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ABSTRACT
A New Sufficient-Order Blind Equalization Scheme

Vijay Jain

The data throughput or bandwidth efficiency of high-speed digital transmission over band-
limited channels can be increased by employing a blind equalizer. The traditional blind
equalization schemes, employing only adaptive finite impulse response (FIR) filter-based
structures, perform poorly for maximum-phase communication channels having deep
spectral nulls. This problem is due to the difficulty in modeling the inverse of the maximum-
phase communication channel with a finite-length adaptive FIR filter. Attempts have been
made to solve this problem by including both infinite impulse response (IIR) and FIR fil-
ters in the equalizer structure. However, these techniques are computationally demanding
and are very complex for a hardware implementation. In this thesis a new sufficient-order
blind equalization scheme is proposed that attempts to address some of the problems of
the existing techniques.

The proposed sufficient-order blind equalization scheme is based on a structure that
makes use of an adaptive IIR predictor, an FIR filter, an adaptive FIR filter, and two block-
based time reversers. New algorithms for the adaptation of IIR predictor and FIR filter
are proposed. The adaptation algorithm for the IIR predictor is derived based on the well
known least mean square error criterion using a gradient method, and for the adaptation
of the FIR filter, a constant modulus adaptive algorithm is proposed. It is shown that the
proposed blind equalization scheme requires a substantially less amount of computations
and is easy to implement.

The proposed sufficient-order blind equalization scheme is applied to various linear
and deep-null minimum-phase, maximum-phase, and mixed-phase communication chan-
nels. From the experimental results, it is demonstrated that the proposed scheme esti-
mates the unknown channels correctly and provides a better performance as compared to
the existing schemes, in terms of the channel estimation, symbol error rate, and spectral
response.
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Chapter 1

Introduction

1.1 General

A communication channel well suited for the transmission of digital data (e.g., computer
data) is the telephone channel that generally has a high signal-to-noise ratio. However, a
practical deficiency of the telephone channel is the fact that it is bandwidth-limited [1].
There are two basic signal processing operations for the transmission of digital data on
bandwidth-limited communication channels.

1. Discrete Pulse Amplitude Modulation (PAM) in which the amplitudes of successive
pulses in a periodic pulse train with a discrete set of possible amplitude level are
coded.

2. A linear modulation scheme in which a bandwidth conservation is performed.

When data are transmitted over the channel by means of a discrete PAM combined with a
linear modulation scheme (e.g., quadriphase-shift keying), the number of detectable levels
that the telephone channel can support is essentially limited by inter symbol interference
(IST) rather than by additive noise. ISI arises because of the “spreading” of a transmitted
pulse due to the dispersive nature of the channel, which results in an overlap of adjacent
pulses. If ISI is left unchecked, it can produce an error in the reconstructed data stream at
the receiver output. In principle, if the channel is known precisely, it is virtually always
possible to make the ISI arbitrarily small by using a suitable pair of transmitting and
receiving filters. The transmitting filter is placed directly before the modulator, whereas



the receiving filter is placed directly after the demodulator [2]. Thus, insofar as ISI is
concerned, we may consider the data transmission as being essentially bandwidth limited.

In a switched telephone network, there are two factors that contribute to the distribu-
tion of pulse distortion on different link connections:

1. Differences in the transmission characteristics of the individual links that may be
switched together.

2. Differences in the number of links in a connection.

As a result, the telephone channel is random in the sense of being one of an ensemble of
possible channels [2]. Consequently, the use of a fixed pair of transmitting and receiving
filter designed on the basis of average channel characteristics may not adequately reduce
inter symbol interference. Therefore, it is appropriate to assume that the actual channel
used for transmission, which is well modeled as a linear system, is unknown to the re-
ceiver that must recover the digital information. In such a case, the probiem is to design
a corrective system which, when cascaded with the original system, produces an output
that, in some sense, corrects the distortion caused by the channel and thus yields a replica
of the desired transmitted signal. In digital communications such a corrective system is
called an equalizer. Therefore, the system degradation due to ISI can be combatted by
placing an equalizer in cascade with the channel as shown in Fig. 1.1.

Among the philosophies for adaptive equalization of data transmission systems, we
may have a prechannel equalization at the transmitter or a post channel equalization at the
receiver. Because the first approach requires a feedback channel, systems with adaptive
equalization at the receiving end are generally preferred.

Input |  Communication Equalizer Output
data channel data

Figure 1.1: Block diagram of equalized channel.



In the context of linear system theory, we call the corrective system an inverse sys-

tem, since it has a frequency response that is essentially the reciprocal of the frequency
response of the system that causes the distortion. Some important elements of a baseband

system are discussed in the following two sections.

1.2 Baseband PAM System

The basic elements of a baseband binary PAM system are shown in Fig. 1.2. The signal
applied to the input of the system consists of a binary data sequence {b,} with a bit
duration of T}, seconds; b, has a binary value, 1 or 0. This signal is applied to a pulse
generator, producing the pulse waveform

o <]

zt)= 3 zad(t —nT) (1.1)

n=—oc

where ¢(t) denotes the shaping pulse that is normalized, such that

$(0) =1 (1.2)

Inpwt ' ' : Output
; t ‘ ) . A
binary | puise =) [Transmiting : Receiving lep \o{(_l.'.} Decision | Dinayy _
data generator filterH () : : filtecHa(f) sample device data
{b .} | : a time }
[ ' r =in
[} ]
] T
Clock : White Thresho
Puises : Gaussian : id
: noise v(7) :
1 ]
1 ]
L} 1
1 t
Te il T Ch ore Receiver

Figure 1.2: Baseband binary data transmission system.



The amplitude z,, in Eq. (1.1) depends on the identity of the input bit b,; specifically, we
assume that

. = +K, if the input bit b, is represented by symbol 1
"7 ) —K, ifthe input bit b, is represented by symbol 0

The PAM signal z(t) is passed through a transmitting filter with transfer function
Hr(f). The resulting filter output defines the transmitted signal, which is modified in a
deterministic fashion as a result of transmission through the channel with transfer func-
tion Hc(f). In addition, the channel adds random noise to the transmitted signal at the
receiver input. Then the noisy signal is passed through a receiving filter with transfer
function Hg(f). This filter output is sampled synchronously with the transmitter , with
the sampling instants being determined by a clock or timing signal that is usually extracted
from the receiving filter output. Finally, the sequence of samples thus obtained is used to
reconstruct the original data sequence by means of a decision device. The amplitude of
each sample is compared to a threshold. If the threshold is exceeded, a decision is made
in favor of symbol, say, 1 . If the threshold is not exceeded, a decision is made in favor of
symbol 0. If the sample amplitude equals the threshold exactly, the flip of a fair coin will
determine which symbol was transmitted [2]. The receiving filter output may be written
as

o0

y(t) = Y Aar(t—nT) +c(?) (1.3)

n=—00

where A4,, is the amplitude, and r(t) a pulse normalized such that

r(0) =1 (1.4

The pulse A,r(t) is the response of the cascade connection of the transmitting filter, the
channel, and the receiving filter which is produced by the pulse z,d(t) applied to the
input of this cascade connection. Therefore, we may relate r(t) to ¢(t) in the frequency
domain as

AnR(f) = an®(f)Hr(f)Hc(f)Hr(f) (1.5)
where R(f) and ®(f) are the Fourier transforms of r(t) and #(t), respectively. Finally,



the term c(t) in Eq. (1.3) is the noise produced at the output of the receiving filter due
to the additive noise v(t) at the receiver input. It is customary to model v(t) as a white
Gaussian noise of zero mean.

The receiving filter output y(t) is sampled at time ¢ = T}, (where ¢ is an integer),
yielding

y(t:) £ o Aurlli = )T + () 6

Ai + T2 o AnT[( — n)To] + c(t:)

1.2.1 Inter Symbol Interference (ISI)

In Eq. (1.6), the first term A; represents the ith transmitted bit. The second term represents
the residual effect of all other transmitted bits on the decoding of the ith bit; this residual
effect is called the inter symbol interference (ISI). The last term c(¢;) represents the noise
sample at time ¢;. In the absence of ISI and noise, we can see from Eq. (1.6) that

y(t:) = A (L7

which shows that, under these conditions, the ith transmitted bit can be decoded correctly.
The unavoidable presence of ISI and noise in the system, however , introduces errors in
the decision device at the receiver output. Therefore, in the design of the transmitting
and receiving filters, the objective is to minimize the effects of noise and ISI, and thereby
deliver the digital data to its destination with the smallest error rate possible [2].

1.2.2 Me-ary PAM System

In the binary PAM system of Fig. 1.2, the output of the pulse generator consists of binary
pulses, that is, pulses with one of two possible amplitude levels. On the other hand, in
a baseband M-ary PAM system, the output of the pulse generator takes on one of the M
possible amplitude levels, with M > 2, as illustrated in Fig. 1.3 for the case of quatemary
(M = 4) system. The corresponding electrical representation for each of the four possible
dibits is shown in Table 1.1. In an M-ary system, the information source emits a sequence
of symbol from an alphabet that consists of A symbols. Each amplitude level at the pulse
generator output corresponds to a distinct symbol, so that there are M distinct amplitude
levels to be transmitted [1].
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Figure 1.3: Output waveform of a quartenary system.

Table 1.1: Representation of the 4 possible dibits.

Dibit | Amplitude
00 -3
01 -1
10 +1
11 +3

1.2.3 Baud Rate

In an M-ary PAM system with a signal alphabet that contains M equally likely and statis-
tically independent symbols, we may denote the symbol duration by T" seconds. We refer
to 1/T as the signaling rate of the system, which is expressed in symbols per second or
bauds. It is important to relate the signaling rate of this system to that of an equivalent
binary PAM system for which the value of M is 2 and the binary symbols 1 and O are
equally likely and statistically independent, with the duration of either symbol denoted
by T seconds. For a zero memory binary source, with symbols 1 and O equally likely
and successive symbols statistically independent, the entropy equals one bit. Hence, the
binary PAM system produces information at the rate of 1/T} bits per second. In the case
of the quaternary PAM system, each symbol represents 2 bits of information, and 1 baud
is equal to 2 bits per second. We may generalize this result by stating that in an M-ary
PAM system, 1 baud is equal to log, M bits per second, and the symbol duration T of the
M-ary PAM system is related to the bit duration T, of the equivalent binary PAM system

as



T = T,logs M (1.8)

Therefore, for a given channel bandwidth, it is found that by using an M-ary PAM
system, we are able to transmit information at a rate that is log, M faster than the corre-
sponding binary PAM system. However, in order to realize the same average probability
of symbol error, an M-ary PAM system requires more transmitted power. For M much
larger than 2 and an average probability of symbol error smaller compared to 1, the trans-
mitted power must be increased by a factor of M? /log, M, compared to a binary PAM
system. Also the designs of the pulse generator and the decision making device in an
M-ary PAM systems are more complex than those in a binary PAM system [2].

1.3 Adaptive Equalization

In digital communications, considerable effort has been devoted to the study of data trans-
mission systems that utilize the available channel bandwidth [1]. The objective is to de-
sign a system that accommodates the highest possible rate of data transmission, subject
to a specified reliability that is usually measured in terms of the error rate or average
probability of symbol error. The transmission of digital data through a linear communica-
tion channel is limited by two factors, inter symbol interference as discussed earlier and
thermal noise, generated by the receiver at its front end. For bandwidth-limited channels
(e.g., voice-grade telephone channels), we usually find that ISI is one of the most crucial
factors in the design of high-data-rate transmission systems.

The basic operation of an adaptive filtering is shown in Fig. 1.4. An adaptive filter-
ing algorithm requires the knowledge of the “desired” response so as to form the error
signal needed for the adaptive process to function. In theory, the transmitted sequence
(originating at the transmitter output) is the “desired” response for adaptive equalization.
In practice, however, with the adaptive equalizer located in the receiver, the equalizer is
physically separated from the origin of its ideal desired response. There are two modes
that are applied to produce the replica of the desired response locally in the receiver.

1. Training method: In this method, a replica of the desired response is stored in the
receiver. The generator of this stored reference is electronically synchronized with
the known transmitted sequence.
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Figure 1.4: Basic adaptive filter.

2. Decision-directed method: Under normal operating conditions, a good replica of
the transmitted sequence is produced at the output of the decision device in the
receiver. Accordingly, if this output were the correct transmitted sequence, it may
be used as the “desired” response for the purpose of adaptive equalization. Sucha
method of leaming is said to be decision directed, because the receiver attempts to

learn by employing its own decisions [3].

With a known training sequence, as in the first mode, the adaptive filtering algorithm
used to adjust the equalizer coefficients corresponds mathematically to searching for the
unique minimum of a quadratic error performance surface. The unimodal nature of this
surface assures convergence of the algorithm. In the decision-directed method, on the
other hand, the use of estimated and unreliable data modifies the error performance into
a multi-modal one, in which case a complex behavior may result. Specifically, the error

performance surface now exhibits two types of local minima:

1. Desired local minima, whose positions correspond to coefficient (tap weight) set-
tings that yield the same performance as that obtained with a known training se-

quence.

2. Undesired (extraneous) local minima, whose positions correspond to coefficient

settings that yield inferior equalizer performance.

A poor choice of the initial coefficient settings may cause the adaptive equalizer to con-
verge to an undesirable local minimum and stay there. The most significant point to note
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is that, in general, a linear adaptive equalizer must be trained before it is switched to the
decision-directed mode of operation, if we are to be sure of delivering a high performance.

1.3.1 Eye Pattern

A popular experimental technique for assessing the performance of a data transmission
system involves the use of an eye pattem [2]. This pattern is obtained by applying the
received wave to the vertical deflection plates of an oscilloscope, and a sawtooth wave
at the transmitted symbol rate to the horizontal deflection plates. The resulting display
is called an eye pattern because of its resemblance to the human eye. Thus, in a system
using adaptive equalization, the equalizer attempts to correct for inter symbol interference
in the system and thereby open the eye pattern as far as possible.

1.4 Blind Equalization

In the case of a highly nonstationary communication environment (e.g., digital mobile
communications), it is impractical to consider the use of a training sequence. In such a
situation, the adaptive filter has to equalize the communication channel in a self- orga-
nized (unsupervised) manner, and the resulting operation is referred to as blind equal-
ization. Design of a blind equalizer is more difficult than a conventional adaptive equal-
izer, because it has to make up for the absence of a training sequence by some practical
means. A conventional adaptive equalizer relies on second-order statistics of the input
data; however, a blind equalizer relies on additional information about the environment.
This additional information may take one of the two basic forms:

1. Higher-order statistics (HOS), the extraction of which is implicitly or explicitly
built into the design of the blind equalizer. For this to be possible, the input data
must be non-Gaussian, and the equalizer must include some form of nonlinearity.

2. Cyclostationarity, which arises when the amplitude, phase, or frequency of a sinu-
soidal carrier is varied in accordance with an information bearing signal. In this
case, design of the blind equalizer is based on second-order cyclostationary statis-
tics of the input data, and the use of nonlinearity is no longer a requirement.

These blind equalization schemes employ only adaptive FIR filter-based structures and
perform poorly for maximum-phase communication channels having deep spectral nulls.
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This problem is due the difficulty of modeling the inverse of the maximum-phase com-
munication channel with a finite length adaptive FIR filter. A blind equalizer which can
estimate such channels is known as a sufficient-order blind equalizer.

In [16]-[18] attempts have been made to solve this problem by using a blind equal-
ization structure which makes use of an adaptive [IR predictor and an all-pass filter. This
technique employs a fourth-order norm to estimate the unknown channel, thus requiring
an cxtrcmély high computational complexity. A further artempt has been made in [12],
to reduce this high computational complexity by using two block-based time reversers,
in addition to IR and FIR filters. However, this scheme reduces the computational com-
plexity only to a certain extent. Moreover, the adaptive algorithm used for the adaptation
of the [IR predictor, may converge to an arbitrary point on the mean square output error
surface, if the denominator polynomial transfer function of the IIR predictor does not sat-
isfy a strictly positive real condition. This scheme also requires swapping of the IIR and
adaptive FIR filters, for it to work satisfactorily at low levels of signal-to-noise ratio.

1.5 Scope and Organization of the Thesis

The objective of this thesis is to investigate the problem of blind equalization and propose
a scheme that is simple, computationally efficient and performs well in the environment
of maximum-phase communication channels having deep spectral nulls. Emphasis is put
to reduce or eliminate some of the undesirable features of the existing schemes and yet
to provide a performance that is generally superior in terms of the convergence rate and

symbol error rate.

In Chapter 2, the underlying theory behind the HOS-based and cyclostationary statistics-
based blind equalization schemes is discussed. Some widely used blind equalizer struc-
tures are presented and the limitations of these schemes to estimate the maximum-phase
deep spectral null channels are discussed.

In Chapter 3, the theory of adaptive IR predictor and all-pass filter based blind equal-
ization technique along with the one that, in addition, uses two block-based time reversers
is briefly discussed. A new sufficient-order blind equalization scheme is then proposed
by developing adaptation algorithms for the IR predictor and the FIR filter. An analysis
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of the proposed and the existing schemes is carried out to show the advantages of the
proposed scheme in terms of computational complexity, hardware implementation, and
stability of the IIR predictor.

In Chapter 4, experimental results obtained by using the proposed blind equalization
scheme for minimum-phase communication channels in terms of the convergence of the
adaptation coefficients and the symbol error rate are presented and discussed in detail. A
comparison is made with the results obtained by using the scheme of [12].

In Chapter 5, experimental results for maximum-phase and mixed-phase channels in
terms of convergence of the adaptation coefficients and symbol error rate are presented
and discussed in detail. Results on spectral performance of the proposed blind equaliza-
tion scheme for a maximum-phase deep-null channel is also given.

Finally, Chapter 6 concludes the thesis by pointing out the contribution of the pro-
posed investigation and suggesting some related problems for future investigation.
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Chapter 2

Blind Equalization Theory

2.1 Introduction

The most important approach followed in the adaptive equalization of digital communi-
cation channels is to use known training sequences [1]. The equalizer is typically a linear
transversal FIR filter. The coefficients of this filter are adjusted to minimize the mean-
square error. Once an initial training of the filter is done, the equalizer is switched to
a decision-directed mode. The detected symbols are then considered as the transmitted
ones, and the error so obtained is used to adjust the equalizer gains as it is done during the
training mode. In some cases the inter symbol interference and the noise are sufficiently
small so that the eye of the “eye patten” is widely open [1]. In such cases decision-
directed equalization is possible even without an initial training sequence. However, in
the cases where the presence of inter symbol interference is sufficiently large and the
training sequence is not available, some other solutions are required. Generally, in the
situation where initial training sequence is not available at the receiver, the problem of
equalization is referred to as a blind equalization problem.

Most of the existing works on blind equalization use nonquadratic cost functions, and
recursively minimize these functions with respect to the equalizer’s parameters. Gener-
ally, the adaptation is done by gradient-type algorithms, e.g., the least mean square @OMS)
or its numerous variations [10]. Some important works on the blind equalization prob-
lem can be found in [4]-[9]. In a broad sense, blind equalizers can be grouped into two

categories.
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1. Higher-order statistics (HOS )-based algorithms: In this family of blind equaliza-
tion the extraction of statistics is built into the design of the blind equalizer. This
class of the blind equalization technique can be further subdivided into two groups
as follows:

(a) Implicit HOS-based algorithms: These algorithms exploit higher-order statis-
tics of the received signal in an implicit sense. This group of blind equalization
algorithms includes the most popular Bussgang algorithm [1].

(b) Explicit HOS-based algorithms: These algorithms explicitly use higher-order
cumulants or their discrete Fourier transforms, known as polyspectra [1]. The
property of polyspectra to preserve phase information makes them well suited
for blind deconvolution.

2. Cyclostationary statistics-based algorithms: These algorithms exploit the second-
order cyclostationary statistics of the received signal; the property of cyclostation-
arity arises in a modulated signal resulting from varying the amplitude, phase, or
frequency of a sinusoidal carrier (1]

In this chapter, some of the most widely used blind equalization structures are discussed.
Since the proposed new algorithm belongs to the category of higher-order statistics-based
algorithms, a greater emphasis is put on the discussion of such algorithms. In Section 2.2,
the blind equalization problem is defined. In Section 2.3, the basic algorithm for Buss-
gang algorithm is discussed in detail. Two important cases of the Bussgang algorithm,
namely Sato and Godard algorithms, are discussed in Section 2.4. In Section 2.5 a com-
parison of the special forms of the Bussgang algorithms is carried out. The basic idea
behind the explicit HOS-based, polyspectra-based algorithms and their different classes
is presented in Section 2.6. In Section 2.7, 2 comparison between different types of HOS-
based algorithm is carried out. In Section 2.8, cyclostationary statistics-based algorithms
are discussed briefly. A comparison and limitations of all the algorithms presented in
this chapter, are carried out in Section 2.9. Finally, Section 2.10 summarizes the material
presented in this chapter.
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2.2 Blind Equalization Problem

Consider the baseband model of a digital communication system, depicted in Fig. 2.1.
The model consists of the cascade of a linear communication channel and a blind equal-

izer.
Unobserved N
data sequence u(n) Blind x(n)
Channel h ‘ ] L -
x(n) (n) equalizer
v(n)

Figure 2.1: A cascade of an unknown channel and a blind equalizer.

The effects of transmit filter, transmission medium, and receiver filter are combined
and is included in the channel. The channel is characterized by an impulse response h(n)
which is unknown. The channel is time varying, but this variation with time is generally
very slow. Whether the impulse response h(n) is real or complex valued in nature, is de-
termined by the type of modulation employed. For simplicity, only real impulse response
is discussed. In the case of real impulse response of the channel, the use of multilevel
pulse-amplitude modulation (M-ary PAM) is employed. The sampled input-output rela-
tion of the channel may be represented by the convolution summation given by

u(n) = i h(k)z(n — k), n=0,%1,%£2,... 2.1)
k=-20
where z(n) is the channel input, and u(n) is the resulting channel output {1]. Degradation
in the performance of data transmission, e.g., over a voice-grade telephone channel, is
usually dominated by the inter symbol interference produced by the channel dispersion.
Thus in Eq. (2.1), the effect of receiver noise is ignored. Also its assumed that

SR (k) =1 (2.2)
k

Eq. (2.2) implies the use of automatic gain control (AGC) to keep the variance of the
channel output u(n) constant. Also, in general, the channel is noncausal which means

that

h(n) #0 forn <0 2.3)
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The problem of blind equalization can be stated as follows: Given the received signal
u(n), reconstruct the original data sequence z(n) applied to the channel input. Equiva-
lently, the problem can be restated as: Design a blind equalizer, that is the inverse of the
unknown channel, with the channel input being unobservable and the desired response

not available.

2.3 Bussgang Algorithm for Blind Equalization of Real
Baseband Channels

Bussgang algorithms are so called because the equalized sequence assumes Bussgang
statistics when the algorithm converges in the mean value. To solve the problem stated
in Section 2.2, a probabilistic model for the data sequence z(n) is prescribed and the
following assumptions are made [1].

2.3.1 Assumptions

1. The data sequence z(n) is white; that is, the data symbols are independently and
identically distributed (iid) random variables, with zero mean and unit variance,

that is,
Elz(n)] =0 2.4)

and
Elz(n)z(k)] = { (1) : ;Z 2.5)

where E is the statistical expectation operator.
2. The probability density function of the data symbol z(n) is symmetric and is uni-
formly distributed as shown in Fig. 2.2, that is,

2.6
0, otherwise 2.5)

fx(r)={ VST <Vs
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Figure 2.2: Uniform distribution.

This kind of distribution is independent of the number M of amplitude levels em-
ployed in the modulation process.

With the assumption that distribution of z(n) is symmetric, as in Fig. 2.2, it can
be seen that the data sequence —z(n) has the same properties as z(n). Hence, it is not
possible to distinguish the desired inverse filter 2(n) ™! (corresponding to z(n)) from the
opposite one —h(n)~! (corresponding to —z(n) ). This sign ambiguity problem is tackled
by initializing the deconvolution algorithm such that there is a single nonzero tap weight
with the desired algebraic sign [5].

2.3.2 Objective Behind Iterative Deconvolution

In this section, the need for an iterative deconvolution system is discussed. For this, let us
assume that w; denotes the impulse response of the ideal inverse filter, which is related to
the impulse response h(z) of the channel as given by

where &; is the Kronecker delta, such that

1 =0
0 = ! 2.
1 {0’ I £0 (2.8)
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An inverse filter defined in this way is ideal in nature, since it reconstructs the transmitted
data sequence z(n) correctly [1], e.g., by using Eq. (2.1), we can have

S wiu(n—1) = Y wih(k)z(n —i— k) 29
i Tk

Making a change of indices, k£ = [ — %, and interchanging the order of summation in Eq.
(2.9), we can rewrite it as

Swun-9) =3 z(n—1) S wih(l — 1) (2.10)
i 1 :

Using Eq. (2.7) in (2.10) and then applying the definition of Eq. (2.8), we get

Y wu(n—i) =) &z(n-1)
: 1

Z wiu(n — 1) = z(n) (2.11)

which is the transmitted input data sequence.

In Eq. (2.7), the impulse response h(n) is unknown, therefore, Eq. (2.7) cannot be
used to determine the inverse filter. Therefore, an iterative deconvolution procedure is
required to compute an approximate inverse filter characterized by the impulse response
#;(n). The index i refers to the tap weight number in the transversal filter realization
of the approximate inverse filter, as shown in Fig. 2.3. The index n refers to the it-
eration number. Each iteration corresponds to the transmission of a data symbol. The
computation is performed iteratively in such a way that the convolution of the impulse
response ;(n) with the received signal u(n) results in 2 complete or partial removal of
the inter symbol interference [1]. Thus, at the nth iteration, we have an approximately

deconvolved sequence
L

y(n) = Y @ (n)u(n —1i) (2.12)

t=—L
where 2L + 1 is the truncated length of the impulse response w;(n) and L is a positive
integer. It is customary to assume that the transversal filter or equalizer is symmetric
about the midpoint 7 = 0.
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Figure 2.3: Transversal filter realization of an approximate inverse filter, assuming that
the data is real.

Looking at Egs. (2.11) and (2.12) we notice that the convolution summation on the
left side of Eq. (2.11), representing an ideal inverse filter, is infinite in extent with index
i ranging from —oo to oo. This case is called a doubly infinite filter or equalizer. On the
other hand, the convolution summation on the right side of Eq. (2.12) representing the
approximate inverse filter is finite in extent, in that i extends from —L to L . This case is
called a finitely parameterized filter or equalizer. Eq. (2.12) may be rewritten as

y(n) = Z @(n)u(n—14), @i(n)=0for |{{>L

oras
y(n) = Zw,-u(n —-i)+ Z [@:(n) — wi u(n — 1) (2.13)
Now, let
c(n) = Y_ [@i(n) — wiu(n —1), w; =0for [¢| > L (2.149)
Then, using Egs. (2.11) and (2.14), Eq. (2.13) can be simplified to yield
y(n) = z(n) + c(n) (2.15)

where ¢(n) is called the convolutional noise and represents the residual inter symbol in-
terference. This inverse filter output y(n) is then applied to a zero-memory nonlinear
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estimator, which produces the final estimate Z(n) for the data symbol z(n), given by

z(n) = g(y(n))

(2.16)

where g(.) is a nonlinear function operator. The estimate Z(n), obtained at iteration n is
generally not very reliable. Also, it is never used in an adaptive scheme to obtain a better

estimate at the next iteration, n + 1.

There are a variety of linear adaptive algorithms which can be used to adjust the
weight of the transversal filter. Amongst them the least mean square (LMS) algorithm
is the simplest and most effective. A block diagram of the blind equalizer using zero-
memory nonlinear estimator and an LMS algorithm is shown in Fig. 2.4. For this blind

equalizer, an estimation error is defined as

e(n) = Z(n) — y(n) .17
Received signal Transversal filter Y nZlci;o-mem_on x(m)
u(n) ~ nonlinear estimator
{win)} 2()
( - ()t
2
LMS ]
algorithm e(n)
Figure 2.4: Block diagram of a blind equalizer.
The updated value of the ith tap weight at iteration n + 1 can be calculated as
Zi(n + 1) = @i(n) + pu(n — t)e(n), i=0,%1,...,%=L (2.18)

where u is the step-size parameter. The iterative deconvolution algorithm is, therefore,
generally described by Egs. (2.12) and (2.16)-(2.18).
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In the case of an LMS algorithm, the cost function is a convex (quadratic) function
of the tap weights. Therefore, there is always a well defined minimum point. From
Eq. (2.18), the ensemble averaged cost function corresponding to the tap weight can be
defined by

J(n) = E[e*(n)]

or
J(n) = E[(Z(n) — y(n))’] 2.19)

Also, using Eq. (2.16), Eq. (2.19) can be rewritten as
J(n) = E[(g(y(n)) — y(n))?]

where y(n) is given by Eq. (2.12). Now, it can be observed from Eq. (2.19) that the cost
function J(n) is a nonconvex function of the tap weights. It can be concluded that the
error performance surface of the iterative deconvolution procedure discussed in this sec-
tion may have local minima, in addition to the global minima. In some cases more than
one global minima may exist. This corresponds to the data sequences that are equivalent
under the chosen blind deconvolution criterion (e.g, sign ambiguity). The cost function
J(n) becomes nonconvex because of the fact that the estimate is assumed to be the in-
ternally generated desired response. The estimate Z(n) is produced by passing the output
y(n) through a zero-memory nonlinearity. Also, this y(n) itself is a function of the tap
weights. This nonconvex form of the cost function J (n) may some times mar the con-
vergence of the iterative deconvolution algorithm. To improve this convergence, some
important issues are discussed in the next section.

2.3.3 Convergence Issues for the Bussgang Algorithm

For the iterative deconvolution, described by Egs. (2.16)-(2.18), to converge in the mean
square sense, it is required that the expected value of the tap weights ;(n2) approach some
constant value as the number of iteration n approaches infinity. Therefore, the condition
for convergence in the mean square sense can be described as

E[u(n - i)y(n)] = E[u(n - i)g(y(n))], forlargen andi=0,%1,...,£L (2.20)
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Multiplying both sides of this equation by w;_, and summing over ¢, we get

L
Ely(n) i @i_x(n)u(n —i)] = E[g(y(n)) Z W;_g(n)u(n —i)], forlargen (2.21)

i=-L t=-L

Also, from Eq. (2.12) we can write

L
y(n—k)= Y @(n)u(n—k—1i), forlargen
i=~L
L+k
= Y Wix(n)u(n—1i), forlargen
i=—L+k

Assuming that L is very large such that the transversal equalizer can achieve a perfect
equalization, the expression for y(n — k) can be further approximated as

L
y(n— k)~ Y @i_i(n)u(n—1), forlarge n and large L (2.22)
it=-L

Eq. (2.22) can be used to simplify Eq. (2.21) to give

Ely(n)y(n — k)] = E[g(y(n))y(n — k)], for large n and large L (2.23)

A stochastic process y(n) is a Bussgang process [1], if it satisfies the condition

Ely(n)y(n — k)] = Ely(n)g(y(n — k))] (2.24)

where the function g{.) is a zero memory nonlinearity. In other words, a Bussgang process
has the property that its autocorrelation function is equal to the cross-correlation between
that process and the output of a zero memory nonlinearity produced by that process, with
both correlations being measured for the same lag [1].

Now, the process y(n) acting as the input to the zero-memory nonlinearity (Fig. 2.4)
can be approximately called as a Bussgang process, if and only if L is large. The approx-
imation becomes better as L is made larger. This is the reason for the blind equalization
algorithm being referred to as a Bussgang algorithm.
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Convergence of the Bussgang algorithm is not always guaranteed, since the cost func-
tion of the Bussgang algorithm operating with a finite L is nonconvex. Therefore, it may
have some false minima.

However, for the idealized case of a doubly infinite equalizer, a proof of convergence
of the Bussgang algorithm can be found. The proof relies on a theorem derived in [5],
which provides sufficient conditions for convergence. The main points of the proof are as

follows.

Let the function ¥ (y) denote the dependence of the estimation error in the LMS algo-
rithm on the transversal filter output y(n). Then,

v(y)=g(y)—y (2:25)

The Benveniste-Goursat-Ruget theorem states that convergence of the Bussgang algo-
rithm is guaranteed if the probability distribution of the data sequence z(n) is sub-Gaussian
and the second derivative of ¥(y) is negative in the interval (0,0c) [1]. In particular, it may
be stated that :

1. A random variable z with the probability density function (for example)
fx(z) = Ke /A" K = constant (2.26)

is sub-Gaussian when v > 2. For the limiting case of » = oc, the probability
density function given by Eq. (2.26) reduces to that of a uniformly distributed
random variable. Also, by choosing 3 = /3, the second-order expectation of
the data sequence z(n) is equal to unity, i.e., E[z?] = 1. Thus, the probabilistic
model assumed in Eq. (2.6) satisfies the first part of the Benveniste-Goursat-Ruget
theorem.

2. The second part of the theorem is also satisfied by the Bussgang algorithm, since
we have
&%y
—-’2-<0 for0 <y < o0 .27
Fy
This can be directly verified by examining the nonlinear estimation curves given in

[1].
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The Benveniste-Goursat-Ruget theorem is based on the assumption of a doubly infinite
equalizer. However, this assumption does not hold true in practice, since the parameters
of an equalizer are always finite.

2.3.4 Algorithm for the Decision-Directed Mode

Once the Bussgang algorithm has converged and the eye pattern is widely open, the equal-
izer is switched smoothly to the decision-directed mode of operation. In this case, the
minimum mean squared error (MSE) control of the tap weights of the transversal filter
component in the equalizer is exercised, as is done in a conventional adaptive equalizer.

The block diagram of an equalizer operating in a decision-directed mode is shown in
Fig. 2.5. The only difference between this mode of operation and that of a blind equal-
ization mode is the type of zero-memory nonlinearity used. The zero-memory nonlinear

/

Received signal y(n) x(n)
Transversal filter Threshold
u(n) {\’n; n)} decision device
T - (St
“Z)
LMS |
algorithm e(n)

Figure 2.5: Block diagram of decision-directed mode of operation.

estimator of the blind equalizer in Fig. 2.4 is replaced by a threshold decision device.
Given the observation y(n), that is, the equalized signal at the transversal filter output, the
threshold device makes a decision in favor of a particular value in the known alphabet of
the transmitted data sequence that is closest to y(n) [1]. Therefore,

Z(n) = dec(y(n)) (2.28)

In the simple case of an equiprobable data sequence, the data levels and decision levels
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are as follows:

+1, for symbol 1
= 22
z(n) { -1, for symbol 0 (2.29)

and
dec((y(n)) = sgn(y(n)) (2.30)
where sgn(.) is the signum function equal to +1 if the argument is positive, and —1 if it

is negative.

The equations for the decision-directed algorithm are the same as those of the Buss-
gang algorithm, except that Eq. (2.16) in replaced by Eq. (2.28).

Now, if the following conditions are met:

1. the eye pattern is open i.e., the blind equalization mode is completed.

2. the step-size parameter p used in the LMS implementation of the decision directed
algorithm is fixed.

3. the sequence of observations at the channel output, denoted by the vector u(n) is
ergodic in the sense that

Lam iil:u(n)uT(n) — E[u(n)u’(n)] (2.31)

ny oo m n=1

then the tap weight vector in the decision-directed algorithm converges to the optimum
solution in the mean square sense. This is a powerful result, making the decision-directed
algorithm an important adjunct of the Bussgang algorithm for blind equalization in digital
communication [1].

Statistical properties of the convolution noise and zero-memory nonlinear estimation
of the data sequences are two other very important issues in the Bussgang algorithm. As
the main aim of this chapter is to review different kinds of blind equalization algorithms,
these issues are not discussed here. However, these can be found in [1].
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2.3.5 Bussgang Algorithm for Complex Baseband Channels

In this section the use of Bussgang algorithm discussed in previous sections for M-ary
PAM system, characterized by a real baseband channel, is extended to a blind equalization
algorithm for quadrature amplitude modulation (QAM) system. Quadrature amplitude
modulation (QAM) systems use hybrid combination of amplitude and phase modulation.

In the case of a complex baseband channel, the transmitted data sequence z(n), the
channel impulse response h(n), and the received signal u(n) are all complex valued.

Therefore,
z(n) = z(n) + jzo(n) (2.32)
h(n) = hi(n) + jhe(n) (2.33)
and
u(n) = ur(n) + jue(n) (2.34)

where the subscripts I and @ refer to to the in-phase (real) and quadrature (imaginary)
components, respectively. Now, the condition for the mean estimate of the complex data
z(n), given the observation y(n) at the transversal filter output, can be written as

z(n) = Elz(n)ly(n)]

= Z1(n) + jZo(n) (2.35)

= g(yr(n)) + 79(ye(n))

where g(.) is a zero-memory nonlinearity. From Eq. (2.35), it can be observed that the in-
phase and quadrature components of the transmitted data sequence z(n) can be estimated
separately from the in-phase and quadrature components of the transversal filter output
y(n), respectively. However, the conditional mean E[z(n)|y(n)] can only be expressed as
in Eq. (2.35) if the in-phase and quadrature components of the data transmitted are statis-
tically independent of the each other. A summary of Bussgang algorithm for a complex
baseband channel is presented in Table 2.1.
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Table 2.1: Summary of Bussgang algorithm for blind equalization of complex baseband
channels.

Initialization: Set 0
- 1, 1=
"’(0)‘{ 0, i==1,...,%L

Computation: n =1, 2,...
y(n) = yr(n) + jye(n)
L

y(n) = Y- @F(n)u(n —7)

t=—L

£(n) = 21(n) + jZo(n)
£(n) = g(yr(n)) + 79 (vo(n))
e(n) = Z(n) — y(n)

@i(n + 1) = @;(n) + pu(n — i)e*(n)

2.4 Two Important Cases of the Bussgang Algorithm

In the previous section, the general form of a Bussgang algorithm was discussed. Many
other blind equalization algorithms have been derived from this general algorithm. In
this section, the two most important and widely used cases of Bussgang algorithm are
discussed. These algorithms are known as Sato algorithm [4] and Godard algorithm [7].

2.4.1 Sato Algorithm

A pioneering work, in the field of blind equalization of M-ary PAM systems was done by
Sato [4]. The idea behind the Sato algorithm is to minimize a nonconvex cost function

J(n) = E[(Z(n) — y(n))?] (2.36)
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where y(n) is the transversal filter output given by Eq. (2.12), and Z(n) is an estimate
of the transmitted datum z(r). This estimate is obtained by a zero-memory nonlinearity
described as

Z(n) = Gsgnly(n)] (2.37)

The constant G sets the gain of the equalizer, and it is defined by

_ Elz?(n)]

= Ele(m)l] (2-38)

G
It is clear that the Sato algorithm is a special case of the Bussgang algorithm, with the
nonlinear function g(y) defined by

9(y) = G sgn(y) (2.39)

where sgn(.) is the signum function. It can be observed from Eq. (2.39) that the nonlin-
earity defined in the Sato algorithm is similar to that used in the decision-directed mode
of the binary PAM Bussgang algorithm. The only difference is the data-dependent gain
factor G.

The Sato algorithm initialy treats one-dimensional multilevel (M-ary PAM) signals as
a binary signal by estimating the most significant bit. In the blind equalization mode of
operation, the remaining bits of the signal are treated by the algorithm as additive noise.
The algorithm then uses the results of this preliminary step to modify the error signal
obtained from a conventional decision-directed algorithm.

The Benveniste-Goursat-Ruget theorem for convergence holds for the Sato algorithm
even though the nonlinear function ¥(.) is not differentiable in this case. According to
this theorem, the global convergence of the Sato algorithm can be achieved provided that
the probability density function of the transmitted data sequence can be approximated
by a sub-Gaussian function such as the uniform distribution {5]. However, the global
convergence of the Sato algorithm holds only for the limiting case of a doubly infinite
equalizer [1].
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2.4.2 Godard Algorithm

The Sato algorithm is very robust only for one-dimensional multilevel (M-ary PAM) sig-
nals. Godard proposed a family of constant modulus blind equalization algorithms for
use in two-dimensional digital communication systems (e.g., M-ary phase shift keying)
[7]. The Godard algorithm minimizes a nonconvex cost function of the form

J(n) = E[(ly(n)P’ — R,)?] (2.40)

where p is a positive integer and R, is a positive real constant defined by

E[jz(n)l*]
= ——— 241
% = El=mP] @4D
The Godard algorithm is designed to control the deviation of the blind equalizer output
Z(n) from a constant modulus. The value of p in Eq. (2.41) is chosen such that the
gradient of the cost function J(n) is zero when a perfect equalization (i.e., Z(n) = z(n))
is attained [1].

The tap weight vector of the equalizer is adapted in accordance with the stochastic
gradient algorithm [7]
Ti(n + 1) = @;(n) + pu(n)e™(n) (2.42)

where p is the step-size parameter, u(n) is the received signal, and e(n) is the error signal
defined by
e(n) = y(n) ly(n)P~* (Rp — ly(n)") (2.43)

From the definition of the cost function J(n) given by Egs. (2.40) and (2.43), it can be
noted that the equalizer adaptation according to the Godard algorithm does not require
carrier phase recovery [1]. The algorithm, therefore, tends to converge slowly. However,
it offers the advantage of decoupling the ISI equalization from the carrier phase recovery
problem.

Two special cases of the Godard algorithm, when the positive integer value of p = 1
and p = 2 are substituted in Eqs. (2.40) and (2.41), can be obtained as follows:
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Case I1; p = 1: The cost function of Eq. (2.40) for this case reduces to

J(n) = E[(ly(n)] — R1)¥] (2.44)
where E{jz(n)[*]
r(n
B E@ &

This case becomes a slight modification of the Sato algorithm.

Case 2; p = 2: In this case, the cost function of Eq. (2.40) reduces to

J(n) = E[(Jly(n)|* — R2)? (2.46)
where Ellz(n)]]
r(n
2= Ellzm)[] (2.47)

This special case is referred to as the constant modulus algorithm (CMA) [7].

2.5 Comparison of Decision-Directed Bussgang, Sato and
Godard Algorithms

Table 2.2 gives a brief summary of the decision-directed Bussgang, Sato and Godard
algorithms for a binary PAM system. The entries for the decision-directed Bussgang and
Sato algorithms follow directly from the definition

Z(n) = g(y(n))

Also, since
e(n) = 2(n) - y(n)

and
9(y(n)) = y(n) + e(n), (2.48)
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Egs. (2.43) and (2.48) can be used to show that the zero-memory nonlinear function g(.)
for Godard algorithm is given by

%(ly(n)l + R ly@)[F~" — y(m)[2FY) (2.49)

Table 2.2: Summary of the decision-directed Bussgang, Sato and Godard algorithms.

| Algorithm Zero-memory nonlinear function g(.) Definitions
Decision-directed sgn(.)
(Bussgang)
Sato G sgn(.) G= gzzz((:)
Godard o (ly(n)| + Re ly(m)" 7! — ly(m)*77") | R, = =T

The Bussgang algorithm that incorporates the decision-directed algorithm has a prac-
tical advantage in that its implementation is only slightly more complex than that of a
conventional adaptive equalizer, yet it does not require the use of a training sequence.

The Sato algorithm for blind equalization is good for one-dimensional multilevel (M-
ary PAM) signals. For such signals the Sato algorithm is more robust than the decision-
directed algorithm.

The Godard algorithm is considered to be the most successful among the Bussgang
family of blind equalization algorithms, and is the most widely used algorithm, because
of the following advantages.

e The Godard algorithm is more robust than other Bussgang algorithms with respect
to carrier phase offset. This important property of the Godard algorithm is due to
the fact that the cost function used for its derivation is based solely on the amplitude
of the received signal.

e Under steady state conditions, the Godard algorithm attains a mean squared error
that is lower than the Bussgang and Sato algorithms.
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e The Godard algorithm is often able to equalize a dispersive channel such that the
eye pattern is opened up when it is initialy closed for all practical purposes.

2.6 Polyspectra-Based Blind Equalization Methods

In the case of Bussgang algorithm, the higher-order statistics (HOS) of the received sig-
nal was used in an implicit sense. But in the case of polyspectra-based algorithm, the
higher-order statistics of the received signal is used in an explicit sense. This class of
blind equalization techniques has received a greater attention. These algorithms utilize
the higher-order statistics, moments or cumulants of the data at the output of the commu-
nication channel. The higher-order statistics of a stationary stochastic process is described
in terms of the cumulants and their Fourier transforms known as polyspectra. These cu-
mulants and polyspectra may be viewed as generalizations of the autocorrelation function
and power spectrum, respectively. Polyspectra provide the basis for the identification, and
therefore, blind equalization of a nonminimum-phase channel because of their ability to
preserve the phase information of the channel output. The basic need for a higher-order
statistics-based algorithm can be understood from the following points.

1. Most of the classical adaptive equalization methods, based exciusively on second-
order statistics, fail to equalize nonminimum-phase channels correctly, since the
second-order statistics cannot distinguish the minimum-phase from the maximum-
phase information of the channel.

2. When the input data are Gaussian-distributed and the channel is nonminimum-
phase, then there is no solution to the problem.

3. In most digital communication links, the transmitted data are non-Gaussian se-
quences and the distorting linear channels are, in general, nonminimum-phase.

4. Higher-order statistics has the ability to preserve the true phase character of signals.
That is why, in order to achieve blind equalization of nonminimum-phase channels,
statistics of order greater than two is employed. In fact, all the proposed blind
equalizers, indirectly through nonlinear transformations or directly, utilize higher-
order statistics [10].

The HOS polyspectra-based algorithms have the capability to meet these needs, as elabo-
rated below.
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1. All digital communication signals are data sequences with common statistical prop-
erties. Therefore, equalization technique based on higher-order statistics would be
independent of a particular transmitted sequence.

2. Polyspectra have the ability to identify nonminimum-phase communication chan-
nels from the output measurement without resorting to any training sequence. This
is why polyspectra preserve both the nonminimum-phase as well as magnitude in-
formation.

3. All polyspectra of Gaussian processes of order greater than two are identically zero.
Consequently, polyspectra technique would not be affected by additive Gaussian
noise that might be present in a communication system [10].

Now, keeping the same assumptions as those made for Bussgang algorithm, it is further
assumed that the FIR channel transfer function H(z™!) can be factorized with no zeros

on the unit circle as
H(zY) = ES(z"H)o(z™h) (2.50)

where S(z~!) is a minimum-phase polynomial, O(z~") is a maximum-phase polynomial
and k is a scaling factor. The polynomial S(z~!) has all the zeros inside the unit circle in
the z-plane and can be written as

d
Sz =Tla-¢&="). el <1 @.51)
=1

Similarly, the second polynomial O(z!) has all the zeros outside the unit circle in the
z-plane and can be written as

o= =[[Q-¢& 2), <1 (2.52)

Jj=1

&

With this presentation, the channel is characterized by a finite length impulse response
with a nonminimum-phase transfer function. Now, consider a baseband communication
link shown in Fig. 2.6, where {v(n)} is zero-mean, Gaussian additive noise, which is
generally colored and is statistically independent of the channel input sequence {z(n)}.

The objective of a blind equalizer with ransfer function M (z71) is to recover the input
sequence {z(n)} within a constant delay d. and a constant phase shift . Now, assuming
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{x(n)} Channel {u(n)} | Equalizer x(n)}
| H(z!) M(z1)

v(n)}

Figure 2.6: A baseband communication link.

that {Z(n)} is the output of the equalizer, we can write
X(z) =X(z71).z"%e’ (2.53)

The delay is introduced by the causal channel and the equalizer impulse responses. In a
QAM system, the phase shifts of § = +£90°, =180° cannot be detected until and unless a
training sequence is used. Now, if we ignore the additive noise shown in Fig. 2.6, then
Eq. (2.53), can be rewritten as

H(Ez"Y).X(EYH).MET) = X(27h).27%.e? (2.54)

The unknown delay d; does not affect the recovery of the original message. Phase shift 6
can also be removed by properly adjusting the carrier phase prior to or after the equaliza-
tion [10]. Therefore, if we assume that d; and 6 are equal to zero, then from Eq. (2.54)

we have
M(z'l) = — (2.55)

Hence, the equalizer must first identify and approximate the inverse channel characteris-
tics to cancel the inter symbol interference. This is known as the zero-forcing equalization
criterion. In other words, we can say that, the main idea is to formulate a zero-forcing
blind equalization algorithm. The basic structure for this kind of algorithm is shown in
Fig. 2.7. It consists of two major operation blocks, namely, a channel estimator and
a channel equalizer. Channel estimation is usually done by using a block estimation ap-
proach. However, an adaptive estimation approach of the LMS type can also be employed.

In a broad sense, the polyspectra-based algorithms can be divided in four categories.
Fig. 2.8 shows the classification of polyspectra-based blind equalizers. Amongst all the
four major categories, the polycepstra-based blind equalization algorithms are the most
popular ones, because of their following properties.
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(polyspectra algorithm)

Figure 2.7: Block diagram of a polyspectra-based blind equalizer.

Polyspectra-based blind equalizers

Nonlinear

least-sepuares POPREA

Polycepstra-based Parametric

[TEA] | | POTEA | [NpG| | [LLs-EA | [NLs-CF ]
[ETEA] [cTEA]  [ARMA-FOC | NLS-EA

Figure 2.8: Classification of polyspectra-based equalizer.

1. Polycepstra-based blind equalization algorithm are used for both channel identifi-
cation and equalization techniques which extract magnitude and phase information
from the fourth-order cumulants of the channel output.

2. Either the channel impulse response or the equalizer impulse response can be ob-
tained from the other just by changing the sign of the differential cepstrum param-

eters.

3. These algorithms can identify the minimum-phase and maximum-phase compo-
nents of the channels separately.
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4. The coefficients of the equalizer filters can be calculated indirectly by updating the
cepstrum parameters of the channel response.

5. These algorithms are very robust to additive Gaussian noise.
6. They exhibit fast initial convergence.
7. Convergence to a global solution is guaranteed.

8. The only assumption made about the input data is that the input is independently
and identically distributed and is non Gaussian.

9. A priori knowledge of the channel model is not required. These techniques work
equally well with auto-regressive (AR), moving-average (MA), or auto-regressive-
moving-average (ARMA) channels of any order.

The main disadvantage of polyspectra-based algorithms is that they have high computa-
tional complexity, which increases rapidly as the zeros of the channel approach the unit
circle. More details regarding the mathematical derivation and the working of these dif-
ferent algorithms can be found in [1] and {10].

2.7 Comparison of HOS-Based Blind Equalizer Algorithms

The basic advantages of the implicit HOS-based blind equalization algorithms over the
explicit ones are as follows:

1. The implicit HOS-based blind equalization algorithm are relatively simple to im-
plement as compared to the explicit ones.

2. For some specific applications, e.g, line-of-sight digital radio systems, the implicit
HOS-based blind equalization algorithms are capable of delivering better perfor-
mance than the explicit HOS-based blind equalization algorithms.

On the other hand, the major disadvantages of the implicit HOS-based blind equalization
algorithms over the explicit ones can be summarized as follows:

1. The implicit HOS-based blind equalization algorithm are sensitive to timing jitter,
which is a serious problem.
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2. The implicit HOS-based blind equalization algorithms can converge to a local min-
ima and may spoil the performance of the blind equalizer. The explicit HOS-based
blind equalization algorithms are free from this problem and always converge to
the unique global minima, because they do not need minimization of the noncon-
vex cost function.

The most serious limitation of both implicit and explicit HOS-based blind equalization
algorithms is their slow rate of convergence. This is because the time-average estimation
of higher-order statistics requires a much larger sample size than in the case of second-
order statistics. Generally, the sample size needed to estimate the n.th-order statistics of a
stochastic process, subject to prescribed values of estimation bias and variance, increases
almost exponentially with the order n [1].

For the tricepstrum-based blind equalization method [10], which is the most popu-
lar amongst the explicit HOS-based blind equalization algorithms, the channel equaliza-
tion requires at least fourth-order statistics. Similarly, for Bussgang algorithms, we use
fourth-order statistics. This causes the HOS-based blind equalization algorithms exhibit
a slow rate of convergence, compared to conventional adaptive filtering using a training

sequence.

From the available experimental results, one can also find that the conventional adap-
tive filtering algorithms [1] generally require a few hundred iterations to converge as com-
pared to the existing HOS-based blind equalization algorithm which may require several

thousand iterations to converge.

2.8 Cyclostationary Statistics-Based Blind Equalization
Algorithms

In a complete statistical description of a random process, for any n and any time instant
(t1,ta, ..., ta), the joint probability density function fx(e;).X(t2).X(ta) (T1s T2 - -+ Tn)
always exists. This joint probability density function (pdf) in general depends on the
choice of the time origin. In a very important class of random processes, the joint density
function is independent of the choice of the time origin. These processes whose statistical
properties are time independent, are known as stationary processes. There are different
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notions of stationarity — strictly stationary process, wide-sense stationary process and
cyclostationary process.

A strictly stationary process is a process in which for all » and all (t1,t2,---,tn)s
X)) Xit2)nX(tn) (T12 T2, - .-, Tn) depends only on the relative positions of £;,%,, ..., 5,
not on their actual values. In other words, a shift in the time origin does not change the
statistical properties of the process. A formal definition of a strictly stationary process is
given below.

Definition: A strictly stationary process is a process in which forall n, all (¢4, 22, . - ., &),
and all A

fX(tl),X(tz)y-mX(tn)(zh T2,-.4, In) = f X(t;+A)V,X(tz+A),-~-,X(tn+A) (-‘1:1, I2,---, In) (2.56)

The formal definition of a wide-sense stationary process is as follows.

Definition: A process X (t) is wide-sense stationary (WSS), if the following conditions
are satisfied:

1. mx(t) = E[X(t)] is independent of ¢, and
2. Rx(t1,t2) depends only on the time difference 7 = ¢; — t2, noton t; and ¢, indi-
vidually,

where my is the statistical mean and Ryx is the autocorrelation function of a random

process.

In cyclostationary processes, the statistical properties are not time independent, but
periodic in time. Mathematically, a cyclostationary process can be defined as follows.

Definition: A random process X (t) with statistical mean my (t) and autocorrelation func-
tion Ry (t + 7, t) is called cyclostationary, if both the mean and the autocorrelation are
periodic in ¢ with some period T, i.e., if

mx(t+kTo) mx(t), and
Rx(t'{'-T-'i-kn,t-{"kTo) = Rx(t+T,t)

2.57
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forall t, 7, and k. Where & is an integer.

For finding the unknown phase response of a nonminimum-phase channel, HOS-based
algorithms use higher-order statistics of the channel output. In this case, the channel out-
put is sampled at the baud rate or symbol rate. This information can also be extracted
by using another characteristic of the channel output which is known as cyclostationarity.
Cyclostationarity can be explained by rewriting the received signal in a digital communi-
cations system in its most general baseband form as given by

=
u(t) = Y. zeh(t — kT) +v(t) (2.58)
k=—00
where z is the symbol transmitted every T seconds thus giving a baud rate of 1/T', h(t)
is the overall impulse response of the channel which includes the transmit and receive
filters, and v(t) is the channel noise. All the quantities in Eq. (2.58) are complex valued.
Under the assumption that the transmitted sequence . and the channel noise v(t) are both
wide-sense stationary with zero mean, the mean value of the received signal u(t) can be

calculated as o
Efu(t) = 3 Elzlht — ET) + E[u(2)]
k=~00
or o
Elu(t)l =m; > h(t—kT)+ Efv(t)] (2.59)
k=—2c

where m,, is the mean amplitude value of the random sequence {z;}. We have assumed
that the transmitted sequence is wide-sense stationary with zero mean, and the noise v(t)
has zero mean. Therefore, we have

Elu(t)] =0
Also, it can be observed that although m. is either zero or constant (depending upon the

assumption), the term 32 __ h(t — kT) is a periodic function with period 7. Hence, the
mean value of u(t) is periodic with period T'.
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The auto correlation function of u(t) can be written as

R.(t+7.t) = E[ut)u(t +7)] = fj i E(zxz)h(t — KT)h(t + 7 —IT) (2.60)
k=—-o0 l=—0C

According to the assumption that the transmitted sequence {zx} is WSS, one can write
R:(k) = E[ZkZTr+m] (2.61)
Hence, Eq. (2.60) can be expressed as

R.(t+T,t) = TR T2 Rl —E)h(t — ET)h(t + 7 —IT)

= T2 R(m)TE_oh(t — ET)h(t +1 — kT — mT) (2.62)

Now, it can be observed from Eq. (2.62) that the second summation

Z h(t — kET)h(t + 17 — kKT — mT)
k=-o00
is periodic with period T. Consequently, the autocorrelation function R.(t + 7,t) is
periodic in the variable ¢, i.e.,

R, (t+T+7,t+T)=Ry(t+T,t) (2.63)

Therefore, the autocorrelation function of the received signal is also periodic in the sym-
bol duration 7. Hence, we can say that the received signal u(t) is cyclostationary in the
wide sense [11].

The idea behind cyclostationary statistics-based algorithm is to use the temporal di-
versity, i.e., oversampling of the received signal. In digital communication this operation
is performed to get timing and phase recovery. In the case of blind channel equaliza-
tion, to perform the equalization by doing oversampling, the equalization taps are spaced
closer than the reciprocal of the incoming symbol rate. This is the reason for this type
of equalization technique to be also known as fractionally-spaced equalization technique.
There are many techniques available under this category. Most of these are inspired by
statistical array digital signal processing. Amongst these, the subspace decomposition
method [1] is the most popular one.
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2.8.1 Subspace Decomposition Method

In the subspace decomposition method, the channel is modeled as an FIR filter, and for

each sampling period T', several measurements are made. To make these measurements,

three kinds of techniques can be used:

1. Oversampling of the received signal
2. Use of multiple sensors
3. Combination of techniques 1 and 2

In the second case which uses multiple sensors, we have more than one received signal.
These sensors are then used to approximate the channel. This technique uses statistical
array signal processing. The first technique can be explained as follows.

Let the received signal u(t) be oversampled by making
t=L

where L is a positive integer. Substituting this value of ¢ from Eq. (2.64) in Eq. (2.58),

we have T o T T
7 Z ) z
u ( - ) > =a(3 KT) +v (% (2.65)
Now, let
i=nL+I, l=0,1,...,L—-1 (2.66)

Substituting this value of ¢ in Eq. (2.65) yields

u (nT + £Z) = i zih ((n - k)T + I_Z'_) + v (nT + %) .67

L k=-o0

Letting
R = h (nT + %)
) = u (nT + %) (2.68)
W = v (nT + %)



Eq. (2.67) can be further rewritten as

o0
W= Y bl +00, (=01,...,L-1 (2.69)

k=—-o00

Now, since the channel is assumed to be a causal FIR filter, we have
hD =0, fork<Oork>ncforalll (2.70)

where n. is the order of the filter. It is further assumed that at any time n, the processing
involves the use of a transmitted signal vector with (nc + n;) symbols as given by

Xp = [xnr Ip—15---> zn—nc—n1+1]T (2-71)

where T represents the transpose of the matrix. Now at the receiving end, instead of n;
samples, we have n, L samples for each block, meaning that the received signal has been
oversampled by a factor L. These samples can now be grouped in two different ways
to give two different matrix representations for the oversampled channel. These matrix

representations are known as:
1. Sylvester matrix representation.

2. Single input multiple output (SIMO) model.

The basic representation of an oversampled channel as a single input mutltiple output
model is shown in Fig. 2.9. It can be seen that it has L virtual channels fed from a
common input. Each virtual channel or subchannel has the same time support and its own
noise contribution. More details can be found in [1] and [11].

2.9 Limitations of the HOS-Based and Cyclostationary
Statistics-Based Blind Equalization Algorithms

In a broad sense, blind equalizers can be divided into three categories. These are im-
plicit higher-order statistics-based blind equalizers, explicit higher-order statistics-based
blind equalizers, and cyclostationary statistics-based blind equalizers. All of these blind
equalizers have certain advantages and disadvantages.
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Figure 2.9: An oversampled channel for single input multiple output model.

Implicit higher-order blind equalizers are the least complex from the implementation
point of view. But they have a tendency to converge to local minima. This problem is not
there with other kinds of blind equalizers.

Explicit higher-order statistics-based blind equalizers have the advantage of always
converging to a global minima. But they use a minimum of fourth-order cumulants to
estimate the channel leading to a complex implementation.

Cyclostationary statistics-based blind equalizers use only the second-order statistics,
and therefore, are much faster than implicit and explicit higher-order statistics-based blind
equalizers. But for an efficient operation they require a precise knowledge of the order of
the channel, which is not a problem with the higher-order statistics-based blind equalizers.

In cases where channels are characterized by a single input single output (SISO) FIR
filter, we require infinite impulse response (IIR) equalizers for achieving a perfect equal-
ization. Bussgang algorithms generally use FIR equalizers for approximating these IR
equalizers. Now, if the IIR equalizer has roots close to the unit circle, we require an
extremely long FIR equalizer to approximate the IIR equalizer [12].
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Polyspectra-based algorithms use higher-order statistics, which gives rise to higher
complexity and much larger size of the FIR filter. This complexity further increases as
the zeros of the channel approach the unit circle.

Perfect equalization (zero-forcing) can also be achieved by oversampling the channel
output at a rate higher than the baud rate. In this case, as discussed earlier, the channel is
modeled as a single input multiple output. Now, if this oversampled channel has repeated
zeros, then this technique also fails to achieve the required inverse of the channel with an
FIR filter. Further, for channels having their zeros close to the unit circle, this scheme
requires a much higher order FIR filter to approximate the inverse of the channel.

It can be seen from the above discussion that Bussgang, polyspectra and cyclostation-
arity based algorithms suffer from a common problem: when the zeros of the channel
approach the unit circle, the equalization becomes more difficuit and complex.

2.10 Summary

In this chapter, the underlying theory behind blind equalization techniques has been dis-
cussed and some widely used blind equalization structures are presented. The blind equal-
ization algorithms have been grouped into two categories. The first category consists of
higher-order statistics-based algorithms, which has been further subdivided into two cate-
gories, namely, implicit higher-order statistics-based algorithms and explicit higher-order
statistics-based algorithms. The second one consists of cyclostationary statistics-based
algorithms.

It has been shown that the decision-directed Bussgang, Godard and Sato algorithms
use higher-order statistics in an implicit sense and perform the blind equalization by sub-
jecting the received signal to an iterative deconvolution process. In these algorithms the
channel estimation is obtained by minimizing a nonconvex cost function, but the algo-
rithms have the potential of converging to a local minimum. However, the algorithms
have a low computational complexity when the zeros of the channel are not very close to

the unit circle.
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The polyspectra-based algorithms use higher-order statistics in an explicit sense. It
has been shown that these algorithms exploit the fourth or higher order cumulants of the
received signal to extract the phase information about the channel. In these algorithms,
the channel estimation is obtained by identifying the minimum-phase and maximum-
phase parts of the channel transfer function without involving the cost function, but the
computational complexity is rather high. However, the problem of a false convergence

does not exist here.

The common limitations of these higher-order statistics-based algorithms have been
discussed and it has been shown that these algorithms have slow rate of convergence and
the computational complexity increases substantially as the zeros of the channel approach
the unit circle of the z-plane.

Finally, it has been noted that the problem of slow rate of convergence can be over-
come by using cyclostationary statistics-based algorithms. But for an efficient operation,
they require a precise knowledge of the order of the channel. Also, if the zeros of the
channel are repeated, then this technique fails to achieve the required inverse of the
channel.



Chapter 3

A New Blind Equalization Scheme

3.1 Introduction

One aspect that is common in implicit HOS, explicit HOS, and cyclostationary statistics
based algorithms is that they generally employ finite impulse response (FIR) filters for
blind equalization. Bussgang algorithms, when applied to FIR filter-based blind equalizer
structures, perform poorly when one or more maximum-phase zero of the channel is close
to the unit circle. For the polyspectra-based algorithms, the computational complexity is
very high and it increases rapidly as the zeros of the channel approach the unit circle.
In the case of cyclostationary statistics-based algorithms, the channel is modeled as a
single input multiple output (SIMO) system. If the zeros of this oversampled channel are
repeated, this scheme also fails to achieve the required inverse with a FIR filter, because
of the reasons explained in Chapter 2.

The above problem can be solved by using a blind equalization structure that is based
on an IIR filter and an all-pass filter [16]-[18]. This equalizer models the inverse of the
nonminimum-phase channel completely, and is called a sufficient-order equalizer. Even
though this blind equalization structure performs better than the other structures discussed
in Chapter 2, it makes use of a fourth-order norm. This results in a much higher order
all-pass filter and the computational complexity is extremely high for channels whose
maximum-phase zeros are close to the unit circle.

The high computational complexity can be reduced by using a block-based time re-
verser scheme [12]. This structure uses two infinite impulse response (IIR) filters, an
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FIR filter, and two block-based time reversers. The computational complexity for this
blind equalization structure is lower than that of the sufficient-order equalizers presented
in [16]-[18], but it is still quite high. Also, the adaptive IIR filter algorithm may not con-
verge, if the denominator polynomial of the IIR filter does not satisfy the strictly positive
real (SPR) condition (see Section 3.3) [14].

In this chapter, we look for simpler and less complex solutions to the blind equal-
ization problem and propose new algorithms for the adaptation of the IIR predictor and
the adaptive FIR filter of the structure employed in the equalization scheme. In Section
3.2, the basic components of a sufficient-order equalizer are presented, the assumptions
necessary for the design of this class of blind equalizers are mentioned, and a sufficient-
order blind equalization structure presented in [12] is briefly discussed. In Section 3.3,
the limitations of the sufficient-order equalizer presented in [12] are discussed. A new
algorithm for the block-based sufficient-order blind equalizer is proposed in Section 3.4.
In Section 3.5, a comparison is made between the proposed block-based sufficient-order
blind equalization algorithm and the one presented in [12]. Finally, Section 3.6 gives a
brief summary of the work described in this chapter.

3.2 Sufficient-Order Equalizer

The basic block diagram of a baseband communication system is shown in Fig. 3.1 [1].
The system is subjected to inter symbol interference (ISI) and an additive white Gaussian
noise (AWGN). The channel model includes the effect of the physical channel together
with the spectral shaping caused by the transmit and receive filters. In this figure, z(n) is

AWGN

x(n)
—(—-» Channel

| Equalizer ¥(n) —J'—ft‘(n)

Figure 3.1: Baseband communication system with the channel and an equalizer.

the input data sequence applied to the channel, u,(n) is the output of the channel, v(n)
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is the additive white Gaussian noise, which is added to the output u,(n) of the channel,
u(n) is the received signal at the input of the equalizer and Z(n) is the desired output.

The channel is modeled as an FIR system. Therefore, the sampled input-output rela-
tionship of the channel can be expressed by the convolution summation given by

us(n) = ic: h(t)z(n — 7) (3.1
=0

where h(n), 0 < n < n. are the impulse response coefficients of the channel and 7. is
the order of the channel.

The input to the equalizer can be expressed as
u(n) = us(n) +v(n) (3.2)

The additive white Gaussian noise v(n) is statistically independent of the input signal
z(n). The objective of the blind equalization is to recover the input sequence {z(n)} or,
equivalently, to find the impulse response of the channel ~(n), 0 < n < n., by processing

only {u(n)}.
For the purpose of analysis, the following assumptions are made for the sufficient-
order blind equalizers [12].

1. The input data sequence {z(n)} is independently and identically distributed (iid),
and is non-Gaussian with a zero mean. For example, z(n) could be a bipolar se-
quence with equiprobable symbols {—1, +1}.

2. The additive noise is modeled as a zero-mean Gaussian and is statistically indepen-
dent of {z(n)}.

3. The FIR system (channel) is assumed to be strictly minimum, strictly maximum, or

mixed phase. Therefore, the polynomial

H(z"!) = f: h(i)z™ (3.3)

=0
has zeros inside and/or outside the unit circle, but none on the unit circle. The
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wransfer function H(z~!) can be written in terms of the product of the minimum
and the maximum phase factors of the channel as follows:

d s -1
B =T[0-& [T[(g) " - =] (3.4
=1 Jj=1
where |§,‘ l < 1fori=1,...,d corresponds to the minimum-phase zeros, {7| > 1
for j =1, ..., s corresponds to the maximum-phase zeros, and n. =d + s.

4. In a digital communication channel, the interference is dominated by the inter sym-
bol interference rather then the additive white Gaussian noise. Therefore, for the
simplicity of the analysis, the effect of AWGN is not considered .

5. The channel is assumed to be constant at least during each block length [12].

An equalizer which models the inverse of a maximum-phase channel completely is
called a sufficient-order equalizer [16]-[18]. A sufficient-order blind equalization tech-
nique based on an ITR predictor and an all-pass filter is shown in Fig. 3.2 [16]-[18].

AWGN

/ /

{p(n)} {q(n)}
IR predictor All pass filter

/ /

Figure 3.2: Blind equalization structure based on an IIR filter and an all-pass filter.

{x(n)}

Channel

The IR predictor is an adaptive IIR filter and is called a predictor. The IIR predictor
coefficients are adapted to minimize the mean square of its output {p(n)} as given by

J = E{p*(n)} (3.5)

The order of the channel can be estimated from the autocorrelation values of the channel
output. This can be done by choosing the largest length that corresponds to the significant
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nonzero autocorrelation value [12). The blind equalization scheme shown in Fig. 3.2,
first searches for a global minimum for the cost function E{p?(n)}. As the cost function
E{p*(n)} reaches a global minima, the transfer function of the IIR predictor represents
the inverse of the spectrally equivalent minimum-phase (SEMP) model of the channel and
can be represented as [16]

1 1
RE e, - g T 1 - (852) 7

where R(z™!) represents the z-domain impulse response of a standard spectrally equiva-
lent minimum-phase channel [12]. Now, using Egs. (3.4) and (3.6), the transfer function
of the cascade of the channel and the [IR predictor can be written as

H(z™Y) _ [T=: [(E;) - z_l]
Rz F=1 [1 - (‘5;2)-1}

Eq. (3.7) represents an all-pass z-domain transfer function.

3.6)

Iz =

P(z"Y) = 3.7

The output of the IR predictor {p(n)} is an auto-regressive-moving-average (ARMA)
sequence of the flat magnitude spectrum with a distorted phase because the sequence
{p(n)} is second-order white. In order to remove this phase distortion another all-pass
filter is required [12]. This all pass filter is adapted to minimize the function

J1 = E{¢*(n)} (3.8)

It can be observed from Eq. (3.8), that now a fourth-order norm is required as the corre-
lation is absent from the output of the [IR predictor. It again requires a much higher order
all-pass filter for the channels whose maximum-phase zeros are close to the unit circle.

3.2.1 The OR-IIR-FIR Blind Equalization Structure

The high computational complexity of the sufficient-order equalizer presented in [16]-
[18] and discussed above can be reduced by using a block-based time reverser scheme
presented in [12]. This blind equalization structure makes use of an adaptive IIR predictor,
an IIR filter and an adaptive FIR filter together with two block-based time reverser as
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depicted in Fig. 3.3. The operation of equalization is based on a theorem established by
Lambotharan and Chambers [12]. According to this theorem, if we let {p(n) } and {Z(n)}

/ - .

{u(n)} IR i | T (nj} IR {An)} FIR @l |+ {x(n}} dect.) {x(n)}
predictor R filter filter R
i — ’ /
| Copy the coefficients o)
CMA-2

Figure 3.3: Blind equalizer structure based on two filters, an FIR filter and two block-
based time reversers.

to be the input and output of an all-pass filter P(z~!), then time reversed sequence of
{Z(n)} can be reconstructed exactly by sending the time reversed sequence of {p(n)}
through an all-pass filter whose transfer function is P(z~1).

The use of block-based time reversers in the structure brings the following advantages.

1. The scheme has a reduced computational complexity [12].
2. It is well suited for stability monitoring.

3. The order of all-pass filter, to reconstruct the transmitted sequence perfectly, is
equal to the number of maximum-phase zeros of the channel.

Now, let the z-domain transfer function of the channel be

: d s -1 _
A =[la-& [ [€)7 -7 39
=1 I=1
where €/l < 1 fori =1,...,dand |£2| > 1forj = 1,...,s, and let the z-domain
3 7

transfer function of the IIR predictor be

1
ML, (1 — &) [ [1 - (§22)7]

Iz = (3.10)

then the cascade of the channel and the predictor is an all-pass filter with the transfer
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function given by

H(z™) _ | Y [(E;)—l —z‘l]
=) j=1 [1 - (53’2)—1]

Now, according to the Lambotharan and Chambers [12], the transfer function of the com-
bined IR and FIR filters required to reconstruct the transmitted sequence is

-1
;’:1 [(E;) - Z_I]
-1
M- [1 - (57) ]
where I'(z™!) and F(z™!) are, respectively, the z-domain transfer functions of the IIR

filter and the adaptive FIR filter. Multiplying and dividing Eq. (3.12) by the minimum-
phase part of the channel, Eq. (3.12) can be rewritten as

3.11)

P(zl) =

3.12)

Fzh)r(z™Y) =

4 (1-€e) M |(8)7 -2
Y = Me, (1 - &z [T [( J) 2-1] (.13)
e, (- &) Mo 1 (g52) 7]

Using Eqs. (3.9) and (3.10) in Eq. (3.13), we have
F(z"Y)I'(z™Y) = H(z")I(z™") (3.1%9

Eq. (3.14) is the condition for perfectly reconstructing the transmitted sequence. Now, if
the transfer function of the IIR predictor is chosen to be equal to the transfer function of
the IIR filter, i.e.,

IYH =I(z"1) (3.15)

then the Eq. (3.14) simplifies to
F(zY)=H(z™1) (3.16)

Eq. (3.16) shows that the coefficients of the FIR filter given by F(z~*) required to recon-
struct the transmitted sequence are the same as those for the channel.

The operation of the blind equalization structure shown in Fig. 3.3 can be explained
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using the result givch in Eq. (3.16). The IIR predictor is an adaptive filter and it adapts
itself to minimize the cost function of E{p?>(n)}. At the optimum, the transfer function
of the predictor is the inverse of the spectrally equivalent minimum-phase of the channel.
The output of the IIR predictor is collected in a block and time reversed. The output of
the time reverser is sent to another IIR filter whose coefficients are copied from the IIR

predictor.

The sequence {z(n)} obtained at the output of the second IIR filter is sent to an FIR
adaptive filter. The output of the FIR adaptive filter is collected in a block and the block
is again time reversed to reconstruct the transmitted sequence in the right order.

Number of data outputs stored in a block can be consistent with the transmission
system, e.g., in a packet transmission system each block can be equal to the length of
each packet.

3.2.2 Adaptation of the IIR Predictor

A simplified stochastic-gradient method has been used in [12] for the adaptation of the
IR filter for the scheme shown in Fig. 3.3. According to this algorithm

Tni1 = In + up(N)Pn 3.17

where o is the adaptation gain, r is the [IR predictor weight vector, and p is an TIR
feedback vector. The adaptation gain g is chosen small enough to maintain the stability.
The IIR predictor weight vector r is expressed as

rl =[ra(1) 1a(2) --- a(n)] (3.18)

where 1, (i)’s represent the coefficients of the IIR predictor. The IIR predictor feedback
vector p is expressed as

pL =[p(n—1) p(n—2) --- p(n—n,)] (3.19)

In the Egs. (3.17) and (3.18), [.]T represents the transpose of the associated column vector
and n, the length of the IIR predictor [12].
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3.2.3 Adaptation of the FIR Filter

A normalized constant modulus adaptive CMA-2 algorithm [7] has been used in the
scheme of Fig. 3.3 for the adaptive FIR filter. The length of the adaptive FIR filter is
first chosen as 2n. + 1, where n. is the order of the channel and the center tap weight is
initialized to unity [12] to avoid the sign ambiguity. The adaptation of the FIR filter is
carried out as follows:

2-R
w(n+1) =w(n)+p* “"("))) - zrlz"(")z (3.20)
where the tap weight vector given by
wl(n) = [wo(n) wi(n) --- wop 41(n)] (3.21)

represents the coefficients of the FIR filter, z is the input weight vector of the FIR filter

expressed as
z7(n) =[z(n—1) z2(n - 2) --- z(n —2n.—-1)], (322)

R, is a positive real constant defined as

_ E{lz(m)l}
% = El=mPy 23

and p is E{[z(n)[3} which is estimated at each sample as
Prs1 = 1Pn + (1 = 7)|z(m)° (324)

The constant ¥ € (0, 1) is the adaptation constant usually approximately equal to unity
[12].

The IR predictor is an adaptive IIR filter, and the second IIR filter copies the coeffi-
cients of the adaptive IIR predictor. Therefore, the input to the FIR filter is statistically
nonstationary. Thus, the power of the output of the IIR filter or the input to the FIR filter
changes with time. After a small number of iterations, n. coefficients of the filter re-
main around zero with a negligible amplitude, and therefore, may be switched off in the
adaptation [12]. This provides a direct-form of the channel-order selection.
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The estimate of the channel is obtained by multiplying the FIR filter-parameter vector
by a gain G as follows:

h = [r(0) A(1) --- h(n.)] = WG (3.25)
The gain G is given by
o2
G = o (3.26)

where o2 is the output power of the IIR predictor estimated as follows:

82, =752+ (1 — 7)p*(n) (327

3.3 Limitations of the IIR-IIR-FIR Blind Equalization
Structure of [12]

The main purpose of the blind equalization scheme presented in [12] and discussed above
was to reduce the computational complexity for the communication channels having deep
spectral nulls. From the above discussions, it can be seen that the complexity of the blind
equalization structure depicted in Fig. 3.3 depends mainly on the adaptation algorithms
of the IR predictor and the FIR filter. This structure, in general, reduces the computa-
tional complexity of the blind equalization as compared to the other conventional schemes
discussed in Chapter 2, but more specifically when one or more zeros of the channel ap-
proach the unit circle. However, the scheme is still computationally intensive because of
the normalized constant modulus adaptive CMA -2 algorithm employed for the adaptation
of the FIR filter.

The blind equalization of communication channels without deep spectral nulls can be
achieved efficiently by the use of decision-directed Bussgang algorithm or Sato algorithm
discussed in Chapter 2. The complexity of these algorithms are much less than that of
the normalized constant modulus adaptive CMA-2 algorithm. Thus, for the case when
the channel is not a deep spectral null channel, the use of the normalized constant modu-
lus adaptive CMA-2 algorithm makes the entire blind equalization scheme unnecessarily
computationally complex.
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The adaptation of the IIR predictor in [12] is done using a simplified stochastic-
gradient algorithm presented in [14]. The major disadvantage of this algorithm is that
it cannot converge to the minimum of the mean square output error surface unless the
denominator polynomial of the IIR predictor satisfies a strictly positive real condition!.
If this condition is not satisfied, the algorithm may converge to an arbitrary point on the
mean square output error surface and the overall performance may not be acceptable.

The noise present at the channel output passes through the IIR predictor and then
through the all-pass filter formed by the cascade of the IIR filter and the adaptive FIR
filter. If the noise present at the channel output is high and the noise amplification by
the IIR predictor is not in an acceptable range, then the positions of the IR filter and
the adaptive FIR filter after the time reverser are swapped in order to keep the noise level
within an acceptable range [12]. This makes the blind equalization process more complex.

The blind equalization structure presented in [12], makes use of adaptive [IR and
adaptive FIR filter algorithms which are not similar to the well known least mean square
(LMS) norms. Most of the hardware available is based on the least mean square adaptive
algorithms. Therefore, additional hardware is required for the implementation of the blind
equalization structure that uses adaptive IIR predictor and FIR filter algorithms [12].

3.4 Proposed Blind Equalization Scheme

The disadvantages of the adaptive IIR filter algorithm that it may not converge if the
denominator polynomial of the transfer function of the IIR predictor does not satisfy a
strictly positive real condition and the high computational complexity of the adaptive FIR
filter algorithm are the major source of concems of the equalization scheme presented
in [12]. We will now address these concems by replacing the existing adaptive IIR pre-
dictor algorithm of [12] by a gradient-based adaptation algorithm and adaptive FIR filter
algorithm by a simpler and less complex adaptive algorithm.

In [14], it has been shown that in order to guarantee convergence of their algorithm, it is necessary that
the following strictly positive real condition (SPR) be satisfied:

Re[I(="Y)] -% >0, forall |5 =1

where Re[I(z~!)] denotes the real part of the IR predictor transfer function.
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We now propose a new blind equalization structure as shown in Fig. 3.4. Using the
assumptions made in Section 3.2, we next propose and discuss the adaptation schemes for
the IR predictor and the adaptive FIR filter.

/ /

fum} [ B [T ABeE[T m | [ pr |faeF [ s ot xin)}
predictor R filter filter R i
L:---------.-wummdm--:
Gradient-based | CMA
algorithm algorithm

Figure 3.4: The proposed blind equalization structure.

3.4.1 Adaptive IIR Predictor

Fundamentally, there have been two approaches to adaptive IIR filtering that correspond
to two different formulations for the prediction error [15]. These are known as the equa-
tion error and output error methods. In the equation error approach, the feedback co-
efficients of an IIR filter are updated in an all-zero nonrecursive form, which are then
copied by the second IIR filter implemented in an all-pole form. This formulation can
lead to unbiased estimates of the IIR filter coefficients. On the other hand, the output
error formulation updates the feedback coefficients directly in a pole-zero recursive form,
and therefore, does not generate biased estimates [14].

The IR predictor used in the scheme of Fig. 3.3 has been based on a simplified
stochastic-gradient method and it belongs to the later class of the adaptive IIR filtering.
We now propose a gradient-based adaptation algorithm which also belongs to the later
class and is based on Gauss-Newton algorithm for the adaptation of the IR predictor.
Contrary to the scheme of [14], this algorithm does not require the denominator polyno-
mial of the IIR predictor to follow the strictly positive real condition defined in Section
3.3. It only requires that the order of the IR predictor must be greater than or equal to
that of the channel? . The general structure of the IIR predictor is depicted in Fig. 3.5.

>The other condition of convergence is that
Re[I(e77)] >0, forallw —nr<w<w

which is always sarisfied for the predictor transfer function I(z~1) of the type givenin Eq. (3.6).
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Figure 3.5: Basic block diagram of an adaptive IIR predictor.

The IIR predictor coefficients are adapted to minimize the mean square of its output

{p(n)} as given by
J = E{p*(n)} (3.28)

where p(n) is the observed output of the adaptive IIR predictor. The objective of the
adaptive IIR predictor is to reduce a function of the output given by

J(n) = f(p(n)) (3.29)

Considering that the adaptive IR predictor is realized using the direct form structure
shown in Fig. 3.6, i.e., it is an all-pole filter, it meets the requirements discussed in Section
3.2. The predictor’s output signal information vector in this case can be represented as

s(n) = [p(n—1) p(n—2) --- p(n—n,)]T (3.30)

where n, is the length of the adaptive [IR predictor denominator and [.]7 denotes the
transpose of the associated column matrix. The direct form adaptive predictor can be
characterized in the time-domain by the following difference equation

p(n) = u(n) — 3° as(n)p(n — j) (3.31)

j=1

This difference equation can also be rewritten in a vector form, which is more suitable



an (n) z!

Figure 3.6: Adaptive [IR predictor with direct form realization.

for the algorithm description and implementation as
p(n) =a’ (n)s(n) (3.32)
where a(n) is the adaptive IIR predictor coefficient vector given by
a(n) = [a1(n) az(n) -+ an.(n)]" (3.33)
Now, consider the output mean square function defined as
J = E{p*(n)} (334)

In the Gauss-Newton algorithm, the minimization of the objective function J is obtained
by performing searches in the Newton direction [15] using the estimates of the inverse
Hessian matrix and the gradient vector. This gradient vector is calculated as follows:

Baln) E[2p(n)¥(n)] (3.35)
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where the vector ¥(n) is given by

_ 9p(n)
¥(n) = Ja(n) (3.36)
which can be approximated by
¥(n) = [p(n —1) p(r —2) --- p(r — n,)]" =s(n) (3.37)
The Hessian matrix is then given by
&*J —c T 3°p(n)

The expected value of the second term of the bracketed expression of Eq. (3.38) is
approximately zero, since in close neighborhood of the solution, the output p(r) is almost
a white noise [15], independent of the term

3%p(n)
0a?(n)

The determination of the gradient vector and the Hessian matrix requires the calculation of
statistical expectations. In order to derive a recursive algorithm, estimates of the gradient
vector and Hessian matrix have to be used. For the gradient vector, the most commonly
used estimation is given by

-~

aJ
da(n)

= 2p(n)¥(n) (3.39)
where J is an estimate of J given by Eq. (3.34).

The Hessian estimate can be generated by employing a weighted summation as fol-

lows:
R(n+1) = a¥(n)¥T(n) + anX:l(l — o) (1)U (7) (3.40)

i=0
where o is 2 small factor chosen in the range (0, 0.1) [15]. Eq. (3.40) can be rewritten as
R(n +1) = a¥(n)¥T(n) + (1 — a)R(n) (3.41)
Taking expectation of the quantities on both sides of the Eq. (3.41) and letting n — o0,
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we have n
ER(r+1)] =3 (1 - )" E[¥() ¥ (2)] (3.42)

=0
The expected value given by Eq. (3.42) can be approximated as
E[R(n +1)] = E[¥(n)¥T(n)] (3.43)

By applying the approximation discussed, the Gauss-Newton algorithm for IR adaptive
filtering for the proposed blind equalization scheme can be written as

¥(n) = gig:; (3.49)

- N R-1(n)¥(n)¥T (n)R(n)
R (n+1)=7— [R (n) o 4 7 ()R- () ¥ () (3.45)
a(n+1) = a(n) + pgR ' (n +1)¥(n)p(n) (3.46)

where p is the convergence factor [15].

If in the Gauss-Newton algorithm discussed above, the Hessian matrix is replaced by
an identity matrix, the resulting algorithm becomes a gradient-based algorithm [45]. Eq.
(3.46) in this case becomes

a(n+1) = a(n) + p¥(n)p(n) (3.47)

The computational complexity of this algorithm is much less than that of the Gauss-
Newton algorithm.

The gradient-based algorithm for the proposed blind equalization scheme can be sum-
marized as follows:

¥(n)=[p(n—1) p(n—2) --- p(n —n.)]" (3.48)

a(n +1) = a(n) + p¥(n)p(n) (3.49)



where a(n) is the weight vector of the adaptive IR predictor given by
a(n) = [ay(n) az(n) -+ an. ()" (3.50)
The advantages of using the gradient-based algorithm are as follows:

1. This algorithm does not require the denominator polynomial of the IIR filter to
follow the strictly positive real condition of [14].

2. The proposed algorithm converges provided that the order of the IIR predictor is
greater than or equal to that of the channel.

3. It has a reduced computational complexity.

4. Unstable poles have the tendency to migrate back into the stable region, so the
algorithm generally has a self-stabilizing feature.

5. Easy to monitor stability.

3.4.2 Adaptive FIR Filter

The computational complexity of the blind equalization structure presented in [12] can
be decreased by using a less complex FIR filter adaptation algorithm. As in [12], the new
algorithm proposed for the adaptation of the FIR filter is also a constant modulus adap-
tive CMA algorithm but it has a much less computational complexity. The basic block
diagram of an adaptive FIR filter with constant modulus adaptive algorithm is depicted in
Fig. 3.7. The input to the FIR adaptive filter is the output =(n) of second IIR filter and the
output is g(n). The filter output g(n) may be written as

g(n) = 2" (n)w(n) 3.51)
where z(n) is the input data vector in the filter delay line, given by
z(n) = [z(n) z(n - 1) --- z(r=N+1D)T (3.52)
and w(n) is the tap weight vector, represented by
w(n) = [wo(n) wy(n) --- wy-1(n)]” (3.53)
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Figure 3.7: Basic block diagram of an adaptive FIR filter with CMA algorithm.

The tap weights are adjusted at each sampling instant. In Egs. (3.51), (3.52) and (3.53),
N represents the length of the FIR adaptive filter and is chosen as

N=2n.+1 (3.54)

where n. is the order of the channel. The most straightforward realization for the adaptive
FIR filter is through the direct-form realization as illustrated in Fig. 3.8.

{z(n)} A
J wo (r)
-1
WI (n}
2 {q(ny
. p! ———
K CMA
1 algorithm
|
%

Figure 3.8: Direct form realization of the adaptive FIR filter.

The objective of the adaptive filtering is to make g{n) to have a constant instantaneous
modulus as an average. This can be done by choosing the tap weight vector w in such a
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way as to minimize a positive definite measure of the signal modulus variation, given by
1
J = ;E{lla(m)* - 1%} (3:55)

It can be seen from this equation that J is just a positive measure of the average amount
that the filter output g(n) deviates from the unity modulus condition [8]. The tap weight
vector w is adjusted in such a way that J attains a minimum value and in the process ()
becomes as close to a unit length as possible. Knowing the performance function and
the type of the filter structure, there are many possible approaches for updating the tap
weight vector w [15]. Simple gradient search algorithms are generally easy to implement
on hardware and are computationally less complex. Therefore, a simple gradient search
algorithm is used to minimize J. In the proposed algorithm the tap weight vector w is
updated as follows:

w(n+1) =w(n) — uVy,J (3.56)

where w(n) is the set of coefficients used to generate output g(n) as given by Eg. (3.51),
the parameter . is a positive step-size that regulates the convergence rate, and V,, is the
gradient operator with respect to the elements of the tap weight vector w. In Eq. (3.56),
the gradient of J with respect to the tap weight vector w can be written as

Vud = %E{“q(n)l2 —1]Vu[w¥z"zTw]} 3.57)

where w¥ is the Hermitian transposition of w ( i.e., transposition of w followed by
complex conjugation or vice versa). Eq. (3.57) can also be written as

Vo = 2E{lla(n)* — 1)2"(n) 27 (n)w} (3.58)
Using Eq. (3.51) in Eq. (3.58) yields
Ved = 2E{lla()|® - la(n)a"(m)} (359)

The adaptive algorithm can now be obtained by replacing the true gradient given by Eq.
(3.59) with an instantaneous gradient estimate given by

V. J = [lg(n)* — 1lg(n)z" (n) (3.60)
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In Eq. (3.56), replacing V,,J with , V,,J we have
w(n + 1) = w(n) — p{[lg(n)[* - 1]g(n)z" (n)} (3.61)

For a real baseband PAM system, the data sequence is real, i.e., it does not have any
imaginary part. Therefore, for a real baseband PAM system, Eq. (3.61) can be written as

w(n+1) =w(n) — p{{la(n)|* - lg(n)z(n)} (3.62)

Eq. (3.62) gives the desired adaptive algorithm for the adaptation of the FIR filter.

Once the algorithm converges, it can be seen that n. tap weights fluctuate around
zero with a negligible amplitude. Then, the final estimate of the channel is obtained by
multiplying the non-zero FIR filter-parameter vector by a gain G as follows:

h =[R(0) R(1) --- h(n)] =wG (3.63)

where G is the gain given by
2
G=4/-=2 (3.64)

wliw

with o2 being the output power of the IR predictor estimated as

52, =782 + (1 — 7)p*(n) (3.65)

+1

The constant 7 is the adaptation parameter in the range (0, 1).

The following two advantages of the proposed constant modulus adaptive algorithm,
based on gradient search algorithm can be readily noted.

1. The true gradient used in Eq. (3.56) has been replaced by an instantaneous gradient
estimate. This instantaneous estimate can be averaged and used periodically to
update w. This leads to a hardware simplification.

2. This algorithm can be used for the complex baseband PAM systems.
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3.5 Comparison of the Proposed Blind Equalization
Scheme with the Scheme of [12]

In this section we compare the merits of the blind equalization scheme proposed in Sec-
tion 3.4 with that of the one presented in [12].

3.5.1 Computational Complexity

The sufficient-order equalizer presented in [16]-[18] uses an IIR filter predictor and an all-
pass filter. This structure models the inverse of the maximum-phase channel effectively,
but as discussed in Section 3.2, it uses a fourth-order norm J2 = E{q*(n)} which, in
tumn, requires a much higher order all-pass filter for the channels whose maximum-phase
zeros are close to the unit circle. The overall computational complexity for this structure
is comparable to the blind equalization techniques that make use of FIR filters discussed
in Chapter 2.

The blind equalizer structure presented in [12] is based on two IIR filters, an FIR filter
and two block-based time reverser. This structure reduces the computational complexity
of the blind equalization schemes of [16]-{[18] when one or more zeros of the channel is
close to the unit circle, but the use of a normalized constant modulus adaptive CMA-2
algorithm for the adaptation of the FIR filter still makes it computationally demanding.
We now analyze the proposed scheme and the one presented in [12] for the adaptations of
IIR predictor and FIR filter algorithms for their computational complexities.

Computational complexity of IIR predictor
We first evaluate the number of multiplications and additions required by the IIR pre-
dictor proposed in [12]. For convenience, rewrite Eq. (3.17) as follows:

Fny1 =Ln + l‘p(n)pn (3.66)

For the calculation of up(n)p, , we require n, + 1 multiplications, where n, represents
the length of the IR predictor. Therefore, for the updatation of the IIR predictor weight
vector at each sample instant, a total of 7. + 1 multiplications and a total of n, additions
are required.
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The computational complexity of the proposed IR predictor can be calculated by
using Eq. (3.49) which is rewritten here for convenience:

a(n +1) = a(n) + p¥(n)p(n) (3.67)

For the calculation of z¥(n)p(n), n. + 1 multiplications are required. Therefore, for each
sample instant, we require a total of nr +1 multiplications and a total of n. additions.

The total number of multiplications and the total number of additions for the IIR
predictor presented in {12] and those for the proposed one are summarized in Table 3.1

Table 3.1: The number of multiplications and additions required for the proposed IIR
predictor and for the one presented in [12].
Algorithm presented in [12] | Proposed algorithm

MUItiplications Ny Nyrp1
Additions n, n,

Computational complexity of adaptive FIR filter
The computational complexity of the adaptive FIR filter algorithm presented in [12]
can be calculated by using Eqgs. (3.20) and (3.24) which are written here as follows:
[lg(n)> — Ryla(n)z

wn+1)=w(n)+px* = (3.68)

Bas1 = 18 + (1 — 7)|2(n) (3.69)

For each sample, p is updated requiring 5 multiplications and 2 additions. The calculation
of zTz requires N multiplications and (¥ — 1) additions, where N is the length of the
adaptive FIR filter. Therefore, for the evaluation of p + 2Tz, (N + 5) multiplications and
(N + 2) additions are required. For calculating R, (see Eq. (3.23)). 9 multiplications
per sample are needed. Now for each sample, u * [lg(n)[? — R,q(n)z requires (N +13)
multiplications and 1 addition. Therefore, the total number of multiplications required for
one sample are (2N + 19) and the total number of additions required for each sample are
(2N + 3).
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The computational complexity for the proposed adaptive FIR algorithm can be evalu-
ated using Eq. (3.62) which is again rewritten here for convenience:

w(n+1) =w(n) — y{[lq(n)l2 — 1]g(n)z(n)} (3.70)

For each sample, the calculation of p{{la(n)|* — 1]g(n)z(n)} requires (N + 4) multipli-
cations and 1 addition. Thus, for the complete adaptive FIR algorithm, (N + 4) multipli-
cations and (N + 1) additions are necessary.

The computational complexity of the proposed adaptive FIR filter algorithm and the
one presented in [12] is summarized in Table 3.2.

Table 3.2: Number of multiplications and additions for the proposed algorithm and the
one presented in [12] for the adaptation of FIR filter.

Algorithm presented in [12] | Proposed algorithm
Multiplications 2N +19 N+4
Additions 2N +3 N+1

From Tables 3.1 and 3.2, it can be seen that the computational complexity of the pro-
posed IIR predictor algorithm is same as that of the one presented in [12]. However, the
total number of multiplications and additions required for the adaptation of the proposed
adaptive FIR filter algorithm are substantially less than the one proposed in [12].

Total computational complexity

For calculating the computational complexity of the entire blind equalization scheme,
we also need to calculate the number of multiplications and additions required for
calculating the outputs of the IIR predictor, second IIR filter and the adaptive FIR filter.
For each sample, the calculation of the output {p(n)} of the IR predictor requires .
multiplications and 2, — 1 additions. As the second IR filter copies the coefficients of the
IIR predictor, the calculation of the output {=(n)} of the second IR filter also requires 7,
multiplications and n, — 1 additions. For the calculation of {g(n)}, the output of adaptive
FIR filter, N multiplications and N — 1 additions are required.

We know that the order of the IIR predictor is equal to or greater than the order of the
channel n.. Since the cascade of the channel and the IIR predictor should behave as an
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all-pass filter, we choose the length of the IR predictor . = n + 1. The length of the
adaptive FIR filter is 2n. + 1. Therefore, the total computational complexity of the blind

equalization in terms of n. can be summarized as given in Table 3.3.

Table 3.3: Number of multiplications and additions for the proposed algorithm and the
one presented in [12] for the entire blind equalization operation.

| Existing algorithm | Proposed algorithm | % reduction for n. = 3 |
Multiplications In. + 26 n.+ 10 41.50
Additions 9n.+6 n.+3 27.27

From Table 3.3, it can be observed that for a communication channel modeled by an
FIR filter of length 3, e.g., a linear telephone channel, the proposed algorithm requires
41.50% less multiplications and 27.27% less additions than those required in [12]. For
the adaptation of the [IR predictor in [12], a check of the strictly positive real condition
is required at each sample instant, which further increases the computational complexity
of the scheme presented in [12]. The computational complexity for this testing has not
been included in the above calculations. Also, the final channel estimate is obtained by
multiplying the adaptive FIR filter coefficients by a gain factor G. This final estimation is
to check the validity of the proposed technique and it does not add to the computational
complexity. Therefore, the number of operations in calculating G and for finding the final
channel estimate is not included in the above calculation of the computational complexity
of the two blind equalizers. However, from the above discussion, we can say that the
computational complexity of the proposed blind equalization algorithm is substantially
less than that of the one given in [12].

3.5.2 Comments on Hardware Implementation

In adaptive filtering, the least mean square (LMS) algorithms [15] are the most commonly
used algorithm. For the hardware implementation of these algorithms many DSP chips
are commercially available [32]. The proposed blind equalization algorithm does not
require any extra hardware for the implementation of the proposed adaptive IIR and FIR
filters. The proposed adaptive algorithm for the [IR predictor is a gradient-based algo-
rithm, derived from the basic least mean square algorithm. The proposed adaptive FIR
filter is also similar to the least mean square algorithm. This can be shown as follows.
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If a scalar term €(n) is defined as
&(n) = {lg(n)|* - 1}a(n) 3.71)
then the updating algorithm of Eq. (3.62) can be written as
w(n +1) =w(n) — ué(n)z(n) (3.72)
In the above equation, if the term &(n) defined by Eq. (3.71) is replaced by
e(n) = d(n) — q(n) (3.73)

where d(n) is some extemally applied reference signal, then it can be seen that the pro-
posed constant modulus adaptive algorithm is similar to the well known least mean square
(LMS) adaptive algorithm. Therefore, the hardware configuration used for the LMS algo-
rithm can be used directly for the proposed constant modulus adaptive algorithm, if &(n)
given by Eq. (3.71) is employed instead of e(n).

Thus, the proposed blind equalization structure is better suited for hardware imple-
mentation than the one presented in [12].

3.5.3 Stability Monitoring of the Adaptive IIR Filter

The stability monitoring of the adaptive IIR filter is generally difficult [15], since it re-
quires either factorization of the high-order denominator polynomial in each iteration or
the use of a sophisticated stability test. The adaptive IIR algorithm presented in [12], has
a tendency to converge to a local minimum of the mean square output error surface, if
the denominator polynomial of the IR predictor does not satisfy the strictly positive real
condition. Unlike this algorithm, a stability monitoring is not needed for the proposed
adaptive IIR predictor. If the order of the denominator polynomial is greater than or equal
to the order of the channel, then the proposed adaptive IIR filter converges to the global
minimum [19]. The denominator of the adaptive [IR predictor need not follow a strictly
positive real condition.

69



3.5.4 Noise Consideration

In the case of a high channel output noise, the blind equalization structure presented in
[12] fails to provide a solution with the existing scheme. The positions of the adaptive
FIR filter and IIR filter between the two time reversers have to be interchanged to keep the
output noise within an acceptable range. On the other hand, the proposed blind equaliza-
tion algorithm does not require any such an exchange. The proposed blind equalization
algorithm works efficiently with the higher channel output noise. However, to increase
the convergence rate of the blind equalizer, a signum function in the feedback loop of the
[IR predictor can be employed.

3.6 Summary

In this chapter, sufficient-order blind equalization schemes for modeling the inverse of
the maximum-phase channels have been discussed and a new algorithm for the blind
equalization of communication channels has been proposed.

First, a blind equalization technique based on an IIR predictor and an all-pass filter
[16]-[18] is discussed. In this technique the channel estimation is obtained by minimizing
a fourth-order norm. The technique has drawbacks in that the algorithm may convergetoa
local minimum and it has a very high computational complexity. The high computational
complexity of this scheme was reduced in the scheme presented in [12] by using a block-
based time reverser between the IIR predictor and the all-pass filter. Thus, this blind
equalization structure is based on an IR predictor, an IIR filter, an adaptive FIR filter, and
two block-based time reversers. The scheme makes use of a simplified stochastic-gradient
algorithm for the adaptation of the adaptive [IR predictor and a normalized version
of the constant modulus adaptive CMA-2 algorithm for the adaptation of the adaptive
FIR filter. This blind equalization structure reduces the computational complexity of the
blind equalization for the nonminimum-phase channels to a certain extent and makes the
blind equalization scheme less susceptible to converge to a local minima. However, for
the blind equalizer to converge to the global minimum, it has drawback of requiring the
denominator polynomial of the transfer function of the adaptive IIR predictor to satisfy the
strictly positive real condition. Also, a hardware implementation of this blind equalization
algorithm cannot be readily obtained.
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In this chapter, a new sufficient-order blind equalization technique that uses the same
architecture as the one presented in [12] but different and more efficient adaptation meth-
ods for the IIR predictor and adaptive FIR filter has been proposed. Unlike the scheme
presented in [12], the proposed algorithm for the adaptation of the IIR predictor does not
require strictly positive real condition for the convergence of the algorithm to the global
minimum. The computational complexity of the proposed scheme has been carried out
and compared with that presented in [12]. It has been shown that the new scheme has a
substantially lower computational complexity. It has also been shown that the proposed
algorithms for the adaptation of IIR predictor and adaptive FIR filter have close proxim-
ity to the well known least mean square adaptive algorithm, thereby making the proposed
blind equalization algorithm better suited for the hardware implementation.
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Chapter 4

Experimental Results for
Minimum-Phase Communication
Channels

4.1 Introduction

In the previous chapter we have proposed a new scheme for the blind equalization that
is based on a structure with an IIR predictor, an IIR filter, an adaptive FIR filter and two
block-based time reversers, as shown in Fig. 4.1. We now check the validity of the model
proposed in the presence of additive white Gaussian noise. As discussed in Chapter 3, the
adaptation of the IR predictor is carried out by using the algorithm

a(n+1) =a(n) + u¥(n)p(n) 4.1)

where p(n) is the output of the IIR predictor, a(n) is predictor’s tap weight vector defined

as
a(n) = [a:(n) ax(n) -+ an, ()T (4.2)

and _
¥(n)=[p(n—1)p(n—2) --- p(n—n)|” (4.3)

On the other hand, the adaptation of the adaptive FIR filter is carried out by employing
the algorithm
w(n +1) = w(n) — p{{lg(r)|* — 1]g(n)2(n)} 4.4)
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where g(n) is the output of the adaptive FIR filter, z(n) is the input data vector in the filter
delay line, given by

z(n) =[2(n) 2(n — 1) --- z(n =N +1)] (4.5)
and w(n) is the filter’s tap weight vector represented by
w(n) = [wo(n) wi(n) --- wy_1(n))T (4.6)

In Eq. (4.2), n, represents the length of the adaptive IIR predictor and for the stability
reasons, it is always taken as greater than or equal to the length of the channel. In Eq.

o B e I s O L B
predictor R filter filter R
— - Copy the coefficients -+ i
Gradient-based CMA
algorithm algorthm

Figure 4.1: The proposed blind equalization structure.

(4.6), N is the length of the adaptive FIR filter and is given by
N=2n.+1 4.7

where n, is the order of the channel. The channel estimate is obtained by multiplying the
FIR filter-parameter vector by a gain G as

h = [h(0) ~(1) --- h(n.)] =wG (4.8)
where
02
G=\ora 49)

In this expression, o2 is the output power of the IIR predictor and is estimated as

52, =782+ (1 —7)p’(n) (4.10)
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where - is the adaptation constant and it is assumed to have a value of 0.99 for all the

simulations.

In Section 4.2, the experimental results for minimum-phase channels are presented
and discussed. This section is divided into two subsections. In the first subsection, the
effect of the inter symbol interference is studied, the experimental results are presented
and discussed in detail, and a comparison is drawn with the simulation results of the blind
equalization scheme proposed in [12]. In the second subsection, the effect of the additive
white Gaussian noise is studied by presenting the experimental results of the symbol error
rate on the performance of the proposed blind equalizer. Finally, Section 4.3 summarizes
the simulation results obtained in this chapter for the proposed blind equalization scheme
as applied to minimum-phase communication channels.

4.2 Experimental Results for Minimum-Phase
Communication Channels

A minimum-phase filter derives its name from the fact that, for a specified magnitude
response, it has the minimum phase response possible for all values of z on the unit circle
[1]. The channel is assumed to be an FIR filter with the transfer function of H (z71). For
this channel to be a minimum-phase communication channel, its zeros must lie within the
unit circle of the z-plane.

The transfer function of a minimum-phase channel can be written as

H=Y) = [[( - €27 (4.11)

i=1
where [€}| < 1 fori =1,...,n.. To check the suitability of the proposed blind equaliza-
tion algorithm for minimum-phase communication channels, simulations have been car-
ried out. As discussed in Chapters 2 and 3, the transmitted data sequence {z(n)} should
be independently and identically distributed (iid) and it should also be non-Gaussian with
zero mean. Therefore, an input data sequence of bipolar symbols with equal probabil-
ity, namely, {—1,+1} is considered for all the simulations. The additive noise v(n) is
modeled as a zero-mean Gaussian and it is statistically independent of the input data
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sequence {z(n)}. The two block-based time reversers reverse the output sequences of the
IIR predictor and the adaptive FIR filter, respectively. The number of samples stored and
time reversed is chosen to be consistent with the size of the packet, in the case of packet
switching. For the purpose of simulations, a packet size of 200 samples has been consid-
ered. The coefficients of both the IIR predictor and the adaptive FIR filter are estimated
from 20 Monte Carlo [20] trials.

The simulation study has been divided into two sections. In the first section we study
the effect of the inter symbol interference on the proposed bind equalizer. In the second
section simulations have been carried out to study the effect of additive white Gaussian
noise on the performance of the proposed blind equalizer.

4.2.1 Effect of Inter Symbol Interference on the Performance of the
Proposed Blind Equalizer

To study the effect of the inter symbol interference on the performance of the proposed
blind equalizer, six channels have been considered starting from the case where the zeros
of the channel are well inside the unit circle to the case when the zeros are very close to
the unit circle.

In the first experiment, the channel is modeled as a first-order FIR filter with the

transfer function
H(z"')=1.0+0.1z""! (4.12)

According to the proposed blind equalization algorithm, the adaptive IR predictor should
have its length greater than or equal to the length of the channel. Accordingly, the length
of the IIR predictor has been taken as equal to the length of the channel. Also, according
to Eq. (4.7), the number of coefficients used for the adaptation of the adaptive FIR filter
has been chosen as three. The simulation results for the adaptation of the IR predictor
and the adaptive FIR filter are depicted in Fig. 4.2.

The simulation has been carried out for 2000 samples. It can be seen from Fig. 4.2(a)
and (b) that the first coefficient of the IIR predictor converges to the value 0.1 and the
second one fluctuates around zero. For the adaptation of the FIR filter, three coefficients
were used. From Fig. 4.2(c)-(e), it can be noticed that the first coefficient of the FIK filter
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Figure 4.2: Equalizer coefficients for the channel with H(z~!) = 1.0 + 0.1z7'. (a) First
coefficient of the IIR predictor. (b) Second coefficient of the IIR predictor. (c) First
coefficient of the adaptive FIR filter. (d) Second coefficient of the adaptive FIR filter. (e)
Third coefficient of the adaptive FIR filter. (f) Final channel estimaie.

converges to zero, the second one fluctuates around one and the third converges to 0.1.
The final channel estimate is obtained by multiplying the non-zero FIR filter coefficients
by the gain G. From the simulation, the value of the gain G is obtained as equal to 1 for
the first experiment. It can be observed from Fig. 4.2(f) that the proposed blind equalizer
successfully estimates the unknown channel.
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To study the effect of an increased inter symbol interference, in the second experiment,
the channel is modeled as a first-order FIR filter with the transfer function

H(z"') =1.0+05z7" (4.13)

It can be seen from Fig. 4.3(a) and (b) that the first coefficient of the IIR predictor con-
verges to a value of 0.5 and the second one remains around 0. From Fig. 4.3(c)-(e), it
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Figure 4.3: Equalizer coefficients for the channel with A (z~1) = 1.0 + 0.5z7*. (a) First
coefficient of the IIR predictor. (b) Second coefficient of the IIR predictor. (c) First
coefficient of the adaptive FIR filter. {d) Second coefficient of the adaptive FIR filter. (e)
Third coefficient of the adaptive FIR filter. (f) Final channel estimate.
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can be noticed that the first coefficient of the FIR filter converges to almost 0, the second
one converges to 0.98 and the third converges to 0.49. In this experiment, the value of the
gain G = 1.0475. The final channel estimate is shown in Fig. 4.3(f). Even though the
inter symbol interference is more than in the case of the previous experiment, it is seen
from Fig. 4.3 that the adaptation rate for the equalizer coefficients is not affected.

In the third experiment, the zeros of the channel are moved further close to the unit
circle, by taking its transfer function as

H(zY)=10+0.7z""1 (4.19)

and thus increasing the inter symbol interference of the channel even further.

The adaptation coefficients of the IIR predictor and the adaptive FIR filter are depicted
in Fig. 4.4. From the Fig. 4.4(a), it is clear that the first coefficient of the [IR predictor
converges to a value of 0.7. The second coefficient converges to a value —0.07 as shown
in Fig. 4.4(b). The first coefficient of the adaptive FIR filter is convergent towards 0 (Fig.
4.4(c)), second one towards 0.93 (Fig. 4.4(d)), and after 1200 samples the third coefficient
attains a value of 0.66 (Fig. 4.4(e)). The value of the gain is obtained as 1.055 for this
experiment. The final estimate of the channel is depicted in Fig. 4.4(f). From the plots
of the IIR predictor and adaptive FIR filter it can be seen that the adaptation rate of the
coefficients is still not affected by an increase in the inter symbol interference.

To study the effect of even higher inter symbol interference on the adaptation of the
IR predictor and adaptive FIR filter, a more noisy channel is taken for the fourth experi-
ment. The channel is modeled as a first-order FIR filter with the transfer function

H(z"')=1.0+08z"" (4.15)

The adaptation of the IIR predictor and the adaptive FIR filter is shown in Fig. 4.5.
It can be seen from the plots of this figure that even though the amount of inter symbol
interference has increased significantly, still there is not much effect on the convergence
of the coefficients of the IIR predictor and adaptive FIR filter. The value of the gain
obtained for this experiment is G = 1.0694. The final estimate of the channel is shown in
Fig. 4.5(f).
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Figure 4.4: Equalizer coefficients for the channel with H(z™!) = 1.0 +0.7z7%. (a) First
coefficient of the IIR predictor. (b) Second coefficient of the IIR predictor. (c) First
coefficient of the adaptive FIR filter. (d) Second coefficient of the adaptive FIR filter. (e)
Third coefficient of the adaptive FIR filter. (f) Final channel estimate.

In the fifth experiment the channel is modeled as a first-order FIR filter with the z-
domain transfer function given by

H(z"')=1.0+09z"" (4.16)

This channel has its zero close to the unit circle, and therefore, causes a much higher inter
symbol interference than in the case of the previous four channels.
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Figure 4.5: Equalizer coefficients for the channel with H(z~!) = 1.0 + 0.8z7". (a) First
coefficient of the IIR predictor. (b) Second coefficient of the IIR predictor. (c) First
coefficient of the adaptive FIR filter. (d) Second coefficient of the adaptive FIR filter. (e)
Third coefficient of the adaptive FIR filter. (f) Final channel estimate.

The adaptation of the IIR predictor and adaptive FIR filter is shown in Fig. 4.6. From
the plots of Fig. 4.6(a) and (b), it can be noticed that the adaptation of IIR predictor
coefficients is not much affected even in the presence of a high inter symbol interference.
On the other hand, the effect of the inter symbol interference is visible on the adaptation of
the adaptive FIR filter coefficients. From Fig. 4.6(c)-(e), it can be seen that the adaptation
of the adaptive FIR filter coefficients has somewhat slowed down with the effect that
higher inter symbol interference is more visible on the second coefficient of the adaptive
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Figure 4.6: Equalizer coefficients for the channel with H(z™!) = 1.0 + 0.9z (a) First
coefficient of the IIR predictor. (b) Second coefficient of the IIR predictor. (c) First
coefficient of the adaptive FIR filter. (d) Second coefficient of the adaptive FIR filter. (e)
Third coefficient of the adaptive FIR filter. (f) Final channel estimate.

FIR filter (Fig. 4.6(d)). The value of the gain obtained for this experiment is G = 1.072.
From the plot of Fig. 4.6(f), it can be observed that the blind equalizer still estimates the
unknown channel correctly.

In the sixth and the final experiment, the zero of the channel is moved to a very close
vicinity of the unit circle by characterizing the channel with the transfer function given
by

H(z™') =1.0+0.999z7! (4.17)
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This channel causes a very high inter symbol interference. The adaptation of the IIR pre-
dictor and adaptive FIR filter is shown in Fig. 4.7- From Fig. 4.7(a) it can be seen that
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Figure 4.7: Equalizer coefficients for the channel with H(z"') = 1.0 + 0.999z71. (a)
First coefficient of the TIR predictor. (b) Second coefficient of the IIR predictor. (c) First
coefficient of the adaptive FIR filter. (d) Second coefficient of the adaptive FIR filter. (e)
Third coefficient of the adaptive FIR filter. (f) Final channel estimate.

the adaptation of the first coefficient of the IR predictor has slowed down. The second
coefficient of the IIR predictor fluctuates around 0 as shown in Fig. 4.7(b). The first coef-
ficient of the adaptive FIR filter, as shown in Fig. 4.7(c), initialy goes to a value of —0.39
before finally being convergent towards —0.07. The second and the third coefficients of
the adaptive FIR filter are depicted in Fig. 4.7(d) and (e). It can be noticed form these
plots that the convergence rate of these coefficients is considerably reduced as compared

82



to the coefficients of channels with lower inter symbol interference. However, the pro-
posed blind equalizer is still able to estimate the channel correctly and efficiently. The
value of the gain obtained for this experiment is 1.136.

To see the performance of the proposed blind equalizer on the transmitted data se-
quence, the data sequence {u(n)} received at the input of the blind equalizer and the
output Z(n) of the second time reverser are plotted in Fig. 4.8. For our discussion, the
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Figure 4.8: The data sequences u(n) and Z(n) at the input of the blind equalizer and at
the output of the second time reverser, respectively, for various minimum-phase channels.
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data sequences u(n) and Z(n) are plotted only for the channels with the transfer functions
H(z')=1.0+05z"1, H(z"!) =1.0+0.7z"},and H(z"!) = 1.0 + 0.9z ".

From Fig. 4.8, it can be seen that in the case of the channel with its transfer function
H(z"') = 1.0 + 0.5z, the effect of inter symbol interference is very small. It can be
noticed that the output of the second time reverser in this case is very well defined for
all the data samples. Therefore, probability of error in the final detected data sequence is
very small. From the plot of the channel H(z™!) = 1.0+ 0.7z7%, it can be seen that the
data sequence received at the input of the blind equalizer is more noisy. Therefore, in the
beginning of the blind equalization, there is more clouding of the output data sequence.
For the channel H(z™!) = 1.0 + 0.9z, the presence of the inter symbol interference is
more visible. From the plot of the data sequence received at the output of the second time
reverser, it is clear that the blind equalizer now needs more number of samples, before
it can estimate the channel correctly. This may lead to some errors in the detected data

sequence.

The values of the blind estimate of the channel at the sample instants 1000 and 2000
along with their standard deviations for all the six experiments are presented in Table 4.1.
For comparison, the results obtained by the blind equalization scheme proposed in [12]
are also presented in Table 4.2.

Table 4.1: Blind estimate of first-order minimum-phase channels at the sample instants
1000 and 2000 using the proposed blind equalization scheme.

Channel Channel estimate {~(0) ~(1)}
n = 1000 n = 2000
Mean Std. deviation Mean Std. deviation

{1.00.1} [ {0.9959 0.0950} | {0.0005 0.0009} | {0.9970 0.0989} | {0.0004 0.0006}

{1.00.5} | {0.9878 0.4671} | {0.0004 0.0008} | {1.0215 0.5001} | {0.0002 0.0005}

{1.00.7} | {0.9256 0.6427} | {0.0008 0.0009} | {0.9996 0.7002} | {0.0009 0.0002}

{1.00.8} | {0.88820.7286} | {0.0009 0.0009} | {0.9979 0.8010} | {0.0011 0.0003}

{1.00.9} | {0.8557 0.8090} | {0.0014 0.0007} | {0.9909 0.8966} | {0.0003 0.0002}
{1.00.999} | {0.8268 0.6363} | {0.0007 0.0014} | {0.9920 0.9577} | {0.0004 0.0003}
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Table 4.2: Blind estimate of first-order minimum-phase channels at the sample instants
1000 and 2000 using the blind equalization scheme of [12].

Channel Channel estimate {h(0) h(1)}
n = 1000 I n = 2000
Mean Std. deviation |  Mean Std. deviation

{1.00.1} | {1.0011 0.1129 | {0.0045 0.0271} | {0.9995 0.1011} | {0.0010 0.0263}
{1.00.5} | {0.9756 0.4836} | {0.0188 0.0263} | {0.9993 0.4965} | {0.0035 0.0247}
{1.00.9} | {0.8337 0.6437} | {0.0500 0.3268} | {0.9996 0.8921} | {0.0064 0.0256}

From Table 4.1, it can be noticed that the proposed blind equalizer estimates the chan-
nel correctly. Also, by comparing the results of Table 4.2 with those given in Table 4.1,
it can be seen that the proposed scheme provides the standard deviations of the channel
estimates that are very much smaller than that of the ones presented in [12]. Thus, the
proposed scheme yields a very consistent performance.

From the above discussion, it is clear that even in the presence of very high inter
symbol interference, the proposed blind equalizer estimates the minimum-phase channels
correctly and it gives more consistent results than that obtained by using the scheme of
[12].

4.2.2 Effect of Additive White Gaussian Noise on the Performance of
the Proposed Blind Equalizer

The performance of a blind equalizer is also measured in terms of symbol error rate,
also known as bit error rate (BER) for the binary data. For calculating the symbol error
rate, a sequence of data is transmitted at a specific signal-to-noise power ratio, where
the signal power is the total power of the received data sequence and the noise power
is the total power of the additive white Gaussian noise added at the input of the receiver.
After the blind equalization and detection of the transmitted data sequence, a calculation is
performed to determine the number of erroneous samples in the final output data sequence
of the blind equalizer. At a given signal-to-noise ratio, the symbol error rate is defined as
the number of errors divided by the total number of data symbols transmitted. The symbol
error rate for various values of the signal-to-noise ratio can be calculated by changing the
power level of the additive white Gaussian noise.
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To study the performance of the proposed blind equalizer for various levels of additive
white Gaussian noise, simulations have been carried out. All the six channels used in the
previous section are tested under the presence of different values of signal-to-noise ratio.
For all the channels, an equally probable binary data sequence of 20000 samples is taken
for this experiment. The simulations are carried out in the range of 10 dB to 20 dB
for 10 different values of the signal-to-noise ratio, to conform with the the practically
encountered situations. The symbol error rate corresponding to different values of the
signal-to-noise ratio for all the six channels are depicted in Fig. 4.9.

10 : L1 T L] Ly L]
[ I :Channel [1.0 0.1]
it :Channel [1.0 0.5]
Il : Channel [1.0 0.7]
IV : Channel [1.0 0.8]
V :Channel [1.0 0.9]
1072 VI : Channel [1.0 0.999] -
2
R
S
E 10“3 3 1
S i ]
o
E
>
%)
107F 3
10—5 L 1 L A1 ]
8 10 12 14 16 18 20

Signal-to-noise ratio in dB

Figure 4.9: Symbol error rate for various minimum-phase communication channels.

It can be observed from Fig. 4.9 that the symbol error rate performance deteriorates
as the amount of inter symbol interference increases and that the symbol error rate
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decreases with the increasing level of the signal-to-noise ratio. It can also be seen that
for the channels with very small inter symbol interference, the symbol error rate becomes
negligible at a smaller value of signal-to-noise level as compared to the ones with higher
inter symbol interference.

From the above discussion, we can say that even in the presence of a high input noise,
i.e., very low signal-to-noise ratio and a high inter symbol interference, the symbol error
rate obtained with the proposed blind equalization scheme is within an acceptable range.
Therefore, it can be concluded that even in the presence of high input noise, the proposed
blind equalization scheme works efficiently as compared to the one presented in [12],
where the swapping of the IIR filter with the adaptive FIR filter is required for such a

situation.

4.3 Summary

In this chapter, two different types of experiments have been carried out to check the per-
formance of the proposed blind equalization scheme for minimum-phase communication

channels.

In the first set of experiments, the effect of the inter symbol interference on the per-
formance of the proposed blind equalizer has been studied. The communication channel
is assumed to be a first-order FIR filter. Six different channels, starting from the one with
a negligible inter symbol interference to the one with a very intense inter symbol inter-
ference have been considered. From the experimental results, it has been seen that even
though in the presence of high inter symbol interference the convergence rate of the [IR
predictor and adaptive FIR filter coefficients somewhat slows down, the proposed blind
equalizer still estimates the unknown channel correctly. A comparison of the proposed
blind equalization scheme with the one given in [12] has been carried out and it has been
noted that the proposed scheme gives more consistent performance.

In the second set of experiments, the performance of the proposed blind equalization
scheme is studied under different values of signal-to-noise ratio. Again for various types
of minimum-phase channels, symbol error rate has been obtained as a function of the
signal-to-noise ratio. The experimental results have demonstrated that with the increased
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levels of signal-to-noise ratio, the symbol error rate performance becomes progressively
better. It has also been shown that with an increase in inter symbol interference, the
symbol error rate performance becomes poorer. However, its still within an acceptable
range. It is also seen that even in the presence of high input noise, the proposed blind
equalization scheme works efficiently without requiring the swapping of the IIR filter
with the adaptive FIR filter that is necessary in the scheme of [12].
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Chapter 5

Experimental Results for
Nonminimum-Phase Communication

Channels

5.1 Introduction

In the previous chapter, we have shown through experimental results that the proposed
blind equalization scheme gives results as desired for minimum-phase communication
channels. As discussed in Chapter 2, the existing blind equalization algorithms when ap-
plied to FIR-based equalizer structures perform poorly as one or more maximum-phase
zeros of the channel get closer to the unit circle. This limitation is due to the difficulty
of modeling the inverse of the maximum-phase component of the channel with the finite
length of FIR filters. To show the performance of the proposed blind equalization scheme
for such channels, in this chapter, we present experimental results for nonminimum-phase
channels. The experimental results for maximum-phase and mixed-phase channels are
presented and discussed in detail. Experimental results are also presented to study the
performance of the proposed scheme for the communication channels having deep spec-
tral nulls. For convenience, the block diagram of the proposed blind equalization scheme
is again presented in Fig. 5.1. The algorithms used for the adaptation of the IIR predictor
and adaptive FIR filter have already been presented in Chapter 3.

In Section 5.2 and Section 5.3, the experimental results for maximum-phase and
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Figure 5.1: The proposed blind equalization structure.

mixed-phase channels, respectively, are presented and discussed. Each of these sections
is divided into two subsections. In the first one, the effect of the inter symbol interference
is studied and the experimental results are presented and discussed in detail. A compar-
ison is drawn with the simulation results of the blind equalization scheme proposed in
[12]. In the second subsection, the effect of the additive white Gaussian noise is studied
by presenting the experimental results of the symbol error rate, on the performance of
the proposed blind equalizer. In Section 5.4, the simulation results for a communication
channel having deep spectral nulls are presented and discussed. Finally, in Section 5.5,
the simulation results obtained in this chapter for the proposed blind equalization scheme
as applied to nonminimum-phase communication channels are summarized.

5.2 Experimental Results for Maximum-Phase
Communication Channels

A filter which has all its zeros located outside the unit circle, is known as a maximum-
phase filter. A maximum-phase filter, for a specified magnitude response, gives the max-
imum possible phase response for all values of z on the unit circle [11]. In this section,
the communication channel is modeled as a maximum-phase FIR filter with the transfer
function H(z™!). Thus, the zeros of H(z~!) may lie anywhere outside the unit circle in
the z-plane, but not within the unit circle.

The transfer function of a maximum-phase channel can be written as

2 =11 ()" -] 5.1)

J=1
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where |€2| > 1 for j =1,..., nc. To study the performance of the proposed blind equal-
ization algorithm for maximum-phase communication channels, a number of experiments
have been carried out. A transmitted data sequence {z(n)} of bipolar symbols with equal
probability, namely, {—1, +1} is considered for all the simulations. This sequence is in-
dependently and identically distributed (iid) and it is also non-Gaussian with zero mean.
The additive noise v(n) is statistically independent of the input data sequence {z(n)} and
is modeled as a zero-mean Gaussian. A packet size of 200 samples has been considered
for the block-based time reversers. The coefficients of both the IIR predictor and the
adaptive FIR filter are estimated from 20 Monte Carlo [20] trials. The length of the [IR
predictor has been taken as equal to the length of the channel. However, the length of the
adaptive FIR filter, according to the proposed algorithm, is taken as N = 2n, + 1, where
n. is the order of the channel.

Two different types of experiments are carried out to study the performance of the
proposed blind equalization scheme. In the first type of experiments, the effect of the
presence of inter symbol interference is studied and in the second one, the performance
of the proposed blind equalization scheme is studied under the effect of different levels of
additive white Gaussian noise.

5.2.1 Effect of Inter Symbol Interference on the Performance of the
Proposed Blind Equalizer

In this subsection, the performance of the proposed blind equalization scheme, under the
presence of different amounts of inter symbol interference, is studied. The level of the in-
ter symbol interference is changed by moving the positions of the zeros of the maximum-
phase channel. Eleven different channels are used for the experiments, starting from the
one having its zeros far away from the unit circle to the one having its zeros in the close
vicinity of the unit circle. To show the performance of the proposed blind equalization
scheme, the updatation coefficients for 5 of these channels are shown. However, the re-
sults of the blind estimation of all the channels are presented in a table.

In the first case, the channel is modeled as a first-order maximum-phase FIR filter

with the transfer function
H(zY) =03+ =t (5.2)
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The simulations have been carried out for 2000 samples. The value of the adaptation
constant x for the IIR predictor and adaptive FIR filter has been taken as 0.002 and 0.02
for the first 1000 samples and 0.001 and 0.01 for the remaining samples, respectively.
The adaptation coefficients of the IIR predictor and adaptive FIR filter, along with the
final channel estimate are shown in Fig. 5.2.
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Figure 5.2: Equalizer coefficients for the channel with H(z~') = 0.3 + z~*. (a) First
coefficient of the IIR predictor. (b) Second coefficient of the IIR predictor. (c) First
coefficient of the adaptive FIR filter. (d) Second coefficient of the adaptive FIR filter. (e)
Third coefficient of the adaptive FIR filter. (f) Final channel estimate.

From the plots of Fig. 5.2, it can be seen that the first IR predictor coefficient con-
verges to a value of 0.2840; however, the second one is fluctuating around —0.01. The
first coefficient of the adaptive FIR filter converges to a value of 0.2894, second one to
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0.9667, and the third one to —0.01. From these plots, it can be noticed that the adaptation
of all the coefficients is faster in the initial 1000 samples and it slows down thereafter.
This is because of the fact that the value of the adaptation constant x is kept higher in the
beginning of the simulations and after1000 samples it is reduced to a lower value. The
final channel estimate of the unknown channel is depicted in Fig. 5.2(f). From this plot, it
can be seen that the proposed blind equalization scheme estimates the unknown channel
completely. The value of the gain obtained for this experiment is 1.0353.

In the previous experiment the channel had its root on the negative real axis of the z-
plane. To check the validity of the proposed blind equalization scheme for the maximum-
phase channel having its roots on the positive axis of the z-plane, in the second experiment
the channel is modeled as a first-order FIR filter with its transfer function given by

H(z')=—-05+z" (5.3)

The adaptation of the IR predictor and adaptive FIR filter coefficients for this experiment
is shown in Fig. 5.3. From the plots of Fig. 5.3(a) and (b), it can be seen that the
first IIR predictor coefficient converges to a value of 0.50, however, the second one is
converging towards —0.03. From Fig. 5.3(c)-(e), it can be noticed that the first and
second coefficients of the adaptive FIR filter are converging towards the desired channel
estimate and the third one is converging towards a value of 0. The final channel estimate
of the unknown channel is depicted in Fig. 5.3(f). From this plot, it can be seen that
the proposed blind equalization scheme estimates the unknown channel completely. The
value of the gain obtained for this experiment is 1.0426.

To study the effect of higher inter symbol interference on the adaptation of the IIR
predictor and adaptive FIR filter, in the third experiment, the channel is modeled as a
first-order FIR filter with the z-domain transfer function given by

H(z) = 0.7+ 2z (5.4)

The adaptation of the IIR predictor and the adaptive FIR filter coefficients for this channel
is shown in Fig. 5.4. The final estimate of the channel is shown in Fig. 5.4(f). It can be
seen from the plots of Fig. 5.4, that even though the amount of inter symbol interference
has increased significantly, still the convergence of the coefficients of the IIR predictor
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Figure 5.3: Equalizer coefficients for the channel with H (z7!) = —0.5 + z~1. (a) First
coefficient of the IIR predictor. (b) Second coefficient of the IIR predictor. (c) First
coefficient of the adaptive FIR filter. (d) Second coefficient of the adaptive FIR filter. (e)
Third coefficient of the adaptive FIR filter. (f) Final channel estimate.

and adaptive FIR filter is not affected. The value of the gain obtained for this experiment
is 1.0536.

In the fourth experiment the channel is modeled as a first-order FIR filter with its

transfer function given by
H:zYH=09+z"! (5.5)

The amount of the inter symbol interference caused by this channel is much larger than
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Figure 5.4: Equalizer coefficients for the channel with H(z™!) = 0.7 + z™%. (a) First
coefficient of the IIR predictor. (b) Second coefficient of the IIR predictor. (c) First
coefficient of the adaptive FIR filter. (d) Second coefficient of the adaptive FIR filter. (e)
Third coefficient of the adaptive FIR filter. (f) Final channel estimate.

the previous three experiments. The adaptation of the [IR predictor and the adaptive FIR
filter in this experiment is depicted in Fig. 5.5. From the plots of Fig. 5.5(a) and (b), it
can be noticed that the adaptation of the IIR predictor is not much affected by the increase
in inter symbol interference. However, the effect of the higher amount of inter symbol
interference is visible on the adaptation of the adaptive FIR filter, in that it has somewhat
slowed down the convergence of the coefficients. The value of the gain obtained for this
experiment is 1.1585. Even though the simulation in this experiment have been carried
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Figure 5.5: Equalizer coefficients for the channel with H(z™!) = 0.9 + z~'. (a) First
coefficient of the IR predictor. (b) Second coefficient of the IIR predictor. (c) First
coefficient of the adaptive FIR filter. (d) Second coefficient of the adaptive FIR filter. (e)
Third coefficient of the adaptive FIR filter. (f) Final channel estimate.

out for 3000 samples, the proposed blind equalizer estimates the channel correctly within
the first 2000 samples, as shown in Fig. 5.5(f).

In the fifth experiment, the performance of the proposed blind equalization scheme is

studied in the presence of an extremely high inter symbol interference. This is done by
moving the zero of the channel almost on the unit circle. The channel is modeled as a
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first-order FIR filter with its transfer function given by
H(z"') =0.999 + z7} (5.6)

The adaptation of the IR predictor and the adaptive FIR filter coefficients along with
the final channel estimate is depicted in Fig. 5.6. It can be observed from the plots
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Figure 5.6: Equalizer coefficients for the channel with H(z™!) = 0.999 + z~. (a) First
coefficient of the IIR predictor. (b) Second coefficient of the IIR predictor. (c) First
coefficient of the adaptive FIR filter. (d) Second coefficient of the adaptive FIR filter. (e)
Third coefficient of the adaptive FIR filter. (f) Final channel estimate.
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of Fig. 5.6(a) and (b) that the adaptation of the IIR predictor has slowed down a bit
more as compared to the previous case. From the plots of Fig. 5.6(c)-(e), it can be
noticed that even though for the convergence of the adaptive FIR filter coefficients it now
takes more samples, it still estimates the unknown channel completely. The value of the
gain obtained for this experiment is 1.1773. It can also be noted that in the previous
experiments, the first and the second coefficients of the adaptive FIR filter were giving
the channel estimate, but in the present case the second and the third coefficients give the
final channel estimate. This is because of the fact the zero of the channel is almost on the
unit circle and its not much different from the minimum-phase channel with its transfer
function H(z~!) = 1 + 0.999z~!( Chapter 4, Fig. 4.7), where the second and the third
coefficients of the adaptive FIR filter also gave the final channel estimate.

For all the five experiments discussed above, the data sequence u(n) received at the
input of the blind equalizer and the output of the second time reverser Z(n) are plotted in
Fig. 5.7 and Fig. 5.8.

From the plots of the data sequence u(n) received at the input of the blind equalizer
(Fig. 5.7) , it can be seen that as the inter symbol interference increases to a modestly high
value, some values of the data sequence move towards a zero value. From the plots of
the data sequence T(n) obtained at the output of the second time reverser, it can be seen
that in the beginning of the the data sequence, the amount of crowding of the samples
increases as the inter symbol interference increases. As a result, the blind equalizer takes
a longer time to estimate the channel.

The presence of a much severe inter symbol interference can be noticed from the plots
of Fig. 5.8. It can be noticed from the plots of the data sequence u(n) that some values of
the data sequence, which were close to the zero in the previous cases, are now coinciding
with the zero. From the plots of data sequence Z(n), it can be observed that the initial
clouding of the data samples continues for a longer period of time. As a result the blind
equalizer requires a longer time, before it can estimate the channel correctly.

The blind estimations for all the 11 channels, including those already discussed, for

the study of the performance of the proposed blind equalization scheme for maximum-
phase channels are presented in Table 5.1. The values of the channels are estimated
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Figure 5.7: The data sequences u(n) and Z(n) at the input of the blind equalizer and at
the output of the second time reverser, respectively, for various minimum-phase channels.

at the 1000th and 2000th sample instants and their standard deviations from the mean
are calculated. The results obtained by using the blind equalization scheme of [12] are
presented in Table 5.2. A comparison of the results in the two tables shows that even
though both the schemes estimate the unknown channels correctly up to two decimal
places, yet the proposed scheme is better in giving more consistent results than the scheme
of [12], in terms of their standard deviations.

From the above discussion, we can conclude that as the amount of inter symbol
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Figure 5.8: The data sequences u(n) and Z(n) at the input of the blind equalizer and at
the output of the second time reverser, respectively, for channels H(z™!) = 0.9+z"! and
H(z"1) = 0.999 + =1,

interference increases, for the proposed blind equalizer it takes longer to converge. We
can also conclude from the comparison of the results obtained by using the proposed
scheme and the one presented in [12], that the former scheme provides more consistent

results.

5.2.2 Effect of Additive White Gaussian Noise on the Performance of
the Proposed Blind Equalizer

In this subsection, experimental results are presented to study the performance of the
proposed blind equalization scheme for maximum-phase communication channels under
the presence of different levels of additive white Gaussian noise. The simulations are
carried out for all the 11 channels considered in the previous subsection. However, the
plots of the symbol error rate are shown only for the 5 channels discussed in Section 5.2.1,
and for the channel with the transfer function H(="1) = 0.95 + z~ 1.
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Table 5.1: Blind estimate of first-order maximum-phase channels at the sample instants
1000 and 2000 using the proposed blind equalization scheme.

| Channel Channel estimate {r(0) h(1)}
| n = 1000 n = 2000
Mean Std. deviation Mean Std. deviation
{0.1 1.0} {0.0832 0.9990} {0.0010 0.0001} {0.1004 0.9972} | {0.0005 0.0001 }
{0.3 1.0} {0.2527 0.9942} {0.0011 0.0001} {0.2997 1.0011} | {0.0006 0.0001 }
{-0.31.0} | {—0.2992 0.9934} | {0.0019 0.0003} | {—0.3001 1.0021} | {0.0005 0.0006}
{0.5 1.0} {0.4661 0.9834} {0.0007 0.0012} {0.5000 0.9998} {0.0001 0.0006}
{-0.51.0} | {—0.4229 0.9932} | {0.0009 0.0001} | {—0.4999 1.0045} | {0.0006 0.0004}
{0.7 1.0} {0.5947 0.9532} {0.0004 0.0011} {0.6937 1.0070} | {0.0006 0.0002}
{-0.71.0} | {—0.6007 0.9550} | {0.0006 0.0019} | {—0.6932 0.9991} {0.0003 0.0006}
{0.9 1.0} {0.7269 0.9267} {0.0006 0.0001} {0.9049 0.9985} | {0.0003 0.0002}
{0.951.0} | {0.6155 0.9090} | {0.0018 0.0001} | {0.9335 0.9940} | {0.0002 0.0001}
{0.981.0} | {0.6052 0.7736} | {0.0027 0.0002} | {0.9796 1.0016} | {0.0003 0.0005}
{0.9991.0} | {0.6273 0.7768} | {0.0009 0.0009} {0.9879 0.9990} | {0.0003 0.0009}

Table 5.2: Blind estimate of first-order maximum-phase channels at the sample instants
1000 and 2000 using the blind equalization scheme of [12].

| Channel Channel estimate {h(0) (1)}
[ n = 1000 n = 2000
Mean Std. deviation Mean Std. deviation
{0.11.0} {0.1060 1.0009} {0.0310 0.0043} {0.1060 0.9990} | {0.0242 0.0029}
{0.31.0} {6.2833 0.9983} {0.0332 0.0141} {0.3020 0.9984} {0.0233 0.0082}
{-0.31.0} | {—0.2492 0.9942} | {0.0332 0.0141} | {-0.2864 1.0028} | {0.0262 0.0076}
{0.51.0} {0.4592 0.9912} {0.0361 0.0224} {0.5002 0.9974} | {0.0216 0.0130}
{-0.51.0} | {—0.4268 0.9820} | {0.0374 0.0265} | {—0.4848 1.0047} | {0.0234 0.0118}
{0.71.0} {0.6232 0.9729} | {0.0424 0.0361} | {0.6983 0.9965} | {0.0204 0.0167}
{—0.7 1.0} | {-0.5920 0.9729} | {0.0412 0.0316} | {—0.6852 1.0053} | {0.0178 0.0149}
{0.9 1.0} {0.7612 0.9188} {0.0412 0.0332} {0.8927 0.9989} {0.0244 0.0217}
{0.951.0} | {0.7971 0.8951} | {0.0400 0.0316} | {0.9409 1.0002} | {0.0191 0.0222}
{0.98 1.0} | {0.8256 0.8813} | {0.0387 0.0316} | {0.9699 1.0009} | {0.0315 0.0256}

An equally probable binary data sequence of 20000 samples is taken for this experi-
ment. The symbol error rate is plotted for 10 different values of the signal-to-noise ratio.
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To conform with the practically encountered situations, the range of the signal-to-noise
ratio is taken as 10 dB to 20 dB. The symbol error rate for different values of signal-
to-noise ratio for the 6 channels considered are shown in Fig. 5.9. From this plot, it can
be seen that the symbol error rate decreases with the increasing signal-to-noise ratio. It
can also be noticed that as the inter symbol interference increases, the symbol error rate
increases, and it takes higher value of signal-to-noise ratio to reach a negligible value of
symbol error rate.
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Figure 5.9: Symbol error rate for various maximum-phase communication channels.

The symbol error rate for a channel with the transfer function H(z™!) =0.95 + z71,
obtained by using the scheme of [12] is shown in Fig. 5.10. For comparison, the symbol
error rate for this channel, obtained by employing the proposed blind equalization scheme
is also redrawn. The simulations are carried out for a data sequence of 15000 samples.
From these plots it can be seen that the proposed blind equalization scheme gives lower
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symbol error rate for all the values of signal-to-noise ratio. It can also be noticed that the
proposed scheme achieves a negligible value of symbol error rate at a lower signal-to-
noise ratio as compared to the scheme of [12].

10 ¥ L3 3 L4 L] L] ¥ L LY

[ - Channel [0.95 1.00], proposed scheme
Il : Channel [0.95 1.00], scheme of [12]

4
4
p
P
4
4
4

Symbol error rate

$ 1 L b A 1

10 11 12 13 14 15 16 17 18 19 20
Signal—to-noise ratio in dB

L L 3 L

10

Figure 5.10: Symbol error rate comparison of the proposed scheme with the one presented
in [12] for the channel H(z!) = 0.95 + =z~ 1.

From the above discussion, we conclude that the proposed blind equalization scheme
works efficiently for the maximum-phase communication channels even for the low val-
ues of signal-to-noise ratio. It can also be concluded that the proposed blind equalization
scheme is better than the one introduced in [12], in terms of symbol error rate.
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5.3 Experimental Results for Mixed-Phase
Communication Channels

A nonminimum-phase FIR filter with some of the zeros inside and the others outside the
unit circle is called a mixed-phase FIR filter [11]. Therefore, a mixed-phase filter can
be taken as cascade of a minimum-phase and 2 maximum-phase filter. The mixed-phase
communication channel is modeled as a mixed-phase FIR filter with its transfer function

given by
d _ s 1 3
HEY =TI -&=) [T [(&;?) -z 1] G.7)
i=1 =1
where lfﬁ < 1fort =1,...,d corresponds to the minimum-phase zeros, (7| > 1 for

j =1,...,s corresponds to the maximum-phase zeros, and n. = d + s. To study the
performance of the proposed blind equalization scheme for mixed-phase communication
channels, a number of experiments are carried out. A binary data sequence of 2000 sam-
ples is transmirted. The length of the IIR predictor has been taken as equal to the length of
the channel and the length of the adaptive FIR filter is taken as N = 2n. + 1, where n. is
the order of the channel. The middle coefficient of the adaptive FIR filter is initialized to
unity. The weights of the adaptive FIR filter are multiplied by the gain factor G to obtain
the channel estimate. The adaptation constant u for both the IIR predictor and adaptive
FIR filter are set to 0.002 for the first 1000 samples, and thereafter to 0.001. The block
length is taken as 200. The coefficients of the IIR predictor and the adaptive FIR filter are
estimated from 20 Monte Carlo [20] trials.

As for the minimum-phase and maximum-phase channels, here too the performance
of the proposed scheme is tested for its two properties. In the first set of experiments, the
effect of inter symbol interference is studied and in the second set, the effect of additive
white Gaussian noise is studied.

5.3.1 Effect of Inter Symbol Interference on the Performance of the
Proposed Blind Equalizer

For the experiments carried out for mixed-phase communication channels, the channels
are modeled as second-order mixed-phase FIR filters. To study the performance of the
proposed scheme in the presence of different levels of inter symbol interference, 4
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channels are considered. The simulation results for 2 of them are discussed in detail; how-
ever, the channel estimations obtained at the 2000th sample instant for all the 4 channels
are depicted in a table.

In the first experiment, the channel is modeled as a second-order FIR filter with the
transfer function given by

H(z"') =06+14z"" = 0627 (5.8)

This channel has its roots at —92.7033 and 0.3699.

The plots for the adaptation of TR predictor and adaptive FIR filter coefficients are
shown in Fig. 5.11. From the plots of IIR predictor coefficients, it can be seen that the
first and third coefficients of the IR predictor have converged to 0, while the second
one has converged to —0.3. From the plots of Fig. 5.11(d) and (e), it can be seen that
three coefficients of the adaptive FIR filter are converging towards the desired channel
parameter values, while the other two are converging to 0. The final channel estimate is
obtained by multiplying the adaptive FIR filter coefficients by the gain G and it is shown
in Fig. 5.11(f). The value of the gain is 1.2367 for this experiment. From the plots of Fig.
5.11(f), it is seen that the proposed blind equalizer has estimated the channel correctly.

In the second experiment, the amount of the inter symbol interference is increased by
modeling the channel as a second-order mixed-phase FIR filter with the transfer function
given by

H(z 1) =10+ 0.6z7! —0.72z72 5.9

This channel has its roots at —1.20 and 0.60, which are much closer to the unit circle as
compared to the previous experiment.

For this experiment, the adaptation of the [IR predictor and adaptive FIR filter coeffi-
cients is shown in Fig. 5.12. From the plots of Fig. 5.12(a) and (b), it can be noticed that
the first IR predictor coefficient converges t0 & value of 0.2 and the second one to —0.5.
The third coefficient of the IR predictor, fluctuates around 0 with a small amplitude and
in practice this coefficient can be switched off after the other coefficients have achieved
their steady state. From the plots of Fig. 5.12(d) and (e), it can be observed that three of
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Figure 5.11: Equalizer coefficients for the channel with H(z~') =0.6+1.4271 —0.6z72.
(a) First coefficient of the [IR predictor. (b) Second coefficient of the IR predictor. (c)
Third coefficient of the [IR predictor. (d) First and second coefficients of the adaptive FIR
filter. (e) Third, fourth and fifth coefficients of the adaptive FIR filter. (f) Final channel
estimate.

the coefficients converge to the channel parameter values and the remaining two fluctuate
around zero, with a negligible amplitude. The final estimate of the channel is depicted
in Fig. 5.12(f). From this plot, we can see that the proposed blind equalizer scheme
estimates the unknown channel correctly. However, it now takes longer to achieve this
estimate as compared to the channel of the first experiment. The value of the gain G for
this experiment is 1.2872.
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Figure 5.12: Equalizer coefficients for the channel with H(z™!) = 1.0+0.6271—0.72z72,
(2) First coefficient of the IIR predictor. (b) Second coefficient of the IR predictor. (c)
Third coefficient of the IIR predictor. (d) First and third coefficients of the adaptive FIR
filter. (¢) Second, fourth and fifth coefficients of the adaptive FIR filter. (f) Final channel
estimate.

For both the experiments described above, the data sequence u(n) received at the input
of the blind equalizer and the output Z(n) of the second time reverser are plotted in Fig.
5.13. From the plots of data sequence u(n), it can be observed that, as expected, for the
first experiment, the amount of the inter symbol interference is smaller than that in the
second experiment. From the plots of data sequence Z(n), we can see that there is more
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Figure 5.13: The data sequences u(n) and Z(n) at the input of the blind equalizer and at
the output of the second time reverser, respectively for channels H ( z71)=06+1.4z"1-
0.6z"2and H(z"!) = 1.0 +0.6z7! — 0.72z72.

initial crowding of the data in the case of second channel which has a higher inter symbol
interference. As a result, the blind equalizer now needs more number of samples, before

it can estimate the channel correctly.

The values of the final channel estimate for all the 4 channels at the sample instant
2000 along with their standard deviations from the mean values are depicted in Table
5.3. To compare the performance of the proposed blind equalization scheme with the one
introduced in [12], the results using the latter scheme are also presented in Table 5.4. From
these tables it is noted that both the schemes estimate the unknown channel correctly.
However, the proposed scheme has an advantage in that it has much smaller standard
deviations from the mean values, thus making the proposed scheme more consistent in

estimating the unknown channels.
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Table 5.3 Blind estimate of second-order mixed-phase channels at the sample instant
2000 using the proposed blind equalization scheme.

( Channel

Channel estimate {

(h(0) h(1) h(2)}

Mean

Std. deviation

{0.6000 1.4000 — 0.6000}

{0.5928 1.3909 — 0.6001 }

{0.0007 0.0001 0.0001}

{1.0000 2.0000 — 1.2500}

{0.9910 1.9991 — 1.2517}

{0.0003 0.0008 0.0007}

{0.4000 1.2000 0.5000}

10.3992 1.2030 0.5001}

{0.0006 0.0006 0.0003}

11.0000 0.6000 — 0.7200}

{0.9954 0.5987 — 0.7201}

{0.0004 0.0001 0.0002}

Table 5.4: Blind estimate of second-order mixed-phase channels at the sample instant
2000 using the blind equalization scheme of [12].

I Channel

Channel estimate {h(0) ~(1) A(2)}

Mean

Std. deviation

{1.0000 2.0000 — 1.2500}

{0.9875 1.9755 — 1.2411}

10.1338 0.0854 0.1136}

10.4000 1.2000 0.5000}

{03984 0.1949 — 0.4973}

{0.0208 0.0142 0.0275}

{1.0000 0.6000 — 0.7200}

{0.9963 0.5928 — 0.7158}

{0.0267 0.0310 0.0304}

From the above discussion, we can say that the proposed blind equalizer scheme esti-
mates the unknown mixed-phase communication channel correctly for all levels of inter
symbol interference and it gives better results than the scheme of [12]. in terms of the
standard deviations of the channel coefficients.

5.3.2 Effect of Additive White Gaussian Noise on the Performance of
the Proposed Blind Equalizer

To study the performance of the proposed blind equalization scheme for mixed-phase
communication channels under different levels of input signal-to-noise ratio, simulations
are carried for all the 4 channels discussed in Section 5.3.1. A binary data sequence of
20000 samples has been transmitted in the range of 10 dB to 20 d B signal-to-noise ratio.
The symbol error rate for all the 4 channels at 10 different values of the signal-to-noise
ratio are plotted in Fig. 5.14.

From the plots of the symbol error rate it can be noticed that the maximum values
of the symbol error rate themselves are very small for all the channels. However, the
equalizer gives the best symbol error rate performance for the channel with its transfer
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Figure 5.14: Symbol error rate for various mixed-phase communication channels.

function H(z™!) = 0.60 + 1.4z~! — 0.60z2. This is because of the fact that the roots
of this channel being far away from the unit circle exert the least amount of the inter
symbol interference amongst all. The symbol error rate plots of the channels with transfer
functions H(z~!) = 1.0 +2.0z7! — 1.25z72 and H(z™!) = 0.40 + 1.2z~! + 0.50z72
are almost overlapping. The reason for this is that the relative location of the zeros with
respect to the unit circle are the same for both these channels.

From, the above discussions we conclude that the proposed blind equalizer works ef-

ficiently for the mixed-phase communication channels and gives very encouraging results
even for lower values of the signal-to-noise ratio.
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5.4 Experimental Results for Deep-Null Communication
Channels

For a communication channel, the frequency-domain transfer function can be written as
H(e7*). If at any frequency value, the spectral characteristic of H(e™7“) possesses a
zero or very low value, the signal power becomes negligible at that frequency. In other
words, the signal-to-noise ratio becomes zero or very small whenever the spectral charac-
teristic possesses nulls or assumes a small value [11]. In the z-domain, it means that zeros
of the channel are either on or near the unit circle. The existing blind equalization algo-
rithms, when applied to channels having deep spectral nulls, generally perform poorly for
estimating the unknown channel. This is because of the fact that at or near the nulls, the
signal power becomes negligible as compared to the noise power.

The performance of the proposed blind equalization scheme has already been studied
for deep-null channels both in Chapter 4 and in this chapter in terms of estimation of the
channel coefficients and symbol error rate. In order to make this study complete, we will
now also consider the spectral performance of the blind equalization using the proposed
scheme for deep-null channels. For this purpose, we attempt to obtain the estimate of a
practical deep-null communication channel [12] characterized by the transfer function of
a fourth-order maximum-phase FIR filter given by

H(z™') = 0.9413 + 0.3841z7! + 0.5684z72 + 0.4201z7% + z~* (5.10)

This channel has complex zeros at zize*7™/3 and at ;15€*7*"/4. The length of the IR
predictor is taken as 5, while for the adaptive FIR filter as 9. The simulation is carried
out for an equally probable binary data sequence of 3000 samples. The magnitude and
phase responses of the estimated channel at the 1500th and 3000th sample instants along
with the response of the actual channel is depicted in Fig. 5.15. From the magnitude and
phase response plots, it can be seen that the proposed blind equalization scheme estimates
the unknown channel completely despite the fact that it has deep spectral nulls. However,
it takes it around 3000 samples to completely estimate such a deep-null communication

channel.
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Figure 5.15: Frequency response of the estimated and the unknown deep-null channel.
(a) Magnitude response. (b) Phase response.

5.5 Summary

In this chapter, the performance of the proposed blind equalization scheme has been stud-
ied for maximum-phase and mixed-phase communication channels.

Two types of experiments have been carried for the maximum-phase channels. In the
first set of experiments, the performance test is carried out for different levels of inter sym-
bol interference. Eleven channels have been used for this purpose. All the channels are
modeled as first-order FIR filters to provide different levels of inter symbol interference.
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From the experimental results, it is seen that as the amount of inter symbol interference
increases, the convergence rates of the IR predictor and FIR filter coefficients somewhat
slow down. However, the proposed scheme estimates the unknown channel correctly. A
comparison of the proposed scheme with the one presented in [12] has shown that the
former scheme gives more consistent results.

In the second set of experiments, the symbol error rate of the proposed blind equaliza-
tion scheme for different levels of the signal-to-noise ratio has been studied. The results
have demonstrated that even for low levels of signal-to-noise ratio, the proposed scheme
works efficiently and gives a very small value of the symbol error rate. It has been shown
that with an increasing inter symbol interference, the symbol error rate increases and at-
tains a negligible value at a higher value of the signal-to-noise ratio. A comparison of the
proposed blind equalization scheme with the one given in [12] has also been carried out
and it has been shown that the proposed scheme gives lower values of symbol error rate
for all the levels of signal-to-noise ratio considered for this experimentation.

Next, the performance of the proposed blind equalization scheme for mixed-phase
communication has been studied. Four channels, each modeled as a second-order mixed-
phase FIR filter, were considered for this study. As was done in the case of maximum-
phase channels, in this case also the convergence properties for estimating the unknown
channel and the symbol error rate of the proposed blind equalization scheme were stud-
ied. Tt has been shown that the scheme works quite satisfactorily in both aspects of the
performance.

Finally, to study the spectral performance of the proposed blind equalization scheme
for the communication channels having deep spectral nulls a practical fourth-order mixed-
phase channel has been taken. From the simulation results obtained, it is seen that the pro-
posed scheme successfully estimates the channel for the entire frequency band including
at frequencies having deep spectral nulls.
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Chapter 6

Conclusion

6.1 Contributions of the Thesis and Concluding Remarks

This thesis has been concemed with the development of adaptive algorithms for the prob-
lem of blind equalization of communication channels with or without deep spectral nulls.

The traditional blind equalization schemes [1]-[9], employing only adaptive FIR filter-
based structures, perform poorly for maximum-phase communication channels having
deep spectral nulls. This problem is due to the difficulty of modeling the inverse of the
maximum-phase communication channel with a finite-length adaptive FIR filter. An at-
tempt has been made in [16]-[18] to solve this problem by using a blind equalization
structure that makes use of an adaptive IIR predictor and an all-pass filter. This technique
makes use of a fourth-order norm to estimate the unknown channel, thus requiring an
extremely high computational complexity. A further attempt has been made in [12], to
reduce this high computational complexity by using two block-based time reversers, in
addition to IR and FIR filters. However, this scheme reduces the computational complex-
ity only to a certain extent. Moreover, the adaptive algorithm used for the adaptation of
the IR predictor may converge to an arbitrary point on the mean square output €ITor sur-
face, if the denominator polynomial of the IR predictor does not satisfy a strictly positive
real condition. This scheme also requires swapping of the IIR and adaptive FIR filters,
for it to work satisfactorily at low levels of signal-to-noise ratio. Moreover, for the adap-
tation of the FIR filter, a normalized constant modulus adaptive-2 (CMA-2) algorithm has
been used. A very high computational complexity of this algorithm makes the hardware
implementation of the overall blind equalization scheme cost-ineffective.
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In this thesis a new sufficient-order blind equalization scheme that attempts to address
some of the above mentioned problems has been proposed. Similar to the scheme pre-
sented in [12], the proposed method uses a structure that is based on IIR and FIR filters
and block-based time reversers. However, the new scheme incorporates simpler and more
efficient algorithms for the adaptation of IIR predictor and FIR filter of the blind equalizer.

A new gradient-based adaptive algorithm to solve the convergence problem of the
adaptive [IR predictor has been proposed. It has been shown that unlike the algorithm
employed in [12], it does not require a test on the denominator polynomial of the IIR
predictor transfer function to satisfy the strictly positive real condition. This adaptive
algorithm is based on the well known least mean square error criterion.

A new constant modulus adaptive (CMA) algorithm for the adaptation of FIR filter
of the blind equalization scheme has been proposed. It has been shown that the com-
putational complexity of this algorithm is substantially lower than that of the CMA-2
algorithm used in [12]. It has also been shown that the proposed algorithm can be consid-
ered as an extension of the least mean square algorithm, thus making it well suited for an
implementation using commercially available hardware.

Simulations have been carried out for a variety of minimum-phase, maximum-phase
and mixed-phase communication channels with or without deep spectral nulls. The ex-
perimental results in terms of convergence of the adaptation coefficient, symbol error
rate, and spectral response have demonstrated that even at the lower values of signal-to-
noise ratio, the proposed blind equalization scheme works efficiently. Further, unlike the
scheme of [12], it does not require the swapping of the [IR filter and the adaptive FIR filter,
thus making the proposed scheme more versatile. It has also been shown that even in the
presence of an intense inter symbol interference, the proposed blind equalization scheme
estimates the channels correctly and yields better results than the existing schemes.

6.2 Scope for Future Investigation

In the proposed sufficient-order blind equalization scheme, two block-based time re-
versers have been used. These block-based time reversers store the output data sequences
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of the IIR predictor and adaptive FIR filter, respectively. In the case of packet switching,
the block length can be taken as equal to the length of each packet. However, in the case of
circuit switching, this process may take a significant amount of time and reduce the data
throughput of the channel. An investigation can be underntaken for finding an alternative
of the block-based time reversers to improve the bandwidth efficiency.

The present investigation has been carried out for the development of a blind equal-
ization scheme for an M-ary PAM system characterized by a baseband communication
channel. In some applications, however, a passband quadrature amplitude modulation
(QAM) system is used. In such an application, the proposed algorithm for the adaptation
of the adaptive FIR filter can be used. However, an additional investigation would be
required to extend the algorithm for the adaptation of the IIR predictor for a baseband
communication channel for it to be used for QAM systems.

Finally, it may be worthwhile to look into the possibility of a hardware implementation
of the sufficient-order blind equalization scheme proposed in this thesis.
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