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 Abstract

Buckling analysis of tapered composite plates using Ritz method based on classical

and higher order theories

Shaikh Mohammad Akhlaqué-E-Rasul

Tapered composite plates are being used in various engineering applications such
as helicopter yoke, robot arms and turbine blade in which the structure needs to be stiff at
one location and flexible at another location. Laminated tapered plates can be
manufactured by terminating some plies at discrete locations. Different types of ply drop-
off can be achieved depending on the application. Due to the variety of tapéred composite
plates and complexity of the analysis, no analytical solution is available at present.
Therefore in the present work, the Ritz method is used for the calculation of response.
Classical (Kirchhoff) plate theory has been widely used to model plate behavior, but is
adequate only for thin laminated plates. Since the ratio of the in-plane elastic modulus to
the transverse shear modulus is large for composite plates, Kirchhoff theory, which
neglects transverse shear deformation, is usually inadequate for the analysis of thick or
moderately thick plates. Although the Mindlin-type first-order shear deformation theory
is quite accurate for the gross responses, such as buckling of moderately thick laminates,
the accuracy of solutions will be strongly dependent on predicting better estimates for the

shear correction factors. High-order shear deformation theories can overcome the

il



limitations of the first-order theory by introducing additional degrees of freedom (DOF).
In the present thesis, the buckling of different types of tapered composite plates are
analyzed based on classical laminated plate theory, first-order shear deformation theory
and third-order shear deformation theory. The developed formulation is applied to the
analysis of various types of tapered composite plates. The efficiency and accuracy of the
developed formulation are established in comparison with available solutions, where
applicable. A detailed parametric study has been conducted on various types of tapered
composite plates, all made of NCT / 301 graphite-epoxy, in order to investigate the
effects of boundary conditions, laminate configuration, taper angle and the thickness

ratio.
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The Chapter 1

Introduction, Literature Survey and Scope of the Thesis

1.1 Analysis and design
1.1.1 Buckling analysis in mechanical design

Change in the geometry of a structure or a mechanical component under
compression results in the loss of its ability to resist loading. Stability of structures under
compression can be grouped into two categories: (1) instability associated with a
bifurcation of equilibrium; (2) instability that is associated with a limit of maximum load.
The first category is characterized by the fact that as the compressive load increases, the
member or system that originally deflects in the direction of applied force, suddenly
deflects in a different direction. This phenomenon is called buckling. The point of
transition from the usual deflection mode under load to an alternative deflection mode is
refereed to as the point of bifurcation of equilibrium. The lowest load at the point of
bifurcation is called critical buckling load.

Buckling analysis is basically a sub-topic of non-linear rather than linear
mechanics. In linear mechanics of deformable bodies, displacements are proportional to
the loads. In buckling, disproportional increase in displacement occurs due to a small
increase in the load. The instability due to buckling can lead to a catastrophic failure of a

structure and it must be taken into account when one designs a structure.



1.1.2 Composite material and structure

A composite material consists of two or more materials of different natﬁre but
with complementing mechanical properties and allows us to obtain a material the
performance characteristics of which are greater than that of the components taken
separately [1]. The major reason for the success of composite materials is that no
homogeneous structural material can fulfill all the requirements for a given application.
Originally, structural composites were developed for the aerospace industry as they
offered attractive properties of stiffness and strength, compared to their weight. Thus,
they replaced previously used aluminum alloys, which also combined quite good
mechanical properties with low specific weight. The latter nevertheless suffered major
drawbacks, such as their fatigue behavior. On the other hand, in addition to the well-
known high strength and stiffness to density ratios, fiber composites exhibit high tensile
fatigue resistance, notch insensitivity, ease of fabrication and lower scrap rate.
Furthermore, fiber composites provide the unique opportunity to simultaneously optimize

structure configuration, material make-up, fabrication process and structural integrity.

Today, composites have found their way into a much more wide range of
applications than simply the aerospace sector. Fiber reinforced composite materials are
the engineering materials which are most commonly used in modern industries and
composite plate is one of the most widely used structural elements. They are made by
stacking together many plies of fiber-reinforced layers in different orientations to achieve
the desired properties. Then these stacked layers are permanently bonded together under

heat and pressure using a hot press or autoclave. In some specific applications, composite



plates need to be stiff at one end and flexible at the other end. Such plates can be made by
dropping off some plies at discrete locations to reduce the stiffness of the plates. This

results in a tapered shape, which is considered in the present thesis.

1.1.3 Energy method, variational method and Ritz method

For simple mechanical systems, the vector methods provide an easy and direct
way of deriving the equations. However, for complicated systems, the procedure becomes
more cumbersome and intractable. In such cases, variational statements can be used to
obtain governing equations, associated boundary conditions, and, in certain simple cases,
solutions for displacements and forces at selective points of a structure.

Variational statement of a physical body can be used in two analysis methods:
“energy method” and “variational method”. The ‘energy methods’ refer to the methods
that make use of the energy of a system to obtain values of the unknown at a specific
point. These include Castigliano’s theorems, unit-dummy-load and displacement
methods, and Betti and Maxwell’s theorems. These methods are limited to the (exact or
approximate) determination of generalized displacements or generalized forces at fixed
prints in the structure, and they can not be used to determine the solution (i.e.,
displacements and/or forces) as a function of position in the structure. The phrase
‘variational methods’ refer to the methods that make use of the variational principles,
such as the principle of virtual displacements, to determine approximate displacements as
continuous functions of position in a body. In the classical sense, variational principle has

to do with the minimization of a functional, which includes all the intrinsic features of the



problem, such as the governing equations, boundary and/or initial conditions, and
constraint conditions.

The approximate methods may be employed as the variational statements (i.e.,
either variational principles or weak formulations) to determine continuous solutions of
problems in mechanics. To obtain the governing differential equations and boundary
conditions of various problems we need to apply the virtual-work principles or their
derivatives. These principles involve setting the first variation of an appropriate
functional with respect to the dependent variables to zero. The procedure of the calculus
of variations can then be applied to obtain the governing (Euler-Lagrange) equations of
the problem. In contrast, the method applied in this thesis seeks a solution in terms of
adjustable parameters that are determined by substituting the assumed solutions into the
functional and finding its stationary value with respect to the parameters. Such solution
methods are called direct methods, because the approximate solutions are obtained
directly by applying the same variational principle that was used to derive the governing
equation. The assumed solutions in the variational methods are in the form of a finite
linear combination of undetermined parameters with appropriately chosen functions. This
amounts to representing a continuous function by a finite linear combination of functions.
Since the solution of a continuum problem in general can not be completely represented
by a finite set of functions, error is introduced into the solution. Therefore, the solution
obtained is an approximation of the true solution for the equations describing a physical
problem. As a number of linearly independent terms in the assumed solution is increased,
the error in the approximation will be reduced and the assumed solution converges to the

desired solution of Euler's equations.



The equations governing a physical problem themselves are approximate. The
approximations are introduced via several sources, including the geometry, the
representation of specified loads and displacements, and the material constitution. In the
present study, our primary concern is to determine accurate approximate solutions to
appropriate analytical descriptions of physical problems.

The variational methods of approximation include those of Rayleigh and Ritz,
Galerkin, Petrov-Galerkin (weighted-residuals), Kantorovitch, Treffiz, and the finite
element method, which is a "piecewise" application of the Ritz-Galerkin method.

In the principle of virtual displacements, the Euler equations are the equilibrium
equations, whereas in the principle of virtual forces, they are the compatibility equations.
These Euler equations are in the form of differential equations that are not always
tractable by exact methods of solution. A number of approximate methods exist for
solving differential equations [e.g., finite-difference methods, perturbation methods, etc.).
The most direct methods bypass the derivation of the 'Euler equations and go directly
from a variational statement of the problem to the solution of the Euler equations. One
such direct method was proposed by Lord Rayleigh (whose actual name was John
William Strutt, 1842~1919). A generalization of the method was proposed independently
by Ritz (1878-1909).

The basic idea of the Ritz method is described here using the principle of virtual
displacements. In this method, we approximate each of the displacements vy, u; and us as

a linear combination of the form:

N M
w~U = > c,0/0) (1.1a)

=l j=1



N M
u, Uy = > c¢}¢] (1.1b)

i=]l j=1

N M
uy #Uy = ch3¢z3¢13 (1.1c)
i

=l

Then we determine the parameters Clij, Czij, and ¢’ ij by requiring that the principle
of virtual displacements hold for arbitrary variations of the parameters. In equations (1.1a
- 1.1¢) Clij, Czij, and C3ij denote undetermined parameters, ¢,¢7 (a =1,2,3) denote

appropriate functions of position (x, y, z).
1.2 Literature Survey

In this section, a comprehensive literature survey is presented on the buckling of
tapered composite laminates and on the application of the Ritz method to tapered
composite plates. Important works done on the buckling analysis of uniform and
thickness-tapered composite plates using Ritz method have been chronicled. The
majority of works done on the buckling analysis of plates are limited to homogeneous
material and based on the Classical Laminated Plate Theory (CLPT). The works on
the buckling analysis of tapered composite plates based on CLPT, First-order Shear
Deformation Theory (FSDT) and Third-order Shear Deformation Theory (TSDT) are

presented at the end, though the quantity of such works is of course very limited.



1.2.1 Buckling analysis of tapered laminates based on classical laminated plate

theory (CLPT)

Most of the works on composite plates have concentrated on delamination and
failure analysis of composite plates. Few works deal with buckling analysis of laminated
plates.

Whitney [2] investigated the effect of boundary conditions on the bending,
vibrations and buckling of uniform unsymerically laminated rectangular plates. Ashton
[3] discussed the requirements on the boundary conditions of the assumed series in a Ritz
solution for anisotropic uniform plates for classical and elastically restrained boundary
conditions. Baharlu and Leissa [4] developed a method for the analysis of free vibration
and buckling of generally laminated composite uniform plates having arbitrary edge
conditions using Ritz method. Venini and Meriani [5] dealt with free vibrations of
uncertain composite plates via stochastic Rayleigh Ritz approach. Chao and Kim [6] used
a stress function-based variational method to determine the thermal stresses near the
dropped plies.

Cheung and Zhou [7] obtained the eigenfrequency equation by the use of Ritz
method to develop a new set of admissible functions which are the static solutions of the
tapered beam (or a strip taken from a rectangular plate), under an arbitrary static load
expanded into a Taylor series. Curry, Johnson and Starnes [8] studied the reduction in the
tensile and compressive strengths of graphite-epoxy laminates with thickness
discontinuities due to dropped plies by experiment and analysis. Mukharjee and

Varughese [9] designed a drop-off to reduce the stress concentration by studying the



effect of important parameters that determine the strength of laminate. Varughese and
Mukharjee [10] developed a novel ply drop-off element for the analysis of tapered
laminated composites. Thomas and Webber [11] applied a fracture mechanics based
analysis to predict the tensile delamination load of tapered laminated plates. Mukherjee
and Varughese [12] presented a global-local approach for the analysis of tapered
laminated composites. Wang and Lu [13] investigated the buckling behavior of local
delamination near the surface of fiber reinforced laminated plates under mechanical and
thermal loads. Gaudenzi [14] studied the effect of the presence of a delamination on the
buckling load of composite laminates under compression loads. Fish and Lee [15]
investigated the delamination of tapered composite laminates with multiple internal ply
drop steps. They conducted both experimental testing of glass-epoxy coupon specimens
and finite element modeling of the tapered region. Zabihollah [16] presented the vibration
and buckling analysis of uniform and tapered composite beams using conventional and
advanced ﬁ‘nite element methods based on the classical laminate theory and the first-
order shear deformation theory. DiNardo and Lagace [17] conducted an experiment and
analytical investigation using Ritz method on the buckling and post buckling behavior of

laminated graphite-epoxy plates with ply drop off under uniaxial compression.



1.2.2 Buckling analysis of tapered laminates based on First-order Shear

Deformation Theory (FSDT)

Few works are available on buckling analysis of tapered laminated plates using
Ritz method based on FSDT.

Whitney [18] developed a procedure for accurately calculating the mechanical
behavior of a thick composite laminate or sandwich plate of arbitrary stacking sequence.
Kabir [19] presented an analytical boundary-continuous solutibn of moderately thick
plates with arbitrary lamination for simply supported boundary condition. Jensen and
Lagace [20] performed an experimental and an-alytical investigation on the buckling and
post buckling behavior of generally anisotropic laminated thick plate. The Rayleigh-Ritz
and finite element methods were used to predict the buckling loads; different anisotropic
couplings inherent in unbalanced and unsymmetric laminates were isolated and their

effects were studied.

1.2.3 Buckling analysis of tapered laminates based on Third-order Shear

Deformation Theory (TSDT)

The works on the buckling analysis of tapered laminated plate using Ritz method
based on TSDT are very rare.

Wu and Chen [21] used a local higher-order deformation theory to determine the
natural frequencies and buckling loads of laminated composite plates. Matsunaga [22]

analyzed natural frequencies and buckling stresses of cross-ply laminated composite



plates by taking into account the effects of shear deformation, thickness change and
rotary inertia. Wang, Tseng and Lin [23] developed a higher-order shear deformable plate
finite strip element and employed it for the calculation of critical buckling loads of
laminated composite plates. Kulkarni and Bajoria [24] presented the finite element
formulation of a degenerate shell element, using higher-order shear deformation theory
taking the piezoelectric effect into account. Chattopadhyay and Radu [25] used a higher-
order shear deformation theory to investigate the instability associated with composite
plates subjected to dynamic loads. Matsunaga [26] analyzed interlaminer stresses and
displacements in cross-ply laminated composite and sandwich plates subjected to lateral
pressures by a global higher-order plate theory. Matsunaga [27] analyzed natural
frequencies and buckling stresses of laminated composite beams by taking into account
the complete effects of transverse shear and normal stresses and rotary inertia. Rao and
Ganesan [28] investigated harmonic response of width-tapered composite beams by using

a finite element model based on a higher-ofder shear deformation theory.

1.3  Objectives of the present work

The objectives of the present thesis are: (1) to determine the mechanical behavior
of tapered laminates considering the effect on the stiffness of plies caused be the taper
angle; (2) to analyze the thickness-tapered composite plates for buckling using Ritz
method based on Classical Laminated Plate Theory (CLPT), the First-order Shear
Deformation Theory (FSDT) and Third-order Shear Deformation Theory (TSDT), and (3)

to conduct a detailed parametric study on the buckling of tapered composite plates.
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The formulations using Ritz method are developed. The formulations are
analyzed for their accuracy and performance in the buckling analysis of uniform and
thickness-tapered composite plates based on the classical laminated plate theory, the first-
order shear deformation theory and the third-order shear deformation theory. These
formulations are then used to analyze the buckling of tapered composite plates with

different types of tapers and subjected to compressive axial forces.

1.4  Layout of this thesis

The present chapter provided introduction to the thesis work and literature survey
on the Ritz method and other related methods used in laminate analysis and the buckling
analysis of uniform and tapered composite plates.

In chapter 2 different types of taper models are analyzed applying Classical
Laminated Plate Theory (CLPT) and then results are evaluated by comparing with exact
solutions and beam theory.

In chapter 3 the taper models are analyzed applying First-order Shear
Deformation Theory (FSDT) and results are compared with that obtained based on
CLPT.

In chapter 4 taper models are analyzed applying Third-order Shear Deformation
Theory (TSDT) and results are compared with that obtained based on CLPT and FSDT.

Chapter 5 is devoted to the parametric study, which includes the effects of the
boundary conditions, laminate configurations, taper angle, taper model and axial forces
on the buckling of the tapered plates.

Chapter 6 brings the thesis to its end by providing an overall conclusion of the

present work and some recommendations for future work.
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Chapter 2

Buckling Analysis Based On Classical Laminated Plate Theory (CLPT)

2.4 Introduction

The mechanical behavior of laminated composite plates is strongly dependent on
the degree of orthotropy of individual layers, the ratio of transverse shear modulus to the in-
plane elastic modulus and the stacking sequence of laminates. Buckling problems which have
attracted the attention of many researchers up to the present are among the most important

problems for laminated composite plates.

The application of tapered laminate is common in wing and fin skin structures,
helicopter rotor blades, yokes, etc. The rotor blades of helicopters or wings of an aircraft
have thick section of laminate at roots and thin sections at their tip obtained through
termination of plies at different locations. On the other hand, the termination of internal plies
is an effective method for stiffness tailoring which is not possible with constant thickness
laminates.

The classical laminated plate’ theory (CLPT) based on ‘Kirchhoff Hypothesis’ is

considered in the present chapter. Within the limitation of CLPT, the Ritz method is used

12



with trigonometric or plate functions as displacement functions. These functions are modified

such-that the geometric boundary conditions are satisfied.

The [A], [B] and [D] matrices of tapered laminate are calculated considering fiber
orientation and taper angle. Applying Ritz method the system of equations for buckling is
developed. Critical buckling loads of tapered laminated plates are compared with that of
tapered laminated beams, analyzed using finite element method. Finally, different taper

models are analyzed for different boundary conditions.

24 The [A], [B] and [D] matrices of tapered laminate

2.4.1 Steps to calculate the [A], [B] and [D] matrices of tapered laminate

We shall consider as in the Figure 2.1 a layer of unidirectional material in a
tapered laminate with principal directions (x”, y”, z”), the plane (x”, y”) being identified
with the plane of the layer and the direction x” with the direction of the fibers- the warp
direction. Tapered laminates make an angle ¢ with reference axis x and fibers make an
angle 0 with the direction x’. The angle ¢ is obtained by rotating laminate about y axis
and the angle 0 corresponds to the rotation of fibers about z’ axis as shown in the Figure
2.1. Further details are shown in Figures 2.2 and 2.3. Throughout this chapter clockwise

direction is considered negative and anti-clockwise positive.

13



Figure 2.1 Orientation of fibers and laminate

The [A], [B] and [D] matrices are calculated applying the following steps:

Step-1: Calculation of stiffness matrix for transversely isotropic ply.
Step-2: Calculation of stress and strain transformation matrices.
Step-3: Development of stiffness matrix for each ply in the tapered laminate.

Step-4: Calculation of elasticity equations for tapered laminate considering plane

stress state.

Step-5: Geometric analysis of tapered laminate and resin pocket.

Step-6: Calculation of [A], [B] and [D] matrices.
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2.42  Step-1: Stiffness matrix of ply

Hooke’s law for orthotropic materials in principal directions can be written as [29]:

O-XKX' ’_C"ll CHIZ C"13 O 0 0 gxhx'
O-y"y" C"12 C"22 C"23 0 0 gy_‘y
O, - C"s C'y C'y 0 0 0 &y (2.1
T o 0 o0 CW 0 0 [l7,,
T 0 0 0 0 C' 0 |7,
) L O 0 0 0 0 ||V

where ¢y and 7'; are the normal stress and shear stress respectively and, &'y and 7'y
are the normal strain and shear strain respectively with i, j = x',y",z" in coordinate

system x y'z . C'11,C'z....etc are the corresponding stiffness co-efficients.

Equation (2.1) can be expressed as:

o'} =[cHe} 2.2)

The stiffness co-efficients are:

C" = (1-v,vy, ) AE,E,A) 2.3)
C" = (v, +Vav ) (E,ELA) 24
C" = (v, +v,v, )(E E, A) 2.5)
C", = (v, ) KE,E,A) 2.6)
C"yy= (Vo +Vy Vi YI(E E,A) 2.7
C" =1 =v,v, ) KE,E,A) 2.8)
' =G, 2.9)
cr =G, (2.10)
-G, 2.11)
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A=(1=vpVy =VyVy —VyVis — 2V vV ) (B EL ES) (2.12)

where, v, E, and G, with1i, j=1, 2, 3, are the Poisson’s ratios, elastic moduli

ij>

and shear moduli respectively.

In the case of transversely isotropic ply:

Vi =V, (2.13)
Vi =V (2.14)
vy, =V,E /E (2.15)
vV, =V, E, E| (2.16)
E, =E, (2.17)
G, =Gy, (2.18)

2.4.3 Step-2: Stress and strain transformation matrices

2.2.3.1 Axis Transformation For Rotation About z” Axis (clock- wise rotation)

Direction cosines are tabulated in the following table [30].

X" y” z” y" | Yy
< L; = cos(e) | L, =-sin(e) L;=0 . .
y’ | Mj =sin(e) | M, =cos(e) M;=0
0
. —
z [ N;y=0 N, =0 N3 =1 z", z'

Table 2.1 Direction cosines for rotating x” and y” axes about z” axis
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Stress transformation can be expressed applying direction cosines mentioned in

the Table 2.1 [31]:

- -

2 2 ]

o] [ 1 L 2LL 2L, 2L, |[o
2

Oy ]Mlz M, Alsz 2M,M, MM, MM, Cyy

jo | NN N 2NN 2NN, NN, %] (2.19)
| | NM, MN, MN, MN,+MN, MN+MN, MN-+MN,|7.

To| | NL LN, LN, LN+LN, LN+LN, LN+LN, |[%;

o) LLM, ML, ML LMLM, LM+LM, LM+IM, ||%y
Equation (2.19) can be expressed as:

fb'}=[r.Jo (2.20)

where {0"} and {0'"} are the stress vectors in coordinate systems xy'z and

x'y"z" respectively. [T,,] is the stress transformation matrix due to fiber orientation
angle 6.
Substituting the values of L; and M; ,1 =1, 2, 3, from Table 2.1, transformation

matrix [, | takes the form:

[ cos’ 6 sin® 0 0 0 0 —2cosOsind |
sin’ @ cos’ 0 0 0 0 2cosfsin0
[To'G ]= 0 0 1 0 .0 0 (2.21)
0 0 0 cosO sinf 0
0 0 0 —sinf cosH 0
| cosOsin@ —cos@sinf 0 0 0 cos’0—sin’ 0

Similarly, strain transformation can be expressed applying direction cosines mentioned in

the Table 2.1 [31]:

| | B L L LL L1, LL e
B NN N NN NN, NN, 8| 9y
e[ [2NM VN, 2MN, MNAMN, MN+MN, MN+MN, (|7,
Vel |2ML 2LN, 2LN, LN,+LN, LN+LN, LN+LN, ||V
V| [2LM 2MI, 2M[I, LM, +LM, LM+LM, LM+LM, |7y
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It can be written as:
1=, Xe} 2.23)
where ‘{8} and {8} are the strain vectors in coordinate systems x'y'z and

x'y'z respectively. In terms of fiber orientation angle @ the strain transformation

matrix, |7, |, can be defined as:

cos’ 0 sin* 0 0 0 0 —cosOsinf |
sin’ 0 cos’ @ 0 0 0 cos@sinf
- coo 0! X (2.24)
0 0 0 cosf sinf 0
0 0 0 —sinf cosO 0
| 2cos@sing —2cosfsind 0 0 0 cos’@-sin’0

From equations (2.21) and (2.24) we can relate the stress and strain

transformation matrices as:

[T,]" =T, ] (2.25)

[T ] =[T,] O (226)

where, superscript ‘t’ denotes the transpose.

2.2.3.2 Rotation of laminate about y’ axis (clock- wise rotation)

Direction cosines are tabulated in the following table [30].

b 2 b

X y A z

Li=cos(p) |L>=0 |L;=sin(p)

M1:0 M2=1 M3:0 X !

N; =-sin(p) | N2=0 | N3 = cos(¢p)

Table 2.2 Direction cosines for rotation of laminate about y’ axis.
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Stress transformation can be expressed applying direction cosines mentioned in

the Table 2.2 [31]:

-

L’

N,
| LM,

NM,

L’

M,N,
L2N2
M,L,

L’
M’

N2

3

2L,1,
2M, M,
2N, N,

2L L, 2L L,
2M, M, 2M,M,
2NN, NN,

M,N;, MN,+M,N;, MN +MN, M,N,+MN,

LN, LN,+LN,

LN, +LN,

L,N,+L N,

M3L3

LM, +L,M,

LM +LM, LM, +LM,

Equation (2.27) can be expressed as:
{G} = [Tcrw ]{G}

where {0'} and {G'} are the stress vectors in coordinate systems xyz and x'y'z'

respectively. [T, ] is the stress transformation matrix due to taper angle ¢ .

xy

(2.27)

(2.28)

Substituting the values of L; and M;, 1 =1, 2, 3, from Table 2.2 the transformation

matrix, [7,], can be defined as:

7., 1=

cos’ @
0
sin” @
0
—cos@sing

0

0
1
0
0
0
0

sin” @ 0
0 0
cos’ @ 0
0 cos(p)
cos @ sin @ 0
0 sin @

2cos@sing 0

0 0

~2cos@sing 0
0 —sing

cos’ @ —sin” @ 0
0 CosQ |

(2.29)

Similarly, strain transformation can be expressed applying direction cosines

mentioned in the Table 2.2 [31]:

<

LL
MZ M22
NN
2NM, 2M,N,
NI 2LN,
[2LM, 2M,L,

L’ LL, LL, LL,
M32 M2M3 MM MMZ
N/ NN, NN, NN,
2MN, M,N,+M,N, MN, +MN, M,N,+MN,
2LN, LN, +LN, LN+LN, LN-+LN,
ML, LM, +LM, LM +LM, LM +LM, |
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Equation (2.30) can be written as:

{e}= [Tap ]{8} 2.31)

where {¢} and {g} are the strain vectors in coordinate systems xyz and xy'z
respectively. In terms of taper angleg the strain transformation matrix, [7,,], can be

defined as:
[ cos?e 0 sin® @ 0 cos@sin g 0 |
0 1 0 0 0 0
[Tw ]: sin’ ¢ 0 cos’o 0 —cos@sing 0 (2.32)
0 0 0 cos @ 0 —sin @
—2cospsing 0 2cospsing 0  cos’g-—sin’g 0
i 0 0 0 sin @ 0 cosQ |

From equations (2.29) and (2.32) the stress and strain transformation matrices can

be related as:

Ir,I"=Ir,} (2.33)

Ir, " =I,! (2.34)

2.2.4  Step-3: Stiffness matrix of each ply in the tapered laminate

2.2.4.1 Accounting for the taper and fiber angles

To account for the taper and fiber angles in the stiffness equation with respect to
the reference co-ordinates we need to know the relative orientation of reference co-
ordinates with respect to ply material co-ordinates. To do so, we first rotate laminate
about y axis, then fiber orientation is obtained by rotating about z* axis (xyz - x’y’z’ —

20027

x”’y”’z”). Due to anti-clockwise rotation the taper angle (¢ ) and fiber orientation angle

(0) of Figure 2.3 are positive.
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The procedure is shown in the following Figures:

4

R S ——

U

Fig.-2.2.a Fig.-2.2.b

Fig.-2.2.¢ Fig.-2.2.f

Figure 2.2 Laminate and ply material co-ordinates
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The tapered laminate is shown below:

Thick Part
Tapered Part
Z A y Thin Part
v/
| 7 o
l
|
X
o -

I Thick part +—— Tapered part —-+— Thin part —

¢ = taper angle, 0 = fiber angle

Figure 2.3 Final orientation of ply after rotation

2.2.4.2 Tapered laminate stiffness calculation

The elastic properties of a layer are given in its principal directions by the

equation (2.1) but the final form of the equations are in reference co-ordinates, so layer

properties should be transformed to reference directions from its principal directions

through the following rotations.

--First, rotation of x” and y” about z” axis (see Figure inside Table 2.1)

--Second, rotation of x* and z’ about y’ axis (see Figure inside Table 2.2)
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Combining equations (2.20) and (2.28) we get,

{o}=17, )T flo"} 233)

From equations (2.23) and (2.31) we get

{e}=17,1T, lie"} (2.36)

Solving for {O‘ } and {g } from equations (2.35) and (2.36) and using those values
into equation (2.2) and combining the equations (2.25) and (2.33) we get:

o} -l I el I, e @37

The above equation can be expressed in a short form:

[o]=[CHe} (2.38)

Thus, the stiffness matrix [C] in the reference coordinate system xyz can be
expressed by the stiffness matrix [C”] in the principal coordinate system x"3"z" and the
transformation matrices as:

[c]=1r,, Iz, I Tr, T, | 239)

The values of [C”], [Tee] and [T4,] are given in the equations (2.1), (2.21) and
(2.29) respectively.

2.2.5 Step-4: Elasticity equations for plane stress state

In case of plane stress state,

640 ifi=1,2,6 (2.40)
g#0 ifi=1,2,3,6 (2.41)
6i=0 if i=3,4,5 (2.42)
g=0 ifi=4,5 (2.43)

23



where, o; and g; are the stress and strain respectively in the reference co-ordinate
system Xyz.

Applying equations (2.40 - 2.43) in equation (2.38):

0, _Cll C, C; C, Cy Cm— €
G, Ch, C, Cy Cf C Cy &,
) o,=0 L C; Cy Cy Gy G Cy ) &3 [ (2.44)
o, =0 Cu Cu Gy Cy Ci Culle, =0
05 = Cs Cy Cy Cu C Cilles =
L O6 )y _C16 Cp Ciy Cu C C66_ L €6 e
And also:
c,=C,¢ +C,e, +Cye, +C (2.45)
0, =Ch& +Cphe, +Chpe, + Chreg (2.46)
0=Ce +Cpe, +Cie, +Ciegg (2.47)
0 = Cls&, +Cpe, +Cyge; + Cyig (2.48)
Solving equations (2.45 - 2.48) :
g; = —(1/C3 )(C 38, + Cpe, + Cyey) (2.49)

0, =(Cpy —C?13/Cy)e; +(Cpy = C3Cy / Ci)ey +(Cr = C15Cis /Cii)gg (2.50)
Equations for 6, and o¢ are analogous to that for oy

Therefore, the reduced stiffness matrix is in the form:

o, O On Gelle
o, =10n On Ox [ (2.51)

O6J 42 O Ox O 6 ) xyz
where,
Qi1 =Cir - CP13/ Cs3 (2.52)
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Q16 = Ci6 - C13Cs¢/ C33 (2.53)

Q12 = Ciz - C13C23/ Cs3 (2.54)
Q2 =Cp - C3/ Cs3 (2.55)
Q26 = Ca6 - C23C36/ Cs3 (2.56)
Qes = Cos - C*3¢/ C33 (2.57)

2.2.6 Step-5: Geometric analysis of tapered part of the laminate

2.2.6.1 Tapered laminate
At any section E-E shown in Figure (2.4):

(a) The distance from the ply centre to mid-plane of the laminate is
(z)y=(()y + (h1)y) /2 ;k=1,2,3...n (2.58)

(b) The parameter € is given by:

ek = (holk - (o)1 (2.59)
S S— E
¢
A Ply
(ho)k .
(h5) (h o) k-1 e
Zk Ky,
¢
B C

Figure 2.4 Detailed Drawing of a Ply in the Tapered Part Of The Laminate
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Considering slope o, the following two trigonometric relations can be written:
(he)y =-tan(e )*x + (hok (2.60)
(hi1)y = -tan(e )*x + (hoki1 (2.61)
Therefore, from the equations (2.58), (2.60) and (2.61) we get:

(z1)y = -tan(e )*x +hy (2.62)

Where, hiz ( (ho)k + (ho)k‘l )/2 and 1= 1, 2....n (263)

2.2.6.2  Resin pocket

Resin pocket is represented as a combination of inclined imaginary isotropic plies
[16]. Resin pocket is divided as needed. In the Figure 2.5 resin pocket is divided into two
parts by the line ‘de’. Area ‘A-d-e-C’ = area ‘A-d-h-i” as Aehy = AyiC. Similarly area
‘d-B-e¢’ = area ‘d-B-f-g’ as ABfx = Axge; where A represen;cs the area of specified
triangle.

Stiffness of each ply is calculated separately and cumulative stiffness is the total -

stiffness of resin pocket.
The parameter (€y) and the distance from the ply centre to mid-plane (zy) of resin
plies are calculated using the equations (2.59) and (2.62) respectively. Variable length,

L., is calculated as follows:

L, = cot(p) [(TYN)*i - (T, / (2* Np)] (2.64)
where,

T; = Thickness of composite lamina,

N; = No. of divisions of each lamina,
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A
(ho & d
(hy) \\\\
g i
(ho) x-1 ﬁ~\\ 0
S
| ~ 1
5 ~.
B | ~_ X e Y ¢
T~ ~
L1 f h
L2

Figure 2.5 Detailed Drawing of Resin Pocket

2.2.7  Step-6: [A], [B] and [D] matrices of tapered laminate

Based on CPLT, the equations for co-efficients of matrices [A], [B] and [D] can

be written as [29]:

4; = Zn:(Qy-)kek (2.65)
B, = ZH:(Ql,)kekzk (2.66)
D, = i(gy)k(ekzzk +e’c/12) (2.67)

€x and zy are calculated using the equations (2.59) and (2.62) respectively. Qj; is

calculated from the equations (2.52) to (2.57).
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2.3 Analysis of Transformed Reduced Stiffness (TRS), Q;

A computer program is written in MATLAB® to compute and plot the values of
transformed reduced stiffness, Qj; , 1,j = 1,2,6 as a function of ¢ and 6; where the range of
angles in plot are: -20°< ¢ >20° and -90°<0>90° for two dimensional plot, and -90°
<@>90° and -90°<6>90° for three dimensional plot. In practice, taper angle ¢ varies

from 2°to 15°.

23.1 Plots of Oy
Figures 2.6 to 2.8 show the plots of Qj; with constant taper angle (¢) and varying
ply orientation angle (0). On the other hand Figures 2.9 to 2.11 show the plots of Q;; with

constant 0 and varying ¢. And the Figure 2.12 is the plot of Q; where both ¢ and 6 vary.

x 10'0 Variation of T.R.Stiffness with fiber orientation angle for On-diagonal terms
15
r T T T T T T T T T

-7 Q11
taper angle = 0 e Q22
L —— Q66
.10
©
S
S
0‘ p o 1 Y
-100 -80 50 -40 -20 0 20 40 60 80 100
Fiber Orientation Angle (Degrees)
x 10'° Variation of T.R.Stiffness with fiber orientation angle for Oft-diagonal terms
4 T T T T T T j — T T T Q12
// —— Q16
2 —e— Q26
— // - e
©
g / 7
Ly i
5
2
_4 ! 1 | | I I ! ! |
-100 -80 . -60 -40 -20 0 20 40 60 80 100

Fiber orientation Angle (Degrees)

Figure 2.6 Plot Of Qy For Constant Taper Angle (0°) And Varying Fiber Orientation
Angle
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x 10'° Variation of T.R Stiffness with fiber orientation angle for On-diagonal terms

15
T T T T T T [ T T -—V—‘ Q11
- taperangle=8 |1 - Q22
JRPTS < T e Q86
o]
S
g s
-100 -80 -60 -40 -20 0 20 40 60 80 100
Fiber Orientation Angle (Degrees)
x 10'° Variation of T.R Stifiness with fiber orientation angle for Ofi-diagonal terms
-~ Q12
—— Q16
(]
o
6‘
4 | | | 1 i L [ | L
-100 -80 -60 -40 -20 0 20 40 60 80 100

Fiber orientation Angle (Degrees)

Figure 2.7 Plot Of Q; For Constant Taper Angle (8°) And Varying Fiber Orientation
Angle

x 10'° Variation of T.R.Stiffness with fiber orientation angle for On-diagonal terms

15 T T T T 1 T T T T A—? 011
—— Q22
e Taper angle = 15 /_/A\ —e Q66
©
&
8‘
; . s v
-100 -80 -60 -40 -20 0 20 40 60 80 100
Fiber Orientation Angle (Degrees)
x 10'° Variation of T.R.Stiffness with fiber orientation angle for Off-diagonal terms
T T T T T T T T T ———57— Q12
—— Q16
2 —— Q26
© X 7
L or [
© 5 Taper angle = 15
_4 I | | | | | } I I
-100 -80 -60 -40 -20 0 20 40 60 80 100

Fiber orientation Angle (Degrees)

Figure 2.8 Plot Of Oy For Constant Taper Angle (15°) And Varying Fiber Orientation
Angle
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x 10"° Variation of T.R.Stiffness with taper angle for On-diagonal terms

15 T T T T T T T V Q11
—— Q22
.10 Q
é\; 9 Fiber orientation angle=0 v
O 5 i —4
0 » hd » . > 4
-20 -15 -10 -5 0 5 10 15 20
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x 10° Variation of T.R.Stiffness with fiber orientation angle for Off-diagonal terms
4 T T T T T T T Q12
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g
= 0
G .
oL Ply orientation angle=0 |
N v
-4 L 1 [ | 1 1 L
-20 -15 -10 -5 0 5 10 15 20

Taper Angle (Degrees)

Figure 2.9 Plot Of Q; For Constant Fiber Orientation Angle (0°) And Varying

Taper Angle
x 10"° Variation of T.R.Stifness with taper angle for On-diagonal terms
8 ’7 T T T T T T T Q1 1
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Figure 2.10 Plot Of Oy For Constant Fiber Orientation Angle (30°) And Varying Taper

Angle
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x 10 Variation of T.R.Stiffness with taper angle for On-diagonal terms
8 T T T T T T
- Q11
S e e Q22
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© Fiber orientation angle = 60
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x 10'®  Variation of T.R. Stiffness with taper angle for Off-diagonal terms
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2.3.2  Observations from Qy plots

» In the Figures 2.6, 2.7 and 2.8 the values of Qj change rapidly with the
increase of fiber orientation angle, 6.

> On the other hand, in the Figures 2.9, 2.10 and 2.11 the values of Q;; change at
a rate slower than that in previous Figures with the increase of taper angle, .

» The co-efficients Q. Qi and Qy¢ are sensitive to fiber orientation angle (0)
for a given taper angle ().

» On the other hand, Q;; and Q;, are sensitive to both taper angle (¢) and fiber
orientation angle (6).

» In the Figure 2.12 only one on-diagonal stiffness, Qi; and one off-diagonal
stiffness, Q¢ are plotted. The fiber orientation angles have more influence on

Q;j than the taper angles.
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24 Buckling analysis of tapered plate using Ritz method

In the case of a tapered plate with various boundary conditions on the edges the

exact solutions to the buckling problem are not available as the terms D¢ and Dag

introduce odd derivatives of w, Therefore, approximate methods such as the Ritz method

have to be used.

2.4.1 General expressions for buckling analysis

Strain energy of a laminate based on classical laminated plate theory, for which

GZZ=O:’YXZ:’Y}IZ:

U=12][[lefalfe°

0, can be written as [17]:

+2{ }[B

(2.68)

where, {80} and {«} are the mid-plane strain matrix and curvature matrix

respectively that are expressed as:

Ou

4

ox
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where, u,, v, and w, are the mid-plane displacements in x, y and z directions.
The matrices [A], [B] and [D] are given by the equations (2.65), (2.66) and (2.67)
respectively.
Following assumptions are considered [29]:
e Initial curvature (pre-buckling) is neglected, w', = 0;

¢ Laminate is symmetric, Bjj= 0;

e Pure bending, u, = v, = 0.

Considering these assumptions the equation (2.68) becomes:

U =1/2 [ {c}' [ DY xay (2.71)

oh o*w, Y’ 0w, 0w o*w, )
U=1/2 [ [|D,|===| +2D,| =520 |+ D, | T
420 x50 ox Ox oy oy

. (2.72)
2 2 2 2
+4 DMBVZ“ D, & Ve |07 W, | e | ldxdy +C
X oy Ox0y 0
The potential energy owed to the uniaxial load Ny is:
aw 2
W=-1/2){| N < | dxd 2.73
/2){f. [ - j y 2.73)
The approximate solution is expressed as a double series:
M N
w,(6,9)= 2. 4, X, ()Y, () (2.74)

m=1 n=1
The functions X(x) and Yn(y) are chosen so as to satisfy the boundary conditions
and the co-efficients Ap, are determined by the stationarity condition:

oU oW
o4, od

(2.75)

mn

where U and W are given by the equations (2.72) and (2.73) respectively.
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Now applying the approximate solution of w,, equation (2.74), into equations

o

(2.72) and (2.73) and differentiating with respect to Ay, , we get [29]:

+2

(2.76)

L b
—aw—=iZN:{N,,IdX’" %IY Y.dy}Ay. (2.77)
/ 0

where N, = -N, ; L and b are the total length and width respectively of the

laminated plate.
2.4.2 Buckling analysis of thick part

For thick part (Dj)), is calculated from equation (2.67) by setting the taper angle to

zero (¢ = 0) and differentiating potential and strain energy equations with respect to App:

aWﬂ:szj{No [Hn aX, f Ydy} (2.78)

where, L, is the length of thick part of the laminated plate and subscript ‘a’ stands

for thick part.



oU MM d’Xx, d
azzz{jwn) —= j Y dy
i=l j=1 0

“ d*X, bdZYn “ d’X, hood’y,
+|:J‘(D12)aXm dxz dXIdyz dey"l' J.(DIZ)HT—JX—Z——X"dx.“Y"_dy—Zdy

0 0 0 0
b d’y d*Y, La by dY
) 7, ;dy+4I<D“>,,dX'" X g (B g
dc dx Jdy dy
K dx , d*X,  %dy, d*Xx dx, ' dy,
+2| [(Dy), o dxojd Y, dy + j(Dm) —Ex?ﬂ!Yn dydy
K dx, . hed’y, dY X tdy, d’Y,
+2| [(Dy), X, —tdx [— fdy+j(D26> = X dy [ ——dy |1 4,,
: dc 5 dy° ady dx gdy dy

2.4.3 Buckling analysis of tapered part

Tapered part of laminated plate is divided into two parts: transversely isotropic

tapered laminate and isotropic resin pocket.

2.4.3.1 Laminate

(Djjp is calculated from the equation (2.67) using the values of Q; from equations

(2.52 - 2.57) and differentiating potential and strain energy equations with respect to Appy:

oW, :ii{l\’f dx, dx, f dey} 2.50)
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oA :iﬁ{I(Dll)bdX d IYY'dy

L d*Xx d*X fd'Y,
{jwn)bxm 'dxj "Y,dy+f(Dn>,,7'"—X-dij P

] de 2 1 ; n 2
d’y, d’Y dx , dx, , ‘'rdy, dv,
+j(Dzz>X dej d—dy+4J<D“>b o Ofdy 5
d

dx , d*X X, dx, . dr,
+2“(D16)b - dxz’dxj “Y,dy + j(Dw) ——m—dx (¥ —’dy}
Q

Lb . b 2 ay b dZY_
2 I(DZG)medX’dxjd }: fdy+j(D26),,deX,.dxde"—;dy 4,,
5 dc g ody” dy dx )&y Ay

(2.81)
where, L, is the length of tapered part of the laminated plate and subscript ‘b’

stands for tapered part.

2.4.3.2  Resin pocket

Reduced stiffness matrix, [Qj];, of isotropic material is in the form of :

E vE
0
1-v? 1-v?
vE E
1 = 0 2.82
[9,), 1-v? 1-y? &5
0 0 E
i 2(1+v) |

where, E is the Young’s Modulus and v is the Poisson’s Ratio.

For resin pocket:
e ply angle is zero (8 = 0);
o Dig =Dy=0;

e (Dy); is calculated from equation (2.67) by using the values of (Qj), from

equation (2.82);
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e Lengthis variable (L,); i=1,2 ...... n

e Stiffness and Potential Energy (P.E.) are calculated separately for each
imaginary ply;

e Cumulative stiffness and P.E. are the total stiffness and total P.E. of resin
pocket.

For each resin layer:

oU M I Lty dix. °
- = D)), | ===t |V, Y,d
aAmn ;;{( ll)ré[ dx 2 dx 2 (.)l"' jay
L 2y b g2 L 42 b dY.
s D), | (X, C e [ ey gy [ K [y, L, (2.83)
g dx dy 7 dx? dy2
0 0 0 0
L b 2 2 L »
’ dv,d’Y, cdX dx . hdy dy,
v (D), [X,X,de [S2 " day 4D, [Fom Cige [Ca Tagy Ly
0 0 dy 0 dx dx 0 dy dy
ow, M| ax,dx, '’
= No s ——dx |V, Y,d 2.84
0A, Zl,zl{ ° de ax J,,,y (2.84)

where, upper limit of the integration, L, is the length of imaginary resin ply in x
direction of the tapered laminated plate , subscript ‘r’ stands for resin and b is the width

of resin plies.

2.4.4 Buckling analysis of thin part

For thin part (D). is calculated from the equation (2.67) by setting the taper angle
to zero (¢ = 0) and differentiating potential and strain energy equations with respect to

Amn:

oW, X, fdx, ax, '
C=ZZ{N0 | dx’";’dijnY,dy} (2.85)
/ 0 0
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oU, A |* dX
oy =ZZ{I(DH>C jY,dy

mn i=1 j=1 | o
- ax,, hdY, d’y,
| (o). x, L iy (D), L2 ’
[6‘- 12 dx2 (;"dy J‘ 12 dy2
b
dx,  rdv, dv,
j(Dzz) X, de “ Ojd
Le . 2 . b dy
+2 j(D X, 4 )z(’dxde”Y I(Dm) X, g‘—dx_"Yn-—’dy
L0 dx dx 0 dy dx 0 dy

X,
dx

dy dy’

[ Le , b 42 4y . Lc b sz
+2 J.(D26)0Xm dX’dxjd Yn . dy+ J(D26)c dex de" jay Amn
dx dy fy ; ;

(2.86)
where, L. is the length of thin part of the laminated plate and subscript ‘c’ stands

for thin part.
2.4.5 Final form of the equation for critical buckling load

The strain energy equations of all segments, that are thick, taper, resin and thin

parts, are combined together by adding the equations (2.79), (2.81), (2.83) and (2.86):

OU (gupureey OU, 08U, 08U, 08U
= +

a

+ + £ (2.87)
04 04 04 0A 04

mn mn mn mn mn

Likewise, final potential energy equation is obtained by adding the equations
(2.78), (2.80), (2.84) and (2.85):

6Wa+ +r+c ow ow
oo Wy O, Oy | OV (2.88)
04 o4,, 04, 04,, o4

mn mn mn mn mn

According to equation (2.75):

ow

(a+b+r+c)

aU (a+b+r+c)
(2.89)
04 04

mn mn
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Equation (2.89) can be written in the form:

[K1-N,[Z]=0 (2.90)
where, |[K] and [Z] are the stiffness matrix and geometric stiffness matrix

respectively.

Equation (2.90) is solved using MATLAB® program as an eigenvalue problem for
which the eigenvalues are the values of N, of the buckling loads and the eigenvectors

determine the buckling mode shapes. Smallest value of N is the critical buckling load,

NCI’.

2.5 Analysis of taper models with different boundary conditions

Following taper models are analyzed for different boundary conditions.

Thick part

Tapered part

==

Lo Lb Le—m| Model B
L
Model A
—\ v“_—\
= —
= == —
f =
Model C Model D

Figure 2.13 Taper models A, B, C and D for buckling analysis.
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2.5.1 Simply supported laminated plate

In the case of a plate that is simply supported along its four edges (SSSS) the boundary

conditions are:
e Alongedgesx=0and x=L:
w, =0, Mx=0 (2.91)
e Alongedgesy=0andy=b:
w, =0, My=0 (2.92)

These boundary conditions are satisfied by the following function [1,34]:

w,(6,3) =2 4,,X,(x)Y,() (2.93)
where,

X, (x)= sin% (2.94)
Y, () = sin% (2.95)

Applying equation (2.93) in equation (2.89) we can get a eigenvalue problem like
equation (2.90) and it can be solved using MATLAB® program to calculate the critical

buckling load.
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2.5.2

where,

Laminated plate clamped at two adjacent ends and with other two ends free
(CFCF)

For CFCF the approximate solution is [29]:

M N
W,(6,0)= 2D A X, (DT, () (2.97)
m=1 n=1
X, (x)=|cos An¥ _ cosh ¥ ) Y| Sin P _ sinh A (2.98)
L L L L
Y. (y) = [cos&[’;—y — cosh x;)y ] —y (sin% _sinh %j (2.99)

Applying boundary condition along x direction:

2
At x=L,Mr=0 or & Pl =0 (2.100)
dx x=L
d*w
At x=L, Q=0 or =22 =0 (2.101)
dx x=L

From equations (2.98), (2.99), (2.100) and (2.101):

2
ddx{m =0 (2.102)
x=L
3
d X;'" =0 (2.103)
dx x=L

where X, satisfy the boundary conditions at x =L.
Solving equations (2.102) and (2.103) we get,

cos(4,,)cosh(A, ) = -1 (2.104)

_ cos(4,,) +cosh(4,) (2.105)

"m = Sin(2, ) + sinh(% )
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Solving the boundary conditions in the direction of y we shall get the same type
of results as that in x direction; in general we can write:

cos(4,)cosh(4,) = -1 (2.106)

_cos(4,) +cosh(4,)
7= Sin(2, ) + sinh(%,)

(2.107)

where, i=m, n

The values of A; and Pi are given in the Table 2.3.

m 1 2 3 4
Ai 1.875 4.694 7.855 10.996
Vi 0.734 1.018 0.999 1.000

Table 2.3 Co-efficients of the clamped-free beam functions.

Using the values given in Table 2.3 in equations (2.98) and (2.99) and the results

in equation (2.89) we can calculate the critical buckling load.

2.5.3 Laminated plate clamped at four ends (CCCC)

For the case of a plate with opposite edges clamped the beam functions [29] are:

e Forclamped edgesx=0andx=1L:

A
X, (x)=|cos ’"x—cosh;t'”x — Y0 sinl’"x—sinh;t’"x (2.108)
L L L L

e Forclamped edgesy=0andy=b:

43



A,y Ay

cos—
b

Yn(y)=( )

—cosh)”’—y -7, sinM—Sinh
b b

(2.109)

|

In the case of a plate clamped along its four edges (CCCC), the boundary

conditions are:

Along edgesx =0 and x = L:

X,
X”‘lx:L =4 dx =0
x=L
o ol
Bly=h dy b

where X,, and Y, satisfy the boundary conditions at x =

Solving equations (2.108), (2.109) and (2.112) we get,
cos(4,)cosh(4,) =1

_ cos(4,) —cosh(4,)

7= Sin(,) — sinh(2,)

where, i=m, n
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Landy=h.

(2.114)
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The values of A; and pi are given in the Table 2.4.

1 2 3 4
Ai 4.7300408 7.8532046 10.9956078 14.1371655
i 0.9825022 1.000777 0.99996645 1.00000145

Table 2.4 Co-efficients of the clamped-clamped beam functions.

Using the values given in Table 2.4 in equations (2.108) and (2.109) and the

results in equation (2.89) we can calculate the critical buckling load.

2.5.4 Laminated plate simply supported at two opposite ends and with other two

ends free (SSFF)

e For simply supported edges x =0 and x=1L:
X (x)= sinm—Lm—C (2.116)

In the case of a plate with two opposite edges free, the beam function is [29]:

e Forfreeedgesy=0andy=>b:

Y. (y) = (cos’l—gh cosh ’lzyj + yn[sin%l+ sim%lj >3 (2.117)

Boundary conditions aty =0 and y = b:

2

Y
d = =0 (2.118)
dy

y=b

3

Y
d T =0 (2.119)
dy o
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Solving equations (2.117), (2.118) and (2.119):

cos(4,)cosh(4,) =1 (2.120)
"= csig ; - Z;ns};l((/}{i)) @121)
where, 1=m, n
The values of A; and p; are given in the Table 2.5.
m 1 2 3 4 5 6
Ai 0 0 4.7300408 7.8532046 10.9956078 | 14.1371655
Vi 0 0 -0.9825022 | -1.000777 -1.000 -1.00000

Table 2.5 Values of co-efficients of the free-free beam function.

Using the values given in Table 2.5 in equation (2.117) and the results of X, and

Y, in equation (2.89) we can calculate the critical buckling load.

2.6 Exact solutions for uniform laminated beam and plate

2.6.1

Uniform laminated beam

For simply supported edgesx =0 and x =L :

w (x) = sin% (2.122)

The critical buckling load of simply supported laminated beam [29]:
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2.6.2

2_2 1

mru
o — 2.123
s L2 D11 ( )
where,
|
D), = Z(D22D66 - D), (2.124)
A= D11D22D66 + 2D12D16D26 —D11D226 _D22D126 - D66D122 (1-125)

and L is the length of the beam and Dj; is given in equation (2.67).
Uniform laminated plate

The critical buckling load of a plate under uniaxial compression [29]:

e Simply supported at four ends :
T 2
N, = 9—L7[8 1Dy, +18(D, + 2D )R* + DpR* | for m=3 (2.126)

e Simply supported at two opposite ends and other two ends free:

cr

1
N, = Im? [IOD” —47(D, +2D66)+51D22] (2.127)

where R is the ratio of length to width (L/b) of a laminated plate.
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2.7 Numerical examples

2.7.1 Examples of uniform laminate

Example 2.7.1

Variation of critical buckling load with E;/Er ratio for symmetric cross-ply uniform
laminates, with a’h =10, b/a=1, Gyt = 0.6Et, Grr= 0.5Et and V1= V11 = 0.25 and with
the staking sequences (0°/90°/0°) and (0°/90°/0°/90°/0°) were determined. The laminate is
analyzed using beam and plate theories.

The uniform beam is simply supported at the two ends and the uniform plate has two
types of boundary conditions as shown in Table 2.6. The results are given in Table 2.6 to

compare the buckling loads with that of beam and plate theories.

y y
’ S
po- = f
k s s s s
No X
f X S
Ei/ | Of
Er | Plies
Beam Theory CLPT CLPT
(Exact Solution) (Exact Solution) (Exact Solution)
3 321.43 309.66 329.91
15
5 447.86 432.41 462.16
3 428.26 417.34 436.69
20
5 594.27 582.90 608.92

Table 2.6 Comparison of critical buckling Load (x 10°N) for uniform laminates.
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2.7.1.1 Discussion of results for uniform laminates

In case of beam analysis, boundary conditions of two opposite sides of a plate are
considered and the boundary conditions of other two remaining sides are not taken into
account. On the other hand, four sides are considered in plate analysis. From Table 2.6
we have observed that the critical buckling load of simply supported plates are larger than
that of simply supported beams results. The critical buckling loads for the plates with
simply supported condition at two opposite ends and with other two ends free are smaller

than that of simply supported beams results.

2.7.2 Examples of tapered laminated beam and plate

Example 2.7.2

Tapered plate models that are shown in Figure 2.13 are considered with 36 and 12 plies at
thick and thin sections respectively, which results in 24 drop-off plies. The configuration
of the thick section is (0/90)¢s and that of the thin section is (0/90)3s. The mechanical

properties of the composite material (NCT/301 graphite-epoxy) are: E;=113.9 GPa,

Ex=7.9856 GPa, G12,=3.138 GPa, G23=2.852 GPa, v;,=0.288, 1,,=0.018, p=1480

kg/m’. Resin properties: E = 3.93 GPa, G = 1.034 GPa, v = 0.37. The values of m and n

in equation (2.89) are determined so as to obtain the converged solutions.
The geometric properties of the tapered laminates are: Thickness of each ply is
0.125 mm. The tapered part of laminated plates are square in shape and the lengths of

plates and beams change with the change of taper angles that are given in Table 2.7.
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The buckling problem is solved for different taper angles and for various

boundary conditions and the results are given in Table 2.7 and Table 2.8.

Beam Analysis by Finite . .
Element Method [16] Plate Analysis by Ritz Method
Angles ;ength y y
in in ) ; S
degrees | meters g
§>C & S S S S
f X s X
0.75 0.1146 8.3810 7.7363 8.9161
2.0 |0.04295 59.5466 54.938 63.322
3.0 0.0286 135.8107 123.45 142.30

Table 2.7 Comparison of critical buckling Load (x 10°N) of taper model-C with the
result of corresponding tapered beam.

Beam Analysis by Finite . .
Element Method [16] Plate Analysis by Ritz Meth‘od
Angles
in ) y y
degrees | yo g S f g . S .
) f X s X
0.75 25.5014 24.4398 26.3196
2.0 181.222 179.3484 186.972
3.0 407.3539 403.2120 420.36

Table 2.8 Comparison of critical buckling Load (x 1 0°N) of taper model-D with the
result of corresponding tapered beam.

2.7.2.1 Discussion of results for tapered laminates

In Table 2.8 critical buckling load of tapered laminated beam calculated using

finite element method [16] is compared with that of tapered laminated plate calculated

using Ritz method. The plate is analyzed considering two types of boundary conditions:
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simply supported at four ends (SSSS) and simply support at two opposite ends and other
two ends free (SSFF). Results for the beam are in between the results of the simply
supported plate and the plate with SSFF boundary condition; we have observed same
type of beam characteristic for exact solutions in Table 2.6. Simply supported plate is

stronger than the plate that is simply supported at two ends and with other two ends free.

2.7.3 Example of tapered plate analyzed using Ritz method

Example 2.7.3

The tapered plates described in example 2.7.2 are considered for buckling analysis. The
solutions have been obtained using Ritz method for simply supported, clamped-free and

clamped-clamped boundary conditions. The results are given in Tables 2.9 - 2.12.

Taper Taper d s : [
ler'lgth aggle S c G «
mn n s [ X

meters | degrees

Ner Ner Ner
0.8594 0.1 0.1471 0.0588 0.55393
0.1719 0.5 3.678 1.4698 13.846
0.1146 0.75 8.270 3.3063 31.142
0.08594 1.0 14.710 5.8805 55.387
0.0573 1.5 33.070 13.2210 124.48
0.04295 2.0 58.660 23.4610 221.41
0.03435 2.5 91.600 36.6400 345.77
0.0286 3.0 132.40 52.9970 498.39

Table 2.9 Critical buckling load (x 1 0°N) of tapered part of model A
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2.7.3.1 Discussion on model A

> Buckling load of clamped plate is larger than that of the simply supported
plate.
> Clamped-Free plate is the worst case when two extreme boundary conditions,
clamped and free, are considered.
> With the increase of taper angle, buckling loads increase for all types of
boundary conditions.
Y Y
Taper Taper s c F H c ¢ c
length angle 5 c | x c ix
in in s | X
meters | degrees
NC[’ Ncr NCI'
0.8594 0.1 0.46305 0.130 0.6371
0.1719 0.5 11.5713 3.249 15.930
0.1146 0.75 26.0289 7.310 35.840
0.08594 1.0 46.305 13.000 63.706
0.0573 1.5 103.986 29.192 143.300
0.04295 2.0 184.869 51.890 254.280
GO 2 288.459 80.968 396.960
0.0286 3.0 415.557 116.590 569.780

Table 2.10 Critical buckling load (x 10°N) of tapered part of model B
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Taper

Taper

S c
length angle c | x
in in s | X
meters degrees
Ncr Ncr Ncr
0.8594 0.1 0.158617 0.0924 0.58107
0.1719 0.5 3.963667 2.3093 14.53095
0.1146 0.75 8.916111 5.1945 32.6928
0.0859%4 1.0 15.86167 9.242 58.1091
0.0573 1.5 35.62 20.750 130.7355
0.04295 2.0 63.32222 38.578 231.9555
0.0343556 2.5 98.8 57.556 362.1555
0.0286 3.0 142.3 82.914 519.729
Table 2.11 Critical buckling load (x 10°N) of tapered part of model C
y
Taper Taper s F C
§ c A c G
length angle
. . S X Cc X C X
in in
meters | degrees
Ncr NCI' NCI‘
0.8594 0.1 0.468192 0.0999 0.8375
0.1719 0.5 11.7 2.4977 20.943
0.1146 0.75 26.3196 5.6188 47.119
0.08594 1.0 46.8192 9.9946 83.759
0.0573 1.5 105.1632 22.451 188.390
0.04295 2.0 186.972 39.911 334.340
G033 a5 291.84 62.285 521.930
0.0286 3.0 420.36 89.701 749.360

Table 2.12 Critical buckling load (x 10°N) of tapered part of model D
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2.7.3.2 Discussion of models A, B, C and D

From the results given in Table 2.9 - Table 2.12, it can be concluded that the
critical buckling loads increase by increasing the taper angle for all types of boundary
conditions and taper models. Buckling load of clamped plate is larger than that of the
simply supported plate and further, clamped-free plate is the worst case. The Figure 2.14

reveals that taper model D is the strongest and taper model A is the weakest one.

>
o

-1~ Model D
- Model B
-0~ Model C

NN

w
n

w

N
o

N

Model C

-
(9]

—_

Critical Buckling Load in Newtons

0.5

Taper Angle (¢°)

Figure 2.14 Comparison of critical buckling loads of tapered laminates of models A, B, C
and D.

54



2.8 Discussions and conclusions

In this chapter, [A], [B] and [D] matrices are developed for tapered laminated
plates. Transformed reduced stiffness, Qj;, is analyzed by varying both the taper angle and
ply orientation angle. The system equations of critical buckling loads are developed for
four types of boundary conditions and taper models using Ritz method based on classical
laminated plate theory. Buckling loads of tapered laminated plates are also compared
with that of tapered laminated beam models that were analyzed using finite element
method [4].

The fiber orientation angles have more influence on transformed reduced
stiffness, Qj;, than the taper angles.

Results of the tapered laminated beam are in between the results of the simply
supported tapered plate and the tapered plate with simply supported boundary condition
at two opposite ends and with other two ends free.

Tapered plate of model D is the strongest one; model B and model C take the
second and third ranks respectively. Model A has the lowest stiffness. The critical
buckling loads of models D and B are closer to each other. On the other hand, values of
the critical buckling loads of models A and C are closer. The models A and C have more
resin at the core and this is responsible for weak behavior compared to the models B and
D.

Buckling load of clamped plate is larger than that of the simply supported plate.
The clamped-free plate is the weakest one.

The critical buckling loads increase for increasing taper angles for all types of

boundary conditions and taper models.
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CHAPTER 3

Buckling Analysis Based On First-order Shear Deformation Theory

(FSDT)

3.1 Introduction

Classical (Kirchhoff) plate theory has been widely used to model plate behavior,
but is adequate only for thin laminated plates. Since the ratio of the in-plane elastic
modulus to the transverse shear modulus is large for composite plates, Kirchhoff theory,
which neglects transverse shear deformation, is usually inadequate for the analysis of
thick or moderately thick plates. Many plate theories have been proposed to include the
effect of shear deformation, of which the laminated plate version of the first-order shear
deformation theory developed by Reissner (1945) and Mindlin (1951) is the simplest.
This theory assumes a linear distribution of the in-plane normal and shear stresses over
the thickness, which results in nonzero transverse shear stresses but does not reproduce

the nonlinear transverse shear stress distribution through the plate’s thickness.

In this chapter strain field of first-order model with transverse shear is considered.
It should be possible to compute appropriate values of the transverse shear correction
factors for specific lamination schemes [39]. In case of relatively thick plate, shear
correction factor can be considered equal to 5/6 [18]. Thus in the present study a shear

correction factor of 5/6 is used for transverse shear resultants.
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3.2 Fundamental equations for buckling

3.2.1 Displacement field

The basic assumptions for the shear deformation theory remain the same as that of
the classical laminate theory, with an exception concerning the neglect of the interlaminar

shear strains y,, and y,. Thus for the first-order shear deformation theory, the

displacements are assumed to be of the forms [29]:

ulxy,z,t)=u’(xy,t)+ z¢,(xy.t) (3.1
v(xy,z,t) = v (xy.1)+ 29, (x.1) (3.2)
w(x,y,z,t)=w’(x,y,1) (3.3)
where,

(u,,v,,w,) are the displacements of transverse normal on plane z = 0;

¢, and ¢, are the rotations of the transverse normal on plane z = 0 about x and

y axes, respectively.

Figure 3.1 Explanation of rotations considered in FSDT
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3.2.2 Strain field with transverse shear

Substituting displacement equations (3.1 - 3.3) into linear strain-displacement

relations, the strain-displacement relations of the laminate are obtained as:

€. =%+z%=g; 2K, (3.4)
e
ov 0
€, = 8; +z 2 =g, +2K (3.5)
e, #0 (3.6)
0 ov 0 0
Y, = Yo y Dol 2 + ¢ =7y, +IK, 3.7
i’ oy 0Ox oy Ox i’
(4 awo
Ve =Ve =75t (3.8)
. ow, (3.9)
}/yz = '}/yz = ay + ¢y
where, k., kK, and K, are the curvatures.

3.2.3 Stress field

We can write the stress field for a ply as follows:

O xx Cy Cp, G, Cp C5 G [ e
w C, Cp Cy G G Cy €y
o, =0 _ C, Cp Cy Cy Cy Cyije, #0 (3.10)
Tye Cu G Gy Cy Cp Cy Y 3z
xz Cs Cp Gy Cp Cy Cy Y xz
T 1Cis Gy G Cu Cso Co || 7
where,
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XYz

o, and 7, are the normal stress and shear stress respectively ;

g; and y, are the normal strain and shear strain respectively in coordinate system

C, is the corresponding stiffness co-efficient given by the equation (2.39).

And also:

£, =1/ Cu ) (Crse, +Cpe,, +Cyy,, + CisVe ¥ Css¥ ) (3.11)

o, =y —C%s /Cy3)e,, +(C, = CCo 1 Cy )SW +(C, = C5C5, /C33)7yz

(3.12)
+(Ci5s —C3Cys 1 C3 )y, +(Cg — C15C /C33)7’xy

and equations for Gyy , Ty, Tx, and T,y are analogous to that for ox.

Therefore, the reduced stiffness matrix is in the form of:

N — =

(o-xx O Gn OGu s O (gxx
O,y On On Ou O O ||éw
T t=|0u @ Qi O O N7 } (3.13)
T Os O O Os O ||V
Tyy O O s Os DoV )

Y 4 e

Rearranging equation (3.13), we get:

O« O On Qs Qu s | € i
G, On On Ol Oun O €y
Tw (= O O Gos| Qs 6 17w (3.14)
Tz Ou O Qul Qu O |7,
Tz Os O Osxl Qi Oss RVEE

P

C,.C

J3
: 3.15
C. (3.15)

2

(Qij )tf = Cij -

Cj; is given by equation (2.39) ;
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¢, and y, are given by the equations (3.4 - 3.9);

1,j=1,2,3,4,5,6.

3.2.4  Constitutive equation

The constitutive equation with transverse shear of tapered laminate is written by
associating the force resultants and the moments, in the form:

I 1fe°

'N An AIZ A16 Bll B12 BIG A14 AIS €
N;: A, Ay Ay B, By By Ay Ay 3%
ny Ay Ay Agg By By By Ay A ||Vs
M B, B, By D, D, Dy B, By ||k,
9 Mxx r={ By, By By Dy, D, D, B, B,y Kyt (3.16)
Myy By By B Dy D, D, B, Bs Ky
nyzy _5_ (AM A24 A46 B14 Bz4 B46 A44 A45 j JZZ
sz 6 AIS Azs Ase BIS st BS6 A45 A55 xz

where, Aj;, Bjj and Dy for tapered laminate based on FSDT are given in the

following equations and 5/6 is the value of the shear correction factor.

(4,), = i(Q,’j’ e (3.17)
(Bij )tf = i(QZr)keka (3.18)
(D,), = i(QZ’ )i(e 2’k +e’/12) (3.19)

withi,j=1,2,3,4,5, 6.
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ey and zy are calculated using the equations (2.59) and (2.62) respectively. (Qjj)
of ply is calculated from the equation (3.15). In case of resin, (Q;_f ), 1s also calculated

using the same equation (3.15) but using the properties of resin.

33 Energy formulation

In the sub-section 2.2.5, we have derived the energy equation considering that G,

=0, Vx. =0and Yy, = 0; but for the present case “transverse shears” are not equal to

zero. So energy equation will be much more complex than before. For simplification, we

have assumed some conditions that will be discussed in the following section.
3.3.1 Energy equations for tapered laminate and resin pocket
3.3.1.1 Strain energy

Strain energy can be written in the form of:
(U)lf = % II[ {(Gxxgxx +O_yygyy + Tny/xy )+ (Tyzyyz + szyxz) }dXdde (3'20)

since 0., = 0; using the values of Gj from equation (3.14) in equation (3.20), we

get the equation for the tapered laminate:
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2

8.1’)?
(U)yz%IJI{[Qll On Gl €, +[ 3 le{?’yz&‘xx}

xz ™ xx
}/xygxx

emsw_
2
€y +[ 24 st
€y

yxy

+[0, On O

2
Yo |

(3.21)

gxx’}/yz
€75z +[ O
yxyyyz_

+ [ 14 Q24 Q46

£t | _
+[Q16 O Qe £,7 4 +[Q45 Qsé{yyzyxy

8xxyxz
V2Y x
+[ s Oos Os €Yz +[Q45 st{ g :l}dxa'ydz
}/xy}/xz_

The above relation can be written as a function of the displacements u, , V, and

W, by substituting the strain-displacement equations (3.4 - 3.9) in equation (3.21).

3.3.1.1.a Tapered laminate

By integrating the equation (3.21) with respect to z across the thickness of the

tapered laminate, we obtain the final form of strain energy that is shown at the next page:
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ou, Ou, +6u0 ov,
ox Oy ox ox

_1/2 J‘ J 11( ()J 2A12[au avo)_i_zAlG
20 %20 ox Oy
124, ow, 8uo ‘o, ou, +2A15(8w0 'auo ro. ou,
dy  ox ox ox Ox Ox

2
5] ol o ey

o e oy y o

2
+ 24, M, .%ﬂpx% + A %+% +24, %ﬂu au0+av0
ox Oy oy oy Ox oy "Ny ox
2
+¢, ou, 6v +24,, aw+<p 6w0+(0x + A %+§ox
oy 5x oy TN ox ox

2
8
i | Do g | v2B [P 00 0p | O OOy OV 00,
o 7 o

ox &x oy Oy oOx
0 0 %
vop [ 20, 00, 00)) o (3, 80,) 0 (39, 2o, awowx)
ox o Ox ox oy Oy oy ox
a(Px av aq))’ avo _a__zfi a¢y + 8vo a(Pyj

+2B,, T+ L+ . .
 d &x o oy &y &

0
+ 2B %+6v ][a(p" + 1] ) + 2B, (aw".a(p" +o .a(p"]

oy oy oy ox Yo
0 0
+2B, [ Do 00, 00 ) o [ OOy, OO
ox Ox ox 6y ox T oy
0 0 0
+ 2B25 88‘4} q)y (px (py j + 2B46(agpx + q)y )( awo + QD.VJ
x oy oy dy ox \
2 0 0
+ D11 6(0)( + 2D12 a(px . (pJ 2D a(px 8g0x + (Py . a(px
ox ox Oy o By x ox
dp, Y dp, b, O op, Y
+D,, el +2D,, 8ch. 2 + % : L2 + D, %0, +—¢l dxdy
ox oy oy Ox Oy oy  Ox
(3.22)
where,

Ly and b are the length and width of the tapered part of the laminate as defined in
Figure 2.13;

Aj, By and Dy for tapered laminate are calculated from the equations (3.17),

(3.18) and (3.19) respectively.
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3.3.1.1.b Resin pocket

By integrating the equation (3.21) with respect to z across the thickness of the
resin we obtain the final form of strain energy for resin pocket as:

5oL,
U, =12 [|4, ou, )’ v | Phe B0y y Ot 01y, Ouy OV,
? Ox ox &y ox dy Ox ox

y=0x=0

+2A“(aw 8u0+(p du j v24 (6w ou, o auoj

dy &x T ox ox ox T ox
2
+A22(%) +24, (a” P av] 2Az4[6w %, goyGVOJ
oy o v o oy d oy oy

2
iy gl a5 53
X X X

a a a 5 2
+2A56(_60 +€0x)(ag; +68V”J+2A45( ay" +(pyj( a" +¢XJ+A55( a” +<pxj
X X X X

2
0
+4,, ——aw" +¢, | +2B, ou, .—a(P" +2B,, au”. 121 +6v” .aq)"
oy ox Ox ox oy oy ox

0 0 0
+2B,, 8u0.8(px +au°. % +2B,, o, 2 +2B,, 00, + 2% o, +0,
ox Oy ox Ox oy 0oy
9, o, 09, v, ou, 09, o, 6%)
d & Oox 5y o oy "o o

0
PR A Y N

+2B,

oy ox Aoy Ox oy 6x 7 ox
0 0
+2B,, 8;” .a(p* +gox.5(p* +2B,, ———8W". Ll +,. i
x  Ox ox oy Ox oy

0 0 0
+2B,, a;}". ;;y +,. ;y]+234{a§; + ;yJ[éav;” +(pyJ
x X

o0\ oo dp. 0 )
+D”( (p"j +2Dlz[a(p". %}r?_DI{ D 9P | ¢y.a¢*j
X

ox ox Oy ox oy ox ox

o0 Y dp, B¢, dp, o9,
+D,, el +2D,, an". O T8 T +D,, 00, + 2 dxdy

ox oy o ox Oy oy  ox

(3.23)
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where,

L; and b are the length and width of resin ply;

Aj;, Bjj and Dj; for resin pocket are calculated from the equations (3.17), (3.18) and
(3.19) using the properties of resin.
3.3.1.2 Potential energy

The potential energy of external loads for tapered laminate and resin pocket are:

W, =-(1/2)[ _LN[G;C] dxdy (3.24)
W, =—(1/2) IL Nx(a;};’) dxdy (3.25)

where, A and A; are the areas of tapered laminate and resin pocket respectively.

3.3.2 General expressions for buckling analysis

The approximate solution is expressed in a double series as:

u,(x.y) = UpU (U, (¥)

= 1[M=

v, (%) VoV WV, (¥)

=
1l
—_

w,(X,y) = W W, (¥) (3.26)

M=

¢, (%, ) XX (DX, ()

=
Il
—_

M= I 5P MR IM:
1M

M=

¢,(x.») ¥, X, ()Y, (¥)

B
I
b
I
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The functions Up(x), Ux(y), Vi(X), Va(¥), Wn(x), Wn(¥), Xm(X), Xa(¥), Ym(X)

and Yy(x) are chosen so as to satisfy the boundary conditions and the co-efficients Uy,

Vin, Wi, Xmn and Y, are determined by the stationary conditions:

oU
_QU_U — 7 -0 (3.27)
6Umn al]m)’l

oU
%JF_’P: (3.28)
ov,, oV,

oU
_6_U_,, P _ (3.29)
ox,, ©X,,

oU
%Jr__’l’_: (3.30)
oY, ©0Y,,
Uy , ov, _ow, + o, (3.31)

ow ow ow, ow

mn mn mn mn

where,

Uy and Uy, are defined in equations (3.22) and (3.23) for tapered laminate and
resin pocket respectively;

Wy and W, are defined in equations (3.24) and (3.25);

m and n represent the desired number of approximation terms.

In case of m=n =1, No. of equations are: 5x1 = 5;
m =n = 2, No. of equations are: 5 x (2x2) = 20;
m = n = 3, No. of equations are: 5 x (3x3) =45

and so on.

66



Solving equations (3.27) — (3.30) and using the results in the equation (3.31), final

form of the equation can be written as:
[K,1-2(Z,]=0 (3.32)

where Ks and Zare the stiffness and load matrices of tapered part of the laminate
based on FSDT and A is a buckling parameter (eigenvalue). Equation (3.32) represents an
eigenvalue problem. For a non-trivial solution, the determinant of the co-efficient matrix
is set equal to zero. The roots of the determinant are the eigenvalues. Substituting each
eigenvalue back into the equation generating the eigenvalue determinant yields the

corresponding eigenvector.

3.3.3 The system equations of tapered laminate for special cases

For simplicity we consider the following:
e u = v = (0 as these values are very small w.r.t. other displacement
variables; this leads the values Ajj to be equal to zero except A4, Ass and
Ass.
o Symmetric Cross Ply [90/0]s Laminate: The values of Bi1, B12, Bis, Bx,
By and Bgg are equal to zero. On the other hand, the values of Bys, Bas,
Bis, Bos, Bsg and Bsg are nonzero.
Now taking into account the equation (3.22) and the shear correction factor, we easily

obtain the system of equations giving the co-efficients of Wj;, X and Yj; . Thus:
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AU AW W b aw, ,7
E E " '”W ”; / d + A ” djc
od M N [% J.A45 ldxj n y J‘ 45

0
ann =l j=1 0 dW
J y}Wy
B dw, dw, . "
+ JASS e
0 v, WX dy
L 5 deb dW"Xdy J. A55 o X,.dxj net
+ J-_A45Wm i &y b d
’ L
b (1 —dx W, X dy
L, L[y ;1_2 Yo
+ EBM " dx b dy 0 b d)( ;
0 b d de‘ d ;
L1 B.W X.dX_[ I . By
+J'_2 46" mti ; y dy 0
: a’W
L
(2 dWm 44
+{J€A45 y b dyj d
", 58 ‘ "‘K-dxan’;f b
Lb11 -"12 i~ p 0
+ | = BuW, dy dy b
0 [7 dW dY de‘Wn jdy})fy
j u Ydy + j e
_‘- B46Wm dx dy 0

(3.33)
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SEAE AW, B aw,
zzzi:{éfg 452 m"" i ; n dyj + J‘6A55 dx de-XWdy

0

(1, dax T dX, W,
J-_BM i n y Bl5 .[X W dy
012 dx dy J12 dx dx
11 W Lbll de] b an
+ E 46 . fdy+ _‘-1—2— 5 Xm—d—x—dxj. y W,dy}WU
0 y Y b ; fy

L, L b

L
] dX dX
+ |D i
6[16 T 6
66 I B X, %IXXdy
dy
0
L
t11 dX ,
EBIS T X,«de.Xandy

0

b
E;BSGX Xazij dj—dy+j BsﬁXmXide‘d;;n dey}X

0

{j A X, dejX Y,dy + lezd;(x

Lj.Dlé djx ch’ dXIX Ydy+ ID%X de

ydy
+—B—’"deXY.d+_BXy_dxX I 4
1214dx'-‘."/y 6[12 25m16[n—dyy

"1l

— B, X, dej "y dy
dy

0

b
J.H B X, ar, deX Y,dy + jDseX dY, ax, dy by,
0 12 dx dx ; dy J
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I§A45Y aw,
06

M N
W, _$4 { 44
i=] j=1
11 W Lbl
012 Sl ; dy —dy+ 6[1 ByY, —dXI
11 dY, dw,
_[ By

25w 4

0

L

b Y W
IUB%—d—deJ.Yn_f_der
2% gy

+{j%A45YmX’dxl]);X/dy +L_i-D12Ym X,
0

L,
Ilsd «,

Y, dX,
jD%Y dej % d—ydy

11 dX

14

dv,

66

" dy

11 Xdy

25

dx, 11 _ 4y, g
B,Y, dejy —ydy jlzB(,gXidxj);dey X,
0

0

dy dy

b
ID26 J' d_Ydy _[D26Y ay, dY
0

0

0
11
Ju
{_[—AMY dejyydy+ szzY dej nay
Ly

dy, dr,
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ﬁ; B,Y, deJ'Y %dy

0

11
+ }—
12

0

24

b
+ ﬂ; By dd):ydijYdy+ j B46Ym%dx(!1’n1’,dy}l’y}

0
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From equation (3.24) we get:

oW, AL baw aw, "
- 4 - N m —ldx W Wd .
ann ;;{ 06[ dx dx 6[ n"j Y (3 36)

where, Ly, is the taper length of tapered plate and subscript ‘tl” stands for tapered

laminate.

3.3.4 The system equations of resin pocket for special cases

Taking into account the conditions mentioned in the Section 3.3.3, the system
equations of resin pocket are calculated. Same equations (3.33 - 3.36) are also considered
for resin, with an exception concerning length, Aj, B; and Dj; Resin ply length, L., is
calculated from equation (2.64). A;, Bij and D;; for resin pocket are calculated from the
equations (3.17), (3.18) and (3.19) respectively.

The system equations developed for tapered laminate and resin are applied into
the equations (3.27 - 3.30). Solving the equations (3.27 - 3.30) and substituting the results
into the equation (3.31), the final form is similar to the equation (3.32). The MATLAB®

program is used to solve the equation (3.32) for buckling analysis.

3.3.5 Tapered laminated plate simply supported at four ends

In case of a plate simply supported along its four edges (SSSS) the boundary

conditions are [19]:
e Alongedges x =0 and x = Ly:
w, =0, My=0 (3.37)
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e Alongedgesy=0andy=>b:

w, =0, My=0

(3.38)

The above-mentioned boundary conditions are satisfied by the following

approximate solutions:

w,(x,y) = ZZW si y
-3 nmy
m=1 n=1 b

¢, (x,y) = ZZY sin 7% cos P2

m=1 n=] b b

(3.39)

(3.40)

(3.41)

Applying equations (3.39), (3.40) and (3.41) in the equations (3.27) - (3.30) and

equating the co-efficient of Wy, to zero we can get a eigenvalue problem like equation

(3.32) and that can be solved using MATLAB® program to calculate the critical buckling

load.

3.3.6 Tapered laminated plate clamped at four ends (CCCC)

In case of a plate clamped along its four edges (CCCC), the boundary conditions

are [35,36]:

e Along edges x =0 and x = L:

on
w =0, o

o =0
Ox

e Alongedgesy=0andy=hb:
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The above-mentioned boundary conditions are satisfied by the following

approximate solutions:

n

¢.(x,y) = ZZX Zy (3.44)
m=1 n=1

$,(x,y) = ZZY sin " sin nZy (345)
m=1 n=1 b
M N

W, (%, 9) =D > W, W, (X W, () (3.46)
m=1 n=1

where,

W (x)=| cos2z 0¥ ) | sin 2% _ ginh 2% (3.47)

L L, L, L,
W (y) = (cos% - coshizl] —y, [sin%y— —sinh %Zj (3.48)

Applying the boundary conditions into approximate solutions, we get:
cos(4,)cosh(4,) =1; (3.49)

_cos(4,)—cosh(4,)
7 Sin(A,) —sinh(2,) °

where i =m, n. (3.50)

The values of Ajand p; are given in the Table 2.4 .

Using the values given in Table 2.4 in the above-mentioned approximate solutions

and the results in equation (3.32) we can calculate the critical buckling load.

3.4 [Example of tapered plate analyzed using Ritz method based on FSDT
Example 3.4.1

The tapered plates described in example 2.7.2 are considered for buckling
analysis. The solutions have been obtained using Ritz method for simply supported and

clamped-clamped boundary conditions. The results are listed in Tables 3.1 - 3.4.
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y y
c
Taper ® \ « c
c
length | Taper angle
. . Ly/h
in meter | in degrees
CLPT FSDT CLPT FSDT
0.1719 | 0.5 38.2 3.678 3.600 13.846 13.4306
0.1146 |0.75 25.47 8.270 8.030 31.142 29.8963
0.08594 | 1.0 19.098 | 14.710 13.9745 | 55.387 52.6176
0.0573 1.5 12.73 33.070 30.7551 124.48 117.0112
0.04295 | 2.0 9.54 58.660 53.3806 |221.41 205.9113
0.03435 | 2.5 7.63 91.600 81.5240 | 345.77 318.1084
0.0286 | 3.0 6.36 132.40 115.188 | 498.39 453.5349

Table 3.1 Critical buckling load (x 10°N) for different support conditions for tapered

laminate model A

Buckling co-efficient vs Length/Height ratio of Model A for simply support

16 1 T T T T {
1.5+ —E— I —i L 3 -
1.4F .
—~ — Buckfsdt
+'=CN — BuckCpt
W13k z -
(:I_,_Q
ZU
1.2+ .
1.1+ .
-'—vLa—-J~—Lb4—~—LCA—
L
1 t 1 | ! | |
5 10 15 20 25 30 35 40

Length/Height Ratio (Lb/h)

Figure 3.2 Effect of transverse shear on buckling co-efficient for simply supported

tapered laminate model A
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x 10Buckling Co-efficient vs Length/Width ratio for Taper Angle 1° of Model A
Br

: QO [0/90175; ply drop=20;ht/hn= 3.5
7L —_— [0/90]95; ply drop=24;h/h = 3

.0_0.9

-0.0.0
0-0-0.
0-0 G.G.G.GGG'Q'O'Q'O-G-Q-Q

[ | 1 |

|
0 0.5 1 1.5 2 2.5 3 3.5
Length/Width ratio (L, /b)

Figure 3.3 Variation of buckling co-efficient due to thickness variation for simply
supported tapered laminate model A

3.4.2 Discussion on model 4

The buckling co-efficient curves in Figure 3.2 reveal that the buckling co-efficient
of thin plate based on first-order shear deformation theory (FSDT) is closer to that for
CLPT. In case of thick plate, results vary from each other. As a whole, the results based
on FSDT gives improved results compared to CLPT.

Figure 3.3 has good agreement with that of uniform laminate given in reference
[38]. It is apparent from the curves that, for a given degree of taper, i.e. for a constant
value of hy/h,, the buckling co-efficient rapidly reaches an asymptotic value, as the
thickness ratio, that is the ratio of laminate thicknesses at thick and thin sections,
increases. It is intuitively obvious that this should happen, since the buckle will be

essentially confined to the vicinity of the thinner end.



ly

S
Taper Taper ) s | X
!engt h angle in | Ly/h
1n meter

degrees
CLPT | FSDT CLPT | FSDT

0.1719 |05 382 115713 | 11.108 15.930 | 15.09
01146 | 0.75 2547 | 26.0289 | 24.785 35.840 | 34.037
0.08594 | 1.0 19.098 | 46305 | 43.5267 63706 | 59.8836
00573 |15 12.73 | 103.986 | 96.7069 143300 | 133.269
0.04295 | 2.0 954 | 184869 |170.0795 | 254.280 233'937
0.03435 | 2.5 763 15459 |262.4976 | 396.960 261'233
0.0286 | 3.0 636 415557 | 3740013  |569.780 |512.802

Table 3.2 Critical buckling load (x 1 0°N) for different support conditions for tapered

laminate model B

Buckling co-efficient vs Length/Heig

ht ratio of Model B fo

r simply supported ends
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Figure 3.4 Effect of transverse shear on buckling co-efficient for simply supported

tapered laminate model B

76



ly y

s c

[ C
Taper Taper s | X C
length .
. angle in | Ly/h
1n meter

degrees
CLPT FSDT CLPT FSDT

0.1719 0.5 38.2 3.963667 | 3.8447 14.53095 | 14.0950
0.1146 0.75 2547 8.916111 8.580 32.6928 31.30851
0.08594 | 1.0 19.098 | 15.86167 | 15.0685 | 58.1091 55.2036
0.0573 1.5 12.73 35.62 33.4828 | 130.7355 | 122.8914
0.04295 | 2.0 9.54 63.3222 58.8806 | 231.9555 |215.7186
0.03435 |25 7.63 98.8 90.896 362.1555 | 333.18306
0.0286 3.0 6.36 142.3 129.493 | 519.729 472.9534

Table 3.3 Critical buckling load (x 10°N) for different support conditions for tapered

laminate model C
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2
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cr

Buckling co-efficient vs Length/Heig

ht ratio of Model C for simply supported ends
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Figure 3.5 Effect of transverse shear on buckling co-efficient for simply supported

tapered laminate model C
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ly y
s c

[ [ C
Taper length | Taper s . X c X
in meter angle in | Ly/h

degrees
CLPT FSDT CLPT FSDT

0.1719 0.5 38.2 11.7 11.349 20.943 19.4769
0.1146 0.75 2547 1263196 |25.25145 [47.119 |43.3495
0.08594 1.0 19.098 | 46.8192 | 44.4782 83.759 | 76.2207
0.0573 1.5 12.73 105.1632 | 98.8534 188.390 | 169.551
0.04295 2.0 9.54 186.972 173.8839 | 334.340 | 297.5626
0.03435 2.5 7.63 291.84 268.4928 | 521.930 | 459.2984
0.0286 3.0 6.36 420.36 382.5276 | 749.360 | 651.9432

Table 3.4 Critical buckling load (x 10°N) for different support conditions for tapered

laminate model D

Buckling co-efficient vs Length/Height ratio of Model D for simply supported ends
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Figure 3.6 Effect of transverse shear on buckling co-efficient for simply supported

tapered laminate model D
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3.4.3  Discussion of models A, B, C and D

It can be seen from Tables 3.1 - 3.4 that shear deformation decreases critical
buckling loads. The buckling curves in Figures 3.2 - 3.6 reveal that the buckling co-
efficient of thin plate based on First-order Shear Deformation Theory (FSDT) is closer to
that for CLPT. In case of thick plate, results vary from each other. As a whole, FSDT
gives improved results compared to CLPT.

We can conclude from Figure 3.7 that the tapered plate of model D is the
strongest one; model B and model C take the second and third ranks respectively. Model
A has the lowest stiffness. The buckling loads of models D and B are closer to each other;

on the other hand, models A and C are closer.

Buckling co-efficient v Length/Height ratio of Model A,B,C and D for simply supported ends
e

———————— b de---— [ oA Model D |----
! —— Model B
-8~ Model C

Length/Height Ratio (Lb/h)

Figure 3.7 Effect of transverse shear on buckling co-efficient for simply supported
tapered laminate models 4, B, C and D
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3.5 Discussions and conclusions

In this chapter, constitutive equation of tapered laminated plate based on shear
deformation theory is developed. The system equations of critical buckling loads are
developed for two types of boundary conditions and four types of taper models using Ritz
method based on First-order Shear Deformation Theory (FSDT). The results based on
FSDT are also compared with that of CLPT.

It can be seen from Tables 3.1 - 3.4 that shear deformation decreases critical
buckling loads.

The buckling curves in Figures 3.1 - 3.5 reveal that FSDT gives improved results
compared to CLPT.

It is apparent from the Figure 3.2 that the buckling co-efficient rapidly reaches an
asymptotic value, as the thickness ratio, that is the ratio of laminate thicknesses at thick

and thin sections, increases.
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Chapter 4

Buckling Analysis Based on Third-order Shear Deformation Theory

(TSDT)

4.1 Introduction

Although the Mindlin-type first-order shear deformation theory is quite accurate
for the gross response, such as buckling of moderately thick laminates, the accuracy of
solutions will be strongly dependent on predicting better estimates for the shear
correction factors. It has been shown that the Mindlin-type first-order shear deformation
theories are inadequate for the accurate prediction of the modal displacements and inter-

laminar stresses of laminated composite plates (see, for example, [42]).

High-order shear deformation theories can overcome the limitations of the first-
order theory by introducing additional Degrees Of Freedom (DOF). The third-order
theory proposed by Reddy (1984) not only accounts for transverse shear effects but also
produces a parabolic variation of the transverse shear stress through the thickness of the
plate. Third-order shear deformation theory, which is one of the Equivalent Single Layer
(ESL) theories, is based on the same assumptions as the classical (CLPT) and First-order
Shear Deformation Theories (FSDT), except that the assumption on the straightness and

normality of the transverse normal is relaxed [43]. Theories higher than third-order are
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not used because the accuracy gained is so little that the effort required to solve the
equations is not justified [40].

In the present work, the equations of critical buckling loads for tapered laminates
subjected to uniaxial compression load have been derived using Ritz method based on
third-order shear deformation plate theory in conjunction with the Von Karman strains.
Unlike the first-order shear deformation theory, the higher-order theory does not require

shear correction factors as k, =k, =m/ V10 =0.99345 is close to unity [39]. Finally, the

system equations of critical buckling loads for the tapered laminated plate are derived.

4.2 Fundamental equations for buckling

4.2.1 Displacement field

The following displacement field was introduced by Robins and Reddy [40,41]

for Third-order Shear Deformation Theory (TSDT):

u(x,y,z,t)=u, +z¢, —22(% a;: j—z{Cl(a;C” +¢x]+% a;’;z } (4.1)
v(X,y,2,0)=v, +z¢, — 22(%%%—] - Z{Cl(&g}” + ¢y] + % 82}0}2} (4.2)
w(x,y,z,t) =w, +z¢, + ZZQDZ (4.3)
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C, = I (4.4)
u, =u(x,y,0,1) (4.5)
v, =v(x,,0,1) (4.6)
w, =w(x,,0,1) (4.7)

h is the height of the laminate;

u,,v, and w, are the displacements of transverse normal on plane z = 0;
¢.(x,»,0,) and ¢ (x,y,0,t) are the rotations of transverse normal on plane z = 0;
¢.(x,,0,1) is the extension of transverse normal;

¢,(x,,0,) is interpreted as a higher-order rotation of transverse normal.

Figure 4.1 Explanation of displacement terms for TSDT
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4.2.2 Strain field with transverse shear

The linear small strains according to displacement field equations (4.1 — 4.3) are

84

[40, 417:
£ =& +2Ko +2K. +2K, (4.8)
0 0, 2.1 3
€, =6, +2K, +2°K, +2K,, (4.9)
g, #0 (4.10)
0 2.1
Yy =V, TZK, (4.11)
0 2.1
Ve =V T2 K, (4.12)
Vo = Vop + 2Ky, + 27K + 2’k (4.13)
where,
0 8u
g = ° 4.14
5x (4.14)
0 o¢
K0 = = 4.15
xx e (4.15)
8¢
[ | 2
R (4.16)
8w, 8¢ 8%
k2 =-|C o 4y x|y 1 : 4.17
= "\oax? Ox A ox? @17)
ov
0
gl = = 4.18
W 5y (4.18)
o9
k) = . 4.19
w 2y (4.19)



1 _ 1 a2¢z
Kl = - A L (4.20)

oy
0w o¢ 8°
2 - 0 y /9 9.
K2 = {Cl( 55t S, J+A 5 4.21)
ow
Yy = ay” + ¢, (4.22)
ow
Kl = —301[ ayv + ¢yJ (4.23)
o= ey (4.24)
ox
ko= _3C1(0awo +¢XJ (4.25)
X
8
yo = 2ty AZ (4.26)
oy Ox
o _ 09 ¢,
= L+ 4.27
K oy Ox (4.27)
2
Ky = — 0°9. (4.28)
Ox0y
2 a 2
Kf:—C126W0+6¢"+ ¢y-+ya¢’ (4.29)
¢ dxdy 8y dx 3 5xdy

where, K, is the curvature.
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4.2.3 Stress field

The stress field given in equation (2.44) can be rewritten as follows:

where,
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o, and 7, are the normal stress and shear stress respectively ;

g, and y, are the normal strain and shear strain respectively in the coordinate

system xyz and these values are given in the Section-4.2.2 ;

C, is the corresponding stiffness co-efficient given in the equation (2.39).

e, =—(l/C3y)Cpye,, +Cye , + CyY,. + Casy . + C367xy) (4.31)

o, =(C, -C%s [C3)E, +(Ciy —CC 5 /C33)gyy +(C, —C5C5, /C33)7’yz
+(C5 —C3Cis /1 Cy)y . +(Crg — C3C5 /C33)7xy

(4.32)

and the equations for yy , Ty, Tx, and Tyy are analogous to that for Gxx

Therefore, the reduced stiffness matrix is in the form of:

o

ped

O

vz

T

Xz

Ty

Rearranging (4.33) we get:

QIZ
QZZ
Q24
Oos
Q26

O
Oy
Ou
Oss
Ous

QIS
QZS
Q45
QSS
Q56

Q16
Q26
Q46
Oss
Q66

! (4.33)




O O, On G Qu leT gxxW
c, On On Oxl O Oss || €

1Ty (= O O Gosl Gus Dse {7 (4.34)

Ty Q14 Q24 Q46 Q44 Q45 18

trxz J LQ15 Oy Oss| OQus Oss A %z )

Ci3Cj3 .

; (4.35)
C33

0, =C; -

Cjj is given in equation (2.39) ;

¢, and y, are given in equations (4.8 - 4.13);

1j=1,2,3,4,5,6.

‘Stress field’ of First-order Shear Deformation Theory (FSDT) and TSDT are of

the same format but the values of ‘strain field’ are different.

4.2.4 Constitutive equation

The constitutive equation with transverse shear is written by associating the force

resultants and the moments; the same equation can be used for both tapered laminate and

resin pocket. The equation is given in the next page:
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In the equation (4.36), the elements of stiffness matrix can for example be defined

A=

sym

PN

-

N NN

N

=

N NN

(4.37)

Elements of matrices [A], [B], [D], [E], [F], [H] and [J] are defined as follows:

S s s a4 s e
(Aj, By, Dy, Eyj, Fig, Hy, Jy) = _EQ,-,-(LZ,Z 27,227,z )dz
2

(4.38)



Laminate stress resultants are defined as follow:
N 1

(Njj, My, Py, Sy) = Z f o,(,zz2,2°)dz (4.39)
n=1 "

where,

Nj; is the in plane resultant force;

Mj; is the resultant moments (bending and twisting);
P;;and S;; are the higher-order terms;

Q; and o, are given by equation (4.35) and equation (4.34) respectively, ( 1j =

1,2,4,5,6).
4.3 Energy formulation

In the case of FSDT, unknown displacement terms were 5 (u,,v,,w,,¢, &¢,) in
number but for TSDT unknown displacement terms are 7 (u,.v,.w,,9,,¢ .6, &¢,) in

number. The procedure of strain energy calculation of TSDT is the same as FSDT.
4.3.1 Energy equations for tapered laminate and resin pocket
4.3.1.1 Strainenergy

Strain energy can be written in the form of:

U =1 [[[(0utn 40,8, + 707y )+ (0,070 +00r.) Jrdyds (4.40)
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where, G,, = 0; using the values of ¢;; from equation (4.34) in equation (4.40), we

get the equation for the tapered laminate:
2

gxx
U=%_UI{[Q“ O Qi €€ +[Q14 le{yyzgxxil

xz ™ xx
4 xy €

Y..€
+[Q12 On O S)Zy +[ 24 yzgyy
xz
&

<

{

YT (4.41)

exx}/yz vy
+[ o ©Ou Qi) E,7,: +[Q44 e
yxzyyz_

+los O O
YXZ?/xz

8xxyxz
}/ Zyxz
€Y x +[Q45 st{ ” jl }dxdydz

{ 0.
Exly

+ [Q16 Oss Des) €70 |+ [ i o
{ Qs

The above relation can be written as a function of the displacements

U,V W,,0,,0,,0, & by substituting the strain-displacement relations (4.8) - (4.13)

into (4.41). Next, by integrating with respect to z across the thickness of the tapered

laminate or resin pocket we obtain the final form of strain energy as follows:
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ay’ ay ay* oy* dy oy
2 2 a 2 2
+2H,,C, 3C1¢x_a__2Vz+3C1@5_\;v+3cl¢x 9y +@5 (Pzz I@ﬁ—f-@a q;z
Ay ox Oy d ox oy x oy 8y
2 2 2 a 2 2 2
+H26[4C 09, W 50, 8000 3 00. 270, % 09, +Cla¢xa¢;]
oxdy oy’ oxdy Oy oxdy dy x &’ dy oy
2 2 2
+H,C, 1zc]¢y Y 44, 0P, o 0 ¢ 0. W 0, ow o'w , ow g,
Oxdy OxQy Yoy oy ' oy axdy ay axay
g,
voc, WD e g O j+H C [6C1¢x %, L e6c, M b, +6C, TN, L 4y 00,
e "ox oy oxdy
2 2 a 2
s12c.g, T io0, WOV g0y s 4N 0,
Ox0y Ox Ox0Oy ox Ox Ox0Oy
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ot oy’ dy? ox° ox? 'oax ax ' ox oy

2 2 2 62 2 2 a 2
+2C, aad’x Z Y +4nc, Z ZZ a;’* +4/9‘2 ‘gz ag‘lz +8/3C, Z ‘gz aa Y onc, a¢y —aax"’;
y ox %0y Ox X0y Ox X0y Ox x
2 2 2 2 a 2 2
+4Cf%a§:‘ +4C/° gxgvygx +2/3C, a;’y aax“’;j [4/30 0 ‘g; ;y +4C/ sxgy aayvf
2 a 2 a 2
+8/3C, g}:gy Zyw +2/3C, ag; aay‘zz +2C, ad’y Zy‘f +2C. a;; ;; a‘ﬁy __aay";z
X x
2w O oo. O 2 2 2
ac;? & 4 +2€12—‘1)1—¢1+2c12 %, 0 d 4199920 .
Ox0y Oy ox oy dy Oy oxdy Oy
(4.42)
where,

L is the length of tapered laminate (L) or resin ply (L,) and b is the width of the

laminate;
[A], [B], [D], [E]. [F], [H] and [J] for tapered laminate are calculated from the
equation (4.38).
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4.3.1.2 Potential energy

The potential energy of external loads for tapered laminate and resin pocket are:

W, =-1/2)] L Nx(a:xo ]dedy (4.43)
W, =~/ ], N[a; jzdxdy (4.44)

where, A and A, are the areas of tapered laminate and resin pocket respectively.

4.3.2 General expressions

The approximate solution is expressed as a double series:

1, (03) = Y3 UL UL, () (4.45)
55) = 23y, 0) (4.46)
0 5) = 33 W, (W, ) @47)
6,050 = 23 X XL (X, 0) (4.48)
TR R AMACIAC (4.49)
.(5) = 2.3 20,2, (312,09 (4:50)
P.060) = 3 35,5, ()5, () 4.51)

B
N
3
R

The functions Uy(X), Un(¥), Vin(X), Va(¥), Wm(x), Wn(y), Xm(%), Xa(y), Ym(X),
Yn(X), Zm(X), Zn(x) Sm(x) and S,(x) are chosen so as to satisfy the boundary conditions
and the co-efficients Upn, Vin, Win, Xmn, Ymn, Zmn and Spp are determined using the

stationary conditions:
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r =0 (4.52)

+

ou,, ouU,,

S
v, ) (4.53)
ov,.. V.

U
ou,  oU, _, (4.54)
ox,, ©6X,,
U, 9U, _y (4.55)
aYmn aYmn

: .
v, Y _ (4.56)
oz,, ©0OZ,,
U, oY, _y (4.57)
oS,, OS,,
ou, , oU, _ oW, oW, 4.58)
ow,, ow. ow, oW,
where,

U’ and U’ are defined in equation (4.42) for tapered laminate and resin pocket
respectively using respective geometric properties;

W' and W are defined in equations (4.43) and (4.44);
m and n represent the desired number of approximate terms taken in the series

appearing in equations (4.45 - 4.51).

In case of m =n =1, no. of equations are: 7x1 =7,
m =n = 2, no. of equations are: 7 x (2x2) = 28;
m =n = 3, no. of equations are: 7 x (3x3) = 63

and so on.
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Solving equations (4.52 - 4.57) and substituting the results into the equation
(4.58), final form of the equation can be written as:

[K“1- N"[Z"]=0 (4.59)

where, [K"] and [Z"] are the stiffness matrix and geometric stiffness matrix
respectively.

Equation (4.59) is solved using MATLAB® program as an eigenvalue and

eigenvector problem for which the eigenvalues are the values of N :’ of the buckling
loads and the eigenvectors determine the buckling mode shapes. Smallest value of N" is

the critical buckling load, N ” )

4.3.3 The system equations
Now taking into account the energy equation (4.42) we easily obtain the system of
equations for both the tapered laminate and resin pocket in terms of the co-efficients of

Wij, Xij, Yij, Z'j and Sij, . Thus:

aU M N

7 =ZZI [ W, + X, X, + %Y, +Z,Z, +5,5,] (4.60)
mn =l j=

aU M N

ox zgg [ W Wy + X, X, + 1Y, + 2,2, +S2Sij] (4.61)

aU M N

o " [ W, + XX, + XY, + 2,2, +5.5,] (4.62)
mn i=l j=

U L

=2 [ W, XX, VY, 4 2,2, 45.5, (4.63)
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aU M N
5—:-2121 [ W, + X, X, + V.Y, +Z,Z, +S,S,] (4.64)
mn =l j=
ow XL, faw, aw, '
_ N, [ gt w g 4.65
o, ZZ{Idxdx Iy} e
where,

U and W are the strain energy and potential energy, and those are calculated for
both tapered laminate and resin pocket using respective geometric properties;

Wi, Xi, Yi, Zi and S;are given in Appendix A;

U; and V; are neglected in calculation as these values are very small with respect
to other displacements

and 1=1,2,3,4,5.

The system equations developed for tapered laminate and resin pocket are applied
into the equations (4.52 - 4.57). Solving the equations (4.52 - 4.57) and using the results
into the equation (4.58), the final form is like the equation (4.59). The MATLAB®

program is used to solve the equation (4.59) for buckling analysis.

4.3.4 Tapered laminated plate simply supported at four ends

In case of a plate simply supported along its four edges (SSSS) the boundary

conditions are:
e Alongedgesx =0 and x = Ly:
w, =0, Mx=0 (4.66)

e Alongedgesy=0andy=b:
w, =0, My=0 (4.67)

The above-mentioned boundary conditions are satisfied by the following

approximate solutions [39]:
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y (4.68)

m=] n=1 b
o’ & mmx . nmy

¢ (x,)=> > X, cos T sin—= (4.69)
m=1 n=1 b

¢, (x,y)= ZZY sin cos% (4.70)
m=1 n=1 b

6.(x,3) = ZZY smm sm% (4.71)
m=1 n=1 [;

o, (x,y)= ZZY sin sm% (4.72)

m=l n=1 b

Applying equations (4.68 - 4.72) in the equations (4.52 - 4.57) and equating the
co-efficient of Wy, to zero we can get a eigenvalue problem like equation (4.59) and that
can be solved using MATLAB® program to calculate the critical buckling load.

4.3.5 Numerical results and discussion

Example 4.3.5.1

The tapered plates described in example 2.7.2 are considered for buckling
analysis. The solutions have been obtained using Ritz method for simply supported

boundary conditions. The results are given in Tables 4.1 - 4.4.
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y
S
Taper Z:llpf; s g
. length ii Ly/h s | X
In meters
degrees

CLPT FSDT TSDT
0.1719 0.5 38.2 3.678 3.600 3.520
0.1146 0.75 25.47 8.270 8.030 7.883
0.08594 1.0 19.098 14.710 13.9745 13.4745
0.0573 1.5 12.73 33.070 30.7551 29.7551
0.04295 2.0 9.54 58.660 53.3806 51.8806
0.03435 2.5 7.63 91.600 81.5240 79.524
0.0286 3.0 6.36 132.40 115.188 112.688

Table 4.1 Comparison of critical buckling loads (x 10°N) for simply supported tapered

laminate model A

Buckling co-efficient with Length/Height ratio of Model A for simply supported ends

1.6 T T \ T T
1.5 +—m—& i 3 -
1.4 -
—a- Buckg
«-:'C === BUCKFSDT
LL_]N 1 3_ BUCkTSDT |
~Na
w,
(5]
Z
1.2+~ -~
1.1+ —
L
1 | [ | i [
5 10 15 20 25 30 35 40

Length/Height Ratio (Lb/h)

Figure 4.2 Effect of transverse shear on buckling co-efficient for simply supported

tapered laminate model A
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Y
Taper Taper s ® q
ler'lgth aqgle Ly/h s
mn m
meters | degrees

CLPT FSDT TSDT

0.1719 |0.5 38.200 11.5713 11.108 10.980
0.1146 |0.75 25.470 26.0289 24.785 24.420
0.08594 | 1.0 19.098 46.305 43.5267 43.0267
0.0573 |15 12.730 103.986 96.7069 95.2069
0.04295 | 2.0 9.540 184.869 170.0795 167.5795
0.03435 | 2.5 7.630 288.459 262.4976 258.9976
0.0286 | 3.0 6.360 415.557 374.0013 369.5013

Table 4.2 Comparison of critical buckling loads (x 10°N) for simply supported tapered
laminate model B

Figure 4.3 Effect of transverse shear on buckling co-efficient for

Buckling co-efficient with Length/Height ratio of Model B for simply supported ends

T

10

tapered laminate model B

15

Length/Height Ratio (Lb/h)
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y
Taper Taper s
B3|
leggth an_gle Ly/h s s
mn mn
meters | degrees
CLPT FSDT TSDT
0.1719 | 0.5 38.2 3.963667 3.8447 3.7055
0.1146 |0.75 25.47 8.916111 8.580 8.395
0.08594 | 1.0 19.098 15.86167 15.0685 14.558
0.0573 | 1.5 12.73 35.62 33.4828 31.980
0.04295 | 2.0 9.54 63.3222 58.8896 56.3898
0.03435 | 2.5 7.63 98.8 90.896 87.3960
0.0286 | 3.0 6.36 142.3 129.493 124.993

Table 4.3 Comparison of critical buckling loads (x 10°N) for simply supported tapered
laminate model C

Buckling co-efficient with Length/Height ratio of Model C for simply supported ends

2 T T T T T
1.9¢- .
- Buck ..
18l -—- Buckpgpr |
— Buckgyr
1.7+ -

1 L [ 1 [
5 10 15 20 25 30 35 40

Length/Height Ratio (Lb/h)

Figure 4.4 Effect of transverse shear on buckling co-efficient for simply supported

tapered laminate model C

103



Taper y
Taper s
angle s
length ) Lvy/h s | x
n
in meters
degrees
CLPT FSDT TSDT
0.1719 0.5 38.2 11.7 11.349 11.020
0.1146 0.75 25.47 26.3196 25.25145 25.1212
0.08594 | 1.0 19.098 | 46.8192 44.4782 42.9782
0.0573 1.5 12.73 105.1632 98.8534 96.3534
0.04295 | 2.0 9.54 186.972 173.8839 170.3839
0.03435 |25 7.63 291.84 268.4928 263.9928
0.0286 3.0 6.36 420.36 382.5276 377.0276

Table 4.4 Comparison of critical buckling loads (x 10°N) for simply supported tapered

laminate model D

Buckling co-efficient with Length/Height ratio of Model D for simply supported ends

52
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46 -
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Figure 4.5 Effect of transverse shear on buckling co-efficient for simply supported
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4.3.5.2 Discussion of models A, B, C and D

From Figures 4.2 - 4.5 we observe that CLPT, FSDT and TSDT predict the same
behavior after the ratio of height to width becomes equal to 25. Results of CLPT form a

straight line as u,,v, and w, are not playing any role on thickness change. Buckling co-
efficient based on FSDT departs away from that of CLPT after a certain thickness of the

tapered laminate as ¢, and ¢, are having important role on thickness change. In addition,

the results of TSDT are parallel to that of FSDT as the values of ¢, and ¢, do not change

significantly with the change of plate thickness.

We can conclude from Figure 4.6 that the tapered plate of model D is the strongest
one; model B and model C take the second and third ranks respectively. Model A has the
lowest stiffness. The buckling loads of models D and B are closer to each other; on the

other hand, models A and C are closer.

Buckling co-efficient with Length/Height ratio of models A,B,C and D for simply supported ends
Sp------—+ e T e T H e e

1 I | |
! ! | |
I i | |
45—~ R N — —R
-0~ Model D ||
-A- Model B |
-0~ Model C ||
=7 Model A |,
o | l
W 3p-.- ModelA ~ ModelB . --do__-____ beeee ;
(?l—J_Q ] |
i % — oo
2f Model C S omnen ;
150 e . o ——— . -
‘ 7 ‘ 1 9 1
J ) l l
1 1 ! | [
5 10 15 35 40

Length/Height Ratio (Lb/h)

Figure 4.6 Effect of transverse shear on buckling co-efficient for simply supported
tapered laminate models A, B, C and D
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4.4 Discussions and conclusions

In this chapter, constitutive equation of tapered laminated plate based on third-
order shear deformation theory is developed. The system equations of critical buckling
loads are developed for simply supported boundary condition and for four types of taper
models using Ritz method based on Third-order Shear Deformation Theory (TSDT). The
results based on TSDT are also compared with that of CLPT and FSDT.

It can be seen from Tables 4.1 - 4.4 that results of FSDT depart away from CLPT
after a certain thickness of the tapered laminate. In addition, the results of TSDT are
parallel to that of FSDT.

It can be concluded from Figure 4.6 that the tapered plate of model D is the
strongest one and hence results in the largest critical buckling load value; model B and
model C take the second and third ranks respectively. Model A has the lowest stiffness

and hence results in the smallest critical buckling load value.
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Chapter 5

Parametric Study on Tapered Composite Plates Models

5.1 Introduction

In the previous chapters 2, 3, and 4 different types of tapered laminate models,
shown in Figure 2.13, were analyzed based on Classical Laminated Plate Theory (CLPT),
First-order Shear Deformation Theory (FSDT) and Third-order Shear Deformation
Theory (TSDT) respectively. In this chapter, we will conduct a study of those tapered
models with different configurations (Table 5.6) considering the entire length (thick -+
taper + thin) of tapered laminate models.

In chapter two, the tapered laminate models were analyzed based on Classical
Laminated Plate Theory (CLPT) and the results were compared with that of tapered
laminated beam models that were analyzed using finite element method [16]. In chapter
three, the tapered laminate models were analyzed based on First-order Shear Deformation
Theory (FSDT) and the results were compared with that of CLPT. In chapter four, the
tapered laminate models were analyzed based on Third-order Shear Deformation Theory
(TSDT) and the results were compared with that of CLPT and FSDT.

In this chapter uniform laminates (taper angle = 0) are analyzed using Ritz
method and the results are compared with that given in published works. Further, the new
models AA, BB, CC and DD (Figure 5.1) with very small taper angles and few dropped
plies that are almost uniform are analyzed and the results are compared with that of
equivalent uniform laminates. Finally, different tapered laminated plates with various

configurations are considered for study.
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5.2 Comparison of critical buckling co-efficients

Example 5.2.1

The uniform plates described in example 2.7.1 are considered for buckling analysis. The

solutions have been obtained using Ritz method for simply supported boundary

conditions. The values of critical buckling co-efficient are given in Table 5.1.

No of | Sources Theory Applied E /E;

layers 3 10 20 30 40
Ref[44] |[Local Higher Order Plate theory 5.3112 {9.7961 15.0757 §19.3761 |22.9643
Ref[45] |Refined Plate Theory 5.3933 19.9406 115.298 [19.674 |23.34

3 |Ref[46] [Simple Higher Order Plate Theory 5.439  19.926 15.022  ]19.052 [22.312

Ref[22] [Global Higher Order Plate Theory 5.3208 [9.7172 14.729 |18.6834 |21.8977
Ref[47] |3D Elasticity Solution 5.3044 ]9.7621 15.0191 {19.304 |22.8807
Ref[23] |Higher Order Plate Theory 5.3254 19.827 15-1394 [19.481 |23.117
|Present. | Third Order SDT, Ritz T ]88 |erees3 |

11.4918
| , . , 14918 79357 |
Ref{44] |Local Higher Order Plate theory 5.3323 ]9.9851 15.6934 |20.5176
Ref[45] |Refined Plate Theory 5.4096 |10.15 16.008 |20.999
5 |Ref[46] |[Simple Higher Order Plate Theory 5.452 10.157 15.862 |20.644

Ref[22] |Global Higher Order Plate Theory 5.3348 [9.9414 |15.5142 |20.1656
Ref[47] |3D Elasticity Solution 5.3255 }9.9603 15.6527 ]20.4663
Ref [23]» |Higher Order Plat

[Present | Third Order SDT,

24.6517
25.308
24.727
24.1158
24.5929

Ref [44] | First Order SDP theory 5.4093 10 136 15.956 20.908
[Present  [First Order SDT, Ritz Method

25.185
5468

el

11,4918 |
114918

19.7124
19.7124

27.9357

Ref [44] ,
27.9357

Prosent

Classical Plate theory
Classical Plate Theory

Local Higher Order Plate theory

{36.1597

36.1597

Ref [44] 534  [10.0572 [15.9403 [20.9926 ]25.3791
Ref[45] |Refined Plate Theory 54313 |10.197 |16.172 [21.315 [25.79

9 |Ref[46] [Simple Higher Order Plate Theory  [5.457 10249 [16.192 [21.272 |25.671
Ref[22] |Global Higher Order Plate Theory  |5.3432 ]10.0529 |15.9085 [20.925 [25.2741
Ref[47] |3D Elasticity Solution 53352 |10.0417 |15.9153 [20.9614 [25.3436
Ref[23] [Higher Order Plate Theory 53446 |10.0694 |15.965 {21.0332 [25.439
|Present | Third Order SDT, Ritz Method = 15.3299 109741 }15.7089 {20.6218 ’P’éﬁ.g‘b‘éfi ]
Ref [44] _[First Order SDP theory 54126 10.189 [16.146 [21.265 [25.715
[Present | [First On ] L 1682 |16.0682 [21.1171 [25.4946 |

Ref[44] Classical Plate the - 5.7538‘ 11.4918 19.7124“27.9357
Presont  [Classical Platé 1h . 57538 |i14918 197124 1279357 |

Table 5.1 Comparison of buckling co-efficient with previously published results.
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5.3 Comparison of buckling load of tapered plate with that of equivalent uniform
plate

Example 5.3.1

Tapered plate models that are shown in Figure 5.1 are considered with 18 and 12
plies at thick and thin sections respectively, which results in 6 drop-off plies. The
configuration of the thick section is [(0/90)4/0]s and that of the thin section is [0/90]s;.
The configuration of equivalent uniform laminates are [(0/90)3/0/0/0/(90/0);] for models
BB and DD; on the other hand [(0/90)/0]3s for models AA and CC. Thickness of each
ply is 0.125 mm. The lengths of both the equivalent uniform and tapered plate correspond
to the taper angle. The values of m and n in the equations (2.89), (3.31) and (4.58) are

determined so as to obtain the converged solutions.

_Lb——
Model AA Model CC

Model BB Model DD

Figure 5.1 Tapered laminate models AA, BB, CC and DD for buckling analysis.

109



The mechanical properties of the composite material (NCT/301 graphite-epoxy)

arc:

E;=113.9 GPa, E;=7.9856 GPa,

G12=3.138 GPa, G3=2.543 GPa, 1)12:0.288,

023=0.576, p=1480 kg/m3. Resin properties: E = 3.93 GPa, G =1.034 GPa,v = 0.37.

The results obtained for example 5.3.1 are tabulated in the Tables 5.2 -5.5.

Angles CLPT FSDT TSDT

in degrees | Tapered Uniform | Tapered Uniform Tapered | Uniform
0.05 0.19274 0.21013 0.17129 0.21007 0.16850 | 0.2070
0.10 0.77052 0.84015 0.6378 0.83912 0.62962 | 0.82699
0.50 19.271 A 21.013 17.4845 20.389 16.0788 | 20.074

Table 5.2 Comparison of critical buckling load (x10°N) for tapered laminate model AA

with that of equivalent uniform plate for simply supported boundary conditions.

Angles CLPT FSDT TSDT

in degrees | Tapered | Uniform Tapered Uniform Tapered | Uniform
0.05 0.46036 |0.41042 0.44557 0.4102 0.40572 | 0.40659
0.10 1.8456 1.6409 1.8115 1.6380 1.620 1.6146
0.50 46.036 41.042 44.066 39.285 42.482 | 38.659

Table 5.3 Comparison of critical buckling load (x10°N) for tapered laminate model BB

with that of equivalent uniform plate for simply supported boundary conditions.
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Angles CLPT FSDT TSDT

in degrees | Tapered | Uniform Tapered Uniform Tapered | Uniform
0.05 0.2056 | 0.21013 0.2000 0.21007 0.1914 | 0.2066
0.10 0.8221 | 0.84015 0.7389 0.83912 0.6830 |0.82743
0.50 20.5628 | 21.013 18.9057 20.389 17.5500 | 20.074

Table 5.4 Comparison of critical buckling load (x10°N) for tapered laminate model CC

with that of equivalent uniform plate for simply supported boundary conditions.

Angles CLPT FSDT TSDT

in degrees | Tapered | Uniform Tapered Uniform Tapered | Uniform
0.05 0.49399 | 0.41042 0.4762 0.4102 0.4547 | 0.40659
0.10 1.9752 | 1.6409 1.8414 1.6380 1.80169 | 1.6140
0.50 49.399 |41.042 47.142 39.285 45.4714 | 38.555

Table 5.5 Comparison of critical buckling load (x10°N) for tapered laminate model DD

with that of equivalent uniform plate for simply supported boundary conditions.
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5.4 Critical buckling loads calculated using different plate theories

Example 5.4.1

For parametric study NCT/301 graphite-epoxy is chosen.

Mechanical properties of

(a) Unidirectional Graphite-epoxy:-

(b) Resin:-

The total length (L =L, + L, + L) of all Models A, B, C and D is 298.60mm and L, = Ly,
= (L-Ly)2. The models are shown in figure 2.13. In the analysis, taper angle is

considered 0.75 degree. The thickness of each ply is 0.125 mm. The values of m and n in

the equations (2.89),

solutions. The laminate configurations are shown in Table 5.6 and the results are given in

the Table 5.7.

Longitudinal Modulus (E;) = 113.9 GPa
Transverse Modulus (E;) = 7.9856 GPa
E, = E; = 7.9856¢9 GPa
In Plane shear Modulus (Gy;) = 3.138 GPa

Out of Plane shear Modulus (G23) = 2.543 GPa

Major Poisson’s ratio (V1) = (.288

Minor Poisson’s ratio (V21) = (0.018

Elastic Modulus (E) = 3.93 GPa

Shear Modulus (G) = 1.034 GPa

Poisson’s ratio () = 0.37

(3.31) and (4.58) arc determined so as to obtain the converged
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Configurations
Laminates
Thick Section Thin Section
LCQ) [0/90]9s [0/90]34
LCQ2) [+45]9s [+45 |3
LC@3) [02/£455]s [02/%45,]s

Table 5.6 List of different tapered laminate configurations.

Critical Buckling load, X10*N
Models CLPT FSDT TSDT
A 1.4285 1.2500 1.1500
B 3.9824 3.7833 3.5941
C 1.4971 1.4222 1.3511
D 4.1920 3.9924 3.8023

Table 5.7 Influence of different theories on critical buckling load (xI 0°N) for the

laminate configuration LC(1) with simply supported ends.
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5.5 Effect of laminate configuration

Example 5.5.1

The tapered models described in example 5.4.1 are considered for buckling
analysis. The solutions have been obtained using Ritz method for simply supported

boundary conditions. The results are given in Table 5.8.

Critical Buckling load, X10*N
Theories
Laminates | Applied Model A Model B Model C Model D
| CLPT 1.4285 3.9824 1.4971 4.1920
LC®) FSDT 1.2500 3.7833 1.4222 3.9924
TSDT 1.1500 3.5941 1.3511 3.8023
CLPT 1.2169 3.430 1.2777 3.6500
LC(2) FSDT 1.1560 3.350 1.2139 3.4400
TSDT 1.0982 3.092 1.15316 3.2699
CLPT 1.5825 4.4301 1.6616 4.6530
LC(3) FSDT 1.5033 4.2200 1.5785 4.4320
TSDT 1.4282 3.9990 1.4996 4.2202

Table 5.8 Effect of laminate configuration on critical buckling load (x1 0°N) for simply

supported ends.
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5.6 Discussion and conclusion

In this chapter a parametric study on critical buckling loads of uniform laminates has
been carried out. Then moderately tapered plate models AA, BB, CC and DD (Figure
5.1) have been analyzed. Finally, taper models A, B, C and D (Figure 2.13) have been
analyzed. The problems have been solved for different laminate configurations (Table

5.6) using various taper angles based on three different theories, CLPT, FSDT and TSDT.

We can conclude the following:

v' Tapered plate of model D has the highest values of critical buckling loads
compared to other taper models.

v' Consequently tapered plate models B, C and A take the second, third and
fourth positions respectively.

v' Increasing the taper angle results in the increase in the critical buckling
load value.

v' Laminate configuration LC(3) is the strongest with respect to the
configurations LC(1) and LC(2).

v' Laminate configuration LC(2) is the weakest and the configuration
LC(1) is the moderate one.

v For all tapered laminate models the critical buckling load value calculated

using TSDT is the lowest.
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Chapter 6

Conclusions and Future Work

In the present thesis buckling of tapered composite plate is analyzed using Ritz
method based on Classical Laminated Plate Theory (CPLT), First-order Shear
Deformation Theory (FSDT) and Third-order Shear Deformation Theory (TSDT). The
effect on the laminate stiffness of the composite plate caused by the taper angle has been

quantified. Different configurations of tapered plates have been investigated.

The taper angle of composite plate changes not only the geometric properties but also
the stiffness of the oblique plies. Consequently, the mechanical behavior of tapered
composite plate differs from that of uniform plate. The effect on the ply stiffness can
be ignored if the taper angle is very small. With the increase in the taper angle, this

influence is not negligible.

Considering the effect of taper angle, stiffness matrices have been derived. Applying
these stiffness matrices, energy equations have been developed for CLPT, FSDT and
TSDT respectively. Finally, system equations of critical buckling loads of tapered

composite plates have been derived.
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The programming, involving symbolic and numerical computations, is done using
MATLAB® software. At the end of each formulation, appropriate problems have been
solved and the results are vindicated physically and graphically and compared with that

of published works.

The parametric study is carried out for the tapered composite plates to see the effects
of various changes in the laminate parameters on buckling. These changes include the
change in the boundary conditions, change in the laminate configuration and change

in the taper angle. The imperative and prime conclusions are:

v' CLPT is applicable for thin plate but for thick plate we need to apply
higher-order theory.

v" Tapered plate of model D has the highest critical buckling load
compared to other taper models as it has more inner continuous plies than
others and its core is almost made up of plies. Model B is closer to model D as
its core has same characteristic as model D.

v" Consequently tapered plate models ‘C and A’ are weaker than models
’D and B’ due to resin pockets at core.

v' Laminate configurations LC(3), LC(1) and LC(2) are the strongest,
moderate and weakest laminates respectively. The variation of geometric

properties of the laminates are explained in the following table:
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Fiber direction of continuous plies

Remarks
90" +45" 0’
Stiffness Weakest Moderate Strongest
No. of Plies
6 0 6 Moderate Configuration
of LC(1)
No. of Plies
0 6+6 0 Weakest Configuration
of LC(2)
No. of Plies
0 4+4 4 Strongest Configuration
of LC(3)

Table 6.1 Physical explanation for variation of geometric properties of laminates.

Laminate LC(3) is the strongest as it is constructed by two types of plies: moderate

plies (4+4) and strongest plies (4). Laminate LC(2) is the weakest one as it is

constructed by moderate plies (6+6) only. On the other hand, laminate LC(1) is the

moderate one as two extreme types of plies namely, the weakest plies (6) and

strongest plies (6), are used to construct it.
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The study on buckling of the tapered laminates can be continued in the long run based

on the following recommendations:

1. Higher-order finite element analysis of tapered laminate can be developed
based on the Ritz solution presented in this thesis.

2. Ritz method presented in this thesis can be extended to stochastic buckling
analysis.

3. Present work can be extended for the analysis of the free and forced vibration
response of different types of laminated plates.

4. The effect of damping can be considered in the free and forced vibrations of

tapered composite plates.
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Appendix A

System Equations Based on Third-order Shear Deformation Theory

For simply support case:

[ See the equations (4.60 — 4.64) ]
Wm=sin(m*pi*x/L); Wn=sin(m*pi*y/b);
Xm=cos(m*pi*x/L); Xn=sin(m*pi*y/b);
Ym=sin(m*pi*x/L); Yn=cos(m*pi*y/b);
Zm=sin(m*pi*x/L); Zn=sin(m*pi*y/b);

Sm=sin(m*pi*x/L); Sn=sin(m*pi*y/b);

Wi=sin(n*pi*x/L); Wj=sin(n*pi*y/b);
Xi=cos(n*pi*x/L); Xj=sin(n*pi*y/b);
Yi=sin(n*pi*x/L); Yj=cos(n*pi*y/b);
Zi=sin(n*pi*x/L); Zj=sin(n*pi*y/b);

Sii=sin(n*pi*x/L); Sj=sin(n*pi*y/b);

Differentiating w.r.t. Wmn:

W1=-int((6*D55*C1*dWm/dx*dWi/dx),x,0,L) * int((Wn*Wj),y,0,b) +
int((3*H14*C1/2*Wm*d2Wi/dx2),x,0,L) * int((Wj*dWn/dy).y,0,b) -
int((2¥E46*C1*dWm/dx*Wi),x,0,L) * int((dWn/dy*dWij/dy),y,0.b) +
int((3*H24*C1°2*Wm*Wi).x,0,L) * int((d2Wj/dy2*dWn/dy),y,0,b) +

int((9*F45*C17°2* Wm*dWi/dx),x,0,L) * int((Wj*dWn/dy).y,0,b) +
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int((6*H56*C1/2*dWm/dx*dWi/dx),x,0,L) * int((dWj/dy*Wn),y,0,b) -
int((6*D45*C1*dWm/dx*Wi),x,0,L) * int((Wn*dWj/dy),y,0,b) +
int((6*HA6*C1/2*dWm/dx*Wi),x,0,L) * int((dWn/dy*dWj/dy),y,0,b) +
int((3*H15*C1/2*dWm/dx*d2Wi/dx2),x,0,L) * int((Wj*Wn),y,0,b) +
int((3*H24*C172*Wm*Wi),x,0,L) * int((dWj/dy*d2Wn/dy2),y,0,b) -
int((2*E56*C1*dWm/dx*dWi/dx),x,0,L) * int((dWn/dy* Wj),y,0.b) -
int((2*E56*C1*dWm/dx*dWi/dx),x,0,L) * int((dWj/dy*Wn),y,0,b) +
int((3*H15*C1/2*d2Wm/dx2*dWi/dx),x,0,L) * int((Wj*Wn),y,0,b) +
int((9*F44*C1/°2*Wm*Wi),x,0,L) * int((dWn/dy*dWj/dy),y,0,b) +
int((J12*C1/2*d2Wm/dx2*Wi) x,0,L) * int((Wn*d2Wj/dy2),y.0.b) +
int((J12*C172*Wm*d2Wi/dx2),x,0,L) * int((Wj*d2Wn/dy2).y.0.b) +
int((3*H25*C1/2*dWm/dx*Wi),x,0,L) * int((Wn*d2Wj/dy2),y,0.b) +
int((9*¥F45*C1°2*dWm/dx*Wi),x,0,L) * int((Wn*dWij/dy),y,0,b) -
int((E24*C1*Wm*Wi),x,0,L) * int((d2Wj/dy2*dWn/dy),y.0,b) -
int((E25*C1*dWm/dx*Wi),x,0,L) * int((Wn*d2Wij/dy2),y,0,b) +
int((9*F55*C1/2*dWm/dx*dWi/dx),x,0,L) * int((Wn*Wj),y,0,b) -
int((6*D45*C1*Wm*dWi/dx).x,0,L) * int((Wj*dWn/dy).y,0,b) +
int((6*H56*C17°2*dWm/dx*dWi/dx),x,0,L) * int((dWn/dy*Wj),y,0,b) +
int((3*H14*C1/°2*d2Wm/dx2*Wi),x,0,L) * int((Wn*dWj/dy).y,0,b) +
int((4*J66*C1/2*dWm/dx*dWi/dx),x,0,L) * int((dWn/dy*dWj/dy),y,0,b) -
int((2*¥E46*C1*Wm*dWi/dx),x,0,L) * int((dWj/dy*dWn/dy).y,0,b) +
int((6¥H46*C1°2*Wm*dWi/dx),x,0,L) * int((dWj/dy*dWn/dy),y,0.b) -

int((E24*C1*Wm*Wi),x,0,L) * int((dWj/dy*d2Wn/dy2),y,0,b) -
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int((E14*C1*Wm*d2Wi/dx2),x,0,L) * int(Wj*dWn/dy),y,0,b) -
int((E15*C1*dWm/dx*d2Wi/dx2),x,0,L) * int((Wj*Wn),y,0,b) +
int((2*J26*C1"2*dWm/dx*Wi),x,0,L) * int((dWn/dy*d2Wj/dy2),y,0,b) +
int((A45*dWn/dx*Wi),x,0,L) * int((Wn*dWj/dy),y,0,b) +
int((A55*dWm/dx*dWi/dx),x,0,L) * int((Wn*Wj),y,0,b) +
int((2*¥J26*C1°2* Wm*dWi/dx),x,0,L) * int((dWj/dy*d2Wn/dy2),y,0,b) +
int((J22*C1"2*Wm*Wi),x,0,L.) * int((d2Wj/dy2*d2Wn/dy2),y,0,b) +
int((J11*C1"2*d2Wm/dx2*d2Wi/dx2),x,0,L) * int((Wj*Wn),y,0,b) -
int((E25*C1*Wm*dWi/dx),x,0,L) * int(Wj*d2Wn/dy2),y,0,b) -
int((E15*C1*d2Wm/dx2*dWi/dx),x,0,L) * int((Wn*Wj),y,0,b) +
int((A45*Wm*dWi/dx),x,0,L) * int(Wj*dWn/dy),y,0,b) -
int((E14*C1*d2Wm/dx2*Wi),x,0,L) * int((Wn*dWj/dy),y,0,b) +
int((2*¥J16*C172*d2Wm/dx2*dWi/dx),x,0,L) * int((dWj/dy*Wn),y,0,b) +
int((2*¥J16*C1"2*dWm/dx*d2Wi/dx2),x,0,L) * int((dWn/dy*Wj),y,0,b) +
int((A44*Wm*Wi),x,0,L) * int((dWj/dy*dWn/dy),y,0,b) -
int((6*¥D44*C1*Wm* Wi),x,0,L) * int((dWj/dy*dWn/dy),y,0,b) +

int((3*H25*C1"2*Wm*dWi/dx),x,0,L) * int((Wj*d2Wn/dy2).y,0,b);

X1=-
int((E15*C1*d2Wm/dx2*Xi),x,0,L)*int((Wn*Xj),y,0,b)+int((B14*Wm*dXi/dx),x,0,L)*i
nt((Xj*dWn/dy),y,0,b)+int((3*H15*C1/2*d2 Wm/dx2*Xi),x,0,L)*int((Xj* Wn),y,0,b)-

int((4*E46*C1*Wm*Xi),x,0,L)*int((dXj/dy*dWn/dy),y,0,b)+int((J 16*C1/2*d2 Wm/dx2

*Xi),x,0,L)*int((Wn*dXj/dy),y,0,b)+int((2*J66* C1°2*dWm/dx*Xi).x,0,L)*int((dWn/dy
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*dXj/dy),y,0,b)-
int((4*E56*C1*dWm/dx*Xi),x,0,L)*int(Wn*dXj/dy),y,0,b)+int((2*J16*C1"2*dWm/dx
*dXi/dx),x,0,L)*int((Xj*dWn/dy),y.0,b)+int((3*¥*H46*C1"2* Wm*Xi),x,0,L)*int((d Xj/dy
*dWn/dy),y,0,b)+int((9*F45*C1/2*Wm*Xi),x,0,L) *int((Xj*d Wn/dy),y,0,b)+int((3*H14
*C12*Wm*dXi/dx),x,0,L)*int((Xj*d Wn/dy),y,0,b)-
int((2*F66*C1*dWm/dx*Xi),x,0,L)*int((dWn/dy*dXj/dy),y,0,b)+int((J12*C1°2*Wm*d
Xi/dx),x,0,L)*int((Xj*d2Wn/dy2),y,0,b)-
int((2*E56*C1*dWm/dx*Xi),x,0,L)*int((dWn/dy*Xj),y,0,b)-
int((4*E14*C1*Wm*dXi/dx),x,0,L)*int((Xj*dWn/dy),y,0,b)+int((6*H56*C1"2*dWm/d
x*Xi),x,0,L)*int((dWn/dy*Xj),y,0,b)-
int((6*D55*C1*dWm/dx*Xi),x,0,L)*int(Wn*Xj),y,0,b)+int((9*F55*C1"2*dWm/dx*Xi
),x,0,L)*int((Xj*Wn),y,0,b)+int((3*H25*C1"2*Wm*Xi),x,0,L)*int((Xj*d2Wn/dy2),y,0,
b)-int((2*F16*C1*dWm/dx*dXi/dx),x,0,L)*int((Xj*dWn/dy),y,0,b)-
int((4*E15*C1*dWm/dx*dXi/dx),x,0,L) *int((Xj* Wn),y,0,b)+int((3*H56*C1°2*dWm/d
x*Xi),x,0,L)*int((Wn*dXj/dy),y,0,b)-
int((6*D45*C1*Wm*Xi),x,0,L)*int((Xj*dWn/dy),y,0,b)+int((J11*C1"2*d2Wm/dx2*dX
i/dx),x,0,L)*int((Xj* Wn),y,0,b)+Hnt((3*H1 5*C1"2*dWm/dx*dXi/dx),x,0,L) *int((Xj*Wn
),y,0,b)+int(B15*dWm/dx*dXi/dx),x,0,L)*int((Xj* Wn),y,0,b)+int((AS5*dWm/dx*Xi),x
,0,.L)*int((Wn*Xj),y,0,b)-int((F16*C1*d2 Wm/dx2*Xi),x,0,L)*int((Wn*dXj/dy),y,0,b)-
int((F12*C1*Wm*dXi/dx),x,0,L)*int((Xj*d2Wn/dy2),y,0,b)+int((J26*C1"2* Wm*Xi),x,
0,L)*int((dXj/dy*d2Wn/dy2),y,0,b)-

int((F11*C1*d2Wm/dx2*dXi/dx),x,0,L)*int((Xj* Wn),y,0,b)+int((A45* Wm*Xi),x,0,L) *i

nt((Xj*dWi/dy),y,0,b)Hint(B56*d Wm/dx*Xi),x,0,L)*int((dXj/dy* Wn),y,0,b)-
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int((F26*C1*Wm*Xi),x,0,L)*int((dXj/dy*d2Wn/dy2),y,0,b)+int((B46* Wm*Xi),x,0,L.)*1
nt((dXj/dy*dWn/dy),y,0,b)-int((E25*C1*Wm*Xi),x,0,L)*int((Xj*d2Wn/dy2),y,0,b);
Y1=-

int((6*D45*C1*dWm/dx*Yi),x,0,L)*int((Wn*Yj),y,0,b)+int((J26*C1"2*Wm*d Y/dx),x,
0,L)*int((Yj*d2Wn/dy2),y,0,b)-
int((2*F66*C1*dWm/dx*dYi/dx),x,0,L)*int((dWn/dy*Y]),y,0,b)-
int((6*D44*C1*Wm*Yi),x,0,L)*int((Yj*dWn/dy),y,0,b)+int((3*H14*C1"2*d2Wm/dx2*
Yi),x,0,L)*int((Wn*Yj),y,0,b)+int((3*H56*C1"2*dWm/dx*d Yi/dx),x,0,L)*int((Wn*Yj),
y,0,b)+int((3*H24*C17°2* Wm*Y1i),x,0,L)*int((d Yj/dy*dWn/dy),y,0,b)-
int((4*E24*C1*Wm*Yi),x,0,L)*int((d Yj/dy*dWn/dy),y,0,b)+int((B24* Wm*Yi),x,0,L)*i
nt((dYj/dy*dWn/dy),y,0,b)-
int((F12*C1*d2Wm/dx2*Y1),x,0,L)*int(Wn*dYj/dy),y,0,b)+int((J12*C172*d2Wm/dx2
*Y1),x,0,L)*int(Wn*dYj/dy),y,0,b)-
int(F26*C1*Wm*dYi/dx),x,0,L)*int((Yj*d2Wn/dy2),y,0,b)+int((A44* Wm*Y1),x,0,L)*1
nt((Yj*dWn/dy),y,0,b)+Hint((A45*dWm/dx* Y1),x,0,L)*int((Yj* Wn),y,0,b)+int((J22*C1"
2*¥Wm*Yi),x,0,L)*int((dYj/dy*d2Wn/dy2),y,0,b)-
int((4*E25*C1*dWm/dx*Yi),x,0,L)*int((dYj/dy*Wn),y,0,b)-
int((E14*C1*d2Wm/dx2*Yi),x,0,L)*int((Yj*Wn),y,0,b)+int((9*F45*C1"2*dWm/dx* Y1)
,%,0,L)*int((Yj*Wn),y,0,b)+int((6*H46*C1°2*d Wm/dx*Y1),x,0,L) *int((Yj*dWn/dy),y,0,
b)+int((B56*dWm/dx*dYi/dx),x,0,L)*int((Yj*Wn),y,0,b)-
int((E24*C1*Wm*Y1i),x,0,L)*int((Yj*d2Wn/dy2),y,0,b)+int((3*H24*C1"2*Wm*Y1),x,0
L)*int((Yj*d2Wn/dy2),y,0,b)-

int((F22*C1*Wm*Yi),x,0,L)*int((dYj/dy*d2Wn/dy2),y,0,b)+int((B46* Wm*d Yi/dx).x,0,
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Ly*int((Yj*dWn/dy),y,0,b)+int((2*J26*C1/2*dWm/dx* Yi),x,0,L)*int((d Wn/dy*dYj/dy),
y,0,b)+int((9*F44*C1/2*Wm*Yi),x,0,L)*int((Yj*dWn/dy),y,0,b)+int((2*J66*C1/2*dW
m/dx*dYi/dx),x,0,L)*int((dWn/dy*Yj),y,0,b)+int(J16+C1°2*d2 Wm/dx2*dYi/dx).x,0,L)
*int((Yj*Wn),y,0,b)-int((F16*C1*d2Wm/dx2*d Yi/dx),x,0,L)*int((Wn*Yj),y,0,b)-
int((2*E46*C1*dWm/dx*Yi),x,0,L)*int((Yj*dWn/dy),y,0,b)-
int((4*E56*C1*dWm/dx*dYi/dx).x,0,L)*int((Yj* Wn),y,0,b)-
int((4*E46*C1*Wm*dYi/dx),x,0,L)*int((Yj*dWr/dy),y,0,b)Hnt((3*H46*C1/2* Wm*dY
i/dx),x,0,L)*int((Yj*dWn/dy),y,0,b)+Hnt((3*H25*C1/2*dWm/dx* Y1),x,0,L)*int(Wn*dY
i/dy),y,0,b)+ini((B25*dWm/dx*Yi),x,0,L)*int(Wn*dYj/dy),y,0,b)-

int((2*F26*C1*dWm/dx*Yi),x,0,L)*int((dWn/dy*dYj/dy),y,0,b);

Z1 = -int((1/2*D14*Wm*d2Zi/dx2),x,0,L)*int((Zj*dWn/dy),y,0,b)-
int(D56*dWm/dx*dZi/dx),x,0,L)*int((dZj/dy* Wn),y,0,b)-

int((D46* Wm*dZi/dx),x,0,L)*int((dZj/dy*d Wn/dy),y,0,b)+int((1/2*H22*C1*Wm*Zi),x,
0,L)*int((d2Zj/dy2*d2Wn/dy2),y,0,b)+int(H12*C1*d2Wm/dx2*Zi),x,0,L)*int((Wn*d2
Zj/dy2),y,0,b)+int((3*F46*C1*Wm*dZi/dx),x,0,L)*int((dZj/dy*dWn/dy),y,0,b)+int((3/2
*F25*C1*dWm/dx*Zi),x,0,L)*int((Wn*d2Zj/dy2),y,0,b)+int((1/2*H1 1 *C1 *d2 Wm/dx2*
d27i/dx2),x,0,L)*int((Zj* Wn),y,0,b)+Hint((3/2*F24*C1*Wm*Zi),x,0,L)*int((d2Zj/dy2*d
Wn/dy),y,0,b)+int((3*F56*C1*dWm/dx*dZi/dx),x,0,L)*int((dZj/dy* Wn),y,0,b)+int((3/2
*F15*C1*dWm/dx*d2Zi/dx2),x,0,L)*int((Zj* Wn),y,0,b)-
int((1/2*D24*Wm*Zi),x,0,L)*int((d2Zj/dy2*d Wn/dy),y,0,b)-
int((1/2*D15*dWm/dx*d2Zi/dx2),x,0,L)*int((Zj* Wn),y,0,b)+int((3/2*F14*C1*Wm*d2

Zi/dx2),x,0,L)*int((Zj*dWn/dy),y,0,b)Hnt(2*H16*C1*dWm/dx*d2Zi/dx2),x,0.L)*int((
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Zj*dWn/dy),y,0,b)-
int((1/2*D25*dWm/dx*Zi) x,0,L)*int((d2Zj/dy2* Wn),y,0,b)+int((2*H66*C 1 *dWm/dx*
d7i/dx),x,0,L)*int((dWn/dy*dZj/dy),y,0,b)+Hnt((2* H26*C1*Wm*dZi/dx),x,0,L)*int((dZj

/dy*d2Wn/dy2),y,0,b);

S1=
int((2*H46*C1*Wm*dSi/dx),x,0,L)*int((dSj/dy*dWn/dy),y,0,b)+int((H14*C1*Wm*d2S
i/dx2),x,0,L)*int((Sj*d Wn/dy),y,0,b)+int((H24*C1*Wm*Sii),x,0,L)*int((d2Sj/dy2*dWn/
dy),y,0,b)+int((2/3*J12*C1*d2Wm/dx2*Sii),x,0,L)*int((Wn*d2Sj/dy2),y,0,b) +int((H25*
C1*dWm/dx*Sii),x,0,L)*int((Wn*d2Sj/dy2),y,0,b)-

int((2/3*E46* Wm*dSi/dx),x,0,L)*int((dSj/dy*d Wn/dy),y,0,b)+int((1/3*J22*C1*Wm*Sii
),x,0,L)*int((d2Sj/dy2*d2Wn/dy2),y,0,b)-

int((1/3*E25*dWm/dx*Sii),x,0,L) *int((d2Sj/dy2* Wn),y,0,b)+int((1/3*J11*C1*d2Wm/d
x2*d2Si/dx2),x,0,L)*int((Sj*Wn),y,0,b)-
int((1/3*E14*Wm*d2Si/dx2),x,0,L)*int((Sj*dWn/dy),y,0,b)-
int((1/3*E15*dWm/dx*d2Si/dx2),x,0,L)*int((Sj* Wn),y,0,b)-

int((1/3*E24* Wm*Sii),x,0,L)*int((d2Sj/dy2*dWn/dy),y,0,b)-
int((2/3*E56*dWm/dx*dSi/dx),x,0,L)*int((dSj/dy* Wn),y,0,b)+int((2*H56*C1*dWm/dx
*dSi/dx),x,0,L)*int((dSj/dy* Wn),y,0,b)+int((4/3*J16*C1*d2Wm/dx2*dSi/dx),x,0,L) *int(
(dSj/dy* Wn),y,0,b)+int((4/3*J26*C1* Wm*dSi/dx),x,0,L)*int((dSj/dy*d2Wn/dy2),y,0,b)
+nt((4/3*166*C1*dWm/dx*dSi/dy),x,0,L)*int((dSj/dx*dWn/dy),y,0,b)+int((H15*C1*d

Wm/dx*d2Si/dx2),x,0,L)*int((S;* Wn),y,0,b);



Differentiating w.r.t. Xmn:

W2 =-
int((4*E46*C1*Xm*Wi),x,0,L)*int((dWj/dy*dXn/dy),y,0,b)+int((J11*C1"2*dXm/dx*d2
Wi/dx2),x,0,L)*int((Wj*Xn),y,0,b)+int((9*F55*C1"2*Xm*dWi/dx),x,0,L)*int((Wj*Xn),
¥,0,b)-
int((2*F16*C1*dXm/dx*dWi/dx),x,0,L)*int((dWj/dy*Xn),y,0,b)+int((9*F45*C1"2*Xm
*Wi),x,0,L)*int((dWj/dy*Xn),y,0,b)+int((3*H25*C1/2*Xm* Wi),x,0,L)*int((Xn*d2 Wj/d
y2),y,0,b)+int((2*J66*C1/2*Xm*dWi/dx),x,0,L)*int((dWj/dy*dXn/dy),y,0,b)+int((3*H5
6*C1/2*Xm*dWi/dx),x,0,L)*int((Wj*dXn/dy),y,0,b)-
int((4*E56*C1*Xm*dWi/dx),x,0,L)*int((Wj*dXn/dy),y,0,b)-
int((F16*C1*Xm*d2Wi/dx2),x,0,L)*int((Wj*dXn/dy),y,0,b)-
int((F11*C1*dXm/dx*d2Wi/dx2),x,0,L)*int((Wj*Xn
),y,0,b)+Hnt((AS5*Xm*dWi/dx),x,0,L)*int((Wj*Xn),y,0,b)-
int((4*E14*C1*dXm/dx*Wi),x,0,L)*int(Xn*dWj/dy),y,0,b)+int((3*H46*C1/2* Xm* Wi
),x,0,L)*int((dWj/dy*dXn/dy),y,0,b)-
int((2*F66*C1*Xm*dWi/dx),x,0,L)*int((dWj/dy*dXn/dy),y,0,b)-
int((4*E15*C1*dXm/dx*dWi/dx),x,0,L)*int((Wj*Xn),y,0,b)+int((3*H15*C1"2*dXm/dx
*dWi/dx),x,0,L)*int((Wj*Xn),y,0,b)+int((J12*C1"2*dXm/dx* Wi),x,0,L)*int((Xn*d2Wj/
dy2),y,0,b)+int((2*J16*C1"2*dXm/dx*dWi/dx),x,0,L) *int((dWj/dy* Xn),y,0,b)+Hint((6*H
56*C17"2*Xm*dWi/dx),x,0,L)*int((dWj/dy*Xn),y,0,b)-
int((F12*C1*dXm/dx*Wi),x,0,L)*int((d2Wj/dy2*Xn),y,0,b)+int((3*H15*C1"2*Xm*d2
Wi/dx2),x,0,L)*int((Wj*Xn),y,0,b)+int((3*H14*C1"2*dXm/dx* Wi),x,0,L) *int((dWj/dy*

Xn),y,0,b)+nt((B56*Xm*dWi/dx),x,0,L)*int((Wj*dXn/dy),y,0.b)+int((J16*C1/2*Xm*d
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2Wi/dx2),x,0,L)*int((Wj*dXn/dy),y,0,b)Hnt(B46* Xm* Wi),x,0,L) *int((dWj/dy*dXn/dy
),y,0.b)+int((B15*dXm/dx*dWi/dx),x,0,L)*int((Wj*Xn),y,0,b)-
int((6*D55*C1*Xm*dWi/dx),x,0,L)*int((Wj*Xn),y,0,b)-

int((6*D45*C1*Xm* Wi),x,0,L)*int((Xn*dWj/dy),y,0,b)Hnt(B14*dXm/dx* Wi),x,0,L)*i
nt((dWj/dy*Xn),y,0,b)-int((2*ES6*C 1*Xm*dWi/dx),x,0,L) *int((dWi/dy*Xn),y,0,b)-
int((E25*C1*Xm*Wi),x,0,L)*int((d2Wj/dy2*Xn),y,0,b)+int((J26*C1/2*Xm*Wi),x,0,L)
*int((d2Wj/dy2*dXn/dy),y,0,b)Hnt((A45*Xm* Wi),x,0,L)*int((dWi/dy*Xn),y,0,b)-
int((F26*C1*Xm*Wi),x,0,L)*int((d2Wj/dy2*dXn/dy),y,0,b)-

int((E15*C1*Xm*d2Wi/dx2),x,0,L)*int((Wj*Xn),y,0,b);

X2 = -int((2*F11*C1*dXm/dx*dXi/dx),x,0,L)*int((Xj*Xn),y,0,b)-
int((2*F16*C1*Xm*dXi/dx),x,0,L)*int((Xj*dXn/dy),y,0,b)+int((3*H56*C1/2*Xm*Xi),
x,0,L)*int((dXj/dy* Xn),y,0,b)-
int((2*F16*C1*dXm/dx*Xi),x,0,L)*int((dXj/dy*Xn),y,0,b)-
int((6*D55*C1*Xm*Xi),x,0,L)*int((Xj*Xn),y,0,b)+int((J66*C12*Xm™*Xi),x,0,L) *int((
dXj/dy*dXn/dy),y,0,b)+int((3*H56*C1"2*Xm*Xi),x,0,L)*int((Xj*dXn/dy),y,0,b)-
int((2*F66*C1*Xm*Xi),x,0,L)y*int((dXj/dy*dXn/dy),y,0,b)-
int((4*E15*C1*Xm*dXi/dx),x,0,L)*int((Xj*Xn),y,0,b)-
int((4*E56*C1*Xm*Xi),x,0,L)*int((dXj/dy*Xn),y,0,b)-
int((4*E15*C1*dXm/dx*Xi),x,0,L)*int((Xj* Xn),y,0,b)+int((J16*C1/2*dXm/dx*Xi).x,0,
L)*int((dXj/dy*Xn),y,0,b)+int((B15*Xm*dXi/dx),x,0,L)*int((Xj*Xn),y,0,b)+int((AS5*X
m*Xi),x,0,L)*int((Xj*Xn),y,0,b)-

int((4*E56*C1*Xm*Xi),x,0,L)*int((Xj*dXn/dy),y,0,b)+int((J16*C1"°2*Xm*dXi/dx).x.0,
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L)*int((Xj*dXn/dy),y,0,b)+Hnt((D66*Xm*Xi),x,0,L)*int((dXj/dy*dXn/dy),y,0,b)+int((BS
6¥Xm*Xi),x,0,L)*int((Xj*dXn/dy),y,0,b) Hnt((9*F55*C1°2*Xm*Xi),x,0,L)*int((Xj*Xn)
v,0,b)+int((D16*dXm/dx*Xi),x,0,L)*int((dXj/dy*Xn),y,0,b)+int((D11*dXm/dx*dXi/dx)
x,0,L)*int((Xj*Xn).y,0,b)Hint((B56*Xm*Xi),x,0,L)*int((dXj/dy* Xn),y,0,b)+int((J11*C

1A2*dXm/dx*dXi/dx),x,0,L)¥int((G * Xn),y,0,b)+Hnt((B1 5*dXm/dx*Xi),x,0,L)*int((Xj*

Xn),y,0,b)+Hnt((3*H15*C1°2*dXm/dx*Xi),x,0,L)*int((Xj*Xn),y,0,b)Hnt((3*H15*C1"2
*Xm*dXi/dx),x,0,L)*int((Xj*Xn),y,0,b)+int((D16*Xm*dXi/dx),x,0,L)*int((Xj*dXn/dy),

y,0,b);

Y2= int((9*F45*C172*Xm*Yi),x,0,L)*int((Yj*Xn),y,0,b)-
int((6*D45*C1*Xm*Yi),x,0,L)*int((Yj*Xn),y,0,b)+int((A45*Xm*Yi),x,0,L) *int((Yj*Xn
),,0,b)Hint((D12*dXm/dx*Yi) x,0,L)*int((dYj/dy*Xn),y,0,b)+Hnt((J26*C1/2*Xm* Y1),
0,L)*int((dYj/dy*dXn/dy),y,0,b)+int((B14*dXm/dx* Yi),x,0,L)*int((Yj*Xn),y,0,b)+int((
J12*C172*dXm/dx*Yi),x,0,L) *int((d Yi/dy*Xn),y,0,b)+Hint((D66* Xm*d Yi/dx),x,0,L) *int
(Yj*dXn/dy),y,0,b)+int((D26*Xm*Yi),x,0,L)*int((d Yj/dy*dXn/dy),y,0,b)-
int((2*F12*C1*dXm/dx*Yi),x,0,L)*int((d Yj/dy*Xn),y,0,b)-
int((2*¥F66*C1*Xm*dYi/dx),x,0,L)*int((Yj*dXn/dy).y,0,b)Hnt((3*H14*C1/2*dXm/dx*
Yi),x,0,L)*int((Yj*Xn),y,0,b)-
int((4*E25*C1*Xm*Yi),x,0,L)*int((dYj/dy*Xn),y,0,b)+Hnt((3*H56*C1°2*¥Xm*d Yi/dx),
x,0,L)*int((Yj*Xn),y,0,b)+int((J16*C1/2*dXm/dx*d Yi/dx),x,0,L) ¥int((Yj*Xn),y,0,b)-
int((4*E56*C1*Xm*dYi/dx),x,0,L)*int((Yj*Xn),y,0,b)+int((3*H25*C1/2*Xm*Yi),x,0,
L)*int((dYj/dy*Xn).y,0,b)Hnt((766*C1/2*Xm*d Yi/dx),x,0,L) *int((Yj*dXn/dy),y,0,b)+i

nt((B56*Xm*dYi/dx).x,0,L)*int((Yj*Xn),y.0,b)-



int((4*E14*C1*dXm/dx*Yi),x,0,L)*int((Yj*Xn),y,0,b)-
int((2*F26*C1*Xm*Yi),x,0,L)*int((d Yj/dy*dXn/dy),y,0,b)-

int((2*F16*C1*dXm/dx*d Yi/dx),x,0,L)*int((Yj*Xn),y,0,b)+nt((B46*Xm*Yi),x,0,L)*int
((Yj*dXn/dy).y,0.,b)-
int((4*E46*C1¥Xm*Y1),x,0,L)*int((Yj*dXn/dy),y,0,b)+int((D16*dXm/dx*d Yi/dx),x,0.L
YHint((Yj*Xn).y,0,b)Hnt((B25*Xm* Yi).x,0,L) *int((d Yj/dy* Xn),y,0,b)+int((3*H46*C1/2

*Xm*Y1i),x,0,L)*int((Yj*dXn/dy),y,0,b);

72 = int((3/2*F15*C1*Xm*d2Zi/dx2),x,0,L)*int((Zj*Xn),y,0,b)-
int((E16*dXm/dx*dZi/dx),x,0,L)*int((dZj/dy*Xn),y,0,b)+int((1/2*H16*C1*Xm*d2Zi/dx
2),x,0,L)*int((Zj*dXn/dy),y,0,b)+Hint((1/2¥*H26*C1*Xm*Zi),x,0,L) *int((d2Zj/dy2*dXn/d
¥):y,0,b)-

int((E66*Xm*dZi/dx),x,0,L)*int((dZj/dy*dXn/dy),y,0,b)+int(H66*C1* Xm*dZi/dx),x,0,
L)*int((dZj/dy*dXn/dy),y,0,b)-int((D56*Xm*dZi/dx),x,0,L)*int((dZj/dy*Xn),y,0,b)-
int((1/2*D15*Xm*d2Zi/dx2),x,0,L)*int((Zj*Xn),y,0,b)-
int((1/2*E11*dXm/dx*d27i/dx2),x,0,L)*int((Zj*Xn),y,0,b)+int((1/2*H12*C1*dXm/dx*
71),x,0,L)*int((d2Zj/dy2*Xn),y,0,b)-
int((1/2*¥D25*Xm*Zi),x,0,L)*int((d2Zj/dy2*Xn),y,0,b)+int((1/2*H1 1 *C1*dXm/dx*d2Zi
/dx2),x,0,L)*int((Zj*Xn),y,0,b)-
int((1/2*E16*Xm*d2Zi/dx2),x,0,L)*int((Zj*dXn/dy),y,0,b)+int(H16*C1*dXm/dx*dZi/d
x),x,0,L)*int((dZj/dy*Xn),y,0,b)-

int((1/2*E12*dXm/dx*Zi),x,0,L)*int((d2Zj/dy2* Xn),y,0,b)+int((3/2*F25*C1*Xm*Zi).x,

0,L)*int((d2Zj/dy2*Xn),y,0,b)-



int((1/2*E26*Xm* Zi) x,0,L)*int((d2Zj/dy2*dXn/dy),y,0,b)Hnt(3*F56+C1¥Xm*dZi/dx)

,x,0,L)*int((dZj/dy*Xn),y,0,b);

S2 = -int((1/3*F11*dXm/dx*d2Si/dx2),x,0,L)*int((Sj*Xn),y,0,b)-
int((2/3*F66*Xm*dSi/dx),x,0,L)*int((dSj/dy*dXn/dy),y,0,b)-
int((1/3*F26*Xm*Sii),x,0,L)*int((d2Sj/dy2*dXn/dy),y,0,b)+int((H25*C1*Xm*Sii),x,0,L
Y*int((d2Sj/dy2*Xn),y.0,b)-int((1/3*F16*Xm*d28i/dx2),x,0,L)*int((Sj*dXn/dy),y,0,b)-
int((2/3*E56*Xm*dSi/dx),x,0,L)*int((dSj/dy*Xn),y,0,b)-
int((1/3*E25*Xm*Sii),x,0,L)*int((d2Sj/dy2*Xn),y,0,b)-
int((1/3*E15*Xm*d2Si/dx2),x,0,L)*int((Sj*Xn),y,0,b)Hnt((H15*C1*Xm*d2Si/dx2),x,0,
L)*int((Sj*Xn),y,0,b)+int((1/3*716*C1*Xm*d2Si/dx2),x,0,L)*int((Sj*dXn/dy),y,0,b)int
((1/3*J11*C1*dXm/dx*d28i/dx2),x,0,L)*int((Sj*Xn),y,0,b)+int((2*H56*C1*Xm*dSi/dx
).,0,L)*int((dSi/dy*Xn),y,0,b)+int((1/3*J12*C1*dXm/dx*Sii),x,0,L)*int((d2Sj/dy2*Xn)
y,0,b)Hnt((2/3*J16*C 1*dXm/dx*dSi/dx),x,0,L) *int((dSj/dy*Xn),y,0,b)+int((1/3*]26*C
1#Xm*Sii),x,0,L)*int((d2Sj/dy2*dXn/dy),y,0,b)+int((2/3*166* C1*Xm*dSi/dx),x,0,L)*in
£((dSj/dy*dXn/dy),y,0,b)-int((1/3*F12*dXm/dx*Sii),x,0,L)*int((d2Sj/dy2*Xn),y,0,b)-

int((2/3*F16*dXm/dx*dSi/dx),x,0,L)*int((dSj/dy*Xn),y,0,b);

Differentiating w.r.t. Ymn:

W3 = -int((E24*C1*Ym*W1i),x,0,L)*int((d2Wj/dy2*Yn),y,0,b)-
int((F16*C1*dYm/dx*d2Wi/dx2),x,0,L)*int((Wj*Yn),y,0,b)+int((A44* Ym*W1),x,0,1.)*1

nt((dWj/dy*Yn).y,0,b)-
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int((F12*C1*Ym*d2Wi/dx2),x,0,L)*int((Wj*d Yn/dy),y,0,b)+int(B46*d Ym/dx* W1i),x,0,
L)*int((dWj/dy* Yn),y,0,b)+int(J12*C1"2* Ym*d2Wi/dx2),x,0,L)*int((Wj*d Yn/dy),y.0,
b)+int((B25* Ym*dWi/dx),x,0,L)*int((Wj*dYn/dy),y,0,b)+int((J22*C12* Ym*Wi),x,0,L
Y*int((d2Wj/dy2*dYn/dy),y,0,b)+int((J16*C1/2*dYm/dx*d2Wi/dx2),x,0,L)*int((Wj*Yn
),y,0,b)+Hnt((B56*d Ym/dx*dWi/dx),x,0,L)*int((Wj* Yn),y,0,b)-

int((F26*C1*dYm/dx* Wi),x,0,L)*int((d2 Wj/dy2*Yn),y,0,b)+int((B24* Ym* Wi),x,0,L)*i
nt((dWj/dy*dYn/dy),y,0,b)+Hnt((9*F44*C172* Ym* Wi),x,0,L)*int((Yn*d Wj/dy),y,0,b)-
int((6*¥*D45*C1* Ym*dWi/dx),x,0,L)*int((Wj*Yn),y,0,b)+int((3*H14*C1"2*Ym*d2Wi/d
x2),x,0,L)*int((Wj*Yn),y,0,b)+int((J26*C1"2*d Ym/dx* W1i),x,0,L.) *int((d2Wj/dy2*Yn),y
,0,b)Hint((6¥*H46*C1/2* Ym*dWi/dx),x,0,L)y*int((dWj/dy* Yn),y,0,b)-
int((4*E25*C1*Ym*dWi/dx).x,0,L)*int(Wj*d Yn/dy),y,0,b)-
int(E14*C1*Ym*d2Wi/dx2),x,0,L)*int((Wj*Yn),y,0,b)-

int((4*E24*C1*Ym* Wi),x,0,L)*int((d Wj/dy*d Yn/dy),y,0,b)-
int((6*¥*D44*C1*Ym*Wi),x,0,L)*int((dWj/dy*Yn),y,0,b)+Hint((3*¥*H46*C1/2*d Ym/dx*Wi
),x,0,L)*int((dWj/dy* Yn),y,0,b)+int((2*J26*C1"2* Ym*d Wi/dx),x,0,L)*int((dWj/dy*dY
n/dy),y,0,b)-

int((4*E46*C1*dYm/dx* Wi),x,0,L)*int((dWj/dy* Yn),y,0,b)+Hint((3*H25*C12*Ym*dW
1/dx),x,0,L)*int((Wj*d Yn/dy),y,0,b)+int((2*J66*C172*d Ym/dx *d Wi/dx),x,0,L)*int((dW
j/dy*Yn),y,0,b)-

int((2*F66*C1*d Ym/dx*dWi/dx),x,0,L)*int((dWj/dy*Yn),y,0,b)+int(3*H24*C1/2*Ym
*Wi),x,0,L)*int((dWj/dy*d Yn/dy),y,0,b)+Hint((3*H24*C12* Ym* Wi),x,0,L)*int((d2Wj/d
y2*Yn),y,0,b)-int((2*F26*C1*Ym*dWi/dx),x,0,L)*int((d Wj/dy*d Yn/dy),y,0,b)-

int((4*E56*C1*dYm/dx*dWi/dx).x,0,L)*int((Wj* Yn),y,0,b)Hnt((3*H56*C1/2*d Ym/dx
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*dWi/dx),x,0,L)*int((Wj* Yn),y,0,b)+int((9*F45* C1°2* Ym*d Wi/dx),x,0,L)*int((Wj* Yn
),y,0,b)+int((A45* Ym*dWi/dx),x,0,L)*int((Wj*Yn),y,0,b)-
int((F22*C1*Ym*Wi),x,0,L) *int((d2 Wj/dy2*d Yn/dy),y,0,b)-

int((2*E46*C1*Ym*dWi/dx),x,0,L)*int((dWj/dy* Yn),y,0,b);

X3 = int((3*H25*C1"2*Ym*Xi),x,0,L)*int((Xj*d Yn/dy),y,0,b)-
int((4*E56*C1*dYm/dx*Xi),x,0,L)*int((Xj* Yn),y,0,b)+int((9*F45*C1"2*Ym*Xi),x,0,L
)*int((Xj*Yn),y,0,b)+Hnt((B56*dYm/dx*Xi),x,0,L)*int((Xj*Yn),y,0,b)-
int((4*E46*C1*Ym*Xi),x,0,L)*int((dXj/dy* Yn),y,0,b)+int((B46* Ym*Xi),x,0,L)*int((d
Xj/dy*Yn),y,0,b)-

int((2*F16*C1*dYm/dx*dXi/dx),x,0,L)*int((Xj* Yn),y,0,b)+int((B14*Ym*dXi/dx),x,0,L
Y¥int((Xj*Yn),y,0,b)Hnt((A45* Ym*Xi),x,0,L)*int((Xj* Yn),y,0,b)+int((B25* Ym*Xi),x,0
,L)*int((Xj*dYn/dy),y,0,b)+int((3*H14*C1"2* Ym*dXi/dx),x,0,L)*int((X] *Yn),y,O;b)Jrin
t((3*¥*H46*C1/2* Ym*Xi),x,0,L)*int((dXj/dy* Yn),y,0,b)+int((D26* Ym*Xi),x,0,L) *int((d
Xj/dy*dYn/dy),y,0,b)-

int((4*E25*C1*Ym*Xi),x,0,L)*int((Xj*d Yr/dy),y,0,b)+int((J26*C1°2* Ym*Xi),x,0,L.)*1
nt((dXj/dy*dYn/dy),y,0,b)+int((J66*C1/2*dYm/dx*Xi),x,0,L)*int((dXj/dy* Yn),y,0,b)+1
nt((J12*C1"°2*Ym*dXi/dx),x,0,L)*int((Xj*d Yn/dy),y,0,b)+int((D12* Ym*dXi/dx),x,0,L)
*int((Xj*d Yn/dy),y,0,b)+int((D16*dYm/dx*dXi/dx),x,0,L) *int((Xj* Yn),y,0,b)-
int((2*F12*C1*Ym*dXi/dx),x,0,L)*int((Xj*d Yr/dy).y,0,b)-
int((4*E14*C1*Ym*dXi/dx),x,0,L)*int((Xj*Yn),y,0,b)-
int((6*D45*C1*Ym*Xi),x,0,L)*int((Xj* Yn),y,0,b)+int((D66*d Ym/dx*Xi),x,0,L)*int((d

Xj/dy*Yn),y,0,b)Hnt((3*H56*C142*dYm/dx*Xi).x,0,L)*int((Xj* Yn),y,0.b)-
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int((2*F66*C1*d Ym/dx*Xi),x,0,L)*int((dXj/dy* Yn),y,0,b)-
int((2*¥F26*C1*Ym*Xi),x,0,L)*int((dXj/dy*d Yn/dy),y,0,b)+int((J16*C1/2*d Y m/dx*dXi

/dx),x,0,L)*int((Xj* Yn),y,0,b);

Y3 = int((A44*Ym*Y1),x,0,L)*int((Yj*Yn),y,0,b)-
int((2*F26*C1*dYm/dx*Y1),x,0,L)*int((dYj/dy* Yn),y,0,b)-
int((4*E46*C1*Ym*dYi/dx),x,0,L)*int((Yj* Yn),y,0,b)+Hint((3*H24*C1"2*Ym*Y1),x,0,
L)*int((dYj/dy*Yn),y,0,b)-

int((2*F26*C1*Ym*dYi/dx),x,0,L)*int((Yj*d Yn/dy),y,0,b)+int((3*H24*C1°2*Ym* Y1),
x,0,L)*int((Yj*d Yn/dy),y,0,b)+int((3*¥*H46*C1"2* Ym*d Y/dx),x,0,L)*int((Yj*Yn),y,0,b)
-int((4*E24*C1*Ym*Y1),x,0,L)*int((dYj/dy* Yn),y,0,b)-
int(4*E46*C1*dYm/dx*Yi),x,0,L)*int((Yj* Yn),y,0,b)-
int((4*E24*C1*Ym*Yi),x,0,L)*int((Yj*d Yn/dy),y,0,b)-
int((2*F22*C1*Ym*Yi),x,0,L)*int((dYj/dy*d Yn/dy),y,0,b)+int((J26*C1"2*d Ym/dx* Y1)
,X,0,L)*int((dYj/dy* Yn),y,0,b)+int((3*H46*C1"2*d Ym/dx* Y1),x,0,L) *int((Yj*Yn),y,0,b
YHnt((J26*C1°2*Ym*dYi/dx),x,0,L)*int((Yj*d Yn/dy),y,0,b)+int((D66*d Ym/dx*d Yi/dx)
,X,0,L)*int((Yj*Yn),y,0,b)+int((B46* Ym*d Yi/dx),x,0,L)*int((Yj* Yn),y,0,b)+Hnt((J66*C
1"2*¥dYm/dx*dYi/dx),x,0,L)*int((Yj*Yn),y,0,b)+int((J22*C1"2* Ym*Yi),x,0,L)*int((dY]
/dy*dYn/dy),y,0,b)+int((B24* Ym*Yi),x,0,L)*int((dYj/dy*Yn),y,0,b)+int((B46*d Ym/dx
*Y1),x,0,L)*int((Yj*Yn),y,0,b)+int((B24* Ym*Yi).x,0,L)*int((Yj*d Yn/dy),y,0,b)+int((D
26*Ym*dYi/dx),x,0,L)*int((Yj*dYn/dy),y,0,b)+int(D22* Ym*Y1),x,0,L)*int((d Yj/dy*d
Yn/dy),y,0,b)+int((D26*dYm/dx*Yi),x,0,L)*int((dYj/dy* Yn),y,0,b)+int((9*F44*C1/2*

Ym*Yi),x,0,L)*int((Yj* Yn),y,0,b)-
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int((2*F66*C1*d Ym/dx*dYi/dx),x,0,L)*int((Yi* Yn),y,0.b)-

int((6*D44*C1*Ym*Yi),x,0,L)*int((Yj*Yn),y,0,b);

Z3=-
int((1/2*D14*Ym*d2Zi/dx2).x,0,L)*int((Zj* Yn),y,0,b)+int((1/2*H22*C1* Ym*Zi),x,0,L
Y*int((d2Zj/dy2*dYn/dy).y,0,b)-

int((E26* Ym*dZi/dx),x,0,L)*int((dZj/dy*d Yn/dy),y,0,b)-

int((D46* Ym*dZi/dx),x,0,L)*int((dZj/dy* Yn),y,0,b)Hnt((H66*C1*d Ym/dx*dZi/dx),x,0,
L)*int((dZj/dy* Yn),y,0,b)-
int((E66*dYm/dx*dZi/dx),x,0,L)*int((dZj/dy*Yn),y,0,b)+int(H26*C1*Ym*dZi/dx),x,0,
L)*int((dZj/dy*dYn/dy),y,0,b)Hnt((3*F46*C1*Ym*dZi/dx),x,0,L)*int((dZj/dy* Yn),y.0,
b)-int((1/2*E16*dYm/dx*d2Zi/dx2).x,0,L)*int((Zj* Yn).y,0,b)-
int((1/2*E26*dYm/dx*Zi),x,0,L)*int((d2Zj/dy2* Yn),y,0,b)-
int((1/2*E22*Ym*Zi),x,0,L)*int((d2Zj/dy2*d Yn/dy),y,0,b)+int((1/2*H26*C1*d Ym/dx*
Zi),x,0,L)*int((d2Zj/dy2*Yn),y,0,b)+Hnt((1/2*H12*C1*Ym*d2Zi/dx2),x,0,L)*int((Zj*dY
n/dy),y,0,b)-int((1/2*D24* Ym*Zi),x,0,L)*int((d2Zj/dy2* Yn),y,0,b)-
int((1/2*E12¥Ym*d2Zi/dx2),x,0,L)*int((Zj*d Yn/dy),y,0,b)+int((3/2*F24*C1*Ym*Zi).x,
0,L)*int((d2Zj/dy2* Yn),y,0,b)+int((1/2*H16*C1*dYm/dx*d2Zi/dx2),x,0,L)*int((Zj* Yn)

v,0,b)Hnt((3/2*F14*C1*Ym*d2Zi/dx2),x,0,L)*int((Zj* Yn),y,0,b);

S3=-

int((1/3*F22* Ym*Sii),x,0,L)*int((d2Sj/dy2*d Yn/dy),y,0,b)+int((1/3*J12*C1*Ym*d2Si/

dx2),x,0,L)*int((Sj*d Yn/dy),y,0.b)+int((2/3*J26*C1* Ym*dSi/dx),x,0,L ) *int((dSj/dy*d Y
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n/dy),y,0,b)-

int((1/3*F12*Ym*d2Si/dx2),x,0,L)*int((Sj*d Yn/dy),y,0,b)+Hnt((1/3*J16*C1*d Ym/dx*d
28i/dx2),x,0,L)*int((Sj* Yn),y,0,b)-

int((1/3*E14*Ym*d2Si/dx2).x,0,L)*int((Sj* Yn),y,0,b)+int((1/3*J26*C1*d Y m/dx*Sii).x,
0,L)*int((d2Sj/dy2*Yn),y,0,b)+int((1/3*J22*C1*Ym*Sii),x,0,L)*int((d2Sj/dy2*d Yn/dy),
v,0,b)Hnt((H24*C1*Ym*Sii),x,0,L)*int((d2Sj/dy2* Yn),y,0,b)+int((2/3*J66*C1*d Ym/d
x*dSi/dx),x,0,L) *int((dSj/dy* Yn),y,0,b)+int((H14*C1*Ym*d2Si/dx2),x,0,L)*int((Sj* Yn
),y,0.b)-int((1/3*F26*d Ym/dx*Sii),x,0,L)*int((d2Sj/dy2* Yn),y,0,b)-
int((2/3*E46*Ym*dSi/dx),x,0,L)*int((dSj/dy* Yn),y,0,b)-

int((2/3*F66*d Ym/dx*dSi/dx),x,0,L)*int((dSj/dy* Yn),y,0,b)-

int((2/3*F26* Ym*dSi/dx),x,0,L)*int((dSj/dy*dYn/dy),y,0,b)-
int((1/3*F16*dYm/dx*d2Si/dx2),x,0,L)*int((Sj* Yn),y,0,b)-

int((1/3*E24* Ym*Sii),x,0,L)*int((d2Sj/dy2* Yn),y,0,b) +int((2*H46*C1*Ym*dSi/dx),x,0

L)*int((dSj/dy*Yn),y,0,b);

Differentiating w.r.t. Zmn:

W4 =-

int((1/2#D15*d2Zm/dx2*dWi/dx),x,0,L)*int((Wj* Zn),y,0,b)+Hnt((2*H26*C1*dZm/dx*
Wi),x,0,L)*int((d2Wj/dy2*dZn/dy),y.0,b)-
int((D46*dZm/dx*Wi),x,0,L)*int((dWj/dy*dZn/dy),y,0,b)+int((3*F56*C1*dZm/dx*dWi
/dx),x,0,L)*int((Wi*dZn/dy),y,0,b)Hnt((2*H66*C1*dZm/dx*dWi/dx),x,0,L)*int((dWj/d
y*dZn/dy),y,0,b) Hint((3*F46*C1*dZm/dx*Wi),x,0,L)*int((d Wj/dy*dZn/dy),y,0,b)-

int((D56*dZm/dx*dWi/dx),x,0,L)*int((Wj*dZn/dy),y,0,b)+Hint((3/2* F24*C1*Zm* Wi).x,
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0,L)*int((dWij/dy*d2Zn/dy2),y,0,b)+Hnt((3/2*F25*C1*Zm*dWi/dx),x,0,L)*int((Wj*d2Zn
/dy2),y,0,b)Hnt((3/2*F14*C1*d2Zm/dx2*Wi),x,0,L)*int((Zn*dWj/dy),y,0,b)+int((H12*
C1#Zm*d2Wi/dx2),x,0,L)*int((Wj*d2Zn/dy2),y,0,b)Hint((3/2*F15*C1*d2Zm/dx2*dWi/
dx).x,0,L)*int((Wi*Zn).y,0,b) Hnt((2*H16*C1*d2Zm/dx2*dWi/dx) x,0,L)* int((dWj/dy*
Zn),y,0,b)+int((1/2*H22*C1*Zm*Wi),x,0,L)*int((d2Wj/dy2*d2Zn/dy2),y,0,b)-
int((1/2*D25*Zm*dWi/dx),x,0,L)*int((Wj*d2Zn/dy2),y,0,b)+int((1/2*H1 1*C1*d2Zm/d
x2*d2Wi/dx2),x,0,L)*int((Wj*Zn),y,0,b)-
int((1/2*D24*Zm*Wi),x,0,L)*int((dWj/dy*d2Zn/dy2),y,0,b)-

int((1/2*D14*d2Zm/dx2*Wi),x,0,L)*int((dWj/dy*Zn),y,0,b);

X4 =
int((1/2*H11*C1*d2Zm/dx2*dXi/dx),x,0,L)*int((Xj*Zn),y,0,b)+int((H16*C1*dZm/dx*d
Xi/dx),x,0,L)*int((Xj*dZn/dy),y,0,b)-
int((1/2*D25*Zm*Xi),x,0,L)*int((Xj*d2Zn/dy?2).y,0,b)+int((H66*C1*dZm/dx*Xi),x,0,L
Y¥int((dZn/dy*dXj/dy).y,0.b)+nt((1/2*H26*C1*Zm*Xi),x,0,L)*int((dXj/dy*d2Zn/dy2),y
,0,b)-int((1/2*E16*d2Zm/dx2*Xi),x,0,L)*int((Zn*dXj/dy),y,0,b)-
int((B16*dZm/dx*dXi/dx),x,0,L)*int((Xj*dZn/dy),y,0,b)-
int((D56*dZm/dx*Xi),x,0,L)*int((dZn/dy*Xj),y,0,b)-
int((1/2*E26*Zm*Xi),x,0,L)*int((dXj/dy*d2Zn/dy2),y,0,b)+int((3/2*F15*C1*d2Zm/dx2
*Xi),x,0,L)*int((Xj* Zn).y,0,b)+Hnt((1/2*H12*C1*Zm*dXi/dx),x,0,L)*int((Xj*d2Zn/dy2)
v.0,b)+int((1/2*H16*C1*d2Zm/dx2*Xi),x,0,L)*int((dXj/dy*Zn),y,0,b)-
int((1/2*E11*d2Zm/dx2*dXi/dx),x,0,L)*int((Xj*Zn),y,0,b)-

int((1/2*D15*d2Zm/dx2*Xi).x,0,L)*int((Xj*Zn),y,0,b)-
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int((1/2*E12*Zm*dXi/dx),x,0,L)*int((Xj*d2Zn/dy2),y,0,b)+Hnt((3*F56*C1*dZm/dx*Xi)
X,0,L)*int((dZn/dy*Xj),y,0,b)-
int((E66*dZm/dx*Xi),x,0,L)*int(dZn/dy*dXj/dy),y,0,b)+int((3/2*F25*C1*Zm*Xi) x,0,

L)*int((Xj*d2Zn/dy2),y,0,b);

Y4 = int((1/2*H22*C1*Zm*Yi),x,0,L)*int((dYj/dy*d2Zn/dy2),y,0,b)-
int((E66*dZm/dx*dYi/dx),x,0,L)*int((Yj*dZn/dy),y,0,b)+int(H66*C1*dZm/dx*d Yi/dx)
x,0,L)*int((Yj*dZn/dy),y,0,b)-int((E26*dZm/dx* Yi),x,0,L)*int((dZn/dy*d Yj/dy),y,0,b)-
int(D46*dZm/dx*Y1),x,0,L)*int((Yi*dZn/dy),y,0,b)-
int((1/2*E26*Zm*dY1/dx),x,0,L)*int((Yj*d2Zn/dy2),y,0,b)+int((1/2*H16*C1*d2Zm/dx2
*dYi/dx),x,0,L)*int((Yj*Zn),y,0,b)Hnt((3/2*F14*C1*d2Zm/dx2* Yi) x,0,L)*int((Yj* Zn),
v,0,b)+int((1/2*H12*C1*d2Zm/dx2*Yi),x,0,L)*int((dYj/dy* Zn),y,0,b)-
int((1/2*E16*d2Zm/dx2*dYi/dx),x,0,L)*int((Yj*Zn).y,0,b)-
int((1/2*D24*Zm*Yi),x,0,L)*int((Yj*d2Zn/dy2).y,0,b)+int((3*F46*C1*dZm/dx*Yi),x,0,
L)*int((Yj*dZn/dy),y,0,b)-

int((1/2*E12*d2Zm/dx2*Y1),x,0,L)*int((d Yj/dy*Zn).y,0,b)+Hnt((H26*C1*dZm/dx* Yi),x
,0,L)*int((dYj/dy*dZn/dy),y,0,b)-
int((1/2*D14*d2Zm/dx2*Yi),x,0,L)*int((Yj* Zn),y,0,b)-
int((1/2*E22*Zm*Yi),x,0,L)*int((d Yj/dy*d2Zn/dy2),y.0,b)+int((1/2*H26*C1*Zm*dYi/d
%),%,0,L)*int((Yj*d2Zn/dy2),y,0,b)+int((3/2*F24*C1*Zm*Yi),x,0,L)*int((Yj*d2Zn/dy2),

¥,0.b);
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74 =

int((1/4*F12*d2Zm/dx2*Zi),x,0,L.)*int((d2Zj/dy2*Zn),y,0,b)+int((1/2*F26 *dZm/dx *Zi),
x,0,L)*int((d2Zj/dy2*dZn/dy),y,0,b)+int((1/2*F26*Zm*dZi/dx),x,0,L)*int((dZj/dy*d2Zn
/dy2),y,0,b)+int((F66*dZm/dx*dZi/dx),x,0,L)*int((dZj/dy*dZn/dy),y,0,b)+int((1/2*F16*
d2Zm/dx2*dZi/dx),x,0,L)*int((dZj/dy*Zn),y,0,b)+int((1/4*¥F22* Zm* Zi),x,0,L)*int((d2Z;
/dy2*d27Zn/dy2),y,0,b)+int((1/2*F16*dZm/dx*d2Zi/dx2),x,0,L)*int((Zj*dZn/dy),y,0,b)+i
nt((1/4*F12*Zm*d27i/dx2),x,0,L)*int((Zj*d2Zn/dy2),y,0,b)+int((1/4*F11*d2Zm/dx2*d

271/dx2),x,0,L)*int((Zj*Zn),y,0,b);

S4 =
int((1/6*H11*d2Zm/dx2*d2Si/dx2),x,0,L)*int((Sj*Zn),y,0,b) +int((2/3*H26*dZm/dx*Sii
),%,0,L)*int((d2Sj/dy2*dZn/dy),y,0,b)Hnt((1/6*H22*Zm*Sii),x,0,L)*int((d2Sj/dy2*d2Zn
/dy?2),y,0,b)+int((2/3*H16*dZm/dx*d2Si/dx2),x,0,L)*int((Sj*dZn/dy),y,0,b)+int((1/3*H1
2*d27m/dx2*Sii),x,0,L)*int((d2Sj/dy2* Zn).y,0,b)+int((2/3*H66*dZm/dx*dSi/dx),x,0,L)
*int((dSj/dy*dZn/dy),y,0,b);

Differentiating w.r.t. Smn:

W5=-
int((1/3*E14*d2Sm/dx2* Wi),x,0,L)*int((dWj/dy*Sn),y,0,b)+int((4/3*] 16*C1*dSm/dx*d
2Wi/dx2),x,0,L)*int((Wj*dSn/dy),y,0,b)+int((1/3*J22*C1*Sm*Wi),x,0,L)*int((d2Wj/dy
2*d2Sn/dy2),y,0.b)-

int((2/3*E56*dSm/dx*dWi/dx),x,0,L)*int((Wj*dSn/dy),y,0,b)+int((4/3*J66*C1*dSm/dx

*dWi/dx).x,0,L)*int((dWj/dy*dSn/dy).y,0,b)+int((2*H46*C1*dSm/dx* Wi),x,0,L)*int((d
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Wi/dy*dSn/dy),y,0,b)-int((1/3*E25*Sm*dWi/dx),x,0,L)*int((Wj*d2Sn/dy2),y,0,b)-
int((1/3*E15*d2Sm/dx2*dWi/dx),x,0,L)*int((Wj*Sn),y,0,b)-

int((2/3*E46*dSm/dx* Wi),x,0,L)*int((dWj/dy*dSn/dy),y,0,b)+int((2/3*J12*C1*Sm*d2
Wi/dx2),x,0,L)*int((Wj*d2Sn/dy2),y,0,b)+int((2*H56*C1*dSm/dx*dWi/dx),x,0,L)*int((
Wi*dSn/dy),y,0,b)-
int((1/3*E24*Sm*Wi),x,0,L)*int((dWj/dy*d2Sn/dy2),y,0,b)+int((4/3*126*C1*dSm/dx*
Wi).x,0,L)*int((d2Wj/dy2*dSn/dy),y,0,b)+int((H25*C1*Sm*d Wi/dx),x,0,L)*int((Wj*d2
Sn/dy2),y,0,b)Hnt((1/3*J11*C1*d2Sm/dx2*d2 Wi/dx2),x,0,L)*int((Wj*Sn),y,0,b)+int((H
14*C1*d2Sm/dx2*Wi),x,0,L)*int((dWj/dy*Sn),y,0,b)+nt((H15*C1*d2Sm/dx2*dWi/dx)

%,0,L)*int((Wj*Sn),y,0,b)+int((H24*C1*Sm* Wi),x,0,L)*int((dWj/dy*d2Sn/dy2),y,0,b);

X5 = -int((1/3*E25* Sm*Xi),x,0,L)*int((Xj*d2Sn/dy2),y,0,b)-
int((1/3*E15*d2Sm/dx2*Xi),x,0,L)*int((Xj*Sn),y,0,b)+int((1/3*J26*C1*Sm*Xi),x,0,L)*
int((dXj/dy*d2Sn/dy2),y,0,b)-
int((2/3*F16*dSm/dx*dXi/dx),x,0,L)*int((Xj*dSn/dy),y,0,b)+int(H25*C1*Sm*Xi),x,0,
L)*int((Xj*d2Sn/dy2),y,0,b)+int((1/3*J12*C1*Sm*dXi/dx),x,0,L)*int((Xj*d2Sn/dy2),y,
0,b)+int((1/3*J16*C1*d2Sm/dx2*Xi),x,0,L.)*int((dXj/dy*Sn),y,0,b)-
int((1/3*F26*Sm*Xi),x,0,L)*int((dXj/dy*d2Sn/dy2),y,0,b)+int((2/3*J16*C1*dSm/dx*d
Xi/dx),x,0,Ly*int((Xj*dSn/dy),y,0,b)+int((2/3*J66*C1*dSm/dx *Xi),x,0,L) *int((dSr/dy*
dXj/dy),y,0,b)-

int((1/3*F16*d2Sm/dx2*X1),x,0,L)*int((dXj/dy*Sn),y,0,b)+int((1/3*J11 *C1*d2Sm/dx2*
dXi/dx),x,0,L)*int((Xj*Sn),y,0,b)+int((2*H56*C1*dSm/dx*Xi),x,0,L)*int((Xj*dSn/dy),y

0,b)-int((1/3*F11*d2Sm/dx2*dXi/dx),x,0,L)*int((Xj*Sn),y.0,b)-
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int((1/3*F12*Sm*dXi/dx),x,0,L)*int((Xj*d2Sn/dy2),y,0.,b)-
int((2/3*E56*dSm/dx*Xi),x,0,L)*int((Xj*dSn/dy),y,0,b)+int((H15*C1*d2Sm/dx2*Xi),x,

0,L)*int((Xj*Sn),y,0,b)-int((2/3*F66*dSm/dx*Xi),x,0,L)*int((dXj/dy*dSn/dy),y,0,b);

Y5 = -int((1/3*E14*d2Sm/dx2*Yi),x,0,L)*int((Yj*Sn),y,0,b)-
int((1/3*E24*Sm*Yi),x,0,L)*int((Yj*d2Sn/dy2),y,0,b)-
int((1/3*F16*d2Sm/dx2*dYi/dx),x,0,L)*int((Yj*Sn),y,0,b)-
int((1/3*F22*Sm*Yi),x,0,L)*int((dYj/dy*d2Sn/dy2).y,0,b)-
int((1/3*F26*Sm*dYi/dx),x,0,L)*int((Yj*d2Sn/dy2),y,0,b)+int((H24*C1*Sm*Yi),x,0,L)
*int((Yj*d2Sn/dy2),y,0,b)+int((H14*C1*d2Sm/dx2*Yi),x,0,L)*int((Yj*Sn),y,0,b)+int((1
/3*]22*C1*Sm* Yi),x,0,L)*int((dYj/dy*d2Sn/dy2),y,0,b)-
int((2/3*F26*dSm/dx*Yi),x,0,L)*int((d Yj/dy*dSn/dy),y,0,b)-
int((2/3*E46*dSm/dx*Yi),x,0,L)*int((Yj*dSn/dy),y,0,b)-
int((2/3*F66*dSm/dx*dYi/dx),x,0,Ly*int((Yj*dSn/dy),y,0,b)+int((2/3*J26*C1*dSm/dx*
Yi),x,0,L)*int((dYj/dy*dSn/dy),y,0,b)+Hnt((2*H46*C1*dSm/dx* Yi),x,0,L) *int((Yj*dSn/
dy).y,0,b)+int((2/3*J66*C1*dSm/dx*d Yi/dx),x,0,L)*int((Yj*dSn/dy),y,0,b)+int((1/3*J26
*C1*Sm*dYi/dx),x,0,L)*int((Yj*d2Sn/dy2),y,0,b)-
int((1/3*F12*d2Sm/dx2*Y1),x,0,L)*int((dYj/dy*Sn),y,0,b)+int((1/3*J16*C1*d2Sm/dx2*
dY1/dx),x,0,L)*int((Yj*Sn),y,0,b)+nt((1/3*J12*C1*d2Sm/dx2*Yi),x,0,L)*int((d Yj/dy*S
n).y,0,b);

Z5=
int((1/6*H22*Sm*Zi),x,0,L)*int((d2Zj/dy2*d2Sn/dy2),y,0,b)+int((2/3*H26*Sm*dZi/dx),

x,0,L)*int((dZj/dy*d2Sn/dy2),y,0,b)+int((1/6*H11*d2Sm/dx2*d2Zi/dx2),x,0,L) *int((Zj*
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Sn),y,0,b)+int((2/3*H66*dSm/dx*dZi/dx),x,0,L)*int((dZj/dy*dSn/dy),y,0,b)+int((2/3*H1
6*d2Sm/dx2*dZi/dx),x,0,L)y*int((dZj/dy*Sn),y,0,b)+int((1/3*H12*Sm*d2Zi/dx2),x,0,L)*
int((Zj*d2Sn/dy2),y,0,b);

S5 =int((

2/9*J16*dSm/dx *d2Si/dx2),x,0,L)*int((Sj*dSn/dy),y,0,b)+int((1/9*J11*d2Sm/dx2*d2Si/
dx2),x,0,L)*int((Sj*Sn),y,0,b)+int((1/9*J12*d2Sm/dx2*Sii),x,0,L) *int((d2S;j/dy2*Sn),y,0
,b)+Hnt((2/9*J16*d2Sm/dx2*dSi/dx),x,0,L)*int((dSj/dy*Sn),y,0,b)+int((2/9*J26*dSm/dx
*Sii),x,0,L)*int((d2Sj/dy2*dSn/dy),y,0,b)+int((1/9*J22* Sm*Sii),x,0,L) *int((d2Sj/dy2*d2
Sn/dy?2),y,0,b)+int((1/9*J12*Sm*d2Si/dx2),x,0,L)*int((Sj*d2Sn/dy2),y,0,b)+int((2/9*J26
*Sm*dSi/dx),x,0,L)*int((dSj/dy*d2Sn/dy2),y,0,b)+int((4/9*J66* dSm/dx*dSi/dx),x,0,L)*

int((dS;j/dy*dSn/dy),y,0,b);
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Appendix B

CF_ABD

% Sub program to calculate [A], [B] and [D] matrices

% This is a generalized program for all models A, B, Cand D

function[D,Q,top,bottom]=CF_ABD(E1,E2,G12,G23,v12,v23,a]1,b1,N,LT.,th)

no=1;

cth=0;

for y1=1:N
cth=cth+th; % Cumulative thicness
top(1,no)=cth; % Caleulates the top of each layer

bottom(1,n0)=cth-th; %Calculates bottom of each layer
% Compliance matrix for theta (theta= fiber angle, plane stress case)

L1l=cos(al(1,n0)*pi/180); M1=sin(al(1,n0)*pi/180);

T sigma_theta=[L1%2, MI1%2, 0,0, 0, -2*L1*MI;
M1%2, L1%2, 0,0, 0, 2*L1*MI ;
o, 0, 1,0, 0 O
0, O, OLL M0 ;
0, 0, 0-MLLI 0 ;
L1*MIL, -MI*L1, 0,0, 0, LI"2-M172];

k4

L2=cos(b1(1,n0)*pi/180); M2=sin(b1(1,n0)*pi/180);

% Transformation matrix of strain (fi=tapered angle. plane stress case)

T sigma_ fi=[L272, 0, M272, 0, 2*L2*M2, O ;

0o, 1,0 0,0 0;

M2~2, 0, L272, 0, -2*L2*M2, O ;
0, 0,0, L2, 0 -M2;
-L2*M2, 0, M2*L2, 0, L27"2-M272, 0 ;
0, 0,0, M2 0, L27;
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syms v13 v32 v31 v21 E3 G13;
delta=(1-v12*v21-v23*v32-v31*v13-2*v21*v32*v13)/(E1*E2*E3);
C11=(1-(v23*v32))/(E2*E3*delta); C12=(v12+(v32*v13))/(E1*E3*delta);
C13=(v13+(v12*v23))/(E1*E2*delta); C22=(1-(v13*v31))/(E1*E3*delta);
C23=(v23+(v21*v13))/(E1*E2*delta); C33=(1-(v12*v21))/(E1*E2*delta);
C44=G23; C55=G13; C66=G12;

Yofor transversly isotropic material

v13=vl2; v32=v23;

v31=v13*E3/El; v21=v12*E2/E1;

E3=E2;

G13=G12;

C _double bar=subs([C11 C12C13 0 0 0;
Cl12C22C23 0 0 0;
C13C23C33 0 0 O0;
0 00 C440 O
000 0 C50;
000 0 0 C66];

if b1(1,n0)==1000 % Here 1000 is used for drop of ply
Q(1,n0) = {zeros(3,3)};
else
C xyz=
(T sigma fi)*(T_sigma theta)*C_double bar*transpose(T_sigma _theta)*transpose(T sigma fi);

Yotor plane stress case
Q11=C_xyz(1,1)-(C_xyz(1,3).”2/C_xyz(3,3));

Q12=C _xyz(1,2)- (C_xyz(1,3)*C xyz(2,3)/C_xyz(3,3));
Q16=C xyz(1,6)-(C_xyz(1,3)*C_xyz(3,6)/C_xyz(3,3));
Q22=C xyz(2,2)-(C_xyz(2,3)."2/C xyz(3.3));

Q26=C xyz(2,6)-(C_xyz(2,3)*C_xyz(3,6)/C_xyz(3.,3));
Q66=C xyz(6,6)-(C_xyz(3,6)."2/C xyz(3,3));
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Q(1,no0)={subs(JQ11 Q12 Q16; Q12 Q22 Q26; Q16 Q26 Q66])};
end
no=no+1;

end

for p=1:N ’
if b1(1,p)==1000 % Here 1000 is used for drop of ply
z k=0;
e k=0;
else
z k= (1/2) * ((top(1,p)-LT/2)+(bottom(1,p)-LT/2)) + tan(b1(1,p)*pi/180)*x;
e k= ((top(1,p)-LT/2)-(bottom(1,p)-LT/2));

end

Dl1=(e k*z k"2 + e k"3/12) * Q{1L,p};
D =D+DlI;

end

D;

% END of function CF_ABD

151



CF _energy

% Sub program to calculate stiffness matrix and load matrix of laminate plies

function[AA1,BB1,CC1,DD1,GG1,EE1,FF1]=
CF_energy(MM,NN,x,y,L,w,D11,D12,D22,D33,D13,D23)
% The valugs of following terms are given in Table 2.3
lamda m=[1.875,4.694,7.855,10.996];

gama_m= [0.734,1.018,0.999,1.000];

lamda n=1[1.875,4.694,7.855,10.996];
gama_n=[0.734,1.018,0.999,1.000];

for m=1:MM

for n=1:NN

% Beam function in x direction

X(1,m)=cos(lamda_m(1,m)*x/L)-cosh(lamda_m(1,m)*x/L) -
gama_m(1,m)*(sin(lamda_m(1,m)*x/L)-sinh(lamda_m(1,m)*x/L)); % beam function in x
direction

X=subs(X);

% Beam function in vy direction

Y(1,n)=cos(lamda_n(1,n)*y/w)-cosh(lamda n(1,n)*y/w) -
gama_n(1,n)*(sin(lamda_n(1,n)*y/w)-sinh(Jamda_n(1,n)*y/w)); % beam function in y direction

Y=subs(Y);

end

end

for p=1:MM
for g=1:NN
I1=D11* diff(X{1,p),x",2)* diff(X(1,q),'x",2);
2=Y(1,p)*Y(1,9);
AAT(p,q)= int(11,x,0,L)*int(12,y,0,w);
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13=D12* X(1,p)* diff(X(1,9),x",2);

14=Y(1,q)*diff(Y(1,p),'y',2);

I5=D12* X(1,q)* diff(X(1,p),x",2);

16=Y(1,p)* diff (Y(1.,9),'y',2);

BB1(p,q)= int(13,x,0,L)*int(I4,y,0,w) + int(I5,x,0,L)*int(16,y,0,w);

17=D22* X(1,p)* X(1,9);
18=diff(Y(1,p),'y",2)* diff(Y(1,9),¥".2) ;
CCl1(p,q)= int(17,x,0,L.)*int(I8,y,0,w);

19=D33* diff(X(1,p),x',1)* diff(X(1,q),x',1);
10=diff(Y(1,p),'y', 1)* diff(Y(1,q),"y"1);
DDI1(p,q)= 4*int(I19,x,0,L)*int(110,y,0,w);

1 1=diff(X(1,p),x',1)* diff(X(1,9),x',1);
N2=Y(1,p)*Y(1,9);
GG1(p,q)= int(111,x,0,L)*int(112,y,0,w);

113=D13* diff(X(1,q),'x',2)* diffiX(1,p),x,1);
114=Y(1,q)* diff(Y(1,p),y',1);

115=D13* diff(X(1,p),'x’,2)* diff(X(1,q),x",1);

116=Y(1,p)* diff(Y(1,q),y',1);

EE1(p,q)= 2*int(113,x,0,L)*int(I14.y,0,w) + 2*int(I15,x,0,L)*int(16,y,0,w);

117=D23* X(1,p)* diff(X(1,q),'x',1);

118=diff(Y(1,q),'y',1)* diff(Y(1.p).'v.2);

[19=D23* X(1,q)* diff(X(1,p),x',1);

120=diff(Y(1,p),'y",1)* diff(Y(1,q9),'y".2);

FF1(p,q)= 2*int(117,x,0,L.)*int(118,y,0,w) +2*int(119,x,0,L)*int(120,y,0,w);
end
ply=['No of terms of Rayleigh Approximation: ', num2str(p)]; disp(ply);

end

% END OF SUB PROGRAM CF_energy
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CF_energy_resin

% Sub program to calculate stiffness matrix and load matrix of resin pocket
function[A333,B333,C333,D333,G333]=
CF_energy_resin(Q_resin,NDP,th, LT, MM,NN,x,y,b1,w,top,bottom,NDR)

r=NDR*NDP/2; % Half of total No. of immeginery resin plies
for p=1:NDR*NDP/2

L1(1,p)=cot(-b1(1,p)*pi/180)*((th/NDR)*p-th/(2¥NDR)); % Upeer triangle of resine--bottom
to top

L2(1,p)=cot(-b1(1,p)*pi/180)*((th/NDR)*r-th/(2¥*NDR)); % Lower triangle of resine--bottom
1o top

r=r-1;
end
Lii=[L2,L1]; % Length of immeginery resin pocket from bottom to top
size = size(Lii); % 2nd value is the total No. in column,

% in case of odd drop of ply it is required

syms Li;

% The values of following terms are given in Table 2.3
lamda m=[1.875,4.694,7.855,10.996];
gama_m= [0.734,1.018,0.999,1.000];
lamda_n=1[1.875,4.694,7.855,10.996];
gama_n=[0.734,1.018,0.999,1.000];
for m=1:MM
for n=1:NN
% Beam function in x direction
X(1,m)=cos(lamda_m(1,m)*x/Li)-cosh(lamda_m(1,m)*x/Li) -
gama_m(1,m)*(sin(lamda_m(1,m)*x/Li)-sinh(lamda_m(1,m)*x/Li));
X=subs(X);
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% Beam function in v direction
Y(1,n)y=cos(lamda_n(1,n)*y/w)-cosh(lamda n(1,n)*y/w) -
gama_n(1,n)*(sin(lamda_n(1,n)*y/w)-sinh(lamda_n(1,n)*y/w));
Y=subs(Y);
end

end

A333=0; B333=0; C333=0; D333=0; G333=0;
for p=1:size(1,2) % size(1,2)=No. of immeginery resin plies
Li=Lii(1,p);

X=subs(X); % subs is used to insert the value of Li

% (Q-resin, top, bottom is calculated fron 'CF_ABD sub program’
z k= (1/2) * ((top(1,p)-LT/2)+(bottom(1,p)-LT/2))+tan(b1(1,p)*pi/180)*x +;
e_k= ((top(1,p)-LT/2)-(bottom(1,p)-LT/2));
D resin=(e_k*z k™2 + e k."3/12) * Q _resin{l,p};
D11=D resin(1,1); D12=D resin(1,2);
D22=D resin(2,2); D33=D resin(3,3);

for v=1:MM
for v=1:NN
I1=D11* diff(X(1,u),'x",2)* diff(X(1,v),'x",2);
R2=Y(1,u)*Y(1,v);
A3(u,v)= int(I11,x,0,Li)*int(12,y,0,w);

I3=D12* X(1,u)* diff(X(1,v),'x',2);

14=Y(1,v)*diff(Y(1,u),'y',2);

15=D12* X(1,v)* diff(X(1,u),'x",2);

I6=Y(1,u)* diff (Y(1,v),'y',2);

B3(u,v)= int(I3,x,0,Li)*int(14,y,0,w) + int(I5,x,0,Li)*int(16,y,0,w);

17=D22* X(1,u)* X(1,v);
I8=diff(Y(1,u),y',2)* diff(Y(1,v),y".2) ;
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C3(u,v)= int(17,x,0,Li)*int(I8,y,0,w);

19=D33* diff(X(1,u),'x",1)* diff(X(1,v),%",1);
110=diff(Y(1,u),'y', )* diff(Y(1,v),y',1);
D3(u,v)= 4*int(19,x,0,Li)*int(110,y,0,w);

1 1=diff(X(1,u),'x", 1)* diff(X(1,v),'x",1);
[12=Y(1,u)*Y(1,v);
G3(u,v)= int(I11,x,0,Li)*int(112,y,0,w);
end

end

A333=A333+A3;

B333=B333+B3;

C333=C333+C3;

D333=D333+D3;

G333=G333+G3;

ply=['Analysing resin ply No: ', num2str(p)]; disp(ply);

end

%

A333;
B333;
C333;
D333;
G333;

END OF SUB PROGRAM CF_energy_resin
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Main Program

% Main Program for Buckling Analysis of Tapered Plate model A
% for clamp-free boundary conditions based on CLPT

clear all;

close all;

cle;
g@#$$$$***********$$***$*****$$****$**$******$*******
% Geometric Properties

El =113.9¢9; E2 =7.9856¢€9;

G12=3.138e9; G23 =2.543e9;

v12=0.288; v23=.576;

Ok R o Tk o Rk o AR R R ok AR R R Sk

th=input('Enter the thickness of lamina =");
MM=6; % Rayleigh Approximation ferms

NN=6;, %Ravieigh Approximation terms

ZONE_B=['ANALYSING TAPERED LAMINATE, ZONE-B'};disp(ZONE_B);

%@**$*$*$*$*$**$**$**$$**%%**&*****%****%******%****$

Nb = 36; % Number of phies at thick section
LTb=.0045; % Thickness of thick-part
% Pl orientation angles
ab=[090090090090090090090090090900900900900900900900900900];
bb=[-2.5-2.5-2.5-2.5-2.5-2.5 1000 1000 1000 1000 1000 1000 1000 ...
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
10002.52.52.52.52.52.5]; % tapered angles, 1006 is for drop of ply

Lb=.0344; % Length of tapered part for taper angle of 2.5 degree
b=.0344; % Width of tapered laminate model A

&é*%%*#***********%*#**$*$$$%$$$****$*$*$*$*$*****%$*
/
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[D_tapered]=CF_ABD(El,E2,G12,G23,v12,V23,ab,bb,Nb,LTb,th ; % Recall CF_ABD function
D tapered;

Symsxy;
D1lt=vpa(D_tapered(1,1),4); D12t=vpa(D_tapered(1,2),4); D22t=vpa(D_tapered(2,2),4);
D33t=vpa(D_tapered(3,3),4); D13t=vpa(D_tapered(1,3),4); D23t=vpa(D_tapered(2,3),4);

% Recall of CF _energy function

[A22,B22,C22,D22,G22,E22 F22]=
CF_energy(MM,NN,x,y,Lb,b,D11t,D12t,D22t,D33t,D13t,D23t);

K_b = subs(A22+B22+C22+D22+E22+F22); % Stiffness matrix of taper section for ply

N_b = subs(G22); % Applied force at taper section for ply

ZONE_B=['"ANALYSING RESIN, ZONE-B';disp(ZONE_BY);

?6********k$*******$***$$********$****$$**$***$******

NDP=24; %No of drop of plies

NDR=1; %No of devidation of each ply

% Resin Properties

El1 =3.93¢9; E2 =3.93¢9;

G12 = 1.034e9; G23 = 1.034¢9;

v12=0.37, v23 =.37;

bbr=[-2.5-2.5-2.5-2.5-25-2.5-25-25-25-2.5-2.5-25 ...
2.52525252525252.52.52.52.52.5]; % tapered angles

%6***$$**$$*******#**#******#*?******?*********#*****

Nr=NDR*NDP; % No. of immeginery resin plies
abr = zeros(1,Nr); % Immeginery resin plies angles
LTr = NDP*th; % Thickness of resin pocket at thick part

th_resin=th/NDR; % Thickness of immeginery resin ply
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% Recall CF_ABD function
[Dr,Q_resin,top,bottom]=CF_ABD(E1,E2,G12,G23,v12,v23,abr,bbr,Nr,LTr,th_resin);
Q resin;

top;

bottom;

Syms Xy ;
% Recall of CT_energy_resin function
[A33,B33,C33,D33,G33]=

F energy resin(Q resin,NDP,th,LTr, MM,NN.x,y,bbr,b,top,bottom,NDR);

K_br = subs(A33+B33+C33+D33); % Stiffness matrix of taper section for resin plies

N_br = subs(G33); % Applied force at taper section for resin plies
Buckling=['ANALYSING BUCKLING LOAD'];disp(Buckling);

K =subs(K b+K br);

N_F =subs( N_b +N_br);

N_buckling=eig(K,N_F) % ecigenvalue of tapered laminate model A

%END OF Main PROGRAM
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