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ABSTRACT

RIDE DYNAMIC RESPONSE OF COMMERCIAL VEHICLES SUBJECTED TO
WHEEL UNBALANCE AND NON-UNIFORMITY EFFECTS

Aniket Deodhar

Self-exciting sources of vibration wheel unbalance and wheel non-uniformities
are known to contribute to ride vibration environment of road vehicles and also to
potential road damage in addition to excitations arising from terrain undulations. The
present study investigates vehicle vibrations induced by non-uniformities and unbalance
of the tire-wheel assembly in conjunction with terrain irregularities. A four degrees-of-
freedom pitch plane model of a truck is developed to analyze ride and tire load variations
under measured random road excitations. The nonlinear vehicle model comprising the
adaptive foot-print tire model is analyzed under excitations arising from a range of mass
unbalance and wheel non-uniformity, and phase differences in the defects of the front and
rear wheels. A comprehensive parametric sensitivity analysis is carried out to study the
vehicle response subjected to all the excitations. The response characteristics are
evaluated in terms of measures relevant to ride quality and road damage potential, namely
the overall unweighted and frequency-weighted vertical and pitch rms accelerations of
the sprung mass and dynamic load coefficient (DLC), respectively. The results show that
wheel unbalance and non-uniformities could yield considerable bounce and pitch
vibration of the vehicle, specifically on smooth roads. Furthermore, the wheel unbalance
and wheel non-uniformity contribute to the dynamic tire forces transmitted to the

pavements. The results show that the vertical ride quality is significantly deteriorated by

il



the considered sources of self-excitation. The relative contributions due to self-excitation

sources of vibration are small when vehicle interactions with rough roads are considered.
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CHAPTER 1

INTRODUCTION AND REVIEW OF RELEVANT LITERATURE

1.1 INTRODUCTION

Cargo trucks encounter ride vibrations in a wide frequency range, which are induced
by a variety of sources such as road roughness, structural flexibility and drive-train.
Wheel unbalance and tire non-uniformity also contribute to the overall ride vibration
environment of the vehicle. While the ride dynamic responses of road and off-road
vehicles induced by road roughness and drive-train have been extensively investigated,
the effects of wheel unbalance and tire non-uniformity have gained only minimal
attention. This study is focused on the vibrations induced by the wheel non-uniformities ‘
and unbalance of the tire-wheel assembly in conjunction with the terrain irregularities.
Tire-wheel non uniformities in truck wheels such as geometric imperfections and mass
concentrations can lead to measurable dynamic tire force variations, which studies have
been associated with ride discomfort and road damage. Dynamic force variations due to
unbalance and non uniformities occur in the vicinity of the wheel rotation frequency and
higher harmonics [1]. The operating speed of the vehicle thus plays a major role in the
ride dynamics and road damaging effects of wheel unbalénce and non-uniformity.

In order to study the dynamic behavior of the vehicles, a vast number of ridé models
have been developed which invariably neglect the effects of wheel unbalance and non-
uniformity. The model selected for the purpose of vibration analysis is largely dependent

on the objective of the analysis. A common first step usually involves developing an



analytical model of vehicle-terrain dynamical system comprising physical relations for
the basic components. Over the years, a number of analytical models of varying
complexities have been developed to represent each of the subsystems of the vehicle-
terrain system. The normal selection process consists of choosing the appropriate model
through the trade-off between the analytical complexity and simulation realism [2].

The roll motions of the road vehicles with low center of gravity height are known to
be considerably smaller in magnitude. Moreover, the wheelbase of majority of groundv
vehicles (the longitudinal distance between centers of the front and rear axles) is
significantly larger than the track width (lateral distance between the wheels). The
vehicular roll motions can thus be considered negligible compared to magnitude of
vertical and pitch motions to realize a simplified pitch plane model [3]. These models can
be used to study the ride dynamics and tire force responses subjected to road and self-
excited vibration sources, such as wheel unbalance and nonuniformities. The dynamic
interactions between the road and tire can be modeled using a variety of tire models
reported in published studies [2].

The unbalanced forces and moments due to wheel unbalance and nonuniformities as
mentioned above can cause ride vibration in the frequency range to which human
occupant is more sensitive. Static and dynamic balancing procedures are .applied to
achieve force and moment balance of the wheels. Vehicle and tire manufacturers,
however, generally specify the amount of weight that can be added to a certain size and
type of tire and wheel assembly. Nevertheless, vehicle manufacturers can still find
assemblies that have unacceptable imbalances, especially under the dynamic balance

screening. Since the use of dynamic balance screening is becoming more widespread,



there is a need to study the contributions of tire and wheel to the assembly so that
reasonable component specifications can be defined [4].

This dissertation research is therefore directed towards analyzing the effects of wheel
nonuniformities and unbalance on ride and road damage potential at various speed and road

conditions.

1.2 REVIEW OF RELEVANT LITERATURE

Reported studies on tire modeling, vehicle modeling, effects and modeling of
nonuniformities and unbalance in tire/wheel assembly and ride comfort assessment
criteria are thoroughly reviewed to enhance the focus of study and to identify appropriate
analytical methods. The highlights of the reported studies are grouped under different

relevant topics and briefly described in the following sections.
1.2.1 AN OVERVIEW AND COMPARISON OF TIRE MODELS

Ride dynamic analysis of the vehicle traversing over varying road conditions and also
subjected to the self excited vibration generally demands for accurate modeling of the
vehicle-terrain dynamical system. The selection (and justification) of the tire model is a
difficult task since a wide range of model formulations exist. The complexity of the tire-
road interactions compound the problem since models that are more sophisticated than
necessary lead to high penalty in terms of setup time and computing cost [2].

The most extensively used tire model in vehicle simulations is the point contact tire
model which represents a wheel by an equivalent vertical spring/damper unit having a

single ground contact point directly beneath the wheel center [2]. The main advantage of



the point contact model is that it is very simple to set-up for simulation purposes. The net
foot-print force resulting from the vertical motion of wheel relative to the terrain is
assumed to act normal to the local terrain surface. Thus, a horizontal component of net
foot-print force is generated whenever the local terrain profile is inclined to the
horizontal, and is related to the vertical component through the tangent of the local
profile angle. Several variations of this model have been reported in the literature. These
include: (a) A single linear spring [5]; (b) A linear spring whose stiffness depends on
lateral force [6]; (c) A linear spring and viscous damper [7, 8, 9, 10]; (d) A linear spring
with wheel hop capability [7]; () A damped linear spring and damper with wheel hop
capability [5, 9]; (f) A linear spring with an elastic stop and wheel hop capability [11];
and (g) A linear spring and damper with elastic stoﬁ [9]. All these models have been
primarily restricted to consideration of the vertical tire force component, and, with one
exception which analyses for the fore-and-aft force [7]. Ride dynamic responses obtained
from the linear and nonlinear tire motions for various vehicles and terrain models have
been documented in many studies [5, &, 9, 10]. The validity of the point contact model
has not been demonstrated through a systematic study of tire forces derived from the
experimental data or from a more sophisticated analytical model.

Several other tire models have been described in the literature in which the terrain
contact occurs through finite footprint area rather than at a single point.

Kozin and Bogdanoff [12, 13] described a fixed footprint tire model for application in
a linearized vehicle simulation, to determine the effects of wheelbase and other
parameters on vehicle vibration levels. In this work, only vertical tire forces are

considered and tire is represented by a number of linear parallel springs distributed



uniformly over a footprint of constant length and constrained to remain in ground contact
(i.e., no wheel hop). A similar tire model is also described by Schuring [7].

A more sophisticated tire model has been developed by Lessem [14], and is included
in the Army Mobility Code (AMC) [15]. In this model the tire is divided into several
radial segments, and each segment is assumed to deflect independent of the adjacent
segments as it enters the contact zone. By assuming each segment with an equivalent
stiffness, the force in each deformed segment can be found from the localized deflection.
The total tire force is then computed from the sum of those caused by individual
segments. The study also obtained vertical and fore-and-aft force due to the tire as it
moved slowly over a cleat. The comparisons of the predicted forces and deflection with
the measured data showed reasonably good agreements. Davis [16] applied the same
methodology by considering radial stiffness of various independently deflecting segments
of a tire. The total force derived from the radial deflections of individual segments is
employed to represent the terrain under the tire by an equivalent ground plane.

In all the models described above, the inflation pressure and carcass force
components are not computed independently, but combined and characterized by a single
equivalent stiffness obtained from the plane footprint test data. This combination implies
that the carcass forces and pressure forces vary in the same manner with tire deflection.
In a real tire, especially under nonplanar footprint conditions, the load sharing
characteristics of the carcass aﬁd pressure forces will be substantially different. More
complex analyses of the tire force components based upon different empirical
formulations, have also been developed [17, 18, 19]. The model developed by Clark [17]

analyzes the tire carcass as a thin damped elastic shell under internal pressure, centrifugal



loading and arbitrary footprint deformation. Unfortunately, this type of model is unsuited
for dynamic analyses of vehicles which contain many wheels because general equations
are complex, and amenable to solution only for some simple cases such as plane footprint
loading.

Captain et al. [2] presented a comparison of different lumped parameter models of a
pneumatic tire and demonstrated the influence of analytical tire model on the ride
predictions of a wheeled vehicle subjected to undeformable terrain undulations. Four
basic tire models suitable for ride dynamic simulation were adopted and formulated,
namely, point contact, rigid tread band, fixed foot-print and adaptive foot-print. “Rigid
tread band model” is a modified point contact model, where the point follower is replaced
‘ by a roller follower having the wheel or tread band radius. Consequently, the terrain
contact is not constrained to lie vertically beneath the wheel center, but is free to move
fore and aft of the wheel center depending on the local terrain profile. The motion
transmitted to the wheel center is thus different from the terrain profile due to the
geometrical filtering effects of the rolling wheel. A rigid tread band model can thus be
referred to as an equivalent point contact model operating over a modified filtered profile.
However, for gradually varying terrain profile, the filtering becomes insignificant, and
the rigid tread band and point contact models are similar and yield equivalent results.
“Fixed foot-print model” represents the wheel-terrain interaction through a foot print of
fixed size. This model is represented as a parallel combination of various vertical springs
and damping elements distributed uniformly over the fixed contact length, and has the
ability to envelope the terrain irregularities through the local deformations within the

foot-print. Thus, the fixed foot-print model also filters the terrain irregularities like the



rigid tread band model, where the filtering is dictated by the fixed foot-print length rather
than the wheel radius. An “Adaptive foot-print model” of a tire is also considered, which
comprises parallel combinations of discrete spring and damping elements, which are
radially distributed over the lower circumference of the wheel. Like the fixed foot-print
model, this model has the ability to envelope terrain irregularities through local
deflections. The model thus permits for analysis of the net foot-print force arising from
the nonplanar foot-print, which comprises both the vertical and horizontal components.
The horizontal and vertical components are not related to the terrain slope alone, as in the
case of point contact and rigid tread band models. The footprint size and the orientation
relative to the wheel center changes, depending upon the radial portion of wheel in
contact with the terrain profile and elevation of the localized terrain profile. The four tire
models were compared through a ride simulations of a 5 ton, 6x6 cargo truck, which is a
three axle military truck having an independent suspension in the front and bogie
suspension in the rear. The truck was modeled as a six-degrees-of freedom dynamical
system comprising pitch and bounce motions associated with vehicle sprung body,
bounce motion of front wheel and axle assembly, and bounce (for wheel pair) and pitch
motions for rear bogie assembly configuration. The study concluded that the point
contact and rigid tread band models consistently over-estimate the transmitted vertical
tire forces, particularly in the frequency range 1-100 Hz, while the fixed foot-print model
under estimates the tire forces. Moreover, a nonlinear point contact model yields more
frequent wheel-hop. Adaptive foot-print tire model showed a relatively closer agreement

with the field-measured tire force spectra.



In 1986, Creighton [21] reported a revised vehicle ride prediction module for
military vehicles, referred to as VEHDYN II. It is improved version of the AMC-74
Vehicle Ride Dynamic Module (VEHDYN) [22]. VEHDYN II predicts the gross motions
of a tracked or wheeled vehicle traversing over an arbitrary non-deformable terrain at a
constant forward speed, and computes the average absorbed power (ride performance
criterion) and peak vertical acceleration at the driver’s location or any other specified
location 1n the vehicle (shock performance criterion). Although the basic vehicle-terrain
simulation model 1s the same as in the previous version, VEHDYN, the analytical models
for sub-systems, such as suspension spring and damping characteristics, and dynamic
wheel-track-terrain interactions were modified. In particular, the dynamic wheel-track-
terrain interface was modeled using the concept of a continuous ring of radial springs
instead of discrete radially segmented group of springs.

Dhir and Sankar [20] investigated the ride quality of high mobility
wheeled/tracked off-road vehicles implementing the continuous radial spring tire model
proposed by Creighton [21]. They further proposed an effective algorithm for fast and
accurate computation of the wheel-terrain contact patch. The new method was based on a
simple circle-line intersection, and was found to be more accurate and 5 to 6 times faster
than the previous approach of dividing the wheel into a sufficient number of segments,
and establishing the end points of tire contact patch by checking the elevation of each
segmented point with respect to the terrain profile elevation at the respective horizontal
location. A multi-purpose ride dynamic simulation model (RIDSIM) was developed and
proposed as an effective and precise tool to study and improve the ride comfort and

safety, and thus the performance of wheeled /tracked off-road vehicles.



More recently, Wang [23] carried out dynamic analysis and ride quality
assessment of a tracked snowplowing vehicle using the continuous radial spring tire
model and the algorithm for computation of wheel-terrain contact patch proposed by Dhir
and Sankar [20]. A twelve-degrees-of—freedom ride dynamic model of vehicle was
developed and analyzed through systematic considerations of the track dynamics, track-
terrain interaction, road wheel suspension, snowplowing forces, road wheel-track

interactions, secondary suspension and biodynamic behavior of the driver.

1.2.2 WHEEL NONUNIFORMITIES AND UNBALANCE

The reduced roughness of modern highways imposes stricter and more specific
requirements on characteristics of a vehicle as a whole, and on its components. Hence,
special attention 1s given to tire and rim as elements which contact the road and transmit
all forces from vehicle to the road and from road to the vehicle [24]. It is reported that the
two most obvious types of tire/wheel irregularities which excite cab shake are, unbalance
and radial run-out [25].

WHEEL NONUNIFORMITIES

As is well known, a tire is very heterogeneous system. The radial, tangential and
lateral stiffness variations along the wheel perimeter or variation in geometric form of
tires, however affect its characteristics [26, 28, 29, 30, 31]. Kenny [29] has listed
following sources of wheel assembly vibration in his investigation: (i) vehicle stud or
center hub run outs, (ii) rim stud hole or hub hole eccentricities, (iii) rim flange run outs,
(iv) variation in tire run outs, and (v) variations in tire stiffness.

These variations mostly arise from the misalignments or manufacturing tolerances,

and cause vibratory excitations that are transmitted to rims and then to the body and the



whole vehicle. These worsen the parameters of vibratory comfort and interior vehicle
noise. Excessive radial force variation of a tire-wheel assembly is the cause of a
phenomenon in today’s automobiles called “smooth road shake” [32]. Tire and wheel
non-uniformities have been reported to be a cause of at least three kinds of vehicle
disturbances, viz, smooth road shake, roughness, and thump [32]. Table 1.1 summarizes
speed range, frequency range, and description of each disturbance. It is reported that the
lateral force variation and lateral wheel run out are not related to smooth road shake [32].
Tire non-uniformity draws special attention because it is reported that 