie ettt st st res et sass s s se s saae e ans e s ne e nee s X
1 Data WarCHOUSIIIE.eevveereerieveeerreereestessseereesnesreessaassssesssensestesseassesaseessesssesesesrasenaresesessesosesnnee 1
1.7 INETOQUCHION ..eeoiieiieteceee et eeere et e s e e csre s s see e s s reesrnresabeeesanssennsssrsnssonuessmanessuransnns 1
1.2 Basic Architecture of Data Warehouse........o.coeivorrrerirenrnenrinenteccre ettt esvesenones 3
1.3 Data Warehouse SOftWATEcccvveirreiiieeeeeeeee ettt 4
1.3.1 ITOAUCTION ettt st 4
1.3.2 EXtraction MEthOdsccceivieriiiiririeccecenieeteeeeiereen sttt esee st ssee s sre s e 5

1.3.2 Transformation Methodscc.coveverrverieirrcenencienccee sttt sans 7

1.4 The Data Warehouse Difference Among Small, Medium, and Large Sized Retail

COMIPAIIES ..e.vvievveeieeerreeiaererersseeereesssesossesnesssessesssnessessnnesseesssensessessnestesusesnsesaseeseessetesseesnesenerenns 7
1.4.1 Operational Management Differences......c.cuevvvrververiinrensesreneeeesessesseeseeeeseees e 8
1.4.2 Information Management Data warehouse Systems Characteristic Differences 9
1.4.3 Summary of the Differences Among All Types of business........ccccecervereecerreecrennenen 11

1.5 Smali Business Chain Data Warehouse........c.cocveriienieieennreeeeericsereceeee e 13

2 Lineage Tracing SYSIEIM .c..cccreiiuererrereeerteeceetesreesete st seeseesee st saeseeeesnesenesnesoesaeeareemesenesseenes 17

2.1 INETOAUCHION «..eoetieiiteee ettt ettt ettt e s et e e e st s e e s e eseeatenaens 17

2.2 The Lineage Tracing PrOCEAUIE...........ccciecieieeieeieeiereeseesaesaeestessnesnessnesssessvessnaessnssnseres 19

2.3 Auxiliary MaterialiZed VIEWS.....cocccevverrierreenreeiieeerrrisieeressesssrsesesssssnessnessssssasensesssesssasssasns 20

2.4 Lineage Trace Difference among Small, Medium Size Business, and Big

COTPOTALION ... coierreeierieteiereteeetreer s teesesraesteasreesssaesesssessnressseaseesssasssseesassarasssesssserssessnsasesssreens 21

3 Strategies of Auxiliary Views for Lineage Tracingcccvvveeiviiriincvencieneienieereeereseesseseneennns 23

3.1 INEFOQUCLION «...vereeiiiinertet et ettt ettt et s ear e e e et eseeen g et e se s st saeemeasanaseneaeenee 23

3.2 AUXIHATY VIEW .ottt ssreresesetesaensseses e ssesbesasssensosesseasessesaassessassens 23

3.3 Strategy 1: Store NOthing (&) ...ccoveieiriinriircieereeeerere et sss et esees 25

3.4 Strategy 2: Base Tables (BT)....cocciiiieieieeteetecee et srre st beese s e sssa s e nns 25

3.5 Strategy 3: Store Lin€age VIEWS (LV) c.cocvviiivieecceecceesesniertr e ste e srresvesseeeneevesssaenens 26

3.6 Strategy 4: Store Split Lineage Tables (SLT)....coccvviiireiiinieiicrirerceieerseeereseerneeeesesvneeessnns 27

3.7 Strategy 5: Store Partial Base Tables (PBT)......ccccccveivvereiineiicrrenresieeeeereeereessenesvesesennnes 28

3.8 Strategy 6: Storing Base Table Projections (BP)........cccoveeeiieeriiviinienieieeceeereereeereeevnens 29

3.9 Strategy 7: Storing Lineage View Projections (LP)c.ccooovvvrieviiiveiieeeeeeteeeteeeee e 30

3.8 Self-Maintainability and Self-Tractability.........ccccovrirereririrrererereeeeseeee e 30

vi

4 Inventory Data Warehouse for Small Business Groupc.cocevevvennivierniniiinineniinnineninnns
4.1 INETOAUCHION ...ttt et sttt et e e bt s b s e s enae st s
4.2 Functional & Non-Functional Requirement for Source Database..........cccoeoerenirccnnncnnncn.
4.3 Database Schema in Source Databaseccocceueeeierierrieeierieceee e rtee ettt
4.4 ER Diagram of the Databaseccccoeiiirirrinieiee ettt
4.5 Functional & Non-functional Requirement for the Warehouse Component.......................
4.6 The Data Warehouse System ArChiteCtUIre.........ccovviviiicriceecieerrece e sceeseeereeaesessnees
4.7 Data Warehousing SChemMA.......c.cceciiiiiiriiiiiiicrerie ettt st st seesseesseee st e suaesrsseesnesnsans
4.8 Data warehouse Integrator ArChiteCtuIE........covvvevirvvinieririnineerre e e se e sneseesene s

4.8.1 User Case DIagraml.......c.cccoevveievirieninnienrenieneeieeeeneenteseeseretereeseeeseeeesie st esneseesea e sas
4.8.2 The Classes DIagram.......cc.coeeivirieienieierirenetereerietereneesesseseestenseseessesesessensesessesseneas
4.8.3 System Flow Chart DIiagramccoccvveeevieeiinieenreeeineeieereeieesieesseesseesreesvesseesreesssens

5 Testing Plan for Inventory Data Warehouse SyStemcouvecviceevieieieiereicieeeneeciereeeeseeaesreens
5.1 Testing Strategies and Procedure..............cooveiieieiieeieeeieece ettt ereees
5.2 Testing Plans for Functional Requirements of Local Inventory Management
COMPONIENT ..ottt ee ettt e st et e te et e et asesensesaesseaseseesssassasseessensassessessaessennesseas

5.2.1 Testing Plan for the Add/view/Modify Employee Module........cccovcveerinenrvnenennnns
5.2.2 Testing Plan for Add/view/Modify Supplier Moduleccoeorvvrvireernineeneierenne
5.2.3 Testing Plane for Add/view/Modify Customer Module.............c..cocovvivvvvervenrereennnnen.
5.2.4 Testing Plan for the Add/view/Modify Product Module........c...ccooveeveviineinireneannanne.
5.2.5 Testing Plan for the Add/view/Modify Purchase Order Moduleccoeevverrernenee.
5.2.6 Testing Plan for the Add/view/Modify Sales Order Moduleccocvvevveeevivieennnen.
5.3 Test Plan for Non Functional Requirement of Inventory Management Component...........
5.3.1 Test Plan for the Robust TEStINGc.ccvvvieririeriereeieieeeeeeeceereeree et
5.4 Functional Test for Inventory Management Data Warehouse Integrator
COMPONENL ..ottt s et et s s aeeseseesaesneseesesbesseseesnssesnensenns
5.4.1 Testing VIEWINGZ MENU....coocciiiiiiiriiieiieierieieeete et eiee et eere e eereeereeeneeeseenesereenseennsens
5.4.2 Testing JDBC ENZINE....cuovviiiiiiiecieieeecreteene et sbestesae e nesreereereereensones even
5.4.3 Testing Table Data Engine and Table Display Engineccoeoevveevivviveenivririinennns
5.4.4 Testing the Lineage Trace and System Testing........occeevvveevvicriceniriereereineeceereeeereennes
5.5 Non Functional Testing for the Inventory Management Data Warehouse Integrator
COMPONENL ...ttt sttt a e ettt s et e b e b e st ssn s enseseseananesensenenn
6 The Implementation of the Local Data Resource Management..............c.cccoeeeeeeveeerencererennnn.

6.1 INEEOAUCHION ..o e e e ve e eaeeas e e eees e aeeasnseeesaenneeesasssseeesseeeessseeeeean

vii

6. 2 Design of the Main Menu FOrmM ...t escn s 56

6.3 The Design of Adding /Viewing a Product FOrm.........coccoverviiiiioninicnnieiinccrceecveccen 57
6.4 The Interface of Entry /Viewing /Updating an Purchase Orderc.cocceenivvvvienecninnenns 59
6.5 The Interface of Entry /Viewing /Updating an Sales Ordercccevvvcveneniniiercrniniiniennn 60
6. 6 Report ReEVIEW FOIIM «...coociiiiiiicce et 60
6.6.1 The Summary Report of Product INVENOTYcveeveeiiieireerieecienecce et 61
6.6.2 The Summary Report of Product SUPPIYINGceeveeveeiiriiiciniecieneerrerr e 62
6.6.3 The Summary Report of Product Salescoooeeiiiiiiiriiiieeeeeceeecceee 63
The Implementation of the Inventory Management Data Warehouse Systemcccccceevennee. 65
7.1 INETOAUCLION «.eeeiieieiic ettt ettt ae e e a s ss e san e aessbesab s 65
7.2 Mapping the Remote Data Sources into Local ODBC Objects.......cocovreeirvieenninnciisionn 65
7.3 Implementation of Java Data ENgine........ccccoveveeviiriniciinennireereececnteeienteeenenssisns 66
7.4 Table Data Display Engine Implementation...........c..eeeereeverircrienciiecieneeseecceeeeenereeeeaeens 67
7.5 The Lineage Trace Engine IMplementation............ccouverviernerieersernrerserneneessesseesseeeseesnees 67
7.6 Data Warehouse Implementationccccoeeercrercreniiiicnisensiresieneeeressesessesnesnesssnenes 69
7.6.1 The Main Menu Implementation..........ccocceeeueeenereenrcrninncrnciiieneneeceeeee e 69
7.6.2 The Sales Information View Menu Implementationcoceooeeiiieieiincencnennneencene 69
7.6.3 The Implementation of the Inventory Information View Menu........c..cceevervrrvveercennne. 70
7.6.4 The Supply Information View Menu Implementationcc.cccevveeveeercnieecrcnsicenennnn. 71
7.6.5 The Sales Information Lineage Trace Implementation.......c.ccccoceevevevcrincncncnnnncne. 72
7.6.6 The Inventory Information Lineage Trace Form Implementationcoccevvveenenen, 73
7.6.7 The Supply Information Lineage Trace Form Implementationcccceeeevvveeveenennen. 74
7.7 Data warehouse MaiNteNanCececevireereerirererreeeiriereesirereereseseesressesseesesseensesesenessnennes 75
7.8 Development Tool and Running Environment..........cocvecvevieerierrereerernenseesersrerennesnesssensens 78
8 CONCIUSION c.ntienieeete ettt sttt ettt et et sttt et s et e e e sat e see e een e et e se e eneemsesenemasaans 79
8.1 Comments on the System from a Professional...........cccecveieieviiciveienieiecesieneeseeeeseeseenens 79
8.1.1 Comments on the local Inventory Management Componentc.ceccveveerervrcerense. 80
8.1.2 Comments on Data Warehouse Integrator Component..............cocoeeviiiiiivnininnicnennns 81
8.2 Shortcoming of Inventory Data Warehouse SYStem.........c..cvccveerireeeeeeniecereereirenennnens 81
BB FULUIE WOTK....ciiiiiie ettt et v e s e st s sve s s e s e a s baessassse s srseensnaseessaares 82
APPENDIX USEE GUIAE -....eeiiiiiiieieece ettt aee e stee e saesbe s e esessessnesnesssansesnsesesstesserees 83
A.1 Install the Local Inventory Management SYStEIMccevereeuiieiieeeeieeeeie e 83
A.2 Setup ODBC Data Source for Every Remote Inventory Management System.................. 84
A. 3 User Menu of the Local Inventory SYStemcccoccvrveiieenieieeceveeeceeereceeereesreseneans 87

viil

NI T LY, €: V15 011 ¢ | SO 87

A.3.2 Entry/View Product Item Menu ..ot 88
A.3.3 Entry/View Product Purchase Order MenU...........c.oovieeveeienienieniinnrereereerrseesassenens 89
A.3.4 Entry/View Product Sales MEmUcccvivviniiriinierienrincrreneenreesseseressressesseesssesssens 90
A.3.5 Report VIEW SUD MENU....coociriiriienieeiniienneieireeesinessessesessesssesssesssesssassssesssassaersessasess 91
A.3.6 Product Inventory Report VIEW..........cccvvvevivvirriirieeiiererinetseeesreeeserssesssesssesssessssnens 92
A.3.7 Product Supplying REPOrt VIEW.......ccccciiiiiiiiiiiricriereeieeteebeee st s e ereesraeennens 93
A.3.8 Product Sales REPOIt VIEW.........coouiiiiciiiiiieeeeee ettt e 94
A4 User Menu of the Inventory Data Warchouse Integrator.........cccveeveeeieiereeeevereencnreeeens 95
A.4.1 Product Sales Information ReVIEWcccocvvevieeriiievieciieiiceecereree e 96
A.4.2 Product Inventory Information REVIEWc.cecvivviiieiiieiiicnecceecne e sae s 97
A.4.3 Product Order Information REVIEWccoevveiriniieeiccreeecee e 98
A.4.4 Product Sales Information Lineage Trace ReVIEWcccooeeveerevrerriieenieeceenieneee e 98
A.4.5 Product Inventory Information Lineage Trace ReViewccocceovviveenenininiccneninene 99
A.4.6 Product Order Information Lineage Trace ReVIieWccoocveevviecrivceicicceereeenieene 100
RELETENCES ...ttt sttt ettt e sn e ens 102

X

The List of Figures

Figure 1The Basic architecture of a data Warehouse SYSLENccoveevieieriseeeenssnesesssesessssnnnns 4
Figure 2 The Data Warehouse Software Components.............cccovcvcvecenieomnivnicnenenennenninenieeen: 5
Figure 3 The EXtraction OPtiOnS........ccccvevverierrerrieerieesreresreesscesseeseesseesssesssssssessssesssnssssesssesssssssssnses 6
Figure 4 The Data Transformations -..........cocovirrriiieiee ettt 7
Figure 5 The HNeage PrOtOtYPE . .ceoueiieeieeeeree ettt se ettt et s e e asesresanassasssassaessessnans 18
Figure 6 The Tracing QUETIESccervevrerieriereiererienretenetenretetessesese e sasressesesssssessresessessesseasessassans 24
Figure 7 The data warehouse architeCturecoooeviiciiiieeeee et 33
Figure 8 The Database ER-GAGIam.......cccccovceiriiiriieciireieeriecesrieeseesse s sree e saesavsesbaessnsenne s 36
Figure 9 The System ATChItECIUIEccovierirmiiireceict ettt ee b e s e see s ssesaene 38
Figure 10 The user case dia@ramcoccveruierereriiirrieieieneseseesesseeee e sreesesaesseseesaessessesaessansessans 39
Figure 11 The Class diagramc.cc..couerieriiiinieniiiiceiecten ettt seee s e seeseensesaensene 40
Figure 12 The flow Chart DIagram..........cocueeverieieieieieieieieieceeeete et ssea et sa e asens 41
Figure 13 The flow chart of display €ngine.........ccocceeovvieiiieeieeeceeceeee e e ere e 67
Figure 14 The Lineage Trace flow Chart...........ccovviieiiiiiniccceccereceece e enan 68
Figure 15 step 1 create data SOUTCEouvevrieerieriieieeriesreesteesieceietnecereesreeetsseatesareenteeseeeensesereseneeas 85
Figure 16 step 2 choose data SOUICE tYPE.....ocveveeiereeereciieeeiecreee vt et e reeereteeseeneereeseeresnnens 85
Figure 17 step 3 Assign a name to the data SOUICE tYPEc.cveeeeerecreriereieieieeceeeeree et 86
Figure 18 step 4 select the data SOUICE........coceeverereriiirierrceee et 86
Figure 19 The main interface........ccooviiiiiiiiniiiieeeeeetes ettt ettt senas 87
Figure 20 The product detail entry fOrm.........oceeveereeiioiieieiceeee et 88
Figure 21 The Entry/ view purchase order form..........cooeeriiiiriieeceeicceicieeeeerecreereeve v 89
Figure 22 The Entry/ view sales contract fOrm...........coceeverirenieiereieinisieece et evenns 90
Figure 23 The report VIEW IENU......cociiirieriireirrieeettetereete et e s se b sessesse s eass et eeseeneneas 92
Figure 24 The INVENtOTY SUMIMATYccceeeeeeriierietereeecteeeeeetesteeeecreeveereesseoreesreeseenressesssssssossessonsons 93
Figure 25 The product SUpplying SUMMATYcccceeverrerieiererieriieieeeereee et erene s sreneeenes 94
Figure 26 The product Sales SUMMATYc.cccvvevirerreririerre ettt be e ereneerenas 95
Figure 27 The mMain MENUc..coiirriererieirieenteeert ettt ss s ese e eteeseereereeseesessesssessosens 96
Figure 28 The Sales InfOrmation VIEW..........c.cvieeieeieeiiciiiiiieccreeeeeeeecreets e et eeens 97
Figure 29 The Inventory INformation VIEW..........ceceeerierienienriieeeece et neeenees 98
Figure 30 The Supplying Information VIEW...............cciecieiiivevieriericieieeeeee e 98
Figure 31 The sales query lin€age trace VIEWcccevevueeeerevierieicieeeeeee ettt 99

Figure 32 The Inventory query lineage trace view
Figure 33 The Inventory query lineage trace view

xi

1 Data Warehousing

1.1 Introduction

A data warehouse [1] is a repository storing integrated information for efficient
querying and analysis. Information is extracted from heterogeneous sources [7, 3]
as it is generated or updated. The information is then translated into a common
data model and integrated with existing data at the warehouse. The data source
can, for example, be accounting information, operation information, inventory
information, customer information, etc. Data warehouse builds cross-reference
information between these different data sources to enable data analysis. It
groups data into subject areas so that user can find data earlier and faster than
traditional procedure, such as query repeat information at remote data sources. It
maintains historical data for trend analysis. Since data warehouse is not used for
end user transaction processing, it can afford the resources to run computation
intensive query for data analysis. When a user query is submitted to the
warehouse, the needed information is already there, with inconsistencies and
differences already resolved. This makes it much easier and more efficient to run
queries over data that originally came from different sources. Key advantages of

data warehousing include:

e« Since query execution does not involve data translation and
communication with remote sources, complex queries can be executed

easily and efficiently.

e End users can use a single data model and query language.

o System design becomes simpler. For example, there is no need to perform
query optimization over heterogeneous sources, a very difficult problem

faced by other approaches.

» Information sources may be unreliable and may purge data. On the other
hand, information at the warehouse is under the control of the warehouse

users; it can be stored safely and reliably for as long as necessary.

From a business perspective, data warehouse provides a single and consistence
data source. It makes the data collection process much easier and faster for the
users. The user can answer different business questions by issuing queries to the
data warehouse.

Potentially, better business decisions can be made in a shorter period of time.
Since the early 1990s, data warehouses have been at the forefront of information
technology applications as a way for effectively business planning and decision-
making. More and more companies are using data warehousing as a strategy tool
to help them win new customers, develop new products, and lower costs.
Searching through mountains of data generated by corporate transaction systems
can provide insights and highlight critical facts that can significantly improve
business performance.

The goal of a data warehouse is simply to provide quality data for the decision
making of the organization, by providing techniques to get data in a form that

they can use to make strategic decisions and solve business problem [2].

The warehouse is there to help decision maker do their job. It will allow them to
ask questions not yet considered, and these questions should challenge corporate
strategy.

The data is store and optimized for the purpose of analytical processing, turning
meaningless data into useful information.

It provides an opportunity to exploit trends and influences across the entire
organization by providing a consistent view and providing a solid base for
business intelligence and allowing for complex business modeling.

The data warchouse is a business solution issue to a technical issue, but with

benefit to both the IT department as well as the business [4, 5].

1.2 Basic Architecture of Data Warehouse

A data warehousing system collects data from multiple distributed sources and
stores the integrated information as materialized views in a local data warehouse.
Users then perform data analysis and mining on the warehouse views. Figure 1
shows the basic architecture of a data warehousing system. [6]

User

Query & Analysis

Data In@
Y \

Sourcel Source2 Source3

Figure 1The Basic architecture of a data warehouse system

1.3 Data Warehouse Software

1.3.1 Introduction

Developing a Data Warehousing project, a warehousing team will require several
different types of tools. These software products generally fall into one or more
of the categories illustrated in Figure 2 and described below [8].

o [Extraction and transformation. The warchouse team requires tools that
can extract, transform, integrate, clean, and load data from source systems
into one or more data warehouse databases.

e Warehouse storage. Software products are also required to store
warehouse data and their accompanying metadata. Relational database
management systems in particular are well suited to large and growing
warehouses.

e Data access and retrieval. Different types of software are required to

access, retrieve, distribute, and present warehouse data to its end users.

: Extraction & Warchouse
Transformation. . Techr

i

Data Access &
Retrieval

_ Data
Wﬂrehouse -

v - Data Mimng’ .

Alext System
1 Exception Reporting

Figure 2 The Data Warehouse Software Components

1.3.2 Extraction Methods

There are two primary methods for extracting data from source systems (see
Figure 3) [8]

e Bulk extractions. The enter data warehouse is refreshed periodically by
extractions from the source systems. All applicable data are extracted
from the source systems for loading into the warehouse.

¢ Change-Based Replication. Only data that have been newly inserted or

updated in the source systems are extracted and loaded into the

warehouse.

Change-Based Rephcaimn |

~ Data
Warehouse

Source
Systemoasr

,‘,;»»E“::‘:;:r;:i ’4

T Souree
._System\ :

Figure 3 The Extraction Options

1.3.2 Transformation Methods

Most transformation tools provide the features illustrated in Figure 4: [8]

SOURCE TYPE OF DATA

SYSTEM TRANSFORMATION WAREHOUSE

Address Field: No: 123

#123 ABC Street " Street: ABC Street
XYZCity 1000 ______, Field Splitting ————3" City: XYZ City

Republic of MN ——————% Country: Republic of MN

\ Postal Code: 1000

System A,
Customer Title:
President Customer Title:
Field Consolidation ——p
System B: President and CED
Customer Title:
CEO
Order Date: Order Date:
August 05, 1998 \ August 05, 1998
Standardization /
Order Date: / Order Date:
August 08,1998 \ August 08, 1998
System A,
Customer Name: \
Jone W.Smith Customer Name:
Deduplication ——»
System B: Jone William Smith
Customer Name: /
Jone William Smith

Figure 4 The Data Transformations

1.4 The Data Warehouse Difference Among Small, Medium, and
Large Sized Retail Companies

In the section, we will compare differing data warehouse solutions for small,
medium, and large sized retail companies in the terms of operation managements,

information management system’s (IMS) characteristics.

1.4.1 Operational Management Differences

This section will outline the operation management differences that are the most
related to the data warehouse system development.

The ownerships of different sized businesses are different: most of large sized
corporations are public; and small and middle-sized companies are private, which
lead to different operation management results. Public corporations have more
money resources at lower cost, more professional staff, more market share, and
cheaper goods supplier than small and middle-sized companies; consequently,
the large sized corporations are in good position in the marketing competition
and take more market share.

Most of the large sized corporations are multinational corporations that consisted
of multi divisions that distributed in different locations, and they use centralized
organizations structure. In each country, they have supplier centers to supply all
their branches in the country. At the same time, they have buyer centers in the
location where the merchandises are produced, like China.

Most of the large sized corporations have research and development centers,
which study the corporation’s expansion strategies, operation management
refinements, market strategies, and product line development, so the corporations
are always in the leading edge in their area.

The headquarters of large corporations directly manage all its divisions. These
divisions have very close connections with their headquarters, and staff in the
headquarters can access all their divisions’ information, not just information

provided by some simple data views. Furthermore,, the information of the

corporations are very sensitive because of the competition in the market. So
advanced security networks and data warchouses are chosen to connect all its
departments and divisions together, and there is a huge information flow between
them.

In a small business chain, every business is independent in finance and share
same brand with other members, the head offices of this business chain only
charges an annual fee and a percentage of their annual total sales from its
members.

Medium sized businesses operation management mix both styles that we
introduced above, in which some of them use an independent style, some of them

use a centralized management style, and others are between the two styles.

1.4.2 Information Management Data warehouse Systems
Characteristic Differences

Because of operation management differences among the small sized businesses,
middle sized businesses, and huge sized corporations the information
management data warehouse systems are different. Normally, information
management data warehouse for big corporation has the characteristics listed
below:
e High data volume:
There is a huge sized database management system for huge sized
corporation because of the huge amount management operation information,
huge business size, and big budget for marketing, research, and product

development. Normally, the size of the database is about Trillion bytes. For

example, data base size of Amazon.com is 10 TB; Best Buy’s data size is 2.7
TB; Colgate is 2 TB of data; and Telecom Italia Mobile has 10 TB of data in
its system. But the rapidly accelerating growth of a data warehouse can easily
become too huge to go out of the controllability of the existing information
system. These systems are actively used every day to manage the core
business of the companies that operate them, contributing impressive returns
on investment, large cost savings, and promoting industry-leading business
performance. Algorithms that work efficiently on 100 GB data warehouses
do not necessarily succeed on 10 TB data warehouses, which are 100 times as
large.

Stability in heavy workload:

It is one thing to have a data warehouse that contains terabytes of data and
supports a few batch reports or a few online queries—especially if there are
weeks or months between updates. It is quite another to have a large data
warehouse that supports a demanding, dynamic workload consisting of many
reports, many queries, many analyses and many updates—all going on at the
same time. Whether such a system can exhibit szability under heavy load is a
crucial issue in large-scale data warehousing. What is stability? It 1s
consistent availability and consistently good performance in the presence of
continuing, demanding, diverse and changing use.

High data transfer speed:

Close connections leads to a huge amount information exchange, the huge

sized data volume make querying data very resource consuming jobs. Even

10

with million bytes per second bandwidth, optimization query approaches in a

data warehouse is still very important. Otherwise, we will face the demands

for bigger and bigger communication bandwidth.

¢ High security requirements:

Because of competition between the corporations in the market, most of the

corporation’s data, such as their market, research, and product development

strategies, are very sensitive. So their data warehouse solutions have high

security requirements.

Because of above characteristics, the data Warehouse solution for huge sized

corporation mostly is developed in DB2, Oracle, and SyBase with T1~ T4 optical

communication channels.

Compare with the big corporation, small businesses have smaller sized data

volume, lower communication bandwidth, relatively lower security requirements.

So their warehouse solution mostly is developed in MS Access and low

bandwidth communication technologies.

1.4.3 Summary of the Differences Among All Types of business

The summary of the operations management and their IMS (information

management system) characters are listed in the below:

Type of | Operations | Connection | Data The The The data
Business | Managemen | between the | volume Security Stability | transfer
t headquarter | between the | requireme | requirem | speed
and headquarter | nt of their | ent of requirement
branches and IMS their of their IMS
branches IMS
Large Directly Closely Huge High High High

11

Sized managemen
Corporat |t
ions
Middle | Semi- Between High Middle Middle | Middle
Sized directly above and
company | managemen | below
t
Small Independent | Loosely Low Low Low Low
sized in finance
Retail
Chain

12

The summary of the IMS solutions among the different types of business are

listed in the below:

Type of Platform Platform (SW) | The Database Telecommunication
Business (HW) component channel
Large Sized | Huge sized | Unix for large | DB2, SyBase, T4 or satellite channel
Corporations | computer user amount Oracle, Informix | (bandwidth ~GBIT)
(high user
amount)
Middle Small Unix (middle | Oracle middle Optical channel
Sized computer/or | user amount) user amount) (bandwidth ~MBIT)
company multi CPU | NT(high user | MS SQL Server
NT Server amount) (with NT server)
Small sized | PC Windows MS SQL server DSL (bandwidth
Retail Chain NT/XP (low user amount) | ~30K)
MS Access 2000

1.5 Small Business Chain Data Warehouse

Normally, more and more businesses are consisting of loosely connected small
business chains, and every branch of the company is distributed in different
location. E-management, which widely uses computer hardware and software,
network, database technologies to improve their operation management, is the
computerized operation management. E-management makes businesses more and
more predictable, efficient, and controllable. In general, each branch of the small
business chain has several hundreds transaction a day, and daily record size is not
greater than 1million bytes. The database program for it should be low cost and
easy to use and easy to maintain. Therefore, people with basic computer skills
can pick it up quickly. The cost for the whole management, which includes
development cost and maintenance cost, should be in the range that the business

owner can accept.

13

MS Access, the Microsoft Office database management framework, provides
cheap and powerful development tools to develop small business database
management system. It has windows style interface, and anyone who has some
experience in Windows Operating Systems can use it. The database management
system developed with MS Access is easy for new users to learn, to use, and to
maintain. Management system developed with MS Access can be installed in the
MS windows server system, or in PC, which is the cheapest and widest used
hardware platform and software operating system in the world. At same time; the
MS Access has reasonable reliability and security. In a word, the Management
system developed with MS Access is a very good solution for small businesses.
Access provides a powerful set of tools for organizing, accessing, and sharing
your information. The database systems that are mostly implemented in MS
access system can reach a high performance/cost rate.

Most of the branches in the business chain are running independently, the
headquarter staff only need to know a statistical result rather than all the detail
information about it in most situations, and they will make management decision
based on this information. Some statistical results show that in about 80% cases,
only 20% information is accessed, in other word, repeat rate for the accessed
records is very high for long term usage, so saving accessed remote records on
local computers can decrease lots of network communication traffic. For most of
business chain, it is possible for its member to choose different data source
solutions because of the business size, security requirements, and their budget.

The data warehouse system for them should have open connection interfaces,

14

which allows different number of local data sources be connected to, and allow
different types of data sources be connected to the system.

A warehouse system that integrates all local MS Access databases, which is the
best database management system for the local small businesses, is the best
solution for a small business chain. The data warehouses provide data forms and
statistical functions to staff at headquarters for management, and run at the
lowest cost and highest performance/cost rate. It saves records, which it acquired
from the remote data sources, on the local view data sources. When user queries
information, the data warehouse first searches local data source; if it cannot find
the information, it will search the remote data source. If it finds the information,
it will show the data in the data form and save the results in view data source.
After running for a considerable time, about 80% of records can be fond in the
local data source; the network communication traffic will be decreased
dramatically. In a word, we don’t need big sized network communication
bandwidth as a simple distributed database. Every elements of the business in the
business chain can choose its database management system according to its
operations requirement, and the data warehouse solution for the business chain
can integrate all the data sources of each member.

The warehouse system, which we will develop, is a java application that integrate
all local MS Access database together to aid the management in the headquarter.
It uses Microsoft ODBC data source management technologies, which can

connect the different numbers of data sources that use different types of data

15

management system. The system provides a good solution for small business

chains.

16

2 Lineage Tracing System

2.1 Introduction

In a data warchousing system, we can define views and query the view
information from the source data. In many cases, the warehouse view contents
alone are not sufficient for in-depth analysis. It is often useful to be able to “drill
through” from interesting (or potentially erroneous) view data to the original
source data that derived the view data. For a given view data item, identifying the
exact set of base data items that produced the view data item is termed the data
lineage problem [10].

In this chapter, we discuss the lineage-tracing problem and summary algorithms
for lineage tracing introduced by Dr. Cui [6, 9, 10]. After surveys on the data
warchouse with lineage trace, we will propose a solution for information data
warehouse management system of the small business chain. Following this, we
will develop a demo system to realize an inventory data warehouse management
with lineage tracing functions. Enabling lineage tracing in a data warehousing
environment has several benefits and applications, including in-depth data
analysis and data mining, authorization management, view update, efficient

warehouse recovery.

17

Figure 5 The lineage prototype

Figure 5[6] illustrates the architecture of the lineage tracing system in the context
of a data warehousing system. When a view is defined through the View
Specifier, and the view definition specifies that the view should be traceable, then
the Auxiliary View Generator (AVGen) automatically generates the auxiliary
views. The Maintenance Procedure Generator (MPGen) and the Tracing
Procedure Generator (TPGen) then generate the maintenance procedures and
lineage tracing procedures for the user view as well as its auxiliary views, and
store them as part of the Metadata. When a user issues a request through the
Tracing Interface, the Lineage Tracer is activated and calls the appropriate
sequence of tracing procedures. The lineage results are then returned to the user
as tables. If the user further requests to see the derivation process, the lineage
tracer combines the linecage results and the view definition to generate a

derivation tree for the user, showing the complete lineage information.

18

The warehousing environment introduces some additional challenges to the
lineage tracing problem, such as how to trace lineage when the base data is
distributed among multiple sources, and what to do if the sources are inaccessible
or not consistent with the warehouse views. At the same time, the warehousing
environment can help the lineage tracing process by providing facilities to merge
data from multiple sources, and to store auxiliary information in the warehouse in

a consistent fashion.

2.2 The Lineage Tracing Procedure

In general, to compute the lineage of a view data item, we need the view
definition and the original source data, and perhaps some auxiliary information.
A view definition provides a mapping from the base data to the view data. Given
a state of the base data, we can compute the corresponding view according to the
view definition. In many cases, not only are the views themselves are useful for
analysis, but knowing the set of source data that produced specific pieces of view
information also are very useful. However, determining the inverse mapping—
from a view data item back to the source data that produced it—is not as
straightforward as creating the view. To determine the inverse mapping
accurately, we not only need the view definition, but we also need the base data
and some additional information. In a data warehousing system, we can define,
compute, and store auxiliary materialized views over source date in the
warehouse to answer queries about the source data.

In the thesis, we focus on the lineage problem for relational Select-Project-Join

views with aggregation (ASPJ views) in a data-warehousing environment. We

19

first transform the view definition into a normal form composed of aggregate-
project-select-join sequences, called ASPJ segments. The lineage of tuples in a
view defined by a single ASPJ segment can be computed using relational queries
over the sources, called tracing queries, which are parameterized by the tuple(s)
being traced. To trace the lineage of a view defined by multiple levels of ASPJ
segments, we logically define an intermediate view for each segment, and
recursively trace through the hierarchy of intermediate views top-down. At each
level, we use tracing queries for a one-level ASPJ view to compute the lineage
for the current traced tuples with respect to the views or base tables at the next

level below.

2.3 Auxiliary Materialized Views

As mentioned in the above section, we may want to store auxiliary materialized
views over source data in the warehouse to enable lineage tracing. There are two
ways when we trace the lineage of tuples in a view. Either we can re-compute the
relevant portion of the aggregation when tracing a tuple’s lineage, or we can
define an auxiliary materialized view over the node specifically for lineage
tracing. In a data warehousing system, if we choose to store auxiliary views over
source data, we may perform lineage tracing without querying the sources again.
So using auxiliary views in the warehouse to answer queries about the source
data is an integrated and efficient way. However, efficient incremental
maintenance of multi-level aggregate views generally requires materializing the

same intermediate views we need for lineage tracing.

20

Another type of auxiliary view is motivated by the fact that in a distributed multi-
source data warehousing environment, querying the sources for lineage
information can be difficult or impossible: sources may be inaccessible,
expensive to access, and/or inconsistent with the views at the warehouse. By
storing additional auxiliary‘ views in the warehouse based on the source tables,

we can reduce or entirely avoid source accesses for lineage tracing. This topic

will be given more details in next chapter.

2.4 Lineage Trace Difference among Small, Medium Size
Business, and Big Corporation

The data views of warehouses are developed for most frequently searching
functional requirements, most of which are types of summaries. Lineage trace is
designed for the views, in which if users of the data views want to know more
details about the original sources that contribute the views, the trace functions
can give them satisfactory answers. The data warchouses for big corporations
provide more functions to review the data than the ones of the small and medium
size business chains; consequently, the views and lineage trace for big
corporation are more complicate and hard to implement, and consuming
resources. How to reduce the resource consumption during the tracing procedure
is a very challenging job. In Chapter 3, we will discuss the detailed algorithms
that Dr. Cui introduced to store some auxiliary data for efficient maintenance and
lineage tracing of complex views. Data warehousing and lineage trace
implementation algorithms aim at reducing search expenses and communication

traffic. The algorithms follow the line of thought that what we can do at the local

21

site view databases of the data warehouses should not do at remote site data
sources; if we can calculate at remote site data sources, we should not query
intermediate results from remote sites data sources and calculate at the local sites
data sources. Even with these optimizing algorithms, data warehousing and
lineage tracing for large corporations need more powerful data source
management systems, more powerful hardware platforms that can host the
systems such as IBM Main Frame, and bigger bandwidth communication
channels like 16M BPS bandwidth.

Compared with big corporations, data warehousing and lineage tracing for small
and medium sized businesses‘ 'require simpler and smaller data sources
managements and less powerful hardware platforms, and smaller bandwidth
communication channels.

The differences between the lineage trace algorithms implemented in both kinds
of businesses are the magnitude of calculation jobs: for the big corporation, a
query may need to search 4 billion records in a second; for the medium size
business may need to search 400 Million records in a second, but for small
business may only need to search 4 Million records. All these non-function
requirements determine how we choose software, hardware, and communication
channels. Every 1% reduction of resource consuming during queries means huge
money saving in the large corporations. From this point, the data warehousing
and lineage tracing algorithms are more important for the large companies than
for small to middle sized businesses. So more and more researches join to

develop more efficient data warehousing and lineage tracing algorithms.

22

3 Strategies of Auxiliary Views for Lineage Tracing

3.1 Introduction

Recall that in a distributed multi-source warehousing environment, querying the
sources for lineage information can be difficult or impossible: sources may be
inaccessible, expensive to access, expensive to transfer data from, and/or
inconsistent with the views at the warehouse. By storing auxiliary views in the
warehouse we can reduce or entirely avoid source queries during lineage tracing.
In addition, as we saw in the Chapter 2, auxiliary views corresponding to
intermediate ASPJ segments in the view definition can be useful for efficient

lineage tracing.

3.2 Auxiliary View

As will be seen in the following subsections, there are a wide variety of possible
auxiliary views to maintain, with different performance tradeoffs in different
settings. The remainder of this paper focuses on auxiliary view schemes and their
relative performance for the restricted case of SPJ views. As future work we will
first extend our results to one-level ASPJ views, which we expect to be relatively
straightforward, and then to the full generality of multi-level views.

Given an SPJ view V=v(D)= 7, (0 (I;,...0 T)), and atupleset T € V to

be traced, Figure 3.2 [9]shows the generic form of its tracing query. We assume
that all local selection conditions in the view (conditions that involve a single

base table) are pushed down to the 7;'s, soo, contains join conditions only.

23

Since the size of T tends to be small, in some cases we also push down the semi-
join and rewrite the tracing query as in Figure 6.[9] The auxiliary views we
consider are based on the forms of these two query trees. (Of course since the
traced tuple set T is not available until tracing time, we cannot define or maintain
auxiliary views on sub-queries involving T.)

We research seven schemes for storing auxiliary views to support tracing the
lineage of T cording to v. For each scheme we specify the lineage tracing
procedure, as well as the maintenance procedures for the auxiliary views and the

original view, since they are all factors in overall performance.

T3 * s ‘f‘gg;? Ty e]Nm@
3?" xpll;t
o< o,
..-’/A\"‘\ |
L ¥ Bt
‘ e
() P aaa D=Z
T owe Ty T4 T T (3

Figure 6 The Tracing queries

In the maintenance procedures, we use ¢ to denote the delta tables, but with

s
insertions and deletions combined, and we use U to denote application of the

delta tables. We refer to the original view v as the user view when we need to

distinguish it from the auxiliary views.

24

3.3 Strategy 1: Store Nothing (<)

The extreme case is to store no auxiliary views for lineage tracing.

1. Auxiliary views: None

.....

3. Maintenance of auxiliary views: None

4. Maintenance of v [GMS93}: 6 V=7, (o,((61; © (T, U OT,)oo...o0(

TmOOé‘Tm)U 1, 0 OT, (T, U ST Yeo...oo(Tmooé‘Tm)U

O Tio0...00T, 0 6T)

We consider tracing a tuple set T rather than a single tuple t for generality: it sets
the stage for generalizing our results to multi-level views, and in practice we
expect that a warehouse tracing package might‘permit multiple tuples to be traced
together for convenience and efficiency.

This scheme retrieves all necessary information from source tables every time a
user poses a lineage tracing query. It incurs no extra storage or maintenance cost,
but leads to poor tracing performance. This scheme is included primarily as a

baseline to compare with other, more attractive, schemes.

3.4 Strategy 2: Base Tables (BT)

If we can trace the lineage of any tuple in a view without querying the sources,
then we say that the view is self-traceable. Self-traceable views can be traced

correctly even if source tables are inaccessible or inconsistent with the warehouse

25

views. One easy way to make a view self-traceable is to store in the warehouse a
copy of each source table that the view is defined on (after local selections), and
issue the tracing queries to the local copies instead of to the source tables during

lineage tracing. We refer to these source copies as the base tables (BTs) for v.
1. Auxiliary views: BT,=T,,1=1...m

2. Lineage tracing: 7Q;, =Split, . (o, (BT, «T) o...o(BT, «<T))
3. Maintenance of auxiliary views: 6BT;= 67;,1i=1...m

4. Maintenance of v: Same as scheme < replacing 7, with BT,=T,,i=1...m

Storing base tables can improve user view maintenance as well as lineage
tracing, and maintaining the base tables is fairly easy. However, base tables can
be large, even after applying local selections, and much of the source data may be

irrelevant to any view tuple's lineage if joins are selective.

3.5 Strategy 3: Store Lineage Views (LV)

An alternative way of improving tracing query performance is to store an
auxiliary view based on the left subtree in Figure 8(a), which we call the lineage
view (LV) for v, since it contains all lineage information for all tuples in the user

view.

1. Auxihary views: LV= o (T} o ...oT)

.....

26

+

3. Maintenance of auxiliary views: § LV = o (0T, o (7, U OT,)oo...oo(

T, 00T,) U T, oo OT, « (T, O OT; Yeo. ..o Tmooé'Tm)U

+

U T,o...0T 0 dT,)

4. Maintenance of v: 0 V=7 ,(0LV)

The LV scheme significantly simplifies the tracing query and thus reduces
tracing query cost. However, lineage views can be large and are usually
expensive to maintain. On the other hand, like base tables, lineage views can be

helpful in maintaining the user view.

3.6 Strategy 4: Store Split Lineage Tables (SLT)

For views whose joins are many-to-many, lineage views as defined in Section
A.1 can be very large, and thus not efficient when performing the semi-join with
T during lineage tracing. One solution is to split the lineage view and store a set
of tables instead, which we call the split lineage tables (SLTs). Note that we use
lineage view LV as defined in Section A.1 in the following definitions.

1. Auxiliary views: SLT,= 7,

2. Lineage tracing: 10, , =Split; , (o, ((SLT, <T) ... o(SLT, o« T))

3. Maintenance of auxiliary views: &SLT, = 7z, (6LV), i=1...m

4. Maintenance of v: 6 V=7 ,(6LV)

27

Split lineage tables contain no irrelevant source data, since every tuple in SLT}, i
= 1::m, contributes to some view tuples. Furthermore, the size of the split lineage
tables can be much smaller than the lineage view. Their maintenance cost is
similar to that of the lineage view. Note that although we do not materialize the
lineage view LV in the SLT scheme, we still computed LV, in order to maintain

the user view V and auxiliary views SLT,,i=1...m. The disadvantage of SLT is

that lineage tracing queries may be more expensive.

3.7 Strategy 5: Store Partial Base Tables (PBT)

Reconsidering the BT scheme, another way to reduce the size of the base tables

is to store the semi-join of each source table 7, with the user view V; we call this

semi-join result the partial base table (PBT) for 7, accordingto v.

1

1. Auxihary views: PBT,= T,cV ,i=1...m

2. Lineage tracing: 7Q,, =Split, (o, (PBT; «T) o ... o(PBT, «T))

3. Maintenance of auxiliary views: oPBT,= 6T, « (VU V)EJ T, < 6V),i=
1...m

4. Maintenance of v: Same as scheme &

For views with selective join conditions, the PBT scheme replicates much less

source data than the BT scheme, with several benefits: It reduces the storage

requirement, as well as the cost of refreshing the auxiliary views. It also reduces

the tracing cost, because the tracing query operates on a much smaller table.

However, partial base tables do not help with the maintenance of the user view.

28

Instead, the user view needs to be maintained first. The partial base tables are

then relatively cheap to maintain based on the user view's contents and changes.

3.8 Strategy 6: Storing Base Table Projections (BP)

When source tables have known keys, we can store in our auxiliary views key
attributes from the source tables together with other necessary attributes, which
we call the base table projections (BPs). This scheme improves tracing query
performance (over storing nothing) while reducing view maintenance and storage
costs (over storing full source replicas).

1. Auxiliary views: where 4, includes the key attributes K, attributes that are
projected into V (7, V), and attributes involved in v's join conditions (7, M
Y

2. Lineage tracing: T'i= T,oc(o, (BB, « T) ... o(BP, «T)), v'D(T)
=(TH..T"»)

3. Maintenance of auxiliary views: 6BP= 7, (81;),1=1...m

4. Maintenance of v: Same as scheme & replacing T, with BP,,i=1...m

Note that the semi-joins in the tracing procedure are key-based. This scheme can
be especially useful when a source table has wide tuples but the view projects
only a small fraction. During lineage tracing, the stored information identifies by
key which source tuples really contribute to a given view tuple, then the detailed
source information is fetched from the source using the key information.
Maintenance of the user view is easy. However, in the BP scheme we do need to

query the sources which have their drawbacks as discussed earlier.

29

3.9 Strategy 7: Storing Lineage View Projections (LP)

Again assuming base tables with known keys, we can store a projection over the
lineage view that includes only base table keys and user view attributes. We call
this view the lineage view projection (LP). Note that we use lineage view LV as
defined in the following definitions.

1. Auxiliary views: LP= 7, ., , (6 LV), where A is the set of attributes in
V, and K, is the set of key attributes of table 7,,1=1...m

2. Lineage tracing: T'i= T,oc (LP< T), v''D(T)=(T ...T »)

3. Maintenance of auxiliary views: 6 LP= 7, , , (6LV),i=1..m

4. Maintenance of v: 6 V=7 (0 LP)

Compared with the BP scheme, the LP scheme further simplifies the tracing
query and improves tracing performance. However, the maintenance cost for the
lineage view projection is higher than for the base table projections. LP also
requires a source query as the last step of the tracing process, with the

disadvantages previously discussed.

3.8 Self-Maintainability and Self-Tractability

Self-traceable views can be traced correctly even if the sources are inaccessible
or inconsistent with the warehouse views. Analogously, view self-maintainability
ensures that views can be maintained without querying the sources. In cases
where the sources are inaccessible, we must ensure that the user views together
with our auxiliary views are both self-traceable and self-maintainable. Table A.1

summarizes these properties with respect to the seven schemes introduced so far.

30

We also consider self-maintainable extensions of three of the schemes, LV, SLT,

and PBT, calling the extensions LV-S, SLT-S, and PBT-S.

Table A.1: Scheme self-trace ability and self-maintainability

scheme @ | BT | LV SLT PBT BP LP LV-S | SLT-S | PBT-S
Self-traceable? | no | yes | yes yes yes no no yes yes yes
self-maintainable? | no | yes | no no no yes | no yes yes yes

31

4 Inventory Data Warehouse for Small Business Group

4.1 Introduction

In this chapter we will describe a warehouse solution for small business chain. A
lot of company has many branches located in different parts of the world; each
one of these has not more than 10 thousand transactions per a business day, for
which MS Access is the best solution. As these branches operate more
independently, their headquarter staff need management operation reports, such
as inventory summary report, sales summary report rather than accessing detail
operation information. Base on these requirements we will develop a data
warehouse inventory operation management system with lineage trace functions
for small business chain. In addition, we will demonstrate that the lineage trace
function is very useful for a data warchouse system.

In this demo system that we will develop is aimed at demonstrating how to
develop a local information management system with MS Access, how to
integrate remote data source to a data warehouse, how to use java data base
technologies to develop a data warehouse with user friendly interfaces, as well as
how to implement a lineage trace.

We choose an inventory system as our local information case to develop a
business model. The system has several relational, operational local databases as
data sources, which are DB1, DB2,...,and DBn; and they are distributed in the
network (intranet or internet); and one component integrates these systems to a

data warehouse which is showed in the Figure 7. In the chapter, we will introduce

32

how we develop the local database. Source databases can be various types of
databases, such as MS SQL Server, Oracle, Access, etc. In our system, we use
Microsoft Access, which is the best solution for small business, to store our
source data. The local data sources are independent data base systems, which
have their own access interface for adding, deleting, updating, and brewing. Once
the user of the data warehouse that integrates these sources needs information
from one of the data sources, he can access the data sources by the warehouse

data view functions.

Warchouze GUI

Integrater

DE1 DB2 e e

Figure 7 The data warehouse architecture

4.2 Functional & Non-Functional Requirement for Source

Database

The local resource databases are inventory management systems. The number of
the daily transactions is between several hundred. The system can be used
quickly by persons possessing some basic Windows program knowledge. The
computer system should be PC Server and Windows NT. A simple backup
strategy can solve the reliability problem. Security requirement can be met by a

solution based on MS Windows system.

33

The user function requirement includes:

e Source data management:

>

Y V. Vv VY

Y

Add a new product/ update an existing product’s information

Add a new employee /update an exist employee’s information
Add a new customer /update an exist customer’s information

Add a new Supplier /update an exist Supplier’s information

Add a new purchasing order/ update an exist purchase order’s
information

Add a new sales order/ update an exist sales order’s information
Add new shipper / update an exist shipper’s information

Add new shipping method / update an exist shipping method’s
information

Check product inventory quantity in the stock.

Statistic function for inventory management

4.3 Database Schema in Source Database

Products (ProductID, ProductName, CategorylD, QuantityPerUnit, UnitPrice)

Categorys (CategoryID, CategoryName, Description)

Orders (OrderID, SupplierID, OderDate)

OrderDetails (ODID, OderID, ProductID, OrderPrice, Quantity, IsDirty)

Sales(SalelD, CustomerlID, SaleDate)

SalesDetails (SDID, SalelID, ProductID, SalePrice, Quantity, IsDirty)

Shipping(ShippinglD, SalelD, ShiperID, ShippedDate, ShippingMethod)

Customers (CustomerID, CompanyName, ContecrName, Address,Phone)

34

Shippers (ShoperID, CompanyName, Phone)
Suppliers (SupplierID, CompanyName, ContecrName, Address,Phone)

Employee (EmployeelD, FirstName, LastName, Birthday, position, SIN)

4.4 ER Diagram of the Database

We use entity relationship models to design the database to store all information

used in his application. The Figure 8 shows the ER-diagram.

35

Supplier]D)™ Suppliers CompanyName

Supply
CategoryName
ProductID UnitsInStock
CategorylD
—=
\ Products Categories

QuantityPerUnit

Order Details

CompanyName

RequireDate Orders] Shipping Shippers

OrderDate ShippedDate ShipperID @

o
=N
2
|w]

CustomerlID

Customers

CompanyName

Figure 8 The Database ER-diagram

it

36

4.5 Functional & Non-functional Requirement for the Warehouse
Component

This system is used by the manager of headquarter to check the order and
inventory information about all the branch stores.
e Data warehouse set up and query:
» Data warchouse set up
» The user can view a category of product ordering value
information.
» The user can view a category of product sales value information
» The user can view a category of product inventory stock value
information.
e Data warehouse lineage tracing:
» The user can trace back the order detail information for a specific
category goods ordering.
» The user can trace back the inventory stock items detail
information for a specific category goods inventory.
» The user can trace back the sales detail information for a specific
category good sale.
e Data warehouse maintenance:
> The system simulates the update data process. That is, when
source data are updated, the data in data warehouse also ar'e

accordingly updated.

37

4.6 The Data Warehouse System Architecture

The system includes four components, which are user interface, data warehouse,
Extraction & Transformation, and source databases. The first three parts together
are combined to called data warehouse integrator. The system architecture is

shown in Figure 9.

Internet/Intranet

Extraction &
Transformation

Data
Warehouse

A

|

|

|

|

: User Java
Interface Data

Engine
|

Data warehouse integrator

Figure 9 The System Architecture

4.7 Data Warehousing Schema

InventoryView (CategoryID,CategoryName, OrderPrice, OrderAmount,
SalesAmount, Inventoryamount, StorelD)

SalesView (CategoryID,CategoryName, SalesAmount, StorelD)

OrderView (CategorylD,CategoryName, OrderAmount, StoreID)

InventoryTraceView(ProductID, productName, totalOrdering, totalSales,

#InStock)

38

Source
Database

Source
Database

Source
Database

SalesTraceView(ProductID, productName, price, quantity, salesdate, sales value)

OrderTraceView(ProductID, productName, price, quantity, supplier, orderdate,)

4.8 Data warehouse Integrator Architecture

This section will give the inventory data warehouse integrator’s architecture,

which is presented by user case diagram, class diagram, and chart flow diagram.

4.8.1 User Case Diagram

The user can do four things: view the inventory, view the sales report, review
supply report, and lineage trace any original resource for a record that he/she is
interested in investigating. The below Figure 10 show these user cases diagrams.
The user cases are view the inventory, view sales report, view supply report, and
lineage trace using the “jdbc engine” user case to get the data, and use “display
engine” to show the result. The “display engine” uses the user case

“UidDefaultModel” to collect the table data.

view the inventmy\Q
Jdbc engine O

UlDefaultModet
view sales report

% i : /view supply report

System user user operation

display engine

Lineage Trace

Figure 10 The user case diagram

39

4.8.2 The Classes Diagram

The class diagram is given below Figure 11. The first class is displayFrame,
which is the first menu that user accesses with the data warehouse system. In the
class displayframe, there is JMenu, JtextArea, Jlabel, Jpanel, and tableFrame
objects. JMenu class has Jmeniltem class objects. The viewBean Class has
resultSet and ResultMrtaData objects. The tableFrame class is used for query
result display, which include the viewBean class, MouseEvent class, Jpanel class
Objects. The Jpanel class has a ScrollPanel object, which has a Jtable class

object.

JTextArea

displayFrame | ~>————" |

Ci JLabel

JMenu JPane

/ tableFrame
P MouseEvent

Button - /0
viewBean

JPanel JScrollPa
/ \ > ne

ResultSet ResultSetMetaData

Jmenultem

JTable

Figure 11 The Class diagram

40

4.8.3 System Flow Chart Diagram

This section gives the system dataflow chart diagram of the data warehouse
integrator, which show in the Figure 12; and it includes view menu, view bean,
table model, table display, and lineage trace modules. View menu receives data
from user, which is embedded SQL request; and system transfers it to the
viewBean, which is called JDBC engine, put the data into TableModel, which is
called table data engine. After the dataset is transferred to Tabledisplay, called
table display engine, system can call Lineage Trace to get original data source.
The lineage trace data flow will go JDBC engine again to search, prepare, and

display data.

View Menu

l

ViewBean

l

TableModel

Tabledisplay

A

Lineage Trace

A 4

Figure 12 The flow Chart Diagram

41

5 Testing Plan for Inventory Data Warehouse System

This chapter will give the testing plans for both the local inventory management
component and the data warehouse integrator component. After the functional

testing plans, the non-functional testing plan will be outlined.

5.1 Testing Strategies and Procedure

We can approach any of the testing in three phases:

e Modeling the software’s environment:
A tester’s task is to simulate interaction between software and its
environment. Testers must identify and simulate the interfaces that a software
system uses and enumerate the inputs that can cross each interface.

e Selecting test scenarios
Many domain models and variable partitions represent an infinite number of
test scenarios, each of which costs time and money. Only a subset can be
applied in any realistic software development schedule. Testing criteria is the
coverage: covering code statements (executing each source line at least once)
and covering inputs (applying each externally generated event). These are the
minimum criteria that testers use to judge the completeness of their work;
therefore, the test set that many testers choose is the one that meets their
coverage goals.

¢ Running and evaluating test scenarios

42

Having identified suitable tests scenarios, testers convert them to executable
form, often as code, so that the resulting test scenarios simulate typical user
action. Because manually applying test scenarios is labor-intensive and error-

prone, testers try to automate the test scenarios as much as possible.

Scenario evaluation, the second part of this phase, is easily stated but difficult
to do (much less automate). Evaluation involves the comparison of the
software’s actual output, resulting from test scenario execution, to its

expected output as documented by a specification.

5.2 Testing Plans for Functional Requirements of Local
Inventory Management Component

The section will describe the detailed testing plans regarding all the functional
requirements of the local inventory management component. The test
environment is: Windows NT server for 30 users, which system includes the
hardware and software. The local inventory management component is installed
in the server. Users access the system from 30 work stations, which are Windows

XP/2000.

5.2.1 Testing Plan for the Add/view/Modify Employee Module

In the menu of the Add/view/Modify Employee module, the user can choose any
of the records to test modifying an employee profile and creating a new
employee profile into the system. Testing the View/Modifying employee’s

profile is described below:

43

Modifying information: choose a profile of a specific employee, whose ID is
“5” the Name is “Daley Brian”, the title is “clerk”, and the phone number is
“(514)767-5456";

Scenario: by changing his title to be “senior clerk”, and pressing the “enter”
key;

Verification: close the menu and reopen it, find employee by ID=5, the user

can find that the employee’s profile was changed as he wanted.

Testing the adding an employee profile into the system is performed as below:

e Creating a employee’s profile: the user wants to add a employee whose name
is “Milliner Brian”, the title is “clerk”, and the phone number is “(514) 767-
54507, into the system,;

‘6*’7

Scenario: by clicking the button “*”, filling all fields as above information ”,
and pressing the “enter” key;
Verification: close the menu and reopen it, the user can find the employee

profile that he/she wants to add in; or in the sale menu, click draw down pine

box of Employee ID, he can find the employee profile he/she added in.

5.2.2 Testing Plan for Add/view/Modify Supplier Module

In the menu of the Add/view/Modify Supplier module, users can choose any one

of supplier records to test modifying a supplier profile and creating a new

supplier profile into the system. Testing the View/Modifying supplier profile

function is performed as below:

Modifying information: choose a specific supplier, whose supplier ID is “44”,

the company Name is “Globe Import & Export”, the contact represented is

44

“Daccache Ruth”, the phone number is 416-239-6767”; the address is “3044
Bloor Street West,”, the city is “Etobicoke”, the province is “ON”, the
country is “Canada”, and the posted code is “M8X 1C4”,

Scenario: by changing the phone number to “416-595-1221”, and pressing
the “enter” key;

Verification: close the menu and reopen it, find the supplier by ID=44, the

user can see that the information was changed as he wants.

Testing the adding a supplier’s profile is described below:

Adding information: a user wants to add a supplier whose company Name is
“Textile Globe Impért & Export”, the contact representative is “Jack Brown”,
the phone number is 819-539-6747”; the address is “3044 lasalle Street
West,”, the city is “Etobicoke”, the province is “ON”, the country is
“Canada”, and the posted code is “M8X 1C4”,

66*’?

Scenario: by clicking the button “*”, filling all fields as above information,
and pressing the “enter” key;
Verification: close the menu and reopen it, the user can find the supplier he

likes to add; or in the order menu, click draw down pine box of supplier ID

he can find the supplier he has added.

5.2.3 Testing Plane for Add/view/Modify Customer Module

In the menu of the Add/view/Modify Customer module, users can test the

modifying a customer’s profile and creating a new customer’s profile into the

system. Testing the View/Modifying the customer’s profile function is described

below:

45

e Modifying information: choose a specific customer, whose ID is “21”, the
company Name is “Action Retail Outfitters”, the contact represented is
“Gloria Francis”, the phone number is “204-784-2600”; the address is “2599
Pembina Highway”, the city is “Winnipeg”, the province is “MB”, the
country is “Canada”, and the posted code is “R3T 2H5”,

e Scenario: by changing the phone number to be “204-595-1265", and pressing
the “enter” key;

e Verification: close the menu and reopen it, find the customer by ID=21, the
user can find the information was changed as he wanted.

Testing the adding a customer function is like below:

e Adding information: the user want to add a profile of a customer whose
company Name is “Textile Globe Import & Export”, the contact represented
is “Jack Brown”, the phone number is 819-539-6747”; the address is “3044
lasalle Street West,”, the city is “Etobicoke”, the province is “ON”, the
country is “Canada”, and the posted code is “M8X 1C4”, to the system.

e Scenario: by clicking the button “*”, users can fill all fields as above
information, and press the “enter” key.

e Verification: close the menu and reopen it, the user can find the customer
profile he like to add in; or in the sales menu, click draw down pine box of

customerID he can find the customer he added in.

5.2.4 Testing Plan for the Add/view/Modify Product Module

In the menu of the Add/view/Modify Product module, user can choose any of

product item records to test modifying a product item’s profile and creating a

46

new product item’s profile into the system. Testing the View/Modifying s

product profile is like below:

Modifying information: choose a specific product item, in which the
product’s ID is “164”, the Product Name is “Lauan 3.6mm 4' x 8", the
Category ID is “soft wood for internal”, the product Description is “3.6mm 4'
x 8'7; the quantity per units is “24”, and the Unit price is “$174.917,
Scenario: Users will change the Unit price into “123.99” and press the
“enter” key;

Verification: close the menu and reopen it, he/she will find the product item
by product ID=164, the user caﬁ ‘fmd the information is changed as he

desired.

Testing the creating a product item profile functions is like below:

Adding information: The product item profile is: the product name is “Brick
3.6mm 4' x 8", the category ID is “pata”, the product description is “3.6mm
4' x 8'”; the quantity per units is “24”, and the unit price is “$74.91”,

e

Scenario: by clicking the button in the navigation bar, filling all fields as
above information, and press the “enter” key;
Verification: close the menu and reopen it, the user can find the product item

he/she liked to add in; or in the sales menu, click draw down pine box of

Product ID he can find the product item he added in.

47

5.2.5 Testing Plan for the Add/view/Modify Purchase Order

Module

In the menu of the Add/view/Modify Purchase Order module, users can choose

any of purchase order records to test modifying a purchase order or creating a

new purchase order into the system. Testing the View/Modifying purchase order

function is like below:

e Modifying information: open the purchase order form, choose a specific
purchase order, in which the purchase order ID is “PO101”; the employee ID
is “5”; the Supplier ID is “Alba Cash & Carry Import-Export Ltd”; the order
Date is “6/21/2004”; in the order, there is one product “Camden 32 1/2 X 80
1/27; its Quantity is “4750”, its price is “$5.83”.

e Scenario: add one more product item to the order: for instance; a product
whose name is “B/N shelving 12" Maple”, its quantity is “550”, its price is
“$725", and press the “enter” key;

e Verification: close the menu and reopen it, find the purchase order
ID="P0O101”, the user can find the information is changed as he wanted.

The testing of the creating a purchase order functions is listed below:

e Adding information: the user want to add a product whose purchase order ID
is “PO133”; the employee ID is “5”; the supplier is “Alba Cash & Carry
Import-Export Ltd”; the order Date is “6/21/2004”; in the order there is one
product item “Camden 32 1/2 X 80 1/27; its quantity is “4750”; and its price

is “$5.83”,

48

o

e Scenario: by clicking the button “*”, filling all fields as above information,
and press the “enter” key.

e Verification: close the menu and reopen it, the user can find the purchase

order he want to add in.

5.2.6 Testing Plan for the Add/view/Modify Sales Order Module

In the menu of the Add/view/Modify Sales module, users can choose any of the

sales records to test modifying a sale order profile and creating a new sales order

into the system. Testing the View/Modifying sales order function is described
below:

e Modifying information: open the sales order form, choose a specific sales
order, such as a product whose sales ID is “S1100”; the Customer ID is “Art's
Nursery Wholesale & Retail”; the employee ID is “5”; the order Date is
“10/2/2004”; in the order, there is one product item “Camden 36 1/2 x 80
1/2” sold; its quantity is “4500”; and its price is “$8.86”;

e Scenario: add one more product item in to the order: for instance, a product
“B/N shelving 12" Maple”, its quantity is “350”, and its price is “$10.99", and
press the “enter” key;

e Verification: close the menu and reopen it, find the sales order ID=" S11007,
the users can find the information was changed as they liked.

The testing of the creating a sales order functions is like below:

e Adding information: the users want to add a product sales order whose ID is
“S1133”, the employee ID is “5”; the Customer is “Atcom Wholesale Retail

& Repair”; the sales date is “6/21/2004”; in the sales order there is one

49

product, “Camden 32 1/2 X 80 1/2”; its quantity is “450”; and its price is
“$7.99”.

e Scenario: by clicking the button “*”, filling all fields as above information,
and press the “enter” key;

e Verification: close the menu and reopen it, the users can find the sales order

they like to add in.

5.3 Test Plan for Non Functional Requirement of Inventory
Management Component

The section will outline the non-functional testing plans about all the non-
functional requirements of the local inventory management component. The test
environment is: Windows NT server for 30 users, which system includes the
hardware and software. The inventory data warehouse management component is
installed in the server. Users access the system from 30 workstations, which are

Windows XP/2000.

5.3.1 Test Plan for the Robust Testing

When the inventory management system has run for a period of 6 months and the
size of the database increases to about SOM bytes, users can do the robust testing,
in which the user test if the system works properly when it is fully loaded. The
users need to submit queries at a rate of 10 queries/min, and check if the results
are correct. The queries should cover all the types in the previous sections. The

second testing is the concurrent testing, in which database is sized to 50M, 10

50

users submit query at a rate of 1 query /min concurrently and then check if the
results are correct. The queries result should be the same as the fully loaded
testing. The third testing is the communication over load testing, in which, the
communication channels are in over load and the system performance are slowed
down, repeat the two previous testing and analyze the results to see how much
slowdown the system can tolerant. For the three kinds of testing, we need to

develop some special testing tools.

5.4 Functional Test for Inventory Management Data Warehouse
Integrator Component

This component is developed in the object-oriented methodology; so the testing
strategies are the while and black box testing. For every basic module, we use the
while box testing method first, such as the code review, and then using the black
box testing method to do the functional testing. The modules that will be tested
include the view menu, the view bean, the data engine, the table display, and the
lineage trace engine. This section will describe the testing plans for all these

modules.

5.4.1 Testing Viewing Menu

We will describe testing plans for all modules in the consequence that the data
flow chart (Fig. 4.7.3) outlined, before the testing we need to develop some tubs
that replace next modules for testing the current one. In testing the view menu,
we can see when the view button is clicked; the Embedded SQL Strings are

correctly generated. After the grammars checking of the strings, we continue to

51

test the next module combined with the previous ones, if any error occurs; we

need to check the module and retest till it gives satisfactory results.

5.4.2 Testing JDBC Engine

In this testing, we test if the system creates ODBC data source, the JDBC engine
finds ODBC object, and it transfers the embedded SQL strings, submits queries,
and returns the data correctly. First, we use very simple SQL sentences such as
“select * from product;” to check if it work properly, and then using some
complicated SQL sentences to check. The results should be the same as that we
receive from the database query windows with the same SQL sentences. When
any error is found, we need to modify the program and test again till getting the

correct results.

5.4.3 Testing Table Data Engine and Table Display Engine

In this section we test if the system can transfer the data results from the JDBC
engine to the table data engine and then display results correctly. In first step, we
create a demo dataset to test the display engine, and then the table data engine; in
second step, test the two modules together; and in third step, we link the three
modules together to test if they work well, if not, we need to go back to review

code and test again till they work well.

5.4.4 Testing the Lineage Trace and System Testing

In the section, we test if the lineage trace module works properly and integrates it

into the system and do the system testing. Step one test is to consider if the data

52

source name and category ID are generated correctly; step two checks the meta
data’s parsing; step three tests the embedded SQL sentence generation, and final
step is checking the lineage trace functions. Any error occurring in each step will
lead us to check, to modify, and to retest the system until the bugs is fixed. The
whole procedures of testing, recoding, and retesting will continue until the whole

system meeting all the requirements.

5.5 Non Functional Testing for the Inventory Management Data
Warehouse Integrator Component

In this section we describe the stress test to see if when the remote site data
source’s size, the local view database size, and the workload of the
communication channels have reached their design limits, the view and the trace
functions work properly. Normally, we need to test the system at maximum 80%
of the limits. The testing methods are the same as the functional testing of the
component and the difference is all testing conditions are fully loaded.

In the testing, we can set about 10 remote data resources (inventory management
systems distributed in a wide area network (LAN)). Each of which has 10 users
to submit queries at a rate of 1/min currently, the bandwidth of communication
channel drop down to 10% (for example, normal bandwidth is 30KBPS, the
current value is set to 3K BPS, which can be adjusted by the administrator of the
network or using a dial up connection). All data views have to search from the
remote data sources at rate of 2 searches/min. Because of the remote users
updating frequently, view maintenances are also busy at updating the data. We

can record all of the data view, the lineage tracing results, all the remote data

53

records at different time. From the analyst of these records, we can check if the
system works properly and the data view of the data warehouse display correct

results, and the reaction time of the system meet the system’s requirements.

54

6 The Implementation of the Local Data Resource

Management

6.1 Introduction

The local resource in our system is the inventory management system of a
branch of the company. Because of the performance/cost considerations, the
analyses results from section 1.5, and the budget in the business, we choose PC
networks, PC servers, MS Windows NT server computer operation systems,
Windows 2K/XP client systems, and the MS Access database as our inventory
management solution. In the inventory Access databases, we use tables to store
our information, forms to view/enter our data, queries to search the data that we
are interested in, and reports to display a query result in a specific format.

The interface of the system includes forms that we add /view /update a product
item’s information, an employee’s profile, a customer’s information, a
Supplier’s profile, a purchase order, a sales order, a shipper’s information, and a
shipping method’s information. Besides these, the interface of the system
provides reports to output statistical results for inventory management. The
system was developed with the MS Access. In the chapter, we will show design

ideas for how to use some Access functions to develop the system.

55

6. 2 Design of the Main Menu Form

The main menu has entries to all of the forms and reports. It is the first menu of
the system. It contains a lot of button, each of which will lead us to a functional
form or a report.
The code that creates the menu is written in VBA and listed below:
On Error GoTo Form Open_Err
' Minimize the database window.
DoCmd.SelectObject acForm, "Switchboard", True
DoCmd.Minimize
DoCmd.Hourglass False
Set dbs = CurrentDb()
Set rst = dbs.OpenRecordset("My Company Information")
If rst.RecordCount = 0 Then
rst. AddNew
rst![Address] = Null
rst.Update
MsgBox "Before using this application, you need to enter your company
name, address and related information.”
DoCmd.OpenForm "My Company Information”, , , , , acDialog
End If
rst.Close
dbs.Close

' Move to the switchboard page that is marked as the default.

56

Me.Filter = "[ItemNumber] = 0 AND [Argument] = Default' "
Me.FilterOn = True
Form_Open_Exit:
Exit Sub
Form Open Err:
MsgBox Err.Description
Resume Form_Open_Exit

End Sub

6.3 The Design of Adding /Viewing a Product Form

A form is a type of database object that is primarily used to enter or display data
from a database. To easily view, enter, and change data directly in a table, we use
a form to do the job. When we open a form, Access retrieves the data from one or
more tables and displays it on the screen with the layout you choose in the Form
Wizard or with the layout that you created on your own in Design view.

In lots of situations, we need to enter data in both two tables with primary-
foreign key relationships simultaneously in one form; and one table is master, the
other is child that contains variable number records. The SQL query language for
child table is “select * from child when master. Primary = child. Foreign key.”
When the master table switches to another record, the child table also displays
the content that relates to this record.

We use forms to display the master table data, and use an embedded data sheet in
the form to display the child table‘s content. This kind of interface has solved the

problem that a form may contain a variable number of items. When the master

57

table, which shows sales table contents, displays one record, the child table
shows only records from Salesdetail table that have same ID with the one in the
master table.

In the GUI interface of the add /view / update product form, we have a navigation
bar at the bottom of the form to let us review product items, find a specific
product item, add a new product item into the system, or check the product’s
total ordering, total sales, and total inventory at cost. The interface involves three
tables that have a relationship: product, orderingDetail, and SalesDetail. We
show a product item from table product in the master form, and total inventory at
cost from table orderingDetail and SalesDetail in the embedded datasheet, in
which records have the same product ID with the one in the master form. The
master form has labels, text fields, buttons; and an embedded data sheet in the
main form has the fields of the product name, the total ordering, the total sales,
and the inventory information.

The SQL query for the view product item in main form is:

SELECT DISTINCTROW from Product;

The SQL query for the view of inventory in the embedded datasheet is:

SELECT DISTINCTROW [OrderDetail].[ProductelD],
[SalesDetails].[ProductID], [Products].[ProductID], [Products].[ProductName],
Max([OrderDetail].[Price]) AS OrderedPrice, Sum([OrderDetail].[Quantity]) AS
Ordered, Min([SalesDetails].[Price]) AS SalesPrice,

Sum([SalesDetails].[Quatity]) AS Sales

58

FROM (Products INNER JOIN SalesDetails ON
[Products].[ProductID]=[SalesDetails].[ProductID]) INNER JOIN OrderDetail
ON [Products].[ProductID]=[OrderDetail].[ProducteID]GROUP BY
[OrderDetail].[ProductelD], [SalesDetails].[ProductID], [Products].[ProductID],

[Products].[ProductName];

6.4 The Interface of Entry /Viewing /Updating an Purchase

Order

This form lets users to enter, review, or modify a purchase order. Normally, a
purchase order may contain a lots of product items. We use master form with an
embedded datasheet to show purchase order with product items, which is the
same approach as the product form. The SQL query language for the child form
is “select * from child when master. Primary = child. Foreign key. ”. In the data
schema, they are shown in the two tables: the Order and the orderDetail.

In the view mode, the SQL query for the main form is: select * from sales; for the
sub form is: select * from [ordeTail] when [orderTail].POID = [order].
PurchaseOrderID

In the update mode, the SQL query for the main form is: update * from sales; for
the sub form is update * from ordeTail.

In the add mode, the SQL query for the main form is: insert (POID, EmployID,
SupplyID, orderDate) into sales: for the sub form is: insert (POID, ProductID,

quantity, Price) into ordeTail.

59

6.5 The Interface of Entry /Viewing /Updating an Sales Order

This form lets users to record a sales transition. Normally, a sales contract
contains a lots of product items. The master form with an embedded-datasheet
given in the previous sections gives a very good solution for the type of
problems. The SQL query language for the child datasheet is “select * from child
when master. Primary = child. Foreign key”. The data in the child datasheet
comes from the two tables: the Sales and the salesDetail.

In the view mode, the SQL query for the main form is: select * from orders; for
the sub form is: select * from [salesTail] when [salesTail].POID = [sales].
PurchaseOrderID

In the update mode, the SQL query for the main form is: update * from orders;
for sub form is select * from salesTail.

In the add mode, the SQL query for main form is: insert (POID, EmployID,
SupplyID, orderDate) into sales; for the sub form is: insert (POID, ProductID,

quantity, Price) into salesTail.

6. 6 Report Review Form

In the main menu, clicking button “Preview Reports” will lead users to the menu
of the report review menu (Figure 23 Report Review Menu). In the menu, there
are four choices: “Preview the Inventory summary”, “Preview the Products
supplying Report”, “Preview the Products Sales Report”, and “return main
menu”. Pseudo code to generate the menu is the same as the one used in the main

menu.

60

6.6.1 The Summary Report of Product Inventory

From the report review menu (Figure 23), when users click the first menu button,
the menu of “Preview the Inventory summary”, the system generates the list of
the total inventory at cost. Inventory managers and staff members can get all their
information from it, the managers can decide which product items need to be re-
order; which items have too many in the stock and need some sales promotions to
speed up their sales, and slow down the purchasing of the item as well. The SQL
sentences to generate the report is listed below:

“SELECT DISTINCTROW {[OrderDetail].[ProductelD],
[SalesDetails].[ProductID], [Products].[ProductID], [Products].[ProductName],
Max([OrderDetail].[Price]) AS OrderedPrice, Sum([OrderDetail].[Quantity]) AS
Ordered, Min([SalesDetails].[Price]) AS SalesPrice,
Sum([SalesDetails].[Quatity]) AS Sales,

(Sum([OrderDetail].[Quantity])- Sum([SalesDetails].[Quatity])) AS [#Instock],
((Sum([OrderDetail].[Quantity])- Sum([SalesDetails].[Quatity]))*
Max([OrderDetail].[Price])) AS [Inventory Value]

FROM (Products INNER JOIN SalesDetails ON
[Products].[ProductID]=[SalesDetails].[ProductID]) INNER JOIN OrderDetail
ON [Products].[Product]D]=[OrderDetail].[ProductelD]

GROUP BY [OrderDetail].[ProducteID], [SalesDetails].[ProductID],

[Products].[ProductID], [Products].[ProductName};”

61

6.6.2 The Summary Report of Product Supplying

From the Report review menu (Figure 23), when users click the first menu
button, the menu of “Preview the Products supplying Report”, the system
generates reports that give all kinds of supplying information, which are
classified by the supplier ID. For every supplier, the report displays the product
price, the product quantity, and the order data. Utilizing this report, the inventory
managers can determine as to who are the important suppliers. The SQL code to
generate the report is:

“SELECT [productsupply Query].SupplierName, [productsupply
Query].PhoneNumber, [productsupply Query].Address, [productsupply
Query].City, [productsupply Query].PostalCode, [productsupply
Query].StateOrProvince, [productsupply Query].Country, [productsupply
Query].ProductName, [productsupply Query].Price, [productsupply
Query].Quantity, [productsupply Query].OrderDate, Suppliers.SupplierID,
([productsupply Query].Quantity*[productsupply Query].Price) AS [sub total],
sum(([productsupply Query].Quantity*[productsupply Query].Price) As [total
Supplying]

FROM [productsupply Query] INNER JOIN Suppliers ON [productsupply
Query].Suppliers_SupplierID = Suppliers.SupplierID;”

And The SQL code that generate the productquery is:

“SELECT [productsupply].[SupplierID] AS SupplierID,
[productsupply].[OrderDate], [productsupply].[ProductelD],

[productsupply].[Price], [productsupply].[Quantity], [Suppliers].[SupplierID] AS

62

Suppliers_SupplierID, [Suppliers].[SupplierName], [Suppliers].[ContactName],
[Suppliers].[PhoneNumber], [Suppliers].[Address], [Suppliers].[City],
[Suppliers].[PostalCode], [Suppliers].[StateOrProvince], [Suppliers].[Country],
[Products].[ProductID], [Products].[ProductName]

FROM Suppliers INNER JOIN (Products INNER JOIN productsupply ON
[Products].[ProductID]=[productsupply].[ProducteID]) ON

[Suppliers].[SupplierID]=[productsupply].[SupplierID};”

6.6.3 The Summary Report of Product Sales

From the Report review menu(Figure 23), when users click the third menu
button, the menu of “Preview the Products supplying Report”, the system
generates reports that give all kinds of sales information, which are classified by
the supplier ID. For every customer, it gives the product items sales price, the
quantity, and the sales data. From the report, managers can identify who are the
important customers and what are the best-sold items. The SQL code to generate
the report is:“SELECT [sales Query].CompanyName, [sales
Query].PhoneNumber, [sales Query].Address, [sales Query].City, [sales
Query].Province, [sales Query].Country, [sales Query].PostCode, [sales
Query].SalesDate, [sales Query].Price, [sales Query].Quatity, [sales
Query].ProductName, Customers.CustomerlD, sales.SalesrID,

([sales Query].Quatity* [sales Query].Price) AS [SubTotal],

Sum([sales Query].Quatity* [sales Query].Price) AS [Total Sales]

63

FROM ([sales Query] INNER JOIN Customers ON [sales
Query].Customers_CustomerID = Customers.CustomerID) INNER JOIN sales

ON Customers.CustomerID = sales.CustomerlID;”

64

The Implementation of the Inventory Management Data

Warehouse System

7.1 Introduction

This inventory data warehouse management system provides hierarchical
management functions for business retail chains, which consist of small retail
companies. The implementation of the component includes the mapping remote
inventory management component to local data warehouses and the
implementing of the java data engine, the data display engine, the lineage trace

engine, and the interfaces of all data review and lineage trace modules.

7.2 Mapping the Remote Data Sources into Local ODBC Objects

Open Database Connectivity (ODBC) is a Microsoft’s software package for
database accessing. It provides a framework for desktop-based tools (word
processors, spreadsheets, report writers, Internet/Intranet tools, for example) to
transparently access data sources.

In our system, the remote data sources are located in different areas. We use
network technologies to map a remote network node to a virtual driver on the
local server in the network of the head office, and remote data sources on the
node are virtual data files in the driver. We create an ODBC object for each

virtual data file, and then, we create a user DSN for each object.

65

A system DSN will be available to the whole system so that any users, who have

the system accounts, will be able to access the data source.

7.3 Implementation of Java Data Engine

In the system, we develop a Java data engine that gets in a SQL string, executes a

query, returns the query result, and restores all results back to their data types.

The algorithm of the Java data engine is:

Begin:

1.

2.

10.

Set parameters “class name”, which is the driver’s name, to the engine;
Set “URL”, which is the name of ODBC data source, to the engine;

Set “User name”, which is the name of data source’s user, to the engine;
Set “Password”, which is the password of data source’s user, to the
engine;

Create a connection to the data driver manager, at same time set
parameters such as URL, user name, and password, to the connection;
Create a statement for the connection;

Let the statement to execute the query;

If it is a reviewing query, return the query result to a result set and a meta
data set;

If it is a updating query, just execute the query, and return a Boolean
result, if not successful, throw an exception;

If it is a creating query, just execute the query, and return a Boolean

result, if not successfully, throw a exception;

66

11. Put the result to the Java data engine object. The other object can access
the result by calling the object’s functions.

End

7.4 Table Data Display Engine Implementation

The class tableFrame is the data display engine in our programs. All the forms
that need to display table data are reusing the module. The results displaying of
the data searching and the lineage trace are also reusing the engine. The flow

chart of the main functions of the module is showed below Figure 13:

Set Meta Data Set Table Data
Create UI Defaults »| Create java table
Table Model object with the model
Set only table < Add Mouse Listener
row selectable for the table
v
Table display

Figure 13 The flow chart of display engine

7.5 The Lineage Trace Engine Implementation

The lineage trace module gets three parameters: category ID, store ID, and the

query string, which are used to generate the lineage trace query string. From

67

Store ID, the lineage trace engine gets the remote data source’s ODBC data

source name; from the query string, the lineage trace engine generates the table

list of the remote data source. Combining them together, the SQL query string is

generated for the lineage trace. And then, the java data engine is called to search

the lineage data. The local data sources are searched firstly, if the required data is

not found; then remote data sources are searched and the system returns results,

at mean time, the results will be saved in local data source.

which outlines the whole procedure of the program, is listed below Figure 14:

Category ID Store ID

Remote ODBC
data source name

Formal Query

'

Meta data for
data source

Lineage trace query generate

l

remote data source

Query execution (first search
local view, if not found, query

l

l

Return the lineage
trace result

Save the

auxiliary data

Figure 14 The Lineage Trace flow chart

The chart flow,

68

7.6 Data Warehouse Implementation

This part outlines the implementation of the data warehouse integrator, the

interfaces of the system, and internal modules.

7.6.1 The Main Menu Implementation

This menu provides entries of all the functions of the inventory data warehouse
system, which integrates all its inventory data sources together and provides
summary views on the total inventory at cost, total sales, and total supplying. The
interface is a form that includes some panels. First panel has a richtext field that
gives some description for the system. The second panel has three buttons that
will active three functional views: a sales information view, an inventory
information view, and a supplying information view. The menu is like picture

Figure 28,

7.6.2 The Sales Information View Menu Implementation

From the main menu, when the user clicks the button, “Sale Info. View”, the
system will give the category of all the goods sales information of all the
branches. It has an attribute, which is named “storeID”, to tell which store
records come from. The SQL query is:

"SELECT DISTINCTROW [Categories].[CategorylD],
[Categories}.[CategoryName], Sum([OrderDetail].[Price] *
[OrderDetail].[Quantity]) AS [Sum Of Sales] , [StoreID]=str_storeID FROM
(Categories INNER JOIN Products ON [Categories].[CategorylD] =

[Products].[CategoryID]) INNER JOIN OrderDetail ON [Products].[ProductID]

69

= [OrderDetail].[ProducteID] GROUP BY [Categories].[CategoryID],
[Categories].[CategoryName];”;

The query information is saved into the local view database as well as displayed
in the form. The table in the form has some characters: the width of the column is
changeable; the record row can be highlighted and trigger an event, which
function is used as the trigger of the lineage trace function. The view result is

displayed as Figure 29.

7.6.3 The Implementation of the Inventory Information View
Menu

From the main menu, when the user clicks the button, “Inventory Info. View”,
the system will go to view the category of all the goods inventory information of
all the sub-branches. It has an attribute, which named “storelD”, to tell which
store a record comes from. The SQL query is:

"SELECT DISTINCTROW [Categories].[CategoryID],
[Categories].[CategoryName], Max([OrderDetail].[Price]) AS [Price],
Sum([OrderDetail].[Quantity] * [OrderDetail].[Price]) AS [Order amount],
Sum([SalesDetails].[Quatity] * [StorelD] = str_storied, [SalesDetails].[Price])
AS [Sales Amount], (([Order amount]-[Sales Amount])* [Price])

AS [Inventory Value] FROM ((Categories INNER JOIN Products ON
[Categories].[CategorylD] = [Products].[CategoryID]) INNER JOIN

OrderDetail ON [Products].[ProductID] = [OrderDetail].[ProducteID]) INNER
JOIN SalesDetails ON [Products].[ProductID] = [SalesDetails].[ProductID]

GROUP BY [Categories].[CategoryID], [Categories].[CategoryName];

70

The query information is saved into the local database view as well as displayed
in the form. The table in the form has the same characters as the previous form:
the width of the column is changeable; the record row can be highlighted and

trigger an event for lineage trace. The result is displayed as Figure 30.

7.6.4 The Supply Information View Menu Implementation

From the main menu, when the user clicks the button, “Inventory Info. View”,
the system will go to view the category of all the goods inventory information
from all the sub-branches. It has an extra attribute, which named “storelD”, to tell
which store the record comes from. The SQL query is:

"SELECT DISTINCTROW [Categories].[CategoryID],
[Categories].[CategoryName],
Sum([OrderDetail].[Price]*[OrderDetail].[Quantity]) AS [Order Amount],
[StorelD]= str_storeID FROM (Categories INNER JOIN Products ON
[Categories].[CategorylD] = [Products].[CategoryID]) INNER JOIN
OrderDetail ON [Products].[ProductID] = [OrderDetail].[ProducteID] GROUP
BY [Categories].[CategorylD], [Categories].[CategoryName];";

The query information is written into the local database view as well as displayed
in the form. The table in the form has the same characters as previous forms: the
width of the column is changeable; the record row can be highlight and triggered

an event. The result is displayed as Figure 31.

71

7.6.5 The Sales Information Lineage Trace Implementation

In the table display form showed in Fig. A.4.5, if that user highlights a row and
double clicks the highlight area, system will find the categoryID and story name,
and then call the lineage trace functions to find the original data set that
contributed the record. Normally, if the data source doesn’t exist in the view
database, it will be searched in the remote database. From the formal query, we
get basic table list of original data source; together with categoryID and StorelD,
we can generate lineage trace query listed below:
"SELECT [Products].[ProductName], SalesDetails.Price, SalesDetails.Quatity,
sales.SalesDate, ([SalesDetails.Price]*[SalesDetails.Quatity]) AS [sales Amount]
FROM (Categories INNER JOIN Products ON Categories.CategorylD =
Products.CategorylD) INNER JOIN (sales INNER JOIN SalesDetails ON
sales.SalesrID = SalesDetails.SalesrID) ON Products.ProductID "+

"= SalesDetails.Product]D WHERE (((Categories.CategorylD)="+

CategoryID+));";
The lineage trace engine submits the query to the java data engine, first searches
the warehouse local view data source, if it not exist, then searches the remote
data source; after finding it, the system calls the data display engine to display it;
at same time, saves it in the warehouse local view data sources. The result is

displayed in the Figure 32.

72

7.6.6 The Inventory Information Lineage Trace Form
Implementation

In the table display form showed in Figure 30, if the user highlights a row and
double clicks the highlighted area, the system extracts categorylD, story name,
and query contents, and then calls the lineage trace engine to find the original
data set that contributed the record. Normally, if the data source doesn’t exist in
the view database, it will query the remote database. From the formal query
content, we get the table list of original data source; together with categoryID and
StorelD, and then generate lineage trace query listed below:
"SELECT DISTINCTROW Products.ProductName, "+

"Max(OrderDetail.Price) AS [Price], "+

"Sum(SalesDetails.Quatity) AS [sales], Sum(OrderDetail. Quantity) "+

"AS [order], ([order]-[sales]) AS [#Instock] "+

"FROM ((Categories INNER JOIN Products ON Categories.CategoryID "+

"= Products.CategorylD) INNER JOIN OrderDetail ON Products.ProductID
"t

"= OrderDetail.ProducteID) INNER JOIN SalesDetails ON
Products.ProductiD "+

"= SalesDetails.ProductID GROUP BY Categories.CategorylID, "+

"Categories.CategoryName, Products.ProductID, Products.ProductName, "+

"Products.CategorylD, SalesDetails.ProductID, SalesDetails.Quatity, "+

"OrderDetail.ProductelD, OrderDetail.Price "+

"HAVING (((Categories.CategoryID)=")="+ CategorylD+));";

73

The lineage trance engine submits the query to the java data engine, the engine
searches the warehouse view data source firstly, if it does not find, then searches
the remote data source, after finding it, calls the data display engine to display it,
at same time; saves it in the warehouse view data sources. The result is displayed

in the Figure 32.

7.6.7 The Supply Information Lineage Trace Form
Implementation

At the table display form Figure 31, when the user highlights a row and double
clicks it, the system extracts categorylID, storedID, and query content, and call
the lineage trace engine to find the original data set that contribute the record. If
the data source doesn’t exist in the local view database, the system will query
from the remote database. From the query content, we get basic table list of
original data source; together with categorylD and StorelD, we can generate
lineage trace query as below:
"SELECT Products.ProductName, OrderDetail.Price, "+
"OrderDetail. Quantity, Suppliers.SupplierName, Orders.OrderDate "+
"FROM Suppliers INNER JOIN ((Categories INNER JOIN Products ON "+
"Categories.CategorylD = Products.CategorylD) INNER JOIN "+
"(Orders INNER JOIN OrderDetail ON Orders.PurchaseOrderID = "+
"OrderDetail. POID) ON Products.ProductID = OrderDetail. ProducteID) "+
"ON Suppliers.SupplierID = Orders.SupplierID "+

"WHERE (((Categories.CategorylD)=" + CategoryID+ “));";

74

The lineage trance engine submit the query to the java data engine, which search
the warehouse view data source first, and then search the remote data source and
call the data display engine to display the record, at same time; save it in the
warehouse view data sources. If it does not find the lineage, throw an exception.

The result is displayed in the Figure 34.

7.7 Data warehouse Maintenance

In the local view database, there are 6 local view tables for saving the query data.
For every one of them, the maintenance engine regularly checks to see if every
table’s dirty field is true. If yes, the engine updates the records in local view
database. The SQL query for the maintenance of “supplying information view”
is:

"SELECT DISTINCTROW [Categories].[CategoryID],
[Categories].[CategoryName], Sum([OrderDetail].[Price] *
[OrderDetail].[Quantity]) AS [Sum Of ordrs] , [StoreID]=str_storeID FROM
(Categories INNER JOIN Products ON [Categories].[CategorylD] =
[Products].[CategoryID]) INNER JOIN OrderDetail ON [Products].[ProductID]
= [OrderDetail].[ProductelD] and [OrderDetail].[IsDirty]=true GROUP BY
[Categories].[CategoryID], [Categories].[CategoryName];”;

The SQL query of the maintenance of “sales information view” is:

"SELECT DISTINCTROW [Categories].[CategorylD],
[Categories].[CategoryName], Sum([SalesDetail].[Price]*[
SalesDetail].[Quantity]) AS [Sales Amount], [StoreID]= str_storeID FROM

(Categories INNER JOIN Products ON [Categories].[CategoryID] =

75

[Products].[CategoryID]) INNER JOIN SalesDetail ON [Products].[ProductID]
= [SalesDetail].[ProductelD] and [SalesDetail].[]IsDirty] = true GROUP BY
[Categories].[CategorylD], [Categories].[CategoryName];";
The SQL query of the maintenance of “inventory information view” is:
"SELECT DISTINCTROW [Categories].[CategorylD],
[Categories].[CategoryName], Max([OrderDetail].[Price]) AS [Price],
Sum([OrderDetail].[Quantity] * [OrderDetail].[Price]) AS [Order amount],
Sum([SalesDetails].[Quatity] * [StorelD] = str_storied, [SalesDetails].[Price])
AS [Sales Amount], (([Order amount]-[Sales Amount])* [Price])
AS [Inventory Value] FROM ((Categories INNER JOIN Products ON
[Categories].[CategoryID] = [Products].[CategorylD]) INNER JOIN
OrderDetail ON [Products].[ProductID] = [OrderDetail].[ProducteID]) INNER
JOIN SalesDetails ON [Products].[ProductID] = [SalesDetails].[ProductID] and
([SalesDetails].[IsDirty] =true or [OrderDetail].[IsDirty] =true)) GROUP BY
[Categories].[CategorylID], [Categories].[CategoryName];
The SQL query of the maintenance of “inventory information trace view” is:
"SELECT DISTINCTROW Products.ProductName, "+
"Max(OrderDetail.Price) AS [Price], "+
"Sum(SalesDetails.Quatity) AS [sales], Sum(OrderDetail. Quantity) "+
"AS [order], ([order]-[sales]) AS [#Instock] "+
"FROM ((Categories INNER JOIN Products ON Categories.CategoryID "+

"= Products.CategoryID) INNER JOIN OrderDetail ON Products.ProductID

"+

76

"= OrderDetail.ProducteID) INNER JOIN SalesDetails ON
Products.ProductID "+
"= SalesDetails.ProductID GROUP BY Categories.CategorylD, "+
"Categories.CategoryName, Products.ProductID, Products.ProductName, "+
"Products.CategoryID, SalesDetails.ProductID, SalesDetails.Quatity, "+
"OrderDetail . ProductelD, OrderDetail . Price "+
"HAVING (((Categories.CategoryID)=")="+ CategoryID+)) and
([SalesDetails].[IsDirty] =true or [OrderDetail].[IsDirty] =true));";
The SQL query of the maintenance of “sales information trace view” is:
"SELECT [Products].[ProductName], SalesDetails.Price, SalesDetails.Quatity,
sales.SalesDate, ([SalesDetails.Price]*[SalesDetails.Quatity]) AS [sales Amount]
FROM (Categories INNER JOIN Products ON Categories.CategorylD =
Products.CategoryID) INNER JOIN (sales INNER JOIN SalesDetails ON
sales.SalesrID = SalesDetails.SalesrID) ON Products.ProductID "+
"= SalesDetails.ProductID and ([SalesDetails].[IsDirty] =true WHERE
(((Categories.CategorylD)="+ CategorylD+));";
The SQL query of the maintenance of “supplying information trace view” is:
source; together with categorylD and StorelD, we can generate lineange trace
query like:
"SELECT Products.ProductName, OrderDetail.Price, "+
"OrderDetail.Quantity, Suppliers.SupplierName, Orders.OrderDate "+
"FROM Suppliers INNER JOIN ((Categories INNER JOIN Products ON "+

"Categories.CategoryID = Products.CategoryID) INNER JOIN "+

77

"(Orders INNER JOIN OrderDetail ON Orders.PurchaseOrderID = "+
"OrderDetail. POID) ON Products.ProductID = OrderDetail. ProducteID) "+
"ON Suppliers.SupplierID = Orders.SupplierID "+

"WHERE (((Categories.CategorylD)="+ CategoryID+ “));";

7.8 Development Tool and Running Environment

The running environment of the inventory data warehouse system is Java virtual
machine, with which, program developed in java can run on any operating
system such as Unix, Linux, windows, and Macintosh. Further more, java
program has more security than other program language, like C++, VB, etc. So
we develop the system in java, and use the development tools Jbuilder 8 and

JDK1.4 package.

78

8 Conclusion

In this chapter, we will give some comments on the system developed in the
thesis from professional inventory staff members. And then, we will discuss
some shortcomings of the demo system and the work to be done in the future to

improve the system.

8.1 Comments on the System from a Professional

In this section, we will give some comments on the inventory management data
warehouse system from an inventory professional after she saw the demo of the
system.

The comments are given by a senior auditor who has extensive experience in
inventory management. The comments will be described in two main parts: the
local inventory management component and the data warehouse integrator
component. Based on her opinions, the data views in the inventory data
warehouse of retail business chains should give their branches’ total inventory at
cost, total sales, and total purchase, which are important for a company to report
GST/QST and other related accounting and management decision. Furthermore,
the information of total sales for each product line is very useful for management
to analyze the sales trends and to make purchase decisions.

For small to middle sized retail companies, both the computer knowledge of the
staff and the budgetary knowledge on the e-management are limited. So, the
program developed for them must be easy to use and easy to maintain. The

system, which includes hardware and software, should be as simple as possible.

79

The interface of the program should be similar to the MS Word, Excel or other
popular software so that it’s easy for people to pick up. The basic maintenance
can be handled by a staff member without special qualification in computer skills
after a short period of training.

In the following sections, we will give more detailed comments: comments on
the local inventory management component in section 8.1.1 and comments on

inventory management data warehouse integrator component in section 8.1.2.

8.1.1 Comments on the local Inventory Management Component

This component gives most of the necessary functions of inventory operation
management, which include purchase ordering, goods sales, and inventory stock
checking. There are forms for inventory manager and staff to change/add an
employee information, a customer’s /supplier’s information, a product item
information, a purchase order, a sales order. Besides that, there are also reports to
review total inventory value, total sales, and total purchase order.

The interface design of the program follows the design patterns of a Microsoft
windows program, so it is easy to learn and operate. The sales and purchase order
form give very convenient interfaces for a staff to enter a contract, in which the
number of product item can be fit for any situation.

The system chooses MS Access to develop an inventory management component
of a small sized business, which is a high performance/cost rate solution. It meets
the most of requirements of a small business operation management such as
transactions volume requirements, data size requirements, security requirements,

and develop/maintenance cost requirements. Furthermore, in the solution, the

80

hardware/software choosing for the system such as hardware, software, and

communication channels are in the budget of the type of businesses.

8.1.2 Comments on Data Warehouse Integrator Component

This part of the demo system gives basic data views of inventory data
warehousing management system, which meets most of management functional
requirements of small business chains. It puts most frequently used data search
functions into data views and put less frequently data search functions into
lineage trace. For example, the summary on the total sales, total ordering, and
total inventory at cost are what managers of most businesses concern most, we
put them into data view functions; and checking detail of sales, purchasing, and
inventory stocking is not very often, so we put them into lineage trace. This kind
of design can simplify the interface of the system and reduce the workload of the

system running.

8.2 Shortcoming of Inventory Data Warehouse System

The local inventory system’s functions can meet most of the small sized business
chains’ operation management requirements, in which, each branch is a club
member, which shares same brand with other members, pays annual fees, and
pay a percentage of annual total sales, like McDonald. Each business may have
different operations management function requirements on the system; such as
inventory management can write off a specific product item stock quantity.
Maybe it needs more functions from the system for customers to choose. At

mean time, some functions of the program may need to be redesign when it used

81

in a specific company. For example, they may need more details on the total sales
data views in a specific time period, like total sales per a year, per a month, a
week, per a day, or in a rush hour time period (3:PM to 7:00 PM on Thursday,
Friday).

In the sales and purchase form of local inventory management component,
product item stocking quantities and prices being given in a temporary window

for seconds when user enter a product item ID is much better for using.

8.3 Future Work

The works needed to improve the system developed in the thesis are listed below.
First of all, more case studies on the operations management of the types of the
businesses are necessary to deeply understand their operations management to
improve our business models for the types of the businesses; Consequently, we
can get more complete requirements of the software for the types of businesses to
refine the system to help the operations management work efficiently.

Secondly, studying the program’s user characteristics, which includes the cultural
background and the average computer skills background of the staff in the type
of businesses, can help us develop more user-friendly interfaces for the program.
Thirdly, to handle the tasks of the inventory operations management well, the
program may need functional changeable by the customer because of the specific
functional requirements for the system, so customers function choosing

able/changeable (XP) design solution on the system may be convenient.

82

Fourthly, an extensive testing on the data warehousing in real commercial
environment by the inventory professionals, which is called B-testing, and more
studies of the lineage trace algorithms working efficiency at full loading for the
inventory data warechouse operations management system of the types of the
businesses are necessary. With the analyses on the testing result, we can optimize
the system design, warehousing algorithms, and lineage trace algorithms.

Finally, studying the securities and reliable requirements of the types of
businesses well can help us give good performance/cost rate security and
reliability/ fault tolerance solutions to the system, such as choosing more reliable
computer systems (like Unix), more robust databases (like Oracle, DB2, MS SQL
Server, Informix), high reliable communication systems, and a more safety

network.

APPENDIX User Guide

In this section, we will give user a guidance of the system installation and user
menu. A.1 and A.2 are telling user how to install the system in a computer
network of a business, which include the installing of the system includes the
installation of local inventory system, building the ODBC connection, and data

warehouse integrator; A.3 and A.4 are guiding user how to use the system.

A.1 Install the Local Inventory Management System

83

The installation of local inventory system into computer network of a business
consists of hardware platform choosing, software platform setup, and local
inventory component installation.

First of all, we need to choose a PC server where a MS Windows NT operator
system is running on and all terminal PCs that inventory staff run the local
inventory management component should have MS Windows 2000/ CE/XP in
the computer network of the business. In the NT system, we need to install a MS
Access database system and make the program shareable. And then, we copy our
inventory management program in to a specific folder in the server PC, such as
c:\inventory and make a short cut to the inventory management program in very
terminal PC of local business. At mean time, we need to copy data warehouse
integrator component into the PC terminal in the business chain headquarter

department, and make short cut of the “datamining.bat”.

A.2 Setup ODBC Data Source for Every Remote Inventory

Management System

In section 7.3, we have already talked about the theory of how to match a remote
data source into a local ODBC object by create a DSN for every remote
inventory management system.

The steps for creating a DSN are as follows:

1. From the desired tab User, press the “Add” button to begin creating a new

Data source, like Figure 15.

84

T ODBC Data Source Administrator

dBABE Fil

dBase Files - Word

Excel Files

FoxPro Files - Word

MS Access Database

SRCA

SRCB

SRCC

SRCS

Visual FoxPro D atabase
4l FoxPr

. ﬁ“i‘ﬁ .

Miciosoft dBase Driver (*.dbf}
Microsoft Visual FoxPro Driver
Microsoft Excel Driver (*.xls}
Micsosoft Visual FoxPro Driver
Microsoft Access Driver [".mdb}
Driver do Microsoft Access [*.mdb)
Driver do Mictosoft Access [“.mdb)
Driver do Microsoft Access [*.mdb)
Driver do Microsoft Access [*.mdb)
Microsoft Visual FoxPro Driver
innsnft Visual FngPro Diver

Figure 15 step 1 create data source

2. Choose the data source driver type, in our example it is “Driver do Microsoft

Access (*.mdb)”, like the Figure 16

Create New Data Source

Driver do Microsoft Excel(”.xls)
Driver do Microsoft Paradox (“.db)
Driver para o Microsoft Visual FoxPro

IBM DB2 ODBC DRIVER
{ Microsoft Access Driver [*.mdb)

Microsoft Access-Treber {*.mdb)
N i ame (% AlE)

Figure 16 step 2 choose data source type

3. Give a name to the data source, like the Figure 17

85

QDBC Microsoft Access Setup”

Figure 17 step 3 Assign a name to the data source type

4. From above menu, click button “Select” to select database menu, change
drives name to the driver where the data source is located, change directory to

the folder where the data resource, and then highlight it, press the button

“OK”. Like below Figurel8.

S

3&1&& D;ﬁaba e .

Invgntory a mdb

Anventon S mdt crh
Inventory_b.mdb (datamining
Inventory_c.mdb

Inventory_s.mdb . 8% data

bak
classes
sIc

Figure 18 step 4 select the data source

86

In the above steps, we create ODBC data sources for every remote database and

give them different names.

A. 3 User Menu of the Local Inventory System

This section tells user how to use the local inventory management system. A user
powers on his PC that has installed the local inventory system, double click the
short cut that is created in the Al, the system will be launched and the main

menu of it will appear in the screen of the terminal like Figure 19.

A.3.1 Main menu

The interface provides the entries to all the functional form, given the picture
Figure 19; in the menu, click the first button to add/view/updating a product,
click third button to review all kinds of statistical reports, click button

“Enter/view a Purchase Order” to create a new purchase order, etc.

& Main Switchboard

Figure 19 The main interface

87

A.3.2 Entry/View Product Item Menu

From the menu in the Figure 19, when user clicks the button “Enter/View
Product”, user enters the form “Enter/View Product” showed in the Figure 20. In
the form, user can view or change product item detail, such as name, unit price,
quantity per unit, and stock quantity, etc. Further a user can add a new product
item. When a user enters an index number in the navigation bar (at the bottom) to
view a product, main form will show the product information, and the datasheet

ek

will show the inventory quantity; when the user click the button in the
navigation bar, he can enter a new product, as a consequence; the inventory area

is empty.

Froducts

i
Lauan 5.2mm 4’ x 10

Figure 20 The product detail entry form

88

A.3.3 Entry/View Product Purchase Order Menu

From the menu in the Figure 19, when user clicks the button “Enter/View
Purchase Order”, user enters the form “Enter/View Purchase Order”, which is
showed in the Figure 21. In the form, user can view or change product purchase
order, such as adding/removing prbduct item, changing price or order quantity.
Besides these functions, the users can create a new purchase order. If a user
wants to find a specific purchase order, such as “PO129”, he/she just enters 129
in the text field of the navigation bar (in the bottom of the form) and the returned
form will show the purchase order information. If a user wants to enter a new

(‘*7’

purchase order, he/she just clicks the “*” button to create a purchase order. After
he/she enters all the ordering information in the main form and sub-datasheet and

return, he/she saves a new purchase order in the system.

2300 $6.30

Figure 21 The Entry/ view purchase order form

89

A.3.4 Entry/View Product Sales Menu

From the menu in the A.3.1, when user clicks the button “Enter/View Sales
Order”, user enters the form “Sales Entry Form”, which is displayed in the Figure
22. In the form, user can check or change product sales order, such as
adding/removing product item, changing price or order quantity. Besides these,
he can create a new sales order. If a user wants to find a specific sale contract,
such as “S1001”, he just enters 1 in the text field of the navigation bar and the
returned form will show the sale contract information. If a user wants to create a
new sale contract, he just click the “*” button and enter all the ordering

information in the main form and sub-datasheet.

Lauan 3.6mm 4' x 8

1/8 Oak doorskins 30 1/2 x B0 1/2
1/8 Logan decking 36 1/2 X84 1/2

Figure 22 The Entry/ view sales contract form

90

A.3.5 Report View Sub Menu

From the menu in the Figure 19, when user clicks the button “Preview reports”,
user enters the sub menu “Inventory switchboard” which is displayed in the
Figure 23. In the menu, users can click the buttons to view inventory, sales, and

order summary reports.

91

& Reports Switchboard

Figure 23 The report view menu

A.3.6 Product Inventory Report View

From the menu in the Figure21, when user clicks the button “Preview the
Product Inventory Reports”, the system generates product inventory summary

report. The report is like Figure 24.

92

Inventory Summary

Product Product Name Price Ondered Sales #Siock Imvendory Valuwe
Laian2 Tomm4 x8' Laman2 Inm4 x8 $184.12 13389 8520 121840 19999663.2
Laman3fnm4 x8' Lman3bnm4 x8 $34 57 107640 25940 81700 8525539
Laan36nm4 x8'S Laman36nm4 x8'S5B $174 54 25200 3010 22190 3B875261.6
Laman52nm4 x8' Laman52nm 4 x8'D $32399 11040 2600 8440 27344756
Lman52nm4 x10 Lauan52nemd4 x10 $30406 11500 1830 ®30 234179

.

.
paneling mdf Glacier paneling mdf Glacier Oak $728 12000 2120 880 N926.4
paneling mdf Pacific paneling mdf Pacific Maple $728 0000 5280 120 398361 .6
paneling mif Rustic B paneling mdf Rus tic Buch $728 98280 10119 88161 64181208
Parelina Paper White Parelina Paper White Ash $28245 24000 200 21600 5820120
S atarday, Jamany 22 2005 Page 1 of 3

Figure 24 The inventory summary

A.3.7 Product Supplying Report View

From the menu in the Figure2l, when user clicks the button “Preview the

Product supplying Reports”, the system generates product supplying summary

report. The report is like Figure 25.

93

Supply Summary Report

Supplier Brazil Rewmittance mport & Export Phone 416-3588-0749
Address 1462 Dundas Street West, , City Toronto
Province ON Country Canada Postal Code M6J 1Y6
Product Name Price Quantity Daie Sub Total
Radiata Pive 4 X ¥ 18nmm $1,01569 5400 2472004 $5,484,72600
paneling printb kached birch 904 1500 712/2004 $13,58000
Total Amount: $5,498,285 00
Supplier ADM Import & Export Phone 416-431-0644
Address 108 Corporate Drive City Scarboro
Frovince ON Country Canada Postal Code MIH 3H9
Product Name Price Quantity Date Sub Total
Lauan 35mem 4 x8' $324 87 2340 17172004 $759,722 80
Lanan 38nm 4 x8'SSB 317454 3500 37372004 $528,04 00
1/8 Laman doorakins 35 12X84 1)2 315684 600 1212004 $34,104 00
Tileboad 4' X B' Ivory $1328 1000 1572004 $13,28000
Satarday, Jamary22, 2005 Page3of10

Figure 25 The product supplying summary

A.3.8 Product Sales Report View

From the menu in the Figure 21, when user clicks the button “Preview the

Product Sales Reports”, the system generates product Sales summary report. The

report is like Figure Figure26.

94

Sales Summary

ConpanyNam Alfeds Futteriiste FPhoneNumber 030-0074321
Address Obere Str. 57 City Berlin
Frovince Country Germany PostCode 12209
Product Name Price Amount Sales Date Sub Total
Birth 3mm 4'x 8' _ $23.00 125 1042042005 $2,875.00
Total Sale Amonnt: $2,875.00
CompanyNam Around the Horn PhoneNumber (171) 555-7788
Address 120 Hanover Sg. City London
Province Country UK PostCode WA> 1DP
Product Name Price Amount Sales Date Sub Total
178 L avan doorakins 36 1/2X84 172 $886.70 149 10/22/2005 $132,11890
Saturday, Jarnary22, 2005 Pagel of 3

Figure 26 The product sales summary

A.4 User Menu of the Inventory Data Warehouse Integrator

This section introduces the warehouse integrator user guide. A user powers on
his PC that has installed the inventory data warehouse integrator, double click the
short cut that is created in the Al, the system will be launched and the main

menu of it will appear in the screen of the terminal like Figure 27.

95

Figure 27 The main menu

A.4.1 Product Sales Information Review

From the menu in the Figure 27, when user clicks the button “Sales Information
view”, the system go to the table display form that display all remote stores

product sales summary report. The report is like Figure 28.

96

| L Sales Infarmation Reviéw

S

Fite LookandFeel Help

40987588.50
2402816.33
1019255.80
1830378.00
4378854570

hard wood floor
wood for wall
d fi tsid

3203748.45

soft wood for internal

40987588.50

hard wood floor

2402816.33

wood for wall

1019255.80

wood for ouiside

930378.00

semi production

4378854570

wood application

3203748.45

pata

AL IEEIEY = BIRIE IR

SRR

Figure 28 The Sales Information view

A.4.2 Product Inventory Information Review

From the menu in the Figure27, when user clicks the button “Inventory

Information View”, the system go to the table display form that display all

remote stores product inventory summary information. The report is like Figure

29.

E‘_‘,j Inventory Information ReView 5
File Lookand Feel

Help

soft Wood fo...

1575.00

14518659.66

715727193...

-1B)X]

hard wood fl...

346.79

3124832.33

76248913

818233529...

wood for wall

168.10

1841198.80

448089.36

234181865....

wood for out...

313.18

1516258.00

373707.73

357823892....

semi produ...

1250.00

58716025.70

1462635733

551120854...

wood applic...

269.45

5639622.05

1376002.03

114883241...

softwood fo...

1575.00

59961656.10

14518659.66

715727193..

hard wood fl...

346.79

3124832.33

762498913

818233529....

wood for wall

 wyaod forout, 3

semi produ...

168.10
1alg
1250.00

1841198.80
1518258 00
58716025.70

448089.36

14626357.33

48080.36_ 234181865...
(37370773 3567822882
551120854,

wood applic...

269.45

5639622.05

1376002.03

114883241 ..

874432447

pata

1016.63

113773612...

27760761.45

TFEIE - FEEEREEEEET

97

Figure 29 The Inventory Information view

A.4.3 Product Order Information Review

From the menu in the Figure 27, when user clicks the button “Order Information
View”, the system go to the table display form that display all remote stores

product order summary information. The report is like Figure 30.

Egi I)rdér_ing Information ReView

File Look and Feel

soft wood for internal 40997588.50
hard wood floor 2402816.33
wood for wall 1019255.80
wood for outside 430378.00
semi production 43788545.70
wood application 3203748.45
hard wood floar 2402816.33
wood for wall 1019255.80
wood for outside 930378.00
semi production 43788545.70
wood application 3203748.45

pata 55597522.10

DIDDO oM > e2]

11
B
3
4
5
X 6
0
2
13
o
.2‘5
G
17

Figure 30 The Supplying Information view

A.4.4 Product Sales Information Lineage Trace Review

From the table display in the Figure 2.9, when user highlight a record and double
clicks, the system run the lineage trace module and go to the table display form
that display all information that contribute the record. The result display is like

Figure 31.

98

E‘%_Sg@gs Query Lineage Trace for '5;3mi production’ from store A

File LookandFeel Help

'Birch 18rm 4'x 8’ 1525.00 2004-08-13 427000.00
aneling monde Frosted Oak 18.15 2004-10-20 4074.80
aneling monde Frosted Oak {8.15 2004-10-14 8149.60
aneling print bleached birch 111.03 2004-10-06 4411 .52
aneling print bleached birch 111.03 2004-10-18 3308.64
aneling print Rocky Pecan 11 19.08 2004-09-23 2723.04

_{show Flake vinyt 4 x 8 12.22 2004-10-20 3667.32
now Flake vinyl 4 x 8 12.22 2004-10-18 4889.76

| {show Flake vinyl moulures 2.78 - 2004-10-26 556.32

Honeycomb 1 1/2x 36 889.16 2004-09-13 299647.05

" Honeycomb 1 1/8 % 24 538.48 2004-10-12 1378518.02

- {Honeycomb 1 1/8 X 36 527.67 2004-12-11 168855.81

Honeycomb 1 1718 x 36 727.47 261890.57

Figure 31 The sales query lineage trace view

A.4.5 Product Inventory Information Lineage Trace Review

From the table display in the Figure 30, when user highlights a record and double
clicks, the system run the lineage trace module and go to the table display form
that display all information that contribute the record. The result displayed is like

Figure 32.

99

E%%lnvahtury Query Lineage Trace for wood for outside’ from store B

File LookandFeel Help

e
. 11/8 Oak doorskins 30 1/2 x 80 142
1118 Oak doorskins 30 112 x 80 172
- 11/8 Oak doorskins 30 1/2 x 80 142
11/8 Dak doorskins 30 1/2x% 80 1/2
11/8 Oak doorskins 30 1/2x 80 112
1/8 Oak doorskins 30 1/2x 80 172
E 11/8 Oak doorskins 30 1/2x 80 1/2
1118 Oak doorskins 30 142 x 80 1/2
| |1/8 Oak doorskins 30 1/2x 80 1/2
L 11/8 Dak doorskins 20 1/2 x 80 1/2
.11/8 Oak doorskins 30 14280 1)2
-11/8 Oak doorskins 30 1/2 x 80 1/2
/8 Oak doorskins 30 15280 142

s

S

Figure 32 The Inventory query lineage trace view

A.4.6 Product Order Information Lineage Trace Review

From the table display in the Figure 31, when user highlight a record and double
clicks, the system run the lineage trace module and go to the table display form
that display all information that contribute the record. The result displayed is like

Figure 33.

100

File LookandFeel Help

7200

pata 589.96 la Impont P
Cambridge 24 1/2x 96 112 479 14500 A Touch Of Class Import & Export Lid |2004-08-12
Camden 28 172 X 80 1/2 479 4500 ATouch Of Class Import & Export Lid |2004-08-25
camden 30 152 X80 1/2 556 {13500 |Alba Gash & CarryImport-Exportlid [2004-07-21
Camden 32 1/2 X80 1/2 5.83 4750 Alba Cash & Carry Import-Export Lid |2004-06-21
Cambridge 20 1/2x 80 1)2 513 1250 A Touch Of Class Import & Export Lid |2004-07-21
Cambridge 24 1/2 %96 142 12.78 {2250 A Touch Of Class Impont & Export Lid 12004-04-12
Cambridge 30 1/2x 96 142 1474 12250 Alha Cash & Carry Impont-Export Lid ~ |2004-02-04
Cambridge 36 172 x 98 112 16.62 {2250 Amah Import & Export Co Lid 2004-03-12
- (Cambridge 28 1/2x 84 12 585 11250 A Touch Of Class Import & ExportLid {2004-06-12
“1Bostonian 16 1/2x 80 1/2 401 2250 A Touch Of Class Import & Export Lid |2004-05-21
:;Bostonian 2212x8012 479 11520 A Touch Of Class Import & Export 1td |2004-05-12

{Bostonian 26 1/2x 80 1/2

537

4500

A Touch Of Class Impont & Export Lid

e

Figure 33 The Inventory query lineage trace view

101

2004-04-04_|»|

References

[1] W. H. Inmon. Building the Data Warehouse, Second Edition, John Wiley &
Sons, Inc. 1996.
[2] Rob Mattison. Data Warehousing: Strategies, Technologies, and Techniques,
McGraw-Hill. 1996.
[3] Adam N.R, Dogramaci O., Gangopadhyay A., Yesha Y. (1999).
Electronic Commerce Technical, Business, and Legal Issues. Prentice-Hall.
[4] Kelly,Sean. Data Warehouseing - The Key to Mass Customization,
John Wiley & Sons,Inc. New York, 1994,
[5] Data warehouse URL: http://iroi.seu.edu.cn/books/whatis/dataware.htm
[6] Yingwei Cui and Jennifer Widom, Lineage Tracing in a Data Warehousing
System
[7] Building the Operational Data Store, John Wiley & Sons, Inc. 1995
[8] Mark Humphries, Michael W. Hawkins, Michelle C. Dy, Data Warehousing
Architecture and Implementation Prentice Hall PTR,1999
[9] Yingwei Cui, J. Widom, and J.L. Wiener. Tracing the lineage of view data in
a warehousing environment. Technical report, Stanford University Database
Group, November 1997.Available at http://www-
db.stanford.edu/pub/papers/lineage-full.ps.

[10]. Yingwei Cui. Lineage Tracing in Data Warehouses. Ph.D. thesis, Stanford

University, December, 2001

102

[11] Felipe Carino. High-performance, parallel warehouse servers and large-scale
applications, October 1997. Talk about Teradata given in Stanford Database
Seminar

[12]0ZSU, M. T. AND VALDURIEZ, P. 1991. Principles of Distributed
Database Systems. Prentice-Hall, Englewood Cliffs, NJ.

[13] Object Management Group, The Common Object Request Broker:
Architecture and Specification, Revision 2.2, OMG Technical Document
formal/98-07-01, February 1998.

[14] http://www.borland.com/jbuilder/

[15] http://java.sun.com/j2se/

[16] http://office.microsoft.com/en-us/FX010857911033.aspx

[17] http://msdn.microsoft.com/

[18] G.J. Myers, The Art of Software Testing, John Wiley & Sons, New York,
1976.

[19]. T.J. Ostrand and M.J. Balcer, “The Category-Partition Technique for
Specifying and Generating Functional

Tests,” Comm. ACM, Vol. 31, No. 6, June 1988, pp. 676—686.

103

