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Abstract

Fire — A Description Logic Based Rule Engine for OWL Ontologies with
SWRL-like Rules

Kruthi Bhoopalam

The present decade has seen significant progress towards realizing the vision of the Seman-
tic Web. This progress has most often been seen in the levels of maturity reached by each
layer in the architectural layers representing the Semantic Web vision. The ontology layer
reached a substantial level of maturity with the OWL Web Ontology Language (OWL)
being recommended by the World Wide Web Consortium (W3C) as the standard for repre-
senting ontologies on the Web. This move has triggered several other standardizations and
led to interesting research results that have further strengthened the ontology layer. This
has motivated the Semantic Web community to venture further towards the rules layer in
the vision. One of the interesting lines of research in this context is to extend OWL with
rules both syntactically and semantically and providing a sound, complete and terminating
reasoning support for the extension. Our present work corresponds to this line of research.

We investigate the problem of providing a description logic (DL) based rule reasoning
support for OWL ontologies extended with rules. Guided by the Semantic Web Rule Lan-
guage (SWRL) extension to OWL, we recognize a rule language called the SWRL-like rule
language as a rule-extension to OWL. The SWRL-like rule language has a similar syntax
as SWRL but differs in its semantics. We propose the system Fire, a rule reasoning engine
for the extension of OWL ontologies with SWRL-like rules. The reasoning procedure pro-
posed for the Fire system follows active domain semantics to ensure termination. The rea-
soning procedure is conjectured to be sound and complete based on the approach followed
in the CARIN system. Contrary to several existing translation-based approaches for rea-
soning with OWL ontologies combined with rules, our proposal provides direct DL based
rule inferencing that is synchronous with the OWL inferencing. This synchronous integra-
tion with a DL reasoner offers immediate feedback about rule consequences in the OWL

knowledge base (KB). The proposal is supported with a prototype Java implementation
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of the Fire system. The prototype implements the RETE algorithm for pattern matching.
Our experiments with the pattern matcher algorithm indicate higher efficiency and speed
of the implemented RETE algorithm in matching DL facts with SWRL-like rule patterns,
compared to a naive approach to pattern-matching. The implemented prototype is sound
based on the sound and complete reasoning of the DL reasoner RACER. Termination is
ensured by the active domain semantics. The prototype does not guarantee completeness
of reasoning due to the unavailability of an important OWL reasoning service from any of

the existing DL reasoners.
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Chapter 1
Introduction

The Web of today was designed with a goal that the vast information it holds will not only
be used for human-to-human communication but also for enabling machines to participate
and help. This goal is reflected by the design issues of the Web! in the discussion, ‘A
roadmap to the Semantic Web’. But the content on the Web has grown in a way that most
of it is designed mainly for human consumption. The ways in which the data is structured
are also for human consumption, which are not evident to machine processing of the data.
Tim Berners-Lee, the creator of the World Wide Web, envisioned the Semantic Web project
to overcome this obstacle for realizing the full power of the Web. The goal of this project
is to extend the Web in a way to utilize the full participation and help of machines. The
approach is to (i) develop languages to represent and structure data, including their mean-
ing (semantics) and (ii) to establish a universal medium for exchange of information. This
should be done in a formal way that is suited for machine consumption (Such representa-
tions of information are in addition to the existing versions of representations designed for
human consumption). Machines could then be engineered to better understand such in-
formation enhanced with formal semantics, to perform automated reasoning with the Web
content, and carry out more intelligent tasks on behalf of the user. At this point it should
be clear that the concept of machine-understandable information does not indicate the abil-
ity of the machine to comprehend human language. It only indicates a machine’s ability
to solve a well-defined problem by performing well-defined operations on existing well-
defined data.? It involves humans in the process of defining the data and the operations

over them, in a formal way that gives the machine its ability to understand the meaning of

Thttp:/fwww.w3.org/Designlssues/Overview.html
http:/fwww.w3.org/Designlssues/Semantic.html



the information it processes.

1.1 Progress Towards the Semantic Web Vision

Figure 1(a) pictorially depicts the Semantic Web vision and is popularly known as the
Semantic Web layer cake first used by Tim Berners-Lee. It shows the architectural layers of
the vision. Each layer corresponds to a level of knowledge representation and structuring
that is needed to realize the vision, with the standard technologies that are enabling them.
There have been growing efforts in realizing this vision. Owing to these efforts and to
the recent broad consensus in the community to include rules along with ontologies in the
Semantic Web architecture, a more refined layer diagram resulted [ADG05]. The refined
layer diagram is shown in Figure 1(b), which is borrowed from Tim Berners-Lee’s keynote
talk at ISWC20033. We present below, a brief description of these layers in the architecture
diagram represented by both Figures 1(a) and 1(b).
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Figure 1: The architectural layers in the Semantic Web vision.

o The XML (eXtensible Markup Language) layer: XML allows to mark-up and struc-
ture arbitrary content by means of nested, attributed elements. The structuring has
no particular semantics to indicate what the structure means. XML plays the role of

just a syntax carrier and this layer corresponds to a basic syntax layer.

3http://www.w3.0rg/2003/Talks/1023-iswc-tbl/Overview-1.html



e The RDF (Resource Definition Framework) Model and Syntax layer: This layer cor-
responds to the meaning of data. RDF allows encoding, exchange, and reuse of
structured metadata. In principle, information is represented by generic means, say
by directed partially labelled graphs that may be serialized using XML. Contrary to
XML, RDF allows assigning global identifiers to such information resources and al-
lows one resource document to refer to and extend statements made in other resource

documents. This feature mainly motivates for its use in this data layer.

e The Ontology layer: This layer corresponds to the formal common agreement about
the meaning of data in terms of ontologies. Ontologies formally describe the shared
conceptualizations of particular domains of interest. This description can be used
to describe structurally heterogeneous and distributed information sources found on
the Web. Ontologies help both people and machines to communicate concisely by
defining shared and common domain theories and vocabularies. They support the

exchange of semantics as well as syntax.

e The Rules layer and the Logic layer: These two layers together allow for querying
meaningful data. Rules in these layers enable automated reasoning with the formally

specified, structured data, to enable interesting inferences.

e The Proof layer: This layer has been conceived to allow the explanation of given
answers generated by automated agents. This will require the translation of agents’
internal reasoning mechanisms into some unifying proof representation language. It
supports the exchange of proofs between such agents, enabling a common under-

standing of how a desired information is derived.

In recent years, the Semantic Web research community has seen significant advance-
ments towards realizing this architectural vision. The advancements have been in the form
of standardizations of languages and Web technologies that enable this vision. The progress
is seen in terms of levels of maturity reached in each layer. The OWL Web Ontology
Language (OWL)* which is a description logic® [BCM*03, BN03] based language, has
been one such advancement which is now the World Wide Web consortium recommended

standard for representing ontologies on the Web. OWL provides three sublanguages with

“http://www.w3.0rg/2004/OWL/
SDescription logics are also popularly known as terminological logics or concept languages.



increasing expressivity, the OWL Lite sublanguage, the OWL DL sublanguage, and the
OWL Full language. Details of these sublanguages are presented in Section 1.3.

1.2 From Ontology to DL Based Rules

The Semantic Web and the description logics (DL) communities have seen dedicated state-
of-the-art reasoners like RACER[HMO1], FaCT[Hor98], Pellet® among others, providing
efficient decidable reasoning over portions of the OWL language (specifically OWL DL).
With OWL, and the significant progress its standardization has triggered, the ontology layer
has attained a substantial level of maturity towards the vision. Many complex relationships
between concepts can be expressed in OWL. But, when it comes to expressing certain
relationships between roles, the expressivity offered by OWL is not enough. Consider the
example to express the definition of a role hasUncle as the composition of roles hasParent
and hasBrother. Another example (borrowed from [Rec02]) to express propagation across
transitive roles: a fracture locatedIn the femur bone, where femur bone isPartOf the leg,
means a fracture is locatedIn the leg. Here the isPartOf is transitive. These ideas cannot be
expressed in OWL without additional expressive features. Non-availability of known DL
algorithms for decidable reasoning with the full OWL language and a need for expressivity
not offered even by the full OWL language, have motivated research interests towards
extending OWL DL with more expressive features. The broad consensus in the community
indicates that such an extension should involve adding rules over the ontology layer. A
move towards this extension points us towards several existing proposals for integrating
ontologies and rules.

Generally, a rule is composed of an antecedent and a consequent, both made up of zero
or more atoms.” An atom is made up of a predicate with an arity of one or more. Atoms
can refer to the elements of a knowledge base (KB) and specify conditions involving them.
So, basically the body and head of rules specify certain conditions and rules are used to
derive new inferences about the knowledge represented by a KB.

Rules are logically treated in two ways namely, (i) as trigger rules and (ii) as logical im-
plications. Trigger rules are popular with rule based knowledge representation systems and

expert systems. Trigger rules usually operate only in one direction i.e., from antecedent

Shttp://www.mindswap.org.2003/pellet/index.shtml
"Throughout the thesis, body is synonymously used with antecedent, and head is synonymously used with
consequent.



to consequent. Their intended meaning is simple and can be read as: if the conditions
in the antecedent are known to hold, then conclude that the conditions in the consequent
also hold. Whereas, the logical implications operate in both directions. That is, the con-
traposition law® holds on such rules. Their intended meaning can be read as: whenever
the conditions specified in the antecedent hold, then the conditions specified in the conse-
quent must also hold. The contraposition law gives the additional meaning that can be read
as: if the conditions in the consequent do not hold, then the conditions in the antecedent
also do not hold. Both kind of rules mentioned above offer added expressivity to the DL
based ontology language it extends, enabling it to express complex relationships between
its elements.

Two recent papers [ADG"05] and [Ros05] provide classifications of existing proposals
for integrating ontologies and rules. [ADG™05] surveys work on combining rules and on-
tologies for the Semantic Web. The classification suggested is based on the degree of inte-
gration of the ontologies and rules: (i) hybrid approach: it strictly separates rule predicates
from the ontology predicates that can appear in rule antecedents, and offers reasoning by
interfacing existing rule and ontology reasoners and (ii) homogenous approach: it embeds
both ontology and rules in a common logical language and does not distinguish between
rule and ontology predicates appearing in rule bodies and offers reasoning either by a gen-
eral reasoner of the common logic language or by constructing a specialized reasoner for
the rule language. [Ros05] mentions Aybrid systems constituted of two or more subsystems,
each dealing with a distinct portion of the KB and using specific representation formalisms
and reasoning procedures. Following these lines we classify only those existing proposals

that integrate DL based ontologies with rules.

e Hybrid approach: This approach combines a DL ontology language with an exist-
ing rule language (mostly Datalog or its extensions). The rule component and the
ontology component of the hybrid KB are treated distinctly. The ontology remains
unchanged, but rules are built upon them. The interaction between the two com-
ponents is obtained by enforcing some constraints on the predicates (both rule and
ontology) in rule bodies and on the individuals/constants that the variables in these

predicates can be bound with. Generally, in systems following this approach the set

8 According to the law of contraposition the logical implication p — g and its contrapositive ~g — —p are
logically equivalent, where p and g are logical sentences/statements.



of symbols used as concept and role names by the ontology (i.e., ontology predi-
cates) have an alphabet that is disjoint with the set of predicate symbols used by rule
atoms in the rule language (i.e., rule predicates). But they share a common alphabet
for variables and individuals/constants. The reasoning support for the hybrid knowl-
edge is by interfacing existing ontology reasoners with existing rule reasoners. This
approach is well-suited for the construction of tools for accessing heterogenous in-
formation systems. It benefits existing systems that are structurally represented by a
DL based language, having application-specific rule programs and having a need to

integrate both.

e Homogenous approach: This approach basically works by treating the ontology
and rules homogeneously in a single logic language. From a DL point of view, this

can be further classified as follows:

— Translation based Approach. The ontology and rules are both translated to be
embedded in a common logical language preserving their individual semantics.

Reasoning support is provided by a general reasoner of the common language.

— DL based Approach. The rule language in systems following this approach
is generally a strict syntactic and semantic extension of the DL ontology lan-
guage. The extension is itself an ontology language and is allowed to express
the knowledge of the KB. Both ontology and rules use the common alphabet
for the set of predicate symbols, variables and constants. Reasoning support for
the ontology is extended by constructing a specialized reasoner to handle rule

inferencing.

Our present work in the thesis is relevant to the line of research introduced above,
focussing on the rules layer from the ontology layer in the Semantic Web architecture in
Figure 1(b). We follow the homogenous DL based approach described above to combine
the DL based OWL language with a rule language. For the rule language, we are guided by
the recent proposal, the Semantic Web Rule Language (SWRL) [HPB™'04] which combines
the OWL DL and OWL Lite sublanguages of the OWL with the Unary/Binary Datalog
RuleML sublanguages of the Rule Markup Language’. The SWRL rules are treated as

logical implications described earlier in this section. We recognize a rule language that is

Shttp:/fwww.ruleml.org/



similar to SWRL in syntax, but a little different in semantics, which we call as the SWRL-
like rule language. The main difference is the treatment of rules as trigger rules. We
concentrate our work on the extension of OWL with this SWRL-like rule language and
propose a reasoning system, Fire, for the extension. We present a prototype that partially
implements the proposed design of the Fire reasoning engine.

The following sections set the stage for understanding the rest of the thesis, by dis-
cussing the ontology language OWL and the rule language SWRL. We then identify the
SWRL-like rule language on which this thesis focuses, describe why it is called so and
how it differs from SWRL.

1.3 The OWL Web Ontology Language

The OWL Web Ontology Language [OWLO04] is the W3C standard for representing on-
tologies on the Web. It is a stepping stone in the progress towards achieving the Semantic
Web vision (see Figure 1). The OWL language is a DL based semantic markup language
for publishing and sharing ontologies on the Web. It is developed as a vocabulary extension
of RDF (the Resource Description Framework) and is derived from the DAML+OIL Web
Ontology Language!?. The syntax of the language enables defining and instantiating Web
ontologies in the form of descriptions of classes, properties and their instances. The formal
semantics of the language specifies how to derive the ontology’s logical conclusions (facts
not literally present in the ontology but entailed by the semantics).

OWL provides three sublanguages offering increasing levels of expressivity. Each is an
extension of its simpler predecessor, both in what can be legally expressed and in what can
be logically derived.

OWL Lite corresponds to the DL s 1 ¥ (D,). It is a basic functional subset of the entire
language allowing for classification hierarchies and simple constraint features.

OWL DL is that subset of OWL corresponding to the description logic $ # 0 1AL (D,,), for
which decidable reasoning procedures exist. It is expressive enough to represent and model
domains that have complex relationships between its identified classes. But the only rela-
tionship between properties that it allows to express is subsumption between atomic prop-

erties, i.e., being able to express something like, hasFather is a subPropertyOf hasParent.

0htp://www.w3.org/TR/daml+oil-reference



Adding rules can increase the expressivity of OWL DL to express more complex relation-
ship between properties, especially by using variables.

OWL Full has the maximum expressiveness, has the full syntax of OWL language and the
syntactic freedom of RDFE There exists no known DL algorithms to decidably reason with
OWL Full.

1.4 The Semantic Web Rule Language - SWRL

The SWRL [HPB'04] is a recent proposal to the W3C to extend OWL with rules. It
is based on a combination of OWL DL and OWL Lite sublanguages of OWL with the
Unary/Binary Datalog RuleML sublanguages of the Rule Markup Language!!. The rule
extension is by adding rule axioms to the set of OWL axioms. The proposal extends the
OWL abstract syntax to include the syntax of these rules and the OWL model-theoretic
semantics to provide a formal meaning for ontologies that include rules written in this
syntax. The extension is strictly a syntactic and semantic extension, hence has a tight
integration to OWL.

1.4.1 Syntax

A SWRL rule axiom is made up of an antecedent and a consequent, both consisting of zero
or more atoms. A rule with either zero atoms in the body (unconditional facts that always
hold), or zero atoms in the head (a trivially empty head that never holds) is not interesting
for adding expressivity to OWL. Such rules are better expressed in OWL without rule
constructs or as queries respectively. In a rule with multiple atoms in the body, the body is
treated as a conjunction of its atoms. In a rule with multiple atoms in the head, the head
also is treated as a conjunction. But such a rule can be easily transformed into multiple

rules each with a single-atom head [HPB704]. Rule atoms can be of the form:12

e C(x) — where C is an OWL Class (a simple named class or a class description) or a

data range!® and x is either a variable, OWL individual or OWL data value.

Uhttp:/fwww.ruleml.org

I2The abstract syntax of SWRL rule axioms, in a version of extended BNF notation, is given in
http://www.w3.org/Submission/2004/SUBM-SWRL-2004052 1/#2

Uhttp:/fwww.w3.org/TR/owl-ref/#DataRange



e P(x,y)—where P is an OWL Property (an object property or a datatype property), x is
either a variable or an OWL individual and y is either a variable, an OWL individual

or an OWL data value.
o sameAs(x,y), differentFrom(x,y) — where x, y are variables or OWL individuals.
e builtln(r,x,...) — where r is a built-in relation and x, ... are OWL data values.

C(x) can be referred to as a concept atom/class atom, P(x,y) can be referred to as a role
atom/property atom. According to [HPB"04] variables in a rule are treated as universally
quantified, limited to the scope of that rule. Rules must be safe, i.e., only variables that
occur in the rule body may occur in the rule head!*. The syntax of SWRL doesn’t allow
disjunction of atoms, negation of atoms or any non-monotonic features like negation as
failure or defaults.

An informal human-readable syntax for these rules is also specified for ease of read-

ability and a typical rule in this syntax would look like:
hasParent(?x,7y) A hasChild(?y,?z) = hasSibling(x,7z)

It states that an individual x having a parent y who in-turn has a child z, is a sibling of z.

1.4.2 Semantics

A SWRL rule is treated as a logical implication between its body and head. The intended
meaning is that: whenever the conditions in the rule body hold, then the conditions in the
rule head must also hold. It is important to recall that, the law of contraposition holds on
this implication. Accordingly, if a rule holds, its contrapositive also holds (See Section 1.2).
According to the SWRL proposal citeHPB04, the formal semantics for the rules are given
by an extension of the OWL interpretation by defining bindings. These bindings map
variables in rules to elements in the ontology domain. A rule is satisfied by an interpretation
iff every binding that satisfies its body also satisfies its head. A rule body or rule head is
satisfied if the conjunction of its atoms is satisfied. A concept atom C(x) is said to be

satisfied if x is an instance of the class description or data range C. A role atom P(x,y) is

14 Unsafe rules allow variables in the head that do not occur anywhere in the body. If this is allowed, the
definition of bindings for variables cannot be defined correctly in this context. Also, termination of reasoning
cannot be guaranteed as all the individuals in the KB could be used to bind the variable in the head. E.g., the
rule Child(?x) = isInnocent(?y) is unsafe.



said to be satisfied if x is related to y by role P. A sameAs(x,y) atom is said to be satisfied if
x is interpreted as the same object as y. A differentFrom(x,y) atom is said to be satisfied if
x and y are interpreted as different objects, and a builtIn(r,x, ...) atom is said to be satisfied
if the built-in relation r holds on the interpretations of the arguments. An interpretation
satisfies an ontology iff it satisfies every axiom (OWL axioms and rule axioms) and fact in
the ontology. It is important to again note that since a rule is treated as a logical implication,
the implied meaning is that the contraposition law holds on the implication (rule). For

example, whenever the rule:
hasParent(?x,?y) A hasChild(?y,?z) = hasSibling(?x,7z)
holds, its contrapositive implication:
—hasSibling(x, 7z) = —(hasParent(1x,?y) A hasChild(?y, 7z))

also holds. It has been pointed out from the first version of the SWRL proposal that this kind
of a rule-extension to OWL DL makes it undecidable [HPS04]. According to citeMSS04,
the reason is that OWL DL is a logic with tree model property (i.e., any satisfiable KB in
this logic has a model of a certain tree-shaped form). So, the satisfiability (i.e., existence
of a model) of a KB in this logic can be decided by searching for only such tree-shaped
models and ensuring termination of the search. Addition of SWRL kind of rules to this
logic causes loss of this tree model property. This leads to undecidability of interesting

reasoning problems for the combination of OWL DL and SWRL rules.

1.5 The SWRL-like Rule Language

The SWRL-like rule language that we consider here is very much like SWRL, sharing the
SWRL syntax and the human-readable syntax that are discussed in Section 1.4. The dif-
ference is in the semantics. We describe the language and hightlight its differing semantics
from SWRL.
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1.5.1 Syntax

A SWRL-like rule is made up of an antecedent and a consequent, both consisting of one
or more atoms.!> The head of a rule consists of exactly one atom!® and a rule body with
multiple atoms is treated as a conjunction of its atoms.

Rule atoms can be of the form:

e C(x) — where C is a simple named OWL Class and x is either a variable or an OWL

individual.

e P(x,y) — where P is an OWL object property and x, y are variables or OWL individ-

uals.

Note that currently the syntax does not allow OWL class description atoms, OWL data
range atoms, OWL datatype property atoms, sameAs and differentFrom atoms or built-in
atoms. Not allowing OWL class description atoms is not a restriction since, for every class
description C, we can always introduce an atomic named class Ac C C to the terminology
of the KB and use A¢ in the rule [MSS04]. The sameAs() and differentFrom() atoms are for
syntactic convenience and not for increasing the expressivity of OWL. Such (in)equalities
can already be expressed using the combined power of OWL and rules without explicit
(in)equality atoms [HPB*04].

1.5.2 Semantics

A SWRL-like rule is treated as a trigger rule (see Section 1.2), as opposed to a SWRL rule
which is a logical implication. So the contraposition law does not hold on a SWRL-like
rule.

Operational semantics are given for these rules. The intended meaning for a SWRL-
like rule is that: if the conditions in the rule body are proved to hold, then derive that the
condition in the rule head holds. The rules are applicable only in one direction, namely,
from rule body to rule head.

The rules are treated with active domain semantics, i.e., the variables in rule atoms are
bound only to explicitly named individuals in the ontology domain and not to anonymous

individuals encountered during the proof.

I5Rules with zero atoms in the head or zero atoms in the body are not considered interesting for adding
expressivity to OWL.

19This is not a restriction on expressivity, since a rule with a conjunction of atoms in the head can be easily
transformed to multiple rules each with a single-atom head [HPB*04].
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1.6 Contribution of Thesis

In the thesis we consider a SWRL-like rule language that shares its syntax with the SWRL
rule language, but has different semantics. For OWL ontologies extended with rules ex-
pressed in this language, we provide a DL based reasoning support. Our contributions in

this work include:

1. Recognizing the rule language, SWRL-like, for a practical implementation, which is

very similar to the SWRL but differing slightly in semantics.

2. A proposal for a rule engine, called the Fire system, for reasoning with OWL ontolo-
gies extended with SWRL-like rules.

3. A prototype implementation of the Fire system offering sound, terminating and direct

DL based reasoning that is synchronous with OWL reasoning.

4. Implementation of the RETE algorithm [For82] for handling pattern matching of DL

facts and DL rule patterns.

1.7 Organization of Thesis

In Chapter 2 we present the background for this work. First, we state the background that
guided the way we approached the problem addressed in the thesis. This is followed by a
detailed description of the SWRL-like rule language, the rule reasoning process, possible
approaches to ensure termination of reasoning and a sound and complete reasoning method.
The chapter ends with a statement of the problem addressed and the solution we propose.

Chapter 3 is dedicated to the design of the proposed system Fire and the implementation
details of the prototype developed by this thesis. The explanation is based on the overall
architecture and the implemented architecture of Fire. At the end, we present a specific
optimization we implemented for the prototype.

In Chapter 4 we discuss the results from our experiments with the prototype imple-
mentation. This is followed by an evaluation of the design and prototype implementation,
by discussing how the example cases introduced are handled. We end this chapter with a
discussion of related work.

In Chapter 5 we conclude the thesis with a discussion of our goals and achievements in

the thesis followed by an overview of the future work.
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Chapter 2
Preliminaries

This work is closely related to the dedicated state-of-the-art DL reasoner RACER [HMW04],
which offers sound and complete reasoning for OWL DL almost completely!. In the view
of bringing DL ontologies closer to the implemented systems (frame-based systems or rule
based systems), our concern is towards extending DL ontologies with DL based rules, and
supporting it by a DL based system for reasoning with rules. With this background, the
standardization of OWL [OWL04] as the W3C standard for representing ontologies on the
Web and the recent proposal to the W3C, SWRL [HPB*04], to extend OWL with rules,
we were motivated towards implementing a DL based rule reasoning support for OWL on-
tologies extended with this such rules. A survey of the relevant literature in this direction
shows significant amount of work done in combining ontologies and rules. However, for
the present work we are concerned with the literature about combining DL based ontolo-
gies and rules. We find that most often the literature in this direction is combining with DL
ontologies, the rules from either a Datalog (or its extensions) program, DL-safe subset of
SWRL language or epistemic rules using the K-operator. A discussion of the related work
is presented in Section 4.3.

Our research approach is to have OWL DL as the base and extend it with a rule language
similar to SWRL, which can be supported by a practical implementation. This way we
intend to still offer reasoning support for complete OWL DL, not restricting it in any way,

and provide a practical reasoning support for rules offering direct inferencing over DL

IRACER’s support for complete OWL DL currently has two limitations. One, approximation of nominals
(individuals in class expressions) and two, currently not handling user-defined datatypes types given as ex-
ternal XML Schema specifications. See http://www.racer-systems.com/products/racerpro/features.phtml for
details.
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based rules. We consider a language similar to SWRL, which we call as the SWRL-like rule
language, presented in Section 1.5. Our analysis and decisions are guided by two factors,
(1) feasible practical implementation using existing tools and (ii) maintain decidability of

the reasoning support for the combination.

2.1 SWRL-like Rules

We recall that the SWRL-like rules have a similar syntax as SWRL (see Sections 1.4
and 1.5). A rule is treated as a trigger rule, meaning the reasoning mechanism applies
the rule in only one direction namely, antecedent to consequent. A typical SWRL-like rule

in the human-readable syntax is of the form
antecedent = consequent

where the antecedent is made up of one or more rule atoms that are treated as a conjunction

and the consequent is made up of exactly one rule atom. A rule atom can be either of

e Concept atom: A rule atom with a concept predicate of the form C(X), where
— C is an OWL named class

— X is either a variable? or an OWL individual.

e Role atom: A rule atom with a role predicate of the form R(X,Y), where
— R is an OWL object property
— X, Y are either variables or OWL individuals.

Unlike in SWRL, the SWRL-like rule language does not allow built-in relations, data
ranges, sameAs, or differentFrom predicates. As mentioned in [HPB"04], not allowing
sameAs and differentFrom kind of rule atoms does not necessarily decrease the expres-
sive power of the combined language as these (in)equalities can still be expressed using
the combined power of OWL and rules without these explicit atoms. Similarly allowing
only named classes in concept atoms does not restrict expressivity in rules, since class de-
scriptions can be replaced with an equivalent definition of a named concept added to the
KB.

ZIn the thesis we use the standard convention of indicating a variable by prefixing it with a question mark
e.g., Mx
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In many DL systems like CLASSIC? the concept of epistemic K-operator was used to
provide a formal semantics for the procedural behavior of trigger rules [DLN"98]. Unlike
the usual DL operators that refer to objects in the domain, the epistemic operator K refers
to what the KB knows about the domain. In a sense, epistemic operators allow forms of

local closed-world reasoning over an otherwise open-world knowledge.

2.2 The Rule Reasoning Process

In terms of the operational semantics of the SWRL-like rule language, the behavior of trig-
ger rules in the rule reasoning process is usually described in terms of a forward reasoning
process. In the process described below, we consider the following form of a typical trigger

rule as a representative for SWRL-like rules for clarity.
c(X)=p(X)

where ¢ and D are concepts, and X is either a variable or an OWL individual. Consider
a typical ontology knowledge base (KB) as a pair X = (7', 4), where 7T is the TBox (for
terminologies) and 2 is the ABox (for assertions). This KB is extended by a finite set &
of trigger rules typically of the form introduced above.

The operational semantics of the DL based trigger rules in ® can be described by the
forward reasoning process as follows [BNO3]. Starting with an initial KB %, a series of
KBs 7((0), 7((1),... is constructed, where %x© = x and 7(“*” is obtained from K(i)
by adding a new assertion 9 (a) whenever & contains a rule ¢(X) = D (X), such that
% k= ¢ (a) holds, but % () does not contain the fact D (a), for any individual @ in % (),
Note that this reasoning process eventually halts because the given initial KB % contains
only finitely many individuals and there are only finitely many rules in given ® . Hence,
there are only finitely many assertions 2 (a) that can possibly be added. The KB resulting
after the series of rule applications is % (!} having the same TBox as % (9 but the ABox
has been augmented by the assertions introduced by the rules. % () is the final KB that
results when no more augmentation to the KB is possible. Note that like OWL entailments,
rule inferences are also monotonic, i.e., the assertions introduced by rules can only add new
facts to the KB but never fake away the already existing facts. Rules can only introduce new

concept/role assertions and cannot introduce new individuals or new rules for that matter.

3http://www.research.att.com/sw/tools/classic/papers/manual.ps
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The resulting final KB % (9 is therefore independent of the order of rule applications. The

process can be similarly extended for rules with property atoms also.

2.3 Consequences of Rule Application

The application of a SWRL-like rule augments the KB by introducing new assertions in it.
For a rule engine it is important to consider the consequences of such augmentation in the
KB.

In a given state of the KB, the body of a rule must be satisfied according to its se-
mantics (see Section 1.4), for a rule to become applicable (or to be triggered) with an
instantiation. Note that more than one such instantiation could trigger the rule simultane-
ously. Identifying such triggered rules and their corresponding instantiation(s) is one of
the most important tasks in the rule reasoning process.

The application of such a triggered rule is done by materializing its head with the rule
instantiation, i.e., by suitably grounding the variables in the rule head atom with bindings
from the rule instantiation and then asserting the grounded atom to the KB. The material-
ized head of a triggered rule is called a rule inference. The rule is then said to be fired once

with an instantiation. The following consequences of rule firing are vital to our discussion.

e A rule inference could be a part of the instantiation that in-turn triggers some rule in

the next reasoning cycle.
e A rule inference could in-turn cause new entailments in the KB.

e A rule inference could contradict the facts in the KB, which we term as introducing

an inconsistency in the KB.

These consequences have to be handled by the reasoning support, if the tight integration
with OWL is to be retained. Meaning, given a state of the KB, the rule inferences and the
possibly resulting new entailments in that state of the KB must be considered for the next
cycle of reasoning. A cycle of reasoning comprises of identifying which rules are triggered
in a given state of the KB and applying those rules to the KB according to some specific
strategy (see Section 3.1.4). Also, an inconsistency possibly introduced in a reasoning
cycle has to be detected at the earliest to enable the user or the application to recognize the

corresponding rule that is responsible for introducing contradicting facts in the KB.
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2.4 Decidability

OWL DL and rule languages like SWRL (whose rules are restricted forms of function-free
Horn clauses) are both decidable logics. Their combination gives the much needed expres-
sive power, at the same time makes the combined logic undecidable. From the illustrated
example and discussions in [MSS04], we understand that one of the main reasons for this
undecidability is because these rules allow reasoning over anonymous individuals encoun-
tered during the proof. This kind of arbitrary interaction between the OWL DL features and
rule features is avoided, to maintain decidability, in the so-called DL-safe approach. The
literature [MSS04] proposes this as a decidable rule extension to OWL DL and provides
reasoning by reduction of the DL s # 1 Q to a disjunctive Datalog program.

2.4.1 DL-Safe Rules

In this approach, the atoms in the rules (a kind of Horn clauses) are restricted to being
DL-atoms. That is, only unary atoms or binary atoms are allowed whose predicates can
be respectively OWL classes or OWL properties. The OWL class used as a predicate must
be a simple OWL named class. Further, it is required that each variable that occurs in the
atoms of the rule body must occur in a non-DL atom in the body. This is to ensure that the
variables are bound only to explicitly defined individuals in the KB and not to anonymous

individuals encountered during the proof. For example:
hasParent (7x,?y) A hasBrother(?y,7z) = hasUncle(?x,?z)

This rule is DL-unsafe because the variables x, y and z in the body occur only in DL-atoms

and not in non-DL atoms. This is made DL-safe as follows,
hasParent (7x,?y) A hasBrother(?y,72) A 0(7x) A 0(?y) A 0(?z) = hasUncle(?x,7z)

by introducing an external non-DL predicate O in the rules. For every variable v occurring
in the rule body, a non-DL atom, 0O (v), is conjuncted to the rule body (in this case 0 (x),
0 (y) and 0(z)). Also, for every explicit OWL individual : in the KB, a concept assertion
0(1) is added to the KB. In this way the rule reasoning mechanism can ensure that the
variables in the rule body are bound to only explicitly existing individuals in the KB. This is
called DL-safety and it makes the reasoning approach decidable. However, it is important

to consider the consequence of such a safety restriction on an example case illustrated
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below. Consider the following DL-unsafe rule,
R(7x,7) AR(?z,?y) = C(?y)

where R is an object property, C is a named class and i, j are variables, along with the
following assertions
anne : 3S.3R.{jim}

anne : AU 3R { jim}

The former assertion states that anne is an instance of a concept that is related by role
S to some individual that is in-turn related by role R to the individual jim. Similarly,
the latter states that anne is an instance of a concept that is related by role U to some
individual that is in-turn related by role R to the individual jim. Intuitively, jim should
be inferred as an instance of C from the DL-unsafe rule shown above, though jim is not
related by property R to an explicitly named individual of the KB considered. But with the
DL-safety restriction applied to the above rule, it is easy to see that the inference j : C is
not derived by rule reasoning. This kind of restricting the reasoning to explicitly named
individuals in the KB is generally known in the DL world as active domain semantics. The
advantage of retaining decidability in this way vs. a need for applications or users to be
able to derive such an inference (j : C) is an issue of discussion on which an application-
specific rule reasoning support should be based on. The authors of [HAMSO05] are of the
opinion that this kind of DL-safety restriction is not very restrictive in many cases because
a significant number of applications like metadata management on the Semantic Web or
information integration require extensive ABox reasoning (query answering or instance
checking) and such applications know most individuals by name. But for applications that
require intensional (TBox) reasoning, this is obviously a severe restriction as typically only
a handful of individuals is known by name in such applications.

The DL reasoner RACER and its query language nRQL both implement this active
domain semantics in their ABox query services. So, any system making use of inference

services of RACER automatically inherits this safery feature.

2.5 Sound and Complete Reasoning

A sound and complete reasoning is both sensible and always desirable by any application.

Providing a sound and complete reasoning is hence a main focus of a reasoning support for

18



a combination of OWL and rules. In this context we present the approach followed in the
CARIN system [LLR98] and later present how we follow a similar approach in our current
work.

The CARIN system is a family of representation languages providing a hybrid integra-
tion of Horn rules and description logics (specifically, subsets of the 2 £ cAL® DL). Two
specific subsets of CARIN are identified in [LR98] and a sound and complete reasoning
procedure is offered for both. The reasoning is done in two steps namely, the DL-reasoning
step and the rule reasoning step. This procedure is well summarized in [ADG™05] as fol-

lows:

In the DL reasoning step, the DL-component of a given knowledge base is
used to construct a set of its completions, each of which is represented by a
finite set of DL-atoms and determines a canonical model of a program. A
rule component of a CARIN knowledge base consisting of all hybrid rules
and facts can now be augmented by the set of DL-assertions determined by a
completion of the DL component. There is a finite number of such augmented
rule components. In the rule reasoning step a standard forward chaining is
done for each augmented rule component, using the added DL-assertions as
new facts. A non-DL atom is entailed by the knowledge base iff it is entailed

by each of its augmented rule components.

Following this approach in CARIN, we make a conjecture that a similar procedure de-
scribed below is sound and complete for OWL ontologies extended with SWRL-like rules.
The procedure is also done in two steps as follows. The tableau completion rules are used
to construct all possible completions of the KB. Each clash-free completion will be rep-
resented by a finite set of facts (concept and role assertions), and determines a canonical
model of the KB. Note that there can be finitely many such completions. In each such clash-
free completion, a forward chaining is performed with its facts and all the SWRL-rules of
the KB. The resulting instantiations for the rule head of applicable rules are derived as the
set of rule inferences from each completion. The intersection of all such sets derived from
each completion, determines the set of rule inferences that are common in all models of the
KB. This intersection set determines the final set of rule inferences for the given state of
the KB. A concept assertion C(a) where C is an OWL concept and a is an OWL individual,
belonging to this final set, is entailed by the OWL KB iff it is inferred as a rule inference in

the forward chaining on each of the clash-free completions of the KB. The final set of rule
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inferences is collectively asserted in the KB and any entailments caused as a consequence
of this augmentation will be considered when the completions are constructed for the next
cycle of rule reasoning. If any of the rule inferences contradicts the facts present in the
KB, then they are not asserted and the reasoning process stops. If there are no contradic-
tions, then the reasoning process stops if no new inferences could be derived in the current

reasoning cycle on the given state of the KB.

2.6 Problem Definition and the Proposed Solution

We conclude this chapter by defining the problem we address in this work and our proposed
solution. In the research community of the Semantic Web and description logics, there have
been growing efforts to extend the OWL language for Web ontologies with rules, for the
much needed expressive power offered by the combination. In this context we propose
an extension to OWL with a DL based rule language called the SWRL-like rule language
(discussed in Sections 1.5 and 2.1). The preliminaries needed for a reasoning support for
OWL ontologies extended with SWRL-like rules, were presented in this chapter. The pro-
posed rule language extension has the operational semantics of trigger rules (Section 2.2).
The reasoning support for the proposed extension follows the active domain semantics to
ensure termination. The rule reasoning procedure (Section 2.5) is conjectured to be sound
and complete based on the approach followed in the CARIN system [LR98], of reasoning
over all completions of a KB.

The discussions presented in this chapter lay a foundation for the reasoning engine
Fire, proposed in the thesis. It is a DL based rule engine to reason with OWL ontologies
extended with SWRL-like rules. The design and implementation of a prototype of Fire is

presented in the next chapter.
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Chapter 3

Fire — Design and Implementation of the

Prototype

Previously, in Chapter 2 we discussed the syntax and semantics of the SWRL-like rule
language. We also discussed the rule reasoning process and a procedure for ensuring sound
and complete reasoning. The discussions lay a foundation for the topic of this chapter. In
this chapter we present the design of the proposed rule engine, Fire, and implementation
of its prototype. First, the design and the overall system architecture are presented. Then,

the details of implementation and decisions made are presented.

3.1 Design

The essential function of the proposed rule engine is to fire rules, i.e., to identify rule
instantiations that trigger rules and to apply those triggered rules. Hence the rule engine is
aptly named Fire. The overall system architecture in the design phase is shown in Figure 2.
The Fire system is designed as a stand-alone reasoning engine that could be used either as a
rule reasoning extension to a DL reasoner, or as a rule reasoning component of an existing
Sematic Web (or Web inference) application.

The shaded area in Figure 2 represents the Fire system. The figure shows different
components of Fire and its interaction with the external world. All aspects of the design

are discussed from the four perspectives covered in Sections 3.1.1 to 3.1.4.
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Figure 2: The design phase architecture of the Fire system.

3.1.1 DL Reasoner Services

The Fire system is a homogeneous DL based rule engine that is closely integrated with a
DL reasoner. Reasoning services of a DL reasoner are very essential in the working of Fire.

The reasoner services required are:

e ABox consistency checking to identify whenever an inconsistency is introduced as a

consequence of rule application,

e Instance retrieval with active domain semantics, to obtain concept/role instances that

could trigger rules,

e ABox cloning to verify the consequence of rule application on the ABox before com-

mitting changes in the ABox.

The Fire system can integrate with any of the existing DL reasoners offering the above ser-
vices. However for efficiency reasons, it must be ensured that there is not much processing

overhead in communicating with the reasoner.

3.1.2 Reading Rules

Rules defined in the ontology must be read into Fire. Most of the DL reasoners available
provide a parser for reading-in the OWL ontology. If no parser is available to read the
SWRL-like rules, then this can be accomplished either by implementing a rule parser or by
making use of an existing third party rule parser. This is depicted in Figure 2 by the Rules

input to the Fire system.
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3.1.3 Pattern Matching

A rule engine deals with a system having a fixed number of rules and a KB that grows by
augmentation due to the application rules. Pattern matching in this case is concerned with
matching the DL facts (concept and role assertions) in the KB with the patterns (concept
or role atoms) in the rule bodies. A concept assertion Female(suzanne) is said to be a
match for a pattern Female(?x) appearing as a concept atom in a rule body. A set of such
matches for all the patterns in a rule body form an instantiation of the rule and this set
provides bindings for variables in the rule head. These bindings instantiate the rule head
and are used in applying the rule. An obviously naive algorithm to pattern matching in this
case would be to match each fact (asserted, entailed or inferred) in the KB against each
rule pattern. Generally, the number of new inferences derived is often very small compared
to the number of facts initially considered for the matching process. Due to this, in this
approach most of the matches obtained in a cycle are identical to the matches obtained in
the previous cycles. Therefore the algorithm can be very inefficient for ontologies with
huge number of rules and facts, as most of the processing time will be wasted in repeating
useless comparisons.

In order to overcome this problem, an intelligent approach must (i) reuse matches from
earlier cycles, (ii) avoid repeated comparisons, (iii) be informed about the initial facts and
focus on newly inferred facts for matching and (iv)identify instantiations that trigger rules
without having to try each rule sequentially. These requirements aptly fit the description
of the original RETE algorithm [For82] that forms the basis of the popular expert system
OPSS5 (Official Production System) amongst others. This algorithm speeds up the matching
process by constructing a network of nodes based on information about the patterns in the
body of rules. Matching is performed once initially when the network is constructed and
this information is stored in the network. As the KB augments with each rule reasoning
cycle, the algorithm looks only for changes (newly inferred facts) in the KB. The original
RETE algorithm is well explained in [GR98]. This can be implemented to match DL
facts and patterns for pattern matching in Fire. Given a finite set of rules and an initial
state of the KB, the pattern matching algorithm basically works on all the given rules,
identifies applicable ones and provides bindings to instantiate the head of applicable rules.
The efficiency of the RETE algorithm is based on the assumption that compared to the
number of facts in the initial collection for pattern matching, the number of new facts

added is often very small. That is the facts change slowly over time. This is true in case of
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OWL ontologies extended with SWRL-like rules.

The prototype of Fire implemented in the thesis implements the RETE algorithm for
the pattern matcher component. It is described in detail in Section 3.2.3. Because of the
nature and working of the RETE algorithm, the rules that become applicable in a given
state of the KB and their corresponding instantiations are provided by the RETE pattern

matcher all at once.

3.1.4 Rule Application

The instantiations for rule heads obtained from the pattern matching are materialized in
the KB by asserting them as new facts. This is termed rule application. Fire supports
monotonic reasoning, since the SWRL-like rules are allowed only to make new assertions
about existing individuals in the OWL ontology. Existing DL facts cannot be retracted as
a rule consequence and neither can new individuals be introduced in the KB. A rule once
fired will become applicable again in subsequent pattern matching cycles since the facts
that trigger the rule are always present in the KB. This would result in having to infer a
fact that already exists in the KB, which has to be avoided. A dedicated rule application
component in Fire’s architecture in Figure 2 must detect and avoid asserting such duplicate
inferences in the KB.

Consistency of the ontology KB is of prime importance in our design approach of Fire.
If the instantiations for rule heads obtained from pattern matching, happen to contradict the
facts in the KB, then the rule application component does not materialize this set of instan-
tiations and terminates the Fire rule engine. This is to enable the user or the application to
identify the rule that is responsible for introducing facts that contradict the KB. To detect
contradictions, the rule application component makes use of the ABox cloning and ABox
consistency checking services from the DL reasoner. In case of no contradictions, the com-
ponent proceeds normally with the materialization. New entailments that might hold in the
KB as a consequence of materialized new rule inferences are collected as updates. These
updates are provided to the pattern matcher which proceeds with the pattern matching for
the next cycle of rule reasoning.

Fire is designed to operate in two modes based on the two modes of operation of its

rule application component. They are:

e Default Mode: When Fire operates in this mode, the rule application component

performs a check on the final set of rule inferences obtained in the reasoning cycle to
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test if some rule inference contradicts the facts in the KB. On detecting a contradic-
tion, this pre-commit consistency check of the KB drives the system to termination.
Fire terminates in such a situation because reasoning with an inconsistent KB is not
interesting. Detecting the rule instantiation that resulted in the contradicting rule
inference, as early as possible, is an important requirement for the user or the appli-

cation. To allow this, the debugging mode of operation is provided.

e Debugging Mode: When Fire operates in this mode, the pre-commit consistency
check of the rule application component is replaced by a one-at-a-time assertion of
the rule inferences in the final set. This means an expensive pre-commit consistency
check for each rule inference in the final set of inferences in the reasoning cycle. On
detecting a contradiction in the KB, the debugging mode terminates the reasoning
without committing such an inference and the user or the application is allowed to
intervene and handle the consequence. Reasoning in this mode would be very helpful
in detecting at the earliest, any rule inference (hence the specific instantiation that
triggered the rule) that is the cause for introducing a contradition in the KB. Note
that in the worst case where such an inference is the last of the final set of inferences,

discovering the contradiction will obviously be delayed till the end.

Comparatively, for a given state of the KB, the debugging mode is obviously slower
as the consistency-check of the KB is done once for every rule inference in the final set.
Consistency checking is a costly (time consuming) service from the DL reasoner. This
helps localize the cause of inconsistency to the rule instantiation that caused it. The default
mode is comparatively faster as the consistency-check is done once for the entire final set
of rule inferences in a cycle. The cause of inconsistency is localized here to a reasoning
cycle. A contradiction possibly introduced in the earlier stages of the cycle goes undetected
until all rule inferences in that cycle are obtained. To pinpoint the exact rule instantiation
that results in the contradicting inference might then become expensive in the end of the
cycle.

In either modes of operation of Fire, the order of rule application does not affect the final
result (also see Section 2.2), since the reasoning stops on encountering an inconsistency
causing rule inference. Hence, specialized conflict resolution strategies like depth, breadth,
etc. offered by the CLIPS! system, or the LEX, MEA, etc. offered by the OPSS production

system, are not offered in Fire.

Uhttp://www.ghg.net/clips/download/documentation/bpg.pdf
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3.1.5 Termination
The reasoning process of Fire terminates under two conditions as follows:

e When the rule inferences derived in the current reasoning cycle contradict the state
of the KB

e When the rule application component ensures that no new rule inferences were de-

rived in the current reasoning cycle

Under either condition, the Fire system terminates by providing the external application
with the set of all new inferences that were materialized by the system since the first rea-

soning cycle.

3.1.6 Reasoning Pseudo-algorithm

Here we present a pseudo-algorithm describing the reasoning process in Fire. It highlights
the rule application process. The pattern matching process is not outlined here as its imple-

mentation details are described in Sections 3.2.3 and 3.2.5.

Subroutine FIRE_REASON(patterns,facts)
applied_inferences = empty
DO
inferences = PATTERN_MATCH(patterns,facts)
updates = empty
terminate = RULE_APPLY(inferences,facts,applied_inferences,updates)
facts = add_to_collection(facts,updates)
UNTIL terminate is true
return applied-inferences
EXIT FIRE_REASON
END FIRE_REASON

Subroutine RULE_APPLY(inferences,applied_inferences)
terminate = false
new.inferences = get_new_inferences(inferences)
IF new_inferences is empty THEN

terminate = true
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RETURN terminate
ELSE
FOR i1 = start TO end of new_inferences
IF contradict_with KB(i) THEN
terminate = true
RETURN terminate
ELSE
inferences_to_apply = add-to_collection(inferences_to_apply,i)
END IF
END FOR
END IF
updates = apply(inferences_to_apply)
applied_inferences = add_to_collection(applied._inferences,inferences_to_apply)
END RULE_APPLY

The subroutine FIRE_REASON outlines the steps in the overall reasoning process of Fire.
The PATTERN_MATCH and RULE_APPLY are calls to the pattern matcher component and the
rule application component of Fire respectively. The RULE_APPLY subroutine signals ter-
mination under two conditions: (i) no new inference derived, and (ii) some new inference
contradicts the facts in the KB. The FIRE_REASON subroutine terminates the reasoning pro-

cess when the RULE_APPLY subroutine identifies these conditions and signals termination.

3.1.7 Soundness, Completeness, and Termination of Our Design

The Fire system is designed to be tightly integrated with a DL reasoner. Provided soundness
is guaranteed by the DL reasoner, the rule reasoning offered by the Fire system is also
guaranteed to be sound because of the tight integration. We conjecture that the reasoning
in Fire is complete if the proposed approach (see Section 2.5) of rule reasoning over each of
the clash-free completions of the ontology KB is implemented. Termination of reasoning
is ensured by applying rules to only explicitly defined individuals in the ontology KB. This
kind of reasoning with active domain semantics is essentially inherited by the DL reasoner

chosen in the implemented system.
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3.2 Implementation

The design of the Fire system described in Section 3.1 is implemented by the current proto-
type, in Java. The supported rules are from the SWRL-like rule language (see Sections 1.5
and 2.1 for the rule syntax and which forms of rule atoms are permitted by the rule lan-
guage). The overall design phase architecture of the Fire system shown in Figure 2 is

refined in the implementation phase shown in Figure 3.

Facts
{asserted, entailed)

Iinference
services

New
inferneces

SWRL-like
Ontology

Figure 3: The refined architecture of the Fire system in the implementation phase.

The shaded arrow-shaped area represents the implemented prototype of Fire. The re-
finements from the design phase are clearly shown. Similar to the discussion in the design
phase, the aspects of the implementation are also discussed in terms of the same four per-

spectives in the following Sections 3.2.1 to 3.2.4.

3.2.1 DL Reasoner

Our obvious choice for the reasoner is the RACER DL reasoner [HMO1, HMW04] because
of our background. Some of the implementation details and decisions are hence customized
to RACER and its services. However, in principle any of the existing DL reasoners could
be chosen. The prototype of Fire uses the JRacer [HMWO04] Java API to communicate with
the RACER system via a TCP connection. The prototype also uses the nRQL (new Racer
Query Language) [HMWO04] from RACER to run instance retrieval queries. The JRacer

API has a convenient mapping of most of RACER’s and nRQL’s commands to Java classes.
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The OWL part of the ontology is parsed using RACER’s internal parsing mechanism. The
facts in the ontology KB needed for the pattern matcher are obtained from instance retrieval
nRQL queries to the RACER system. This tight integration with the DL reasoner ensures
that all facts entailed by the OWL part of the ontology (asserted and entailed facts) are con-
sidered for rule reasoning. RACER already implements the active domain semantics which
is followed by Fire (see Section 1.5). The role and concept instances obtained as answer
sets to nRQL queries, used for binding rule variables thus ensure the fact that variables are
bound only to explicit individuals in the ABox and not the anonymous ones encountered

during the proof.

3.2.2 Rule Parser

Fire needs Java output from a SWRL-like rule parser. A third party SWRL rule parser is
available from the Protégé ontology editor, called the Protégé SWRL Factory? which serves
our purpose. It is used in Fire since SWRL-like rules share the same syntax as SWRL. It
provides a Java API for easy access of rules with SWRL syntax, directly in the DL form
and not any intermediate translated form. Fire basically reads an ontology file with .owl file

extension, which contains both the OWL part and the SWRL-like rule part of the ontology.

3.2.3 Pattern Matching Component

The pattern matcher component of Fire implements the RETE algorithm for matching DL
patterns in SWRL-like rules with the DL facts in the ontology. The implementation of this

component of Fire is presented in detail in Section 3.2.5.

3.2.4 Rule Application Component

The rule application component of Fire detects and avoids materializing repeated rule infer-
ences as discussed in the design (section 3.1). It proceeds with materialization of only new
inferences. If there are no new inferences, the Fire system terminates providing the set of
materialized inferences so far, since the first rule reasoning cycle. A set of new inferences
derived in the current reasoning cycle are materialized in the reasoner’s ABox (asserted)

simultaneously as a batch, provided they do not introduce an inconsistency in the current

’Details of the Protégé SWRL  Factory can be found from the URL
http://protege.stanford.edu/plugins/owl/swrl/SWRLFactory.html
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state of the ABox. An inconsistency introduced by this set of new inferences also drives
the system to termination, providing the set of materialized inferences so far until the pre-
vious reasoning cycle. In case inconsistencies are not introduced, any new entailments that
hold in the ABox as a result of new materialization are obtained and passed to the pattern
matcher component as updates for its facts collection. This starts a new reasoning cycle in
the pattern matcher. Inclusion of these updates in the next reasoning cycle ensures that rule

reasoning is synchronous with the OWL reasoning of the DL reasoner.

3.2.5 Implementation of the RETE Algorithm

The RETE algorithm [For82] is implemented for the pattern matcher component in Fire,
to match DL facts with DL rule patterns. This algorithm was chosen instead of a simple
naive matching algorithm because of its speed and reuse of match results. It proves to
be efficient in case of repeated matching cycles which a system like Fire encounters. An
experimental evaluation of this algorithm vs. a naive algorithm is presented in Section 4.1.
The implemented RETE algorithm can be understood by dividing it into two major steps:

(i) construction of the network and (ii) the matching process.

Construction of the Network

The algorithm begins by constructing a network of nodes based on the patterns in the rules
of the ontology. Patterns here are nothing but rule atoms, concept or role atoms. The rules
are processed for its patterns (i.e., the patterns are identified from the rule body and head)
and a part of the network structure is constructed for each rule processed. The parts are
appended to one another as more rules are processed. When all the rules are thus processed,
the entire RETE network is ready. Figure 4 shows the RETE network constructed for the

ontology example in Figure 5. The network consists of four types of nodes:
e Root Node: It is a single node forming the root of the network and the entry point for

the facts of the KB into the network.

e A-Nodes: They have one input and are called SELECT Alpha nodes. Basically, for
each pattern in a rule body, a corresponding A-Node is added in the network, e.g.,

the node Al in Figure 4.

e B-Nodes: They have two inputs and are called JOIN Beta nodes. The conjunction

of two consequent atoms in a rule body is represented by a B-Node which joins two
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Figure 4: Illustration of the RETE algorithm for pattern matching.

input A-Nodes (which represent the conjunct atoms), e.g., the node B12 joining the
nodes Al and A2 in Figure 4.

e T-Nodes: They have one input and are called PROJECT Terminal nodes. There is a
T-Node for each rule head atom, e.g., the node T'1 in Figure 4.

The portion of the network in Figure 4 represented by the nodes Al, A2, B12 and T1
correspond to the structure of the first rule in the ontology example in Figure 5. Similarly,
the portion of the network represented by the nodes A3, A4, A5, B34, B345 and T2 in
Figure 4 correspond to the structure of the second rule in the example in Figure 5. Each
node in the network has a relation associated with it and the records in these relations

represent facts from the KB that match the node’s pattern. Henceforth, a relation will be
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referred to as a table and a record in a table as a row. Rows of the Root-Node table represent
at any time those facts in the KB that are not yet selected as matches in the pattern matching
process. A-Node table rows are the result of a relational SELECT? operation on the Root-
Node table. B-Node table rows are results of a relational JOIN* operation on tables of its
two input nodes (left input and right input). T-Node table rows are a result of a relational
PROJECT operation’ on its input B-Node table. Structurally, the Root-Node is at the top
with A-Nodes directly below. A-Nodes are followed by zero or more levels of B-Nodes®
and below them are T-Nodes that form the /eaves of the network. A-Nodes accomplish the
task of matching KB facts against the rule patterns they represent. B-Nodes accomplish the
task of carrying these matches across patterns of a rule body. Their rows are obtained by
joining tables of their input nodes. A T-Node represents the atomic head of a rule. Only
those columns required for binding the variables in the head of such a rule are projected
from the table of the T-Node’s input node. There is one T-Node in the network for every
rule in the KB. With the exception of the Root Node, each node in the network represents
information about rule patterns. At each such node we store information about facts that

match the patterns in nodes from Root down to and including this node.

Matching Process

Each fact in the KB is fed into the RETE network in terms of a row in the Root-Node
table. Any row entering the Root-Node table is sent to all the A-Nodes where a SELECT
operation is done to filter only rows matching the pattern associated with the A-Node.
Appropriate rows are filtered down to B-Nodes if they satisfy the JOIN condition across
A-Node patterns, and finally to T-Nodes if they are chosen by the PROJECT operation.
When a set of facts passes all the way from the Root down to a T-Node, it has passed the
matching test for a rule body and represents an instantiation of the rule body. For instance,

the individuals m3, m1 and m4 (first row in node B12 table) as substitutions for the variables

3A relational SELECT operation obtains a subset of tuples of a relation (here rows of a table) that satisfy
the SELECT condition (here the condition is the row matching the pattern associated with the A-Node).

4 A relational JOIN operation combines related tuples (rows) from two relations (tables). Specifically, we
use a natural JOIN operation which computes the cartesian product of the two tables, selects from the product
only those rows having equal values for some common attribute, and removes the duplicate attribute from the
resulting table.

5A relational PROJECT selects a subset of the attributes of a relation by specifying the names of the
required attribute.

A rule with a single atom in the body does not need a corresponding B-Node in the RETE network. In
this case, an A-Node is directly followed by a T-Node and hence zero levels of B-Nodes.

32



x, y and z respectively, reaching the node B12 represent an instantiation for the body of the
first rule in the example ontology in Figure 5. This instantiation reaching node T'1 triggers
the rule represented by that T-Node (in this case the first rule in the example ontology in
Figure 5). The first row of the table of node T1, i.e., m3 and m4 for variables x and z
respectively, are the required bindings to materialize the atomic head of the rule (1) in the
example ontology. This is just one instantiation that triggered the rule. In the example
we see that there are in total two instantiations that trigger the rule represented by node
T1 whose table correspondingly has two rows. All the instantiations of all triggered rules
obtained from the matching process are provided to the rule application component, where
they are applied. This one cycle of reasoning or one cycle of firing of rules may result in new
entailments in the ontology KB. These changes are provided back to the pattern matcher
by the rule application component as updates that are fed into the RETE network through

Root-node. The next reasoning cycle begins by starting the matching process again.

3.2.6 Soundness, Completeness, and Termination of the Prototype

The implemented prototype of Fire tightly integrated with the DL reasoner RACER, which
guarantees sound reasoning services. The query answering service from the nRQL query
language subsystem of RACER is also sound and it implements the active domain seman-
tics. The current prototype of Fire inherits these features from RACER and nRQL. Hence,
the reasoning offered in this prototype is sound and terminating. Currently, neither RACER
nor any of the other existing state-of-the-art DL reasoners offers the services to compute
all clash-free completions of an OWL KB and to reason over each such completion. Im-
plementing these reasoner services is non-trivial and time-consuming. Discussions with
the team behind the RACER reasoner indicated that such services could not be provided
by RACER within the time frame of this thesis. Hence the reasoning approach proposed
in the design is not implemented in this prototype of Fire. Consequently, completeness
of reasoning is not guaranteed in this prototype. However, discussions have indicated that
subsequent releases of the RACER system will provide these services in the near future. A
corresponding implementation of Fire incorporating these services and providing a sound,
complete and terminating (i.e., decidable) reasoning over OWL ontologies with rules, will

soon follow.
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3.3 Implemented Optimization

Generally, it is possible that patterns (concept or role atoms) in different rule bodies may
have the “same predicates”. Such patterns will have same number of variables, but might
have different variable labels. For example, the role atom hasParent(?x,?y) in both the
SWRL-like rules in the example ontology in Figure 5. Such similarity can be utilized to
optimize the construction of the RETE network. Similar A-Nodes corresponding to such
similar patterns can share the process of obtaining their table rows and avoid a SELECT
operation on the Root table. This is implemented by having two levels of A-Nodes namely
A-Nodel (that selects its rows from the Root table) and A-Node2 (that has a pattern similar
to an earlier A-Nodel, so directly takes its rows from that A-Nodel). In the example in
Figure 4 the nodes Al and A3 share such a similarity. Node Al is of the kind A-Nodel
and node A3 is of the kind A-Node2. Node Al was encountered earlier in the network
construction step and hence any similar node encountered later is made to be of kind A-
Node2. Note that the order of processing rules for network construction does not make a
difference to the overall structure of the network. It also does not make a difference which
of the similar nodes is created as A-Nodel and which as A-Node2, since the overall effect
is that one SELECT operation on the Root table is shared by two or more similar nodes. In
case of ontologies in which a lot of such similarities exist, duplicate SELECT operations
that provide identical results are avoided and the overall speed of the RETE procedure

could be optimized.
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Concepts Male
Roles hasChild, hasParent ,hasSibling, hasUncle

Restrictions hasSibling = hasSibling™ (symmetric role)
hasParent = hasChild~ (inverse roles)

Asserted Male : {(ml),(m2),(m3), (m4)}
Facts hasChild : {(m1,m3),(ml,m4)}
hasSibling : {(m1,m2)}
Entailed hasParent : {(m3,m1),(m4,ml)}
Facts hasSibling : {(m2,m1)}
SWRL-like hasParent (7x,7y) A hasChild(?y, 72) = hasSibling(?x,7z)

Rules hasParent(7x,7y) A hasSibling(?y, 72) AMale(?z) = hasUncle(?x,72)

(a) An example ontology showing family relations using SWRL-like rules.

O Concept ASSERTED FACTS

-——» Role
hasSibling { >

hasChild

hasChild

(b) Pictorial representation of the asserted facts in the example ontology.

Figure 5: An example OWL ontology with SWRL-like rules.
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Chapter 4
Evaluation

The current prototype of the Fire system does not implement the reasoning procedure de-
scribed in Section 2.5. The reason is that none of the current state-of-the-art DL reasoners
(including the RACER system used) provide a service for computing all completions of a
KB and reasoning over each completion. To provide such a service is not a trivial task for a
reasoner and it involves significant changes in the design of its core system. Implementing
this reasoner service is out of the time frame and scope of the thesis. Hence, we are unable
to provide a comprehensive evaluation of performance of Fire with its handling of typical
test cases, at this point. Nontheless, in this chapter we provide a preliminary evaluation of
Fire, from different perspectives.

First, we present the results of experiments we conducted with our RETE algorithm
implementation and evaluate its performance. Then, with the aid of few example cases
we evaluate how the prototype system handles these cases and where it fails. Finally, we
conclude this chapter with a discussion of related work relevant to the line of research in

the thesis and discuss their similarities and differences with our proposal.

4.1 Experimental Results

In the preliminary stages of the implementation of Fire, we implemented two algorithms
for the pattern matcher component: a naive pattern matching algorithm and the RETE
algorithm (section 3.2.5). The naive algorithm implemented obtains bindings for the rule
head of applicable rules, by comparing every fact entailed by the given state of the KB with

every pattern of every rule. The process starts with the first pattern in the body of a rule. A
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match (or a set of matches) found for this pattern is carried over to the pattern matching for
the next pattern in the rule body. Both the matches (or the set of matches) are joined to get
the same effect as achieved by the JOIN nodes in the RETE network. A match (or a set of
matches) thus joined is carried over similarly to the pattern matching of the next pattern in
the rule body, and so on until the last atom in the rule body. The combined match (or the
combined match set) at this stage represents the instantiation(s) of the rule body. This is
(these are) used to bind the variables in the atomic rule head and obtain instantiation(s) for
the rule head. Moreover, the entire process repeats in every new reasoning cycle. It is easy
to see why this approach is inefficient in cases of large number of rules and large number
of facts in the ontology, as most of the processing time gets wasted in repeating useless
calculations. Nonetheless, we conducted experiments to compare the performances of our
implementation of the RETE algorithm and the naive algorithm, to see how fast the RETE

performed. The obtained results are summarized in the Table 1.

No. of No. of No. of Time with Time with
rules | initial facts | fired inferences | RETE (in sec) | naive (in sec)
500 584 995 0.875 21.093
1100 1301 2486 3.813 115.468
1772 2127 3950 12.514 303.201
2280 2698 5085 25.031 524.155
2726 3229 6158 39.469 762.172

Table 1: Summary of comparison between the performances of the RETE algorithm ap-
proach and the naive approach to pattern matching

Test cases were synthetically generated such that inferences fired by some rules trigger
other rules. Rules were designed such that some rule inferences trigger other rules in a
chain-like order and some other rule inferences trigger in a tree-like order. This test was
only on the pattern matcher component of Fire, in this case using two pattern matching
algorithms. Therefore, the rule application step was simulated by just feeding-in all the new
inferences derived in one matching cycle as updates to the next cycle. Rules were designed
not to introduce any contradictions in the KB. New inferences derived in each matching
cycle were collected for the count of total number of newly inferred facts. The matching
stops when no new inference is derived. The Table 1 shows the number of rules, number of
initially asserted facts and number of totally inferred facts, along with the runtimes required
by the RETE and naive algorithms. These were obtained on a desktop computer with a 2.8
GHz Intel processor, 1GB of RAM and running Windows XP operating system. This test
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was mainly conducted for measuring the performance of RETE vs. naive approach and
hence no DL reasoner was used. The calculated time includes only the processing time
for the pattern matcher component. That is, time needed to (i) identify matches and rule
triggers, (ii) feed the derived inferences to the fact store for the next cycle, and (iii) repeat
steps i and ii until no new inference is possible. It does not include the time taken to
materialize a fired inference or the time to load the program. The results indicate that the
RETE approach substantially speeds up the pattern matching process and is more than 20
times faster than the naive approach. This reassures employing the RETE algorithm for

pattern matching in the Fire system.

4.2 Example Cases

In this section we present few examples to illustrate how the prototype Fire system handles
different scenarios. The first three examples highlight the expressive power added to OWL
by rules and to show the importance of Fire’s tight integration with the inferences of a DL
reasoner. Next we present two example scenarios and discuss when and why Fire cannot

infer intended results when handling them.

4.2.1 Examplel

We designed an ontology family.owl representing the usual family relationships. We used
SWRL-like rules to define some relationships that were otherwise not expressible in OWL
without rules. This ontology is described in detail in Section A.1 and a step-by-step expla-
nation of its execution in Fire is presented in the Appendix A. For a clear understanding
of the functioning of the prototype, we refer interested readers to the mentioned sections
of the thesis. In this section we highlight some of the rules used in the example ontology

family.owl. In particular, the following rules
hasParent(?x,?y) A hasSister(?y, ?z) = hasAunt (?x,7z)
hasChild (x,y) A hasSpouse(?x,?z) = hasChild(7z,7y)
hasParent(?x,?y) A hasChild(?y,?z) = hasSibling(7x,7z)
hasParent(?x,7y) A hasBrother(?y,?z) = hasUncle(?x,72)
are typical examples whose models easily lose the tree property (see Section 1.4.2). These

forms cannot be expressed in OWL without rules. The current prototype of Fire handles
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these kinds of rules. The reader is encouraged to refer to the Appendix A for a step-
by-step explanation of executing this example ontology in Fire. An additional case with
a contradiction-introducing rule is also discussed there, highlighting how Fire deals with

inconsistencies introduced in the KB by rules.

4.2.2 Example 2

Consider an ontology with the following rule
hasLocation(?x,?y) AisPartOf(?y,?z) = hasLocation(?x,7z)

with isPartOf being a transitive role. The rule expresses the idea an individual’s prop-
erty of location is propagated through the transitive role isPartOf. This is a typical idea
that needs to be expressed in medical ontologies. Suppose this example ontology has as-
sertions (fracture, femur) : hasLocation and ( femur,leg) : isPartOf, then the above rule
becomes applicable and infers that the fracture is located in the leg, i.e., (fracture,leg) :
hasLocation.

The current prototype of Fire handles this case and infers intended result.

4.2.3 Example 3

Consider the expression of a concept Father. Using OWL without rules, this can be ex-
pressed by the axiom:
Father = MaleM 3hasChild .Child

Now consider the expression of a concept FatherWithKnownChild to represent a male indi-
vidual who has an explicitly defined child in the KB. It is more intuitive for non-DL-expert

users to express this idea using rules as follows:
Male(?x) A hasChild(?x,?y) AChild(?y) = FatherWithKnownChild (?x)

The current prototype of Fire handles such rules and infers intended result.

4.2.4 Example 4

Consider an ontology with the following rules

Italian(7x) = WineDrinker(?x)

French(?x) = WineDrinker(?x)
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along with the assertion john : (Italian Ul French), saying that the individual john is an
instance of the concept Italian U French. Intuitively, from the open world semantics of
OWL, one would expect that since john is either Italian or French (i.e., an instance of at
least one of them in any model of the KB), the KB should infer john : WineDrinker. But
with the reasoning with rules, especially in case of trigger rules, this result is not inferred.
The reason is that there is no explicit assertion like john : French or john : Italian to
trigger either of the above rules. Hence the rules are not applied and the expected result is
not inferred.

The current prototype of Fire does not infer the expected result in this case, since it
does not yet implement the approach outlined in Section 2.5 to ensure completeness. This
kind of inference could also be obtained by treating the rules as logical implications, i.e.,
by implementing the rules in the contrapositive direction also. Note that the idea behind
these two rules can also be expressed in OWL without rules. But the syntax of SWRL-like
rules allow users to model such ideas as rules. So this discussion of how the reasoning in

Fire handles such cases is relevant here.

4.2.5 Example 5

Consider another ontology with the following rules

SmartChild(?x) = Person(?x) )
—SmartChild(?x) = Person(?x) (2)

along with the assertion betty : Girl. According to the open world semantics of OWL both
these rules do not fire, since neither betty : SmartChild nor betty : ~SmartChild is asserted
or implied by the KB. But the intention of an application using these rules may assume a
local closed world assumption for reasoning with these rules. More clearly, since betty is
not known to be an instance of SmartChild, she should be a Person according to rule (2).
This kind of procedural behavior of trigger rules requiring a concept of local closed world
assumption for reasoning, is addressed in description logics by epistemic operators. These
operators formalize trigger rules giving it a declarative semantics. This line of work has
been thoroughly studied and described in [DLN'92, DLN*98, DLN*94]. In [BKW],
the concept of epistemic K-operator introduced in [DLN198] has been presented specially

as an extension to description logics. The basic idea is that rules are reasoned with what
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is currently known to the KB about its domain, than reasoning with open world knowl-
edge. Interested readers are referred to the mentioned references for details on epistemic
operators. With the K-operator applied to the reasoning for this example case (according
to [BKW]), the variable in —SmarrChild(?x) of rule (2) will be bound to all individuals!
in the KB that are currently known to be not instances of the concept SmartChild. Hence
rule (2) will become applicable for those individuals.

This kind of semantics is not implemented in Fire and hence this example will not
result in any rule firing. Moreover, negation of atoms is not allowed in SWRL-like rules.
The concept of role negation is not defined in the DL §# 0 1A (D,) and hence a negated
role atom has no meaning in OWL DL extended with SWRL-like rules also. Of course, by
applying the epistemic semantics to rules as discussed earlier, a local closed world meaning

could be defined for a negated role atom.

4.3 Related Work

As a part of the review of literature relevant to the thesis, we present here some of the
proposals combining DL ontologies with rules. They can be classified according to the

analysis in Section 1.2.

4.3.1 HOOLET

The Hoolet? is a naive approach implementation of an OWL-DL reasoner with support for
SWRL rules, from the University of Manchester. The approach followed can be classified
under homogeneous translation based approach according to Section 1.2. The predicates
of concept atoms in the rules are restricted to named classes. Reasoning support is by a
straightforward translation (based on the semantics of OWL and SWRL) of the ontology
into a collection of axioms. These axioms are communicated in the TPTP? format to the
first order logic (FOL) based theorem prover Vampire (also from the University of Manch-
ester) for consistency checking. The inferences obtained are translated from TPTP format
back to OWL.

The approach used for translation is very naive and not scalable. The FOL reasoning

! All individuals explicitly defined in the KB, assuming the active domain semantics.
Zhttp://owl.man.ac. uk/hoolet/
3hitp:/fwww.cs.miami.edw/ tptp/
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is undecidable.Since rules and ontology are embedded in a common logic and are not rea-
soned upon in isolation, cases like the example in Section 4.2.4 yield expected results when

modeled in this system.

4.3.2 SWRL]JessTab for Protégé

The SWRLJessTab [Gol04] is a Java tab plug-in for for Protégé, bridging Protégé OWL
[KMRO04], RACER [HMWO04] and Jess* for reasoning with OWL ontologies extended with
SWRL rules. The approach followed can be classified under homogenous translation based
approach according to Section 1.2. The reasoning approach in the Fire system is quite
similar to the approach followed here. DL reasoning is performed on the OWL part using
RACER. The entailed facts from OWL are considered for rule inferencing. But unlike
Fire’s direct DL based rule inferencing, SWRLIJessTab translates [OKTMO5] entailed facts
to Jess facts and SWRL rules to Jess rules. The translated results are communicated to
the Jess system using the existing JessTab® for Protégé OWL. The execution engine of
the Jess system also implements a version of the RETE algorithm [For82] for matching
Jess facts with Jess rule patterns, to obtain new rule inferences from the given set of rules.
These inferences are translated back to DL and communicated to RACER for obtaining DL
entailments that could result from the addition of new inferences to the ontology KB. This
is similar to the reasoning approach in Fire.

Although a homogenous translation based approach, the reasoning support in SWRL-
JessTab is a combination of DL reasoning by RACER and rule reasoning by Jess. Apart
from this feature, the rest of the approach is similar in principle to the one followed in
Fire. A contradiction introduced by rule inferences become evident only in the end when
no rule can possibly fire. It does not yield the expected results for the example case in
Section 4.2.4. It uses several available tools and widgets for the entire reasoning process

which sometimes becomes cumbersome to use.

4.3.3 SweetRules

The SweetRules® project is an integrated set of tools for translating and inferencing (among

others) with ontologies and rules. It offers reasoning support for the Description Logic

“http://herzberg.ca.sandia.gov/jess/
Shttp://www.ida.liu.se/ her/JessTab/
Shttp://sweetrules.projects.semwebcentral.org

42



Programs (DLP’) subset of OWL and SWRL. Predicates of concept atoms in the rules are
restricted to named classes and SWRL built-ins are supported. This can also be classi-
fied under homogenous translation based approach according to Section 1.2. Based on
semantics-preserving® the DLP part and the SWRL rules are both translated in multiple
steps to Jena2format and then reasoned with the Jena2 reasoning subsystem to obtain in-
ferences. The results are translated back to DLP.

This system is intended as a part of the system that unites several ontology and rule
languages to provide services of translating between one another, inferencing, analysis and
authoring. It is not clear how this system handles contradictions and entailments that will
result in the KB as a consequence of new rule inferences. Its support is limited to only the
DLP subset of OWL which is hardly any of OWL DL.

434 KAON2

KAON?2? is a an infrastructure implemented in Java, for managing and reasoning with
OWL DL ontologies extended with DL-safe subset of SWRL rules. The main idea [HMO5]
behind its implementation is (i) reducing a $# 1Q KB to an equisatisfiable disjunctive
Datalog program that entails the same set of ground facts as the original KB, (ii) extending
this Datalog program with a finite set of DL-safe rules and (iii) reason with this hybrid
logic by reusing the available deductive database optimization techniques like magic sets.
The DL-safe subset of SWRL is obtained by restricting the predicates of concept atoms in
SWRL rules to be named classes and by restricting the rules with the DL-safety condition
as described in Section 2.4.1. The technique developed in [HMS04] is used to reduce the
SH 1Q(D) subset of OWL-DL to a disjunctive Datalog program without losing interest-
ing consequences. The reasoning support for the hybrid logic makes use of the deductive
database optimization called magic sets. Rules with this DL-safety restriction thus become
a decidable DL-safe fragment of the SWRL rules.

KAON?2 can also be classified under the homogenous translation based approach ac-
cording to Section 1.2. Since both the ontology and rules are translated to axioms in a
common logic language for reasoning, cases like the example in Section 4.2.4 yield the

expected results.

"Description Logic Programs (DLP) is a knowledge representation defined as the expressive intersection

of RuleML Logic Programs and OWL/DAML+OIL Description Logic [GHVDO03].
8http:/sweetrules.projects.semwebcentral.org/sweetrules-overview-presentation-2005-04-24-v3.pdf
“http://kaon2.semanticweb.org/
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4.3.5 AL-Log

The AL-Log [DLNSO98] is a knowledge representation system offering reasoning support
for the combination of the DL 4 £ ¢ and the deductive database language Datalog. The
Datalog program is constrained and extended by allowing in the body of the clauses, a set
of restrictions on the variables and constants of the clause, expressed in 2 £ ¢ and called
A4 L C-constraints. Only concept assertion 4 L C-constraints are allowed, not role assertion
constraints. For example, in the following clause defined in the relational subsystem of
AL-Log:

canTour(X,Y) : — notSeen(X,Y), likesToSee(X,Y) & X : Person, Y : City

the part after ‘&’ are the concept assertion 2 £ ¢ -constraints for this clause. The X : Person
constraint on variable X restricts the values of X to range over the set of instances of the
specified concept Person defined in the structural subsystem of AL-Log. AL-Log offers
a sound and complete reasoning support for the hybrid logic, based on constrained SLD-
derivation and constrained SLD-resolution. The AL-Log system can be classified under the

hybrid approach according to Section 1.2.

4.3.6 r-Hybrid KBs

Here we present a recent work also following the hybrid approach according to Section 1.2,
which seems interesting to explore. The literature [Ros05] provides a general formal frame-
work of r-Hybrid KBs integrating ontologies and rules. It provides a decidable reasoning
algorithm for such a framework, provided the logic language (in particular, any DL) £ of
the ontology is decidable and is combined with safe'® Datalog™ program'!. The results of
their work show that OWL DL (the s # 0 1 AL (D) description logic) which has decidable
reasoning procedures, extended in this framework with safe, positive Datalog rules, pre-
serves the decidability of reasoning. This is extended further to show that reasoning with
OWL DL extended in this framework with safe Datalog™" rules is also decidable [Ros05].

10Here safe refers to the condition that each variable occurring in the head of a Datalog clause must also
occur in the body of the same clause.

1 A Datalog™ program allows negation as failure in the body of the rules and disjunction in the head of
the rules [Ros05]
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Chapter 5
Conclusion

In this chapter we summarize the presented work. Throughout the thesis we presented dis-
cussions, relevant existing proposals and details of our approach to addressing the problem
of providing a reasoning support for OWL ontologies extended with rules. We proposed
the Fire system, a rule reasoning engine as a solution to the specific problem of providing
direct DL based inferencing service for OWL ontologies extended with a rule language like
SWRL, called the SWRL-like rule language. The proposal was supported by a prototype
implementation presented. In the following, we summarize the important points that came

to light during the process.

e The RETE algorithm implemented for the Fire prototype performs more than 20

times faster than the naive algorithm for pattern matching (Section 4.1).

e The Fire prototype provides sound, terminating and direct DL based reasoning over
SWRL-like rules in contrast to indirect-inference reasoning over rules translated to

non-DL rule languages.

e Fire’s tight integration with the inference services of the DL reasoner not only makes
rule reasoning in-synch with OWL reasoning, but also handles (resulting new entail-

ments) and detects (rule-introduced contradictions) the consequences of rule firing.

5.1 Goals Vs. Achievements

Here we summerize the thesis in terms of the goals we set and those we achieved in the

thesis. The following goals were set by us:
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1. Recognize a practically implementable portion of SWRL.
2. Achieve direct DL based reasoning synchronous with OWL reasoning.
3. Offer sound, complete and terminating reasoning.

4. Implement a fast and efficient pattern matcher that scales well with a growing number

of assertions and rules.
The following are our achievements:
1. We recognized the SWRL-like rule language which differs from SWRL as follows

o slightly restricts the SWRL syntax for a practical implementation (see Sec-
tions 1.4 and 1.5)

o treats the rules as trigger rules in contrast to logical implications in SWRL (see
Section 1.2)

e treats rules with active domain semantics to maintain termination of reasoning
by restricting application of rules to only explicitly defined individuals in the
KB.

2. We proposed the Fire rule reasoning engine and implemented a prototype of Fire to
reason directly over DL based SWRL-like rules. The prototype is tightly integrated
with the reasoning services of the RACER [HMO1]} DL reasoner and hence its rea-

soning is synchronous with OWL. reasoning.

3. The prototype of Fire offers sound reasoning as it is based on the sound and com-
plete reasoning of RACER over the OWL KB. A rule becomes applicable only if
the rule body is satisfied. Facts that match and satisfy patterns in the rule body are
essentially answers to nRQL queries of RACER [HMWO04]. These answers are guar-
anteed by RACER to be sound and complete. Thus soundness is inherited by Fire
from RACER. Termination of Fire is ensured by the active domain semantics restric-
tion (see Section 2.4). We proposed an approach where we conjecture a complete
reasoning procedure for Fire (see Section 2.5). However, this approach could not be
implemented in the prototype of Fire due to the unavailability of a reasoning service
from existing DL reasoners. Based on our discussions with the RACER development

team, the required service of computing all clash-free completions of an OWL KB
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and reasoning over each such completion will be available from RACER in the near

future.

4. We implemented the RETE algorithm for pattern matching DL rule patterns and
DL facts. The implemented RETE algorithm can scale to efficiently handle large
amounts of facts (i.e., large ABoxes). It could be possible that if most of the ontology
knowledge is defined by a very large number of rules, the RETE network construc-
tion could reach a bottle neck in terms of space requirements (see Section 3.2.5 for
details on RETE network construction). We implemented an optimization outlined
in Section 3.3 to take advantage of similarities existing in rule structures to reduce
the space requirements of the RETE network. Another possible similar optimization

is identified in Section 5.2.

The reader is referred to Section 4.2 to learn more about what kinds of rules can be
handled by the current prototype of Fire. Most examples in that section model typical
rules used by the users of ontology development tools like Protégé which allows creation
of OWL ontologies and SWRL syntax rules [KMRO04].

5.2 Future Work

In the following list we highlight the scope for possible future work to the prototype imple-

mentation of Fire.

e Optimized way of learning ‘changes’ in the KB: In the publish-subscribe mecha-
nism provided by RACER [HMO1, HMWO04], an application can subscribe to receive
changes in the instance set of a concept. In an event of new instantiations of that con-
cept, RACER publishes only the changes to the listening application. This could be
utilized in the rule application component to obtain updates that result as a conse-
quence (concept or role assertions) of rule application. We believe this optimization

would improve the overall performance of Fire noticeably.

e Optimizing RETE network construction: Similar to the implemented optimization
described in Section 3.3, instead of two similar B-Nodes requiring two JOIN oper-
ations that result in identical rows, one duplicate JOIN operation could be avoided.
This is done by recognizing the structural similarity of the two B-Nodes and making

them share the process of obtaining their table rows.
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e Include OWL datatype property atoms in the SWRL-like rule language and extend

the reasoning support of Fire accordingly.

e Providing Fire as a plug-in for Protégé OWL [KMRO04].
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Appendix A

Trace of an Example

We present here a partial trace of executing the presented prototype of Fire with an exam-
ple SWRL-like ontology file. First we give the details of the example ontology and then
describe the program trace when executed with the current prototype of Fire. Details of the
tools used are as follows: (i) the RacerPro 1.8.0 system as the DL reasoner, (ii) the Protégé
SWRL Factory (from OWL Plugin 2.0 beta for Windows) for parsing the SWRL-like rules
from the ontology file, (iii) the JRacer Java API for communication with the reasoner and
(iv) a machine with AMD Athlon 1.86 GHz processor, 512 MB of RAM and the Windows
XP operating system.

A.1 The Example Ontology — family.owl

The example ontology family.owl was designed as a part of the present work. It repre-
sents a family ontology with the usual relationships. An overall glimpse of the family.owl
ontology is shown in Figure 6. Specifically, the pictorial depiction shows the initially as-
serted facts in the ontology knowledge base (KB). The facts initially asserted are shown in
Table 2. The SWRL-rules defined in the KB are listed below:
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Concept MalePerson

hasspouse @rada

Concept FemalePerson‘j‘ '

Role hasChild

has§ SN
, hasSpouse PGarOja y

Figure 6: Pictorial illustration of the initially asserted facts in family.owl ontology.

hasParent(??x,7?y) A FemalePerson(?y) = hasMother(?x,7y)

hasChild(?x,?7y) A MalePerson(?y) = hasSon(?x,?y)
hasParent(?x,?y) A hasSister(?y, 7z) = hasAunt (7x,72)
hasChild(?x,7y) A hasSpouse(?x,7z) = hasChild(z,7y)
hasParent (1x,7y) A hasChild(?y,7z) = Sibling(x)

hasSibling(x,?y) A FemalePerson(?y) = hasSister(?x,%y)

hasChild(?x,y) A FemalePerson(?y) = hasDaughter(?x,?7y)

hasParent(?x,?y) A hasChild(y,7z) = hasSibling(?x, 7z)

hasParent(7x,?y) A hasBrother(?y,z) = hasUncle(?x,7z)

hasSibling(?x,?y) A MalePerson(?y) = hasBrother(x,y)
hasParent(x,?y) A MalePerson(?y) = hasFather(7x,7y)

3)
“4)
)
(6)
(M
®)
9
(10)
(11)
(12)
(13)

In this example the SWRL-like rules make it possible to define certain relationships which

cannot be expressed in OWL without rules, e.g., the rules 5, 6, 10 and 11.
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Concept Membership

FemalePerson: {sharada, saroja, poornima, laxmi, aishwarya, naksha}
MalePerson: {ramaswamy, jagadeesh, sudheer, nagaraj, shreyas, sumukh}
Role Membership
hasSpouse: {(ramaswamy,sharada), (jagadeesh,saroja), (sudheer,poornima),
(laxmi,nagaraj)}
hasChild: {(ramaswamy,jagadeesh), (jagadeesh,sudheer), (jagadeesh,laxmi),

(sudheer,shreyas), (sudheer,aishwarya), (nagaraj,sumukh),
(nagaraj,naksha)}

Table 2: Initially asserted facts in the family.owl ontology.

A.2 Trace of family.owl

Here we present selected excerpts from the trace of executing family.owl with Fire, with

explanations inserted in-between where necessary. The execution starts as follows:

MODE ‘DEFAULT’

READING FILE: file:/e:/family.owl

PROTEGE SWRL API READING RULES FROM FILE: file:/e:/family.owl
RULES READ

1 hasParent(x,y) FemalePerson(y) --> hasMother(x,y)

2 hasChild(x,y) MalePerson(y) --> hasSon(x,y)

11 hasParent(x,y) MalePerson(y) --> hasFather(x,y)

The default mode indicates that Fire is not running in the debugging mode (see Sec-
tion 3.1.4). The supported rules parsed by the parser are listed. The functioning of the

pattern matcher follows:

RETE NETWORK CONSTRUCTED

RACER READING ONTOLOGY FILE: file://e:/family.owl
ABOX REALIZED

ASSERTIONS READ
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1 MalePerson(shreyas)

2 MalePerson(sumukh)
17 hasParent (sumukh,nagaraj)
24 hasChild(nagaraj,sumukh)

31 hasSpouse(saroja,jagadeesh)
32 hasSpouse(nagaraj,laxmi)
33 hasSpouse(laxmi,nagaraj)

34 hasSpouse(jagadeesh,saroja)

The RETE network is constructed by referring to the structure of the parsed rules. For
each parsed rule, the network has a T-Node. So in this example, eleven T-Nodes named
T1 through T'11 are created, with node T'1 corresponding to the first rule listed, T2 cor-
responding to the second rule listed, and so on. The pattern matcher component of Fire
obtains the facts (asserted and entailed concept and role assertions) in the KB from the
RACER reasoner using nRQL queries. The list showing totally 34 of these facts indicate
that apart from the 23 initially asserted facts (see Figure 6 and Table 2) several entailed
facts were discovered by the DL reasoner. These are included for the pattern matching
process to identify which rules become applicable. The execution is transferred to the rule
application component along with the instantiations of the applicable rules. The following

partial trace refers to the outcome of the first reasoning cycle.

T-NODE: T2

NEW INFERENCES

1 hasSon(sudheer,shreyas)

2 hasSon(ramaswamy, jagadeesh)

3 hasSon(nagaraj,sumukh)

4 hasSon(jagadeesh,sudheer)

NCO NEW INFERENCES IN THIS NODE...NEXT NODE.
T-NODE: T4

NEW INFERENCES
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hasChild(poornima,aishwarya)
hasChild (poornima,shreyas)
hasChild(sharada, jagadeesh)
hasChild(laxmi,naksha)
hasChild(laxmi, sumukh)
hasChild(saroja,sudheer)

~N O bW e

hasChild(saroja,laxmi)

Only the two rules represented by nodes 72 and T4 were triggered with 4 and 7 new
instantiations respectively, in the first reasoning cycle. Note that the message NO NEW
INFERENCES IN THIS NODE...NEXT NODE means that the intermediate node 73 did not
yield any new inferences. The new inferences identified were found to be consistent with
the KB and were materialized in the ABox of the reasoner in a batch. They will be in-
cluded for identifying rule instantiations in the next reasoning cycle. The outcome of the

next cycle follows:

T-NODE: T2

NEW INFERENCES

1 hasSon(poornima,shreyas)

2 hasSon(sharada, jagadeesh)

3 hasSon(laxmi,sumukh)

4 hasSon(saroja,sudheer)

NO NEW INFERENCES IN THIS NODE...NEXT NODE.
NO NEW INFERENCES IN THIS NODE...NEXT NODE.
T-NODE: T5

NEW INFERENCES

1 Sibling(aishwarya)

2 Sibling(shreyas)

3 Sibling(sudheer)

4 Sibling(naksha)

5 Sibling(sumukh)

6 Sibling(laxmi)
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NO NEW INFERENCES IN THIS NODE...NEXT NODE.
T-NODE: T7

NEW INFERENCES

1 hasDaughter (sudheer,aishwarya)
2 hasDaughter(nagaraj,naksha)

3 hasDaughter (jagadeesh,laxmi)

4 hasDaughter(poornima,aishwarya)
5 hasDaughter(laxmi,naksha)

6 hasDaughter(saroja,laxmi)
T-NODE: T8

NEW INFERENCES

1 hasSibling(aishwarya,shreyas)

2 hasSibling(shreyas,aishwarya)

3 hasSibling(sudheer,laxmi)

4 hasSibling(naksha,sumukh)

5 hasSibling(sumukh,naksha)

6 hasSibling(laxmi,sudheer)

Consider for instance, the new inference 2 hasChild(poornima,shreyas) from node
T4, materialized in the previous cycle. This triggered the hasSon rule which yields the
new inference 1 hasSon(poornima,shreyas) from node T2 in this cycle. The subse-
quent reasoning cycles continue in this way, until Fire is driven to a termination either by
a contradiction introduced by a rule inference or by not inferring any new rule inference.
These examples highlight the importance of Fire’s tight integration with DL inferencing
and shows that Fire is in-synch with RACER’’s inferences.

The same ontology was added with another simple rule
FemalePerson(7x) = MalePerson(7x)

to introduce a contradiction. In the following execution trace, we call this altered ontology

as familyc.owl and this rule corresponds to the T-Node 79.

MODE ‘DEFAULT’
READING FILE: File:/e:/familyc.owl
PROTEGE SWRL API READING RULES FROM FILE: file:/e:/familyc.owl
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RULES READ

1 hasParent(x,y) FemalePerson(y) --> hasMother(x,y)
2 hasChild(x,y) MalePerson(y) --> hasSon(x,y)

3 hasParent(x,y) hasSister(y,z) --> hasAunt(x,z)

4 hasChild(x,y) hasSpouse(x,z) --> hasChild(z,y)

9 FemalePerson(x) --> MalePerson(x)

RETE NETWORK CONSTRUCTED

RACER READING ONTOLOGY FILE: file://e:/familyc.owl
ABOX REALIZED

ASSERTIONS READ

1 MalePerson(sumukh)

34 hasSpouse(jagadeesh,saroja)

The trace for the altered file familyc.owl begins in the same way. Notice the rule 9 corre-
sponding to the node T9 as mentioned earlier. The pattern matcher component identifies
the applicable rules and their corresponding sets of rule instantiations. Among them the
new ones identified and processed by the rule application component are shown in the fol-

lowing:

T-NODE: T2

NEW INFERENCES
hasSon(sudheer,shreyas)
hasSon(ramaswamy, jagadeesh)
hasSon(nagaraj, sumukh)
hasSon(jagadeesh, sudheer)
hasSon(sudheer,aishwarya)

hasSon(nagaraj,naksha)

~N O O W N e

hasSon(jagadeesh,laxmi)
NO NEW INFERENCES IN THIS NODE...NEXT NODE.
T-NODE: T4
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NEW INFERENCES

1 hasChild(poornima,aishwarya)

2 hasChild(poornima,shreyas)

3 hasChild(sharada, jagadeesh)

4 hasChild(laxmi,naksha)

5 hasChild(laxmi, sumukh)

6 hasChild(saroja,sudheer)

7 hasChild(saroja,laxmi)

NO NEW INFERENCES IN THIS NODE...NEXT NODE.
NO NEW INFERENCES IN THIS NODE...NEXT NODE.

T-NODE: T9

NEW INFERENCES

1 MalePerson(aishwarya)
2 MalePerson(laxmi)

3 MalePerson(naksha)

4 MalePerson(poornima)
5 MalePerson(saroja)

6 MalePerson(sharada)

CHECKING CONSISTENCY
CONSISTENCY RESPONSE -> NIL ABOX IS INCONSISTENT. QUITTING

The new inferences in nodes 72 and T4 are the same as obtained in the trace of family.owl.
But the outcome of the node 79 indicates that the individuals that were asserted initially
as instances of the concept FemalePerson are to be inferred as instances of the concept
MalePerson.! The rule application component discovers that these new inferences from
the node T9 of this cycle contradict the KB. Hence they are not materialized and Fire is
driven to a termination. In such a case, the user or the application could run Fire in the
debugging mode (see Section 3.1.4) to discover a specific rule instantiation that is causing

a contradicting rule inference. This would help in identifying a possible unintended error

"Here the concepts MalePerson and FemalePerson are assumed to be defined as disjoint in the ontology,
as per usual understanding of family relationships.
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in the rule base. Since a contradiction was identified in the first reasoning cycle itself, no

materialized inferences from previous cycles are returned to the user or the application.
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