INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are availabie for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0800

UMI

On the Formal Verification of ATM Switches

Jianping Lu

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Sceience at
Concordia University

Montréal, Québec, Canada

1999

© Jianping Lu, 1999

il

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliotheque nationale

du Canada

Acquisitions et

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada .
Your file Votre reférence
Our fiile Notre reférence

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format

électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-43654-3

Canada

ABSTRACT

On the Formal Verification of ATM Switches

Jianping Lu

Because of the difficulty of adequately simulating large digital designs, there has
been a surge of interest in formal verification, in which a mathematical model of the
design is proved to satisfy a precise specification. Model Checking and Equivalence
Checking. which have the advantage of automatic verification. are two main formal
verification techniques that people are working on. The main problem of model checking
and sequential equivalence checking is the state space explosion. Another drawback of
model checking is lack of methods on establishing an environment and expressing a
property. In this thesis. we propose Property Division techniques which avoid the state
space explosion problem by deducing a property from several sub-properties. A number
of methods on establishing an environment and expressing a property are illustrated.

Although ATM hardware is hard to design due to its high speed and various
features. the applications of model checking and equivalence checking on ATM
hardware verification are few. In this thesis, Fairisle ATM switch fabric, Fairisle ATM
null port controller, Input FIFO of RCMP-800 and Concentrator of Knockout ATM
switch are developed. With the techniques we propose, all these ATM hardware designs
are formally verified in the formal verification tools called Verification Interacting with

Synthesis (VIS).

iii

ACKOWLEDGEMENTS

[have been very fortunate to have Dr. Tahar as my advisor through out my stay at
Concordia University. Dr. Tahar devotes considerable time and energy to his students,
and many of my idea about verification and about what constitutes interesting research
arose from talks with him. His insistence on motivation, discussion, and examples has
hopefully turned this thesis from a wasteland of formality into something readable. I was
fortunate to be a student of Dr. Al-khalili when he was the instructor of the course
“digital design system™. His excellent teaching on digital designs helped me to build up
the ATM models presented in the thesis. Special thanks are due to Dr. Mehmet-Ali and
Dr. Bouguerba for their constructive criticism and comments through the course of this
work.

[also wish to acknowledge all the teachers and individuals who have contributed
to my knowledge during the period of my stay at Concordia.

Finally. my wife gave me her constant love and encouragement, I can never thank

her enough.

iv

TABLE OF CONTENTS

—

CHAPTER 1 INTRODUCTION

1.1 THEOREM PROVING BASED METHODS.
1.2 DECISION GRAPH BASED METHODS

1.3 VERIFICATION INTERACTING WITH SYNTHESIS

1.4 FORMAL VERIFICATION AND DESIGNFLOW...........
1.5 SCOPE OF THE THESIS

1.6 RELATED WORK

CHAPTER 2 MODEL CHECKING METHODOLOGY

2.1 CoMPOSITIONAL VERIFICATION

2.1.1 CTL and ACTL.

2.1.2 Compositional Reasoning

2.2 ENVIRONMENT .

2.3 PROPERTY DIVISION

2.3.1 Cascade Property Division

2.3.2 Parallel Properry Division

2.4 PROPERTY EXPRESSION

2.5 REDUCTION AND ABSTRACTION

CHAPTER 3 VERIFICATION OF FAIRISLE ATM SWITCH

3.1 THE ATM SwITCH FABRIC.......
3.1.1 Switch Fabric Behavior

3.1.2 Switch Fabric Implementation

3.2 MODEL CHECKING...
3.2.1 Environment for the swirch fabric

3.2.2 Property description

3.3 ABSTRACTED FABRIC

3.4 DISCUSSION ON ENHANCEMENT OF MODEL CHECKING

3.4.1 Cascade property division example

3.4.2 Parallel property division
3.4.3 Latches Reduction..........

3.4.4 Concluding Results on Model Checking

3.5 ERROR DETECTION IN MODEL CHECKING

3.6 VERIFICATION OF THE ENTIRE FAIRISLE ATM SWITCH
3.6.1 ATM Switch Modeling

3.6.2 Properry Description and Deduction

3.7 SUMMARY
CHAPTER 4 VERIFICATION OF ATM PORT CONTROLLER

4.1 BEHAVIOR OF THE NULL PORT CONTROLLER
4.2 STRUCTURE OF THE NULL PORT CONTROLLER

4.3 PROPERTIES OF THE NULL PORT CONTROLLER

4.4 EXAMPLES ON PROPERTY DESCRIPTION INCTL

4.4.2 Internal Signal Usage

4.4.3 Counter Reduction

4.4.4 Experimental Results and Summary on the Three Methods
4.5 EXPERIMENTAL RESULTS AND ERROR DETECTION:

4.6 SUMMARY

CHAPTER 5 MODEL CHECKING OF INPUT FIFO

5.1 INTRODUCTION ON RCMP-800

N B I e g o= g e
W NADBNYNO A VOG0 WnII

W W
w o

(7
W

M LU bbb ks od W W w
vy mchoomh&tﬁwé&m&a&;m

@ 00 o
X223

o0 @
wn W

.1 Behavior of Input FIFO

88

90

.90

.1 The environment of the input FIFO...

9!

5.1

5.1.2 Functions of the input FIFO..
5.2 VERIFICATION OF THE INPUT FIFO ...

5.2

52

92

2 Model Checking.....ooeeeeeeeeemieiieaieecens

96

5.2.3 Experimental Results and Error Detection
5.3 SUMMARY ...oreeeeees

97

CHAPTER 6 EQUIVALENCE CHECKING

98

6.1 EQUIVALENCE CHECKING OF FAIRISLE ATM SWITCH FABRIC

6.1.1 The Timing module: An example
6.1.2 Experimental Results on Equivalence Checking

6.1.3 Analvsis on sequential equivalence checking

6.1.4 Error detection with equivalence checking
6.2 EQUIVALENCE CHECKING OF KNOCKOUT SWITCH CONCENTRATOR
6.2.1 Architecture of Knockout ATM Switch

6.2.2 Equivalence Checking of the Concentrator
6.2.3 Experimental results and discussion

6.3 SUMMARY.

CHAPTER 7 CONCLUSIONS

APPENDIX A

A.l TiME DIVISION SWITCHES.

A.2 SPACE-DIVISION SWITCH
APPENDIX B

B.1 COUNTER REDUCTION IN PROPERTY 3
B.2 MODEL CHECKING OF THE NULL PORT CONTROLLER

vi

100
101
103
104

.. 105

105
106
109
111
112

113

122
122
125

134
134

LIST OF FIGURES

Figure 1.1 Digital design flow using VIS 10
Figure 2.1 A handshake circuit 21
Figure 2.2 Environment of the circuit of Figure 2.1 21
Figure 2.3 State transition diagram for the circuit of Figure 2.1 22
Figure 2.4 State transition diagram for the circuit of Figure 22... 22
Figure 2.5 Composed circuit 23
Figure 2.6 State transition diagram representing the composite CITCUIL ceeneveeenrceesereecemmemcenenaneenmneeaaas 24
Figure 2.7 The maximal closing environment for the structure of Figure 2.3 24
Figure 2.8 The composition of the structure Figure 2.3 and its maximal closing environment 25
Figure 3.1 The structure of the Fairisle ATM switch 36
Figure 3.2 The routing tag of a Fairisle ATM cell 36
Figure 3.3 Fairisle switch fabric implementation 38
Figure 3.4 68-state environment state machine 39
Figure 3.5 Abstracted environment state machine with related timing diagrams 39
Figure 3.6 The abstracted switch fabric 43
Figure 3.7 The abstracted fabric units . 46
Figure 3.8 Fairisle input and output port controlier 51
Figure 4.1 The structure of the null port controller . 60
Figure 4.2 The format of received cell and cell for transmission 61
Figure 4.3 The structure of the null port controller 65
Figure 4.4 The state transition diagram in the environment of the null port controller.....c.cc.covuueeeeenne 68
Figure 4.5 Environment of the null port controller for Property 3 using EM 70
Figure 4.6 Environment of null port controller for the internal signals involved CTL ..oeeeeeeiciiennene 75
Figure 4.7 State diagram of the input port controller... 77
Figure 4.8 Environment of null port controller using counter reduction method 81
Figure 5.1 Structure of RCMP-800 88
Figure 5.2 Environment of the input FIFO ... eeemeessessseseeessesssecssscesaetsstesirossessesnssnnnnans 91
Figure 6.1 The modular structure of the switch fabric 100
Figure 6.2 State transitions of the timing module 101
Figure 6.3 Structure of Knockout ATM Switch 107
Figure 6.4 (a) The 2 X 2 contention switch (b) State of a x 2 contention switch.. 108
Figure 6.5 The 8-input / 4-output concentrator 109
Figure 6.6 The specification of the concentrator specification 110
Figure A.l Structure of ATM Switch. 123
Figure A.2 The structure of shared memory ATM switch 124
Figure A.3 The structure of shared bus ATM switch. 125
Figure A.4 Common abstract ATM switch model. 126
Figure A.5 Structure of crossbar ATM switch 127
Figure A.6 Structure of Banyan ATM switch 130
Figure A.7 Structure of knockout ATM switch 132
Figure A.8 Structure of Knockout concentrator 133
Figure B.9 Environment for property 3 using counter reduction and Environment Modification 135
Figure B.10 Environment for Property 3 using Counter Reduction and Internal Signal Usage........... 139

Figure B.11 Environment of null port controller for Property 4 using Counter Reduction and Environment
Modification . 142

vii

LIST OF TABLES

Table 3.1 Property checking on the abstracted fabric 43
Table 3.2 Dynamic ordering in property checking 44
Table 3.3 Cascade property division in property checking 45
Table 3.4 Parallel property division in Property 4 47
Table 3.5 The number of latches among different models 47
Table 3.6 Latches reduction in model checking 48
Tabie 3.7 Summary of enhanced property checking of the fabric 48
Table 3.8 Error detection in property checking 49
Table 4.1 VCI to memory location conversion 63
Table 4.2 Experimental results and summary on the three methods 82
Table 4.3 Experimental results on the model checking of null port controller 83
Table 5.1 The format of an unassigned cell 94
Table 5.2 The format of a physical cell 95
Table 5.3 Experimental results of input FIFO model checking 97
Table 6.1 Equivalence checking of each submodule 104
Table 6.2 Equivalence checking among modules with different DMUX units 104
Table 6.3 Error detection in equivalence checking of submodules 105
Table 6.4 Experimental results of the equivalence checking on the concentrator. I

viii

Chapter 1

Introduction

With the increasing reliance of digital systems, design errors can cause serious
failures. resulting in the loss of time, money, and long design cycle. Large amounts of
effort are required to correct the error, especially when the error is discovered late in
the design process. For these reasons, we need approaches that enable us to discover
errors and validate designs as early as possible. Conventionally, simulation has been
the main debugging technique. However, due to the increasing complexity of digital
systems. it is becoming impossible to simulate large designs adequately. Therefore.
there has been a recent surge of interest in formal verification. In formal verification,
a mathematical model of the design is compared with a formal specification
describing the correctness criteria for the design. The verification is exhaustive: all

possible behaviors of the model are considered [2].

Most formal verification methods fall into one of two classes: theorem

proving based methods and decision graph based methods.

1.1 Theorem proving based methods

In theorem proving based methods, the designer constructs a mathematics proof,
perhaps with the aid of some automated support, to prove that the model meets its
specification. Because the full power of mathematics is available, such techniques are

very flexible and powerful. It is possible to model systems at almost any level of

detail. and to prove properties of entire classes of systems.

The theorem-proving methods have been around for over 35 years. and
definitely have their staunch adherents. They have been extensively in government
pilot projects, notably a popular theorem proving tool PVS [36] was used in NASA.
HOL (Higher Order Logic) [19] which is another famous theorem proving tool was
used in many research projects. Although there are many theorem proving tools in the
world. they all prove the equivalence or implication between a specification and an
implementation.

In spite of impressive demonstrations in the hardware domain and elsewhere,
the theorem-proving methods have never achieved the broad level of acceptance for
which their advocates had hoped. The reason undoubtedly lies in the need for expert
users. and an application cycle which evolves generally slower than a normal product
design cycle. so even just keeping up with the project development schedule is a

problem.

1.2 Decision graph based methods

Decision graph based methods restrict the model to be finite-state and use state space
search algorithms to automatically check if the specification is satisfied. Further, if
the verification fails. then a counterexample trace can be produced to show the user
why this is the case. The particular types of decision graph based methods that we

will be considering are called model checking and equivalence checking.

e Model Checking

Model checking is an automatic technique for verifying finite-state reactive
systems, such as sequential circuit designs and communication protocols.
Specifications are expressed in a propositional temporal logic, and the reactive
system is modeled as a state-transition graph. An efficient search procedure is used to

determine automatically if the specifications are satisfied by the state-transition

\J

graph. The technique was originally developed in 1981 by Clarke and Emerson [12].
Quielle and Sifakis [29] independently discovered a similar verification technique
shortly after thereafter. An alternative approach based on showing inclusion between
automata was later devised by Kurshan [20] at AT&T Bell Laboratory .

Model checking has several important advantages over mechanical theorem
proving. The most important is that the procedure is highly automatic. Typically the
user provides a high level representation of the model and the specification to be
checked. The model checker will either terminate with the answer rrue indicating
that the model satisfies the specification or give a counterexample execution that
shows why the formula is not satisfied. The counterexamples are particularly
important in finding subtle errors in complex reactive systems.

The first model checkers were able to find subtle errors in small circuits and
protocols. However they were unable to handle very large examples due to the state
explosion problem. The problem arises in systems composed of multiple state holding
elements operating in parallel: the total number of states in the system generally
grows exponentially with the number of state holding elements. Because of the
limitation. many researchers in formal verification predicted that model checking
would never be useful in practice.

The possibility of verifying systems with realistic complexity changed
dramatically in the late 1980°s with the discovery of how to represent transition
relation using ordered binary decision diagram (OBDD) [6]. The original model
checking algorithm, together with the new representation for transition relations, is
called symbolic model checking [26). By using the combination, it is possible to
verify large reactive systems. In fact, some examples with more than 10 '* states
have been verified [9]. This is possible because the number of nodes in the OBDDs
that must be constructed no longer depends on the actual number of states or the size
of the transition relation. Because of this breakthrough it is now possible to verify
reactive systems with realistic complexity and a number of major companies

including Intel, Motorola, Fujitsu, AT&T and Nortel have started using symbolic

99

model checkers to verify actual circuits and protocols. In several cases errors have
been found that were missed by extensive simulation.

While symbolic representations have greatly increased the size of the system
that can be verified. most realistic systems are still too large to be handled. Thus. it is
important to find techniques that can be used in conjunction with the symbolic
methods to extend the size of the systems that can be verified. Current well-known

techniques are compositional reasoning and abstraction [23].

e Equivalence Checking

Equivalence checking is used to prove functional equivalence of two design
representations modeled at different levels of abstraction [34]. Equivalence checking
can be divided into two categories: one is combinational equivalence checking, and
the other is sequential equivalence checking.

The main approaches to combinational equivalence checking are based on
canonical representations of Boolean functions, typically binary decision diagram
(BDDs) or their derivatives. The functions of the two circuits to be compared are
converted into canonical forms [6] which are then structurally compared. The major
advantage of BDDs is their efficiency for a wide variety of practically relevant
combinational circuits. If the BDD size does not grow too large, this type of Boolean
reasoning is fast and independent of the actual circuit structure. Moreover, if
structural similarities of the two designs are exploited, BDDs can effectively find
implications between nets even if they are farther away from the primary inputs.

Some commercial equivalence checking tools have been used in industries.
For example, Chrysalis’s equivalence checking tool Design Verifyer is being used in
many IC design companies. Equivalence checking tools are often used to verify the
equivalence between RTL and synthesized gate-level design. Also they are used to
ensure the correctness of manual optimization during the fabrication process.

However, since current designs are mainly clock-driven synchronized, to

perform the combinational equivalence checking between two different sequential

models. we have to divide a design into pieces, and map each register (or flip-flop) of
one model into another. and compare their combinational circuits between every two
consecutive registers. This will lead to a drawback: combinational equivalence
checking cannot handle the equivalence checking between RTL and behavioral model
because RTL model and behavioral model are developed separately and should have
the same outputs at some certain clock cycles, but it is impossible to map each
register in RTL model to that of behavioral one.

Sequential equivalence checking is to verify the equivalence between two
sequential designs at each valid state. It is done by building the product finite state
machine, and checking whether a state where the values of two corresponding outputs
differ. can be reached from the set of initial states of the product machine. In other
words, sequential equivalence checking only considers the behavior of two designs
while ignoring their implementation detail such as latch mapping. Therefore,
sequential equivalence is able to verify the equivalence between RTL and behavioral
model. According to this, sequential equivalence checking is very useful in design
verification, but its drawback is that it cannot handle a large design due to state space

explosion problem.
1.3 Verification Interacting with Synthesis

Today. there are a lot of academic and commercial formal verification tools. One can
purchase verification tools from Abstract Hardware Ltd. (CheckOff - core
technology developed at Siemens), Chrysalis (Design Verifyer), Compass (Vformal-
core technology developed at BULL), IBM (RuleBase-core technology developed at
CMU), and Cadence (FormalCheck - core technology developed at Lecent). In
addition to these, some universities develop their own academic verification tools.
CMU has SMV [26], which is based on symbolic model checking. University of
Montreal developed Multiway Decision Graph (MDG) [13], which supports property
checking and equivalence checking. The most popular academic formal verification

tool for both model checking and equivalence checking is Verification Interacting

'h

with Synthesis (VIS) [5]. which is developed by University of California. Berkeley.

VIS integrates the verification. simulation. and synthesis of finite-state
hardware systems. It uses a Verilog front-end and supports model checking,
combinational and sequential equivalence checking, cycle-based simulation, and
hierarchical synthesis, etc. Because of these practical features, we choose VIS as the
verification tool in this thesis. In the following, we give a brief description of VIS.

e Verilog front-end

VIS operates on an intermediate format called BLIF-MV, which is an
extension of BLIF. the intermediate format for logic synthesis accepted by SIS [33].
VIS includes a stand-alone compiler from Verilog to BLIF-MV, called VL2ZMYV,
which supports a synthesizable subset of Verilog. VL2MV extracts a set of
interacting finite state machines that preserves the behavior of the source Verilog
program defined in terms of simulated results. Two new features have been added to
Verilog [35]:

1) Nondeterminism. A nondeterministic construct, SND, has been added to specify
nondeterminism on wire variables: this is the only legal way to introduce
nondeterminism in VIS.

2) Svmbolic variables. Sometimes it is desirable to specify and examine the value of
variables symbolically, rather than having to explicitly encode them. VL2MV
extends Verilog to allow symbolic variables using an enumerated type mechanism

similar to the one available in the C programming language.

e Hierarchy and initialization

When a BLIF-MV description is read into VIS, it is stored hierarchically as a
tree of modules, which in turn consist of sub-modules. This hierarchy can be
traversed in a manner similar to traversing directories in UNIX. Simulation and
verification operations can be performed at any subtree of the hierarchy. It is possible
to replace the subhierarchy rooted at the current node with a new hierarchy specified

by a new BLIF-MV file, which might be a synthesized module or a manually

5

abstracted module. VIS can also output the hierarchy below the current node to a
BLIF-MV file.

e Interaction with synthesis

VIS can interact with SIS to optimize the existing logic by reading and
writing the BLIF format, which SIS recognizes. Synthesis can be performed on any
node of the hierarchy.

e Symbolic model checking

VIS performs symbolic model checking under Biichi fairness constraints [4]
which assumes that a system will fairly go to each possible transition state and cannot
miss any possible states forever. VIS reports the failure with a counterexample, (i.e.,
behavior seen in the system that does not satisfy the property). This is called the
“debug” trace. Debug traces list a set of states that are on a path to a fair cycle and fail
the CTL formula.

e Equivalence checking

VIS provides the capability to check the combinational equivalence of two
designs. An important usage of combinational equivalence is to provide a sanity
check when re-synthesizing portions of a network. VIS also provides the capability to
test the sequential equivalence of two designs. Sequential verification is done by
building the product finite state machine, and checking whether a state where the
values of two corresponding outputs differ, can be reached from the set of initial
states of the product machine. If this happens, a debug trace is provided. Both
combinational and sequential equivalence verification are implemented using BDD-
based routines.

e Simulation

VIS also provides traditional design verification in the form of a cycle-based
simulator that uses BDD techniques. Since VIS performs both formal verification and
simulation using the same data structures, consistency between them is ensured. VIS

can generate random input patterns or accept user-specified input patterns. Any

subtree of the specified hierarchy may be simulated.

e Algorithms

The fundamental data structure for these algorithms is a multi-level network
of latches and combinational gates that is created by flattening the hierarchy. It is
assumed that there are no combinational cycles in the network.

The primary inputs and latch outputs are referred to as combinational inputs
and the primary outputs and latch inputs are referred to as combinational outputs. The
variables of a network are multi-valued, and logic functions over these variables are
represented by multi-valued decision diagrams (MDDs) which are an extension of
BDDs.

The combinational input variables and next state variables must be ordered
before MDDs can be constructed. The combinational input variables are ordered by
doing a depth-first traversal of the logic that generates the combinational outputs. The
order in which the output logic cones are visited is determined using the algorithm of
Aziz et al. [1]. This algorithm orders the latches to decrease a communication
complexity bound (where backward edges are more expensive than forward edges) on
the latch communication graph. The traversal of an output logic cone is done in such
a way that the combinational inputs farthest from the outputs appear earlier in the
ordering. Finally, each next state variable is inserted into the variable ordering
immediately after the corresponding present state variable.

A good partial or total ordering on the variables can be read in to improve the
performance. In addition, dynamic variable ordering is supported. Generally, a good
initial ordering followed by one or two forced dynamic reorderings gives good

results.

1.4 Formal Verification and Design Flow

Formal verification can be automatically used in an top-down design phase.
Figure 1.1 shows an example of employing formal verification in a digital design

phase. In this example, an RTL design is first described in Verilog [35] hardware

design language. and then it is tested by a Verilog simulation tool (e.g. Cadence
Verilog-XL). After that. model checking is further applied to verify the RTL design.
Since model checking, which concentrates on logic relations, has a totally different
mechanism from simulation, it could detect design errors which were not caught by
simulation. The verified RTL design is synthesized into the gate-level netlist (referred
to as Synopsys-Verilog in Figure 1.1) in Synopsys Design Compiler which is a
synthesis tool. But the format of the structural description cannot be used directly in
VIS or XL-simulator, and also the primitive modules of Synopsys are different from
those of VIS and XL-simulator. A program in AWK [1] automatically translates the
Synopsys-Verilog format to a Verilog format that is accepted by VIS and XL-
simulator (referred to as VIS/XL-Verilog in Figure 1.1) and a file including the
primitive modules of Synopsys is created so that VIS is interacted with Synopsys and
XL simulator directly. In addition to simulation and model checking, equivalence
checking between the RTL description and the synthesized netlist description of each
submodule is employed. Equivalence checking ensures the correctness of synthesis
with less human effort. An important advantage of formal verification using VIS is
counterexample generation whenever equivalence or model checking fails. However,
some counterexamples are difficult to analyze directly, but the counterexamples can
be converted into Verilog-XL and analyzed graphically. There are some trivial
differences between the syntaxes of VIS-Verilog and that of XL-simulator, but if a
design is described by a subset of syntaxes which are accepted by both tools, the

design description can be interacted by VIS and XL-simulator without any change.

~
#-{Verilog behavior description | I
{ 1
] | 1 l _
] Simulation in Verilog-XL | (Propert} checking in VIS J
| Analyze counterexample in XL L
! Synthesize in Synopsys J
-
LSynopsys—VetiIog struct. description J
I AWK program J
| ——Lr\v’lSIxL-Vcn'log struct. description =
i
i
Seq. cqu. checking in VISJ [Property checking in VIS }
i Analyze counterexample in XL l { Analyze counterexample in XL '

(EDIF generation in Synopsysj

Figure 1.1 Digital design flow using VIS

1.5 Scope of the Thesis

High-speed networks are being required for carrying all applications (voice, data,
video and images) in an integrated fashion, and the most appropriate switching
technique for such multimedia application is known as Asynchronous Transfer Model
(ATM) [25]. Although ATM hardware is one of the most difficult designs, its
formal verification examples are pitifully few. This thesis is concerned with methods
for applying model checking and equivalence checking on the verification of ATM

switches.

With the increasing intensive competition in ATM systems, time to market is

becoming a more and more important issue in industries, so industries prefer to use

decision graph based methods than theorem proving based methods. However, even

if graph based formal verification tools are used, the overhead of using formal
verification is still quite high. There are four major reasons to cause this problem.

1. Many formal verification tools (especially academic formal verification

tools) use some special hardware description languages instead of Verilog or

VHDL [3] which are two hardware description language widely used in

industry designs.

!Q

Due to the state space explosion problem, a design has to be abstracted in
order to be verified.

3. Graph based tools have the advantage of automatic proof, but most of them
must use propositional temporal logic to express properties. However, it is
very difficult to express a complicated property by propositional temporal
logic formulas directly.

4. Model checking can only be applied on a component without inputs. So ifa
component with inputs is under test, a closed environment [23], which
defines the inputs, is mandatory. However, such environment is difficult to
build due to the lack of rules and methods.

The thesis is aiming at the above four points. All the designs present in the
thesis are described in Verilog. Using techniques introduced in the thesis, we were
able to successfully verify them in VIS, and a number of design errors have been
found during the verification process. Our experience proves that formal verification
could be used in ATM switch designs with less overhead.

We discuss some general methods for the verification of ATM switches.
Based on these methods, several different ATM switches are verified. The goal of
these methods is to avoid ihc siate explosion problem. As to model checking, we
apply abstraction, reduction and compositional reasoning methods, and propose a
method called Property Division in order to capture the property of a large system. In
addition, we introduce our methods on establishing environments and describing

properties in propositional temporal logic formulas. In terms of equivalence checking,

we adopt modular verification to verify the equivalence between a RTL design and a

netlist design.

The principle contributions of this thesis are as follows:

1. A method for constructing environments of ATM switches using
compositional reasoning, and modeling ATM switches by reduction and

abstraction.

[

A method for capturing the properties of a large system and enhancing model

checking.

Methods for describing properties using CTL[10].

4. Model checking of Fairisle ATM switch fabric, Fairisle ATM null port
controller, and further verify the entire Fairisle ATM switch by property
division: model checking of a commercial design block: Input FIFO of
RCMP-800.

5. Equivalence checking of Fairisle ATM switch fabric and Knockout ATM

switch concentrator.

1.6 Related Work

During recent years, some ATM switches were verified by various formal methods,
and those ATM switches were either from academic designs or abstracted from
commercial designs. The following is ATM formal verification examples we found

in the literature.

e Verification of Fairisle ATM switch fabric in HOL

P. Curzon [14] formally verified Fairisie ATM switch fabric [14] using HOL
[19]. HOL is an LCF style proof system based on higher-order logic. The verification
was structured hierarchically following the implementation’s module structure. The
hierarchical, modular nature of the proof facilitated the management of its

complexity. The structural and behavioral specifications of each module were given

as relations in higher-order logic [19]. The major advantages of the verification of the
switch fabric in HOL are: the excellent expressivity of the specification language; the
confidence afforded in its results and the potential for scalability. However, the

verification in HOL required expertise and lots of efforts on circuit interpretation.

e Verification of Fairisle ATM switch fabric in MDG

Tahar et al. [37] [38] verified the Fairisle ATM switch fabric in an automatic
fashion using the MDG (Multiway Decision Graphs) [13] by property checking and
equivalence checking. MDG is used to represent sets of states as well as the transition
and output relations. Based on a new technique called abstract implicit enumeration
[13]. the MDG tools are able to perform safety property checking, combinational and
sequential equivalence checking. The verification in MDG has the advantage of using
abstract data types and un-interpreted functions with a rewriting facility, hence
allowing larger circuits to be verified. However. the current MDG tools are using a

special hardware design language (MDG-HDL) which need interpretation if we verify

an industry design.
e Verification of a Commercial ATM switch in SMV

Chen et al. [8] at Fujitsu Digital Technology Ltd, identified a design error in
an ATM circuit using the tool SMV (Symbolic Model Verifier) [26] by verifying
some properties expressed in CTL. Actually, the error was found during the chip
testing process. Aiming at the specific test error, they established an ATM model by
the abstraction and reduction of their original design. Using model checking in SMV,
a design error was identified in the ATM model. However, the ATM model was
reduced and abstracted a lot from the original design according to the specific error,

and the same ATM model may not be used to verify other properties of the original

design.

e High-Level Design and Validation of ATM Switch

Rajan et al. [30] used a combination of theorem proving [19], model checking
and simulation to verify a high-level ATM model. They used model checking to
verify some control components in the ATM model, and applied exhaustive
simulation to verify some operational components. Then theorem proving was
applied to verify the whole ATM switch model. They discovered bugs in the high-
level ATM model which was presumed correct by simulation. Combination of
various formal verification methods is a trend in the formal hardware verification. but
such a high-level model ignored a lot of details of a real design. In addition. since
theorem proving was involved in the verification, the expertise in theorem proving

was required.

e Verification of Fairisle ATM Switching Fabric in MEPHISTO

Schneider et. al [33] formally verified Fairisle ATM switch fabric using the
verification system MEPHISTO which is based on the HOL theorem prover. They
described the structure of each of the modules used in the design hierarchically and
provided their behavioral specification using hardware formulas. Although they
automated the verification of lower-level hardware submodules, they have not
accomplished the complete verification of the implementation against the intended

overall behavior of the switch fabric.

e Verification of Fairisle ATM Switching Fabric using HSIS

Gracez [18] has also verified some properties on the implementation of fabric
using the HSIS model checking tool. The author described the netlist implementation
of the ATM switch fabric using a subset of Verilog, and checked properties on
submodules of the fabric using model checking. No model checking on the whole
switch fabric, nor a verification against a high-level specification was reported,

however. Moreover, in some cases a slightly different implementation of a module

was described in order to ease the verification.

The above ATM formal verification examples demonstrate that some simple
ATM switches can be verified by formal verification methods. However, these
methods either use their own hardware design language or require a large changes
from the original designs, so the overall overhead are pretty large. In this thesis, we
will use Verilog hardware design language to describe the design. Using the methods
introduced in the thesis, we are able to verify the ATM switches with relatively small

modifications on the original designs.

i

Chapter 2

Model Checking Methodology

In this chapter. we consider the model checking methodology of ATM switches. We
will exploit a number of verification methods into the model checking of ATM
switches. These methods include compositional verification, property division,
abstraction and reduction, and they are jointly applied in the verification of ATM
switches. Compositional reasoning gives the theory fundamental for the
establishment of environments. Property division methods, which are jointly adopted
with compositional reasoning, facilitates capturing properties of a large design
model. Reduction and abstraction dramatically decrease the complexity of an ATM

switch model without changing the relations of target signals.

Using the above methods, we have to build up an environment and express a
property in temporal logic formulas (i.e. CTL). So we also introduce our methods on

establishing an environment and representing a property in CTL.

2.1 Compositional Verification

The idea behind compositional reasoning is to exploit the natural decomposition of a
system into communicating parallel processes. We will try to verify properties of
individual components, infer that these properties hold in the complete system, and

use them to deduce additional properties. The second step, inferring that local

properties hold on the complete system, is the key requirement for compositional
verification. Thus. we wish to examine the compositional model checking problem:
how do we check that a specification is true of all systems that can be built using a
given component? The theorems which support full CTL compositional model
checking are very hard to develop [23]. But as for ACTL, a subset of CTL, the
problem is efficiently decidable.

2.1.1 CTL and ACTL

Temporal logic is a logic for expressing the relative ordering of events in time
without mentioning time explicitly. CTL is a well-known temporal logic used in
model checking. All temporal operators in CTL are interpreted relative to an implicit
“current state”, and each operator consists of two parts. The first is called a path
quantifier and is either A or E. A denotes that something should be true of all “paths™
starting at a current state. In contrast, E is used to specify the existence of a path with
a certain property. The second part of a temporal operator is either X, U, or V. These
are used to describe the ordering of events along the path or paths indicated by the A

or E. The intuitive meanings of X, U and V are as follows:

. X p: X is read as “next time”. X p is true of a path if the formula p is true at the
second state on the path. Thus. p is used to express properties about the

immediate successors of the current state.

£

g U p: U is the “until” operator. The formula expresses that g is true until a
point where p is true. Thus, A(true U p) indicates that p will be true in any
paths in the future. A(true U p) also can be expressed as “AFp” where “F"

means “future”. Similarly, E(true U p) can be expressed as EFp.

3. g V p: The V operator is the dual of U and is read as “release”. A path satisfies
g V p if p is true at the current state, and p remains true up to and including
the first point where g is true. There is no requirement that g ever becomes

true, but when it does, it “releases” the requirement that p be true. A(false V

p) means that p never releases in any path, so it has the same meaning as AGp
where G is intended to express invariance. Similarly. E(false V p) has the

same meaning as EG p.

Let us now consider some example CTL formulas and their intuitive
meanings.

1. AG(req=1 -> AF ack=1): This formula states that for all reachable state(AG),
if the state satisfies req = I (“a request is made™), then at some later point
(AF) we must encounter a state with ack=1 (“an acknowledgment is
received™). Note that AF is interpreted relative to the state where req = /. The
outer AG is interpreted starting with the initial states of the system.

2. AG AF enabled = 1: No matter what state we reach. at some later pointer we
must encounter a state where enabled is 1, then we must reach yet another
such state. In other words, enabled must be 1 infinitely often.

3. AG EF restart =1: For any reachable state, there must exist a path starting at
that state that leads to a state satisfying restart=1. It must always be possible
to “restart the system™.

ACTL is a subset of CTL, which eliminates the ability to represent the
existence of a path, ie., the E path quantifier, and this subset is sufficiently
expressive to cover almost all of the temporal formulas that are used as specification
in practice. Intuitively, this is because we generally want to require that a system must

behave correctly. rather than it may behave correctly.

2.1.2 Compositional Reasoning

In order to avoid state space explosion problem, compositional reasoning method
[23] was proposed. It exploits the natural decomposition of a system. By using
composition reasoning method, we verify components in the system with their
environments, rather than a whole system. To show that the properties which are
valid in individual components with the environment are still hold in the entire

system, Long [23] has formally proved that “if the other components in the system

guarantee the behavior of the environment. then the verified properties are true of the

entire system™. This is the assume-guarantee style of verification [28] .

The assume-guarantee style of verification was first advocated in the context
of temporal logic by Pnueli [28]. In Pnueli’s system, we work with triple of the form
(e)M{) . The most common reading of such a triple is “if the environment of M
satisfies g. then M in this environment satisfies f ”. A typical chain of reasoning

would be as follows:

ON(g
(&) M {f)

O MUN{

Equation 2.1 Assume-guarantee style of verification

Here. we are asserting that if:

1. N satisfies g: and

2. if the environment of M satisfies g, then M satisfies f
then the composition of M and N (i.e. M Il N) will satisfy f. The advantage of doing
the verification in this manner is that we never have to examine the composite state
space of M Il N. Instead, we check g using just N, and then check f using only M and

the assumption g which is an environment of M (i.e. N’).

Based on the above compositional reasoning method. we establish an
environment of M (i.e. N°) which satisfies temporal formulas g, and check the
property f on the module M with N'. If the property f is satisfied by M Il N’, we can
conclude that M Il N satisfies f. Since N’ is much smaller than N, the state space of M
Il N’ is much less than that of M Il N. By this method, model checking can handle
much larger circuits. However, Long [23] has proved that such compositional
reasoning methed is only applicable in a ACTL.

Once the logic can only represent behavior over all paths, we will just need to
consider a single “maximal” closing environment [23]. Although composing with any
other closing environment will eliminate some paths, since our formulas only express

behavior overall paths, such pruning will not change a formula from true to false.

Further. if the composition of the given component with its maximal closing
environment satisfies the specified formula. then the formula obviously must be true
of all closed systems containing the component. We will use an example to further

illustrate this in Section 2.2.

2.2 Environment

Using model checking, a verification target must be a structure which has no inputs
[23]. So when we verify a design which has a number of inputs, we must build up an
environment to define each input signal. Because there is no input in the
environment, we call it closing environment. In [23], Long introduced maximum
closing environment in model checking, however we do find some drawbacks on
maximum closing environment. We will use an example to illustrate its drawbacks
first. and then introduce an actual closing environment which is more closed to the
real environment circuit than an maximum closing environment, and further explain

how to implement an actual environment.

A real environment for a circuit M is components associated with M in the
original system, denoted as N. The maximal closing environment for a circuit M,

denoted E(N) is defined as follows:

S’ = F. where F is the set of all labeling functions over A;.
I'=F.

A=,

A'p=A;

R'(s,’, ., s;i’) is identically true.

L'(f, a) = f(a)

OV E W

S is set of states; / is a nonempty set of initial state. A, is a set of input state
components, and each element a of A; has a correspondent domain D, of possible
values. Ao is a set of output state components, and each element a of Ao has a
corresponding domain D, of possible values. R is a transition relation relating a
starting state in S, a labeling function over A, and a ending state in S. For every s, €

S and labeling function f over A,, there must exist some s; € § such that R(s,. f, si). L

is a function that takes a state component a and return an element of D,,.

In the above definition, the symbols with * * ” mean the symbols of E(N). and
symbols without *’ ~ means the symbois for M.

According to the above definition, the states of a maximum environment is
the set of all labeling functions over A, while the states of a real environment is the
subset of all labeling functions over A, That means that if the composition of the
circuit M and its maximum environment E(N) (denoted as M |l E(N)) is satisfied by
an ACTL property, and the property must be valid for the composition of the circuit
M and its real environment N (denoted as M Il N). We will use the following example

to illustrate this. and the example was also used in [23].

—{>0———f . .
34
——C

Figure 2.1 A handshake circuit
: q

l\ 1 a m—
|~

Figure 2.2 Environment of the circuit of Figure 2.1

Figure 2.3 State transition diagram for the circuit of Figure 2.1

r=0
r=1

Figure 2.4 State transition diagram for the circuit of Figure 2.2

Consider a process that communicates with its environment via a 4-phase
handshaking protocol. The process can make requests of the environment by setting
one of its visible state component r to 1. The environment responds this request by

setting the visible state component a to 1. When the process sees the

acknowledgment. it removes its request by setting r to 0. Then after the environment
sets a back to 0. the cycle repeats. The process will also have a state component p that
will set to | when it first makes request. The state transition diagram corresponding
to this process is shown in Figure 2.3. and the actual circuit is Figure 2.1. In Figure
2.3 and other state transition diagrams in Chapter 2, the double circle indicates an
initial state, conditions on arcs are used to give the input conditions under which the
transition can be taken. and “’ ” denotes logic “NOT". The circuit shown in Figure
2.2 is a possible environment for the circuit of Figure 2.1. It receives requests via the
input r and gives acknowledgments using the output a. It also has an output g that
becomes | when it first produces an acknowledgment. When we compose the two
circuits. the output r of the circuit in Figure 2.1 is tied to the input r of Figure 2.2.
Similarly. the output a of Figure 2.2 drives the input a of Figure 2.1. The overall
circuit is shown in Figure 2.5. Figure 2.4 and Figure 2.6 are the state transition

diagrams for Figure 2.2 and Figure 2.5, respectively.

O —

___{> o . -
S S_—
L

—0

Figure 2.5 Composed circuit

rp'ag
Figure 2.6 State transition diagram representing the composite circuit

According to the above definition of a maximum environment, the maximal
closing environment of Figure 2.3 can be expressed as Figure 2.7. (Here we use
state transition diagram of Figure 2.1 (Figure 2.3) to represent the circuit of Figure
2.1 because they are functionally equivalent) In Figure 2.7, a is either “0” or “1”, and
it can be expressed as a nondeterministic variable in some formal verification tools. If
we consider Figure 2.1 and Figure 2.7 as a circuit M and its maximum environment
E(N), M 1| E(N) can be obtained from Figure 2.3 by considering the states when « is
‘1" and ‘0’. Figure 2.8 is the state transition diagram of M Il E(N). Figure 2.2 is areal
closing environment of M (i.e. N), and Figure 2.5 can be expressed as M Il N.
Comparing Figure 2.6 and Figure 2.8 for each state in M [l N, we can obtain a
corresponding state in M 1l E(N) by dropping the labeling for the state component g.

As an example, the state r'p’a’q’ in M || N’ maps to the state r'’p’a’ in M Il E(N).

Figure 2.7 The maximal closing environment for the structure of Figure 2.3

24

Figure 2.8 The composition of the structure Figure 2.3 and its maximal closing environment

In essence. the state transition of M |l N can be embedded in that of M I
E(N). Now consider a formula of ACTL which describes properties of all paths from
a state. If such a formula is false at some states in M Il N, then we can find a path
demonstrating why it is false. This path is then mapped into a corresponding path in
M Il E(N). so we can prove that this path demonstrates that the corresponding state in
M Il E(N) does not satisfy the property either. If we verify that a formula is true for M
Il E(N). then we know that the formula holds in all closed systems that contain M.
Further, if the formula is false for M Il E(N), then obviously we could find a closed
system containing M for which the formula is false. Therefore. to prove a property is
valid on M |l N. we can deduce it by proving the property is valid on M Il E(N).

But. if a property is false for M Il E(N), it may be true for M [| N because
every state of N can be mapped in E(N) while each state of E(N) may not be mapped
into N. To explain this, we still use the example of subsection 2.2.1. Figure 2.6 is
the state transition diagram of the circuit Figure 2.5 which can be seen as the
composition of Figure 2.1 and Figure 2.2. If the circuits Figure 2.1 and Figure 2.2 are
considered to be M and N, respectively, Figure 2.5 can be expressed as M || N. Figure
2.7 is an maximum environment of M (i.e. E(N)), and M Il E(N) is represented as
Figure 2.8. In Figure 2.6 (i.e. M Il N), it has the property that the next state of rpa’q’
will always be rp’aq, but this property is no longer satisfied in (M Il E(N)) because

the next state of rpa’ can be rp'a’ or rp’a (Figure 2.8). Therefore, a maximum
closing environment is not the best environment in model checking.

In order to make the verification accurate, a environment which uses the
same variables as the maximum environment and expresses its original model as
much as possible is the best one. So we propose to use actual closing environment
which defines some inputs as the original behaviors and some inputs as
nondeterministic variables. In reality, some input signals behave in a simple manner,
then we can specify its behavior in the environment. For instance, in some ATM
switches. there is “framestart” signal which can synchronize the cell transmission.
and it strobes cyclically in a certain period. So we can define this signal as its real
behavior in the environment. However, some input signals have a complicated
behavior, and expressing it as its original model will increase the state space
dramatically. For this case, we can ieave thesc signals as nondeterministic variables.
And also. data path signals could be defined as non-deterministic variables. The
following chapters include some actual environment implementations.

Since it is possible that a nondeterministic variable holds one value all the
time. the behavior with other values will never come out. Therefore, we sometimes
need to give fairness constraint [4] to prevent a nondeterministic variable sticking on

a certain value.

2.3 Property Division

To capture the whole behavior of a system, we usually need to verify some global
properties. However, the global properties are difficult to be verified due to state
space explosion. Therefore, we propose property division techniques which subdivide
a property to several sub-properties and check each sub-property in its correspondent
submodule separately. According to the dependencies of subproperties, we classify

property division into cascade property division and parallel property division.

26

2.3.1 Cascade Property Division

Cascade property division divides a property into several sequentially related sub-

properties. and every consecutive sub-properties are related with each other.

To illustrate this, we use a simple example. Consider a target system S (M i
N) which consist of submodule M and N. M and N are sequentially related. If we want
to verify a property P of S, we can divide P into two subproperties P1 and P2 which
are expected to be valid in M and N, respectively. If submodule M and the
environment of M (i.e. N") satisfies P/ and submodule N and the environment of N
(i.e. M') satisfies P2, we can conclude that the target system § satisfies P. The proof
strategy can also be expressed as an inference rule:
(true) M IIN' (P1)
(true) N | M’ (P2)
(true) P1 11 P2 (P)
MIIN=S

<true>S<P>
Equation 2.2 The proof of cascade property division

The above formula is similar to that in Section 2.1. Actually. cascade property
division is based on compositional reasoning. In Equation 2.2, the proof strategy for
(true) M 1| N’ (P1) and (rrue) N Il M’ (P2) are exactly the same as Equation 2.1. The
proof of Equation 2.2 is straightforward. By compositional reasoning, if M [l N’
satisfies P1I, then M || N satisfies PI. Similarly, if M’ || N satisfies P2, then M Il N
satisfies P2. These two important assumption make the above proof valid.

Since cascade property division is based on compositional reasoning, it works
only for ACTL property. The following lists a set of typical properties which can be
used in cascade property division.

J Safety Property:

27

[FAG (P ->AX"Q) and AG (Q -> AX"R)
THEN AG(P -> AX™"R)
where AX" Q is an abbreviation for

AX AX AX ...AX AX AXQ

————f

. Liveness Property:
IF AG (P -> AF Q) and AG(Q -> AF(or AXMR)
THEN AG(P -> AF R)

[F AG (P -> AF(or AX") Q) and AG(Q -> AFR)
THEN AG(P -> AF R)

The proof of above equations is based on the following three theorems. and
we do not give the detail proof here.
. FP->Qand Q->R, THENP ->Q
2. AX" AX"R=AX"™R
3. (AX"or AF) AFR=AFR
The cascade property division is quite useful in the verification of an ATM
switches. In any ATM switches, ATM cells carry ATM headers through a switch, and
a switch processes the headers and transmit ATM cells to their destined output ports.
So if we track the ATM cells through an ATM switch, it is possible to get proper
break points where the properties could be appropriately divided. However, using
cascade property division, the target design cannot be seen as a black box. How to
divide a property depends on the understanding of a design. Sections 3.6 and 3.4.1

will give real examples of cascade property division.

2.3.2 Parallel Property Division

While cascade property division divides a property into sequentially related sub-

28

properties. parallel property division divides a property into several independent sub-
properties. and checks every sub-property by every correspondent reduced submodule

that is extracted from a design.

The idea behind parallel property division is to remove the redundant
structure of a design and perform model checking only on the property-related
circuits. By proper partition, a design may be divided into several design units while
keeping the functional equivalence with the original design. Each design unit could
have some inputs of the original design, but it cannot share outputs with the other
one. Also design units ought not to have any interactive signals among them. If one
global property can be separated to several independent sub-properties, each sub-
property may be checked in a certain design unit. Since a design unit is much smaller
than the whole design, state space is saved.

Here is a virtual example of parallel property division. Consider a closed
system S: (1) S is functionally equivalent to the combination of n submodules (M, I
M, Il ... Il M,). (2) The submodules have some or entire inputs of S, but they are
independent. That means that they have different outputs and have no interactive
signals with each other. We intend to check the property (I -> O, and O; and ... and
0,) which might not be verified directly due to the large state space, then if we check
each sub-property (step 1 to step 4 in Equation 2.3), we can conclude that step Sis
valid. In Equation 2.3, * I ™ represents inputs expression, and “O; "(i=1, 2. ..., n)
denotes different outputs expression. “/-> O;” means the property which “/” implies

“0 *
i -

p—

. IF M, satisfies the property(/ -> O;); and

(A8

. IF M, satisfies the property (/ -> O>); and

3. ...,and

4. IF M, satisfies the property (I -> Oy)

5. THEN S satisfies Property (/ -> O; and O and ... and O;)

Equation 2.3 A virtual example of parallel property division

The proof of Equation 2.3 is based on the following two theorems. and we do
not give the detailed proof here.

1. If a property is satisfied by its related circuits of a system, the property

will be also valid in the system.

2. If (I->Ql)and (I1->Q2). THEN I ->Ql and Q2

Since most of ATM switches are regular designs, we could divide an ATM
switch into several parts, and check each sub-property in a certain design unit. In
addition. as an ATM switch, any input ports can be routed to every output port, and
every output ports are relatively independent, so an n-output ATM switch may be
divided into n switch units. The actual example is shown in Section 3.4.2.
Furthermore, the idea of parallel property division could also be used to “hide™
property-unrelated circuits when verifying a property. and Chapter 5 uses the “hide™

method to verify some properties of RCMP-800 Input FIFO.

2.4 Property Expression

As well known, higher level language has better expressivity. For instance, C
language has better expressivity than assembly language. Among logic languages,
such rule is still valid. Higher Order Logic [19] have much better representation
ability than CTL which belong to temporal propositional logic. Although CTL model
checking has an automatic fashion, its poor expressivity really restricts the
application. To ease expressing a property in CTL, we summarize three methods:

Environment Modification, Intemal Signal Usage and Counter Reduction.
e Environment Modification

A property consists of two parts: assumptions and conclusions. However, if
several assumptions do not happen at the same state, it is impossible to express them
in a CTL formula. In this case, we could use the environment to express one or more
assumptions. We call this method Environment Modification. Environment

Modification is really able to express a lot of properties, but the overhead is that we

30

have to modify the environment for each property.

e Internal Signal Usage

A property is a logic relation between the inputs and outputs of a component.
If the property is impossible to be represented by the inputs and outputs in CTL
directly. we could use “Internal Signals™ to express a number of sub-properties in
CTL. After these sub-properties are verified, the property could be deduced from
these sub-properties by property division. This method is called “Internal Signal
Usage™. Internal Signal Usage can be used to express any kind of properties, but the
verifier must be very clear about the design to choose appropriate internal signals in
CTL formulas.

e Counter Reduction

Counters are often used to synchronize various behaviors inside the system,
and the scale of counters directly affect the possible states of the system. Needless
to say. counter reduction will dramatically reduce the CPU time during model
checking. In Environment Modification method, the number of CTL formulas for a
property sometimes is a proportional to the scale of the counters. By using Counter
Reduction and Environment Modification, we could write much less CTL formulas
to represent a property. Also in Internal Signal Usage method, the scale of counters
sometimes has an influence on the number of CTL formulas for a property which is
related to the counter. So Internal Signal Usage method also can get benefits from
Counter Reduction.

While Environment Modification and Internal Signal Usage are two methods
on expressing a property in CTL, Counter Reduction reduces the number of CTL
formulas for a property when it combines with either Environment Modification or
Internal Signal Usage method. The practical examples on how to apply the three

methods will be demonstrated in Chapter 4.

31

2.5 Reduction and Abstraction

An ATM switch consists of memory. control circuits and data-path circuits. In
simulation, we usually build up a memory model and simulate the whole system.
However, we could not use such memory model in either model checking or
equivalence checking because the memory will introduce a lot of states. Instead, we
often do reduction and abstraction on a system in order to perform model checking

and equivalence checking on it.

Because the advantage of model checking is to verify a control circuit with a
lot of interactive signals, we usually perform reduction and abstraction on the
memory and datapath. In some cases, we need to reduce the scale of control circuit as
well. For example, we often reduce the scale of a cell counter in an ATM switch
- control circuit.

Memory is a kind of state holding element. It is impossible to verify memories
by model checking because the state space increases exponentially with the capacity
of a memories. For example, for 1000 byte memories, there will be 2 8000 grates while
the largest example that model checking can handle is around 2'*° states. To verify a
system with memory, we usually take memories away from the system and only
verify the memory read / write address, the memory data bus and read / write enable
signals. In Chapter 4, we use Fairisle ATM null port controller as an example to
illustrate how to use the memory peripheral signals to verify the correct memory
access. Likewise, when verifying the FIFO in Chapter 5, we only check the FIFO read
and write in its control circuits. This reduction is reasonable because the target of
function verification is logic circuits instead of memories which are usually regular
and verified by other ways.

Another component which is often reduced or abstracted is datapath circuits.
Datapath circuits usually have wide data buses and operational circuitry, these
circuits are not very complicated but they did occupy a lot of state space in the

verification. For this reason, we usually do reduction and abstraction on it. Reduction

is often used in the data bus. For example, we could reduce the data bus from 8 bits to

32

| bit as we will show in Chapter 3. On the other hand, for the operational circuits, we
often use abstraction. For example. we can use three registers (a, b, c) to replace an
adder (a + b = c) [23]. When register a and b have a value, (a+b) value is updated in
register c. Instead of verifying a system with the adder. we only verify the system
with three registers, so the state space can be decreased.

Although reduction and abstraction are very powerful methods in model
checking and equivalence checking, it is not a good solution for the practical
verification because it needs to modify a design. Even if we have to use them, we
must try to modify our design as little as possible. A good coding style will make
some reduction and abstraction easier. For example, if we define the width of a data
bus as a constant variable. We can only re-define the constant variable to change the
data bus width.

In this following three chapters, we apply the above model checking
techniques on ATM hardware verification. In Chapter 3, we will introduce our
experience on the model checking of Fairisle ATM switch fabric, and we will also
adopt property division to enhance model checking and verify the entire Fairisle
ATM switch which consists Fairisle ATM switch fabric and Fairisle ATM port
controller model. In Chapter 4, we will illustrate three CTL property expression
methods by verifying Fairisle ATM switch null port controller. A commercial ATM
design block will be verified in Chapter 5 by using “hide” method, and we
demonstrate that it is practical to verify an ATM commercial block using model
checking.

There are a lot of CTL formulas in this thesis. The numbering of CTL
formulas follows this rule: the first digit denotes the chapter number, and second digit
means property number, and the last digit indicates the number of CTL formulas for a
certain property. For instance, (3.3.2) means the second CTL formula of Property 3 in
Chapter 3. Beside the above numbering rules, we use a, b and ¢ to indicate
Environment Modification, Internal Signal Usage and Counter Reduction,

respectively in Chapter 4. For example, (4.3.a.1) means the first CTL formula of

33

Property 3 using Environment Modification in Chapter 4. In addition, in all the CTL
formulas of the thesis. “!". “->". **" =4 and “~"denote logical “‘not”. “imply".

“and”. “or” and “xor”, respectively.

34

Chapter 3

Verification of Fairisle ATM Switch

In this chapter, we present our results of formally verifying an ATM switch fabric
using VIS. By this example, we show how to use model checking to verify a design.
In addition, we introduce how to apply property division to enhance the model

checking and further verify an entire ATM switch by property division.

The device we investigated is a part of a network which carries real user data:
the Fairisle ATM network, designed and in use at the Computer Laboratory of the
University of Cambridge. The component we considered is the Fairisle 4 by 4 switch
which consists of a Fairisle 4 by 4 switch fabric and four Fairisle ATM port
controllers, performs the actual switching of data cells and forms the heart of the

ATM Fairisle communication network.

3.1 The ATM Switch Fabric

The Fairisle ATM switch consists of three types of components: input port

controllers, output port controllers and a switch fabric (Figure 3.1).

35

—
[_(—}_SL__, dInQ dOut0 ﬁﬁ___)
10 ~—— ackOut0 ackIn0 0

i
8, ldinl ATM 4oui '
.. 1 . ‘ 1 ..
transmission ackOutl ackinl transmission

1 . 1
lines 8 dIn2 Switch dOut2 8 lines
D
= =~ ackOut2 Fabric ackIn2 <7 2
8 | din3 dOut3 ;ﬁjj——»
—
—')r—g——“_’,‘_ ackOut3 ackIn3 [, 3
input port output port
controllers controllers

Figure 3.1 The structure of the Fairisle ATM switch

The null port controller synchronizes incoming and outgoing data cells,

appending control information in the front of the cells in a routing tag (Figure 3.2).

Unused Rolute Priority| Active
I

Bit 7 6 s 4 3 2 1 0

Figure 3.2 The routing tag of a Fairisle ATM cell

This tag is stripped off before the cell reaches the output stage of the fabric.
The fabric switches cells, consisting of a fixed number of data bytes, from the input
ports to the output ports according to the routing tag. If different port controllers
inject cells destined for the same output port (which is indicated by the route bits)
into the fabric at the same time, then only one will succeed, and the others must re-try
later. The priority bit in the routing tag is used for arbitration, and the high priority
cells are given precedence. For those with the same priority, round-robin arbitration is
performed. The output controllers are informed of whether their cells were successful
or not through the acknowledgments generated by the output ports. The fabric passes
the acknowledgment from the requested output port to the successful input port, and
does not forward the acknowledgment to unsuccessful input ports or forwards the

negative acknowledgment when the output port controllers are running short of buffer

36

space. The port controllers and switch fabric all use the same clock. and they also use
a higher-level cell frame clock: the frameStart signal (fs). It ensures that the port
controllers inject data cells into the fabric synchronously so that the routing tags

arrive at the same time.

3.1.1 Switch Fabric Behavior

The behavior of the switch fabric is cyclic. In each frame, the fabric waits for cells to
arrive, reads them in, processes them, sends successful ones to the appropriate output
ports and sends acknowledgments. It then waits for the next round of cells to arrive.
The boundaries of separate cycles are determined by the frameStart signal. Whenever
it goes high, a new cycle commences. The cells from all the input ports start when a
particular bit (the active bit) of any input port goes high: the fabric does not know
when this will happen. However, all the input port controllers must start sending cells
at the same time within the frame. If no input port raises the active bit through the
frame then the frame is inactive. Otherwise it is active. In order to initialize the fabric
correctly for the forthcoming frame, the active bits must be low in the 2 cycles prior
to the arrival of the frameStart signal. Because the decision is completed 3 clock
cycles after the header time (arrival of routing tag), the fabric begins to send
acknowledgment at least 3 clock cycles after that. In [21], the overall behavior of the
switch fabric (including constraints from the port controllers) is expressed in form of

one state machine composed of 14 states.

3.1.2 Switch Fabric Implementation

Figure 3.3 shows a block diagram of the switch fabric implementation. It consists of
an arbitration unit, an acknowledgment unit and a dataswitch unit. The arbitration
unit is composed of a timing unit, a decoder, a priority filter and a set of arbiters. The
decoder reads the routing tags of the cells and decodes the port requests with low
priority and those from inactive inputs, and passes the actual request situation for

each output port to the arbiters. The arbiters make arbitration decisions for each

37

output port i by setting values for the corresponding outputDisable[i], xGrant[i], and
vGrant[i] signals. The dataswitch switches data from input ports to expected output
ports according to the signals xGrant[i], yGrant[i] and outputDisable[i]. The

acknowledgment unit passes appropriate acknowledgment signals to the input ports

according to these signals as well.

ackOutd 3) ackin®
ackOutl 1 re————Jc—— ackinl
ackOut2 3 Acknowledgment [Lc ackin2
ackOut3 J 3 ackin3
) P B e St
frameStart > ; Arbitrati
PEVERIN R
L. E >
L = 2 :
R E 12 outputDis'ablc{O:Jl
Z ¢ xGrant[0:3]
4 : C - z €| | yGrant(0:3]
£ L El32|Ecl6)| 2]16 :
: T S22 =
gr=iE NI
8
din0 -g> P e Y 19 £ LSzg dOut0
dinl 3 2 - S S e . > 2 Jogm, dOutl
din2 Bomd E; - e ko] Dumsvwich Lo % dOur2
din3 S * B Spl = 3w % Do douss
Figure 3.3Fairisle switch fabric implementation
3.2 Model Checking

3.2.1 Environment for the switch fabric

As stated in Chapter 2, we have to give an environment to verify the properties of the
fabric. The switch fabric’s interface with the port controllers consists of the signals
frameStart, 32-bit data inputs, 32-bit data output, 4-bit acknowledgment inputs and 4-
bit acknowledgment outputs (Figure 3.3). In our approach, we modeled the port
controllers as a finite state machine. Since the frameStart signal is cyclic every 64
clock cycles, we could express the port controllers as a 68-state environment state
machine (Figure 3.4). This 68-state environment state machine is inspired from the

work described in [37]. In Figure 3.4, there are 68 states enumerated by integers.

38

Arrows denote state transitions, and ;. f, and z. denote start of a frame, start of an
active cell (header arrival) and end of a frame (which is the start of the next frame)
respectively. f;, h and d above the states mean that the frameStart signal, the routing
tag (header) of an active cell and the data, respectively. are generated in that state.
States 1 to 5 are related to the initialization of the fabric. States 6 to 68 represent the

cyclic behavior of the fabric, where one cycle corresponds to one frame [37].

O—0O— C}~§9~ C—C= -@— '“‘H—Q——Q—j ® @—@

Figure 3.4 68-state environment state machine

While trying model checking by this 68-state environment state machine, we
noticed that it need a lot of CTL formulas for 1 property and also increases the CPU
time of model checking. Thus we combined the states with the same behavior to one
state: for instance, because states 13 to 64 of Figure 3.4 have the same behavior,
which is that data are transferred to the fabric, we combined them to one state that is
state S3 in Figure 3.5. Recall Counter Reduction method we introduce in Chapter 2,
such states combination has the same idea. Since there is no counter inside the fabric,

we do not need to change the design.

L}
State so s1 S2— 83 73 ss s6 s7
‘\ lh l:
Frame
Start — ! — L
din

dOut

ackin

ackOQut

Figure 3.5 Abstracted environment state machine with related timing diagrams

Figure 3.5 is the abstracted environment state machine and represents the

39

behavior of the port controllers. t;, t; and f. also correspond with states SO. S2 and S6,
respectively. States Sl to S7 represent the cyclic behavior of the fabric. where one
cycle corresponds to one frame. This environment state machine represents the two
main features of the port controllers, namely:

1) To initialize the fabric, the active bits must be low for 2 clock cycles prior to
the frameStart signal arriving.

2) The acknowledgment signals frc;m output port controllers are forwarded by
the fabric at least 3 clock cycles after the header arrival time. Since we fixed
the state S2 as header arrival time (f;), we give the following additional
constraint which makes the environment state machine feasible.

3) If the active bit of a input port in state S2 is zero, the data input of the same

input port in state S3 is also zero.

3.2.2 Property description

After establishing the environment state machine, we consider several properties of

the fabric including liveness and safety properties.

Property 1: At state S2 (1), if input port O chooses output port O in the routing tag,
eventually the data in input port O will be transferred to output port 0. In

CTL. this liveness property is expressed as follows.

AG (dIn0[0]J= 1 *~ dIn0([2]= 0 * dIn0([3]= 0 * state = S2

-> AF (dIn0%® == dout0)) (3.1.1)
where dIn0%? stores the value of dinO in state S3. Similarly, we could give other 15
liveness properties (one for each remaining 4x4 combination) to demonstrate that any
input port that chooses any output port in the routing tag will eventually transfer data
to that output port, but we do not express all these here. However, if there is always
another cell with priority bit as ‘1’ destining to the output port 0 and the priority bit
of the cell in input port 0 is always ‘0’, formula (3.1.1) will never be true. To prevent
such unexpected scenario happening, we have to give faimess constrain. VIS

supports the fairness constrains cailed Bachi [4] type. In order to restrict the behavior

40

of the arbitration, we impose the following four fairness constraints. They are:

| (xGrant[0] = 0 * yGrant[0] = 0) (3.£.1)
1 (xGrant[0] = 0 * yGrant([0] = 1) (3.£.2)
't (xGrant[0] = 1 * yGrant[0] = 0) (3.£.3)
1 (xGrant[0] = 1 * yGrant[0] = 1) (3.£.4)

(3.f.1) means that the data cell in the output port 0 is not always from the
input port 0; likewise, (3.£.2), (3.f.3) and (3.f.4) mean that data cell in output port O is
not always from input port 1. 2 and 3. respectively. With the faimess constrains
(3.f.1) to (3.f.4). formula (3.1.1) passed model checking.

Next, we consider several safety properties. In following we present six
example safety properties (Property 2 - Property 7) of the fabric along with their CTL
expressions. Note that Properties 4. 5. 6 and 7 are similar to those described in [13].
Property 2: The data bytes in a cell are transferred (from t,+5 to t+1, i.e. state S7)

from input port O to output port O sequentially with 4 clock cycles delay.
AG (state = S7 -> (dOut0 = dIn0% + dout0 = dInl® +
dout0 = dIn2%® + dout0 = dIn3**) (3.2.1)

Property 3: The arbitration component cannot make output port 0 and output port 1

connect to the same data input port at any time.

AG (! (xGrant [(0]==xGrant[l] * yGrant[0]==yGrant[1l] *

outputDisable[0]1=0 * outputDisable([1]=0)) (3.3.1)
Property 4: From state S3 (ty+1) to S6 (t,+4), the default value (zero) is put on the

data output ports.

AG ((state=S3 + state=S4 + state=S5 + state=S6) ->
dout0=0 * dOutl=0 * dout2=0 * dOut3=0) (3.4.1)

Property S5: Except states S5 and S6 (i.e. except the time interval tp+3 to t), the

default value is put on the acknowledgment output ports.

i

S1 + state = S7 + state = S2 + state =
S4) -> ackOut0 = 0 * ackOutl = 0 *

AG ((state

S3 + state

41

ackOut2 = 0 * ackOut3 = 0) (3.5.1)

Property 6: In state S7 (i.e. from tn+5 to t.+1), if the input port 0 chooses output port
0 with the priority bit set in the header and no other input port has its
priority bit set. The value on dOutO will be dIn0’® which is the data input

that is 4 clock cycles earlier than the data output dOut0.

AG (dIn0(3:0]=011* dInl[1]=0* dIn2([1]=0 * dIn3(1]=0 =

state=S2 -> AXAXAXAXAX (doutO== dIn0%)) (3.6.1)
Property 7: In state S5 (i.e. from t,+3 to t.-1), if input port 0 chooses output port 0

with priority bit set in the routing tag, and no other input port has its

priority bit set, the value on ackOutO will be the input of ackInO.

AG (dIn0O[3:0] = 0011 = dInl({l1l] = 0 * dIn2(1l] =0 ~
dIn3[3] = 0 * state = S2 -> AX AX AX (ackOut0 ==
ackInO)) (3.7.1)

3.3 Abstracted fabric

We did not succeed in using the original fabric to check the properties due to state
space explosion To cope with the state space explosion problem, at first, we reduced
the datapath of the dataswitch unit from 8 bits to 4 bits, the property checking still
consume too much CPU time. We therefore reduced the datapath further to 1 bit.
Because the behavior and structure of 1-bit datapath are exactly the same as those of
other 7 bits, this abstraction is valid. The arbitration and acknowledgment units
remained the same as the original design. The abstracted model is shown in Figure

3.6.

42

ackOut0 L : ackin0
ackOutl L ! ackinl
ackQut2 1 A cknowledgment fe————b—— ackin2
ackOut3 1 oL ackin3
frameStart L. Tttt R
__IL_J—'_ Arbitration
Ll o® 2
v E 7
1, - .
- ¢ [12] outputDisable(o:3)
‘ Z ¢ xGram(0:3)
3 b —— 4 : < .
din0{0:3] . S ¥Grant(0:3]
dinl[0:3] —#9! 4 3 S § 2iz.j16 ; 16 ' '
: . - & P
e el immeimma i £ E
dan(O:S]—*a! = ‘e = = =
din0{0] 1 " ” + dOut0{0]
dinl{0} 1 E Dataswitch £l 1., dOuti(o]
din2(0} L + £
. (}
din3{0) L £ 3 ! z::i([o:

Figure 3.6 The abstracted switch fabric

Based on this abstracted model, we checked the above seven properties which
were done on SUN Sparc 20 workstation (55MHz/256MB). The CPU time (elapse

time), memory usage and nodes allocated of every property checking are shown in

Table 3.1.
Properties CPU ume Memory Nodes allocated # of CTL
(seconds) (MB) (K) formulas
Property 1 3934 40 84, 199 1
Property 2 4551 41 90,371 1
Property 3 15 3 368 1
Property 4 3594 32 93,073 1
Property 5 833 5 28,560 1
Property 6 3679 41 79,687 1
Property 7 415 5 4,180 1

Table 3.1 Property checking on the abstracted fabric

All the properties in Table 3.1 were checked using the sift algorithm [5]
which is a dynamic ordering algorithm. Dynamic ordering provides an optimized
order that will drastically decrease the memory usage. nodes allocated, and hence

decrease CPU time. We choose property 2 as an example to see the difference

43

between the property checking with and without dynamic ordering (see Table 3.2).

Property 2 CPU time Memory Usage Nodes
(seconds) (MB) allocated

with dynamic ordering 4551 41 90,371
without dynamic ordering 55126 91 302,307

Table 3.2 Dynamic ordering in property checking

3.4 Discussion on enhancement of model checking

Although we succeeded in checking all the above properties on the abstracted fabric,
we found that almost all the properties are checked with unreasonable time. For
example. Property 4 consumes 3594 seconds CPU time which is around 3 hours
machine time. Here. we discuss several approaches we adopted to speed-up the

model checking.

3.4.1 Cascade propérty division example

We use Property 7 as an example, and the original CTL expression of property 7 is:

AG (dIn0([3:01=3 * dInl(l]
= 0 * state = S2 -> AX AX AX (ackOut([0]

= 0 * dIn2[1] = 0 * dIn3(1]
== ackInf0]))

To divide this property, we introduced the intermediate signals (variables)

xGrant[0], yGrant[0] and outputDisable[0]. yielding the following two sub-

properties:

sub-propertyl:AG (dIn0[3:0] = 3 * dIn[l] = 0 * dIn2[1l] = 0 * diIn3([1]
= 0 * state = S2 -> AX AX AX (state = S5 * xGrant[0] =
0 * yGrant[0] = 0 * outputDisable[0] = 0)}

sub-property2:AG (state = S5 * xGrant[0] = 0 * yGrant(0] *
outputDisable([0] = 0 -> ackOut0 == ackInO)

Like model checking in the abstracted fabric, we need build an environment
state machine for each sub-property. For sub-propertyl, every input signal (variable)
in its CTL expression is already in the environment of the abstracted fabric, so we

can use that one directly. But for sub-property 2, some input signals (variables) like

44

xGrant[0]. yGrant[0] and outputDisable[0] are not in that environment . We hence
established a new environment state machine where the behaviors of the signals
(variables) xGrant[i]. yGrant[i] and outputDisable[i] are given. Table 3.3 gives the
comparison between the property checking with cascade property division and the
property checking without it. The CPU time for checking property 7 is enhanced by

41 times by cascade property division.

Property 7 CPU time Memory Nodes
(second) (MB) allocated(K)
no cascade prop division 415 5.3 4,180
cascade sub-property 1 5.1 1.9 109
property sub-property 2 4.9 1.7 79
division Total 10.0 - -

Table 3.3 Cascade property division in property checking

3.4.2 Parallel property division

While cascade property division introduces sequentially related intermediate
variables to divide a property, parallel property division splits a property into several
parallel sub-properties without introducing any intermediate variable, and checks
every sub-property by an abstracted model that is stripped from a design regularly.

We use property 4 as an example.

The original CTL expression of property 4 is:

AG (state=S3 + state=S4 + state=SS5 + state=S6 ->
dout0{0]=0 * dOutl([0]=0 * dOut2{0]=0 * dout3[0] = 0)

To verify this property, we separated it into four parallel sub-properties as

follows:

sub-propertyl:AG (state = S3 + state = S4 + state = S5 + state = S6
-> dout0{0] = 0)

sub-property2:AG (state = S3 + state = S4 + state = S5 + state = S6
-> doutl(1l] = 0)

sub-property3:AG (state = S3 + state = S4 + state = S5 + state = S6

45

sub-property4:AG (state =

-> douc2{2] = 0)

-> dout3{3] = 0)

S3 + stace

= S4 + state

S5 + state =

51

For each sub-property, we established a correspondent abstracted fabric unit

from the abstracted fabric. Figure 3.7 describes the structure of this model. To verify

sub-property 1, 2. 3, and 4, we used fabric unit O, 1, 2 and 3, respectively. In Figure

3.7. ackOutij denotes the acknowledgment signal in input port i of fabric unit j, so

that the acknowledgment signal on input port i (ackOuti) represents the disjunction of

the signals ackOutiO. ackQutil . ackOuti2 and ackOuti3. Table 3.4 gives a comparison

between model checking with paraliel division and model checking without it for

property 4. From this table, the CPU time for model checking has been enhanced by

73 times.

g

bl

PR

Ao 3 g™

danind by, £

aaned b Ll oil L

aasmy —m iy

ackOut0’

ackQutl;

ackQutl’,

ackQur3”

Acknowledgment |

frameStart

antfo3] =3

din2{0:3] S
din3[0:3] S

I vgisters

L 1. ackIn3

* Arbitration
1 Ej :
p Bl | £ | 13| cutpuiDisable{0:3]
: Z e xGrant(®:3)
g — - w < yGrant(C;3]
> 28 15 REM :
== i EE 1 B
V| L= = e =
.: L din0¥O} . I F =
dinifo} i 2 . S
: d[nn’ml s % Dataswich | i e dOut3(0]
Al ! :“ E 2

46

Figure 3.7 The abstracted fabric units

dOgney 3 chin®
l | faonC U0
=aOu ® I —
schoun1 ® ' ™
chOuw2® .-_J
hOutd o Jo achOutd @ » |
=hOws b ——"—r__:]
achtmutl L poreroery ST quE— fapnc unitt
x wowstl | ey 4
2 sxtows!
iz oo 5 ko p——gOREH . I echinz
horpien L ——— faoncun &
P TS schtuts =*
-um: i
SE o
waonaes$ I tabnc unad b
4
= =500
o
ﬁ r framestart
dlngw-3|

dialje:¥
dinlte:- S|

dinNe:3|

Property 4 CPU time (sec.) Memory Nodes allocated

(MB) (K)
no parallel prop division 3593 32 93,073
sub-property 1 11 3 159
parallel sub-property 2 14 3 149
property sub-property 3 13 3 166
division sub-property 4 11 3 154
Total 49 - -

Table 3.4 Parallel property division in Property 4

3.4.3 Latches Reduction

In a digital design, latches introduce states, so latches have a very obvious influence
on the speed of model checking. Reducing the number of latches in a model will
greatly speed-up model checking. Table 3.5 collects the number of latches among the
original fabric, the abstracted fabric and one abstracted fabric unit (all including some

latches used for the environment).

Original fabric Abstracted Abstract Fabric
Fabric Unit
of latches 210 85 54

Table 3.5 The number of latches among different models

From our experiments, we found that model checking is almost impossible
using the original fabric, and it was very slow using the abstracted model as shown in
Table 3.1. However, using the abstracted fabric unit. acceptable time of model
checking was achieved. Through more experiments of property checking in VIS, we
found that the model which has around 50 latches can be easily verified by model
checking in VIS using SUN SPARC 20 (75 MHz/256MB). This result will guide us
to build abstracted models.

Many designs use latches to pause data for 1 clock cycle in its primary inputs
and outputs. Since these latches are directly connected to input and output ports,
ignoring these latches will not influence the state transitions within the design.

However, just reducing the latches will speed-up property checking dramatically.

47

Table 3.6 shows that the CPU time of checking property 2 has been enhanced by
nearly 100 times by using latch reduction. In this example, the data output latches that
are used to delay output data for 1 clock cycle were reduced. When we ignore latches
used to pause input or output data for some clock cycles, the timing behavior of a
design will be changed. so we must do some corresponding updates of a property to
match the model with latch reduction. We use property 2 as an example to illustrate
this. The original property 2 is “The data bytes in a cell are transferred from input
port O to output port O sequentially with 4 clock cycles delay”. Since the data output
latches are reduced. the updated property 2 should be “the data bytes in a cell are

transferred from input port O to output port 0 sequentially with 3 clock cycles delay”.

Property 2 CPU time (seconds) | Memory (MB) | Nodes allocated(K)
no latch reduction 4551 4 90,371
latch reduction 23 3 235

Table 3.6 Latches reduction in model checking

3.4.4 Concluding Results on Model Checking

All model checking results in Table 3.1 were obtained by using the abstracted fabric
and dynamic ordering, and some results were not satisfactory since they took a lot of
CPU time. By using cascade property division, parallel property division and latch
reduction, we got satisfactory results (see Table 3.7). For the properties listed in this
chapter, one of these enhancement approaches was enough for the model checking.

But for more complicated properties, we may apply the combination of several

approaches.

Properties Propertyl | Property2 | Property3 Property4 | Property5 Property6 | Property?
CPU time (sec.) | 28 46 15 49 73 34 10
Enhancement latch latch - parallel parallel latch cascade
Approach reduction | reduction division division reduction | division

Table 3.7 Summary of enhanced property checking of the fabric

48

3.5 Error detection in model checking

No errors were discovered in the above model checking. For experimental purposes,
however. we injected several design errors into the implementation: (1) We
exchanged the inputs to the JK Latch that produces the outputDisable signal. This
prevented the circuit from resetting. (2) We used the priority information of the input
port O to control the input port 2. (3) We used an AND gate instead of an OR gate
within the acknowledgment unit producing a faulty ackOutO signal. (4) We used
erroneously the same select signal to control output port 0 and 1. (5) We reduced a set
of delay registers for all the data input ports. These five errors were detected by
model checking and VIS generated counterexamples that exhibit the incorrect
behavior of the corresponding signals. Experimental results are reported in Table 3.8,

where the CPU time includes the time for model checking and counterexample

generation.
Experiments | Property used CPU time Memory usage Nodes
for error (seconds) (MB) allocated (K)
detection
Error 1 Property 4 83 4 1,408
Error 2 Property 6 49 3 251
Error 3 Property 7 15 1 85
Error 4 Property 3 34 4 199
Error 5 Property 2 17 1 54

Table 3.8 Error detection in property checking

3.6 Verification of the entire Fairisle ATM Switch

The Fairisle ATM switch consists of three types of components: input port

controllers, output port controllers and a switch fabric (Figure 3.1).

The input port controllers receive ATM cells from transmission lines, store
them in queues, dequeue them, append fabric header and output header, and then

transfer the cells into the switch fabric. An ATM cell consists of 48 data bytes plus a

49

4-byte header. The input port controllers also receive acknowledgment signals from
the fabric and decide whether to send new data, to retransmit previous cell, or to stop
sending data. The switch fabric transfers data cells from input port controllers to the
output port controllers and passes the acknowledgment signals from the output port
controllers to the input port controllers according to the fabric header. If cells on
common destination clash, the switch fabric arbitrates using round-robin allocation.
The output port controllers decide whether to transfer data to transmission lines or
loop back data to the input port controllers according to the output header. They also
detect errors in received cells, and send the acknowledgment signals to the switch
fabric. The port controllers and switch fabric all use the same clock, and they also use
a higher-level cell frame clock: the frameStart signal (fs). It ensures that the port
controllers inject data cells into the fabric synchronously so that the fabric headers
arrive at the same time.

The switch fabric in this section is the same as the fabric we verified in the
previous sections, but the port controller is an abstracted module.

The port controller consists of two input FIFOs, a receiver circuit, a network
of queues containing pointers (addresses) to memory in which the incoming cells are
stored before being forwarded to the switch fabric, a dispatcher-scheduler, and a
transmitter circuitry. An arbitration circuit controls access to the shared memory used
to store both the cells and the pointer queues.

In the FIFOs, the bytes are made of 9 bits where the 9th bit indicates the start
of a cell (frameStart signal). The priority (high, low) of a cell is indicated by a bit in
the header. This is checked by the dispatcher to insert the cell pointer to the
appropriate queue. The two input FIFOs (FIFO_I, FIFO_L) are queues of bytes used
to synchronize the switch with the external transmission lines, one containing bytes

received and the other for loop back within the controller.

50

~

-

~ o = S —— -
I ARBITER F’

FIFOO .~~~ - T Output Port Controlier |
| b.reg M - - dO;tS
FIFO_L e s -
Soc_L
e A N i o S N
FIFo! - / N —t ! 32 32 | f n .
,)] 7 cell memory / - \
/ o {2 l interface ' (=4 N
-3 ’ A A
f —1 3 ———— ;B R
T 1] '
' $ § !
: ———>{Wader | [Roaddr |- ,
“ n ' Queue F y n/ ,'
\ / \
v ' ' m ters l'
' . Quouo H _ - ’

. '1 ’
L —7*% :
=l o T

A
r’)4
nece:ven - mspncusn SCHEDULER _»| TRANSMITTER ackOut

FIFO_O contains bytes to output on the transmission line. The queues
contain pointers (addresses) to memory, where ATM cells are or will be inserted.
When a cell enters the port controller, a pointer from the free pointer queue (F) is
allocated by the receiver. The cell is written 4 bytes at a time to the memory while the
pointer is inserted into the receiver queue (R). During the extraction, if the FIFO
becomes empty or the start of a new cell is detected, the current cell is dropped and
the receiver starts the extraction of the newly detected cell. The dispatcher detects the
presence of a cell in the receive queue, updates the cell header, adds the fabric and the
output headers, and transfers the pointers to the appropriate priority queue Hor L.
The scheduler transfers cell pointers from the queues H, L to the transmission queue

(T), giving priority to cells in the H queue. The transmitter is in charge of the transfer

Figure 3.8 Fairisle input and output port controller

51

of the ATM cells from the transmit queue to the switch fabric, one byte at a time.
After a cell is successfully transmitted to the fabric, its pointer is returned to the free
pointer queue. The arbiter controls the access to the shared memory between the
receiver. the dispatcher, the scheduler and the transmitter, giving always priority to
the transmitter. Although we use independent queue models, we assume that they are
implemented in the shared memory. hence only one queue or cell word can be

accessed at a time. under the control of the arbiter.

3.6.1 ATM Switch Modeling

The port controliers contain around IMB of memory, 2KB FIFO buffer and 600
registers (latches) used for addressing and control. The switch fabric contains 210
latches. Both port controllers and fabric are thus too large to directly perform model
checking on any of them. Therefore, we introduced a number of abstractions and

reductions for both the port controllers and fabric.

In the port controller model:

1. We abstracted away the memory by using a cell memory interface while
keeping pointers in separate queues represented by functionally equivalent

models.

!\)

FIFOs were reduced to primary inputs where only the socket bits are
consulted to distinguish the beginning of a cell from a cell body.

3. The queue length was abstracted for certain safety properties by using queue
models with no content but only status bits that nondeterministically indicate
whether the queue is full or empty, or neither full nor empty.

Based on the above abstractions and reductions, we obtained a model with 43
latches for each port controller, and thus 172 latches in total for the four port
controllers.

Through the above reductions and abstractions and using the abstracted fabric

of section 3.3, the total number of latches in the entire ATM switch model was

52

reduced to about 300.

3.6.2 Property Description and Deduction

In order to capture the behavior of the whole switch including both the port
controllers and the switch fabric, we established a number of global properties for the
entire ATM switch. However, because of state space explosion, we did not succeed in
directly verifying any of these properties on the whole switch model. We used
property division to deduce a global property by several local properties. For
illustration purposes, in following we present three example global properties and
explain how we applied the division.

In following sections, Q_X represents a queue where X = F, R, L.H and T
denote the queues in Figure 3.8. Furthermore, empty and full indicate the status of a
queue, head expresses the fabric header and deq stands for dequeue. We use ¢, J, x, y,
z to represent a port number which could be 0 (00), 1 (01), 2 (10) or 3 (11), where £,
x, v, z are disjoint values (for different input port numbers). Din will be used to
denote a data input value, while dIn and dOut will be used for data input and output
signals of the fabric, respectively.

Property 8: If data bytes in a cell are allocated in an input port controller, they will

eventually reach an output port of the fabric. This is expressed as:

AG (Q_F.i = Din.address. i * Q F.deq.i =1 -> AF

(d0ut.j = Din.i)) (3.8.1)
Property 8 could be subdivided into two sub-properties,

sub-propertyl:AG (Q_F.i = Din.address.i * Q_F.deqg.i= 1-> AF (Q_T.i

= Din.address.1i)

sub-property2:AG (dIn.i = Din.i * state = S3 -> AF (state = S7 *
dout.j = Din.i))

sub-property 1 can be verified in the port controller model, and it means that
if a cell in any input port controller is allocated, its address will eventually reach the

output of the same input port controller through the receiver, the dispatcher-scheduler

53

and the transmit queue. In sub-property 1, Din.address.i stands for a pointer value
(address of a cell) in input port controller i; Q_F.deq.i = I represents the allocation of
the data bytes in FIFO_I buffer. Sub-property 1 includes 4 CTL expressions. Since
the four input port controllers are identical, we only need to check one CTL
expression on one input port controller model.

While sub-property 1 can verified in port controller model, the sub-property 2
is very similar to formula (3.1.1), and can be verified in the fabric with its
environment. Sub-property 2 means that the data bytes in a cell are eventually
transferred from input port i into output port j with four clock cycles delay. In sub-
property 2, S3 and S7 indicate the states where data cells are sent to the input port
and received by output port of fabric, respectively; dIn.i = Din.i and dOut.j = Din.i
means that input port i sends the data cell Din.i and the output port j receives Din.i,
respectively. Since it is 4 clock cycles from state S3 to S7, the property also verifies
the latency of the fabric. Since the fabric has 4 input/output ports, the CTL
expressions of sub-property 2 includes 16 possible combinational CTL expressions.

When verifying sub-property 1 and sub-property 2. we gave the correspondent

fairness constrain to avoid infinite idle inputs sequence, and this is similar to the

Since the environment of the fabric is based on the port controller model and
both of sub-properties are ACTL expression, we can deduce to the property 8 by the
two sub-properties according to property division.

Property 9: If there is only one cell in the high priority queue among the four input
port controllers, this cell will be transferred to the output port of the

fabric with priority (8 clock cycles after it is dispatched). i.e. in CTL:

AG(Q _H.empty.i = 0 * Q_L.empty.i 0 * Q H.empty.x
1 * QO L.empty.x = 0 *Q H.empty.y =1 * Q_L.empty.y
0 * Q H.empty.z =1 * Q_ L.empty.z =0 *
Din.i.H.head(3:2) = j * Dispat.state.i = D1*

Dispat.state.x = D1* Dispat.state.y = D1 *
Dispat.state.z = D1 -> AX AX AX AX AX AX AX (dout.j =

54

Din.i.H);
This property is subdivided into two sub-properties,

sub-propertyl:AG (Q_H.empty.i = 0 * Q L.empty.i = 0 * Dispat.state.i
= D1 -> AX(Q_H.deg.i =1 * Q_L.deq.1 = 0] *
Din.i.H.head(1) = 1)

AG (Q_H.empty.x = 1 * Q_L.empty.x = 0 * Dispat.state.x
= Pp1 -> AX(Q_H.deg.x = 0] * Q L.degq.x = 1 bl
Din.x.L.head(1)=0j

AG (Q_H.empty.y = 1 * Q L.empty.y
= D1 -> AX(Q_H.deq.y = 0 * Q _L.deq.y = 1~
Din.y.L.head (1) = 0)

Q0 * Dispat.state.y

AG (Q_H.empty.z = 1 * Q_ L.empty.z
= D1 -> AX(Q_H.deqg.z = o - Q_L.deqg.z = 1~
Din.z.L.head(1l) = 0)

0 * Dispat.state.x

sub-property2:AG (Din.head.i ({3:0] = 3j1l1 =~ Din.head.x[1]= 0 *
Din.head.y[1] = 0 * Din.head.z(1l] = O * state = S2
-> AX AX AX AX AX (dOut.j = Din.i))

In above CTL expression, Din.i.H means the value of the cell in high priority
of input port controller i. Din.head.i, Din.head.x, Din.head.y and Din.head.z in Sub-
property2 (which are the cells in the input of the fabric), are equivalent to
Din.i.H.head, Din.x.L.head, Din.y.L.head and Din.z.L.head in Sub-propertyl (which
are the cells in the output of their correspondent input port controllers). Similarly,
Din.i is equivalent to Din.i.H.

sub-property 1 can be verified in the port controller model, and it means that
if there is a cell with high priority (in high priority queue) in input port controller i
and there are no cells with priority in the other three input port controllers (x, y, z),
the cell with priority will be transferred to the transmit queue with priority in input
port controller i, and its priority bit in its fabric header is “17; the cells without
priority will be transferred to their correspondent transmit queue with “0” as its
priority bit in the fabric header in the other three input port controllers. In sub-
property l, Dispat.state.k = DI (k = i, x, y,) indicates that input port controller k is
in its dispatch state (D1). Din.i.H.head[l] = I means that the priority bit for the cell

in output of port controller i is “1". Din.x.L.head[l] = 0. Din.y.L head[l] = 0 and

Din.-.L.head[1] = 0 mean that the priority bit of the cells in the outputs of the other

three input port controllers are “0"s. Sub-property 1 includes 16 possible CTL

expressions depending on the value i, x, y and z, however, since the four port
controllers are identical. we only need to check 2 CTL expressions.

Sub-property 2 can be verified in the fabric with its environment, and it means
that a data cell with priority at input port i of the fabric will transfer to its destined
output port j with 4 clock cycles delay. In sub-property 2, Din.head.i{3:0] = jl1
represents that the cell in input port i of the fabric has a priority and its destination is
output port j. Din.head.x[1]= 0, Din.head.y[1]= 0 and Din.head.z{1]= O indicate
that the priority bits of the cells in the other three input ports of the fabric are “0T.
Since the data bytes are transferred to the output port j 5 clock cycles after state S2
which means 4 clock cycles after the data bytes transmit (state S3) (Figure 3.5).

For similar reasons as the sub-properties of Property 4.8, We could deduce the
property 4.9 from the two sub-properties according to compositional reasoning and
property division.

Propertyl0:An acknowledge signal associated with a cell with priority will be
transferred from an output port of the fabric to the destined input port
according to the fabric header; once the correspondent input port
controller receives positive acknowledge signal, it will transmit data
continually. otherwise it will stop sending data. We express this in CTL
as:

Din.head.i [3:0] = jl11 * Din.head.x([1] = 0 *
Din.head.y([1] = 0 * Din.head.z[1] = 0 * (state = S5 +

state = S6) * ackIn.j = 0 * transmit_state.i= send ->

AX (transmit_state.i = stop)) (3.10.1)

Din.head.i [3:0] = jl1 * Din.head.x[1] = 0 *
Din.head.y[1] = 0 * Din.head.z[1] = 0 * (state = S5 +
state = S6) * ackIn.j = 1* transmit_state.i = send ->

AX (transmit_state.i = send)) (3.10.2)

56

This property could be subdivided into two sub-properties.

sub-propertyl:AG (Din.head.i ([3:0] = ji11 *~ Din.head.x [l1] = 0 ~*
Din.head.y{1] = 0 * Din.head.z[1] = 0 * ackIn.j = 0
(state = S5 + state = S6) -> ackOut.i = 0)

AG (Din.head.i [3:0] = jl11 =~ Din.head.x ([1] = o -
Din.head.y[1] = 0 = Din.head.z{1l] = 0 * ackIn.j =1

(state = S5 + state = S$6) -> ackOut.i = 1)

sub-property2:AG (ackOut.i = 0 * (transmit_state.i = send) ->
AX(transmit_state= stop))
AG (ackOut.i= 1 * (transmit_state.i = send) ->

AX (transmit_state= send))

Sub-property 1 can be verified in the switch fabric, and it means that an
acknowledge signal associated with a cell with priority could be transferred from the
output port of the fabric to the input port of the fabric according to the fabric header.
In sub-property 1. ackln.j and ackOut.i signals denote the acknowledgment signal
into the output port j of the fabric and the acknowledgment signal out of the input
port i of the fabric, respectively. S5 and S6 are the states where acknowledgment
signals are transferred. This includes 32 combinational CTL expression.

Sub-property 2 can be verified in the port controller, and it means that a
negative acknowledge implies that the port controller stops sending data, and a
positive acknowledge will make the port controller transmit data continually. In sub-
property 2, transmit_state.i = send and transmit_state.i = stop express that the input
port controller i is in the send and the stop state, respectively. ackOut.i = 0 and
ackOut.i = I indicate the negative and positive acknowledgment, respectively..

If we use the assumption of sub-property 1 (Din.head.i [3:0] = jII *
Din.head.x [1] = 0 * Din.head.y[1] = O * Din.head.z[1] = 0 * ackin.j = 0 * (state =
S5 + state = S6) and Din.head.i [3:0] = jlI1 * Din.head.x [1] = O * Din.head.y(1] =
0 * Din.head.z[1] = 0 * ackIn.j = 1 * (state = S5 + state = $6)) to substitute the

assumption of sub-property 2 (ackQut.i = 0 and ackOut. i = 1), we will get Property

57

10, hence Property 10 is valid.

3.7 Summary

In this chapter, we described our verification on Fairisle ATM switch fabric in detail.
By this example. we present our experience on reducing the scale of the verification
target and build up environments. In addition, we introduce three methods to
enhance model checking, the first two methods (cascade property division and
parallel property division) were introduced in Chapter 2, the other method (latch
reduction) speeds up model checking by reducing the input or output latches.
Furthermore, we apply property division to verify three properties on the entire
Fairisle ATM switch which consists of Fairisle switching fabric and Fairisle port

controller model.

58

Chapter 4

Verification of ATM Port Controller

The null port controller (Figure 4.1) is a real design from Cambridge University and
it is a part of Fairisle ATM switch. Since it does only VCI mapping and FIFO
queuing, it is called the null port controller. In the original design, a Xilinx chip
controls all its functions, and it uses triple ported DRAMs to look up the new VCI,
and uses a FIFO to do speed matching with the transmission board. The null port
controller connects with Fairisle ATM switch fabric, and transmits ATM cells to the
fabric and receives acknowledgment signals from the fabric. Both the null port
controller and the switch fabric use the same framestart signal to synchronize the

behavior.

59

———1 " T ¢ Output Port Controller 1
— 1
FIFO I r
1 | op controller op cell !
§ counter I
L T qe-S===————-
framestart %
T T T T T T T T e e |
b ip cell : Switch Fabric
| | ip controller controller e
» |
Transmission : o :
Board >l address —
Mt accumulator |
] |
— Input Port Controller :
[S ———— . ——— —— —) ———— ——— A ————
I D

: I

DRAM

Figure 4.1 The structure of the null port controller

The null port controller consists of an input port controller and an output port
controller. It is able to transmit one cell every 128 clock cycle. If the clock frequency
is 20 MHz, the maximum bit rate is 80 MHz. There are no service classification, no
scheduling or traffic shaping, no monitoring and policing in this port controller, but
we can give a priority to an ATM cell, and this is done by preloading the priority bit
into the memory. The priority bit will be used for “arbitration” in the switch fabric.

Figure 4.2 is the format of an ATM cell. Although the actual data is 48 bytes
per cell, each cell is assigned 64 bytes in the memory. Except the 48 bytes data, the
receiving cell has 4 more bytes: 2 VCI bytes and 2 FAS bytes; the transmission cell

has 6 more bytes: 1 Fabric Routing Byte (FRB), 1 Port controller Routing Byte

(PRB), 2 VCI bytes and 2 FAS bytes. Since each cell consumes 64 bytes memory. the
memory. which is 256k x 8 bit. can contain 4096 ATM cells. This means that the
port controller supports 4096 connections. To prevent the two cells with the same

VCI arriving at the memory consecutively, only one cell is allowed in the memory.

Memary setus via CPU Interface

&
<

[Faslﬁasl}f{{ ;;"Lﬂ l 0 l e lw:m[u 10 [lLl

Recewvea Ceil — sy
Lfc-: l (=] a5z l =AS'I Daa]

VCi used as memary fookup

I £ 0

Catt for Transmssion . . 4——; 48 tytes —Pp
[Foe [ree [[t [[] o [o] [+]

Figure 4.2 The format of received cell and cell for transmission

We got some documents and structural codes of the null port controller from
Cambridge University. but those were not complete. In this work, we implemented
the null port controller RTL according to its documents. Our implementation is based
on the original design, and the main difference is that we used SRAM instead of
DRAM to store the cell because the current SRAM is much cheaper than before, and
it is being used in ATM hardware designs. Our RTL description of the null port
controller is written in Verilog. To verify the port controller in VIS, we establish an
environment, and define a number of CTL properties. In following sections, we will
introduce the behavior and structure of the port controller in Section 4.1 and Section
4.2. Section 4.3 describes the properties of the null port controller. Section 4.4
illustrates the three methods on expressing a property in CTL, and Section 4.5

summarizes the chapter.

61

4.1 Behavior of the Null Port Controller

The null port controller consists of input port controller and output port
controller. The input port controller receives data cell from the transmission board,
and writes data cells into memory according to their VClIs. In addition, the input port
controller reads the data cell out of the memory and transmit into the fabric. Once it
receives the positive acknowledgement signal, the input port controller will continue
transmitting data; otherwise, it will stop sending data. The output port controller
receives a data cell from the fabric, and send an acknowledgment signal back to the
fabric. If the output port controller receives a data cell, it gives a positive
acknowledgment signal; otherwise, it sends a negative acknowledgment.

The input and output port controller synchronize the behavior by clock and
framestart signal whose period is 64 clock cycles. The input port controller always
monitors framestart signal. After framestart signal is asserted, if the memory is
empty and the transmission board read request is asserted, the input port controller
will assert a write enable signal to the transmission board. But the data are
transferred into the memory only after the input port controller receives the start of
cell (SOC) signal. After the SOC signal is received. the input port controller will
latch the first followed two bytes which are the old VCIs of a data cell. Table 4.1 is
the conversion between the old VCI of a data cell and its memory location, where r
denotes row address and ¢ means column address. The decimal digit indicates the
position in the binary address (e.g. r4 means bit 4 of a row address). The whole VCIO
byte and bits 4 to 7 of VCII byte will become the row address and the most 3
significant bits of the column address, and bits 3 to 0 of VCII byte are unused in the

conversion.

VCIObyte | O 1 2 3 4 5 6 7
addr_r rl | 2| 3|4 |15)]r16 | 7 |18
VCIlbyte | O 1 2 3 4 5 6 7
addr_r - - - - c6 | c7 | c8 1|0

Table 4.1 VCI to memory location conversion

62

On the other hand. when framestart signal is asserted and the input port
controller has a cell to send. the input port controller will read the data cell from the
memory into the fabric. After a certain clock cycles, if the input port controller
receives the positive acknowledgment signal through the switch fabric, it will
continue sending the data cell; otherwise, it will stop the transmission.

While the input port controller receives data from the transmission board and
transmits the data into the fabric, the output port controller receives data from the
switch fabric and gives the acknowledgment signal to the input port controller
through th e switch fabric. After framestart signal is asserted, the output port
controller will detect the active bit of port controller header. If the active bit is
asserted, the output port controller will generate the positive acknowledgment signal
which will be transmitted into the input port controller through the fabric; otherwise,
the output port controller will generate the negative acknowledgment signal. If the
output port controller receives a data cell, it will write the data into the output FIFO,
and the first byte of the data, which is Port controller Routing Byte (PRB), will be
stripped and one SOC signal will be generated and instead into the output FIFO by

the output port controller.

4.2 Structure of the null port controller

Figure 4.3 shows the structure of the null port controller. It consists of an input port
controller and an output port controller. The input port controller processes the
signals from the transmission board, the memory and the fabric. The output port

controller interfaces with the signals from the fabric and the output FIFO.

The input port controller consists of an ip controller, an ip cell counter and an
address accumulator. The ip controller, which coordinates the ip cell counter and the
address accumulator, controls the data reception, transmission, memory read and
write. The ip cell count is an up counter which increments by 1 per data byte transfer,
and so does the address accumulator. In Figure 4.3, the signals ip_mem_data,

ip_mem_wr_en, ip_mem_addr_r, ip_mem_addr_c, ip_mem_rd_req and mem_ip_data

63

are the interface signals between the input port controlier and the cell memory. The
signals ip_mem_data and mem_ip_data mean the data outputs from the input port
controller to the cell memory and the data inputs from the cell memory to the input
port controller, respectively. Both of the signals have 8-bit bus width. The signals
ip_mem_wr_en and ip_mem_rd_req are the memory write enable and memory read
request signal, respectively. The memory row and column addresses are provided by
ip_mem_addr_r and ip_mem_addr_c. In the interface between the input port
controller and transmission board, rx_ip_data is an 8-bit data bus which is the data
inputs from the transmission boaid to the input port controller. The signals rx_rd_req
and rx_ip_soc indicate cell available in the transmission board and the start of a cell,
respectively. The signal ip_rx_wr_en demonstrates whether the input port controller
is able to accept a cell or not. In addition, the input port controller has an interface
with the fabric. The ip_fab_data is a 8-bit data bus which transfers data from the
input port controller to the fabric. The fab_ip_ack is the acknowledgment signal
which indicates whether the current cell succeeds in transferring to the destined
output port controller.

The output port controller consists of an op controller and an op cell counter.
The op controller generates the acknowledgment and SOC signals. and controls op
cell counter. The op cell counter, which is very similar to the ip cell counter,
increments by one per data transfer. In Figure 4.3, op_fab_ack and fab_op_data are
the signals in the interface between the output port controller and the fabric.
fab_op_data is an 8-bit data bus from the fabric to the output port controiler.
fab_op_ack is acknowledgment signal generated by the output port controller. In
addition, there are op_fifo_data, op_fifo_wr_en and op_fifo_soc signals between the
output port controller and the output FIFO. The op_fifo_data is an 8-bit data path
from the output port controller to the FIFO. The op_fifo_wr_en is the write enable
signal for the output FIFO. The signal op_fifo_soc indicates the start of a cell, and it
is asserted before the first byte data transfer.-

There are two control registers (ctr_id and ctr_sz) and one status register

(ip_empty) inside the port controller. ctr_id is an input disable register. When ctr_id
asserts. all the inputs are disable. During the period of ctr_id =1, the microprocessor
could pre-load the new VCIs, FRB and PRB into the memory. The register ctr_sz is
for debugging purpose. When ctr_sz is high, the memory address of the incoming cell
is not based on the old VCI values, instead, the row address of the incoming cell is O
and the column address is from 0 to 63. The register ip_empty is used to indicate the
status of the port controller. When it is asserted, the input port controller can accept a
cell from the transmission board; otherwise, a cell can be transmitted into the fabric

from the input port controller.

le—Clr_s2
}e— Cir_id

op_fifo_data gremm—de—m Output Port Controtler H
; 1 ————— op_fab_ack
op_fifo_wr_en ¢————~— op controlter op celt 1
op_fifo_soc e————1 counter {&———— fab_op_data
framestart }
ittt |
; I
rx_ip_data —>! ip celt t :
{ | 1 contraller counter — tab_ip_ack
rx_rd_req >l :
I I
. ol address .
fx_lp_soc \ accumulator 1 ® ip_fab_data
] 1
ip_rx_wr_en ———t—i input Port Controiter }
N Y R N A .
s -2 €
$ 2 8% o 8
‘u| ;l “I g 2 vl
E E € E' E' =2
@ @] o o !
E E E € S E
1 § 1 1 1 b4
e =2 a2 a = E

Figure 4.3 The structure of the null port controller

65

4.3 Properties of the Null Port Controller

Before performing model checking. we must figure out the necessary properties of
the null port controller, and this is similar to create some scenarios before the
simulation. The null port controller appends the new VCIs, FRB and PRB onto ATM
cells and transfers them into the fabric. so its major properties could include registers
reset, memory addressing, cell counting, data and acknowledgment transfer.

According to these. we give the following seven properties.

Property 1: The null port controller will be reset properly when either the null port
controller reset signal (npc_rst_n) or the null port controller input disable

signal (ctr_id) is asserted.

Property 2: When the input port controller can accept a cell. the transmission board
has a cell to send and the input port controller is in debugging state
(ctr_sz = 1), the address will be set up properly, and data will be

transferred correctly.

Property 3: When the input port controller can accept a cell, the transmission board
has a cell to send and the input port controller is in the normal operation
state (ctr_sz=0), the memory address will be set up and incremented

properly. and data will be transferred correctly.

Property 4: When the input port controller has a cell to send, it will transfer data and
set up the address properly. If the input port controller does not receive a
positive acknowledgment signal, it will stop sending data, otherwise, it

will send data continually.

Property S:An ATM cell can be transferred from the transmission board to the

fabric coherently.
Property 6: The cell memory cannot be read and write at the same time.

Property 7:The output port controller will send an acknowledgment signal after it

detects an incoming cell.

66

The seven properties cover the main features of the null port controller. We
will use Property 3 as an example to illustrate how to build an environment and write

a property in CTL.

4.4 Examples on Property Description in CTL

In Chapter 2. we have introduced three methods on describing a property in CTL:
Environment Modification, Internal Signal Usage and Counter Reduction. In this
section, we will illustrate how to use these methods by verifying Property 3. From the
comparison the performance of model checking using different methods, we

demonstrate advantages and disadvantages of each method.

Property 3: When the null port controller can accept a cell, the transceiver board has
a cell to send and the null port controller is in normal operation state
(ctr_sz=0), the memory address will be set up and incremented

properly. and data will be transferred correctly.

¢ Environment Modification

Property 3 has the following five assumptions:

1) The input null port controller can accept a cell, and it can be expressed as
“ip_empry = 17,
2) Transmission board has a cell to send, and it can be expressed as

“rx_ip_rd_req = 1I":

3) The null port controller is in normal operation state, and it can be expressed
as “ctr_sz =0";

4) The input null port controller will accept the data from the transmission
board after rx_ip_soc is asserted;

5) The null port controller is not in reset or input disable operation, and it can
be expressed as “npc_rst_n = I"" and “ctr_id = 0".

The input null port controller detects ip_empty, rx_ip_rd_req and ctr_sz

67

signals after framestart is asserted. If these three signals are satisfied with the above
assumptions. the null port controller will start monitoring rx_ip_soc in the following
clock cycles. The null port controller will start transferring data from the
transmission board after it detects the asserted rx_ip_soc. Using model checking, we
need to express the logic relations between assumptions and conclusions in CTL. For
example, if we express the sub-property which is “If the null port controller is in
normal operation, the transmission board has a cell o send and the input port
controller can accept a cell, the first byte of VCI value will become the Bit 1 to Bit 8
of the memory row address 2 clock cycles after rx_ip_soc asserts.”, we hope that the
CTL formula can be expressed as the following.

AG (ip_empty=1 * rx_ip_rd_req=1 * ctr_sz=0 *

npc_rst_n = 1 * rx_ip _soc=1 -> AX AX

ip_mem_addr_r([8:1] == rx_ip_data)

However, the above CTL expression is not correct because the first four
assumptions (ip_empty = l. rx_ip_rd_req = 1, ctr_sz = 0 and npc_rst_n = 1) do not
happen at the same state as the fourth assumption (rx_ip_soc=1). Actually, we cannot
express such property directly in CTL. Therefore, we apply Environment
Modification method which is to put the assumptions into the environment.

As to the environment, because the null port controller has a cyclic period
synchronized by framestart signal whose period is 64 clock cycles, we could establish

our environment which has 64 states.

Figure 4.4 The state transition diagram in the environment of the null port controller

Figure 4.4 is the state transition diagram of the null port controller
environment. The null port controller has some cyclic behavior so that we can use
these specific states to express its specification. In Figure 4.4, S1 denotes the cycle

that framestart is asserted. The behavior of the null port controller can be divided into

68

two parts: one is the data transmission which includes that the data is transferred from
the input port controller to the fabric and from output port controller to the output
FIFO, and the acknowledgment signal processing is also included in the data
transmission process; the other is that the data is transferred from the transmission
board to the memory of the null port controller. So the null port controller will have
different behavior at each environment state between data transmission and data
reception process.

If a cell is waiting to be transmitted in the input port controller memory, S2
denotes that the input port controller is going to provide the address to the memory-
In S3, the memory address and memory read enable signals are given to the memory.
S4. S5, S6, S7 and S8 denotes that the first five bytes are transferred from the input
port controller to the fabric. In S9, the input port controller will detect the
acknowledge signal (fab_ip_ack) it receives. If fab_ip_ack is asserted, S10 to S57
will be the states that the input port controller transfers the rest of 48 bytes, and the
input port controller will be in “idle” state from S58 to S64; otherwise, the input port
controller will stop sending data, S10 to S64 will be in “idle” state. At the mean time.
the output port controller will detect the active bit of PRB at S9, if the active bit is
asserted. the output port controller will send an positive acknowledgement signal to
the fabric, and the fabric will pass it to the input port controller immediately. S10 to
S61 will be the states that the input port controller forwards the rest of 52 bytes data
cell to the output FIFO. If the active bit is de-asserted, the output port controller will
always be in “idle” state in S1 to S64.

On the other hand, if the memory is empty, the null port controiler will detect
rx_ip_soc signal. Once rx_ip_soc signal is asserted, the next state will be the state
that the transmission board transfers the first data byte (VCI) to the input port
controller. Let’s assume rx_ip_soc asserted in S3, ip_rx_wr_en will be asserted at S4,
the first two bytes (two VCI bytes) are transferred to ip_mem_addr in S5 and S6. S7
to S56 will be the states that the null port controller transfers the rest of 50 bytes

ATM cell to the memory. During these periods, the ip_mem_wr_en signal will be

69

asserted.

The 64-state environment looks like the following:

1. typedef num {(S1, S2, S3. -, Si, .. , S64} state;
2. assign rx_ip_data_ran = $ND(0, 1, 2, -, 255);

3. always @ (posedge clock) begin

4. case (state)

5. S64: state = Sl;

6. Sl: state = S2;

7. S2: state = S3;

8. S3: state = S4:;

9. Si: state = Si+1l;

10. S63: state = S64;

11. endcase;

12. if (state== §1l)

13. framestart = 1;

14. else

15. framestart = 0;

16. if (state == S3)

17. rx_ip_soc = 1;

i8. else

19. rx_1ip_soc = 0;

20. ip_empty = 1;

21. rx_ip_rd_reg=1l ;

22. ccr_sz = 0;

23. ccr_id = 0;

24 . npc_rst_n = 1;

25. rx_ip_data = rx_ip_data_ran:;

26. if (state = S4) rx_ip_data_s4 = rx_ip_data_ran;
27. else if (state=SS5S) rx_ip_data_s5 = rx_ip_data_ran;
28. else if (state=S6) rx_ip_data_s6 = rx_ip_data_ran;
29. end

Figure 4.5Environment of the null port controller for Property 3 using EM

In Figure 4.5, line | enumerates the 64 states of the null port controller, and
line 4 to 11 lists the transfer of the 64 states. Since one state is correspondent to a
clock cycle, states will be transferred from S1 to S64 consecutively. Linel2 to 15
defines that the framestart signal which is asserted at S1 and de-asserted at other

states. Line 20 to 24 represent the above | to 5 assumptions, respectively. Line 25

70

assigns the input signal rx_ip_data as 8-bit random value. Line 26 stores the value of
rx_ip_data at state S4 as rx_ip_data_s4. Likewise, line 27 to 28 store the values of
rx_ip_data at state S5 and S6 as rx_ip_data_s5 and rx_ip_data_r6, respectively.
Using the similar method, we could store the value of rx_ip_data at any states. The
stored rx_ip_data values will be applied to verify if the data are transferred
coherently.

By the above environment, Property 3 is expressible. We divide the
verification into the two steps. The first step is to verify the assumptions to see if the
environment represents the assumptions, and the second step is to check if
conclusions are valid.

Step . Verify the above 5 assumptions.

The five assumptions can be expressed as the following CTL expression:

AG(npc_rst_n = 1) (4.3.a.1)

AG(state= S1 -> ctr_id = 0 * ¢ctr_sz = 0 * ip_empty

1~ rx_ip_rd_req = 1) (4.3.a.2)
AG(state = S1 -> framestart = 1) (4.2.a.3)

AG(state=S2 + state=S3 + .. + state=S64 -> framestart

= 0) (4.3.a.4)

AG(state = S3 -> rx_ip_soc = 1) (4.3.a2.5)
Formulas (4.3.a.3) and (4.3.a.4) is to test the behavior framestart signal.
formula (4.3.a2.2) expresses that the null port controller is not in program or
debugging mode and is going to receive an ATM cell, and also the transmission
board has a cell available to send. Please note the following two points on formulas

(4.3.a.5) and (4.3.a.1):

1. In formula (4.3.a.5), we define “rx_ip_soc=1" at state S3, but the actual
“rx_ip_soc” signal can be asserted at 1 ~11 clock cycles after S1. Because
such assumption does not affect the behavior of the null port controller, the

assumption is valid.

71

2. Since we use “AG” which means that the formula will be valid in any states
and any paths, we must be careful of the initial state. For example, if we give
the initial state as npc_rst_n = 0, formula (4.3.a.1) will not be valid.

Step2. Verify the conclusions.

In property 3, we have to verify two aspects: one is to ensure that two bytes of
VCI are transferred to be memory address and further the memory address is
incremented by 1 per byte data transfer, and the other is to verify that the data are
transferred from transmission board to the memory with one clock cycle delay and
the memory write enable signal is asserted during the data transfer.

Al first, we verify the first aspect: the two bytes of VCI are transferred to be
memory address and further the memory address is incremented by 1 per clock cycle.

Formulas (4.3.2.6) and (4.3.a.7) verify that the two bytes of VCI are

transferred to be memory address correctly.

AG (state = S5 -> ip_mem_addr_r[8:1]== rx_ip_data_s4)
(4.3.a.6)
AG (state = S6 -> ip_mem_addr_r([8:1] == rx_ip_data_s4
* ip mem_addr_r[0] == rx_ip_data_s5(7] ~
ip_mem_addr_c({8:6] == rx_ip_data_s5[6:4] *
ip_mem_addr_c([5:0] = 6°b000100) (4.3.a.7)

The correct memory addresses increment can be verified by (4.3.a.8) to
(4.3.a.11). (4.3.a.8) to (4.3.a.10) express that the memory row address is remained,
but the memory column address is incremented by 1 per clock cycle until the total 50
bytes data (except two bytes VCls) have been transferred. Due to the space limitation,
we omit the CTL expressions when state = S9 to S55 which is very similar to
Formulas (4.3.2.8) to (4.3.2.10) except that we have to give the correspondent values
for ip_mem_addr_c[5:0]. Formula (4.3.a.11) represents that the memory address will
be pointed to the first byte of a new VCI ATM cell so that the ATM cell will be
transferred immediately after the next asserted framestart signal.

AG(state = S7 -> ip_mem_addr_r([8:1] == rx_ip_data_s4

72

*~ ip mem addr_r[0] == rx_ip_data_s5[7] hi

ip_mem_addr_c([8:6] == rx_ip_data_s5([6:4] *
ip_mem_addr_c([5:0] = 6'b000100) (4.3.a.8)
AG(state = S8 -> ip_mem_addr_r(8:1] == rx_1ip_data_s4
* ip_mem_addr_r[O]==rx_ip_daCa_ss[7] *
ip_mem_addr_c[8:6] == rx_ip_data_s5([6:4] *
ip_mem_addr_c([5:0] = 6°b000101) (4.3.a.9)
AG(state = S56 -> ip_mem_addr_r([8:1] == rx_1ip_data_s4
*~ ip_mem_addr_xr[0]==rx_ip_data_s5[7]
~ip_mem_addr_c{8:6] == rx_ip_data_s5([6:4]
~ip_mem_addr_c[5:0] = 6'b110101) (4.3.a.10)
AG(state = S57 + ... + state = S64 ->
ip_mem_addr_r(8:1] == rx_ip data_s4 *
ip_mem_addr_r (0] == rx_ip_data_s5[7] ~*
ip_mem_addr_c([8:6] == rx_ip data_s5([6:4]1 *
ip_mem_addr_c([5:0] = 6'b000000) (4.3.a.11)

Next, we verify that the data are transferred from the transmission board to
the memory with one clock cycle delay and the memory write enable signal is
asserted during data transfer process. This sub-property involves two signals. One is
the memory write enable signal (ip_mem_wr_en) and the other is the data output
signals (ip_mem_data). ip_mem_wr_en signal should be asserted during the data
transfer period (i.e. S7 to $56), and this is expressed by (4.3.a.12) and (4.3.a.13). And
also during the data transfer period, ip_mem_data should be the value of rx_ip_data
with one clock cycle delay. The first and last byte data transfer are represented by
(4.3.2.14) and (4.3.a.15). Due to the space limitation, we do not enumerate all the
CTL expressions here, and the rest CTL expression will be very similar to (4.3.a.14)

and (4.3.a.15).

S6 + state
0)

AG (state = S1 + state = S2 + .. + state

= 8§57 + .. + state = S64 -> ip_mem wr_en

(4.3.a.12)

73

AG (state = S7 + state = 88 + .. + state = S56 ->

ip_mem_wr_en = 1) (4.3.a.13)

AG (state = S7 -> ip_mem data == rx_ip_data_sé6)
(4.3.a.14)

AG (state = S56 -> ip_mem_data == rx_ip_data_s55)
(4.3.a.15)

So far. the assumptions and conclusions of Property 3 are satisfied by the
combination of null port controller and environment, then we conclude that the
assumptions imply the conclusion. (The proof is fairly simple, a proposition A is true
and a proposition B is true. then the proposition A->B is true.) Environment
Modification solves the problems of CTL expression limitation by adding some
assumptions in the environment. There are two steps to verify a property by
Environment Modification. The first step is to verify the assumptions of a property,
and the second step is to verify the conclusions. Because ATM has a cyclic behavior,
its behavior can be specified in an environment with some certain states. By this
method. all the above seven properties of the null port controller can be verified.
However, we have to do minor modification on the environment when we verify a
different property. And also, using this method. there are a lot of CTL formulas for a

property because we have to verify the behavior at each environment state.

4.4.2 Internal Signal Usage

The idea of the method is to introduce some internal signals to help us to express a

property. We still use property 3 as an example to illustrate this method.

At first, we have to establish an environment which is similar to Figure 4.5,
but we do not need specify the value of ip_empty, npc_rst_n, rx_ip_soc,
rx_ip_rd_req, ctr_id and ctr_sz signals, instead, they are assigned as nondeterministic

variables. Figure 4.6 is the actual environment.

1. typedef num {S1, S2, S3, .., Si, .. . S64} state;
2. assign rx_ip_data_ran = SND(0, 1, 2, .., 255);

74

3. always @ (posedge clock) begin
4. case (state)

5. S64: state = S1;

6. Sl: state = S
7
8

9.

. S2: state = S3;

. S3: state = S4;
9. Si: state = Si+1l;
10. S63: state = S64;
11. endcase;
12. i1f (state== S1)
13. framestart = 1;

4. else
15. framestartc = 0;
16. rx_ip_soc = rx_ip_soc_ran;
17. ip_empty = ip_empty._ran;
18. rx_ip_rd_req =rx_ip_rd_req ran;
19. ctr_sz = Ctr_sz_ran;
20. ctr_id = ctr_id_ran;
21. npc_rst_n = npc_rst_n_ran;
22. rx_ip_data = rx_ip_data_ran;
23. if (state = S4) rx_ip_data_s4 = rx_ip_data_ran;
24. else if (state=S5) rx_ip_data_s5 = rx_ip_data_ran;
25. else if (state=S6) rx_ip_data_s6 = rx_ip_data_ran;
26. always @ (posedge clock) begin
27. ip_mem_addr_c_rl{5 : 0] = ip_mem_addr_c(5:0];
28. end
29. always @ (posedge clock) begin
30. ip_mem_addr_c_plusl = ip_mem_addr_c_r1[5:0] + 1;
3. en
32. always @ (posedge clock) begin
33. rx_ip_data_rl = rx_ip_data;
34. end

Figure 4.6 Environment of null port controller for the internal signals involved CTL

Since we only can compare the equivalence between two signals or between
one signal and a certain value in model checking, we propose to build some assistant
signals (variables) to ease property expression in model checking. For instance, in
Figure 4.6, line 29 to 31 is to create the assistant signal ip_mem_addr_c_plusl which
is always equal to “ip_mem_addr_c[5:0] + 1” with one clock cycle delay. This

signal will be used in the CTL formulas.

75

Similar to Section 4.4.1. we verify the proper address transfer and increment
first. and then verify the correct data transfer. To verify the proper address transfer
and increment. we need prove the following three consecutive sub-properties:
sub-propertyl: The null port controller uses the two bytes VCI as the initial memory

address two clock cycle after rx_ip_soc asserts;

sub-property2: After sub-propertyl. the memory address is incremented by 1 per

clock cycle until the 50 bytes data have been completely transferred:

sub-property3: After sub-property2. the memory address will point to the first byte
of the ATM cell.

The following formulas (4.3.b.1 ~ 4.3.b.8) are CTL expression of the three
sub-properties:
AG (framestart = 1 -> ip_state_i = idle) (4.3.b.1)

1 ~ ip_state_i = idle
* ctr_id = 0 -> AX

2AG(framestart = 1 * npc_rst_n

= ip_empty = 1 * rx_ip_rd_req

(ip_state_i = rx_wait)) (4.3.b.2)
AG(ip_state_i = rx_ wait * rx_ip_soc = 1 ->
AX(ip_state_i = rx_storel)) (4.3.b.3)
AG (ip_state_i = rx_storel * ctr_sz = 0 ->
AX(ip_state_i = rx_store 2 ~ ip_mem_addr_r({8:1] ==
rx_ip_data_s4)) (4.3.b.4)
AG(ip_state_i = rx_store2 * ctr_sz = 0 -> AX
(ip_state_i = rx_data ~*

ip_mem_addr_r([8:1]1==rx_ip_data_s4 * ip_mem_addr_xr[0]
== rx_ip_data_s5{7] * ip_mem_addr_c(8:6] ==
rx_ip_data_s5([6:4] =~ ip_mem addr_c[5:0] = 6'b000100 =
ip_cell_cnt = 50) (4.3.b.5)

AG(ip_state_i = rx_data ->
(ip_mem_addr_r[8:1]==rx_ip_data_s4 * ip_mem_addr_ri{0]
== rx_ip_data_sS5([7] * ip_mem_addr_c[8:6] ==
rx_ip_data_s5[6:4] * ip_mem_addr_c[5:0] ==

76

ip_mem_addr_c_plusl * ip_cell_cnt ==

cell_cnt_minusl}) (4.3.b.6)

AG(ip_state_i = rx_data * ip_cell_cnt = 1 -> AX
(ip_state_i = ip_idle *
ip_mem_addr_r[8:1]==rx_ip_data_s4 * ip_mem_addr_ r{0]
== rx_ip_data_sS5[7] * ip_mem_addr_c[8:6] ==
rx_ip_data_sS5([6:4] * ip_mem_addr_c[5:0] = 53)

(4.3.b.7)

AG(ip_state_i = rx_data * ip_cell_cnt = 1 -> AX

AX(ip_state_i = 1ip_idle =* ip_mem_addr_r([8:1] ==

rx_ip_data_s4 * ip_mem_addr_r([0] == rx_ip_data_s5(7]
=~ ip_mem_addr_c[8:6] == rx_ip_data_s5([6:4] ~
ip_mem_addr_c([5:0] = 0) (4.3.b.8)

Py

cip_empty =1 ° framestart = 1

“rx_rd_req=1"cir_id=0

2: else

3: else

4:rx_i10_soc =1

5:

6:

7: else

8:1p_cell_cent=1

9: ip_empty = 0 " framestart = 1
‘etroid=0

10:

11: else

12:p_cell_cnt = 49 * fab_up_ack = 1

13:ip_cell _cnt = 1

14: else
15:1p_celi_cnt = 49 * fab_ip_ack = 0

Figure 4.7 State diagram of the input port controller
We use the internal signal ip_state_i to help us express subproperties in CTL.
ip_state_i is a state variable which has 8 states: ip_idle, rx_wait, rx_storel,
rx_store2, rx_data. tx_addr, tx_first_5 and tx_data (Figure 4.7). The state transition
is shown as Figure 4.7, basically, rx_idle is “idle” state; rx_wair means the state of

waiting for rx_ip_soc asserted: rx_storel and rx_store2 indicate the states that the

77

input port controller stores the first and second VCI byte, respectively: rx_data is the
state of data transfer from transmission board to the input port controller: tx_addr is
the state of setting the memory address: tx_first_5 means the state of transmitting the
first 5 bytes data to the fabric; rx_data indicates the state of transmitting the rest of
data into the fabric. Sub-property 1 can be deduced by (4.3.b.1) to (4.3.b.5), and the
deduction is based on property division. By (4.3.b.1) and (4.3.b.2), we obtain
(4.3.5.9). and by (4.3.b.3), (4.3.b.4) and (4.3.b.5), we obtain (4.3.b.10). The
combination of (4.3.b.9) and (4.3.b.10) is the sub-propertyl.

AG(framestart = 1 * npc_rst_n = 1 * ip empty =1 ~
rx_ip_rd_req = 1 * ctr_id = 0 -> AX (ip_state_i =

rx_wait)) (4.3.b.9)

k3

AG(npcO.ip_state_i = rx_wait * rx_ip_soc =1
ctr_sz = 0 -> AX AX(ip_state_i = rx_data ~
ip_mem_addr_r(8:1] ==rx_ip_data_s4 * ip_mem_addr_r{0]
== rx_ip_data_s5([7] * ip_mem_addr_c([8:6] ==
rx_ip_data_s5(6:4] * ip_mem_addr_c[5:0] = 6'b000100 *
ip_cell_cnt = 50 })) (4.3.b.10)

In formula (4.3.b.6). we use two assistant signals: ip_mem_addr_c _plusl and
cell_cnt_minusl. As shown in Figure 4.6, ip_mem_addr_c_plusl is always equal to
ip_mem_addr_c[5 :0] + | with one clock cycle delay. so ip_mem_addr_c[5 : 0] =
ip_mem_addr_c_plusl represents that ip_mem_addr_c[5:0] will increment by one
each clock cycle. Similarly, we can build up the signal cell_cnt_minusl. Since
cell_cnt_minusl is an internal signal, cell_cnt_minusl has to be defined inside the
null port controller.

Sub-property2 can be deduced by (4.3.b.5), (4.3.b.6) and (4.3.b.7). (4.3.b.5)
implies that ip_cell_cnt = 50 and the memory address points to the first data byte in
the first clock cycle of rx_data state; (4.3.b.6) means that ip_cell_cnt decrements by |
and ip_mem_addr_c increments by 1 per clock cycle during rx_data state; 4.3b.7)
indicates that when ip_cell_cnt reaches 1, ip_state_i will become “idle”, and the least

significant bits of ip_mem_addr_c will be 54 which points to the last data byte of an

78

ATM cell. The deduction is still based on property division. Formula (4.3.b.6)
represents the general behavior of ip_mem_addr_c. ip_mem_addr_r and ip_cell_cnt.
Formula (4.3.b.5) and (4.3.b.7) give the lower and upper boundary of
ip_mem_addr_c and ip_mem_cnt. Since the three CTL expressions are relatively
complicated. we use the following simple example to illustrate how the deduction
works.

Supposed we have the following three valid CTL expressions (4.e.1, 4.e.2 and
4..3). T1. T2. T3 expresses three different environment states, addr is a variable, and
addr_plusl is the variable which is always greater than addr of the previous clock
cycle by 1. Formula (4.e.1) and (4.e.3) have the similar formats. Formula (4..2) is a
general expression, so we could convert (4.e.2) into (4.e.4) which includes 49 CTL
expressions which have the same style as formula (4.e.1) or (4.e.3). By (4.e.1) (4.2.2)
and (4.e.4). we can infer that addr will be incremented by 1 per clock cycle during
state T2 and T2 state will last for 50 clock cycles to allow addr increment from 4 to
53. In this example. a simple infer rule has been applied.
AG (state = Tl -> AX (state = T2 * addr = 4) (4.e.1)

AG (state = T2 -> AX (addr == addr_plusl) (4.e.2)

AG (state = T2 * addr = 53 -> AX (state = T3 * addr = 54))

(4.e.3)
AG(state = T2 * addr = 4 -> AX (addr = 5))
ACG(state = T2 * addr = 5 -> AX (addr = 6))
AG(state = T2 * addr = 52 -> AX(addr = 53)) (4.e.4)

Formula (4.3.b.5). (4.3.b.6) and (4.3.b.7) are very similar to formula (4.e.1)
(4.e.2) and (4.e.3), so we could use the similar conversion to infer sub-property 2.
(4.3.b.8) indicates after the 50 bytes data transfer, the memory address will

point to the first byte of an ATM cell with new VCI and header, and this is sub-

79

property 3.

By the above formula. we see that rx_data state will keep for 50 clock cycles
which allow to transfer 50 bytes data cell to the memory. So the data transfer state
can be easily expressed by ip_state_i = rx_data. To prove the correct data transfer,
we only need to prove that ip_mem_wr_en is asserted and the data are transferred
from the transmission board to the memory only during rx_data state.
(4.3.b.11)(4.3.b.12) and (4.3.b.13) express this property. In (4.3.b.13). rx_ip_data_rl,
which is also an assistant signal, denotes the value of rx_ip_data with one clock cycle
delay (Figure 4.6).

AG(ip_state_i = rx_data -> AX(ip_mem wr_en = 1))
(4.3.b.11)

AG(! (ip_state_i = rx_data)-> AX(ip_mem wr_en = 0))
(4.3.b.12)

AG (ip_state_i = rx_data -> AX (ip_mem_data
==rx_ip_data_rl)) (4.3.b.13)

So far. all the sub-properties are expressed in CTL, and property 3 is the
combination of these sub-properties. By Internal Signal Usage, we can express all the
properties in the null port controller without any environment modification, but we
have to be very clear about the implementation of the null port controller. In addition,
we need to adopt property division to deduce a property by several sub-properties.
Between Environment Modification and Internal Signal Usage, it is hard to say which
one is better. Environment Modification can express the behavior clearly with the
knowledge of the design specification. Internal CTL Usage saves a lot of time to
modify the environments for different properties, but verifier must have in-depth
knowledge on the design implementation. Since Internal Signal Usage uses some
internal signals in CTL expression, the CPU time of the model checking will be less
than that using Environment Modification. Although both of the methods can succeed

in verifying properties, we find it is still hard to apply them in a large design and also

80

too many explicit CTL formulas corresponding to environment states are required for
a property. Therefore. we propose Counter Reduction method. Counter reduction,
which concentrates on the main behavior of a design. reduces the scale of counters
and the correspondent environment states so that CTL expressions are simplified and

the model checking gets enhanced.

4.4.3 Counter Reduction

In property 3. SO bytes data are transferred from transmission board to the input port
controller. Because a byte of data transfer has the same behavior as the data transfer
of other 49 bytes, we could reduce the number of data transfers in the verification. In
the null port controller, the number of data transfer is controlled by counters, so we
propose to reduce the scale of the counter to simplify our verification. This method
could be applied to many ATM hardware verifications because counters are often

consisted of by ATM hardware designs.

In the null port controller. the acknowledge signal should be available at 5
clock cycles after the input port controller sends the first byte data to the fabric. so
we could apply 12 bytes data in a cell which includes 2 bytes VClIs, 2 bytes FAS and
8 bytes data). Accordingly. the counter size should be reduced by 40 (52-12). Then
we have to change our environment machine from 64 state to 15 states (10 states for

data transfers and 5 states for handshaking).

D@ @@ H DD DO~

l

Figure 4.8 Environment of null port controller using counter reduction method

Figure 4.8 is the new environment. If we consider the receiving process of the
null port controller, S1 and S2 are correspondent to framestart and rx_ip_soc
assertions, S3, S4 are comesponding to the state rx_storel and rx_store2,
respectively, S5 to S14 are for rx_data state, S15 is for ip_idle. After reducing the

environment states and the counter sizes, we could use either Environment

81

Modification or Internal Signal Usage methods to verify it. In this work. we apply
both Environment Modification and Internal Signal Usage to verify Property 3 with

the reduced model. The experiment results are present in the next subsection, and

their environments and CTL formulas are described in Appendix B.

4.4.4 Experimental Results and Summary on the Three Methods

We perform the model checking in VIS-1.3 which is installed in SUN ULTRA

SPARC (300MHz/500 MB).
Internal
Methods Environment | Signal Counter Reduction

Modification | Usage with EM | with ISU
of CTL Expressions 110 11 30 11
CPU time (seconds) 2745 150 209 71
Memory Usage (MB) 398 235 156 108
Node Allocated (K) 734, 475 453,598 | 293.354 183, 254
Design Modification No No Minor Minor
Environment Modification | Minor No Minor No
Knowledge on the Design | Black box White No Deep
Implementation box

Table 4.2 Experimental results and summary on the three methods

Table 4.2 lists the experimental results and summaries the advantages and
drawbacks of the three methods. Environment Modification (EM) need more CTL
expressions and minor environment modification, but a verifier is only required to
understand the specification of a design. On the contrary, Internal Signal Usage (ISU)
has less CTL expressions and the environment is fixed for all the properties, but the
verifier must know very well about the design. Counter Reduction can enhance the

model checking. and it becomes extremely necessary for a large design.

4.5 Experimental results and error detection:

We applied the combination of Environment Modification and Counter Reduction
methods to verify the rest of six properties. Since their environments and CTL
expressions are similar to that of Property 3, we put them in Appendix B. The model
checking was performed in SUN ULTRA SPARC (300MHz/500 MB). Table 4.3 is

their experimental results.

Properties |# of CTL | CPU time | Memory Usage | Nodes Allocated
expression | (seconds) (MB) (K)

Property I | 1 52 92 203,493

Property 2 | 30 256 198 284,563

Property 3 | 30 209 156 293, 354

Property 4 | 25 378 201 304,731

Property 5 | - - - -

Property 6 |2 34 77 153,980

Property 7 | 2 76 89 197,Q91

Table 4.3 Experimental results on the model checking of null port controller

In Table 4.3. we see that all the properties pass the model checking by
reasonable CTU time. Property 4 took the longest CPU time (378 seconds) which
was around half a hour of machine time. So in terms of machine time. model
checking on the null port controller is also acceptable.

We did simulation on the null port controller before the model checking. By
the simulation, we detected a number of syntax errors, mistaken variable names and
wrong counter numbers. By the model checking, we detected some logic errors such
as the memory write and read incoherence, the signals ctr_sz and ctr_id misfunction.

The errors were traced by the counterexamples generated by VIS.

4.6 Summary

In this chapter, we verified Fairisle ATM null port controller by model

83

checking. Compared with the Fairisle ATM switch fabric, the null port controller is
more difficult to be verified because its state transitions are more complicated and
both environments and CTL formulas are harder to handle. However. we succeeded
in verifying it by applying several techniques on CTL expression and environment
establishment. The techniques include the three methods of describing a property in
CTL. the creation of assistant variables and property division. These techniques were
illustrated by verifying Property 3 in different ways. By these techniques. all the
properties were verified in a reasonable time and we also detected several designs

€ITOorS.

84

Chapter 5

Model checking of Input FIFO

Chapter 3 and Chapter 4 give the verification examples on the academic ATM switch
designs. In this chapter. we will apply model checking in a commercial one. Our
example is to adopt model checking to verify a block of RCMP-800 [27] chip which

is a product of PMC-sierra Inc..

5.1 Introduction on RCMP-800

The Routing Control, Monitoring and Policing 800 Mbps (RCMP-800) device
is a monolithic integrated circuit that implements ATM layer functions that include
fault and performance monitoring, header translation and cell rate policing. The
RCMP-800 is intended to be situated between a switch core and the physical layer
devices in the ingress direction. The RCMP-800 supports a sustained aggregate
throughput of 1.42 x 10° cell/s. The RCMP-800 uses external SRAM to store per-
VPI/VCI data structures. The device is capable of supporting up to 65536
connections. The input cell interface can be connected to up to 32 physical layer
devices through a SCI-PHY compatible bus. The 53 byte ATM cell is encapsulated in
a data structure which can contain pre-pended or post-pended routing information.
Receiving cells are buffered in a four cell deep FIFO. All physical layer and

unassigned cells are discarded. For the remaining cells, a subset of ATM header and

85

appended bits is used as a search key to find the VC Table Record for the virtual
translation. If a connection is not provisioned and the search terminates
unsuccessfully as a result, the cell is discarded and a count of invalid cells is
incremented. If the search is successful, subsequent processing of the cell is
dependent on contents of the cell and configuration fields in the VC Table Record.

The RCMP-800 performs header translation if configured. The ATM header
is replaced by contents of fields in the VC Table Record for the connection. The VCI
contents are passed through transparently for VPCs. Appended bytes can be replaced.
added or removed. If the RCMP-800 is the end point for an F4 or F5 OAM stream.
the OAM cells are dropped and processed. If the RCMP-800 is not the end point. the
OAM cells are passed to the Output Cell Interface with an optional copy passed to the
Microprocessor Cell Buffer for external processing. Continually Check cells can be
generated if no user cells have been received in the latest 1.5 +/- 0.5 or 2.5 +/- 0.5
(default) seconds.

Cell rate policing is supported through two instances of the Generic Cell Rate
Algorithm (GCRA) for each connection. Each cell that violates the traffic contract
can be tagged (CLP bit set high) or discarded. To allow full flexibility, each GCRA
instance can be programmed to police any combination of user cells, OAM cells,
Resource Management, high priority cells or low priority cells.

The RCMP-800 supports multicasting. A single received cell can result in an
arbitrary number of cells presented on the Output Cell Interface, each with its own
unique VPI/VCI value and appended bytes. The ATM cell payload is duplicated
without modification.

The Output Cell Interface can be connected to the switch core through an
extended cell format SCI-PHY compatible bus. Cells are stored in a four cell deep
FIFO until the downstream devices are ready to accept them. The details of how cells
are handled in this FIFO depends on the particular application of the RCMP-800.

The Microprocessor Interface is provided for device configuration, control

and monitoring by an external microprocessor. This interface provides access to the

86

external SRAM of the data structure, configuration of individual connections and
monitoring of the connections. The Microprocessor Cell Buffer gives access to the
cell stream. either directly or through intervention by a DMA controller. Programmed
cell types can be routed to a microprocessor readable sixteen cell FIFO. The
microprocessor can send cells over the Output Cell Interface.

The structure of the chip is shown as Figure 5.1. and it consists of an input
FIFO. output FIFO. Microprocessor interface. Micro Cell buffer. Cell Processor,
Microprocessor RAM arbitration, External RAM address Look up and JTAG Test
access port. Both Input and output FIFO are four cell depth FIFO. The basic function
of the input FIFO is to receive the data cells into the RCMP, and that of the output
FIFO is to transmit the data cells to the fabric. ATM cells are transferred to Micro
Cell buffer from the input FIFO, and the microprocessor will read the ATM cells in
the Micro Cell. and check the cell types, cell header, VCI /VPI and CI (connection
identifier). Depending on such information, the microprocessor looks for the VC
table. and determines the prepend and postpend bytes, or tags CLP bit or discards the
cell if GCRA is violated. or inserts RM or OAM cell which will be written in Micro
Cell Buffer. Cell Processor and Microprocessor RAM arbitration, External RAM
address look-up are used to look up VC routing table, so this part involves both
hardware and software. The pure hardware parts for the RCMP-800 are the input and
output FIFO. The whole chip verification which involves hardware and software
verification is not possible for model checking due to the limitation of the current
formal verification tools. However, model checking can be used to verify an

individual block of RCMP-800, here we use the input FIFO as an example.

87

5 5sao
@ R l 224 82
8z 522 T 3 822 =T
_
A:::;s RAM Cel MiCroprocessor
Port Address Processor a : LIJI
DAT}15.0} f——pd OPRTY(1.0}
PRTY[1:0} > pf OSOC
1S0C fe— crax
FCLK - e OCA
IAVALIDACA(4] 1 Output ORDENB
LADDRI4. 3UCA(3. 2] plioey FFo oBUSS
OTSEN
woorgzoy (') |
MVRENB(4.2]
MRENS(1]
IPOLL »
BUSS ° %
— Al Blocks g;
] -
; Mcr: ocess Mcra g‘
ONESEC ope or Cet
b H - intertace Butfer E
’: -
3¢ 3 3
[] -
a" == 3 @ o o
£ 2230 2Pz g

Figure 5.1 Structure of RCMP-800

5.1.1 Behavior of Input FIFO
Cells received on the extended cell format SCI-PHY compatible Input Cell Interface

are buffered in a 4 cell deep FIFO. The input buffer provides for the separation of

internal timing from asynchronous external devices.

The SCI-PHY cell interface operates at clock rates up to 52 MHz and supports

16 bit and 8 bit wide data structures with programmable lengths. The 16 bit data

88

structure contains 26 (HEC and User Defined Field excluded) or 27 words allocated
to carrying an ATM cell and up to 5 appended words. The 8 bit data structure
contains a 52 bytes (HEC excluded) or 53 bytes ATM cell and up to 10 appended
bytes. The start of the data structure is indicated by the ISOC input. The data bus is
protected by the IPRTY[1:0] inputs. The parity can be configured to be odd or even.
Each parity input can cover a byte or IPTY[1] can cover all the sixteen bits data
inputs.

The input FIFO filters all unassigned cells and cells reserved for the use of the
Physical Layer. Unassigned cells are identified by an all zero VPI/VCI value and
CLP=0. They are filtered without notification. Physical layer cells are identified by an
all zero VPI/VCI value and CLP = 1. They are filtered with a resulting maskable
interrupt indication and a Physical Layer cell count increment. By default, the cell
coding is assumed to be for a Network-Network interface (NNI); therefore the VPI is
taken to be twelve bits. If one of the PHY links is a User-Network Interface(UNI) and
the GFC field is non-zero, the cell will be filtered by the Input Cell Interface (UNI)
and the GFC field is non-zero, the cell will not be filtered by the input Cell Interface,
but will be discarded by the VC Identification circuit. As an option, all cells can be
interpreted as UNI cells.

The RCMP-800 is a bus master and services the PHY devices as one of two
ways: direct status arbitration or address line polling. For direct status arbitration, the
RCMP-800 monitors cell available signals (/CA[4:1]) from up to four physical
(PHY) layer devices and generates write enables (IWRENB(4:1]) in response. For
address line polling, ICA[I] and IWRENB(1] are shared between up to 32 PHY
devices and signals IADDR[4:0] and IAVALID are used to address the latter
individually. The RCMP-800 performs round-robin polling of the PHY devices to
determine which have available cells. The RCMP-800 will read an entire cell from
one PHY device before accessing the next PHY device. No fixed cell slots exist, but
instead the RCMP-800 maximizes throughput by servicing a PHY devices as soon as

the bus is free and PHY device’s cell available signal is asserted.

89

5.1.2 Functions of the input FIFO

The input FIFO receives ATM cells from the transceiver board. and stores the ATM
cells in the input FIFO which has four-cell depth. The main function of the input

FIFO is as the following:

1) Store ATM cells in the input FIFO. There are three counters: read counter,
write counter and FIFO counter. Read counter and write counter are used
to control the read and write of the FIFO, and FIFO counter indicates the
depth of the FIFO.

2) Parity checking for the input data. and the parity check result is stored in
the register.

3) Discard the unsigned cells.

4) Discard physical layer OAM cell with a notification

5) Two modes of the PHY devices services:

e One is direct status arbitration. Only four physical devices are on
the transceiver board. and each physical device has an individual
“ICA™ (input cell available) and “IWREN"(write enable signal).

e The other is address line polling. There are 32 physical devices
which are accessed by 5-bit physical address and share the same

“ICA™ and "IWREN™ signals.

5.2 Verification of the input FIFO

Similar to the previous verification, we wrote the RTL description of the input FIFO
in Verilog, but we did minor changes on the model. The difference between the
original model and our verification model was that we only used 16-bit data path
while the original design used either 16-bit or 8-bit data path. In addition, the input
FIFO had 128 x 16 bit memory which could contain 4 ATM cells, but VIS could not
handle such big memory verification. Therefore, we verified the control circuits of
the input FIFO excluding the memory. Such reduction is practical because the

memory model is relatively mature and the control circuit is problematic part in the

90

verification. To simplify our verification, we apply Internal Signal Usage to describe

properties.

5.2.1 The environment of the input FIFO

Similar to the previous chapter, we establish an environment for the input FIFO, and
the environment gives the inputs as random variables and defines registers as a

default value. Figure 5.2 is the environment.

3. always @(posedge clock) begi
2. idat = idat_ran;
3. prty = prty_ran;
4. isoc = 1isoc_ran;
5. icad = ica4_ran;
6. ical = ical_ran;
7. ica32 = ica32_ran:;
8. ipeoll = ipoll_ran:;
S. ifrdb = ifrdb_ran:;
10. hecudf = 1;

11. icainv = 0;

12. cellpost = 0;

13. celllen = 0;

i4. ibyteprcty = 0;

15. icalevell = 1;

16. ifrst = 0;

17. iptyp = 0;

18. end

Figure 5.2 Environment of the input FIFO

In Figure 5.2. line 2 to 9 are inputs from transceiver board and the block of
Micro cell buffer, so we define them as nondeterministic variables. Line 10 to 14 are
registers, so we give them as their default values. Because our verification is to focus
on the critical behavior of the block, the constant register values will not have an
influence on the verification. However, to further verify the block, we could apply
other constant values for these registers.

Before we give any property description, we briefly introduce the signals in
Figure 5.2. idat is a 16-bit data input from transceiver board. prry is a 2-bit parity

inputs from transceiver board. isoc is the “start of a cell” signal which indicates the

91

first byte of a cell from the transceiver board. ica4 represents the cell available for
PHY device 4. when ipoll is low. ica32 indicates cell available for PHY device 2 and
3. ipoll determines the method used to poll PHY devices. If ipoll is high. address
lines polling is applied, and it will support the maximum 32 input devices; otherwise,
the input FIFO connects to four PHY entities. ifrdb means input FIFO read enable. In
Figure 5.2. hecudf, icainv, cellpost, celllen, ibyteprty, icalevelO, ifrst are such
registers. Hecudf determines whether or not the HEC/UDF octets are included in cells
transferred over the input interface. When set to logic 1 (default), the HEC and UDF
octets are included: otherwise. they are omitted. The icainv bit selects the active
polarity of the ICA[4:1] signals. The default configuration (icainv = 0) selects
ICA[+4:1] to be active high: when icainv is set to logic one, the ica[4:1] become
active low. The cellpost[3:0] bits determine the number of postpend words in an
input cell. The celllen[3:0] bits determine the number of appended words to the input
cell. The ibvteprty bit selects between byte parity and word parity: if ibvteprty is set
high. iprrv[1] is expected to be the parity over idat[15:8] and iprty[0] is expected to
be the parity over idat[7:0]. If ibyteprty is set low, iprty[l] is expected to be the
parity over idat[15:0] and iprry[0] is ignored. The icalevelO bit determines how the
ICA[4:1] are interpreted. If icalevelO is high, the RCMP-800 checks for close
compliance to the SCI-PHY cell transfer handshake. In this case. if the ICA signal for
the PHY whose cell is currently being transferred is deasserted before the end of the
cell. the cell will be discarded. If icalevelO is logic O, the ica signal may be deasserted
early without the loss of the ceil. Once a cell transfer is initiated, the entire cell will
be read contiguously regardless of the state of the ICA signal. The ifrst bit determines
whether the input FIFO is in a reset state. iptyp determines the type of parity
checking. ipryp = 1 indicates the even parity checking, otherwise, it is odd panty

checking.

5.2.2 Model Checking

According to the functions of the input FIFO described in 5.1.2, we give 8

92

properties.

Property 1: In normal operation (not in discard operation), write counter will
increment by 1 whenever writeB is deasserted. The CTL expression is the
following:

AG (discard = 0 * writeB=0 -> AX (wr_ptr ==
wr_ptr_plusl)) (5.1.1)
Where discard is an internal signal which determines whether the FIFO is in

normal operation or discard operation, writeB is a write enable signal. and wr_ptris a

write pointer. Similar to Section 4.4.2, we introduce the assistant variable

wr_ptr_plusl in the design module.wr_ptr_plusl will always be wr_ptr + I with one
clock cycle delay.

Property 2: Whenever ifrdb is deasserted, read counter will incremented by | every

clock cycle. The property can be expressed as the following:

AG(ifrdb = 0 -> AX(rd_ptr == rd_ptr_plusl)) (5.2.1)
Where ifrdb indicates Micro cell FIFO has enough space to receive a cell, and
rd_ptr is read pointer of the input FIFO. Similar to wr_ptr. -_plusl. rd_ptr_plusl 1s
introduced to have the value of rd_ptr + 1 with one clock cycle delay.
Property 3: In a normal operation, ifcounter will increment by 1 whenever writeB is
deasserted and ifrdb is asserted: and ifcounter will decrement by 1

whenever writeB is asserted and ifrdb is deasserted.

AG (discard=0 * writeB =0 * ifrdb =1 -> 2AX (ifcounter

==jifcounter_plusl)) (5.3.1)
AG(discard=0 * writeB = 1 * ifrdb = 0 ->
AX (ifcounter == ifcounter_minusl) (5.3.2)

discard, writeB and ifrdb have the same meaning as the property 2. [fcounter
indicates the depth of the input FIFO. Similarly, ifcounter_plusl and
ifcounter_minus1 are introduced to represent the values of ifcounter + 1 and ifcounter

- 1 with one clock cycle delay, respectively.

93

Property 4: Parity check functions correctly, and result will be stored in the register.
Since we define ibvreprty as default value “0” and iptyp as a default value
“0". it is word-basis, odd parity checking.

AG (prtychkl == idat[0] ~ idat(l] ~ idat[2] © idat[3]
~ jidat[4] ~ idat[5] ~ idat(6] ~ idat({7]) (5.4.1)

AG (prtychk2 ==idat[8] “~idat([9] ~ idat[10] ~ idatc([11]
~ idat[12] ~ idat[13] ~ idat(14] ~ idat[15]) (5.4.2)
AG(iprty[ll= ! (prtychkl ~“prtychk2 ~ prty[ll)) (5.4.3)
iprrv[1] = I indicates the parity error over the IDAT[15:0] bus. so our
specification of the property is AG(ibyteprty = 0 * iptyp=0 -> (iprty(l] = not
(prev[1] ~ idat[0] * idat[1] ~ idat[2] " ... " idat[15])). According to property
division. this specification is easily proved by (5.4.1), (5.4.2) and (5.4.3).

Property 5: Any unassigned cells will be discarded by the input FIFO.

The ATM header determines whether a cell is unassigned cell or not. If all the
bits of VPI and VCI and CLP bit are zero, then the cell is unassigned. Since we

consider NNI here. the format of an unsigned cell is like Table 5.1.

ATM header Octet 1 Octet 2 Octet 3 Octet 4 Octet 5

unassigned cell | 00000000 | 00000000 | 00000000 | 0000xxx0 HEC byte

Table 5.1 The format of an unassigned cell

AG (idat[15:0]1=0 =* cellcount = 0 * writeB = 0 -> AX
(vpi_vei[27:12] = 0 * cellcount = 1)) (5.5.1)
AG (idat[15:0]1=0 * cellcount = 0 * writeB = 0 -> AX
AX (vpi_veci([27:12] = 0)) (5.5.2)

AG(idat[11:0}=0 * idat[15]=0 * cellcount= 1 * writeB
= 0 -> AX (vpi_veci[11:0] =0 * clp = 0)}) (5.5.3)

AG(vpi_vei[27:0] * clp = 0 * cellcount=2 -> AX
discard = 1) (5.5.4)

Where idat is a 16 bit data path which receives data from transceiver board,

94

vpi_vci is a 28-bit registers which store VPI and VCI value for each cell, and
cellcount indicates how many data bytes have been transferred into RCMP for each
cell. Property 3 can be deduced by formulas 5.5.1 t0 5.5.4.

Property 6:Any physical cells will be discarded by the input FIFO with a

notification.

Similar to unassigned cell, physical cell is determined by its ATM header. and

the format of a physical cell is in Table 5.2.

ATM header | Octet | Octet 2 Octet 3 Octet 4 Octet 5

Physical cell | xxxx0000 | 00000000 | 00000000 0000xxx1 | HEC byte

Table 5.2 The format of a physical cell
Like Property 5. Property 6 can be deduced by (5.6.1) (5.6.2) (5.6.3) and

(5.6.4).

AG(idat[15:4] = 0 * cellcount = 0 * wriceB = 0-> AX

vpi_veci[23:12] = 0 * cellcount = 1) (5.6.1)
AG(idat[15:4] = 0 * cellcount = 0 * writeB = 0 -> AX
AX vpi_vecif23:12] = 0) (5.6.2)

AG(idat[11:0]=0 *idat[15]=1] * cellcount=1 * writeB= 0
->AX(vpi_veci[1l1l:0]=0 * clp=1)) (5.6.3)

AG (vpi_veci[23:0] * cellcount = 2 ~ clp = 1 -> discard

= 1 * phycell = 1) (5.6.4)
Property 7: If ipoll is low, the RCMP is receiving data from PHY device 1 and PHY

device 2 has a cell available, PHY device 2 will transmit a cell to RCMP

next.

Switching a receiving PHY device from one to another only happens at the
state cellcount = 0. When a PHY device gets permission to transfer a cell into
RCMP, the write enable signal (iwren) will be asserted. And also the variable p_srate
stores the number of PHY device. Therefore, the CTL expression is as the following:

AG (ipoll = 0 * cellcount = 0 * p_state = 1 * ica2 =
1 -> AX (iwren2 = 1)) (5.7)

95

In (5.7). p_state stores the number of current receiving PHY device, ica2 = [
means that PHY device 2 has a cell to send. iwren2 = [means PHY device 2 get the
permission to send.

Property 8: If ipoll is high, the RCMP is receiving data from the PHY device of
address 10 and the PHY device of address 11 has a cell to send. RCMP
will transmit the cell from PHY device of address 11 next.

AG (ipoll = 1 * cellcount = 0 * iaddr = 10 * ica =1
-> AX AX (iaddr = 11}) (5.8)

In (5.8). iaddr = 10 expresses that the address of the current receiving PHY
device is 10. Because RCMP has a pipeline searching process, iaddr will be equal to
11 in two clock cycles.

The above properties do not cover all the properties of the functions listed in

5.1.2. but other properties can be described in a similar way.

5.2.3 Experimental Results and Error Detection

We did meet state explosion problem when verifying these properties, and the
machine gave the error indicating that the memory cannot be allocated. So we applied
“hide™ method. and this is to “hide™ unrelated design when verifying a property.
Because a hardware design is “process-based”, we could simply comment unrelated
process when verifying a property. and it is also possible to write a program to search
unrelated processes and comment them automatically. Although the method seems
very obvious, it is very effective. By this method, all the properties were verified in
VIS with a reasonable CPU time, Table 5.3 is the CPU time and number of CTL

expression for each property.

96

Properties Number of CPU time Memory Usage | Nodes Allocated
CTL (seconds) (MB) (K)

Property 1 l 75 97 103. 907
Property 2 1 57 68 87,103
Property 3 2 63 59 91,034
Property 4 3 56 87 79,308
Property 5 3 62 61 71,805
Property 6 3 74 102 174,830
Property 7 1 23 42 34,049
Property 8 1 12 34 20911

Table 5.3 Experimental results of input FIFO model checking

We did simulation before performing the model checking, but we still found a
number errors in * address line polling circuitry”™ when testing Property 7 and 8,

finally. we re-write those circuits.

5.3 Summary

In this chapter, we applied model checking to verify a block of an ATM commercial
product. Using Internal Signal Usage method, we described the properties in CTL. To
save state space. we defined register variables as their default values in the
environment. But we still encountered state space explosion problem, and we solved
the problem by adopting “hide” method which is to comment out of the property
unrelated design description when verifying a certain property. In this work, model
checking of all the properties are done with a reasonable time, and we did detect a set

of design errors by the model checking.

97

Chapter 6

Equivalence Checking

With the rapid development of EDA tools. a top-down design phase has been used in
industries. A digital designer usually describes a design as RTL code, and synthesizes
RTL into gate-level automatically by synthesis tools. The gate level design will be
further converted into transistor-level design by using standard cells. Since the such
conversions are existing in a digital design phase, it is mandatory to ensure the
correctness of each conversion. In addition, to verify an RTL code, a verifier often
writes the behavioral code of a design, and gives the same inputs to the RTL and
behavioral code and check whether the outputs of RTL and behavioral model are the
same. For a large design, the exhaustive simulation is impossible, so the practical
way to do this is the random simulation. However, some special scenarios cannot be
detected by the random testing. If equivalence checking replaces random simulation,
such comparison will be more reliable. Because of the above reasons. equivalence

checking becomes quite useful in hardware verification.

Equivalence checking can be divided by two categories: one is combinational

98

equivalence checking, the other is sequential equivalence checking.

Combinational equivalence checking is based on Bryant’s ROBDD [6] which
represents a circuit as a binary decision diagram. Bryant proved that a circuit can be
described as a reduced binary diagram which is a canonical form, i.e. every circuit
(function) has a unique representation. Hence, equivalence checking simply involves
testing whether the two binary diagrams match exactly. This method has been
efficiently applied in almost every equivalence checking tool. Some commercial
tools have also been used in industries to verify the equivalence between RTL and
gate-level circuits. However, since the current design are mainly clock-driven
synchronized design, to perform the combinational equivalence checking between
two different level sequential circuits, we have to cut the designs into pieces, and map
each latch (i.e. register or flip-flop) of one level design into another, and compare
their combinational circuits between every two consecutive latches. Therefore,
combinational equivalence cannot be applied to compare a RTL design with its
behavioral one because their internal latches cannot be mapped correspondingly.

Instead. sequential equivalence checking can be used to verify the equivalence
between two level designs without latch mapping, that means it can be applied to
verify the equivalence between a RTL design and its behavioral model. But the
drawback of sequential equivalence checking is the state space explosion problem so
that it is hard to be applied in a large design.

To make use of sequential equivalence checking, we apply modular sequential
equivalence checking on the verification of Fairisle ATM switch. Modular sequential
equivalence checking is to verify the equivalence between behavioral submodule and
RTL submodule or the RTL submodule and synthesized gate-level submodule.
Although such equivalence checking cannot ensure the overall behavior of a whole
system, a reliable submodule will reduce the effort in a higher-level module
verification. The overall behavior can be further verified by model checking or
simulation.

In this chapter, we will use sequential equivalence checking to verify each

99

submodule of Fairisle ATM switch fabric first. In addition, we will apply both
combinational equivalence checking and sequential equivalence checking to verify a

famous implementation: the concentrator block of Knockout ATM switch.

6.1 Equivalence checking of Fairisle ATM switch fabric

Since we did post-design verification of the switch fabric. we attempted sequential
equivalence verification between the Verilog structural description (which we
translated from the original Qudos HDL implementation), and the Verilog RTL
description of the fabric based on its FSM behavior specification. If both descriptions
are equivalent, the correctness of the fabric is proved. We first provided a complete
behavior description of the whole switch fabric as one module and tried to verify its
equivalence against the implementation of the whole fabric including all connections
of submodules. However. we could not succeed in verifying it in VIS after three days
continuous run on SUN SPARC 20 workstation (256M / 75SMHz) due to state space
explosion. even though we used dynamic ordering. We hence followed a second
approach that modularizes the fabric to several parts that were similar to the
hierarchical modules of the structural description, where each module would be. in
addition. described in terms of its behavior specification. This second approach has
the shortcoming that while we are able to check the correctness of separate
submodules of the fabric structure. it is difficult to ensure the correctness of the

network connecting all the submodules.

Switch_fabric
|
[| I i |
Arbitration Acknowiedgment In_latches Out_latches Pause_dataswitch
| |
I ! l [|
Dataswitch Pause

Timing Arbiters Priority_decode

Arbiter0 ... Arbiter3 DataswitchO ... Dataswitch3

100

Figure 6.1 The modular structure of the switch fabric

Figure 6.1 represents the hierarchical structure of the fabric for which we
provided RTL description for each submodule. Before we go through the modular
verification, we use the timing module, which is submodule in Fairisle ATM switch

fabric. to demonstrate how the equivalence checking works.

6.1.1 The Timing module: An example

The timing module determines when the arbitration unit is triggered. This module can
be described as a finite state machine shown in Figure 6.2. The routeEnable signal,
which enables the arbitration unit, is normally low. After the frameStart signal is
asserted. the routeEnable signal will keep low until any of active bits (anyActive
signal). which indicates start of a cell transfer, goes high. Once anyActive is asserted.
the routeEnable will have a strobe at the next clock cycle, and then remain low until
the end of frame.

4
B

frameStart = l/routeEnable=0

Figure 6.2 State transitions of the timing module

According to Figure 6.2, we wrote the following Verilog RTL description for the
timing module:

1. typedef enum {RUN, WAIT, ROUTE} timing_state;

101

module TIMING (frameStarc,clock,activel,activel,
active2, activel,routeEnable):

[}

3. input frameStart, clock;

4. input active0O, activel, active2, active3;

5. output routeEnable;

6. timing_state reg state;

7. wire anyActive;

8. assign anyActive = active0 || activel || active2

|| activel;

9. assign routeEnable = (state == ROUTE) ;:

10. initial state = RUN;

i1i. always @(posedge clock) begin case (state)

12. RUN: if (frameStart == 1) state = WAIT;

13. WAIT: if { (frameStart == 0) && (anyActive == 1))
state = ROUTE:;

14. ROUTE: begin if (frameStart == 0) state = RUN;

is5. else state = WAIT; end

16. endcase end

17. endmodule

On the other hand. the Verilog translation of the Qudos structural description

of the timing module looks like follows:

module TIMING(frameStart,clock,activel,activel,active2,
active3, routeEnable);

1. input frameStart, clock;

2. input acriveO, activel, active2, active3;

3. output routeEnable;

4. wire xBar, dx, dy., yterm, anyActive, frameStartBar;

3. reg routeEnable, y:

6. initial begin routeEnable = 0; y = 0; end

7. not InvX (xBar, routeEnable);

8. or OrAnyActive (anyActive, activel, activel, activel,
activel);

9. not InvFS (frameStartBar, frameStart):;

10. and AnyTerm (yterm, xBar, y):;

11. and AndDx (dx, xBar, y, anyActive, frameStartBar);

12. or OxDy (dy. yterm, frameStart);

13. always @(posedge clock)

14. begin routeEnable = dx; y = dy; end

15. endmodule

The equivalence checking between the above structural and RTL descriptions

102

was done automatically in VIS. We have been able to prove that the two networks

(descriptions) are sequentially equivalent.

6.1.2 Experimental Results on Equivalence Checking

The equivalence checking of Fairisle switch fabric is done by comparing RTL
module with structural module. We were able to perform sequential equivalence on
module In_latches, Out_latches, Pause, Timing. Priority_decode and Arbiters. And
also we can verify the combinational equivalence of module acknowledgment (see
Table 6.1). But we failed in verifying in modules Dataswitch. Pause_dataswitch and
Switch_fabric in VIS even if we applied dynamic ordering. Table 6.1 gives the CPU
time through equivalence checking, and the number of latches in the modules is

indicated as well.

Besides dynamic ordering. we tried to build an environment state machine to
restrict the behavior of input variables in order to enhance equivalence checking. We
also used different partition and image computation methods. but all these methods

did not speed-up the equivalence checking much.

Component CPU time (seconds) | Number of latches
Acknowledgment 1 0
In_latches 2 32
QOut_latches 2 32
Pause 2 32

Arbiter_I 1 3

Arbiters 13 12
Priority_decode 27 16
Timing \ 2
Dataswitch_I 1855 16
Arbitration 67860 30
Dataswitch - 64

103

Pause_dataswitch - 96
190

Switch_fabric -

Table 6.1 equivalence checking of each submodule

6.1.3 Analysis on sequential equivalence checking

In general. the more latches a module has, the more expensive is the sequential
equivalence checking. When the number of latches in one module reaches a certain
value. the CPU time of the sequential equivalence checking rises a lot. The following
experiment shows this. Module Dataswitch_i consists of four DMUX units. Table 6.2
compares the CPU time of equivalence checking among four similar modules with
different DMUX units. The Dataswitch_i module, which consists of four DMUX
units. is composed of only 4 latches more than the module with three DMUX units.
However. the CPU time of equivalence checking is increased from 9.7 seconds to
1855.8 seconds. Therefore, it is almost impossible to check equivalence for module
Daraswitch. Pause_dataswitch and Switch_ fabric because they contain much more

latches than module Dataswitch_t.

Learning from the above experiment, we think that the sequential equivalence
should be only applied on small modules. Through more experiments, we found that
sequential equivalence checking could be done with acceptable time if the number of

latches in a model is less than 20 in SUN Sparc 20 (75 MHz/256 MB).

Components CPU time (seconds) | Number of latches
Module with | DMUX 1 4
Module with 2 DMUX 7 8
Module with 3 DMUX 10 12
Module with 4 DMUX 1856 16

Table 6.2 Equivalence checking among modules with different DMUX units

104

6.1.4 Error detection with equivalence checking

No errors were discovered after equivalence checking on each submodule. For
experimental purposes. however, we detected the same five errors described in
Section 4.6 by equivalence checking. VIS generated counterexamples that exhibited
the incorrect behavior of the corresponding signals. Experimental results are reported

in Table 9.

Experiments Affected submodules CPU time (seconds)
Error 1 Arbiters 21
Error 2 Priority_decode 24
Error 3 Acknowledgment 2
Error 4 Priority_decode 55
Error 5 In_latches 1

Table 6.3 Error detection in equivalence checking of submodules

6.2 Equivalence checking of Knockout switch concentrator

The Knockout switch is an N-input N-output packet switch with all inputs and
outputs operating at the same bit rate. Fixed-length packets arrive on the N-input in a
time-slotted fashion. with each packet containing the address of the output port.
Knockout switch has application in both datagram and virtual circuit packet

networks.

Aside from having control over the average number of packet arrivals
destined for a given output, we assume no control over the specific arrival time of
packets on the inputs and their associated output addresses. In other words, there is
no time-slot specific scheduling that prevents two or more packets from arriving on
different inputs in the same time slot destined for the same output. Hence, to avoid
(or at least provide a sufficiently small probability of) lost packets, at a minimum,
packet buffering must be provided in the switch to smooth fluctuations in packet

arrivals destined for the same output.

105

The interconnection fabric for the Knockout Switch has two basic
characteristics: 1) each input has a separate broadcast bus. and 2) each output has
access to the packets arriving on all inputs. Figure 6.3 (a) illustrates these two
characteristics where each of the N inputs is placed directly on a separate broadcast
bus and each output passively interfaces to the complete set of N buses. This simple
structure provides us with several important features.

First. with each input having a direct path to every output. no switch blocking
occurs where packets destined for one output interfere with (i.e.. delay or block)
packets going to other outputs. The only congestion in the switch takes place at the
interface to each output where. as mentioned, packets can arrive simultaneously on
different inputs destined for the same output. Without a priori scheduling of packet
arrivals. this type of congestion is unavoidable, and dealing with it typically
represents the greatest source of complexity within the packet switch. The focus of
the Knockout Switch architecture is one of minimizing this complexity.

In addition to the above property, the switch architecture is modular: the N
broadcast buses can reside on an equipment backplane with the circuitry for each of
the N input/output pairs placed on a single plug-in circuit card. Hence, the switch can

grow modularly from 2 x 2 up to N x N by adding additional circuit cards.

6.2.1 Architecture of Knockout ATM Switch

Figure 6.3 b illustrates the architecture of the bus interface associated with
each output of the switch. The bus interface has three major components: packet
filter, concentrator and shifter buffer. At the top of Figure 6.3 b, there are a row of N
packet filters. Here the address of every packet broadcast on each of the N buses is
destined, with packets addressed to the output allowed to pass on, to the concentrator
and all other blocked. The concentrator then achieves an N to L (L << N)
concentration of input lines, wherein up to L packets making it through the packet
filters in each time slot will emerge at the outputs of the concentrator. These L

concentration outputs then enter a shared buffer composed of a shifter and L separate

106

FIFO buffers. The shared buffer allows complete sharing of the L FIFO buffers and
provides an equivalent of a single queue with L inputs and one output. Operating

under a first-in first-out queuing discipline.

1 ——
2 e
INPUTS
N ——p—
| | | BUS
{ _J - INTERFACES

‘ ‘ — .OUTPUTS.
2

(a) Interconnectian Fabne

1 2 3 N
PACKET
INPUTS FILTERS
CONCENTRATOR J
1 21 31 L
SHIFTER]

‘I 2I3¢ Ll SHARED
BUFFER

.

(b} Bus Intertace

OUTPUT

Figure 6.3 Structure of Knockout ATM Switch

In Figure 6.3 (b). the circuits for packet filter and shifter are very simple and
common, and they are quite similar to other ATM switches. However, the
concentrator circuit is very special. Specifically, the function of the concentrator is - if
there are k packets arriving at a time slot for the same output address, these k packets,
after passing through the concentrator, will emerge from the concentrator on outputs
1 to k, when k < L. If k > L, all L outputs of the concentrator will have packets, and
k-L packets will be dropped (i.e. lost) within the concentrator.

The basic building block of the concentrator is a simple 2 x 2 contention

107

switch shown in Figure 6.4(a). The two inputs contend for the “winner~ output
according to their activity bits. If only one input has an ammving packet (indicated by
the active bit = 1). it is routed to the winner (left) output. If both inputs have arriving
packets. one input is routed to the winner output and the other input is routed to the
loser output. If both inputs have no arriving packets, we do not care except that the
active bit for both should remain at logic O at the switch outputs.

The above requirements are met by a switch with the two states shown in
Figure 6.4(b). Here, the switch examines the active bit for only the left input. If the
active bit is a 1. the left input is routed to the winner output and the right input is
routed to the loser output. If the active bit is a O, the right input is routed to the

winner output. and no path is provided through the switch for the left input.

Lo

I

winner loser

(a)

1 0

l T l /'

I [

| | /

! | //

| [/

! ! 4

winner l l loser winnerl l loser

(b)

Figure 6.4 (a) The 2 X 2 contention switch (b) State of a x 2 contention switch

108

i1 i2 i3 i4 i5 i6 i7 i8 INPUTS
N S I A I

T

ol 02 03
QUTPUTS

Figure 6.5 The 8-input / 4-output concentrator

Figure 6.5 shows the design of an 8-input/4-output concentrator composed of
these simple 2 x 2 switch element and single-input/single-output 1-bit delay element
(marked by “D™). and it can be easily expanded to N-input/L-output concentrator with
the same two elements, so it has the advantage of easy implementation. However, the
output function with inputs is not easily deduced from the circuits, and also the
connection is complex so that the mistakes tend to hide in the implementation. For
these two reasons, we need to verify the above structure. In the following section, we

give our methods to verify the circuit by the equivalence checking.

6.2.2 Equivalence Checking of the Concentrator

To verify the structure of the concentrator, we use equivalence checking in VIS.
Although the structure of Knockout concentrator (Figure 6.5) seems complicated, its
specification is clear: if there is only one active cell in the input ports, it will be
transmitted to the most left output port; if there are only two active cells in the input
ports. they will be transmitted to the two most left output ports; if there are three

active cells in the input ports, they will be transmitted to the three most left output

109

ports: if there are four or more than four. they will be transmitted to all the four

output ports. The specification can be expressed as Figure 6.6.

i1i2 i3 i4 i5 i6 i7 i8 INPUTS
v ¥V ¢ VvV VvV VIV

+

) S umr

el =1 02=1 03=1 04=1
when when when when
sum> sum> sum> sum>

0 1 2 3
after 8 after 8 after 8 after 8
clock clock clock clock
cycles cycles cycles cycles
delay delay delay delay

ot 02 03 04

OUTPUTS

Figure 6.6 The specification of the concentrator specification

In Figure 6.6, il, i2, ..., i8 express eight inputs of the concentrator. ix = /
means there is a cell at input x (x=1/, 2, ..., 8),and ix =0 indicates there is no cell at
input x. The signal strm means the sum of the 8 inputs, so the number of sum
indicates the number of inputs which have cells to send. Because there are 8 clock
cycles delay in the structural model of Knockout concentrator (Figure 6.3). we also
give 8 clock cycles delays in the specification model in order to make structural
model and the specification model comparable.

We described both structural and specification Knockout concentrator model
in Verilog. Because there were 64 latches inside the Knockout concentrator, we
adopted sequential equivalence checking on them. We did sequential equivalence

checking in Sun UltraSparc (300MHz/512MB) workstation. However, we could not

110

get the results because the verification was crash with failing in allocating memories.

We noticed that the latches in the structural Knockout concentrator are only
for distributing the operation which could be done with one clock cycle into eight
clock cycles to complete so that the clock frequency of the whole system could be
higher. In other words, these latches do not have the function of state transition.
Therefore. reducing these latches will not have an influence on the function of the
design.

After the latches are taken away from the Knockout concentrator. it becomes
a combinational circuit. So combinational equivalence checking is possible to be
applied. Practically, it is fairly easy to reduce the latches in its Verilog module. In the
structural Knockout concentrator description, we only need to modify the two
submodules: 2x2 switch element and D flip-flop while keeping the same concentrator
structure. In the specification Verilog module, we only need remove the eight clock
cycles delay.

The combinational equivalence checking on Knockout concentrator was very
efficient. and we got the result immediately after we submitted the verification job in

VIS.

6.2.3 Experimental results and discussion

The knockout concentrator is composed of 64 latches. Table 6.4 shows the
experimental results for the equivalence checking in combinational equivalence

checking and sequential equivalence checking.

Method combination equi. chk. | sequential equi. chk.
CPU time (sec.) 32 -
Mem. usage (MB) 45 -
Nodes allocated(K) | 32,476 -

Table 6.4 Experimental results of the equivalence checking on the concentraior

In Table 6.4, combinational equivalence checking used little CPU time and

memory usage to verify the Knockout concentrator which sequential equivalence

111

checking was not able to verify. This is the reason that sequential equivalence
checking has not been used in the industries while combinational equivalence
checking is used in industrial ASIC design verification such as the correctness of

synthesis.

6.3 Summary

This chapter introduced combinational equivalence checking and sequential
equivalence checking. Combinational equivalence checking can handle a relatively
large design. and with the help of some techniques such as latch mapping. it also can
partially verify a sequential circuit. Sequential equivalence checking is to verify the
equivalence of a sequential circuit between behavioral model and RTL model which

is almost impossible to be done in combinational circuit.

By using the combination of combinational equivalence checking and
sequential equivalence checking, we succeeded in verifying the equivalence of each
submodule in Fairisle ATM switch fabric between its structural model and RTL
model. To make good use of sequential equivalence checking, we proposed modular
verification in the verification of Fairisle ATM switch fabric. In addition, we used
Knockout concentrator as an example to illustrate how to build a specification model
to verify a special structure. Furthermore. in order to make advantage of
combinational equivalence checking. we demonstrate how to transfer a sequential

equivalence checking problem into a combinational equivalence checking problem.

Chapter 7

Conclusions

In this thesis. we have described methods for formally verifying ATM
hardware by model checking and equivalence checking. We proposed property
division which is based on compositional reasoning. We showed how to establish an
environment. and how to use CTL to express a property. We also proposed modular
verification in terms of sequential equivalence checking. and demonstrate how to
build a specification model and transfer a sequential verification problem into a
combinational verification problem. To demonstrate that our techniques were
practical. we used our methods to verify several academic and commercial ATM
hardware designs. During the verification process, we discovered errors in these
designs.

While we have considered a number of real ATM designs, we gain some
experience in applying formal methods on ATM hardware. We feel that it is
particularly important to look at a single system across several levels of abstraction.
Recall that in the model checking of the Fairisle ATM switch fabric, we constructed
the environment which is an abstraction or reduction model of the port controller. As
such. we were able to verify the entirce ATM switch by property division method.

However, to correctly partition a design and build a property environment, a verifier

113

has to have in-depth knowledge on the design.

The most significant drawback of automatic formal verification is that it
cannot handle a large design. so simulation is still a very important method for
hardware verification. However, we usually use a hierarchical-verification style in
industry. If we look at a chip. it is divided into several modules, and each module is
further divided into many blocks. So the design verification will include block-level
verification. module-level verification and top-level verification. The more adequate
the lower level verification is. the easier the upper verification will be. Therefore, if
we can apply formal verification into the module-level or block-level verification. it
will efficiently improve the verification quality because it can verify a small (or
medium) design rapidly and exhaustively. In our work, we could efficiently verify a
medium size design by the combination of equivalence checking and model checking
with a set of methods we proposed in the thesis.

There are also a number of questions that we would like to address. One
question concems the design modification we have done during the formal
verification process. Once a design is done. we do not want to manually modify it for
the verification purpose because it is possible to introduce another error during the
modification. To avoid the manually modification, we hope to develop some tools to
do the abstraction. reduction and create some verification assistant variables.

Another issue is to make environment and CTL formulas generation
automnatically, and a verifier only needs to give assumptions and conclusions. In this
work. we created all the environments and CTL formulas manually. But, we believe
that an automatic tools could be developed to do these because we found there were
some rules existing in their generation. Also, either Environment Modification or
Internal Signal Usage could be embed in such automatic tools.

Since a design is getting bigger and bigger, and the verification is extremely
difficult. How to make a design to be easily verified becomes another issue. Recall
section 3.4.2, we use fabric unit in the verification instead of abstracted fabric, the

mode! checking becomes more efficient. So we could develop a set of proper rules

114

for a certain design. the design based on such rules will be easy to verify using
formal methods.

Finally. state space explosion is the most important problem in model
checking and sequential equivalence checking. We hope good algorithms will be
developed so that formal verification tools can handle much larger designs in the
future. With the efforts in the above aspects. we believe that formal verification will

play a very important role in hardware verification in the future.

115

Bibliography

[1] Aziz A.. Tasiran S.. and Brayton R.: BDD Variable Ordering for Interacting
Finite State Machines. In Proc. of the Design Automation Conf., pages 283-288,
SanDiago. CA. June 1994.

(2] A. Gupta. "Formal Hardware Verification Methods: A Survey”. Formal Methods
in System Design, Vol. L, pp. 15 1-238, 1992.

[3] Ashenden, P.: The Designer’s Guide to VHDL, Morgan Kaufmann Publishers.
San Francisco. California. 1994.

[4] Biichi J.: On a decision method in restricted second order arithmatic. In
Proceeding of the 1960 International Congress on Logic, Methodology. and
Philosophy of Science, Standford University Press, 1962.

(5] Brayton R. etal.: VIS: A System for Verification and Synthesis. Technical
Report UCB/ERL M95. Electronics Research Laboratory. University of
California, Berkeley, December 1995.

[6] Bryant R.: Graph-Based Algorithms for Boolean Function Manipulation; IEEE

Transactions on Computers, Vol. C-35, No. 8, pp. 677-691, August 1986..

116

[7] Browne M.. et. al: Automatic verification of sequential circuits using temporal
logic [EEE transactions on Computers. Vol. C-35. No. 12. pp. 1035-1044.
1986.

[8] Chen. B.: Yamazaki. M.; Fujita, M.: Bug Identification of a Real Chip Design
by Symbolic Model Checking: Proc. International Conference on Circuits And
Systems (ISCAS'94). London. UK, pp. 132-136, June 1994.

[9] Burch J.R.. Clark E.M.. et.al: Symbolic model checking for sequential circuit
verification. IEEE Transactions on Computer-Aided Design of Integrated
Circuits. Vol. 13. No. 4. pp. 401-424, April 1994.

[10] Clarke E.. et.al: Synthesis of synchronization skeletons for branching time
temporal logic. In Logic of Programs: Workshop, Yorktown Heights. NY. Vol.
131 of Lecture Notes in Computer Science, May 1981.

[11] Clarke E. M.. Grumberg O.. McMillan K. L.. and Zhao X: Efficient generation
of counterexamples and witnesses in symbolic model checking In Proc. 32nd
Design Automat. Conf.. pp. 427-432, June 1995.

[12] Clarke E.-M.. Emerson E.A., and Sistla A. P: Automatic verification of finite-
state concurrent system using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, Vol. 8, No. 2, pp. 244-264, 1986.

[13] Corella. F.: Zhou. Z.; Song. X.; Langevin, M.; Cemy, E: Multiway Decision
Graphs for Automated Hardware Verification; Formal Methods in System
Design, Vol. 10. No. 1, pp. 7-46, 1997.

[14] Curzon, P.: The Formal Verification of the Fairisle ATM Switching

117

Element: Technical Reports No. 328 & No. 329. University of Cambridge.
Computer Laboratory. March 1994.

{15] Dan. V. : Cemny. E.: Song, X. : The formal verification a Fairisle ATM
switch port controller: Technical Report. University of Montreal, 1998.

[16] Edgcombe. K.: The Qudos Quick Chip User Guide: Qudos Limited.

[17] Fujii. Ootomo G.. and Hori G.: Interleaving based variable ordering
methods for ordered binary decision diagrams. In Proc. Ind. Conf. On
Computer-Aided Design. pp. 38-41, Nov. 1993.

[18] Garcez E.: “The Verification of an ATM Switching Fabric using the HSIS

Tool™. Technical Report, WSI-95-13, Tiibingen University. Germany, 1995

(19] Gordon. M.: Melham, T.: Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic; Cambridge. University Press. 1993.

[20] Kurshan R. P.. Analysis of discrete event coordination. Proceedings of the
REX Workshop on Stepwise Refinement of Distributed Systems. Models.
Eormalisms. Correctness. Vol. 430 of Lecture Notes in Computer Science.
Springer-Verlag. May 1989.

[21] Langevin, M.: Tahar, S.; Zhou, Z.. Song, X.: Cerny E.. Behavior
Verification of an ATM Switch Fabric using Implicit Abstract State
numeration: Proc. IEEE International Conference on Computer Design
(ICCD'96). Austin, Texas, USA; pp. 20 - 26, October 1996.

[22] Leslie. I. and McAuley. D.: Fairisle: An ATM Network for the Local Area;

ACM Communication Review, Vol. 19, No. 4, pp. 327-336 September 1991..

118

[23] Long. D.: Model Checking. Abstraction. and Compositional Verification:
PH.D thesis. July 1993.

[24] Lu. J. and Tahar. S.: On the Formal Verification and Reimplementation
of an ATM Switch Fabric Using VIS: Technical Report No. 401, Concordia
University. Dept. of ECE. September 1997.

[25] McDysan. D.. Spohn. D.: ATM Theory and Application, McGraw-Hill
series on computer communications, New York. 1994.

[26] McMillan. M.: Symbolic Model Checking: Kluwer Academic Publishers.
Boston. Massachusetts. 1993.

[27] PMC-sierra. Inc: ATM layer routing control. monitoring and policing 800
Mbps. PMC-940904. August 1997.

[28] Pnueli A.: In transition for global to modular temporal reasoning about
programs. In K.R. Apt. editor. Logics and Models of Concurrent Systems, Vol.
13 of NATO ASI series. Series F. Computer and system science. Springer-
Verlag, 1984.

[29] Quielle J.P. and Sifakis J: Specification and verification of concurrent systems
in CESAR. In Proceedings of the Fifth International Symposium in
Programming. 1981.

[30] Rajan S.. Fujita M., Yuan K., Lee M.: High-Level Design and Validation of
ATM Switch: Proc. IEEE International High Level Design Validation and Test
Workshop (HLDVT'97), Oakland, California, USA, November 1997.

[31] Ranjan R.. Aziz A., Plessier B., Pixley C,, and Brayton R.: Efficient Formal

119

Design Verification: Data Structure + Algorithms. Technical Report UCB/ERL
M94/100. Electronics Research Lab, Univ. of California. Berkeley, CA 94720.
Oct. 1994.

[32] Schneider K. and Kropf T.: Verifying Hardware Correctness by Combining
Theorem Proving and Model Checking, In: J. Alves-Foss(editor). International
Workshop on Higher Order Logic Theorem Proving and Its Applications (B-
Track). pp. 89-104, August 1995.

[33] Sentovich E., Singh E.. Lavagno E.. Moon E.. Murgai R., Saldanha A. Savoj
H.. Stephan P.. R Brayton R.. and Sangiovanni-Vincentelli A: SIS: A System
for Sequential Circuit Synthesis. Technical Report UCB/ERL M92/41,
Electronics Research Lab, Univ. of California, Berkeley, CA 94720, May 1992.

[34] Smith G.. Bahnsen R.. and Halliwell H: “Boolean comparison of hardware and
flowcharts”. [BM Journal of Research and Development. Vol. 26. pp. 106-116.
January 1982.

[35] Smith. Michael J. S.: “Application-specific integrated circuits™, published by
Addison Wesley Longman, Inc., ISBN 0-201-50022-1, 1997.

[36] S. Owre. N. Shankar, aand J. Rushby. "User Guide for the PVS
Specificationand Verification System, Language. and Proof Checker”,
Computer Science Laboratory, SRI International, Melno Park, California,
February 1993.

[37] Tahar. S.; Zhou. Z.; Song, X.: Cery, E.; Langevin, M.: Formal Verification of

an ATM Switch Fabric using Multiway Decision Graphs; Proc. IEEE Sixth

Great Lakes Symposium on VLSI (GLS-VLSI'96). Ames, lowa, USA. IEEE
Computer Society Press. pp. 106-111. March 1996.

[38] Tahar. S.: Curzon, P.; and Lu, J.: “Three approaches to Hardware
Verification: HOL, MDG and VIS Compared: In: Gopalakrishnan, G. and
Windley. P. and Windley, P. (Eds.), Formal Metheds in Computer-Aided
Design. Lecture Notes in Computer Science 1522. Springer Verlag, 1998, pp.
433-450. Proc. International Conference on Formal Methods in Computer-
Aided Design (FMCAD’98), Palo Alto, California. USA, November 1998.

[39] Yeh Y.S.. Hiuchyj M.. and Acampora A.: “The knockout switch: a simple
modular architecture for high performance packet switching.” [EEE J. Selected

Areas in Communications. Vol. SAC-5, No. 8, pp. 1274-1283, Oct. 1987.

Appendix A

Overview of ATM Switches

In this section. we will review and highlight the key features of each switch
architecture. We begin by dividing the different fabrics into two families according to
the physical connections between input and output ports of the switch fabric, namely,
time and space switching. The two families are further divided into separate classes.

whereby each structure can be presented systematically.

A.1 Time Division Switches

As shown in Figure A.l, a switch can be regarded as a communication resource
which is shared by all input and output ports. In the time division switches, the access
to this resource. which can be a shared memory or a shared medium (such as a bus or
a ring). is via a time division multiplexing scheme. where all ports transmit according
to a common time reference. There are two interesting features in the time division
switches. The first is the existence of a linear relation between cost and complexity of
the switches. The second is multicasting/broadcasting function which can be easily

incorporated due to the shared element.

A B, 1 c
SWITCH
———— —p —
input Output
Ports > » >
FABRIC Ports
N ——» - >

Figure A.1 Structure of ATM Switch

e Shared Memory

The switch architectures belonging to this family consist of a memory shared by all
input and output lines (an example of a shared memory switch is shown in Figure
A.2). The packets arriving on all input lines are multiplexed into a single stream
which is fed to the common memory. There are two possibilities to implement the
common memory. In the first method. the packets are randomly written to the
memory and sequentially are read out to the output port. The second method consists
of sequentially writing the packets into the memory and randomly read them out to
the output port (This is the method commonly used with RAMs). Finally. the output

streams de-multiplexed. and the packets are transmitted on the output lines.

123

Inputting 1 —— — Qutputiine 1
0]
[] COMMON
MUX MEmory [—P] DEMUX| 0
' '
Input lineN —9 L Outputtine M

MEMQRY BUFFER
CONTROLLER

.

Figure A.2 The structure of shared memory ATM switch

Share memory family is further divided into two classes: complete
partitioning of memory and full sharing of memory. In the complete partitioning
strategy. the memory is divided into N separate sections, and each forms a queue to
an output port. A packet is lost when it arrives to its destination output queue section
of the memory and finds the correspondent queue section of the memory full. [n the
full sharing scheme. the entire memory is shared among all the output ports for
queuing purposes. A packet is lost only when it arrives to the memory and finds the
memory completely full.

The two main concerns when designing a switch architecture of the shared

memory family are processing time and memory bandwidth and size.

e Shared Medium

In the shared medium switches (Figure A.3), all arriving packets on the N input lines
are synchronously multiplexed onto a common high-speed medium (which can be a
bus or a ring) of bandwidth equal to N times the rate of a single input line. Each
output line is connected to the shared medium through an address filter capable of
receiving all packets transmitted on the medium by an output buffer. It is the address

filter that decides if a packet served on the medium should be written into the

corresponding output buffer.

Output lines

N [I I

Terminator

High speed bus / D l L

Input lines

Figure A.3 The structure of shared bus ATM switch

Shared medium family is further divided into two classes: shared bus and
shared ring. In the shared bus architecture. several lines are connected to a high speed
bus. Since the bus is a broadcast medium, all the lines can receive the cells. keeping
only those that are addressed to it and discarding the rest. In the shared ring
architecture, each line is connected to a ring, and the interface modules are
interconnected one to anther in a point-to-point fashion that happen to form a circle.
Upon reception of a cell, the interface module can copy and remove the cell from
circulation (single-casting). copy and retransmit the cell to its neighbor

(multicasting/broadcasting) or simply retransmit the cell to its nei hbor.
g g ply

A.2 Space-Division Switch

Space-division switches may be classified into three categories: (i) crossbar fabrics,
(ii) banyan-based fabrics, and (iii) fabrics with N disjoint paths. But any space-
division switches can be described as a common abstract model (Figure A.4). The
model prescribes that for each input line ¢ there is a router (that is, de-multiplexor)
which routes its packets to N separate bins, numbered (i, /) through (i, N), one bin for

each output port. At the output side, we consider that for each output line j there is a

125

concentrator (multiplexor) which connects all bins (i, j). i =1. 2. N. to output line j
and which. in each time slot. selects one packet. if any, from these output bins for
transmission on output line j. The various fabrics proposed differ by the ways the

routers and concentrators are implemented, and by the locations of buffers.

Buffers

Routers
Concentrators

input * . output
lines « lines

Figure A.4 Common abstract ATM switch model

e Crossbar Fabric

The first electronic space-division switch that came into existence is the one known
as the crossbar switch (Figure A.5), originally introduced for circuit switching.
Basically. a crossbar fabric consists of a square array of N cross-point switches. one

for each input-output pair.

VERTICAL INPUT

|

4
HORIZONTAL ———=pi L HORIZONTAL
3 INPUT ouTPLT
INPUTS
2

VERTICAL QOUTPUT

1 2 3 4 l

QUTPUTS —H\\——D »

CROSSBAR SWITCHING FABRIC

BAR STATE CROSS STATE

Figure A.S Structure of crossbar ATM switch

Closing the switch at the (i,j)th cross-point establishes a physical connection
between input line i and output line j. That is, as long as input i and output j are free.
a connection between them is achieved simply by closing the (i, j)th switch. It is easy
to see that the existence of N* cross-point switches in the crossbar fabric permits N
pairs of input/output lines to be connected simultaneously, orovided that these pairs
are disjoint. If, on the other hand, there is more than one packet in the same slot
destined to the same output. then one and only one of the packets can reach the
output; the remaining packets will have to be either dropped or buffered somewhere.
There are two possibilities for the location of buffers in a crossbar switch: (a) at the
cross-points of the switching array, or (b) at the input of the switching array. Each of
the two possibilities has its advantages and drawbacks. Placing the buffers at the
cross-points, the switches then is work-conversing, and does not suffer the throughput
limitation incurred with either dropping packets or input buffering.

However, two drawbacks to this approach. First, the total memory required
for a given loss rate is greater than that required for output queuing with complete

partitioning, because the output queue is distributed over N buffers and there can be

127

v

v

no sharing among these. The second and more important drawback is the fact that
from a hardware layout point of view. the buffer memory typically requires a much
larger real-estate than the switching array itself, and combining them both on the
same circuit would severely limit the size of the switching fabric implementable on a
chip.

Input queuing consists of placing a separate buffer at each input to the switch.
A packet arriving at an input line first enters the buffer, and if it cannot proceed due
to a conflict. it remains in the buffer waiting to be switched at a later time. Placing the
buffers at the input of the switch separates the buffering and switching functions. a
very desirable outcome from the point of view of layout and circuit compactness.
With this configuration, the implementation of the switching fabric may take
different forms. One implementation is to distribute the switching function over all.
When a packet reaches a crosspoint that has already been set by an earlier packet. or
alternatively loses in its contention for a cross-point to another contending packet,
then a “blocking™ signal is returned on a reverse path to the input port, the result of
which is to block the transmission of the packet and keep the packet in the input
buffer for later tries. Another implementation is to centralize the contention
resolution function for each output port by providing an arbiter for each port. Each
such arbiter sees all packets that are proceeding to the corresponding output, selects
one of them according to some rule, and blocks all others by the means of return
control signals. By replicating the address decoder at each crosspoint, a single
“horizontal™ bus is needed per input line on which the packet and its requested output
port address are broadcast. Similarly, since only one arbiter may be sending a
blocking signal to a given input line at a time, a single reverse control line is required
per input line. As we will see in Chapter 4, Fairisle ATM switch fabric belong to the
latter implementation.

We now address a number of issues pertaining to the performance and control
of input-buffered crossbar switches. The first question concerns that service

discipline used in admitting packets queued at the input buffers. The simplest

discipline from a control and implementation point of view is first-come-first-
served(FCFS) in which only the head of the line (HOL) of each input queue may
content to the switch array. If a packet is successfully switched , then it is removed
from the input buffer, and the next in line is considered in the following slot.
Otherwise the packet remains at the head of the queue, and contends again in the
following slot. Although very simple, the main problem with FCFS is HOL blocking.
If there are k packets contending for the same output. only one packet is served in a
timeslot. and the remaining k-/ packets wait for the next time slot. This also implies
that -/ output line would have remained idle in that time slot, despite the fact that
there may be packets. queued behind the unsuccessful packets, destined to idle output
lines. but which are prevented from reaching their destinations. This situation renders
the switch non-work-conserving. driving its throughput below its nominal value.
Fairisle null input port controller which will be introduced in Chapter 3 belongs to
such FCFS input buffer.

The crossbar fabric has one major intrinsic drawback: it requires N?
crosspoints. and therefore the size of realizable switches tends to be limited. In
addition. it has two undesirable features: (i)when self-routing is used. the processing
performed at each crosspoint requires knowledge of the complete output port address:
and (ii) the transit time is not constant over all input/output pairs unless artificial

delays are introduced at the inputs and outputs of the switch.

e Banyan-Based Space-Division Switches

While crossbar fabric has the above drawbacks, banyan based fabrics (Figure A.6) are
multistage interconnection network which have less switching elements than that

found in crossbar based fabrics with self routing property.

~“~Cyoz~—
“cvwoCO

8 X 8 DELTA NETWORK

Figure A.6 Structure of Banyan ATM switch

The main idea of banyan ATM switch was to make more than one input line
share the same switching element at the same time. and use multistage
interconnection to let each input have at least a path to each output. Through the use
of multiple stages. it was possible to reduce the complexity of the switch as compared
to crossbar based fabric.

Banyan switching fabrics have some interesting characteristics such as
modularity and self-routing. However. banyan fabrics has the major drawbacks such
as internal blocking and performance degradation. The first solution consists of
placing buffers at the points of conflicts, leading to what is known as the buffered-
banyan switching fabric. The second solution consists of using input buffering and of
blocking packets at the input by the means of upstream, control signals issued when
conflicts occur. Given the extremely low throughput attained in a banyan network,
this solution is not very desirable. The third also consists of using input buffering,
but also includes the means to improve the throughput of the banyan self-routing
network. This consists of sorting the input packets in order to remove output conflict
and to present to the banyan (sub) permutations that are guaranteed to pass without

conflicts. Packets that are not selected are buffered for later tries. Sorting is

130

accomplished by the means of a Batcher sorter. and thus the resulting fabric is
referred to as the Batcher-banyan switching fabric. Finally, a fourth solution consists
of using multiple copies of the banyan interconnection network in parallel or in
tandem. thus increasing the number of possible paths between inputs and outputs, and

achieving output buffering.
e Switching Fabric with N* Disjoint Paths

The final set of space-division switching fabrics that we describe in this section
consists of fabrics with sufficient hardware resources to permit the establishment of
N’ disjoint paths among the inputs and outputs, and thus achieve output buffering.
The most obvious example is the bus-matrix switching architecture. It uses N
broadcast input buses, N multi-access output buses, and N crosspoint buffer
memories; each crosspoint memory component contains an address filter
corresponding to the output bus to which it is connected. Referring back to the
abstract model (Figure A.4). the router for an input line consists here of the input bus
along with the N address filters connected to that bus, and the concentrator for an

output line is the corresponding multi-access bus.

The other fabric with great similarity to the bus matrix fabric but which
achieve output buffering have been used in some industry designs: the knockout
switch (Figure A.7). In the knockout switch. each input port transmits its packets on a
broadcast bus to which all output ports are tapped. That is, each output line has a bus
interface connecting to all input buses. Such an interface contains N address filters,
one for each input line, which recognize packets addressed to the corresponding
output line. With the N filters operating parallel, a bus interface is capable of
receiving N packets per slot. The outputs of the filters are connected to an N x L
concentrator which selects up to L packets out of those accepted by the filters. If more
than L packets are destined to the same output line in a given slot, only L are received

into the buffer and remaining ones are lost.

131

>—
2 F

INPUTS
N ——
| |] BUS
] L] . INTERFACES
‘ ‘ OUTPUTS
1 2 N
A: INTERCONNECTION FABRIC
1 2 3 N
PACKET
INPUTS FILTERS
CONCENTRATOR
112 3 Ll
A A 4
SHIFTER
2¢ 3L l-l SHARED
% % BUFFER
OUTPUT
B: BUS
INTERFACE

Figure A.7 Structure of knockout ATM switch

A hardware implementation is proposed for the concentrators following the
simple knockout algorithm used in tournaments. Referring back to the abstract
model. the router for an input line consists here again of the input bus along with the
N address filters connected to that bus: no intermediate buffers are employed; instead
output buffering is achieved by the means of the concentrators with a fixed output
width. This design is also very similar to the shared bus architecture because both of

themn have address filters and buffers in each output port.

132

INPUTS
I S N O N

i

[:m) C Tam

- I= N

v
1 2 3 4
OUTPUTS

%\

9

T

B

=
v

Figure A.8 Structure of Knockout concentrator

For each output port, N separate filters are used. one for each input bus.
operating at the speed of a single line. In the Knockout Switch, all N packets arriving
in a slot cannot be received by an output buffer, while only L may be received. The
rationale behind the latter is that L need not be large to achieve low packet-loss rates.
For example. under a uniform input pattern. a loss rate of 10°® is achieved with L as
small as 8. regardless of the load and switch size.

Among the above various classes of ATM switch, we choose a crossbar ATM
switch and one N* disjoint path ATM switch (Knockout ATM switch) as our
verification examples in this thesis. This is because we are only able to get the design
examples on these two kinds of ATM switches. In addition, we apply model checking
on a simple port controller and a commercial RCMP chip which is used for ATM
ingress traffic management. These two designs can be adopted to be a component in

almost any kinds of ATM switches.

133

Appendix B

Model Checking of Null Port Controller

B.1 Counter Reduction in Property 3

Here we introduce how to use Counter Reduction to verify Property 3. Basically.

Counter Reduction must be jointly applied with Environment Modification or

Internal Signal Usage method. We will introduce the verification of Property 3 using

the combination of Counter Reduction and Environment Modification method first.

The following is the environment of the null port controller for property 3

jointly using Counter Reduction and Environment Modification method.

[

[l L S ST S S B Vo s s IR R o SRR V) B SR VO 8

W N

=
169

[
wn

O ¢

16.
i7.
i8.

tvpedef num {(S1, S2., 33, S4, S5, S6,
5§12, S13, S14, S15} stace;

assign rx_ip_data_ran = $ND(O, 1, 2. -,
always @ (posedge clock) begin
case (stace)

Si5: state = Sl;

Sl: state = S52;

S2: state = S3;

S3: state = S4;

S4: state = S5;

S5: state = S6:

S6: state = S7;

S7: state = S8;

S8: state = S§9;

S9: state = S10;

]
0n
[y
w
-~

S14: state
endcase;
if (state== S1)
framestart

It
[

134

s7, s8, s9, s10, s11,

2535);

29 framestart = 0;

21 if (state == S2)

22 rx_ip_soc = 1;
else

24 rx_ip_soc = 0;

25. ip_empty = 1;

26. rx_ip_rd_req = 1 ;

27. ctr_sz = 0;

28. ccr_id = 0;

29. npc_xrst_n = 1;

3C. rx_ip_data = rx_ip_data_ran;

i if (state = S4) rx_ip_data_s4 = rx_ip_data_ran;
2. else if (state=S5) rx_ip_data_s5 = rx_ip_data_ran;
33. else if (state=S5) rx_ip_data_s6 = rx_ip_data_ran;
34. end

Figure B.9 Environment for property 3 using counter reduction and Environment Modification

The following lists all the CTL expression for property 3 using Environment
Modification.

AG(npc_rst_n = 1) (A.3.c.a.l)

AG(state= S1 -> ctr_id = 0 * ctr_sz = 0 * ip_empty = 1 ~*

rx_ip_rd _req = 1) (A.3.c.a.2)
AG(state = S1 -> framestart = 1) (A.3.c.a.3)
AG(state = S2 + state = S3 + .. + state = S15 -> framestart =
0): (A.3.c.a.4)
AG(state = S2 -> rx_ip_soc = 1) (A.3.c.a.5)
AG (state = S4 -> ip_mem_addr_xr([8:1] == rx_ip_data_s3)

(A.3.c.a.6)

AG(state = S5 -> ip_mem_addr_r([8:1] == rx_ip data_s3 *

ip_mem_addr_r[0] == rx_ip_data_s4[7] * ip_mem_addr_c({8:6] ==

rx_ip_data_s5[6:4] ~ ip_mem_addr_c([5:0] = 6'b000100):;
(A.3.c.a.7)

AG(state = S6 -> ip_mem_addr_r[8:1] == rx_ip_data_s3 ~

135

ip_mem_addr_r[Q] == rx_ip_data_s4([7] ~ ip_mem_addr_c[8:6] ==
rx_ip_data_s5[6:4] ~ ip_mem_addr_c([5:0] = 6'b000101);
(A.3.c.a.8)

AG(state = S7 -> ip_mem_addr_r(8:1] == rx_ip_data_ran_s3

= ip_mem_addr_xr{0] rx_ip_data_ran_s4([7] *

ip_mem_addr_c[8:6] rx_ip_data_ran_s4[6:4]

~ ip mem_addr_c({5:C] = 6‘b000110) ; (A.3.c.a.9)
AG(state = S8 -> ip_mem_addr_r(8:1] == rx_ip_data_ran_s3

= ip mem_addr_ri0] == rx_ip_data_ran_s4I[7] *
ip_mem_addr_c[8:6] == rx_ip_data_ran_s4{6:4] ~
ip_mem_addr_c({5:0] = 6'b000111); (A.3.c.a.l0)
AG(state = S9 -> ip_mem addr_r([8:1] == rx_ip_data_ran_s3

* ip_mem_addr_r[O]==rx_ip_data_ran_s4[7] * ip mem_addr_c([B:6]
== rx_ip_data_ran_s4[6:4] ~ ip_mem_addr_c([5:0] = 6'b001000);
(A.3.c.a.1l)

AG(state = S10 -> ip_mem_addr_r([8:1] == rx_ip_data_ran_s3

= ip_mem_addr_r[O]==rx_ip_data_ran_s4[7] = ip_mem_addr_c([8:6]
== rx_ip_data_ran_s4([6:4] ~ ip_mem_addr_c[5:0] = 6b001001);
(A.3.c.a.l2)

AG(state = S11 -> ip_mem_addr_r(8:1] == rx_ip_data_ran_s3

= ip_mem_addr_r[O]==rx_ip_data_ran_s4[7] ~ip_mem_addr_c(8:6]
== rx_ip_data_ran_s4(6:4] * ip_mem_addr_c[5:0] = 6°b001010);
(A.3.c.a.13)

AG(state = S12 -> ip_mem_addr_r(8:1] == rx_ip_data_ran_s3

= ip_mem_addr_r{0l==rx_ip_data_ran_s4(7] * ip_mem_addr_c[8:6]
== rx_ip_data_ran_s4([6:4] * ip_mem_addr_c([5:0] = 6'b001011);
(A.3.c.a.l4)

AG(state = S13 -> ip_mem addr_r[8:1] == rx_ip_data_ran_s3

* ip_mem_addr_r([0]l==rx_ip_data_ran_s4(7] *ip_mem_addr_c([8:6]
== rx_ip_data_ran_s4[6:4] ~ ip_mem_addr_c[5:0] = 6'b001100) ;

136

(A.3.c.a.l5)
AG(state = S14 -> ip_mem_addr_r(8:1] == rx_ip_data_ran_s3

* ip_mem_addr_r[O]==rx_ip_data_ran_s4[7] * jip_mem_addr_c([8:6]
== rx_ip_data_ran_s4[6:4] * ip_mem_addr_c([5:0] = 6’b001101);
(A.3.c.a.l6)

AG(state = S15 -> ip_mem_addr_r([8:1] == rx_1ip_data_ran_s3

= ip mem_addr_r[0]l==rx_ip_data_ran s4(7] *ip_mem addr_c(8:6]
== rx_ip_data_ran_s4{6:4] ~ ip_mem_addr_c(5:0] = 6'b000000);
(A.3.c.a.l17)

AG(state = S1 + state = S2 + state = S3 -> ip_mem_addr_r([8:1]

== rx_ip_data_ran_s3 * ip_mem_addr_r[0]
rx_ip_data_ran_s4[7]1 *~ ip_mem_addr_c(8:6] ==
rx_ip_data_ran_s4[6:4] * ip_mem_addr_c[5:0] = 6'b000000):
({A.3.c.a.18)
AG (state = S1 + state = S2 + state=S3 + state=S4 + state=S5

-> ip_mem _wr_en = 0) (A.3.c.a.19)

AG (state=S6 + state=S7 + state=S8 + state=S9 + state=S10 +

scate=S11 + state=S12 + state=S13 + state=Sl4 + state = S15 ->

ip_mem_wr_en = 1) (A.3.c.a.20)
AG (state = S6 -> ip_mem_data == rx_ip_data_s5) (A.3.c.a.2l)
AG (state = S7 -> ip_mem_data == rx_ip_data_sé) (A.3.c.a.22)
AG (state = S8 -> ip_mem_data == rx_ip_data_s7) (A.3.c.a.23)
AG (state = S9 -> ip_mem_data == rx_ip_data_s8) (A.3.c.a-24)
AG (state = S10 -> ip_mem data == rx_ip_data_s9) (A.3.c.a.25)

AG (state = S11 -> ip_mem_data rx_ip_data_s10) (A.3.c.a.26)

rx_ip_data_sl1l) (A.3.c.a.27)

AG (state = S12 -> ip_mem_data

Il
1

AG (state = S13 -> ip_mem_data rx_ip_data_sl12) (A.3.c.a.28)

AG (state = S14 -> ip_mem_data rx_ip_data_sl13) (A.3.c.a.29)

AG (state = S15 -> ip_mem_data rx_ip_data_sl4) (A.3.c.a.30)

137

(A3c.al) to (A3.c.a5) express the five assumptions. (A.3.c.a.6) to
(A.3.c.a.18) describe the address initialization and incrementation. (A3.c.a.19) 1o
(A.3.c.a.30) represent that the data bytes can be transferred properly from transceiver
board to the memory with a clock cycle delay. Since the meaning of each CTL
expression is very similar to that in Section 4.4, we do not explain them in detail
here.

Using Internal Signal Involved CTL, the environment looks like the

following:

typedef num {S1, S2, S3, sS4, s5, s6, s7, s8, s9, s1l0, sii,
S12, S13, S14, S15} state;

(=]

2. assign rx_ip_data_ran = SND(0, 1, 2, ... 255):
3. always @ (posedge clock) begin
4. case (state)
5. S15: state = S1;
6. S1l: state = S2;
7. §2: state = S3;
3. S3: state = S4;
9. S4: state = S§5;
10. §5: state = S6;
11. S6: state = S§7;
i2 S7: state = §8;
13. §12: state = S13;
14. S13: state = S14;
15. S14: state = S15;
ig. endcase;
17. if (state== S1)
18. framestart = 1;
19. else
20. framestart = 0;
21. rx_ip_soc = rx_ip_soc_ran;
22. ip_empty = ip_empty_ran;
23. rx_ip_rd_reqg =rx_ip_rd_reqg ran;
4. ctr_sz = ctr_sz_ran;
25. ctr_id = ctr_id_ran;
26. npc_rst_n = npc_rst_n_ran;
27. rx_ip_data = rx_ip_data_ran;
28. if (state = S4) rx_ip_data_s4 = rx_ip_data_ran;
265. else if (state=SS) rx_ip_data_s5 = rx_ip_data_ran;
30. else if (state=S6) rx_ip_data_s6 = rx_ip_data_ran;
1. always @€ (posedge clock) begin
32. ip_mem_addx_c_rl([5 : 0] = ip_mem_addr_c[5:01];

138

33. rx_ip_data_rl = rx_ip_daca;

end
35. always @(posedge clock) begin
36. ip_mem_addr_c_plusl = ip_mem_addr_c_rl{[5:0] + 1;
37. end
38. end

Figure B.10 Environment for Property 3 using Counter Reduction and Internal Signal Usage
The following (A.3.c.b.1) to (A.3.c.b.11) is the CTL expression of Property 3

using Counter Reduction and Internal Signal Usage methods. and these are exactly
the same as (4.3.b.1) to (4.3.b.11). respectively, except (A.3.¢c.b.5) and (A.3.c.b.7).
The difference between (A.3.c.b.5) and (4.3.b.5) is ip_cell_cnt = 10 in (A.3.c.b.5) and
ip_cell_cnt = 50 in (4.3.b.5). Likewise, the difference between (A.3.c.b.7) and
(4.3.b.7) is ip_mem_addr_c[5:0] = 14 in (A.3.b.c.7) and ip_mem_addr_c[5:0] = 54 in
(A.3.b.7).

AG (framestart = 1 -> ip_state_i = idle) (A.3.c.b.1)

AG (framestart = 1 = npc_rst_n =1 * ip_state_i = idle ~

ip_empty = 1 * rx_ip_rd_req =1 * ctr_id = 0 -> AX (ip_state_i

= rx_wait)) (A.3.c.b.2)
AG(ip_state_i = rx_wait =~ rx_1ip_soc = 1 -> AX(ip_state_i =
rx_storel)) (A.3.¢c.b.3)
AG (ip_state_i = rx_storel * ctr_sz = 0 -> AX(ip_state_i =
rx_store_2 * ip_mem_addr_r([8:1] == rx_ip_data_s4))

(A.3.c.b.4)
AG(ip_state_i = rx_store2 * ctr_sz = 0 -> AX (ip_state_i =

rx_data ~ ip_mem_addr_r[B:l]==rx_ip_data_ran_s4 *

ip_mem_addr_r(0] == rx_ip_data_s5[7] * ip_mem_addr_c(8:6] ==
rx_ip_data_s5([6:4] * ip_mem_addr_c([5:0] = 6’'b000100 *
ip_cell_cnt = 10) (A.3.c.b.5)

AG(ip_state_i = rx_data -> AX (ip_mem_addr_xr([8:1]==

rx_ip_data_s4 * ip_mem_addr_r([0] == rx_ip_data_s5[7] *
ip_mem_addr_c(8:6] == rx_ip_data_s5(6:4] ~* ip_mem_addr_c{5:0]
= ip_mem_addr_c_plusl * ip_cell_cnt == cell_cnt_minusl)
(4.3.c.b.6)

139

AG(ip_state_i = rx_data * ip_cell_cnt =1 -> AX (ip_state_i =
ip_idle ~ ip_mem_addr_r([8:1]==rx_ip_data_s4 ~ ip_mem addr_r[0]
== rx_ip_data_s5[7] = ip_mem_addr_c(8:6] == rx_ip_data_s5([6:4]
* i_mem_addr c[5:0]1=14) (A.3.c.b.7)

AG(ip_state_i = rx_data * ip_cell_cnt =1 -> AXAX (ip_state_i =
ip_idle * ip_mem_addr_r(8:1]==rx_ip_data_s4 * ip_mem_addr_xr([0]
== rx_ip_data_s5[7] * ip_mem_addr_c[8:6] == rx_1ip_data_s5([6:4]
* ip_mem_addr_c[5:0] = 0)(4.3.c.b.8)

AG(ip_srate_i = rx_data -> AX(ip_mem wr_en = 1)) (A.3.c.b.9)

AG(! (ip_state_i = rx_data) -> AX(ip_mem _wr_en = 0))
(A.3.c.b.10)

AG (ip_state_i = rx_data -> AX (ip_mem_data ==rx_1ip_data_rl))

(A.3.c.b.11)

B.2 Model Checking of the null port controller

By the three methods that we introduce in Section 4.4, we are able to verify any
properties in null port controller. In this section. we explain how to establish
environments and CTL expressions to verify the properties listed in section 4.3.1. To
simplify our model checking without losing the properties of the design, we choose
Counter Reduction with Environment Modification. The environments and CTL
expressions for other methods can be developed in a similar way. The detailed
example has been illustrated in Section 4.4, for the space limitation, we will not

explain them in detail here.

Property 1: The null port controller will be reset properly when either null port

controller reset signal (npc_rst_n) or null port controller disable signal

(ctr_id) asserts.

The environment of this property can use the environment in Figure B.9. The
CTL expression is the following:

AG (npc_rst_n = 0 or ctr_id = 1 -> ip_mem data = (I

140

ip_mem wr_en = 0 * ip_mem_addr_c = 0 ~ ip_mem_addr_r = 0 ~

ip_fab_data = 0 *~ op_fifo_data = 0 ~* op_fab_ack = 0)
(4.1.c.a.l)

Property 2: When input null port controller can accept a cell, transceiver board has a
cell to send and null port controller is in debugging state (ctr_sz = 1),
address will be set up and increment properly, and data will be transfer
correctly.

Property 2 can use the environment of Property 3 (Figure B.9) except that we
give ctr_sz as "1”. The CTL expressions are very similar to (A.3.c.a.l)to (A.3.c.a30)
except that ip_mem_addr_r{8:0] = 0 and ip_mem_addr_c[8:6] = 0, so we do not list
all the CTL expressions here.

Property 4: When input null port controller has a cell to send and it will transfer data
and increment address properly. If it does not receive positive
acknowledgment signal. it will stop sending data, otherwise, it will send
data continually.

The environment for this property is as the following:

(=]
.

typedef num ({S1, S2, S3, S4, S5, S8, s7., Ss8, s9, Ss10, si11,
S12, S13, S1l4, S15} scate;

2. assign rx_ip_data_ran = SND(O, 1, 2, ., 255) ;
3. always @ (posedge clock) begin
4. case (stacte)

5. S15: state = Sl1;

6. Si: state = S2;

7. S2: state = S3;

8. S3: state = S4;

9. S4: state = S5;

10. S5: state = S6;

11. S10: state = S11;

12. S11: state = S12;

13. S12: state = S13;

14. S13: state = S14;

15. S14: state = S15;

16. endcase;

i7. if (state== 81)

141

8. framestarc = 1;

i9. else
23. framestart = 0;
21 rx_ip_soc = rx_ip_soc_ran;
22 ip_empty = 0O;
23 rx_ip_rd_req =rx_ip_rd_req ran;
24 ctr_sz = 0;
25 ctr_id = 0;
26. npc_rst_n = 1;
27. rx_ip_data = rx_ip_data_ran;
28. mem_ip_data = mem_ip_data_ran;
29. fab_ip_ack = fab_ip_ack_ran;
30. always @(posedge clock) begin
31. if (scate = S3) mem_ip_data_s3 = mem_ip_data_ran;
32. else if (state = S4) mem_ip_data_s4 = mem_ip_data_ran;
33.
34. end
35. always @(posedge clock) begin
6. if (state == Sl) begin
37. ip_mem_addr_r_sl = ip_mem_addr_r;
33. ip_mem_addr_c_sl= ip_mem_addr_c:
39. end
49. end
41. always @(posedge clock) begin
4z ip_mem_addr_c_rl = ip_mem_addr_c;
43. end
4 always @(posedge clock) begin
40. ip_mem_addr_c_plusl = ip_mem_addr_c_rl + 1;
41. end
42. end

Figure B.11 Environment of null port controller for Property 4 using Counter Reduction and
Environment Modification

In the environment, we define ip_empty = 0, ctr_sz=0. ctr_id=0. npc_rst_n =
1. so the input null port controller will transmit data bytes to the fabric. When the
input null port controller transmits a data cell to the fabric, in the state S3, the first
byte memory address will be ready, and the in state S4, the first byte will be
transferred to the fabric. Then after that, the data bytes are transferred every byte per
clock cycle. In state S8, the fifth byte data will be transferred to the input port of the
fabric. Since the first byte data is the fabric header, it will be stripped off in the fabric.

The second byte (the output null port controller header) is in the input port of the

142

fabric at S3. and will be transferred to the output of the fabric at S9 because of four
clock cycle delay inside the fabric. The output null port controller detects the second
data byte at S9. and give the acknowledge signal at S11. The acknowledgment signal
will be passed to the input null port controller immediately. The input null port
controller get the acknowledgment signal at S11. If the input null port controller get
the positive acknowledgment signal, it will continually transfer data at S13.
otherwise, the inputs of the fabric will be 0 at S13. To test this, we should have a 15
state environment (S1 to S15) and 10 bytes data to send.
First of all. we have to verify that the memory address are set up and
incremented correctly. The specification of the memory address behavior includes the
following four sub-properties:
sub-property 1. During state S1. S2 and S3, the memory address will not change:
sub-property 2. From state S4 to S12, the memory column address will increment
by 1 per clock cycle:

sub-property 3. At S13. it will be pointed to the first data byte if the input null port
controller received a negative acknowledgment signal, and it
will continue to increment at SI3 if it received a positive
acknowledgment signal.

Sub-property 4. At S14, the memory address will point to the first data byte
because the input port controller has finished transferred a
complete cell.

Sub-property 1 can be expressed by (A.4.c.a.1)(A.4.c.a.2) and (A.4.c.a.3)

AG(state = S1 -> ip_mem addr_r == ip_mem_addr_r_sl *
ip_mem_addr_c == ip_mem_addr_c_sl)

(A.4.c.a.l)
AG(state = S1 -> AX(ip_mem_addr_r == ip_mem_addr_r_sl *

ip_mem addr_c = ip_mem_addr_c_sl))
(A.4.c.a.2)

AG(state = S1 -> AX AX (ip_mem_addr_r == ip_mem_addr_r_sl ~

143

ip_mem_addr_c = ip_mem_addr_c_sl})
(A.4.c.a.3)

Sub-property 2 can be expressed by

AG(state = S4 + state = S5 + state = S6 + state = S7 + state =
S8 + state = S9 + state = S10 + state = S11 + state = S12 ->
ip_mem_addr_r == ip_mem_addr_r_sl * ip_mem_addr_c ==

ip_mem_addr_c_plusl) (A.4.c.a.4)

Sub-property 3 can be expressed by (A.4.c.a.5) and (A.4.c.a.6).

AG(state = S11 =~ fab_ip_ack =1 -> AX AX(ip_mem addr r ==

ip_mem_addr_r_sl* ip_mem_addr_c = ip_mem_addr_c_plusl})

(A.4.c.a.5)
AG(state = S11 =~ fab_ip_ack = 0 ->(ip_mem_addr_r ==
io_mem_addr_r_sl* ip_mem_addr_c = ip_mem _addr_c_sl))
(A.4.c.a.6)
Sub-property 4 can be expressed by (A.4.c.a.7)
AG(state = S14 -> ip_mem _addr r == ip_mem_addr_xr_ sl =~
ip_mem_addr_c = ip_mem_addr_c_sl) (A.4.c.a.7)

Next. we verify the data bytes are transferred correctly. The specification of
the data cell transfer can be described as the following four sub-properties:
sub-property 5. Atstate S1, 82, S3, ip_fab_data = 0:
sub-property 6. At state S4 to S12, ip_fab_data is transferred from the memory to
the inputs of the fabric with one clock cycle delay.

sub-property 7. At S13, if the input null port controller receives a positive
acknowledgment signal at state S11, it will continually transfer a
data byte, otherwise, it will stop sending a data

sub-property 8. At state S14 and S15, the ip_fab_data is equal to zero which means
that there is no data transfer occurred at these two states.

Sub-property S can be expressed by (A.4.c.a.8):

AG(state = S1 or state = S2 or state = S3 -> ip_fab data = 0)

144

(A.4.c.a.8)

Sub-property 6 can be expressed by (A.4.c.a.9) to (A.4.c.a.l7).

AG(state = S3 * mem_ip_data==mem_ip_data_s3 ->

AX (ip_fab_data== mem_ip_data_s3) (A.4.c.a.9)

AG(state = S4 * mem_ip_data==mem_ip_data_s4 -> AX(ip_fab_data
== mem_ip_data_s4)) (A.4.c.a.10)

AG(state = S5 *mem_ip_data==mem_ip_data_s5 -> AX(ip_fab_data

== mem_ip_data_s5)) (A.4.c.a.1ll)
AG(state = S6 *mem_ip_data == mem_ip_data_s6 -> AX
(ip_fab_data==mem_ip_data_s6)) (A.4.c.a.1l2)

AG(state = S7 * mem_ip_data==mem_ip_data_s7 ->AX (ip_fab_data

== mem_ip_data_s7)) (A.4.c.a.13)
AG(state = S8 * mem_ip_data == mem_ip_data_s8 -> AX
(ip_fab_data == mem_ip_data_s8)) (A.4.c.a.l4)
AG(state = S9 * mem_ip_data == mem_ip_data_s?2 -> AX
(ip_fab_data == mem_ip_data_s9)) (A.4.c.a.l1l5)
AG(state = S10 * mem_ip_data == mem_ip_data_sl0 -> AX

(ip_fab_data == mem_ip_data_s10)) (A.4.c.a.l1l6)
AG (state = S11 * mem ip_data == mem_ip_data_sll -> AX
(ip_fab_data == mem_ip_data_sl1l)) (A.4d.c.a.l17)

Another way to express Sub-property 6 is to set up a assistant variable
mem_ip_data_r! which is mem_ip_data with one clock cycle delay, and then sub-
property 6 can be represented as the following:

AG (state = S4 + state = S5 + state = S6 + state = S7 + state
= S8 + state = S9 + state = S10 + state = Sll1 + state = S12 ->
ip_fab_data == mem_ip_data_rl)

Sub-property 7 can be expressed by (A.4.c.a.18) and (A.4.c.a.19).

AG(state = S11 * fab_ip_ack = 1 -> AX AX (ip_fab_data

mem_ip_data_sl2)) (A.4.c.a.18)

AG(state = Sl1l1 * fab_ip_ack 0 -> AX AX(ip_fab_data = 0))

145

(A.4.c.a.l9)
Sub-property 8 can be expressed by (A.4.c.a.20)
AG(state = S14 v state = S15 -> ip_fab_data = 0) (A.4.c.a.20)

In addition. we have to verify that the memory read request signal perform
properly. The expected behavior of ip_mem_rd_req signal are as the following :
sub-property 9. At state S1. S2, ip_mem_rd_req will be de-asserted.
sub-property 10. At state S3 to S12. ip_mem_rd_req will be asserted.
sub-property 11. [If fab_ip_ack is asserted at S11. it will be asserted at state S13:
otherwise. it will be deasserted.
sub-property 12. Atstate S14 and S15, ip_mem_rd_req will be deasserted.
(A4.c.a2l) represents sub-property 9, and (A.4.c.a.22) expresses sub-
property 10. Sub-property 11 is represented by (A.4.c.a.23) and (A.4.c.a.24), and sub-
property 12 is expressed by (A.4.c.a.25).
AG(state = S1 + state=S2 -> ip_mem_rd_req = 0) (A.4.c.a.21)
AG(state = S3 + state = S4 + state = S5 + state = S6 + state =
S7 + state = S8 + state = S9 + state = S10 + state = S11 +
state = S12 -> ip_mem rd_reqg = 1) (A.4.c.a.22)
AG(state = S11 * fab_ip_ack = 1 -> AXAX (ip_mem_rd req = 1))

(A.4.c.a.23)

AG(state

S11 * fab_ip_ack = 0 -> AXAX (ip_mem_rd_req = 0)
(A.4.c.a.24)

AG (state

S14 or state = S15 -> ip_mem_rd _req = 0)
(A.4.c.a.25)
Property 5: An ATM cell can be transferred from transceiver board to the fabric

coherently.

Property S can be deduced from property 3 and property 4. In property 3, we
have proved that the memory address will point at the first data byte after data bytes

transfer (i.e. (A.3.c.a.17)), and property 4 did not change the memory address the first

146

several states (i.e. (A4.ca.l)(A4.ca2) and (A4.ca.3)) which means that the

memory address still points at the first data byte.
Property 6: Memory cannot be read or written at the same time.

This property are checked by using the environments of both Property 3 and
Property 4. The environment of Property 3 (Figure B.9) expresses that the input null
port controller receives the data bytes the transceiver board, so the memory read
request signal (ip_mem_rd_req) will be always de-asserted. On the other hand. the
environment of Property 4 (Figure B.11) express that the input null port controller
transmits data bytes from the memory to the fabric. so the memory write enable
signal will be always de-asserted. CTL expression can be written by the following.
but they are executed in different environments.

AG (ip_mem_wr_en = 0) (A.6.c.a.l)

0) (A.6.c.a.2)

AG (ip_mem_rd reqg

Property 7: Output null port controller will send an acknowledgment signal and
transfer the cell to the FIFO properly after it detects that a cell is coming.

The property can be checked using the same environment as that of property 4
(Figure B.11). As the analysis in property 4, the second data byte transmitted by the
input null port controller at state S5 will reach the output null port controller at state
S9. and the output null port controller will detect the port controller routing byte at S9
and give an acknowledgment signal at state S10. Whether the output null port
controller give a positive acknowledgment or a negative one depends on the last
significant bit of the first byte the output null port controller receive. If the least
significant bit is *“1", the acknowledgment signal is positive: otherwise. it is negative.
So we could use the environment of property 4, and the CTL expression can be
written as the following:

AG (fab_op_data(0] = 1 * state = S9 -> AX (op_fab_ack = 1))

(A.7.c.a.l)

147

AG(fab_op_data[0] = 0 = state = S9 -> AX(op_fab_ack = 0))
(A.7.c.a.2)

So far. we have proved the seven properties of the null port controller, and
these properties examine the main feature of the null port controller. The

experimental results are reported in the next section.

148

