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Abstract

Epidemiological Models in Actuarial Mathematics

Run Huan Feng

The emergence of the worldwide SARS epidemic in 2003 led to a revived interest in
the study of infectious diseases. Mathematical models have become important tools in
analyzing transmission dynamics and measuring effectiveness of controlling strategies.
In hope of further applying them to design insurance coverage against infectious
diseases, the author makes an attempt to build a bridge between epidemiological
modelling and actuarial mathematics.

Based on classical compartment models of ordinary differential equation sys-
tems, the first part of this thesis is devoted to developing insurance policies among
susceptible and infected participants and then formulating their financial obligations
using actuarial notation. For the purpose of practical applications, the thesis employs
a variety of parameter estimation techniques and numerical methods of calculating
premiums and reserves. The theory is later demonstrated to design insurance pro-
ducts for the Great Plague in Eyam and the SARS Epidemic in Hong Kong.

In the second part, the thesis also investigates a stochastic model by incorpo-
rating the theory of comonotonicity and copulas. The idea of approximating a random
vector indicating infectivity levels is developed by two approaches. While one is to
find its closest conditional random vector in stochastic orders, the other examines the
dependency structure of its component variables through copulas and then constructs

a new random vector by transforming uniform random variables.
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Chapter 1

Introduction

1.1 Background

One beneficial side of the Severe Acute Respiratory Syndrome (SARS) epidemic in
2002 has been to draw tremendous attention to the treatment and prevention of
infectious diseases and to their deep impact on general social welfare. The adverse
economic impact caused by SARS in East Asia has been compared with its 1998
financial market crisis in that area. From a social point of view, an effective protection
against diseases depends not only on the improvement of medical technology but also
on a well-designed healthcare system, which reduces the financial impact of medical
costs and prevention measures such as vaccination and quarantine. Therefore, as
actuaries are urged to expand their expertise to deal with epidemics in healthcare
systems, infectious disease modelling is very likely to play a more important role in
actuarial science.

In some Asian countries, health insurers start to provide coverage designed to

compensate for medical costs due to SARS, in spite of inadequate clinical data and



unsophisticated techniques. The disease is simply listed as an extended liability to
a regular health insurance policy with an additional charge proportional to its death
rate. But problems arose - not only were such premiums inaccurate and unfair, but
maximum benefits were also too low to cover the high treatment expenses that SARS
patients require. Insurers fear to increase the benefit amount due to insecure funding
and the possibility of an unprecedentedly large number of claims.

These problems reveal that traditional actuarial approaches to model life in-
surance might lack the flexibility and sophistication required to model infectious di-
seases, which are significantly different from natural causes of death in many aspects.
One of the many remarkable differences is that in a population exposed to an epi-
demic outbreak there are always several mutually dependent groups involved. How
fast a disease spreads within a population relies on the number of susceptible indi-
viduals, the number of infectious individuals and the social structure between these
two groups. To be more specific in the context of a health insurance for an initially
complete susceptible group, the number of insureds bearing premiums would actually
decrease, whereas the number of insureds claiming benefits due to infection increases
as the epidemic breaks out. Applying traditional life table methods, based on mor-
tality of the whole population, overlooks epidemiological dynamics and dependence
between insurance payers and beneficiaries. It consequently violates the fair premium
principle used in the industry.

Therefore, the idea of bringing in epidemiological models to take account of

several interacting populations in an actuarial context is suggested in this thesis.



1.2 Overview

Over the last century, many contributions to the mathematical modelling of com-
municable diseases have been made by a great number of public health physicians,
epidemiological mathematicians and statisticians. Their brilliant work ranges from
empirical data analysis to differential equation theory. Many have achieved successes
in clinical data analysis and effective predictions. For a complete review of a va-
riety of mathematical and statistical models, the interested readers are referred to
Hethcote [19] and Mollison et al. [22]. However, because of the fact that clinical data
only become available after an epidemic breaks out and also it is often difficult to
estimate parameters accurately, people are questioning whether the study of mathe-
matical modelling is really of practical value. Brauer [6] answers that mathematical
modelling provides us with quantitative inferences on the epidemiological dynamics,
and helps us choose control strategies by measuring their effectiveness in terms of
adjustable parameters, like vaccination proportion.

As this thesis advocates applications in actuarial mathematics, the value of re-
search on epidemiological modelling is further confirmed in a socio-economic context.
Standing on the shoulders of giants, actuaries could incorporate economic factors into
epidemiological models and make financial and medical arrangements to protect the
public against infectious diseases. For an account of co-operative opportunities for
actuaries and epidemiologists, we refer to a report by Cornall et al. [10].

To make the thesis self-contained with complete reference, Chapter 2 is de-
voted to a brief review of two well-known compartment models in the mathematics
of infectious diseases and actuarial methodologies that are used in this work.

For the purpose of applications in the context of insurance, in Chapter 3 we
formulate epidemiological models in actuarial notation and analyze the quantitative

relations among the insurance related concepts induced from the models. An account



of statistical inference methods for model parameters is presented in Chapter 4. As
an alternative to commonly used estimations, we propose a least square estimator
based on Runge-Kutta method. In the main part of Chapter 4, several premium
calculation methods for deterministic models are presented to achieve our initial goal
of infectious disease insurance modelling. To ensure that benefit reserve is positive or
negative within an acceptable range throughout an insurance duration, we develop
a numerical method to determine safety-loaded premium levels. As examples to
demonstrate the theory, we analyze numerically the dynamics of the Great Plague in
Eyam and illustrate insurance policies with the aim to reduce financial impact on the
disease-ravaged village. One might argue that nobody can ever change history. For
that reason we also give an example of possible financial coverage against the more
recent SARS outbreak in Hong Kong that could still make a difference today.

As a continuation of discussion in deterministic models, in Chapter 5 we look
into a stochastic model studied by Lefévre [20], in which the probability of infection is
considered as a moment generating function of random variables indicating infectivity
levels. By using a technique of conditioning on random variables from the theory of
comonotonicity, we could stochastically order a group of random variables and the
smallest one in the sense of moment generating function order is believed to be the
best for approximating the probability of infection. However, since it is difficult in
practice to directly obtain information of conditional distributions and in turn the
above approach might not be easily applied, we introduce the concept of copulas to
exam dependency structure of random variables. Then we employ empirical copulas
to generate an approximation variable from uniformly distributed variables.

Throughout this thesis, we consider an infectious disease insurance to be a spe-
cial mutual fund that provides coverage of medical costs and related expenses for

infected insureds due to the one specific disease. In our model, it operates indepen-



dently as follows. Every susceptible individual purchases the insurance by a fairly
small single premium at the time of policy issue, or through continuous periodic pay-
ments as long as he or she remains susceptible. Either continuous periodic benefits
would be paid for the duration of hospitalization or a lump sum benefit at the time
that the policyholder is detected to be infected. As an optional policy liability, a
single death benefit may also be made at the time of death due to the infectious
disease.

In all these models, policy terms are assumed to be sufficiently short so that the
uncertainty of investment income from a random payment time and the demographical
variations like natural death and birth could be ignored.

To keep the models simple, we shall not bring in utility functions or their related
principles for the determination of benefit premiums. Only the equivalence principle
is used extensively in our discussion, without consideration of expenses, profit or other

contingency margins.



Chapter 2

Literature Review

2.1 Epidemiological Models

In epidemiological studies (ref. Hethcote [19]), to model an epidemic, the whole
population is usually separated into compartments with labels such as M, S| E| I
and R. These acronyms are used in different patterns according to the transmission
dynamics of the studied disease.

Generally speaking, class M denotes individuals with passive maternal immu-
nity or infection-acquired immunity. After a certain amount of time the antibodies
disappear, these individuals are counted in class S which contains all susceptible in-
dividuals without passive immunity. Class F is the next stage for the susceptible who
have had contacts with an infective, sufficient to become infected. For many diseases
with distinct latent and infective periods, the class E is conventionally considered
for the infected who are not yet infective. With the development of the disease,
the infected in class E move on to class I, which contains all patients who are able

to transmit the disease. Through medical treatment, individuals removed from the



epidemic due to either death or recovery are counted in class R. Those conferred
temporary immunity come back to class M and individuals with permanent immu-
nity rejoin class R. Figure 2.1 gives a brief summary of the transferring dynamics

among the compartments.

M
Recovery with Immunity
Immunity
i Disappears
5 » E » | » R
Infection Latency Removal
Recovery withoul Iromunity

Figure 2.1: General transfer diagram with compartments M, S, E, I and R.

2.1.1 Deterministic Compartment Model

To illustrate the main ideas, we start off by looking at the simplest deterministic
model where a clear actuarial analysis can be conducted. Although most infectious
diseases like SARS are more complex, the generalization from the three compartment
model to multi-dimensional models follows similar procedures.

In this model, S(¢) denotes the number of susceptible individuals at time ¢,
while I(t) is the number of infective individuals, and R(t) is the number of indi-
viduals removed from class I. According to mass action laws commonly used in

biological quantitative analysis, compartment sizes are determined in terms of deriva-



tives. Therefore, we are assuming that the number of members in each compartment
is a differentiable function, defined with support on the positive real line.
Their qualitative relations are given by the following system of differential equa-

tions known as the SIR model.

S'(t) = —-BS@)I(t)/N, t>0, (2.1)
'ty = BS®)I()/N —al(t), t>0, (2.2)
R(t) = al(t), t>0, (2.3)

with given initial values S(0) = Sy, 1(0) = Iy and R(0) = Ry.

The model is based on the following assumptions:

1. The total number of individuals keeps constant, N = S(t) + I(t) + R(t), repre-

senting the total population size.

2. An average person makes an average number 3 of adequate contacts (i.e. con-

tacts sufficient to transmit infection) with others per unit time.

3. A fraction « of infectives leave the infective class I instantaneously. « is also

considered to be constant.

4. There is no entry into or departure from the population, except possibly through
death from the disease. For our purpose of setting up an insurance model, the
demographic factors like natural births and deaths are negligible, as the time

scale of an epidemic is generally shorter than the demographic time scale.

Since the probability of a random contact by an infective with a susceptible
is S/N, then the instantaneous increase of new infected individuals is S(S/N)I =
BSI/N. The third assumption implies that the instantaneous number of people

flowing out of the infective class I into the removal class R is al.



2.1.2 Stochastic Model

In formulating the models as ordinary differential equations, we are assuming that
the whole epidemic process is deterministic, completely predictable from its history.
However, for small population sizes, the epidemic might be strongly influenced by
other random perturbations, hence stochastic models are more appropriate. Another
concern about deterministic models is that for small size compartments, fractional
number of members may lead to absurd interpretations. Therefore, to model a disease
in a small insurance group, we consider using a stochastic model.

One of the classical stochastic models is the discrete-time Markov chain SIR,
whose deterministic analog is the SIR discussed above. It is assumed that the time
step is sufficiently small so that only one change in state is possible per unit time.
By state, we refer to the status of being in a compartment in terms of the Markov
chain. A change occurs either by infection of a susceptible individual (inflow into
class I) or recovery of a infective individual (outflow from class I). The probability
of transmission depends only on the state at the current time. Thus, it makes the
process a Markov chain similar to a birth-death process.

The discrete-time deterministic SIR has the form,

S(t+At) = SH)1-AHAL), t=nAt, n=0,1,2,..., (2.4)

[E+AY) = 1)1 - a®)At) + SEADAL, t=nAt, n=0,1,2...,(25)

where S(0) = Sy, I(0) = I, are given, and A(t) = G1(t)/N.

Thus, in other words, the transition probabilities for the model are
P{I(t+ At)=m+ 1I(t) = m} = unAt, teN,

P{IEt+A) =m—UI{t) =m} =dnAt, teN,

where u,, = A(t)S(t)At = BI(t)S(t)/N,d,, = al(t) and m € Z*.



In applying the above model, the transition probabilities approximate those
of a more realistic continuous-time Markov jump process, where time between jumps
follows an exponential distribution with mean 1/(u,,+d,,). For a complete account of
both discrete-time and continuous-time Markov chain SIS and SIR models, interested

readers are referred to Allen et al. [2].

2.2 Basic Actuarial Methodology

We give a brief review of some basic actuarial methods that will be used in the next

chapter. For more details in these methods, readers are referred to Bowers et al. [5].

2.2.1 Elements of Life Insurance

As building blocks of life insurance mathematics, life tables are widely constructed
and analyzed by government agencies and insurance companies. A typical life table is
a collection of tabulations of vital statistics such as number of deaths in age groups or
other generic categories. The salient idea of mortality analysis is estimating survival
probabilities by the vital statistics in life tables. For instance, the probability that a

person at age x will survive to age x + k is approximated by a life table function.

Lo
e == k=01 w-a-1,

where [, is the expected number of survivors to age « and w the limiting age at which
in practice no survivor is observed. Similarly, we express the probability that a person

at age x will die within £ years by

_ lz+k+1 - lz _ dw + da:-}—l +---+ dx—Hc
kqx lg; lx )

k=01, ,w—z—1,

where dgix = lgqr — lerks1 1S the expected number of deaths between ages x + k

and = + k + 1. Therefore, the probability that a person dies between ages = + k and

10



z+k+1is

lw+k dm+k dz+k
z

= k=0,1- ,w—z—1.
lm+k lz b 0’7 ’w x

Insurance premiums are usually determined at the time when the policy is
issued. Therefore, a dollar benefit payable in the future needs to be converted to a
certain amount at present worth the same value. For example, if a dollar worth of
US bonds at present goes up to 1.08 dollars at the end of a year, then we say that
the present value of 1.08 dollars at the end of the year is 1.00 dollar now. In the
actuarial literature, an insurance model is developed with a benefit function b; and a
discount function v;. The discount factor v;, depending on interest rates before time
t, discounts a dollar unit from the payment time ¢ back to the issue time 0. For the
above example, v; = (1.08)7!. In our model, we will be using compound interest
rates, i.e. v; = v'. Hence, the present value now of b; dollars payable at time ¢ is
bs -vt. For a life insurance policy holder, death may occur at any year between the age
x, when the policy is issued, and the limiting age w. Therefore, the single premium at
policy issue, which is in other words the present value of benefit payment by =1 at
the end of the year of death, is the expected value of discounted values at all possible
ages:

n—1 n—1
dz+k
A}B:ﬁl = ZUHI Pz 19a+k = Z vkﬂ—l : (2.6)
k=0 k=0 z

For the purpose of theoretical actuarial analysis, a tremendous stride has been
made in the literature to generalize discrete time insurance models to continuous
analogues by taking the payment interval from one year to infinitesimal. Since we
are changing the domain of the expected number of survivor [, from a countable
set of integers to an uncountable interval of the length of the remaining life time,

summations have to be replaced by integrals over the uncountable set. Therefore,

11



defined analogously to the first equality of (2.6),

T
Aalc:ﬁ] = /0 ' pe pa(t) dt (2.7)
where
ls
tDe = l+t (28)

represents the probability of an individual surviving to the time x + ¢ and

!

() = — ot (2.9)

lz+t

the instantaneous mortality rate at the time z + ¢t. Note that

lz+t - l1:+t+dt
J(t) dt = =t Cettdt
(1) It

is actually equal to 4¢..¢ in terms of the notation in the discrete case.

Another popular form of premium payments is the life annuity, which is a series
of installments paid continually while a given life survives. The series of payments
due at the beginning of each payment interval is called a life annuity-due, whose
present value is conventionally denoted by d,, whereas the series of payments deferred
until the end of each payment interval is a life annuity-immediate with present value
denoted by a,. For example, the actuarial present value of a contingent payment of
one dollar is v*- yp,. Therefore, an n-year temporary life annuity-due has an actuarial

present values given by the sum of present values of payments.

3
—

n—1
. . k _ k lz+k
Qg = V" kPz = § v l .
0 k=0 z

(2.10)

E
Il

Analogously, the actuarial present value of an n-year temporary life annuity-immediate

is represented by

Qg7 = Z’Uk Pz — Z’Uk l+ = (Lz:m -1. (2.11)
k=1 k=1 v

12



It is easy to prove that in the limit, both the actuarial present value of a life annuity-
due and annuity-immediate are forced to go to their continuous life annuity counter-
part given by
Ogm) = /n vt ipg dt (2.12)
0
The beauty of continuity is that we could rewrite both life insurance and an-

nuities in terms of differentiable functions such that

_ 1 oo
A=Ay =T /0 v, dt

by substituting (2.8) and (2.9) into (2.7), and

Uy = Ezo_o] = 7 / ’Ut lz-}—t dt .
le Jo

Suppose a unit invested produces an annual force of interest 9, that is to say,

then from

- 00_&/ dt=1-4 OO—zSt d
/Oe fftydt=1 /e f(t) dt,

0
it follows that

A,=1-6a,. (2.13)

2.2.2 Level Premiums by the Equivalence Principle

Since not everyone would pay a single benefit premium at the policy issue, the above
ideas on life insurance and life annuities are combined to produce various forms of
products. A typical case is that an individual purchases a life insurance with several
benefit payments by means of a series of level premiums payable in the form of a life
annuity. Although the risk of benefit payments varies over time for the insurer, the

premiums are equally distributed over each year of the insured’s remaining life. Our

13



study in Chapter 3 is based on the most basic and important Equivalence Principle

for the determination of level premiums, which requires
E[present value of benefits|=E[present value of benefit premiums] .

For instance, the level benefit premium rate for a fully continuous whole life

insurance with unit benefit determined by the equivalent principle is,

A, = P(A,) @, ,
that is to say, _
P(A,) = 2= | (2.14)
Gy

2.2.3 Benefit Reserve

On the date when two insurance parties, such as a susceptible insured and an insurer,
enter into an insurance contract, an equivalent relationship is established for the whole
insurance period. However, there will be no longer equivalence between the financial
obligations of the two parties from a short-term point of view. In actuarial practice,
a balancing item called Reserve is introduced to describe the liability of one party
and asset of the other. Take an example of a deferred life annuity, after a period of
deferral, the insured individual may have completed the payments of level premiums,
whereas the insurance company still has an obligation of annuity payments to make,
if the individual survives beyond a specified age. In case of that happening, a prudent
insurer would have a certain amount of money reserved for future benefit payments.

From the prospective method in life insurance, which states that the benefit
reserve is the difference between the actuarial present value of future benefits and the
actuarial value of future benefit premiums, we have the following expression for the

reserve at time t for a whole life insurance issued at age x:



Further, substituting (2.13) and (2.14) into (2.15), we obtain

7 A Za:+t“zz
V) = = (2.16)

In practice it is common sense that the single benefit premium of whole life
insurance for an elder individual is higher than that for a younger individual. There-
fore, from (2.16) it can be seen that the benefit reserves are non-negative in most
applications. However, there is no theorem that guarantees the property. Conversely,
it is quite possible in health insurance that a person entering an insurance later will
be charged less than others because of a shorter period of coverage, which means the
top expression in (2.16) would go below zero. It indeed is the case in epidemiological

models. Negative benefit reserves is discussed in Section 4.3.
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Chapter 3

Actuarial Analysis of

Epidemiological Models

The idea of setting up an insurance coverage against a infectious disease is akin to
that of covering other contingencies like natural death and destruction of property.
We model the size and time of financial costs caused by the infectious diseases in
terms of random variables. Then the benefit premiums are based on the equivalent

principle in Section 2.2.2.

3.1 Deterministic SIR Insurance Model

As showed in Section 2.2.1, a mortality analysis is based on ratios instead of absolute
counts. We introduce s(t), ¢(t) and r(t) respectively as fractions of the whole popu-

lation, in each of class S, I and R. Dividing equations (2.1)-(2.3) by the constant
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total population size N yields

sty = —Bi@)s®), t>0, (3.1)
i'(t) = Bi(t)s(t) —ai(t), t>0, (3.2)
r(t) = 1—s(t)—it), t>0, (3.3)

where s(0) = s and i(0) = g are given.

With these ratio functions s(t), i(t) and r(t), we incorporate the actuarial me-
thods to formulate the quantities of interest for an infectious disease insurance. In-
stead of payments contingent on death, we look at payments contingent on infection.
The benefit for infection may be paid as a lump sum, immediately after a policy
holder is diagnosed to be infected. Alternatively, the benefit payments for infection
may commence in the form of a temporary annuity for the whole duration of the
infection.

Following international actuarial notation and concepts analogous to those for
life insurance in (2.6), we denote the present value of a lump sum unit benefit for
infection by X

AL =D oH (k)
k=0
where the integer n represents the duration of an epidemic. It covers medical costs
only to new comers in the infective class I. Similar to (2.11), the present value of a
temporary annuity payment of one dollar commencing at the end of the year after
infection is .
aiﬁl = kaH i(k) .
k=0
The installment is regularly paid to both new comers and existent patients remaining
in class /. Similarly, the present value of a unit benefit due to death from the disease
is

Adﬁl = ka+1 r'(k) .
k=0
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On the other hand, insurance premiums are paid by the susceptible who undertake
the risk of being infected in the future. Therefore, with the analogue (2.10), the

present value of net level premiums P, = 1 collected from a susceptible individual is

n—1

lmy = ka+1 s(k) .

k=0

For the sake of simplicity, we extend the above actuarial quantities from discrete
to continuous time. Consider the special case where net premiums are uniformly
distributed over the duration of the epidemic and the hospitalization benefits are
continuously paid at rate of by = 1 per unit time. Figure 3.1 illustrates the insurance

funding flows among these three classes.

- SRS
] I R
Infection Removal
= x v
.. : Hospitalization, -~
Premium "+, ¢ Beneft .-~ Death
Payment RN Benefit
, Insurance .
¥ *
# £

- -
'''''
««««««

Figure 3.1: Transfer diagram of cash flows among three compartments.

Therefore in this model, we discuss the actuarial present values of various benefit
payments and then determine a fair level of premium payments. In practice individual
life insurance is usually purchased by long-term premium installments. However, since

an epidemic breaks out in a relatively short period, a lump sum payment might be
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more applicable in health insurance. The following sections discuss different coverage

plans and their corresponding net level premium rates.

3.1.1 Annuity for Hospitalization

We assume that individual premiums are collected continuously as long as the in-
sured is still susceptible, while medical cost benefits are also continuously paid to the
individual during the whole treatment period. Once the individual recovers from the
disease, the insurance benefits and hence the corresponding liability, terminate right
away.

Following similar notations, the actuarial present value of premium payments
from insureds up to time T is denoted by Esﬂ, and that of the benefit payments from
the insurer is denoted by Eiﬂ'

On the debit side of the insurance product, the total discounted future claim is
given by

T
am = i e %(t)dt | (3.4)

while on the revenue side, the total discounted future premiums is

T
ag = i e %s(t)dt , (3.5)
where ¢ is the force of interest.
Just like in life insurance, where the force of mortality is defined as the additive
inverse of the ratio of the derivative of the survival function to the survival function

itself, we define here the force of infection as

;= — t>0
lu’t S(t) ) - )

and the force of (relative) removal as

7'(t)

Y= ——= t>0.

oK
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Specifically from (3.1)-(3.2), we see that uf = Bi(t) and pi = -8 s(t) + @ .

Note that the above definitions imply that

s(t) = exp{—/0 us dr} = exp{—ﬁ/0 i(r)dr} t>0, (3.6)
and

i(t) = exp{—/ot pi dr} = exp{f /Ots(r) dr +at} t>0. (3.7)

Proposition 3.1.1. In the SIR model in (3.1)-(3.2), the present value of the conti-
nuous annuity payments to the infectives, E‘ﬁ, satisfies the following relation with the

present value of continuous annuity premiums collected from the susceptibles Esﬂ,

o, _, _s _ S0 +ig
Proof. From (3.1) and (3.2), we obtain that
sSE)+i ()= —ai(t), t>0. (3.9)
Integrating (3.9) from 0 to a fixed ¢ gives
¢
s(t) + i(t) — so — io = —a/ i) dr, t>0. (3.10)
0

Now inverting the order of integrals gives

/OT exp (—4t) /Oti(r) drdt = —%/OT /Otz'(r) dr d(exp (—6t))
1 (7
= 5‘/0 exp (—dr)i(r) dr .

Taking Laplace transforms with respect to ¢ on both sides of (3.10), we have

So io a _,
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Then equality (3.8) follows simply by rearranging terms. O

The intuitive interpretation of the above proposition is that as an infective
leaves class I at a constant rate of «, the term (a/d) 6% aggregates funding from
the individual. Hence (1 + a/d) Ziiﬂ is the total discounted value collected from each
individual expected to enter class /. Similarly, asﬂ is the discounted funding from
susceptible individuals over the period. The other side of the equality shows the
present value of total funding from individuals regardless of their classes - whether
susceptible or infectious. It is reasonable that both sides should be equal.

To facilitate computation of premiums, we shall introduce some corresponding

notation from life insurance. Define

T
msﬂ = —/ e % §'(t) dt
0
and
rAg = — / e {'(t) dt .
0
These notation do not have insurance interpretations. They are pure notational

fictions corresponding to A, in life insurance, and satisfy the following equalities

analogous to the identity (2.13) in life insurance.

Proposition 3.1.2.

TA7 =50 — 0 T, (3.11)
and
A =g — § ay . (3.12)
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Proof. Using integration by parts with the definition of ;"7117', we get

. T
mﬂ = —/ e 0 i'(t) dt
0

= _ [z(t) ™% j+ 5/0T e~ % i(t) dt]

= do—day.
The proof of (3.12) follows exactly the same idea. O

A useful feature of the infectious disease compartmental model is that the flux
out of class § is equivalent to the flux into class I. We can thus guess that msﬂ and

mﬂ are closely related.
Proposition 3.1.3.
Az = oty — T Ag . (3.13)

Proof. Starting from (3.9) and taking incomplete Laplace transforms from 0 to T on

both sides yields,

Therefore,
T Aq + AR = 0T . (3.14)
a

Returning to our original problem of finding the net level annual premium for

the unit annuity for hospitalization plan, denoted by ?(EZQT-I), we now have

Plag) = o  so+dg— (6 + oz)&%| ' (3.15)



3.1.2 Lump Sum for Hospitalization

If the medical indemnity is to be paid immediately in a lump sum when the individual
is diagnosed infected, and insurance liability is terminated, then the present value of

benefit payments to the infected denoted by Tﬂ is obtained as

An2p /O ' e 0ts(t) i(t) dt . (3.16)
Proposition 3.1.4.
Ap+0 a5 =50, (3.17)
and
(a+8) @y ~ Ay = o . (3.18)

Proof. Substituting (3.1) into (3.16), we have that
_ T
Ag = —/ e % §'(t) dt
0
= m%] , by definition,
= so—danp, by (3.11) .
Since —A% = ﬁisﬂ and ?«Z‘ﬂ =i—0 Zi‘ﬁ by (3.12), substituting into (3.14) gives
A +io— 0T = adly .
g

Therefore for the lump sum payment plan with a unit benefit, the equivalence

principle gives the net level premium F(Zbﬂ)

:?—ﬂ:msﬂ—so_msﬁ—%—a, (3.19)

PAm=—=—f=———=—>
i 7 o7 o 7

where ZisTl could be re-expressed in terms of aiTI )
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3.1.3 Death Benefit

It is necessary to point out that in the epidemiological literature the class R is some-
times referred to as being composed of individuals removed chronologically from pre-
vious compartments. They either recover with immunity or die due to the disease. A
more refined model could have separate compartments for the dead and the recovered.
For our purpose of deducing an actuarial analysis based upon epidemiological models,
we keep the model as simple as possible by assuming only one R compartment for
deaths caused by the disease, which implies that nobody recovers from the disease.
Also recall that natural deaths or births are ignorable in a short time period. The
SIR model remains the same as in (3.1)-(3.2), except that « is the constant rate of
death within class 1.

For most health insurance policies, death benefits differ from healthcare benefits.
We assume that in this infectious disease plan, a death benefit of d; = 1 is paid
immediately on the occurrence of death.

Thus, the actuarial present value of a lump sum death benefit payment denoted

by Zdﬂ is

Ap £ a/ e~% i(t) dt
0
= a&éﬂ

S

Therefore, the net level premium for the plan with both a unit hospitalization

benefit and a unit death benefit is obtained by

. —d - .
. _ e+ A o(1 + a)al
Plan + Af) = 2" = Uroan (3.20)

ag so+io— (0 + a)E‘ﬁ

and the net level premium for the plan with both a lump sum for hospitalization and
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death benefit is given by

i 4. Ap+An  0Qa+8)ag—dio

P(A + A = (3.21)

GSTI _80+’L‘0—(5+O{)E"’ﬂ'

3.1.4 Individual Benefit Reserves

There are two ways of determining individual benefit reserve that an insurance com-
pany should hold on to prepare for future claims. The first originates from prospective
method of benefit reserve in life insurance mathematics, as illustrated in Section 2.2.3.

Suppose the policy duration is T, for the plan with an annuity benefit for hospi-
talization and a death benefit, we obtain the reserve at time ¢ from the time of policy

issue :

o=, 7¢ i —d _s
V(@ + An) = U+ AT — P ar—)
1 . .
= g[(é—l-aé—l—pé—l-pa)EZT——]_t—ps(t)—pz(t)],

where p = ?(ﬁﬂ + Zdﬂ) is given in (3.20).
For the plan with a lump sum payment for hospitalization and a death benefit

we have

(>

S — — —d .
Va(An + Aq) = Argq+ Ar— — P 05

1 , .
= g[(52+2a S+pd+pa)ar—ps(t)—(p—9) i(t)]
where p = -P_(—/TLTI + Zdﬂ) is given in (3.21).
The second way of calculating the benefit reserve is through numerical analysis

from an insurance factor system, as explained in Section 4.2.1.
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Chapter 4

Premium Rating in Deterministic

Models

In this chapter, we investigate the statistical inference of various parameters in the
ODE system and propose a new least squares estimation method based on Runge-
Kutta recursive formulas. With these estimated model parameters, we develop several
methods for premium calculation. Two numerical examples are given in the end with

empirical data for the Eyam Great Plague and the SARS epidemic in Hong Kong.

4.1 Parameter Estimation

4.1.1 Clinical Expert Opinion

A common assumption is that the movement out of a compartment and into the
next compartment are governed by its flux ratios like 5 and «. It has been shown by

Hethcote et al. [18] that these movements each correspond to exponentially distributed
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waiting time in corresponding compartments. In other words, the fraction of people
staying in the same class is exponentially decaying over time. For instance, the flux
ratio o implies that a fraction P(t) = e™®* of the population remains in class I at time
t and 1/« is the average time an individual spends in the class. Therefore, based on
the biological interpretation of the average time, clinical observations of latent periods
and infectious periods are often used to estimate flux ratios. Table 4.1 gives a list of

average periods for some insurable childhood diseases.

Disease Latent period | Infectious period
(Days) (Days)
Measles 8 5
Chicken Pox 10 5
Rubella 10 7
Whooping Cough 8 14

Table 4.1: Mean latent period 1/ and mean infectious period 1/8 in SEIR models

of some insurable childhood diseases. Data source: Anderson & May [1], Table 3.1.

Although the clinical expert opinion method has been widely accepted for epi-
demiological modelling, in practice it is common that the resulting models do not fit
empirical data well enough, from a statistical point of view, to make precise predic-

tions.

4.1.2 Profiled Likelihood Estimation

There are numerous methods to apply statistical inference to estimate parameters.

Maximum likelihood methods are commonly used by biostatisticians. The following
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estimation method is based on an illustration from Brookhart et al. [7].

Since most available incidence data for infectious diseases are reported conti-
nually for a certain duration of epidemics, it is plausible that we develop a likelihood
by multiplying together conditional probabilities for each report period from which

we have observable incidence counts. That is
L(o|I*) = fUD) U IG5, I7) - fUL T I, Inq)

where L is the likelihood in terms of the parameter vector ¢ to be estimated, f(-) is a
proper probability density function of the observable variables, and {I}}k=12,... n are
clinical incidence counts for each period.

Many statisticians believe that clinical data of incidences (such as deaths, in-
fections) may be quite different from those in corresponding classes in ODE models,
which are designed to describe the quantities between classes in nature. An explana-
tion may be that clinical reports normally come after real incidences happened, with a
time lag of several days, depending on bureau efficiency. Therefore, many researchers
set up an extra class to model the quantitative discrepancy between the epidemio-
logical class and the reported cases. For instance, in Finkenstadt and Grenfell [15],
reported cases of infected individuals are considered as a random ratio of real inci-

dences in the SIR model:
Cy = p IIn(n) , Inn ~1iid. N(0,02), (4.1)

where p is a ratio depending on environmental and demographical factors. To avoid
confusion between clinical data and epidemiological incidences, we adapt the notation
I} for observations related to the corresponding incidence class data Iy .

Assuming that the probability of I} incidences occurring follows a binomial

distribution, we can represent
AL Tos) = wen@(@)F [1— poyjan(@)]™ %
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where _1)q(¢) is the conditional probability of an individual being infected in period
k, given that he or she remained susceptible up to the previous period & — 1. Hence,

it follows that
Iy — I

k-119() = NI

k=1,---,n.

Therefore, with the help of computational algorithms, we can find out the esti-

mator cﬁ which maximizes the likelihood function

L(o|I*) = Z k-112(9) % [ — ponjq(@)) Ve

4.1.3 Least Squares Estimation

As an alternative solution, we propose a least squares estimation of the parameters,
which is more computationally manageable.

The idea originates from the famous Runge-Kutta method (ref. Section 4.2.1)
for the recursive numerical evaluation of first order ordinary differential equations
(ODE1). To illustrate the basic idea, we start with a Runge-Kutta method of second
order (RK-2) given by:

1 1
Yiy1 = yi+§k1+'2-k,'2, 221,2, , (42)
kl = h,f(t“yz) y Z = 1, 2, e ,Ny (43)
k2 - hf(tz‘l_h,yz); 7::1,2,"',7?/, (44)

where y; is given by the ODE-1:

dy
%"f(tay)a

evaluated at ¢t = t;. The time stepis h=1¢; —t;_; fort=1,2,3,...,n.

Substituting the SIR equation system into (4.2) gives
1 2 2 1 .
Zh Si Ii Iy 57 + §h (Si Ii + Sig1 Liz1) B+ Sig1 — Si =0, i=1,---,n, (4.5)
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where S; is the susceptible function evaluated at the time ¢ = t;, while I; is the infec-
tious function evaluated at the time t = ¢;, and the series are discretized numerical
solutions to the ODE model.

Simplifying (4.5) by completing a perfect square and taking square-root on both

sides, we obtain

BS L Ly 4 Si L+ Sea Ty = \[ (S L~ Sipa L) +482 L Ly . (46)

Note that negative root of the right-hand side of the regression equation is dropped
since [ is a positive ratio.

From a statistical point of view, if we collect sufficiently large samples {5’1} and
{IZ} with equal time spacings At = h, (4.6) becomes a linear regression model, for

which we have the following normal equations:

yi=,8.’13i+€i, izl,...,n, (47)

where y; = \/(S'z fi - S’i+1 fi+1)2 + 4512 -fz f¢+1 - S’z jz + §i+1 jH—l, z; =h Si fi fi+1
and e; is the residual error.
Therefore, by applying the least square estimator of the linear regression model,

we have

B:inyi—inZyi_ (48)

> xf — N2
Then & can be obtained in the same manner.
However, we have to admit that the residual errors {e;} are serially correlated.
Therefore, this method gives a rough estimation but comparable to the profiled like-

lihood estimation.
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4.2 Net Premium Calculations

So far net premiums have only been expressed in terms of ZL“iTl, which is an incomplete
Laplace transform of (). An implicit integral solution to the SIR model in (3.1)-(3.2)

is as follows,
t U
s(t) = %exp{—ﬁ/ exp {ﬁN/ s(r) dr — au}du} ,
0 Jo

1 t U
i(t) = = exp {ﬁ/ exp {ﬂN/ i(r) dr} — au du} .
N 0 0
But there is not an explicit method available to solve s(t) and i(t). Therefore we pro-

pose numerical formulas and approximations that can provide satisfactory solutions

for insurance applications.

4.2.1 Insurance Factor System and Runge-Kutta Method

Among many numerical methods for solving ODE, the Runge-Kutta method is the
most popular. It can be adapted for any order of accuracy. For applications in insu-
rance, the fourth order Runge-Kutta method (RK-4), given by the following recursion

formulas, represents a good compromise between simplicity and accuracy:

1
Yir1 = yi+6(k1+2k2+3k‘3+k4), 1=1,2,---,n,
k'1 = hf(tiayi), i:1,2,--~,n,

h 1
ky = hftti+=,vi+zk), i=12--,n,

2 2
ool |
k3 = hf(tz+§,y,+§k2), 7,:1’2’...’71’

ks = hf(ti+h,yi+ks), i=1,2-,n,

where y; is given by the ODE:

dy
E_f(tay))

31



evaluated at t = t;, and the time step h =¢; —t;_; fori=1,2,--- |n.

Actuaries may particularly be interested in the quantitative properties of insurance-
related factors, such as discounted total benefits, discounted total premiums and
premium reserves. Based on the RK-4 method, we need to fit these factors into a
differential equation system. Let P(t) denote the present value of premiums up to
time ¢ and B(t) the corresponding present value of benefits at the same time. We
introduce V (t) as the cumulative benefit reserve at time ¢.

Therefore, for the annuity for hospitalization plan, the quantitative relations

among these insurance factors could be described by the following ODE system:

P(t) = Page®S(t), t>0, (4.9)
B'(t) = e°I(t), t>0, (4.10)
V/(t) = Page®S@t)—eI{t), t>0, (4.11)

where Pay = ?(TT{) is determined by the equivalence principle. By applying the
RK-4 method, we get az, = P(T)/N, Eiﬂ = B(T)/N and Vﬂ(ﬁiﬂ) = V(¢t)/N for the
plan of duration T'.

For the lump sum for hospitalization plan, we have the following insurance

factor system:

P'(t) = Psye ®5(t), t>0, (4.12)
B'(t) = e®pS@t)I(t), t>0, (4.13)
V/(t) = PsgeS(t)—€BS(t)I(t), t>0, (4.14)

where Psy = F(aiﬂ) is also from the equivalence principle, a7 = P(T)/N, Ziﬂ =
B(T)/N and Vﬂ(ﬁﬂ) = V(t)/N for the plan of duration T'.

Similarly, the annuity for hospitalization plan with a death benefit is determined
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by the system

P'(t) = Pagpe™®S(t), t>0, (4.15)
B'(t) = eIt (1+a), t>0, (4.16)
Vl(t) = PAHD eétS(t) - eétf(t)(l + a) y t>0 y (417)

and Pagp = ﬁ(—fﬂ + Zdﬂ) is from the equivalence principle, a7; = P(T)/N, Zzﬂ +
Zdﬂ = B(T)/N and Vﬂ(fﬂ + Zdﬂ) = V(t)/N for the plan of duration T
Finally, for the lump sum for hospitalization plan with a death benefit, the

corresponding system is:

P'(t) = Psype®S(t), t>0, (4.18)
B'(t) = e B S(t)I(t), t>0, (4.19)
V'(t) = Psupe®S(t)—e®I(t)(8S(t)+a), t>0. (4.20)

Hence, the equivalence principle gives Psgp = P(TT| + Zflﬂ) ,E‘”‘ﬂ = P(T)/N, E’ﬂ +
Zdﬂ = B(T)/N and Vﬂ(diﬂ + Z%) = V(t)/N for the plan of duration T

These ODE systems can be readily solved in most mathematical software such
as Maple environment. Information about programming with ODE tool kits in Maple

can be found in Coombes [9)].

4.2.2 Infection Table Based Approximation

In practice it is difficult to make record of susceptible group, partly because of its
large number and partly due to the fact that susceptibles have no disease symptoms.
But we could keep track of infected people using public data from government health
agencies and hospitals. Hence we now rely on the function i(t) instead of s(t) for all

calculations leading to the premium rating.
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A natural analogy is with the life table in life insurance mathematics. It nu-
merically describes an empirical survival distribution of an average person’s longevity.
Similarly, an infection table is generated to keep record of infected numbers reported
during each sampling observation period (e.g., every day for SARS). Table 4.2 in
Section 4.4.1 is a simple example of an infection table.

Now from the infection table, we have a piecewise constant empirical approxi-

mation of the continuous function i(t) given by
i, k—1<t<k
0, otherwise

Using this function in place of i(t) in (3.4) gives an approximation to E"ﬂ:

' T T
an = /0 et i(t)dt =~ /O e % 1(t) dt

n — — —
o—0(k—1) _ o—ok

= — i, for n large enough.

x
]
—

4.2.3 Power Series Solutions

The power series method is one of the oldest techniques used to solve linear differential
equations. This method can be adapted well to our SIR model.
Since every point in the system is an ordinary point, in particular, ¢ = 0, we

look for solutions of the form

s(t) =) ant", t>0, (4.21)
n=0

it)=Y bat", t>0. (4.22)
n=0

Therefore, differentiating term by term yields

o0 o>
S =D napt" = (n+1apt*, t>0,
n=1 =0
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o0

(6= nbat" = "(n+1)boyr t*,  t>0.
n=1

n=0

Multiplying (4.21) by (4.22) gives,

s(®it) = cat”, t20,
n=0

where

Cn = aobn + a1bp—1+ -+ -+ an-1b1 +anby .

From (3.1), we obtain

i(nﬂ) Qni1 t"+/a’icnt” =0,

n=0 n=0
i(?ﬁ 1) bpyy " —ﬂicn t"+a§:n b t"1 =0,
n=0 n=0 n=1

To satisfy these equations for all t, it is necessary that the coefficient of each

power of t be zero. Hence we obtain the following recurrent relation:

an+1 = _ni 1<a0bn + albn—l + -+ an—lbl + CLnbO) 3

8%
n+1

bn+1 = —Opy1 — bn .

Therefore,

© T
ETIZZ/ a, t" e dt .
n=0 0

4.2.4 Integral Equation

A considerable difficulty in solving the ODE system (3.1)-(3.2) is due to the presence
of the nonlinear term [ S(t) I(t). Its multiplicative structure suggests the use of
Fourier transforms.

Recall that
/ e f x g(x) dz = / e f(z) dx / eg(x) dzx ,
R R R
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where f x g(z) = [ f(z —y) 9(y) dy. Therefore, if we think of S(t) as a Fourier
transform of a certain function S(x) and I(t) as a Fourier transform of a certain
function I(t), then the inversion formula gives
§(z) = — / SMe=dt,  I(z)= — / I(t)ei= dt .
21 Jp 27 Jr

The reason we choose Fourier transforms is that they always exist for real functions.
In applications, if certain real inverse transforms of I(t) and S(t) exist, numerical
solutions to their integral equations would be easier to obtain.

Now write the nonlinear term as

= ﬂ/ eS8 x I(z) dz
R
Therefore, we take the inverse Fourier transform on both sides of (3.1), giving
- 1 .-
i28() - 5-5(0) = =4 [ S~ v)dy, (4.23)
R
- 1 ~ - ~
izl{z) — E;I(O) = ﬂ/ Sy)(z —y)dy — al(z) . (4.24)
R

Adding up the above two equations gives

= 1

S(x) =

(iz + a)
1X

—[S(0) + 1(0)] - I(z). (4.25)

2miz

Substitute (4.25) into (4.24) to obtain the following integral equation

- . B SO) +1(0) _atiys oz 1
I(z) = (71 a) / [ omia i Iy)]I(z —y) dy + 5-1(0).  (4.26)

By the definition (3.4), we have then

‘ 1 T L
@ = N/ e"‘s"/emf(x) dz dt

e(w HT __ y
N/ (iz — 0) [(z) d.
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4.3 Premium Adjustment

The fact that mortality rises with age leads to the consequence that an insurer’s future
financial liabilities might overtake future revenue from benefit premiums. Therefore
the benefit reserve is normally positive in life insurance. Now proposition 4.3.1 shows
that the mortality due to an infectious disease decreases after reaching a peak during
the outbreak, which signals a possible difference in the direction of change in reserve.
Figure 4.1 illustrates a typical path of a benefit reserve function from the insurance

factor system (4.9) - (4.11), where the benefit premium is determined by (3.15).

v 50004

-5000+

-10000+

Figure 4.1: Benefit reserve function V(t) for AH plan for the Great Plague, Pag =

106.51. Double arch structure as explained in Proposition 4.3.3.

Although it still satisfies the equivalence principle on the long-term from time
0 to 5, it is practically unacceptable for an insurer to have a long standing nega-
tive reserve, increasing the risk of bankruptcy. Therefore an additional premium is
required to ensure that the benefit reserve never falls below an early warning level,
which is lowest tolerable financial reserve. Before giving an algorithm for determining
an added-value premium, we would like to study for a moment the trend of a benefit

reserve function V'(¢) and its dependency on functions S(t) and I(t).
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Proposition 4.3.1. For the SIR model in (2.1)-(2.3), S(t) is a monotonically de-
creasing function, and R(t) is monotonically increasing. If S(0) < aN/g, then I(t)

is a monotonically decreasing function; If S(0) > aN/B, I(t) increases up to the time

when S(t) = aN/8, and then decreases after.

Proof. Since S(t) and I(t) are all non-negative, from (2.1) and (2.3) we know that
S'(t) = - S(t) I{t)/N <0, fort >0, and R(t) = o I(t) > 0. Hence S(t) is a
monotonically decreasing function and R(t) is a monotonically increasing function.
If S(0) < a/B, then I'(t) = I(t)[B S(t)/N — a] < 0, which means that I(t) is mono-
tonically decreasing. By contrast, if S(0) > a/N/f, because S(t) is monotonically
decreasing, then I'(t) = I(t)[8 S(t)/N —a] > 0, as long as S(t) > aN/B . Thus I(t)
reaches its local maximum at the point where S(t) = aN/B . When S(t) continues to

decrease below aN/3 , I'(t) < 0 and I(t) is monotonically decreasing thereafter. [

From now on in this section, we study the benefit reserve by looking at the
example of AH plan. The generalization to other plans follows the same idea. From
(4.11), we know that V'(t) = e’*(Pag S(t) — I(t)), for t > 0. The general direction
in which V() changes depends on the opposing forces, monotonically decreasing
P4p-S(t) and increasing-then-decreasing I(t). There are only two possible geometrical
structures in the trend of V(t): Single arch structures as shown in Figure 4.2 and
double arch structures typically illustrated in Figure 4.1. The following propositions

indicate conditions under which the two structures may appear, respectively.

Proposition 4.3.2. (Single Arch Structure) In the insurance factor system (4.9) -
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(4.11), the benefit reverse V' (t) is concave, if the premium

alN
Pag > o~ 1 -
AH>BS ; (4.27)

where the constant ¢ = Io + Sy — aN/( log(So) and S = ltlim S(t) .
Proof. To check the concavity of V'(t), we look at V"(t),

V'(t) = PagS'(t)-1I'(t)

_ _% Pau S@) I(¢) — -]% S() I(t) + a I(2)

= I(t) [ — % (Pam +1)S()] -

It follows that when

Pin>-N 1 foraltso,

BS(t)
V(t) is concave downward. Since S(t) is monotonically decreasing, thus condition

(4.27) is required. a

Proposition 4.3.3. (Double Arch Structure) If Pag does not satisfy (4.27) and in

addition

aN

Sp > ——,
0 (l—I-PAH)ﬁ

(4.28)

then the benefit reserve V (t) changes from concave to convez, with a point of inflection

ty such that

alN

S = ¥ B
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Figure 4.2: Benefit reserve function V'(t) for AH plan for the Great Plague, Pag =

843.38, Single arch structure as explained in Proposition 4.3.2.

Proof. By (4.28), V”(t) changes from positive to negative at time ¢y, when

aN

) = B

Therefore, no matter whether V'(¢) starts from a negative or positive value, V (t) goes

through two phases, from concave to convex. O

The next question that comes to mind is how to control the extent of the deficit
in the reserve by premium adjustment, while preserving the equivalence principle.
From the double arch structure, we know that the worst deficit scenario in reserves
is measured by the local minimum in the second arch. Therefore, if we are able to
find out the minimum point on the time scale, we can adjust premiums by controlling
how far the reserve can fall below zero.

Suppose we want the reserve to reach the local minimum by time £,,. From
(4.11) it is obvious that Pag = S(t)/I(tm) is the smallest possible premium that can
be charged. At this premium level, the reserve function has a double arch structure

with a point of inflection at time t¢, at which S(t;) = aN/[(1+ Pag)f] by Proposition
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4.3.3. It is proven in Proposition 4.3.4 that P4y is a decreasing function with respect
totg as long as t,, > ty. Therefore, if we shorten the hitting time ¢,,, the corresponding
premium P4p will increase, which in turn decreases the susceptible function S(t) and
increases the point of inflection ¢;. In other words, the graph of the reserve function
becomes flatter, as the lowest deficit rises and the hitting point gets closer to the
point of inflection.

It is natural to conjecture that as we shorten the hitting time £,,, there must
be a certain point where the point of inflection ¢; overlaps the lowest deficit time ¢y,
as shown in Figure 4.3. Translated in mathematical terms, this means

aN
BlL+I(tm)/S(tm)]

which in turn implies that S(t..) + I(tm) = alN/B . We now -prove this interesting

= S(tm) ,

point and find the corresponding premium in the following proposition.
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Figure 4.3: Benefit reserve function V(¢) for AH plan for the Great Plague, Pag =
202.17. Double arch structure and strictly increasing as explained in Proposition

4.3.4.

Proposition 4.3.4. For the insurance factor system in (4.9) - (4.11), the reserve
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V(t) is concave and strictly increasing, if

aN e
P — — 1) - .
AH > 3 eXP(aN ) =1, (4.29)

where the constant ¢ = Iy + So — aN/G log(S) .

Proof. To ensure that V’(t) > 0, we need

I1(t)
P
AH > S(t) for all ¢,
or equivalently,
log Pag > log I(t) —log S(t) forall ¢.

Let f(t) =logI(t) — log S(t) , then

A T
= —[SHt)+I()] - «, by (2.1) and (2.2).

Since S(t) + I(t) = N — R(t) is monotonically decreasing, at the time ¢, when
S(tm) + I(tm) = aN/B , (4.30)

f'(t) changes from positive to negative and f(¢) reaches the local maximum. In other
words, Pay is a decreasing function of ¢ as long as t > t,,. Thus P,y is required to
be greater than I(t,,)/S(tm) .

Now since

() _dit) _ (BS@/N-o)l(t) _ | eN
s ds@)  -ASHIE)/N pS(t)
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integrating to find the orbits of the (S, I)-plane gives:

N
I(t) + S(t) — f‘iﬂ— log S(t) = ¢, (4.31)
where ¢ is a constant of integration for each specific orbit, say ¢ = Iy 4+ So —

aN/B log(Sp) . Combining (4.30) and (4.31), we can solve for S(¢) and I(t), as

S(tm) = exp(l- W) , (4.32)
I(tn) = % —exp (1 - f—;) . (4.33)
Hence
log Pag > f(tm) - (4.34)
Substituting (4.32) and (4.33) into (4.34) gives the condition (4.29). O

We are now in a position ready to find a proper premium between F(Tﬂ) and
Psg for the strictly increasing case, in order to achieve certain reserve standards.
For instance, if the reserve is required to be above a certain level V| we start by
letting Pag = ?(Z%), then increment the premium each time by a monetary unit
(say, h = $0.01) until V(¢,,) > V. Once we determine the desirable premium, the
benefit of V(T')/S(T') should be set up as a liability to the remaining policy holders

according to the equivalence principle.

4.4 Numerical Examples

The first numerical example of Great Plague in Eyam was first studied by Raggett [25],
and has been considered a classical case study in many textbooks because predictions

from the model are remarkably close to actual data. The second example of six
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compartment model was originated from Chowell et al. [§], in which parameters were

primarily used for measuring basic reproduction number.

4.4.1 Great Plague in Eyam

The village of Eyam near Sheffield, England, suffered an horrific outbreak of bubonic
plague in 1665-1666. The plague was survived by only 83 of an initial population of
350 villagers, and detailed records were preserved as shown in Table 4.2. In Raggett
[25], the disease in Eyam was fitted by the SIR model, over the period from mid-May
to mid-October 1666, measured in months with an initial population of 7 infectives
and 254 susceptibles, and a final population of 83. Since the disease was fatal at that

time, infected individuals eventually died due to the disease.

Date Susceptibles | Infectives
Initial 254 7
July 3/4 235 14.5
July 19 201 22

August 3/4 153.5 29
August 19 121 21
September 3/4 108 8
September 19 97 8
October 4/5 Unknown Unknown
October 20 83 0

Table 4.2: Eyam plague observation of susceptible and infective populations in 1666.

Data source: Raggett [25], Table II.
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According to (4.31),

aN alN
210950 = Ing + Seo — =
g 90 3

from which we obtain an expression for 5/(a/N) in terms of the measurable quantities

Io+ Sy — logS ,

So, Io, Seo and I, namely
Jé; logsﬁo’;

aN ~ Syg—Se
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Figure 4.4: Function of susceptibles S(t) and infectives I(t)

The relation with Sy = 254, Iy = 7 and S, = 83 gives aN/f = 153. The pa-
rameter « is determined by its reciprocal, which has the clinical meaning of an average
infectious period. From clinical observations, an infected person stays infectious for an
average of 11 days or 0.3667 months before death, so that @ = 2.73 and §/N = 0.0178.

The resulting graphs of S and I, as functions of time t, are given in Figures 4.4.
Insurance coverage would not directly reduce the transmission of the disease,
but a well-designed insurance system could have provided financial incentives for

prevention measures and compensate for hospitalization and other medical costs and
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services. To develop this insurance model, we assume that everyone in the village
foresees the coming of the Great Plague and willingly chips in the mutual insurance
group at the beginning of the epidemic. The insurance funding is secured with a
monthly force of interest of 0.2%. The insurance period lasts 5 months which matches

the duration of the epidemic.

Plan | P.V. Benefits | P.V. Premiums | Level Premium
1 65015.62 610.41 106.51
2 242508.27 610.41 397.29
3 172385.38 610.41 282.41
4 349878.02 610.41 573.18

Table 4.3: Eyam plague premium rating (dollar)

1. Annuity for Hospitalization (AH):

This plan provides infection benefits continuously at the rate of $1000 per month
until death for every infected individual regardless of how long he or she has en-
tered the class. The insurance liability is terminated after death. It is purchased

continuously by susceptible individuals.

2. Annuity for Hospitalization with a Death Benefit (AHD):

This plan contains all of the same benefits as in the previous one plus an addi-
tional death benefit of $1000 payable at the moment of death. The insurance

liability is terminated after death. It is also purchased in the same pattern.
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3. Lump Sum for Hospitalization (SH):

This plan provides a lump sum infection benefit of $1000 at the moment of the
individual being diagnosed infected. The insurance liability is terminated after

death. It is purchased continuously by susceptible individuals.

4. Lump Sum for Hospitalization with Death Benefit (SHD):

This plan contains all of the same benefits as in the previous one. In addition,
a death benefit of $1000 is payable to specified beneficiaries at the moment of
the insured’s death. The insurance liability is terminated after death. It is

purchased continuously by susceptible individuals.

Table 4.3 gives net level premiums for each plan determined by the original
equivalence principle. It probably differs from what one might have expected that
the premium of the annuity for hospitalization plan is not even half the premium c;f
the lump sum for hospitalization plan. Note that although it seems to cost more for
the former plan to provide $1000 per month not only for new infectives, but for all
existent patients. The fact is that few of them survived longer than a month after
the disease was detected. Therefore, providing infectives immediate indemnity costs
an insurer much more than a monthly annuity for such an acute fatal disease.

Just as benefit reserves in life insurance, the reserve functions, shown in Figure
4.5 for the infectious disease coverage, reaches zero at the end of policy duration, when
the insurer’s liability is terminated. However, as discussed in Section 4.3, every reserve

function in our example appears to go through a negative phase, which dangerously
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v

Figure 4.5: Benefit reserve V (t) with premiums determined by the equivalence prin-

ciple. Clockwise from the top left corner Plan AH, AHD, SHD and SH.

reduces the insurer’s financial solvency. Thus there is a need for our algorithm that
adjusts premiums to meet the financial requirement such as that benefit reserve must
not be allowed to go under zero.

Since the death and hospitalization benefits remain the same and only premiums
are raised to ensure insurers’ nonnegative reserve, the equivalence cannot be estab-
lished unless the insurer clears off the reserve balance in the form of another benefit

for the remaining survivors. Therefore, in each plan we add a new insurance liability
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Figure 4.6: Benefit reserve V (¢) with adjusted premiums and survival benefits. Clock-

wise from the top left corner Plan AH, AHD, SHD and SH.

that every survivor of the epidemic is entitled to an equal payment of dividends. Table
4.4 illustrates the adjusted premiums for each plan and the final dividend payment

to survivors.
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Plan | Adjusted Premium | Survival Dividend | Terminal Reserve
1 128.38 184.74 14170.81
2 478.86 689.11 52858.76
3 370.76 756.95 58062.73
4 715.02 1209.73 92793.84

Table 4.4: Eyam plague adjusted premiums (dollar)
4.4.2 SARS Epidemic in Hong Kong

In the classical SIR model, the assumption that the mixing of members from different
compartments is geographically homogeneous is probably unrealistic. Susceptibles in
geographical neighborhoods of an infectious virus-carrier are more likely to be infected
than those more remote from the carrier, while health care workers are at higher risk
of infection than other populations.

To distinguish different levels of infectiousness within different social groups,
spatial structures were introduced and developed in epidemiological studies. A typical

example of a spatial structure applied to the SARS epidemic in Hong Kong is defined
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by Chowell et al. [8] in the following ODE system,

Sit) = —5sl(t)l(t)+qE]$)+”(t), £>0, (4.35)
S0 = —ppsyn HELEYO (4.30
E(t) = ﬁ(Sl(t)+p52(t))l(t)+qE]E;)+lJ(t)—kE(t), £>0, (4.37)
I(t) = kE(®) - (atm+8I(), £>0, (4.38)
J(t) = al(t)— (v +5)J(t), >0, (4.30)
R'(t) = mI{)+1J(), t>0. (4.40)

In this model, there are two distinct susceptible compartments with different
levels of exposure to the SARS, namely S; for the most susceptible urban community
and S, for the less susceptible rural population. Initially, S;(0) = pN and S3(0) =
(1 — p)N , where p is the proportion of urban inhabitants in total population. An
average highly susceptible person (in the Class S;) makes an average number of (3
adequate contacts (i.e. contacts sufficient to transmit infection) with others per unit
time. Due to lower contacts with infecteds, an average lower susceptible person (in
the Class S2) would only be exposed to an average number of p3 adequate contacts
with others per unit time.

Because an individual infected with SARS may experience an incubation period
of 2-7 days, the first infectious class is set up for those infected but not yet symp-
tomatic. The parameter ¢ is used to measure the lower level of infectivity during

the incubation, after which an individual would develop observable symptoms and
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become fully infectious in Class I with ¢ = 1.

In order to distinguish their potential disease transmission to general public,
the Class I is separated for those infectious individuals that are undiagnosed. Since
almost all diagnosed cases are quarantined in hospitals, the Class J has a lower
infectivity level reflected by a reduction factor [.

The rates of population transferring from F, I and J to their chronological next
compartments I, J and the recovered class R are respectively &k, a and -y2. Considering
that even before being diagnosed SARS patients may either recover naturally at the
rate of y; or die at the mortality of d, we also have the class D keeping track of
deaths induced by the SARS from two sources I and J. The patients under medical
treatments in Class J suffer death at the rate assumed to be the same as the mortality
in Class 1.

Notice that both £ and I are undiagnosed phases, there is literally no statis-
tical data for estimating their parameters. Therefore, another compartment C' for
reported probable cases is set aside to trace back the original time of incidences by
a model similar to (4.1). Figure 4.7 gives transfer directions among the different
compartments.

To avoid getting into details of parameter inference, we make use of parameter
values from the original paper as summarized in Table 4.5. These parameter values
were used to compute the basic reproductive number Ry in the original article, which

is probably the reason why there appears to be negative numbers in Classes I and J.
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Figure 4.7: Transfer diagram of the SARS epidemic dynamics, Reprinted from the

Figure 1 in Chowell [8].

From an insurer’s point of view, this model could offer many business opportu-
nities. On the one hand, individuals in Classes S; and S, are potential buyers facing
the risk of being infected with SARS. On the other hand, there is an evident need for
insurance covering vaccination costs in both S; and Sz, medical examination expenses
for probable cases in Class I, hospitalization and quarantine expenses for Class J and
death benefit for Class D. Since a number of parties are involved in the health care
system, such as insurance companies, policyholders, government health agencies, and
hospitals. Numerous business models could be designed to bring them together. To
illustrate a case of such an infectious disease insurance, we design the following two

plans.

1. Annuity for Hospitalization Plan
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Parameter | Moving from/to | Value
B S1, S2/E 0.75
q reduced infectiousness 0.1
l reduced infectiousness | 0.38
P reduced susceptablity 0.1
k E/I 1/3
@ I1/J 1/3

g I/R 1/8
72 J/R 1/5
8 I,J/R 0.006
p reduced contacts 0.4

Table 4.5: Parameter values that fit the SARS model for Hong Kong, adapted from

the Table 1 in Chowell et al. [8].

Every participant of the mutual insurance funding purchases the coverage by
means of a life annuity. Rural inhabitants are charged lower premiums propor-
tional to their reduced susceptibility. From the time of policy issue to the end of
the epidemic, every insured is eligible for claiming a medical examination fee of
$100,000 once observed with suspicious symptoms, and hospitalization expenses
of $100,000 per day, in the form of a life annuity for the period under medical
treatment in hospital. Specified benefiaries can claim for a death benefit of

$100,000 after an insured’s death due to the infectious disease. The insurance

54




liability terminates at the end of the epidemic.

2. Lump Sum for Hospitalization Plan

This plan contains all of the same benefits as in the previous one except that
the annuity for hospitalization benefit is replaced by a lump sum payment of
$100,000 after the policyholder is detected to be infected with the disease. The

insurance liability terminate at the end of the epidemic.

Table 4.6 gives net level premiums for each plan determined by the original

equivalence principle.

Plan | P.V. Benefits | P.V. Premiums | Level Premium

1 3.0571 x 108 1.71604 x 108 1.78

2 1.3231 x 108 1.71604 x 108 0.77

Table 4.6: SARS insurance premium rating (dollar)
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Chapter 5

Premium Approximation in

Stochastic Models

There have been abundant and extensive studies in epidemiological stochastic mo-
delling. Looking only at a tip of the iceberg, we introduce in this chapter a short
time horizon model studied by Lefévre [20], with slight changes in its interpreta-
tion. Readers interested in a comprehensive overview of stochastic ordering and its
application in epidemiology are referred to Shaked and Shanthikumar [27]. In most
deterministic and stochastic models, the mass action law is widely used to explain
movements among epidemiological stages. The non-linear terms in (3.1) - (3.2) and
(4.35) - (4.37) are typical examples. But the short time horizon model, originated in
the context of AIDS epidemics, describes the dynamic of transmission as probabilistic

events. It considers the infectivity levels and the numbers of contacts as dependent
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random variables.

To approximate premiums based on the model dealing with dependent varia-
bles, we develop the idea of comparing stochastically ordered comonotonic variables
and then estimating premiums with the best possible variable. For a reference on
comonotonicity, readers are suggested to Dhaene et al. [13] and [14].

An alternative method is also presented with the concept of copulas, which is a
more powerful tool in defining and analyzing dependency among inter-reacting varia-
bles. Constructing a transform of uniformly distributed variables based on empirical
copulas, we are able to approximate any two dependent variables with information
of their marginals and in turn calculate insurance premiums. The geometric con-
struction of copulas is extensively discussed in Mikusiriski et al. [21]. Readers with

interests in general theory of copulas are referred to Nelsen [23].

5.1 Short Time Horizon Model

The framework of this epidemiological model on a short time horizon was first intro-
duced by Eisenberg in the context of AIDS research and later extended by Lefévre
[20]. An advantage of this model is that the number of contacts with different indi-
viduals and their infectivity levels are treated as random variables instead of fixed
constants in our deterministic model, and the probability of infection is relatively
easier to calculate without the non-linear term from the mass action law.

We assume that in a short period an individual would have sexual contacts
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with partners at a fixed number [ of distinct infectivity levels. With partners at level
j=1,2,---,1, the individual will make a random number R; of contacts. At each
single contact with partners at level j = 1,2,--- ,1, the odds are B; of the individual
being infected with AIDS. Moreover, the number of contacts R; is independent of the
infectivity level B;. Therefore, the probability of a person not contracting AIDS over

the short horizon is
P(B, R) = E[(1 - B)™ (1 By)™ .- (1- B)R], (5.1)

where the probability P(B, R) depends on the random vectors B = (B1, By, - -, By)
and R = (R, Rs,---,R;). From an insurer’s point of view, P(B, R) is also the

premium charged to the individual for a unit benefit insurance.

5.2 Random Sum and Comonotonicity

Definition 5.2.1. A random variable X is less than Y in stochastic order (denoted
by X <. Y), if

P{X > u} < P{Y > u}, forallu e R.

Roughly speaking, X is less likely than Y to take on large values. The above
definition is also equivalent to E[g(X)] < E[g(Y)] for any increasing function g(-).
The generalization to the multivariate stochastic order is that E[g(X)] < E[g(Y)] for

any multivariate increasing function g(-), which means g(A) < g(B) if A< B€R".
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Definition 5.2.2. A random variable X is less than Y in convez order (denoted by

X £ Y), if and only if
EX—-d);<EY-d);,and B(d—X); < E(d-Y); foralld>0.

Similarly, it can be proven that X <. Y is equivalent to E[g(X)] < E[g(Y)]
for any convex function g. The multivariate convex order X <. Y is defined in a
similar fashion that E[g(X)] < E[g(Y')] for all convex function g : R* - R .

In the context of utility theory, the convex order represents the common prefe-
rences of all risk-averse decision makers between random variables with equal mean.
As a natural interpretation of convex order, in practice the random variable X is
preferred over Y (X <. Y), since X is less likely to take on not only excessively
large positive values, but also negative ones. In other words, the density of X is less

widespread than Y.

Definition 5.2.3. A random variable X is less than Y in moment generating function

order (denoted by X <y Y), if and only if
E[t*] > E[tY],  forallte (0,1).

An equivalent condition of the above definition is that E[¢(X)] > E[¢(Y)] for
all completely monotone functions ¢, provided the expectations exist. Its multivariate

analogue X <. Y is defined by
E[Htf"] > E[th} . forall (ty,--- ,t) € (0,1)" .
i=1 i=1
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The relation among the above three orders is that
X<V = X<V = X<y Y.

In the recent actuarial literature, the concept of comonotonicity was introduced
and developed in order to provide upper bounds, in the sense of convex order, to
estimate convex sums of dependent variables. For instance, think of the random
vector X = (X1, Xs, -+, X,) as a portfolio of mutual fund investments. For a risk-
averse investor the worst possible portfolio is the one in which different stock prices
are positively dependent with each other. In that case, if the price of one stock
goes down, all other stocks follow the same trend and the whole portfolio would
depreciate by factors of the portfolio size. This “all eggs in one basket” scenario is
best described by the concept of comonotonicity. The most straightforward definition

of a comonotonic vector reflects the complete dependence among its components.

Definition 5.2.4. A random vector X = (X3,Xs,---,X,) is comonotonic if and
only if there exists a random variable Z and non-decreasing function fi, fa, -, fa,

such that

X =4 (fl(Z),fQ(Z)’ e 7fn(Z)) .

The merit of this definition is that for simulation purposes one can easily gene-
rate a comonotonic vector by imposing certain transforms on a single random variable.
An important property of a comonotonic random vector X is that its joint distribu-

tion can be characterized by the minimum of its marginals : Fx(z1,2Z2, - ,Zn) =
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min{ Fx, (z1), Fx,(x2), -, Fx, (zn)} . An equivalent definition that reveals the essence
of its dependence structure is implied in Proposition 5.3.2 of Section 5.3.
Now we are able to construct a comonotonic random vector with the same

marginal distributions as X = (X3, Xs,- -+, X,,) by letting
Xe = (XIC’XZC’ T ’XTCL) =4 (F)EI(U)7F}E21(U)7 T ,F)Ej(U)) )

where U is a uniform random variable on [0, 1] . Therefore all X{’s go hand in hand
to large values, hence the probability of the sum taking on small values is minimized.

It is not difficult to prove that when n = 2, there is an important inequality
related to two dimensional comonotonic vector, which is essentially a vector version

of the famous Fréchet-Hoeffding bounds (ref. Section 5.3):
Fxl(U)+ Fx,(1-U) € X1+ X2 < Fx, (U) + Fx}(U) . (5.2)

The generalization of the right-hand side is a main contribution of the comonotonicity
theory in recent literature. For any random vector (Xi, Xs,---,X,), it has been

proven that
SéX1+X2+---+XnScme—}-XzC_}_..._i_XzéSc.

It is evident that the comonotonic sum is the largest in convex order among all
random sums with the same marginals as X. However, because of its little flexibility,
it is unknown to what extent a real random sum can be approached by the upper
bound. Calculating premiums based on the comonotonic vector will surely lead to

overestimation of costs.
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To solve the problem, a next step in research has been made to consider addi-
tional information available concerning the stochastic nature of X = (X7, X, -+, Xy,).
More precisely, we assume that there exists an auxiliary random variable A which con-
tains certain information about the joint distribution of X, such that given A = X
we know the conditional distributions of the random variables X, so for all possible
values of A\. Therefore the comonotonic component of the vector X|A = X is defined
by fi(u,A) = F)Eil| A=y (©). The notation F )Elll  represents the two dimensional random
variable which has the same marginal distribution as the original.

It has been proved that for any random variable A , independent of U ~ U[0, 1],
Xi4 4 X Sa Fyp(U) 4+ F y(U) <o Fi (U) + -+ Fx (U)
Now we are interested in seeking answers to the following questions :

1. Is it possible to find a family of stochastic bounds depending on A , in which

each bound could be convex-ordered?

2. Is there any manageable measure that can assist us to compare conditional and

unconditional bounds?

If all these questions could be answered properly, we might be able to obtain an
optimal stochastic bound which makes the conditional comonotonic upper bound as
small as one needs.

The following propositions provide our own answer to the first question that if

the conditional vector satisfies certain properties, the two dimensional upper bound
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might be improved by adjusting the auxiliary variable in a stochastic order.

Proposition 5.2.1. Let Ay and Ag be two random variables with supports in x such
that A1 <g Ao. If whenever A < X,
X1|A A(U) oot F§5|A=A(U) St F);11|A=,\'(U) +o Tt FX1|A )\'(U) (5.3)
then,
F)EIIIAI(U) o Fog (U) <o Fy i, (U) 4+ FY! |A2(U) (5.4)
Proof. For the sake of notational convenience, denote F’ );11| a=A(U) by X7 . Therefore
we need to prove that
f,/\l + + X A \St ch,/\'z + T + ‘X’rCL,Az
Note that by (5.3) P{X{, +---+ X > s} is increasing in A for all s. Thus,
P{X{y 4+ + X0y > s} = / P{XS\ 4+ XS, > s}dF,(Y)  (5.5)
X
< / P{XS, 4+ -+ X%, > s}dFa,(Y)  (5.6)
X
= P{X{j, + -+ X;a,>s}, forals, (5.7)

where the inequality follows from the fact that Eg(A1) < Eg(Az) for any increasing

function. O

A similar conclusion works out in the same manner if we replace the convex
sum F 1|A o)y+---+ F-;ilAl( ) by ¢(F X1|A a)y+---+ F§:|A2(U)) where ¢ : R™ —
k 'k > 0, is an increasing function. The substitution is also applicable in the

following corollaries.
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Corollary 5.2.2. Let A1 and Ay be two random variables with supports in x such
that A1 <o Aa. If the tail probability P{F);11|A=)\(U)+' : '+F);:|A=)\(U) > s} is convex

in A, then
FeinU) + -+ Fil o (U) <o Fxlp,(U) + -+ Fln, (U) - (5.8)

Proof. 1t follows the same argument as in the above proof except that the inequality
in (5.5) - (5.6) is derived from the condition that tail probability P{F );lll acnlU) +

et F);iIA:,\(U) > s} is convex in . O
Corollary 5.2.3. Let Ay and Ay be two random variables with supports in x such
that Ay <ex Mo, If E(F)?llm:,\(U) +o F)}:M:/\(U) — 8)+ is convez in A, then

FanO) + -+ Fily (U) Seo Filp,(U) + -+ Fl ), (U) (5.9)
Proof. Since E(F)EII]A:/\(U) +o 4 ngmz)‘(U) — 8)4 is convex in A, therefore

E[(Xip +-+Xop —d4] = /E[(ch,/\ +o+ Xo - d)y] Fu(A)

X

< B0+ X = da] ()

X

= E[(X{s, + -+ X4, —d)y], foralls.
O

Corollary 5.2.4. Let Ay and A2 be two random variables with supports in x such

-1

F U
that A1 <o Ao, If BT t-XflA:A( : is convex in A for all (t1,--- ,t,) € (0,1)",
i=1"1

then
(Frin0)s - Fxin, (U)) Zmos (Fifin, (U Fxop, (0)) - (5.10)
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Proof.

E[ﬁtimw)] _ /E Ht Frlian gw] ()

=1 X 1=1

P
< /E Ht XilA= )\(U)] dFAz(A)
P el
= E[l—[t1 X”A(U)], for all £.
i=1
Therefore it follows that (Fi s (U), -+, Fxlx (U) Zmes (Fxiia,(U)s -+, Fcha, (U))
from the multivariate definition. O

Since a probability generating function can always be written as a moment

Fyjama(0)
1= ltz

generating function, the condition that E[H ] is convex in A for all
(t1,--+ ,tn) € (0,1)" can be replaced by the one that E[exp >y S F;illAz/\(U)] is
convex in A for all (s1,---,s,) > 0.

Coming back to the epidemiological model we start with, we now focus on the
impact on the survival probability P(R, B) of adjusting auxiliary variables related to
the number of contacts and infectivity levels. Following the idea in Lefévre [20], we
distinguish two cases for comparison purposes.

In order to analyze the effect of the number of contacts, we first assume that
an insurance provider has enough information about how many infectious groups the
insured will be in contact with and the distribution of infectivity in a single contact
with each group, that is to say Bj;’s are known. Also assume that the insurer has

first-hand information of a family of auxiliary indicators relating to the policyholder’s

sexual activities and can make inferences on the conditional distribution of the number
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of contacts, i.e. F];1|A=>\ are known, fori =1,---,7.
If the conditional random variable F' gj A=y (U) satisfies any of the conditions in
the above proposition and corollaries, an optional comonotonic bound for the survival

probability is attainable at the minimum variable, in the sense of stochastic ordering.

Proposition 5.2.5.

C A -1 -1 -1 -1 A C
R IA] = (FR1IA1’ T ’FRllAl) Smgf (FRllAz’ Y ’FRt!Az) =R |A2

— P(R°|A;) > P(RY)A,) -
Proof. From (5.1) we can write P(R|A, B) as
P(RC|A7B) = E[f(Bly o )Bl)] 3

where f(by, -+ ,b) = E[(l — o)A (1 —p)RNMB =by,--- B = bl] is the pro-
bability generating function of R¢|A. Denote the distribution function of (By, - - , B;)

by Fg . Therefore,

P(R’|A, B) = / Elfun (b1, - b)) dF
Rl

P / E[fR|A2(b1a"' 7bl)] df'p
R

= P(R°|A,) .
O

To analyze the effect of the infectivity levels, we assume that the insurer grasps

enough information about the person’s sexual habits with others, i.e. R; is available
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and is also able to estimate the infectiousness of each infectivity group through some
demographical indicators. Even though, because (1 — b;)™ is not always convex in b;
as r; changes, it is very difficult to proceed the way we did for the number of contacts.
The model has been modified by Lefévre with the assumption that the probability
of infection depends on the dose of virus d; carried through in a single contact with
group 7, i.e.

1-B;=b(D;), j=1,--,1,

where D; = (dy,--- ,d;) and b satisfies that log[b(d)] is convex in d . It is not difficult
to prove that the function b(di)™ x --- x b(d;)™ for fixed (r1,---,m) is convex in
terms of (dy,- - ,d;), which paves the way for the Proposition 5.2.6. Within a family
of demographical indicators {Ax}, the insurer may want to use the smallest one, in
the sense of convex order, to estimate infectivity levels and then the upper bound of

the survival probability P(R, B).
Proposition 5.2.6.

DclAl 2 (F1;11|A1’ T ’F1511|A1) gca: (FD_11|1\2’ o ’FD_lllAz) & DC|A2

Proof. Denote the distribution function of (Ry,- - , R;) by Fr. From (5.1) we express

I

PR BN = [ B{DIAN™ - BDAI R = oo+ R =} dF

N

/R, E{[b(D5|A)]™ - (D) |Ry =r1,--- , Ry =11} dFp

= P(R, B°|As) .
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O

Lack of efficient tools to measure the distance from the real vector and the
conditional upper bounds made us difficult to answer the second question. To this
purpose we resort to the concept of copulas, which is well-known as a tool to measure

dependence.

5.3 Random Sum and Copulas

The study of copulas, which was initiated by A. Sklar in 1959, has recently become the
center of attention for statisticians working on dependent variables. A copula, literally
a joint distribution with uniform marginals, describes an underlying non-parametric
dependency relation among random variables generated by uniform variables. Given
marginal distributions, the joint distribution of any inter-reacting random variables
would be determined uniquely by their copula. As actuaries always encounter situ-
ations with only information of marginal distributions readily available, the copulas
find natural applications in actuarial science. A comprehensive investigation of appli-
cation in the recent actuarial literature is given by Frees and Valdez [16].

In this section, we narrow down our discussion to the two dimensions. For
notational convenience, I = [0,1] and I? is the unit square [0,1] x [0,1]. Here we

introduce Sklar’s original definition of copula.

Definition 5.3.1. A two dimensional copula is a function C' : I? — 1 with the
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following properties:

C(u,0) =0=C(0,u) and C(u,1) =u = C(1,u) ,whenever u € I ; (5.11)

C(Ug, UQ) — C(U2, Ul) - C(Ul, UQ) + C’(ul, ’U1) 2 0 , (512)

whenever 0 S w3 < wp <land 0 < vy < vy < L

One important property of copulas is that they are uniformly continuous on

their domains, i.e. for any uy, us,v1,v2 €1,

|C(u2,v2) - C’(ul,vl)| < |u2 - U1| + |’l)2 — V1] .

For the proof, we refer to Theorem 2.2.4 in Nelsen [23].

A visualization of a copula can be obtained from a unit square diagram, on which
the unit probability mass is spread out in a certain pattern. The probability mass
assigned to a rectangle [u;, v1] X [ug, vo] € I? is determined by C(ug, v2) — C(uz,v1) —
C(u1,v9) + C(uy,v1) . From the property (5.11), one can see that in a unit square
diagram the probability mass to the left of any vertical line £ = u is v and the mass
below any horizontal line y = v is v.

The three most important copulas, defined as follows, each have an interesting
geometric characteristic as shown in Figure 5.1. TI(u,v) = w - v is the independent
copula, by which the unit probability mass is uniformly distributed in I ; M (u,v) =
min(u, v) referred to as the Fréchet-Hoeffding upper bound, assigns the unit mass

uniformly along the main diagram of I?; W(u,v) = max(u + v — 1,0), called the
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Fréchet-Hoeftding lower bound, distributes the unit mass along the secondary diagonal
of I2.

Fy : 4

v

@ (®) (©)

Figure 5.1: Unit square diagrams of W, Il and M.

The following theorem reveals the one-to-one correspondence between copulas

and joint distributions with given marginals. The proof can be found in Nelsen [23].

Theorem 5.3.1. (Sklar’s Theorem) Let H be a joint distribution function with marginals

F defined on Dp and G defined on Dg. Then there exists a copula C such that for

allu, v inl,
C(u,v) = H(F (u), G (v)) . (5.13)

If F and G are continuous, then C is unique; otherwise, C' is uniquely determined on
Dp x Dg. Conversely, if C is copula and F and G are distribution functions, then

the function H defined by

H(z,y) = C(F(z),G(y)) , r,ycR. (5.14)
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is a joint distribution function with marginals F and G.

By definition, it is not difficult to prove that the Fréchet-Hoeffding bounds are

universal for all copulas:
W(u,v) < C{u,v) < M(u,v) , u,vel.

As a consequence of Sklar’s theorem, if X and Y are random variables with joint
distribution H(z,y) and marginals F(x) and G(y), respectively, then the above in-
equality can be written as

max(F(z)+ G(y) — 1,0) < H(z,y) < min(F(z), G(y)) , for all z and y.

Proposition 5.3.2. Let X and Y be two U(0,1) random variables with joint distri-
bution M(u,v), then

X=Y, a.s. .
Proof. By Sklar’s Theorem, H(z,y) = M(F(z), F(y)) = M(z,y) = min(z, y) . Since
Flz)=PX <z] = PIX<z,Y <z]+PX <z,Y > 1]
= H(z,z)+PX <z,Y > 1]
= z+PX <2,Y >2al, for all z,
then P[X < z,Y > z] = 0 for all z, which leads to P[X < Y] = 0. Similarly,
F(y) =Py <y = PX <y, Y <y +PX >3,V <y
= H(y,y) +P[X >y, Y <y

= y+PX>yY <y], for all y,
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then P[X > y,Y < y] = 0 for all y, and hence P[X > Y] = 0 . Therefore we have

that (X =Y]=1-PX <Y]-P[X >Y]=1. 0

At this point, it is clear that a comonotonic vector (also called Fréchet-Hoeflding
upper bound) is essentially constructed by two uniform random variables with perfect
positive linear relation. The Fréchet-Hoeftding lower bound is generated as shown in
(5.2) by two uniform random variables that have perfect negative relation.

A natural question arises - is it possible to change the relationship between the
two U(0, 1) variables in a way that they are not so positively nor negatively related,
in order to approximate other copulas in between the Fréchet-Hoeffding bounds, and
then transform the variables with given marginals to approach any desired joint distri-
butions? Mikusiriski et al. {21] give an confirmative answer by geometric construction
of copulas on the unit square diagram. We shall use their brilliant idea and represent
the constructed relation between the two uniform variables in an analytic function
form.

The most amazing result Mikusiniski et al. [21] proves is that any copula C can

be approximated by a shuffle of M, which is defined as follows:

1. Cut the unit square diagram of copula C into n equally spaced vertical strips
labelled from left to right by V1, ---,V, and n equally spaced horizontal strips
from bottom to top by Hy,--- , H,. The probability mass in each block V; N H;

is denoted by m;; .
2. Slice the unit square diagram of M in the same way as in Step 1, then divide
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each vertical strip V; into n substrips, labelled from left to right by Vi, -, Vin,
and divide each horizontal strip H; into n substrips, labelled from bottom to
top by Hj1,--- , Hjn , in such a way that the width of each column Vj; is my ,

and the height of each row Hj is mjy .

3. In each square V;;N H}; , spread out the probability mass of m;; uniformly along

its main diagonal.

It is also mentioned in Mikusinski et al. [21] that during the shuffle, some strips
could be flipped around vertical axes of symmetry, which means that one could finish
the same task by changing some split parts of M into those of W or completely by
shuffling with the copula of W in a similar manner.

Apart from the technical description, one can think of the shuffle in a more
straightforward way as shown in Figure 5.2: Divide the unit square into n vertical
strips, and each strip is sliced into n smaller columns, each numbered from 1 to n.
Those called the same number are grouped together to form a new strip, in the order
from 1 to n. The resembled picture is the outcome of the above shuffle, the unit
square diagram of copula C’. The copula C’ can be made as close as one wants to
the original C' by increasing the number of stﬁps n.

As a consequence, one can imagine that every copula can be approximated as
close as one wants by a number of manipulation on M, which is the copula of two
uniform variables with almost surely perfect positive linear relation. Vitale [28] proves

that any pair of uniformly distributed variables can be approached by a sequence of
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Figure 5.2: Shuffle of the support of M

variable pairs, in which one variable is an invertible function of the other. Now
following the idea of shuffling M, we are able to specify these functions in analytical
forms.
In order to keep track of movements in a shuffle and their effects on changing
the copula, we define a translation of rank n by the following function
n o n
T8 (2) =D (@ — ayj + a;)1{{ay < z < by}, (5.15)
i=1 j=1
where {[a;j, bij]}ij=1, n is the partition of I corresponding to a shuffle. Each vertical

strip is labelled by [asj, b;j] . Note that a; ;1 = by; .
Proposition 5.3.3. If U is a uniform random variable, so is Té.")(U).

Proof. Note that Tg‘)(az) is symmetric about y = z, so it equals its own inverse
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function. If u € [ap;, bu , then T, é")(u) € [a, bin] and therefore,

P{T, (n)( U)<u} = ZZP{U—aij+aji<U,aij<U<b¢j}

=1 j=1
hool
= ZZP{U—GU‘FGﬁ <u, a; <U < by}
i=1 j=1
ho1-1
= ZZ(%‘ —ay) +P{U—am+an <u, ap <U < b}
i=1 j=1
= apt+uU—ay since by -1 = an ,
= u.
Hence, Té")(U ) is also a uniform random variable. O

Lemma 5.3.4.

CU,Té")(U)(u’ v) = ZZ Hag S u<by, aji <v<bptM(aq, aji)

=1 j=1
—aiy; v — a4
+ ZZ(bw a” Y R 1 )l{aw u < b,‘j y Qji v < bji}
=1 j=1 bij — ai; by — ai;
—a; u—a
+ Z Z(b” aZ])M v i Y1{ai; < u < bij,v > bj;}
~ = bij —aij * bij — 4

+ ZZ(% a”)M( G YT YHu 2 bij,a5i < u < bj} .

)
i=1 j=1 — G bji — 45

Proof. We first study the range of the pair (U, Tén)(U )). It is easy to find that

SN Play S U <by, a; STEU) < b} =

i=1 j=1
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and whenever a;; <u < by;, aj; < v < by,

Pla;; KU <u, a; < Té")(U)<v} = Play; <U<wu, aj <U —aj + a5 < v}
= Plai; < U <u, a;; U <v—aj+aij}

(by Proposition 5.3.2) = M(LT% VT4

).

?
bij — Q5 bij — Qg5

From (5.13) in Sklar’s theorem,

C = P{U <u,TS(U) < v}

UT(")(U)(U’ U)

—ZZ]P’{U u, (n)()<v,aij<U<bij,aji<Tén)(U)<bji}

i=1 j=1
= ZZ [P{a” U<u, a; <TOU) <v} {ay; <u<by, aj <v< by}
i=1 j=1

+ P{aij<U<b,-j,aﬂ T( )( )<U}1{u>bi]~,aﬁ<v<bﬁ}
+ ]P’{a” U<u aﬂ TgL)(U) < bji } 1{U > bij y Qji Lv< bji}

+ (le — aﬁ)l{u 2 bjz' , U } bﬂ)} .
Replacing the probability formulas by M leads to the stated formula. a

Lemma 5.3.5. For any copula C and any € > 0, there exists a n such that

sup |CU’TgL)(U)(u, v) — Cu,v)| <e. (5.16)

u,vel
Proof. Let n = 4/e, and {[aij, bij|}i j=1,. » be the partition of I corresponding to the

shuffle T, C(.") . Note that b;, — a;1 = n . Therefore, there must be a certain 4, j such
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that a1 < u < bm and aj1 < V< bjn-

|C(U, U) - CU,Té">(U)(u’ U)' < |C(U, U) - C(aih ajl)l + |C(ai1: ajl) - CU,Tén)(U)(a'ilv ajl)l

+|CUyTén)(U)(aﬂ’ ajl) — C’U,Tém(U)(u, ’U)l

N

|C (bin, bjn) — C(ai1, a;1)| +0

+|CU,Té")(U)(am’ Ajn) — CU,Tg‘)(U)(al"’ )|

N

I/n+1l/n+1/n+1l/n=c¢.
The last inequality holds because of uniform continuity of copulas. a

Lemma 5.3.6. Let X and Y be continuous random variables ranging, respectively,
in Rx and Ry, with copula Cxy . If a and 3 are strictly increasing on Rx and Ry

correspondingly, then Cy(xya0v)(u,v) = Cxy(u,v) .

Proof. Let Fy, Gy, F» and G be the distribution functions of X, Y, a(X) and 5(Y) ,
respectively. Since a and 3 are strictly increasing, Fy(z) = P{a(X) < z} =P{X <

a~Y(z)} = Fila(z)] . Similarly, G2(y) = G1[B(v)] -

Cax) s (F2(2), Go(y)) = Pla(X) <z, B(Y) <y}
= P(X<a'(z), Y <O}
= Cxy(Fila(z)], Gi[8()])

= Cxy(Fy(z),Ga(y)) .
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Proposition 5.3.7. Let X and Y be two random variables with joint distribution H,

marginal distributions F' defined on Dp , and G defined on Dg, respectively. Let

H'(2,y) = Cfn (F (), Gy)) -
Then there exists an n such that

sup  |H'(z,y) — H(z,y)| <e. (5.17)
z€Dp , yeDg

Proof. One can easily define inverse functions F~! and G~! so that they are strictly

increasing. From the Lemma 5.3.6, we know that
Clran(:0) = Cs - s¢mauny (0)
It follows from (5.3.6) that
H'(2,y) = Ol (F (), G(v)) -
a

Now we are able to answer explicitly the question mentioned earlier. For any
two random variables with given information about marginals, their joint distribution
can be approached by a series of joint distributions converted from a uniform random

variable and its translation of certain form determined by their copula.

5.4 Empirical Copulas and Estimator

In actuarial practice, it is consistently easy to have two random variables with given

marginal distributions, whereas it is somehow difficult to find out their dependence
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and consequently many theories developed on assumptions of independence can not
be applied in real-life problems. The idea here is to make use of empirical methods of
finding copulas and then construct random variable estimators by shuffling the copula

of M.

Empirical copulas were introduced and first studied by Deheuvels [12].

Definition 5.4.1. Let {(xx,yx)}?_; denote a sample of size n from a continuous

bivariate distribution. The empirical copula of rank n is the function C, given by

- 2o 2oy Lesawwsun) , (5.18)

n

Co(

3 I

)

3|

where z(;) and y(;) ,1 <4,j < n, denote the order statistics from the sample.

Definition 5.4.2. The empirical copula frequency of rank n is given by

j 1/n, if (z;, ;) is an element of the sample,
én(=, ;) = (5.19)
0, otherwise.

i3
A0 Iy ~ /P
C"(ﬁ’ﬁ)_—z Cn( ) )
p=1 ¢=1
and
st Iy_pt Iy _p izt dy _aiiol s iml g -1
Cn(nan)—cn(nan) Cn( n an) Cn( ) )+Cn( L )

Definition 5.4.3. The empirical translation function of rank n is given by

n

5 (n j [nz]
T (z) = Z(; 2 = ) g, e 1 20y (5.20)
j=1
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In Proposition 5.3.7, we know that F~}(U) + G- Y{(T™{U)) — X +Y in
distribution. Therefore we can use Cy(F(z), G(y)) to approximate H(z,y) . In the
short time horizon model with [ = 2, if we are able to make inference of empirical

copulas of (Ry, Rp) and (B, Bs) , then the survival probability

P(B,R) = E[(1-B)™(1-By)™]

1 1 -1 -1 (n)
| [ = Bl O - F @) D do dy,
0 JO

Q

where the translations of rank n , Tg;)(x) and Tg;) (y) , can be approximated by the
empirical translation functions Té.l)(:c) and Tél)(y) , respectively.

Now we wrap up the discussion here by pointing out that for any number of
random variables with marginal information, we could estimate their empirical copula,
treat the variables as transforms of a uniform random variable, and therefore calculate

insurance-related quantities using the uniform variable. The extension from bivariate

empirical copula to multivariate and their algorithms are intended in future work.
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Conclusion

In the process of searching new actuarial tools of modelling infectious disease in-
surance, this thesis looks through related literature, both in actuarial science and
epidemiology. In deterministic cases, an SIR insurance model is set up for analy-
zing four typical insurance plans with different features. Following a short review of
state-of-the-art methods in parameter estimation, this thesis proposes an alternative
method based on numerical analysis. Then four approaches are given to fulfill the
ultimate goal of the thesis - find practical methods to calculate premiums. Some
of the methods are illustrated in two numerical examples. Due to the difficulty of
estimating parameters, we suggest that the insurance models should be applied to
periodic diseases with abundant data.

Moreover, in the discussion of a stochastic model, the theory of comonotonicity
and copulas is introduced and further developed to serve the purpose of approxi-
mating premiums for an infectious disease insurance based on the stochastic model.
In this part, we developed methods of comparing Fréchet-Hoeffding upper bounds

and constructing a translation function to construct copulas.
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Since research in this emerging type of insurance is just at the infancy stage,
much more work needs to be done to generalize the models in order to fit other aspects
and features of different diseases. There are lots of new techniques in mathematics of
infectious diseases that are not discussed in this thesis. We hope that the research on

infectious disease insurance will be expanded profoundly and put to use in the future.
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