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ABSTRACT

Incorporating Quantified Mental Workload in Modeling of

Driver’s Handling Behavior

Hua Cai

Driver’s mental workload (MWL) influences the driver’s performance. A mental
workload that is either too high or too low may endanger driving safety. Few previous
studies have discussed how to quantify the mental workload in an objective way and
whether or not it is possible to discover the driver’s mental workload over-reduction.
Furthermore, the influence of driver mental workload has not yet been considered in

driver models.

In this study, an ECG features-based driver mental workload estimation method
was proposed. This measure is based on clustering analysis and Learning Vector
Quantization neural networks. Furthermore, a fuzzy space model of the dangerous zone
for a moving vehicle and the estimation method of driving risk level were proposed.
Finally, two neural network based driver models with the input of driver mental workload
were built up. The experiments and simulations show that the MWL estimation results
are consistent with the evaluation of the Rating Scale of Mental Effort (RSME). The
Driving risk level has potential to indicate the driver MWL over-reduction. In the driver
steering performance simulation, Elman recurrent network based driver models show
superiority than those based on multilayer perceptrons (MLP), and the MWL variance

does have positive impacts on the performance of neural network based driver models.
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This study is limited to the available data source. Future work could be done on
following aspects: more psychological signals indicating MWL variance should be
included to make the quantification results more reliable. Besides, the influence df instant
driving risk level to the driver’s performance in the scenario of MWL over-reduction

could also be studied.
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CHAPTER 1 INTRODUCTION
1.1 Background

Driver, vehicle, and road environment are three key elements to safe driving.
Especially, drivers’ psychological status, usually mentioned as the driver mental

workload, influences the performance of steering, even the safety of driving.

The driver’s mental workload has been widely studied in the research on driving
safety. For example, it has been reported that drivers are often distracted during daily
driving, such as grooming, using mobile phones, eating and drinking [Stutts et al., 2003].
Almost half of all accidents are caused by too late recognition [ITS Japan, 2002].
Therefore, some technologies such as Driver Assistant Systems (DAS) have been
developed to change this situation. However, human drivers may not be able to act as
effective obstacle detectors because of their reduced mental workload when automobiles
are equipped with DAS [Hogan, 1997]. Previous literature has also indicated that both
too high and too low mental workloads can degrade the task performance [Cnossen,
1994]; hence it is beneficial to maintain the driver’s mental workload at a proper level in

driving.

Many studies have proposed various driver models to simulate drivers’ steering
behaviors; For example, neural network-based driver models take position, velocity,
acceleration, and other parameters of the vehicle as input to simulate the driver’s steering
behavior, but the impact of the driver’s mental workload on driver models has not been

extensively explored.



In order to analyze the impacts of a driver’s mental workload on driver models, the
driver’s mental workload variance has to be quantified firstly, and then the steering
performance of the driver models under the influence of a mental workload can be
simulated and discussed. Besides, the relationship between the driving risk level and the
driver mental workload should also be explored. Literature related to the three parts of

research above is reviewed in the next section.

1.2 Literature review

1.2.1 Mental workload measurement
1.2.1.1 Mental workload definition and mental workload control

In human-machine systems, a comfortable, effective, and safe operation environment
is always anticipated by any operator. There is no exception to drivers and the task of
driving. Growing demands of high transport safety require people to pay more attention
to human factors, especially the mental workload change in a complex traffic

environment.

There are several definitions of mental workload. The popular definition of mental
workload is given by O’Donnell et al. (1986). It is defined as the portion of the operator’s
limited capacity actually required to perform a specific task. Rouse et al. (1993) proposed
a concept of experienced workload. In this definition, the mental workload is both task
dependent and individual dependent. Many factors including the operator’s capability, the
motivation to perform a task influence the experienced workload. De Warrd (1996) did

extensive research on driver’s mental workload measurement solution and called it a



demand placed upon human, but the quantification of mental workload was not

discussed.

Although there are multiple versions of mental workload definition, none of them is
widely accepted [Xie et al., 2001]. It is partly because of difficulty to quantify the mental
workload according to the present definition. Currently, the research interest gradually
shifts to the mental workload estimation and control. The purpose of mental workload
control is to keep operators’ mental stress staying within an optimized scope because
both too high and too low mental workloads can lead to degraded performance [Cnossen,
1994]. Based on the effort of mental workload control, the reduction of operation errors
and the improvement of productivity can be achieved [Moray, 1988]. However, in order

to limit the mental workload, the mental workload estimation should be done firstly.
1.2.1.2 Methods of mental workload estimation

Due to the definition of mental workload, mental workload cannot be measured
directly. It can only be estimated indirectly through measuring other variables having
close relations with the mental workload alteration. These methods can be roughly
classified to the following categories: primary-task performance measurement and
secondary-task performance measurement [O’Donnell et al., 1986], subjective estimation
(including self-report) [Wickens, 1984], and physiological parameters measurement

[Kramer, 1991].

Performance based estimation evaluates the possible mental workload from
operators’ action speed, action effects, and interaction time between human and machine.
As for the task of driving, De Waard (1996) used the standard deviation of the lateral

position (SDLP), the standard deviation of the steering-wheel movement (SDSTW), and



the Time-to-Line Crossing (TLC) to estimate the driver’s mental workload. De Waard
also used the following secondary task performance to estimate the mental workload: the
frequency of mirror checking, the time delay in speed adaption to the next vehicle, and
the frequency of eye movement. Lin et al. (2005) studied the hand movement in the

steering wheel operation and used it as an indication of mental workload change.

Subjective estimation is usually adopted as an offline measure to do post-event
evaluation. Operators are required to state their feelings and attitudes. Popular assessment
techniques include the Subjective Workload Assessment Technique (SWAT) [Reid et al.,
1988], the Task Load Index (TLX) [Hart el al., 1988] and the Rating Scale Mental Effort
(RSME) [De Waard, 1996]. Although subjective workload estimation has been paid
much attention due to the fact that no one can make more accurate comments to the
mental workload than the person who experienced it personally, two limitations are
obvious. One is that the subjective workload estimation usually provides overall
estimation only and cannot provide real time estimation results; another is personal
dependant. Hence, these limitations restrict the applications of the subjective estimation
method. In practical, subjective estimation is usually used to verify the estimation results

coming from other measures.

The physiological measurement looks at the operator’s physiological response to the
given task. The detectable physiological parameters mainly include EEG
(Electroencephalogram) [Mazaeva et al., 2001], ECG (Electrocardiograph) [Kuriyagawa
et al., 1999; Rouse et al., 1993; Murai, et al., 2004, 2003, 2001; Seong et al., 2004], EOG
(Electro-Culogram), EMG (Electro-Myogram), blood pressure, respiration wave, eye

fixation [Simon et al., 1993], eye blink, pupil diameter, head movement, and facial



expression [Ji et al., 2004]. The benefit of physiology measurement is the capability of
real time process and the objectivity of assessment. Physiology measurement can even

indicate the change process of mental workload.

Among all mental workload estimation methods, which measure is more sensitive
and suitable for the driving task than the others? Whether one measure is sufficient to
scale the driver’s mental workload? Some literature has discussed the criteria of selecting
a workload-measure for a general task from multiple aspects such as sensitivity,
interference to the primary-task, equipment requirement, and operator acceptance
[O’Donnell & Eggemeier, 1986; Eggemeier et al., 1991; Unema, 1995]. However, few
studies have addressed the comparisons between the different measures for driver’s

mental workload estimation.

For the driving task, the physiological measurement of mental workload has some
obvious advantages. There are many physiological parameters having close relationship
with the driver’s mental workload alteration. The most commonly used parameters
contain eye activity, EEG, and ECG [Hanskins et al.1998; Wilson et al.1995b]. Among
them, ECG signal has been recognized as a popular parameter used to estimate the mental
workload for a long time [De Warrd, 1996; Jorna et al.1992; Roscoe et al.1992]. Hence,

ECG features-based driver mental workload estimation is the focus of this study.

1.2.1.3 ECG features based mental workload estimation



The mental workload estimation based on ECG features involves two steps: ECG
features extraction and pattern classification. Typical ECG features will be discussed in

the following sections.
(1) Heart rate

In physiology, the heart contraction of human body is controlled by the
parasympathetic nervous system (PNS) and sympathetic nervous system (SNS) [Roscoe
et al. 1992]. Heart rate (HR) is possible for the mental workload estimation. De Warrd
(1996) found that drivers’ heart rate may increase or decrease in the weaving section.
Murai et al. (2004, 2003, 2001) analyzed the mean value and the standard deviation of
heart beat intervals to assess a ship navigator’s mental workload during the procedure of
the ship leaving and entering the port. Laine et al. (2002) pointed out that the time
period of beat to beat decreases with the increased workload demands. Seong (et al.,
2004) found that the width of the QRS complex (WQ) increases with the decreased

workload demands.
(2) Heart rate variability

Heart rate variability (HRV) has been used for analyzing mental workload alteration
in field workplaces. Kuriyagawa and Kageyama (1999) described a model of estimating
mental workload by using the heart rate variability. However its indication function of
mental strain, especially sensitivity and diagnosticity, is doubted in some studies [Wilson,

1992; Nickel et al.2003].

(3) FFT analysis of HRV



The frequency spectrum of HRV can be acquired by performing the Fast Fourier
Transform analysis (FFT). Its spectrum contains three major regions. VLF (very low
frequency): 0.004~0.04Hz; LF (low frequency): 0.04~0.15Hz; HF (high frequency):
0.15~0.4Hz. LF mainly indicates the activities of the sympathetic division of the
autonomic nervous system (ANS). HF reflects the activities of the parasympathetic
division of the ANS. LF/HF ratio reflects the balance of the sympathetic division and the
parasympathetic division of the ANS [McCraty et al., 1995] and can indicate the change
of the mental stress. Backs et al. (1994) found that the change of high frequency power
shows relations to the variance of the task demands. Murai et al. (2004) studied the
mental workload of a bridge team (crews on a ship) by calculating the LF/HF ratio and
found that the bridge teammate’s mental workload increases while judging for ship

handling and paying attention to targets.

The study of cardiac variability based on the FFT spectral analysis looks at the whole
ECG signals. There are limitations for the classical FFT analysis. For example, it is
difficult to know the particular happening time of certain components of frequencies. In
addition, the ECG analysis usually involves the task of QRS recognition. In time-domain,
R-waves (containing ECG peaks) are relatively easy to detect while Q-wave and S-wave
are hard to be recognized. Previous literature has suggested some ways of QRS-complex
detection such as Short Time Fourier Transforms (STFT) and Wavelet Transforms (WT)

[Okada, 1979; Schilling, 1998].
(4) Wavelet transforms of HRV

The wavelet transform (WT) is a very promising technique because it can provide a

description of the signal in both time and frequency domains. WT can also characterize



the local regularity of the signal, which can be used to distinguish the real signal from
noise, and the baseline drift. Therefore, WT is a suitable tool to analyze the ECG signal
[Sahambi et al., 2003; Newandee et al., 2003, 2002]. Taking the quadratic spline
originally proposed by Mallat et al. (1992) as the prototype wavelet functions, Li et al.
(1995), Gamo et al. (2000) and Martinez et al. (2004) proposed a multiscale QRS
detector including a method for detecting the monophasic P and T waves. Bahoura et al.
(1997) implemented wavelet transforms for the real time detection of ECG R wave and
the heart rate analysis based on the digital signal processing (DSP). Murai et al. (2001)
analyzed a navigator’s HRV at departure or arrival by the Haar wavelet functions, and
pointed out that the wavelet decomposition coefficients at n=3, 4 levels and n= 1, 2 levels

correspond to the LF and HF components, respectively.
1.2.1.4 Workload estimation based on pattern recognition

Mental workload can also be estimated by using pattern recognition. Methods of
mental workload classification using non-intrusive physiological features mainly include
analyses of variance (ANOVA) models, principal components analyses, as well as
artificial neural networks [Greene et al. 2000; Laine, et al. 2002; Sirevaag et al. 1993;
Wilson et al. 1995a]. Among these methods, the artificial neural network is widely used
because neural networks bring the low-level learning and the computational power to a

decision system for capturing the non-linearity of system behaviors [Juang et al., 1998].

Among neural networks, two common architectures are the Multilayer perceptrons
(MLP) and the Learning Vector Quantization (LVQ) [Antognetti & Milutinovic, 1991].
Some literature [Antognetti & Milutinovic, 1991] suggested that LVQ shows advantages

over MLP in many pattern classification tasks. For example, the MLP networks trained



by using the Back-Propagation (BP) algorithm usually adopt the squared error for the
output control; however, LVQ networks have many other suitable distortion measures,
such as the Euclidean distance, correlation coefficient. Also, the MLP networks with the
BP algorithm need complete training for each classification task, while the LVQ

networks permit a common training and can automatic learn under unsupervised.

Al-Fahoum et al. (1999) developed a classifier based on using WT for extracting
features and then using a radial basis function neural network (RBFNN) to classify the
arrhythmia. This classifier appears to be well suited to classify the arrhythmia, owing to
the feature vectors' linear inseparability and the tendency to cluster. Michael et al. (2004)
used a self-organizing map (SOM) to separate the time-series of 84 subjects into groups
based on characteristics of the cardiac data recorded around the interval. In order to
estimate the mental stress based on the physiological index, Fukuda et al. (2001)
proposed a new evaluation method of HRV by combining WT with recurrent neural
networks. In the study proceeded by Wilson et al. (2003), physiological signals including
the brain electrical activity, the eye movement, the heart rate, and the respiration waves
were fed into an artificial neural network which was used to monitor the functional states
of the participants in real time while they were performing a Multi-Attribute Task Battery

with two levels of task difficulty.

In brief, the mental workload estimation is a hot topic in the field of human factors
research. Many measures have been proposed but challenges still exist. There are two
obvious limitations in previous research. (1) Most studies still stay on the level of
qualitative analysis by associating certain physiological features with the mental

workload change, such as ‘high’, ‘low’, or ‘baseline’. (2) Some estimation methods have



much subjectivity; Furthermore, some results of different physiological signals based
mental workload estimation may show inconsistency and be difficult to explain the

difference.

1.2.2 Driving risk level

Due to the increasing complex of the traffic environment, the traffic safety has been
paid higher demands than ever before and some new equipment for better safety has been
developed, such as driver assistance systems (DAS). DAS can reduce a driver’s physical
workload and mental workload [Tanaka et al. 2000]; however, too much mental
workload reduction may cause the driver’s distraction because of the increasing
disengagement. Hogan (1997) pointed out that drivers may not be able to act as effective
obstacle detectors when DAS are provided. Hence, even though the automobile is
equipped with DAS for the purpose of better safety, there are still needs for the early
danger warning and the driver’s mental state monitoring. Therefore, there should be
approaches to possibly recognize the driver’s mental workload over-deduction in the
field. One of the ways is to make a comparison between the driver’s mental workload

and the risk of collision in driving.

Risk assessment of road users is an important area for investigation. Based on the
NASS General Estimates System (GES), the Fatality Analysis Reporting System (FARS),
and the Nationwide Personal Transportation Survey (NPTS), Kweon (2002) did a
comprehensive assessment of overall risk to different drivers across different vehicle
classes. Data are distinguished by driver age, gender, vehicle type, crash type (rollover

versus non-rollover), and injury severity. Similary, Mills el al. (2001) investigated the
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influences of the following risk factors in driving: stimulants, sedatives, and fatigue.
Stutts et al (2003) studied the risk factors in sleep-related crashes.

As for the possibility of accidents, Lanzilotta, E. J. (1995) proposed a probabilistic
safety state model, which can be used to estimate the risk probability of an accident as a
function of a human-machine system state. By using a discrete Markov network, the
safety state model forms a framework to capture the human-machine and human-human
interactions in the driving situation. Heino et al. (1996) used the time headway as an
index for the risk scaling to analyze the difference of accident possibility between the
sensation seekers and the sensation avoiders. Thakur (1997) proposed a driver-vehicle
model to identify the safe value of Driver Daydream Factor and Driver Error for various
driving situations. It was found that the perception process and the response process
become large when the driver is relaxed. The author also used Risk Time, the time after
which, the driver thinks the vehicle could reach “disaster” on the road, to estimate the
coming risk. It indicated that a capable driver having a low Driver Daydream Factor can
cope with a demanding situation easily even if the error he/she makes is large. Ward et al.
(1998) studied the risk probability in terms of the time headway and the risk severity in
terms of kinetic energy. Gorjestani et al. [1999] developed a radar based longitudinal
virtual bumper collision avoidance system implemented on a truck. In this system, the
virtual bumper is a programmable boundary defining a rectangle personal space around
the host vehicle. Incursions into the personal space by neighbor vehicles impose a virtual
force on the host vehicle to avoid the possible collisions.

Previous research has implied that there is possible association existing between the

driver’s mental workload and the accident risk of driving. For example, De Warrd (1996)
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discovered that a driver’s mental workload in the car-phone use situation increases
significantly compared with the baseline value. Laberge-Nadeau et al. (2003) investigated
the association exists between the cell phone use and the road crashes. It was found that
the relative risk of accidents and of accidents with injuries is higher (10% ~ 38%) for the
users of cell phones than for the non-users. It implies that, when the collision risk in
driving increases, the driver mental workload will usually grows up in order to maintain
the similar task performance.

In brief, the driving safety and the driving risk are discussed yet the concept of
driving risk level has not been intensively elaborated. Many factors, especially the time
headway, can influence the risk feeling of drivers but few models have been built to
quantify the risk. Furthermore, the relationship between the driver mental workload and

the driving risk level has not been clearly disclosed.

1.2.3 Neural network based driver behavior models

Some studies have utilized neural networks to simulate drivers’ handling behavior.

Neural networks seem efficient to emulate the decision making process.

Neusser (1993) simulated the driver’s handling patterns through a record of a
‘perfect’ driver’s 50,000 steering behavior. A three-layer back-propagation (BP) network
with the inputs of vehicle velocity, heading angle, road curvature, road width, and lateral

deviation was built and good control accuracy was obtained.

An et al. (1996) suggested a basic architecture of an intelligent driver warning

system, which embodies an adaptive neural network driver model for the indirect
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collision avoidance. The input of this system contains the past history of throttle angle,

vehicle speed, range and range rate to the front vehicle. The output is throttle angle.

Yang et al. (1998) applied a two-layer (sigmoid and linear) neural network for the
directional control of a seven-axle vehicle. The inputs contain position, velocity and
acceleration. The front wheel steering angle is the desired output. It was found that the
lateral position error, preview error, and the lateral acceleration are the most important

input variables for the neural network training.

Koike et al. (1999) proposed a multiple state estimation method for reinforcement
learning model. The steering strategy of a vehicle is learned from a reward, which is
evaluated by whether or not the vehicle is on the road. Simulation results show that this
model can drive on an unknown road configuration or an unknown velocity condition.

This research shows the benefits of considering the output feedback in driver models, too.

Ohno (2000) studied a MLP neural network based driver model with adaptive cruise
control (ACC). This research shows that the control performance with ACC use is better
than that of manual driving, but human errors occur during the ACC use. This paper

suggested that proper warning systems should be deployed in ACC systems.

Ni (2003) reviewed and compared the car-following and the lane-changing strategies
in some microscopic driver-vehicle-environment simulation systems, which evolved
three aspects: vehicle modeling, driver modeling, and vehicle movement modeling. The
possible input variables and the output variables of a BP neural network based driver

models were suggested in this paper.
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Lin et al. (2005) utilized three types of neural network to model a driver’s handling
behavior: Counter Propagation Networks (CPN), Radial Basis Function Networks
(RBFN), and Back Propagation Networks (BPN). Besides the present vehicle states, the
states of former ten instants are also contained in the inputs. Lin et al. concluded that
RBFN shows better accuracy than BPN and CPN but RBFN shows only medium level of

error tolerance.

In summary, artificial neural networks have been applied in driver models to study
driver’s handling behavior. Most neural networks in these models are based on
Multilayer Perceptrons (BP networks). The feedback of errors such as the lateral offset

has been contained in the inputs to achieve the goal of close-loop control.

However, there are still two points worthy to do the further study. (1) Few models
have utilized recurrent networks directly to simulate the driver’s steering behaviors. In
fact, the architecture of recurrent network is especially suitable to simulate the time-series
system. (2) Few driver models have concerned the influences of driver mental workload
on driver’s performance although previous studies have pointed out that driver mental

workload definitely affects the driver’s performance in the field.

1.3 Scope and objectives of this research

As discussed in the previous literature review, this study looks at the quantification of
driver mental workload, the estimation of driving risk level, and the impacts of driver

mental workload on driver’s steering performance simulation.

Regarding the three topics above, the limitations exposed in previous literature are the

following:
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(1) Few studies have discussed the quantification of driver mental workload and
compared the quantification value with the subjective MWL estimation results. Without
the quantification of the mental workload, its influence on driver model’s performance

cannot be analyzed extensively.

(2) There is much subjectivity in the previous driver mental workload estimation
methods. This subjectivity may cause obvious inconsistency between the results of

different estimation methods.

(3) The concept and modeling of the driving risk level has not been intensively
discussed. Moreover, the possible relationship between the driving risk level and the

driver mental workload has not been discussed.

(4) Neural networks such as Multilayer Perceptrons, and other similar feed-forward
structures have been used to simulate drivers’ steering behaviors with the feedback of
control error. However, recurrent networks specializing in time-series system simulation

have not been adopted in driver models.

(5) Many field experiments have indicated that driver mental workload definitely
influences driver’s steering performance, but the influence of driver mental workload has

not been considered in the simulation of driver behavior models.
Regarding the limitations above, this study pursues the following three objectives:

(1) To propose a relatively objective method for driver mental workload

quantification.

The driver mental workload quantification method in the present thesis is based on

cluster analysis and competitive neural network quantification of ECG features, which
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are analyzed by multiple time-frequency analysis tools, including short time Fourier

Transforms and wavelet transforms.

(2) To do a preliminary study on driving risk level modeling for indicating driver

mental workload over-reduction.

In this thesis, the driving risk level model is based on the fuzzy space model of the
danger zone for a moving vehicle. The danger zone is a two-dimension fuzzy space with

adjustable membership functions of risk degree.

(3) To build up two types of neural network-based driver models with the input of the

driver mental workload.

The two types of neural network are the classical Multilayer Perceptrons and the
Elman recurrent networks. The input of neural network-based driver models contains the

continuous variance of the driver mental workload or the average mental workload level.

1.4 Organization of the thesis

Chapter 1 gives an introduction of this research. In Chapter 2, the general framework
is introduced. Sec.2.1 introduces the overall structure of driver-vehicle-environment
(DVE). Secs. 2.1 to 2.4 present the overall architecture of driver mental workload
estimation, the driving risk level estimation, and the driver model simulation. Sec. 2.5

introduces the data source of this research.

In Chapter 3, the method of driver mental workload estimation is discussed. Sec 3.2
introduces the ways of extraction of ECG features in time, frequency, and time-frequency

domains. Sec 3.3 discusses mental workload classification and sorting. The driver mental
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workload variance is estimated by Learning Vector Quantization neural networks. Sec
3.4 introduces the simulation based on experiment data. Simulation results are discussed

and conclusions are drawn.

In Chapter 4, the danger zone based driving risk level estimation method is
introduced. Sec 4.2 gives the definitions of driving risk level and the danger zone of a
moving vehicle. The fuzzy space model of the danger zone is also discussed in this
section. Sec 4.3 proposes a preliminary estimation method of the background driving risk
level and the overall driving risk level. Sec 4.4 introduces the simulation based on the
experiment data. The relationship between the driving risk level and the driver mental

workload is discussed finally.

In Chapter 5, two neural network-based driver models with the input of the driver
mental workload are presented. Sec 5.1 briefly reviews the architecture and the training
algorithms of Multilayer Perceptrons and recurrent networks. Sec 5.3 proposes two driver
models based on the two types of neural networks. Sec 5.4 introduces two-degree-of-
freedom vehicle models for vehicle status and driver’s performance simulation. Sec 5.5
gives the simulation impacts of the driver mental workload on the driver’s performance,

and comparisons between the two driver models are made.

Chapter 6 concludes this research. Some recommendations for further research are

also included in Chapter 6.
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CHAPTER 2 GENERAL FRAMEWORK OF RESEARCH

2.1 Driver model in close-loop DVE systems

In driver — vehicle - environment (DVE) systems, the driver performs steering,
throttle controlling, and other actions. The vehicle changes its direction, velocity, and
other status accordingly. Then, the driver senses the displacement error (or target track),
velocity error, and some other feedbacks (for example, change of road environment) to

issue new actions. The whole process is a close-loop control.

Vehicle movement

A A

Vehicle status

Driver model t——» Vehicle steering.angle

Target track

Figure 2-1 A typical close-loop VME system

In the close-loop system mentioned above (Figure 2-1), the driver model ignores the
impact of driver’s psychological status. As discussed in the literature review in Chapter 1,
the driver mental workload and the driving risk level have strong relations with the driver
model; therefore they should not be ignored in the driver model study. A new driver

model, with reference to existing ones, is proposed in Fig. 2-2.
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Figure 2-2 A new driver model in VME system

P Vehicle steering angle

In Figure 2-2, the driver mental workload and the driving risk level are two important

components in the new driver model. They will be explained in detail in the following

sections.

2.2 Framework of driver mental workload estimation

To estimate the driver mental workload by using competitive neural networks, the

first step is to specify the input of the network, but what features are suitable as the inputs

of the neural network?

ECG signals contain many features (such as R-wave, T-wave, P-wave, QRS complex,

HR, HRV, LF, HF, and LF/HF ratio). Some of these features have strong relations with

the operator’s MWL alteration, while others have less relation with the operator’s MWL

change.
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In this present study, several typical ECG features being reported as having the
capability of indicating the mental workload change are chosen as the neural network
input, such as the power spectrum of WQ, LF and HF corresponding to HRV, as well as
the LF/HF.

The LVQ (learning vector quantization) algorithm-based competitive network
architecture is chosen to estimate the driver’s mental workload in this study. The initial
weight matrix of LVQ networks is derived by cluster analysis. The feature data
representing the driver’s mental workload status are classified into N levels. In each level
the driver’s mental workload is a function of the distance between the feature data and
the centroid of the corresponding cluster.

The overall flowchart of the proposed quantification method is shown in Figure 2-3.

Signal analysis: . ECG features:

Classified mental
workload level

Cluster
analysis

ECG
signals

Short time FFT,
Wavelet
transforms:

QRS spectrum,
LF,HF ,LF/HF of
HRV

Competitive neural
network - -
S LVQ)

Driver mental
workload
variance

5 Soﬂing,; &
MWL level

'Quantiﬁed Mental
- . workload

Figure 2-3 Driver mental workload estimation process
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2.3 Framework of driving risk level esitmation

Membership function on
longitudinal direction Background driving risk level
Danger zone of

moving vhicle
(Fuzzy space’)
C Membership function on Overall driving risk level >

latitudinal direction

Figure 2-4 Process of driving risk level estimation

Figure 2-4 shows the process of the driving risk level estimation. Firstly, the fuzzy
space model of the danger zone for a moving vehicle is constructed by combining two
one-dimension membership functions: the membership functions of the driving risk level
oﬁ the longitudinal direction and on the lateral direction. The time headway and the road
shape are two key factors influencing the membership functions of the driving risk. The
driving risk level caused by an obstacle is determined by its position in the moving

danger zone.

2.4 Framework of driver model building

After estimating the driver mental workload and the driving risk level, the driver
model can be implemented in different ways. In this thesis, neural networks are employed

to fulfill the new driver model, shown in Figure 2-5.
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Figure 2-5 New driver model based on neural networks

In Figure 2-5, the dashed line represents the functional part un-implemented in this
stage. Two types of neural network-based driver models simulate the steering angle under
the influences of a constant driver mental workload and a varied driver mental workload,
respectively. The errors of the steering angle between the experiment data and the
simulation results indicate which driver model is better for the driver steering
performance simulation. According to the further 2-DOF vehicle status simulation, the
errors of yaw rate between the experiment data and the simulation value also indicate

which driver model is better.

2.5 Data source

The expediency of the proposed models can be investigated in three typical vehicle
manoeuvre: single-lane, double-lane, and sine-lane. The single-lane change is the most

common vehicle manoeuvre for a driver. It performs the task of lane change. ISO 3888-1
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[1999] defines the double-lane change manoeuvre. It performs a surpass action. ISO

3888-2 [2002] defines the sine-lane change manoeuvre. It performs an obstacle avoidance

manocuvre.

The tracks of the three motions are shown in Fig. 2-6.
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single-lane double-lane sine-lane

Figure 2-6 Three typical vehicle manoeuvre

The source of the experimental data comes from [Lin, 2005, 1997]. In those
experiments, the drivers were required to proceed along the designated route at the
required velocity. The following signals were sampled at the rate of 50 points per second:
(1) longitudinal velocity, (2) lateral velocity, (3) longitudinal acceleration, (4) lateral

acceleration, (5) yaw velocity, (6) roll angle, (7) steering angle, (8) ECG signal.

Table 2-1 shows the manoeuvre performed by a driver named “Y”, who was about 50
years old. In Table 2-1, the first character stands for the manoeuvre type. For example,
“P” means single-lane change, “Q” means double-lane change, and “S” means sine-lane
motion. The second character, such as “Y”, indicates the driver’s name. The third
character stands for the vehicle speed. For instance, “5” means 50 Km/h, “6” means 60

Km/h, “8” means 80 Km/h, and “A” means 100 Km/h. In special, “5h” means 55 Km/h.
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The last digit indicates the manoeuvre No. For example, #1 is the first trial and #2 is the

second trial of the same type manoeuvre.

Table 2-1 Driving manoeuvre done by driver ‘Y’ [Lin 2005, 1997]

Vehicle Speed | Single-lane change | Double-lane change | Sine-lane motion
(Kmv/h)
50 - - SYS51
55 - - SYS5hl
60 PY61,PY62 QYe6l SYe6l
80 PY81, PY82 QY81, QY82 -
100 PYAI, PYA2 - -

So, PY61 is the #1 single-lane change manoeuvre at 60 Km per hour by the driver
“Y” while PY62 is his #2 single-lane change manoeuvre at the same speed. Similarly,
QY81 is the #1 double-lane change manoeuvre of the driver “Y” at 80 Km per hour

while QY82 is his #2 double-lane change manoeuvre at the same speed.

Based on the experimental data, the simulation of the driver mental workload
quantification, the estimation of driving risk level, and the analysis of mental workload
influences on drivers’ steering performance can be discussed in this research paper.

Due to the unavailability of the actual precise position of the vehicle, some validation

work is limited in this research (discussed in Chapter 5).
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CHAPTER 3 DRIVER MENTAL WORKLOAD ESTIMATION

3.1 Introduction

Among the three major mental workload measures: the task performance estimation,
the subjective estimation, and the physiological parameters measurement. The ECG
signal-based physiological parameters measurement is a very promising estimation
method. Although previous research has suggested that heart rate variability and some
other ECG features have the potential to indicate the change of the mental workload, few
objective methods have been presented to classify the mental workload level and to
quantify the variance of mental workload. This chapter presents a method of driver
mental workload estimation based on cluster analysis and Learning Vector Quantization

(LVQ) neural networks.

In this chapter, the tools of ECG signal analysis including short time FFT transforms
and wavelet transforms are introduced firstly. Then, ECG feature data are applied by
cluster analysis to determine the number of the mental workload category. LVQ neural
networks are used to classify the mental workload level and to estimate the mental
workload variance. Finally, the simulation based on the experiment data is done to

demonstrate the estimation method.
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3.2 ECG features extraction
3.2.1 Features of ECG signals in time domain

ECG signals indicate the working status of the human heart. Figure 3-1 shows a
typical ECG signal including the P, Q, R, S, and T waves and some standard durations

and segments. QRS complex is the most interesting part in the whole ECG period.

P-R Segment
P-R Interval Q-T Interval

]/P\TQ

Figure 3-1 A typical cycle of ECG signal

A continuous ECG signal is comprised of many ECG cycles (Figure 3-2). In the time
domain, the width of QRS complex, the heart rate (Figure 3-3) and the heart rate
variability (Figure 3-4) are three key features and have potential to be used to assess the
mental workload variance; however, human’s ECG signals do not definitely show all
P,Q,R,S,T waves in high-demanding working environment compared with the regular
ECG signal pattern in the rest situation. Therefore, it may be difficult to recognize the
start point and the end point of QRS complex due to the irregular ECG signal pattern.
Furthermore, ECG signals may expose some abnormal characteristics related to medical

problems. Recent development has enabled the analysis of frequency components based
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on the mathematical manipulations performed on the same ECG-derived data, such as the

Fourier transform and wavelet transform (WT).
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Figure 3-2 A continuous ECG signal
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Figure 3-3 Moving averaged heart rate Figure 3-4 Instant heart rate variability

3.2.2 FFT analysis of ECG signals

(1) Classical FFT analysis

In general, for a continuous signal x(¢), its frequency spectrum X (w) can be derived

by the Fast Fourier Transform (FFT) (Young, 1985).

ECG signals are not strict periodic signals, but there are similarities between the heart

beat cycles (P-P cycles). When the FFT transformation is applied to a long duration ECG
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signal, its corresponding frequency spectrum in the whole time period can be obtained,

but the frequency variance between adjacent P-P cycles cannot be observed.

(2) Segmented FFT analysis

In order to view the frequency change between the adjacent heart beat cycles, the
long duration ECG signal can be cut into many segments (Figure 3-5). In each segment,
there is only one P-P cycle and one R wave. Then the FFT transform can be applied to
each P-P segment. Because the FFT transformation is applied to a segmented ECG signal,
this process is also called segmented ECG FFT analysis. The segmented ECG FFT

analysis can provide detail information of each ECG cycle along the time axis.
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Figure 3-5 Segmented ECG signal

In practical, due to the limited sample frequency (must higher than the Nyquist
Frequency), the total number of samples in an ECG cycle may be also very limited, so a
piecewise cubic interpolation could be performed on each ECG cycle (Figure 3-6). The

cubic interpolation method can preserve the monotony and the shape of the original

curve.
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Figure 3-7 Amplitude spectrum of a segmented ECG signal

Figure 3-7 illustrates the amplitude spectrum of a raw ECG cycle shown in Figure 3-4,
and the amplitude spectrum of its corresponding interpolated signal. Their amplitude
spectrums are very similar, but the interpolated one shows more detail information of the

high frequency components.
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ECG Amplitude Spectrum

Figure 3-8 Amplitude spectrum of a continuous ECG signal

In Figure 3-8, the power spectrum of a continuous ECG signal is shown in sliced

ECG cycles. In other words, the FFT analysis is performed on each segmented ECG

cycle.

For each ECG cycle, the mean value and standard deviation of power spectrums are

two important variables to represent its characteristics.

Figure 3-9 shows the mean value and the standard deviation of segmented ECG
amplitude spectrums changing with time. The change of the mean value and standard
deviation indicates the alternation of the heart activity, so it has potential to indicate the
change of the mental stress. In fact, compared with the steering angle in the same figure
3-9, the abrupt alteration section of the mean value and the standard deviation is just the

moment for the driver to steer the vehicle to make a lane change manoeuvre.
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Figure 3-9 ECG amplitude spectrum vs steering angle

Obviously, there is a disadvantage for the segmented ECG FFT analysis. Although
the distribution of the frequency and power spectrums of a long duration continuous ECG
signal can be analyzed cycle by cycle, the time resolution of segmented ECG FFT
analysis is decided by the length of ECG cycles, usually varying from 0.3 to 1 second.
Moreover, to cut ECG signal to individual ECG cycles is another tedious manual work.
In order to explore the detail information of frequency variance within 0.3 seconds, other
methods have to be concerned. Short time FFT is just an improved FFT analysis method

based on the automatic signal segmentation.

(3) Short Time FFT

In order to oversee the change of a signal’s frequency components varied with time,

the signal should be automatically cut into separate sections and then the corresponding
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spectrum of each section can be calculated. This improved spectrum analysis method is
called Short Time Fourier Transform (STFT). It is usually used to compute the windowed

discrete-time Fourier transform of a signal using a sliding window (Young, 1985).

X(w,m)= ix(n —m)a(n)e ™™ 3.1
X(w,m)= gx(n —m)ao(n)e ™ (3.2)

Where w(n) is the window function with a window length R . The window function

cuts the raw signal to separate sections by sliding with time. One of the commonly used

window functions is the Hamming window.

The STET of a signal is a function of two variables: time and frequency. STFT can
indicate the strength of particular frequency components at a given instant. To calculate
STFT, the following parameters should be chosen: the length and the type of the sliding
window, the amount of overlap between the adjacent signal sections. Generally, the

STFT analysis can provide higher resolution on time than the classical FFT analysis.

ECG signals
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Figure 3-10 Sliding windows of STFT on an ECG cycle
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Figure 3-11 One ECG cycle and its corresponding STFT

In Figure 3-11, the frequency-amplitude characteristics of an ECG signal at each time
point can be observed. The frequency spectrum of R wave that contains the ECG peak

show richer components than those of other waves.
3.2.3 Wavelet analysis of ECG signals

3.2.3.1 Wavelet transforms

Similar to the Fourier transform, the wavelet transform is another well-known signal
analysis tool. Fourier transforms and wavelet transforms represent the expansion of a
continuous-time signal or a discrete-time signal on a serial of sine waves and wavelet

bases, respectively. Unlike sine waves, extending from minus infinity to plus infinity, a
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wavelet is a limited duration signal and has an average value of zero. The wavelet
transform is a linear operation, which decomposes a signal into a serial of shifted and

scaled wavelet base functions.

Generally, w(¢) is an oscillatory signal and the sum of area is zero [Sahambi et al.,
1997]. Usually, a group of wavelet functions can be gotten from the base function y(¢)

| t—7 . . .
and they are T!//(———-—), Where a is a scale factor and 7 is a position parameter. The
a a

wavelet transform of a function f'(¢) is represented as [Sahambi et al., 1997]:
17 t-7
Wf(a,t)=— |fOw (—)dt 3.3
fla.r) = _if v (33)

Where (//*(t_—T) denotes the complex conjugation of W(t—_r) .
a a

Scale a and position 7 are two key parameters of wavelet transforms. For a small
values of scale a, the wavelet transform gives information of detail parts of signal f(¢),
i.e. the high frequency components; For a large value of scale a, the wavelet transform

gives information of global view of f(¢), i.e. the low frequency components.

Not all mother wavelets have explicit expressions, so filters are commonly used for
the analysis of the approximations and the details. The approximations are the high-scale,
low-frequency components of the signal, while the details are the low-scale, high-

frequency components of the signal.

3.2.3.2 Wavelet transforms of ECG signals
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In the wavelet transform analysis, there are two types of transform used frequently:
continuous wavelet transforms and discrete wavelet transforms. For continuous wavelet
transforms, the scale a usually changes in 1, 2, 3, 4.... N. N is a positive number, but for

discrete wavelet transforms, the scale a usually changesin 1, 2, 4, 8.... 2”N.

In Figure 3-12, an ECG signal in one cycle and its continuous wavelet transform are
shown. The mother wavelet function is the Daubechies wavelet. The coefficients of the

wavelet transform represent the characteristics of the original signal.

1 1 1 1 t 1 { L

| |
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Absolute Values of Ca,b Coefficients fora= 12345 ...
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Time (Unit:20ms)

Figure 3-12 ECG signal and its continuous wavelet transform

3.2.3.3 ECG features extraction by wavelet transforms

(1) Features of power spectrum

35



Usually, R peaks can be located easily in the time-domain. Minami et al. (1999)
pointed out that the normal length of the QRS window is 256 ms. When a more accurate
QRS width is required, the algorithm including Q, R, and S wave peaks locating (Li et

al., 1995) can be applied.

After the determination of the beginnings and the endings of QRS complexes, FFT is
performed on each QRS complex to get the corresponding power spectrum. Five
components of the power spectral with the central frequencies at 3.9, 7.8, 11.7, 15.6, and

19.5 Hz (Minami et al., 1999) are selected as the features expressed with 7, , pyy , Pr3,

Prs,and Pys.

(2) LF and HF extraction

DWT coefficients of the discrete ECG signal x(n) have relations with the frequency

domain, shown as Table 3-1 (Murai et al., 2001). Therefore, the LF and HF components

can be extracted easily.

Table 3-1 Relations between wavelet coefficients and frequency domain

Frequency Wavelet coefficients Frequency domain (Hz)
components
HF W, x(n) 0.25-0.5
szx(n) 0.125-0.25
LF W, x(n) 0.0625 —0.125
W, x(n) 0.03125 - 0.0625
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The LF corresponds to the sum of the DWT coefficients of the ECG signal x(n) at

scales2’and 2*, while the HF corresponds to the sum of the DWT coefficients of the
ECG signal x(n) at scales2'and2?. After the calculation of LF and HF, it is very easy to

calculate the LF/HF ratio, expressed as LHR.

3.3 Methodology of mental workload estimation

Normally, drivers’ routine actions in driving can be roughly classified into the
following three typical vehicle manoeuvre: single-lane change, double-lane change, and
sine-lane motion. A driver’s mental workload may vary with time and the motion type.
Based on a common sense, it would be reasonable to grade the driver mental workload
(MWL) in several levels, such as baseline, a little high, high, and very high. Accordingly,
the variance tendency of mental workload can be observed by looking at the alteration of

the driver’s mental workload level.

However, the essential problem is how many levels of a driver’s MWL should be
divided into. Specifying N , the number of MWL levels, completely by subjectivity is the
simplest way, and an effective way in some circumstances. But this method may be not a

good one because it is too subjective. In contrast, it is a good way to specify the number

N based on the cluster analysis of ECG features.
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3.3.1 Clustering analysis of ECG features

Assume X is a n-by- p data matrix of ECG features. Rows of X, n corresponds to
the time points, columns p corresponds to the variables which stands for the ECG

features at the same time point. Currently, there are 8 types of ECG feature so p =8.

In cluster analysis, the distance between different sub-sets is used to measure the
similarity of categorical data. The commonly used dissimilarity measures contain

Euclidean distance, City block distance, and Pearson correlation [Jambu, 1983].

2
Euclidean distance d;, = () (x,;_x;)")" (3.4)
k=1
V4
City block distance d; =) | x,_x, 3.5
k=l

Pearson correlation 6, =(1—-¢,)/2 with
c o o & = 2% o \2)\V/2
By = D O X )5 X0 Q- (X ) D (%% 0)%) (3.6)
k=1 k=1 k=1

_ 1& - 1&
Where x,-.=——2xik and xj.z—ijk.
Y=

k=1

In this study, city block distance is used. For each sub sets, or called cluster, there is a
centroid. The cluster analysis performs an iterative algorithm to minimize the sum of

point-to-centroid distances over all clusters.
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3.3.2 Determining the number of mental workload level

Denote Q as the set formed by the ECG features collected from three types of vehicle
manoeuvre at different speeds. A clustering algorithm is employed to partition set Q into
2, 3, 4, 5, or more sub-sets. Because there is no much meaning to classify the mental
workload into two levels only, we are certain that the number N should have to lie within
the numbers of sub-sets ¢ . Let ce[3,4,5,---] be the number of sub-sets, and

d(c) represent the average distance between ¢ sub-sets. Because the larger the distance is,

the greater dissimilarity between the categories is, the reasonable and optimal number of

sub-sets is satisfied with

N =argmax{d(c)} 3.7

- N means the driver mental workload in a specific situation can be roughly
classified into N levels. When the number of total levels of driver mental workload is

determined, the centroid of each sub-set is also determined.

3.3.3 Sorting the mental workload levels

The cluster analysis implies that the driver’s mental workload is best to be divided
into N levels corresponding to the determined centroids. However, it is unknown that
which centroid corresponds to the specific MWL level. In other words, we really do not
know which MWL level corresponds to the specific centroid exactly. In order to solve
this problem, several representative sections of ECG signal are picked up from each sub-
set firstly. Then let FFT to be performed on the corresponding ECG strips, so the power

spectrum of each representative ECG strip can be derived. Finally the mean value of the
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power spectrum M, (i=12,---N) and the mean value of the frequency spectrum
M, (i=12,---N) can be calculated. Rearrange M, (i =1,2,---N)and M ,(i=1.2,---N)
in ascending order as the follows.

My <Mg, <M, <M,, (3.8)
My, <M., <M,;<M,, (3.9)

As a usual rule, the heavier the driver’s MWL is, the richer the frequency is in the
power spectrum, i.e., the bigger the mean value is. This tendency can be also observed

from Figure 3-9. Thus M, or M, corresponds to the baseline, while
My or M 4, corresponds to the heaviest MWL. If the rank of M, (i=1,2,---N) and
M ; (i =12,---N)is not the same, it would be better to use the rank of M , (i =1,2,---N)

to sort the mental workload levels.

Table 3-2 Define the variance scope of each MWL level

MWL level MWL Meaning
Level 1 [0, 0.25) Baseline
Level 2 [0.25,0.5) A little high
Level 3 [0.5,0.75) High
Level 4 [0.75, 1] Very high

If the cluster analysis suggests the driver mental workload could be divided into four
levels. Then, the variance scope of each mental workload level can be defined as Table 3-

2.

40



Where, the value scope of each MWL level keeps roughly consistence with the
RSME (Rating Scale Mental Effort) scale [Appendix A], but no exactly. Overall, the

interval [0, 1] in Table 3-2 corresponds to the interval [0, 110] of RSME scale.

RSME is a subjective scale to rate the overall MWL in a specific task and it is not
used for estimating the MWL variance in real time. In the RSME scale, the mental effort
is scaled from O to 150. Where, O indicates absolutely no effort, 26 indicates a little
effort, 57 indicates rather much effort, 85 indicates great effort, and 112 indicates

extreme effort.

3.3.4 Mental workload estimated by competitive networks

The LVQ (learning vector quantization) competitive network is designed in two
layers: the competitive layer and the linear combining output layer. The competitive layer
classifies the input vectors into several different categories through competition, while

the output layer calculates the driver’s MWL in each category.

In this thesis, the five typical components of the QRS power spectrum, LF and HF, as
well as the LF/HF ratio of HRV are constructed into the input vectors with eight
variables. Because the driver’s MWL is divided into N levels by using cluster analysis,
the competitive neural network is designed to have N competitive neurons corresponding
to N different levels. On each level, the driver’s MWL is a function of the distance

between the input vector and the centriod of the features in that level.

Denote the input vector of the LVQ competitive network as

Pj =[Ps1.Pr2.Pp3, Pra. Prs, LF, HF, LHR]"

=[Pj1 pPjy PjS]T (3.10)
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Where j =1, 2 ,--- stands for the numbering of all ECG feature data. According to

the LVQ algorithm, we can obtain the output vector a of the competitive layer as

a=[a, a, - a,) =compet(p") (3.11)
nl [lw-pl]

p=- l?; | HEIR “ (3.12)
pd Aenl

where W, , =[w, w, - w, ] represents the weight matrix, w, (i =1,2,---,N) is called

as weight vector, and compet(-) is a competitive function which sets ‘1’ to the neuron
corresponding to the input vector closest to the weight vector. This neuron is called the

victorious one which means that the driver’s MWL belongs to one of the N levels. For

example, if the driver’s MWL is on the i*level, then a=[0 0 --- a,=1 0 0].

Denote ¢; = [c“ €y -t Cg ]T (i =1,2,--- N)as the centroid of the i” level, and D, as
the sub-set formed by all input vectors belonged to the i level, then the driver’s MWL

,on the i* level can be calculated as:

¥, =a, x[%x df + y?ale’:: :Z::d"min] (3.13)
df =|lc-p| p, € Dk =12,---K (3.14)
d™ = max{d}} (3.15)
d™ =min{d}} (3.16)
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min

where K is the number of the elements in sub-set D,, y™ and y,"" are the maximum

and minimum value of the driver’s MWL in the i” level respectively, and are determined

by the rank of the level. Denote b,, B and Y as

min max max jmax min _ymin
b = Y —V: Xdk+yi di =V di

= A . - 3.1

i dimax _ dimm ! dimax _ dimm ( 7)
B=[p b, - b, (3.18)
Yz[yl Yy oo J’N]T (3.19)

According to Eq.(3.33), the output vector Y of the competitive neural network can be

calculated as
Y=a.B (3.20)
where “ «” represents dot product.

The overall structure of the LVQ competitive network is demonstrated in Fig.3-13.
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Figure 3-13 Overall structure of the LVQ competitive network
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3.4 Experiment and simulation
3.4.1 ECG features in the typical vehicle manoeuvre

The data source has been introduced in section 2.5. For the collected ECG signals,

the ECG features can be extracted according to the algorithm introduced in section 3.2.

Figure 3-14 shows the continuous ECG signal of driver ‘Y’ in the #1 single-lane

change manoeuvre at 60 Km per hour.

ECG signal

Voltage (v)

-1 1
10 15 20 25
Time (s)

Figure 3-14 ECG signal of driver Y’ (#1 single-lane, 60km/h)

Normally, based on the algorithm of local maximum judgment, the peaks of R waves
can be recognized in the time domain when there is little noise in the raw ECG signals.
However, when the raw ECG signal has been interfered by heavy noise, the wavelet

analysis based R wave recognition algorithm, introduced in the section 3.2 has to be

adopted.
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Figure 3-15 Peaks of R waves (driver ‘Y’, #1 single-lane, 60Km/h)

(1) QRS complex

After the peaks of R waves have been located (Figure 3-16), the QRS complex can be
picked out according to the algorithm introduced in the section 3.2. Figure 3-18 shows an
ECG QRS complex and its power spectrum. This QRS complex belongs to the ECG

signal of driver Y’ in the #1 single-lane change at 60 Km per hour.
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Figure 3-16 ECG QRS complex and its power spectrum

(Driver “Y’, #1 single-lane, 60Km/h)

Table 3-3 shows the representative frequencies and the corresponding power values
of the QRS complex in Figure 3-18. Thus, the QRS complex is characterized by the five

components of its power spectrum.

Table 3-3 Representative frequencies and the corresponding power value

i 1 2 3 4 5
f (Hz) | 4 8 12 16 20
Py 231 | 324 223 2.09 0.73
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Figure 3-17 shows the five power components of QRS complexes which belong to

driver Y’ in the #1 single-lane change manoeuvre at 60 Km per hour. This manoeuvre

lasts 25 seconds.

Power of QRS complex

v
i
i

Figure 3-17 Power distribution of QRS complexes

(Driver ‘Y’, #1 single-lane, 60 Km/h)

(2) HRV

Figure 3-18 shows the heart rate variability of driver Y’ in the #1 single-lane change
manoeuvre at 60 Km/h. Although the value of HRV is usually very small, less than 0.5
beat/s per second, it does alter significantly at some points. The abrupt change implies
the suddenly irregular activities of the driver’s heart. In fact, it indicates the moment of

driver’s mental workload change.
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Heart rate variability
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Figure 3-18 Heart rate variability of driver ‘Y’ (#1 single-lane, 60Km/h)
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Figure 3-19 Wavelet coefficients of HRV (Driver ‘Y’, #1 single-lane, 60km/h)

Figure 3-19 shows the wavelet coefficients of HRV shown in Figure 3-18. The

transform scales vary from 1 to 20. According to section 3.2, the low frequency

components (LF) are characterized by the sum of coefficients at scales 2°and2*. The
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high frequency components (HF) are characterized by the sum of coefficients at scales2'

and2?. The corresponding curves of LF, HF, LF/HF are shown in Figure 3-20.

LF, HF, and HF/LF of HRV

T

HF
HF/LF

Time

25

Figure 3-20 LF, HF, and HF/LF of the heart rate variability

Similar to the above process, the ECG features of the driver ‘Y

(Table 2-1) can also be abstracted.

3.4.2 Clustering results of ECG feature samples

b

in all other trials

When ECG features have been extracted, the feature data of selected motions can be

put together to be set Q (Table 3-4) for clustering. The selected ECG features include

those data in the single-lane change manoeuvre at 60 Km/h (Figure 3-21), the double-

lane change manoeuvre at 80 Km/h (Figure 3-22), and the sine-lane motion manoeuvre at

60 Km/h (Figure 3-23).
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Table 3-4 Set Q of ECG features

I3 t I3 ty ts tg iy
P 0.69269 | 1.6315| 0.79241 | 0.47432 | 0.28112| 0.25856
Pr2 0.065178 | 3.7548 | 3.3597 3.0604 1.7068 2.2705
Pr3 0.024617 | 2.9249 | 2.9164 1.842 3.1218 3.5589
Pra 0.041918 2.92 ) 29483 3.3697 3.2882 3.0988
Prs 0.016136 | 2.4702 2.343 3.5245 2.6797 3.5749
LF 0.80406 | 0.98704 | 1.0439 0.9239 1.0526 1.0768
HF 0.034455 | 0.12019 | 0.11493 | 0.04162 | 0.056719 | 0.031626
HF/LF 0.042851 § 0.12177 | 0.1101 | 0.045048 | 0.053886 | 0.029371

Figure 3-21 ECG features of the #1 single-lane change manoeuvre (60Km/h)

Coefficients of ECG features

2]
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Figure 3-22 ECG features of the #1 double-lane change manoeuvre (80Km/h)
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Figure 3-23 ECG features of the #1 sine-lane motion manoeuvre (60Km/h)
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According to the method introduced in section 3.3, the ECG feature data can be

divided into 3, ..., N clusters. The average distances of N clusters are shown in Table 3-5.

Table 3-5 Average distance d(c) for different cluster numbers

c=2 c=3 c=4 =5 c=6
d(c) 0.3420 | 0.1948 | 0.2456 | 0.1535 | 0.1704

Although d(2) is the biggest one, implying that it is better to divide the driver’s
mental workload to two levels in such a short time trial, it is too coarse to analyze it in
depth. Except c=2, the biggest average distance among Table 3-5 appears at ¢=4, so it is
reasonable that the driver’s mental‘ workload in the experiments is divided into four levels.

When N=4, the clustering results of the set Q are shown in Fig.3-26, 3-27, and 3-28.

Fig. 3;24 shows the result of ECG features clustering in the #1 single-lane change
manoeuvre at 60 Km per hour. Fig. 3-25 shows the result of ECG features clustering in
the #2 double-lane change manoeuvre at 80 Km per hour. Fig. 3-26 shows the result of
ECG features clustering in the #1 sine-lane motion manoeuvre at 60 Km per hour. The
horizontal axis represents time. The vertical axis indicates the category number of ECG

features belonging to at that specific time.
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Classified mental workload level
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Figure 3-24 MWL Level of the #1 single-lane change manoeuvre (60Km/h)
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Figure 3-25 MWL Level of the #2 double-lane change manoeuvre (80Km/h)
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Figure 3-26 MWL Level of the #1 sine-lane motion manoeuvre (60Km/h)

Table 3-6 Cluster centroids of four MWL levels

i Pr2 Pr3 Pra Prs LF HF HF/LF
Level 1 | 0.8451 | 2.277 | 1.8507 | 1.4791 | 1.0436 | 0.066322 | 0.69587 | 0.67681
Level 2 |1 2.5161 | 3.4812 | 2.7255 | 1.6285 | 1.0093 [ 4.7283 3.8794 | 1.588
Level 3 | 1.0349 | 3.0082 | 2.9783 | 3.0168 | 2.8515 | 0.044528 | 0.34835 | 0.64069
Level 4 | 4.009 | 5.2458 | 5.3055 | 3.6254 | 3.1474 | 0.30359 | 1.6338 | 0.22665

Unfortunately, up to now although we have already known the centroid of each level
(shown in Table 3-6), we still cannot distinguish which level means a heavier mental
workload compared with the other one. However, we do notice that the percentile
distribution of the four mental workload levels seem to vary significantly between the
different manoeuvre. It implies that the driver’s mental workload in the different driving

task differs from each other obviously.
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3.4.3 Grading the mental workload levels

Based on the clustering results of the experimental data, the typical durations of each
mental workload level can be recognized and picked out from the Figs 3-24, 3-25, and 3-

26. For the candidates of the picked out time periods (Table 3-7), the mental workload

should almost remain at the same level as long as possible.

Table 3-7 Typical durations of each MWL level in different manoeuvre

MWL Level Single-lane change | Double-lane change | Sine-lane motion
(Fig. 3-26) (Fig. 3-27) (Fig. 3-28)
Level 1 1.0s~3.5s,
17.55~20.5s
Level 2 6.5s-9s,
10.5s5-13s
Level 3 0s~3s 14s-18s
Level 4 8.55s~10.5s 10s~13.5s

According to the determined start time and the end time, the ECG strips can be picked
out easily in the time domain. Table 3-8 shows the mean value of the power spectrum

(M) and the mean value of the frequency spectrum (M /) for the corresponding ECG

strips.
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Table 3-8 Mean value of the power and frequency for ECG strips

Level 15 15
! 10
o
0 10 20 30 40 50 0 10 20 30 40 50
Frequency (Hz) Frequency (Hz)
M, =063 M,=925 M,=0.69 M, =897
Level 15 15
2
0 10 20 30 40 50 30 40 50
Frequency (Hz) Frequency (Hz)
M,=093 M, =12.08 M,=095 std=11.47
Level 15 15
3 |
0 10 20 30 40 50 0 10 20 30 40 50
Frequency (Hz) Frequency (Hz)
M,=11 M, =1522 M,=101 M ,=13.63
Level 15 15
4
10 10
5
O N AN A A S N A
0 10 20 30 40 50 10 20 30 40 50
Frequency (Hz) Frequency (Hz)
M,=058 M, =7.54 M,=0.61 M ,=8.06

The averaged mean value and the averaged standard deviation value of are calculated

and shown in Table 3-9.
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Table 3-9 Sorting the mental workload levels

Mental workload | Mean value of Mean value of Resorted by | Resorted by
level power frequency M, M,
(1) (Mp,) (M)
1 0.66 9.11 B B
2 0.94 11.77 C C
3 1.06 14.43 D D
4 0.59 7.80 A A

In table 3-9, M, <M <Mp, <Mp,. Inaddition, M ,, <M ;| <M, <M ,.

Therefore, the resorted mental workload level is MWL, < MWL, < MWL, < MWL, .

The new rank of mental workload level is A(4), B(1), C(2), D(3). The value scope of

each mental workload level is shown in Table 3-10.

Table 3-10 The value scope of each mental workload level

MWL level MWL value Meaning
Level A (4) [0, 0.25) Baseline
Level B (1) [0.25,0.5) A little high
Level C (2) [0.5,0.75) High
Level D (3) [0.75, 1] Very high
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3.4.4 Estimation of mental workload level and variance

Based on the determined centroid and the value scope of each mental workload level,
the competitive neural network can be applied to the other ECG feature sets to estimate

the driver’s mental workload. The results are shown in Figs 3-27, 3-28, 3-29, and 3-30.
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Figure 3-27 MWL Level in the #2 single-lane change manoeuvre (60 Km/h)
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Figure 3-28 MWL level in the #1 single-lane change manoeuvre (80 Km/h)
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Figure 3-29 MWL level in the #1 double-lane change manoeuvre (60 Km/h)
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Figure 3-30 MWL level in the #1 sine-lane motion manoeuvre (50 Km/h)

When the driver’s mental workload levels in all manoeuvre have been determined,
the percentage of each mental workload level can be calculated by summing up the
duration of each mental workload level maintaining. The results are shown in Tables 3-11.

In Tables 3-11, as for the names of the manoeuvre, please refer to section 2.5.
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Table 3-11 Summary of percentile distribution for each mental workload level

Manoeuvre Level A Level B Level C Level D
type (Baseline) (A little high) (High) (Very high)
PY61 37% 55% 6% 2%
PY62 46% 53% 0% 1%
PYS81 37% 60% 0% 3%
PYA1l 42% 33% 25% 0%
PYA2 44% 45% 11% 0%
QY61 21% 43% 0% 36%
QYs81 21% 36% 5% 38%
QY82 37.5% 60% 0% 3.5%
SYS51 18% 40% 5% 37%
SY5hl 6% 13% 50% 31%
SY61 12% 22% 43% 23%

In Figures 3-27 to 3-30, the value of mental workload is marked by a serial of
discrete points, but they cannot clearly show the variance tendency of the driver’s mental

workload.

When the discrete MWL values are smoothed by moving averaged filters [Savitzky
& Golay, 1964], the driver’s mental workload variance can be observed. Table 3-12
shows the mental workload variance curve of driver Y’ in typical vehicle manoeuvre. In

those figures, 0 indicates absolutely no effort, 1 indicates extreme effort.
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Table 3-12 Mental workload variance in typical vehicle manoeuvre
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3.4.5 Results and discussion

The percentile analysis in Table 3-11 shows the impacts of motion speed, motion

type, and the experience of manoeuvre on the driver’s mental workload.




(1) The impacts of motion speed on the mental workload

Compared with the motion of PY62, in terms of the different mental workload levels,
the driver spends less time on level A, level B, but more time on level C in the motion of
PYAL. Thus PYAI shows a clear tendency to have a higher mental workload than that of
PY62 because of the significantly higher velocity. The similar relationship can also be

observed between QY61 and QY81, SY51 and SYShI.
(2) The impacts of motion type on the mental workload

Compared with the ﬁotion of PY61, the driver spends less time on level A, level B of
the mental workload, but more time on level D in the motion of QY61, so QY61 shows a
clear tendency of having a higher mental workload than that of PY61 because of the
more complex operation. A similar relationship can be also observed between PY61 and

SY61, QY61 and SY61.
(3) The impacts of manoeuvre experience on the mental workload

For some motion types, the driver was required to repeat the task at the same motion

speed, so the impacts of manoeuvre experience can be observed.

Compared with the motion of PY61, so far as the level of driver mental workload is
concerned, the driver spends a little bit more time on level A and B, and slightly less time
on level C and D in the motion of PY62, so PY62 shows the tendency of having lower
mental workload than that of PY61 because of the recently gained task experience. A

similar relationship can be also observed between PYA1 and PYA2, QY81 and QY®82.
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Regarding the mental workload variance, previous research has shown that it is
important to compare the operator’s mental workload while working with its baseline
value [De Waard, 1996]. The challenge is to determine when it is the baseline of the

driver mental workload.

In Table 3-12, it can be found that at the beginning of most of the trials, the driver’s
mental workload increased quickly. Only in the low speed simple single-lane change
manoeuvre, did the driver’s mental workload seem to remain at a constant level for some

time, such as 4 seconds for the 60 Km/h single-lane change.

This implies that the operator’s mental workload does not definitely remain at the
baseline level at the beginning period of performing tasks. The reason may be that the
operator is aroused soon after the task is declared and he begins the warm-up process.
Therefore, it is not always reasonable to choose the beginning period as the baseline level

of the operator’s mental workload.

According to the Rating Scale Mental Effort scale (see Appendix A), the mental

effort in Table 3-12 can be perceived as follows:

(1) In the #1 60 Km/h single-lane change manoeuvre, the driver did not seem familiar
with the task. His mental workload stayed at less than 0.3 for most of the time time, but it
reached 0.6 at the instant of the first turn. Therefore, although the task required him to
exert only “a little effort” most of the time, it required him to take “rather much effort” to

make the first lane-change manoeuvre.
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(2) In the #2 60Kn/h single-lane change manoeuvre, the driver’s mental workload
variance indicates that the task required the driver to take just “a little effort” to

accomplish.

(3) In the #1 60Km/h and #1 80Km/h double-lane change manoeuvre, the driver's
mental workload varied between 0.3 and 0.6, 0.3 and 0.7, respectively. This indicates that

the driver had to take “some effort” or even “rather much effort” to accomplish the task.

(4) In the rather difficult task, #1 60Km/h sine-lane manoeuvre, the driver's mental
workload stayed at around 0.7 for most of the time. This suggests that the driver had to

take “considerable effort” most of the time to complete the task.

Generally, the mental effort in each trial above is consistent with the feeling of the

driver in the field.

In all the trials above, the task duration is very short and usually lasts only half a
minute. In such a short period, it is not easy to distinguish so many different mental
states of the driver because there are some limits to the real time response of human
physiological reflection. Indeed, the cluster analysis of the experiment data suggested
that the total levels of the driver mental workload should be divided into two levels. It

means that there are mainly two different mental states in the short time trials above.

In a long duration task, the estimation method of driver mental workload may be

more applicable.
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In summary, the following conclusions can be concluded by using the mental

workload percentile analysis and the mental workload variance analysis.

(1) At a similar driving speed, the driver’s mental workload in a complex manoeuvre

is higher than that in a simple manoeuvre.

(2) For a same type of manoeuvre, the driver’s mental workload in a high-speed

motion is higher than that in a low-speed motion.

(3) For a same type of manoeuvre and at a similar driving speed, the driver’s mental
workload in the second manoeuvre is more likely lower than that in the first manoeuvre.
This means that the experience of performing a task can be beneficial in the reduction of

the mental workload.

(4) The results of the driver mental workload estimation show consistency with the

Rating Scale of Mental Effort (RSME).

3.5 Summary

In this chapter, a cluster analysis and a Learning Vector Quantization neural network-
based measure are presented to estimate the driver mental workload level and to quantify
its variance. The ECG feature data used for clustering and unsupervised neural network

classifying are pre-processed by using short time FFT transforms and wavelet transforms.

The simulation results based on the experiment data are consistent with the

common perception of the mental workload variance in typical vehicle manoeuvre, such
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as single-lane changes, double-lane changes, and sine-lane motions. Furthermore, the

simulation results show consistency with the evaluation of the RSME scale.

This estimation measure shows a capability of determining the total number of mental
workload levels objectively, including locating the possible baseline of mental workload
variance. Not all the mental workload at the beginning of experiments is suitable to use as

the baseline because of possible early arousing.

The estimation method of evaluating the driver mental workload may be more

applicable for tasks of long duration.
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CHAPTER 4 DANGER ZONE BASED RISK LEVEL ESTIMATION

4.1 Introduction

Usually it can be imagined that there is a danger zone around a moving vehicle. In
this zone, obstacles represent a potential threat to the vehicle’s safety, and vice versa.
Different drivers experience different perceptions of the same driving risk and usually
have different mental feedbacks. Therefore, the variance of the drivers’ mental workload

may be partly caused by the change of the driver risk level.

The size of the danger zone has a close relation to the safe headway. For example,
when the movement is in a forward direction, the closer together two moving vehicles
are, the higher the possibility of collision is. Similarly, a sharp turn in a road and

unfamiliar surroundings also cause drivers to feel nervous.

In this chapter, a fuzzy model is established to describe the danger zone for the
driving risk level estimation. In addition, the membership functions of the danger zone
are discussed. Although there are many factors affecting the driving risk level, at this
stage, this study concerns only two major factors that alter the driving risk level: the
obstacles in the danger zone and the road shape. Finally, examples of the driving risk
level estimation are given. The relation between the driver mental workload variance and

the driving risk level change is also briefly discussed.
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4.2 Danger zone of moving vehicle

4.2.1 Definition of danger zone

Consistent to previous research, hazard is defined as “the way in which a thing or a
situation can cause harm” [Greene, A.]. Danger zone (DZ) is defined as a space area with
a potential hazard [Shahrokhi, 2004]. Risk is the quantified characteristic of hazard,
namely hazard severity, for a likelihood target being exposed to a hazard [UK, 2001].
Many factors can lead to hazard, so risk has a great degree of uncertainty. In another
word, risk is the probability of an unwanted top event and its consequences in terms of
possible damage severity to property, environment, and people [Jo & Parkd, 2003]

[Labodova, 2004].

As obstacles mean objects with possibility of creating hazard, in driving, the hazard
usually means collisions, out of the track, and their consequences. Out of the track can be
also perceived as a type of collision with roadside targets. Two types of harm exist in
driving. One is the harm to the surrounding objects caused by the moving vehicle.
Another is the harm cause by outside obstacles to the moving vehicle including the

onboard passengers.

The danger zone of a moving vehicle is a space area where potential hazard can
happen. Driving risk level means the quantified hazard severity in terms of possible
collisions. Normally, the higher the driving risk level is, the more serious the potential

hazard is, and the more nervous a driver usually feels.
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Shahrokhi & Bernard [2004] presented a fuzzy space concept to define the dangerous
zone of industrial systems in the virtual reality environment. This concept is also used in

this research for the further discussion of the danger zone of a moving vehicle.

4.2.2 Fuzzy space denotation of danger zone

The danger zone of a moving vehicle can be denoted as a two-dimensional
geometrical space in which there is a certain degree of risk at each location. A world

reference coordinate system is set up here. Let
XcR. x,yeX 4.1)

Where x,y represents the longitudinal distance and the lateral distance from the

original respectively. Denote A4, ,4, as the risk level fuzzy sets, u, (x), u Ay( y)as the

membership function over 4,,4 , respectively. Ax,Ay are described as [Chen,1996],:

A, = {(xu, (x)|x € X} (4.2)
4, ={u, W]y e X} (4.3)
uy, (x)u, (y)€[0,1] (4.4)

Assume that it is a clear and free space on the vertical direction, and no hazard may
happen on the vertical direction, thus the fuzzy set on the vertical direction can be

omitted.

Fig.4-1 shows a x shape fuzzy membership function on the longitudinal direction.

Fig.4-2 shows a bell shape fuzzy membership function on the lateral direction. In Figures
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4-1 and 4-2, the further away from the moving vehicle is, the less risk of the potential

hazard is.

For any driver, it is a critical cognitive task to maintain safe time headway from the
next vehicle ahead. Similarly, it is also mandatory for a driver to make the vehicle keep
proceeding in the target lane. Hence the membership functions on the longitudinal

direction and the lateral direction can be roughly determined in the following ways.

Assume the vehicle position is ( x,, y, ). In Figures 4-1 and 4-2, the distance x, - x, is
determined by the minimum time headway T, . The distance x, - x, is determined by the
psychology safe time headway T,. y, -y, is determined by the vehicle width W, while

Y2~ Y, 1s determined by the lane width W, .

=y

of x, X, X,

Figure 4-1 Longitudinal danger zone

A
; Uy, )
1 =
0 Yo Vs y

Figure 4-2 Lateral danger zone
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In general, it is difficult to precisely define the membership function u, (x), u, (»).
Although experiences and experiments are two valuable sources of approach, there are
no universe theoretical methods. The following ways are preferred in this study.

In the vehicle reference coordinate system, the membership function of 4. (»: the

longitudinal direction) in terms of risk can be assumed as:

1 1

14 e @G0 14 gral-a) *3)

u'AX. (x')=

Where u', (x') is constructed by the difference value of two sigmoid membership
functions. The parameters in Eq. (4.5) are determined by the minimum time headway T,

(the corresponding risk is supposed to be 0.9) and the psychology safe time headway 7,

(the corresponding risk is supposed to be 0.1) for the specific driver so that the final

shape is similar to that shown in Figure 4-1.
Along the lateral direction, the membership function of 4, in terms of risk can be

assumed as:

Wy (V)= — (4.6)

The parameters in Eq. (4.6) are determined by the vehicle width W, (the
corresponding risk is supposed to be 0.9) and the lane width W, (the corresponding risk

is supposed to be 0.5). The final shape of the membership function is similar to that

shown in Figure 4-2.
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Assume the vehicle position in the world coordination system is (x,,y,) and the

deviation angle of the vehicle’s proceeding direction from the road direction is 8. Then,

the coordination transform can be done in Eq. (9).
u, (x)| [cos(d) —sin(@] ', (x)| [x
] _[eos®) =sin@)] e, ) [ )
uy, (¥)| |cos(@) sin(@) | uy D) |y
After determining the risk degree distribution on the longitudinal and latitudinal

directions, the fuzzy space can be constructed by multiplying the two one-dimensional

membership functions.
B, (%) ={((x,y),u, (Xu, ()]|x,yeX} (4.8)
Where B,, represents the danger zone of a moving vehicle.

Generally, besides the way of constructing the membership function shown in Eq.

(4.8), there are still three ways could be used to construct a membership function.

(1) Based on common sense, it is reasonable to choose the maximum risk level as the

final risk level.
Up (x,y)=max(u, (x), Uy, ) (4.9)

(2) Based on the fuzzy logic operation rule, it is not unusual to choose the minimum

value as the final risk level.
U, (x,y) =min(u, (x), u, (¥)) (4.10)
(3) Based on the possibility theory, the final risk can be calculated as the following:

Ugy (%, ) =1=(1~u, (x))(A~u, () (4.11)
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(4) Based on the concept of geometry space rotation, the final risk can also be

calculated as algebra multiplication.

Uupy (%, ) =1, (x)(u, (¥) (4.12)

Among the four risk level membership functions in Table 4-1, we would like to know

which one is the best suitable to the driving risk level estimation?

Obviously, u, (x,y), u(x,y) are not proper for being risk level membership
functions. In current research, the membership function over B, is not denoted as the
usually accepted fuzzy logic manipulation min(u 4 (X)u 4, (»)) , but the algebra
multiplication u, (x)u 4, (y) . It is because those two one-dimensional membership

functions are in x shape and bell shape, respectively, and the algebra multiply
manipulation can be beneficial to avoid the insensitivity on the longitudinal directionx
and to reduce the false warning of roadside obstacles. The further analysis can be

obtained from the comparison between their sensitivity over x and y direction (Table 4-

2).
S,(x,y) = %{’—@ (4.13)
S,(x, ) = @g%w (4.14)

Although B, , the fuzzy space denotation of a danger zone can be extended to

contain more fuzzy variables in the way of Eq. (4.8). In fact, the impacts of some other
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factors have been reflected from the membership functions u, (x),u, (y) partially,

especially from the minimum time headway T, (closely related to the road environment
and the vehicle dynamic parameters) and the psychology safe time headway T, (closely
related to the driver’s physiological and psychological factors).

For example, the weather impacts of fog or rain influence the size of danger zone by
increasing the time headway 7, and T,. The velocity and inertia of the vehicle will also
alter the time headway 7, and T, . In addition, the danger zone of a moving vehicle is

driver-dependent because drivers have varied reaction time and safe headway. Hence,

the impacts of drivers’ factors have been contained partially in the model.

Above all, the time headway is critical to calculate the danger zone of a moving
vehicle. Detail information of time headway can be found in the traffic engineering

theory [Disbro & Frame, 1990].
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Table 4-1 Membership functions of the fuzzy space

Membership functions The shape of danger zone

ug (x,¥)

uBZ(x,y)

Uy (X, )

Ugs(X,y)
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Table 4-2 Sensitivity of the risk detection over the location variance

Sensitivity of the risk detection over the location variance

Risk sensitivity over XY

)
i
A

Risk sensitivity over Xand Y

e
)
..."‘.,.N.N.. ,.»mu%

14

Membership functions

Upg,(x,¥)

uB4(x:y)

ion

t

1ma

4.3 Methodology of driving risk level est

4.3.1 Background risk level estimation

The road environment creates the background driving risk level, or the baseline of the

Dy, can be roughly estimated by

driving risk level, which is denoted as D, .

Eq.(4.15).
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”Bxy (e, MU (x, y)dxdy

[[B., (x, y)axdy

(4.15)

Dy, =

Where U(x,y) €[0,1]is the possibility distribution of all obstacles around a vehicle.
U(x,y) is very difficult to determine in theory, but some simple ways can be applied for

coarse evaluation. If the vehicle has immediate danger when it rush out of the track, it
can be assumed that all the space outside of the track is full of obstacles; hence,

U(x,y) can be simplified to a step function with a factor k €[0,1] referring to the

possible hazard severity.

4.3.2 Overall risk level estimation

Any practical obstacle in the danger zone may lead to a potential risk. This type of
risk may bring hazard not only to obstacles themselves, but also to the vehicle and the
onboard driver. Therefore, it is necessary to concern the possible obstacle distribution in
order to estimate the driving risk level. In present research, only those obstacles that are
detected on the road zone are considered. Other obstacles can be classified to the
roadside environment and they make contribution to the background risk level. The

obstacles on road are simplified to discrete points as follows.
0., ={(x,y).i=1..m} (4.16)

Where m represents the number of obstacles. Concerning the membership function of

the danger zone, the corresponding risk level D,, is denoted as follows.
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Dy, = rgg_"(B(xz,yi)) (4.17)

The final driving risk level D, is defined as the maximum of D, and D,, .
Dy, = max(Dyy, , Dy, ) (4.18)

When obstacles stay far away from the danger zone, they contribute little to the
final D,, . In this situation, the driver usually cannot feel the hazard coming from them
and the driving risk level mainly comes from the influences of the background

environment.

In practical, the vehicle position and the forwarding direction can be obtained in
many ways, such as Differential Global Position System (DGPS), vision recognition
systems, and magnet markers in future Advanced Vehicle Highway System (AVHS). The
digit description of road shape can be obtained from the digit map of navigation systems.
However, the real challenge is whether the precision of those data can meet the practical

requirement of the roughly estimation of the driving risk level.

4.4 Experiment and simulation

In this section, the background driving risk levels in the typical vehicle manoeuvre
scenarios are estimated. Its relationship to a driver’s mental workload variance is briefly

discussed.
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4.4.1 Calculation of the minimum safe headway

According to the traffic engineering theory [Disbro & Frame, 1990], the minimum

spacing between vehicles is calculated as Eq. (4.19). The minimum safe time headway is

calculated as Eq. (4-20).

40 U
H=Vt +—(———) (4.19)
2 a, a;
L+H L 14 1
T AR S (4.20)
14 V 2a, a

Where L is the reserved safe gap, V' is the vehicle speed, ¢, is a time constant, a, is

the emergency deceleration, and a, is the failure deceleration.

For a common automobile with L=2.5m , ¢, <0.1s, a,=0.6g , a, = . The

minimum safe headway is shown in Table 4-3.

Table 4-3 Minimum safe headway in different speeds

V (Km/h) V (mv/s) T (s) H (m)
60 16.7 1.6 25
80 222 2.1 44
90 25 2.3 55
105 29.2 2.6 75
120 333 3.0 98

In the driving process, the psychological safe time is composed of four parts:

perception time, decision time (including reaction time), execution time, and mechanical
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time. Perception time and decision time depend upon the activity of the driver’s brain.
The psychological safe time is also affected by the laws. For example, the New Zealand
Road Code recommends that drivers remain at least two seconds behind any vehicle they

are following [Thakur, 1997]. Road Code of Canada has a similar regulation too.

4.4.2 Estimation of DRL in the single-lane change

According to Table 4-2, for a moving automobile with a velocity of 60Km per hour
(16.7 m/s), its minimum safe time headway is about 1.6 seconds. We choose the popular
accepted 3 seconds as the psychological safe time headway. Then, the moving vehicle’

dangerous space can be described as Eq. (4.21) and (4.22).

. n_ 1 1
Uy, (x) = l+e~ T 4 g 020) (4.21)
1
W, ()= — (4.22)
1+
1.5

Moving Dangerous Zone

i
[
'
|
-l
1
|
1
!
1

0.5

e

z (Risk level)

1

100

20 20 O x(m)

Figure 4-3 Danger zone of a moving automobile at 60 km per hour
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In Figure 4-3, at the distance of minimum headway, the risk level may reach as high

as 0.9 (The possibility of collision).

Single line trajectory
10 b 1 [l =

0 100 200 300 400
x (m)

Figure 4-4 Track of the single-lane change manoeuvre

The track of the single-lane change manoeuvre (Fig.4-4) can be described by a
segmented function y, = C(x) (Eq. (4.23). In the experiments, the driver was instructed
to drive along a given route marked by traffic cones. Therefore it can be assumed that
obstacles are equally distributed outside of the track and it has high level of hazard

severity. Then U(x, y) can be simply expressed as Eq. (4.24).

1

35X ———e x €[0,200
Cx) = 1+ e-0.25(;(1-135) [ ] 4.23)
35+35XW X e (200,400]
Uxy)= ——1—.20 (4.24)
1+(y -C)
1.75

Figure 4-5 shows the background driving risk level distribution in a single-lane

change manoeuvre. Compared with Figure 4-4, the driving risk level begins to increase
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from where the driver starts to execute the decision. The peaks of the driving risk level
appear at the curve sections.

Risk Lewvel Distribution
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Figure 4-5 Driving risk level distribution in single-lane change manoeuvre (60km/h)
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Figure 4-6 Driving risk level distribution in single-lane change manoeuvre (80km/h)
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Figure 4-7 Driving risk level distribution in single-lane change manoeuvre (100km/h)
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4.4.3 Relationship between MWL and DRL

Figure 4-8 shows the driver mental workload variance and the driving risk level
variance in the same first single-lane change manoeuvre at 60 Km per hour. Although
there is no comparability between their absolute value, the locations of the driver mental
workload peak and the positions of driving risk level do appear at the similar place. This
means that it is more likely that the driver mental workload is going to become higher

when the driving risk level increases.

—_
|

Mental workload level

0 1 L 1 L ot s 1
0 50 100 150 200 250 300 350 400
x (m)

Figure 4-8 Comparison of MWL and DRL in the same single-lane change manoeuvre
In the other single-lane changes, such as 80 Km per hour and 100 Km per hour,

when the driving risk level arises, the mental workload also shows a tendency to increase.

Unfortunately, because the driver gradually adapts to the road environment in the test
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experiments, the driver mental workload does not necessarily suddenly increase at all

locations of the driving risk level peak.

4.5 Summary

In this chapter, the danger zone of a moving vehicle is characterized as a two-
dimensional fuzzy space. Considering the obstacles in the danger zone and the impacts of
the road environment, the method of driving risk level estimation is proposed. The
driving risk level and the mental workload have been compared based on the experiment
data of the single-lane change vehicle manoeuvre.

The simulation results indicate that the driver mental workload variance show close
relationship to the change of the driving risk level. When the driving risk level rises, the
driver mental workload more likely increases. However, when the driver becomes
familiar with the road environment, in other words, when the driver gains more
experience of task performance, the change in the driving risk level does not necessarily
affect the alteration of the driver mental workload.

The simulation results obtained have only logical and qualitative support. An exact

quantitative comparison is not yet immediately possible.
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CHAPTER 5 NEURAL NETWORK BASED DRIVER MODELS

5.1 Introduction

Neural networks, especially Multilayer Perceptrons (MLP), have been used for
simulating driver models. MLP networks are feed-forward networks, suitable for
naturally performing static mapping between the input and the output. There is another
type of neural network: recurrent networks. In recurrent networks, partial outputs are fed
back to the same or preceding layers. This feature makes recurrent networks particularly

suitable for application to dynamic systems.

Considering that the driving manoeuvre is behaviors having time series characteristics,
the recurrent neural networks with specialized architectures for processing time series

may have a better potential for simulating drivers’ steering strategy than MLP networks

do.

This chapter is organized as follows: in the next section, the background information
of MLP neural networks and Elman recurrent networks is briefly reviewed. Then, the
architectures of MLP and Elman networks for driver steering behavior models are
discussed. The following section introduces the Two-Degree-of-Freedom vehicle model
for vehicle dynamics simulation. Following that, the impacts of the driver mental
workload on the driver’s steering performance are discussed. The final section

summarizes the conclusions briefly.
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5.2 Background of Muti-Layer Perceptron (MLP) and Recurrent neural networks

5.2.1 Architecture of MLP networks and learning algorithms

The Multi-Layer Perceptron (MLP) is a supervised feedforward multi-layer neural
network with continuous valued multi-input and multi-output. MLP networks usually
utilize the back-propagation (BP) algorithm for training [Antognetti & Milutinovic, 1991]

and that is why they are also called BP networks.

Figure 5-1 shows a typical layer in MLP networks [MATLAB 7.0, Handbook]. All of

the nodes in each layer are fully connected to the nodes of the adjacent next layer.

Input Layer 1 Output
Y D
D p1w —m—b
1.1
Rx1 Six1
SIxR >@_m_. fi
Six1
I u
R Sixt St
(VAN /

al = fl(I‘Wl,lp+b1)

Figure 5-1 One layer MLP with R input elements and S' neurons

In Figure 5-1, input p isa R -by-1 vector, weight IW"! isa S' x R matrix, bias b' is

a S'-by-1 vector, output a' isa S'-by-1 vector, and f'is the transfer function.

a'= f"(IW" p+b") .1
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For any supervised neural network, pairs of the input vectors and the corresponding
output vectors are necessary for training until it can approximate a function, such as
associating the input vectors with the specific output vectors, or classifying the input

vectors in an appropriate way as defined.

When the neural network has been trained perfectly with the input / output pairs:

{platl}a {pzatz}’ {p3at3}’ MR {sttQ} ’

for anew input p = p_, there is a new output a =a,_, where p, =p,+5, a=t, +¢,

and >0, —>0.

Mean square of error is usually used for the performance measurement.

F(x)=E[e’]=E[(t-a)*]. (5.2)

The Widrow-Hoff learning rule, also called Least Mean Square (LMS) algorithm is

[Hagan et al., 1996]:

Wk +1) = W(k) + 2ae(k)p” (k) (5.3)

b(k +1) = b(k) + 2ae(k) (5.4)

where « is the learning rate.

The commonly used BP algorithm is another general LMS algorithm, and the only
difference is the computation of error derivative. It is consisted of two phases: a feed-

forward process and a back-propagation process. Learning is achieved by adjusting the
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weights associated with each neural node. First, an input vector is presented to the
network and transferred to the output layer, known as the feed-forward process. Second,
the output vector generated is then compared with the desired output vector and the error
created by the comparison is propagated back through lower layers. The weight matrix of

each layer is adjusted based on the back-propagation process.

However, the classical BP algorithm (the steepest descent back-propagation) is too
slow for most practical applications. More advanced algorithms, such as variable learning
rate back-propagation, conjugate gradient back-propagation, Quasi-Newton back-
propagation algorithm, Levenberg-Marquardt algorithm, have been developed and can be

used to improve the efficiency of training [ Antognetti & Milutinovic, 1991].

Previous literature has indicated that MLP networks with biases, a sigmoid layer, and
a linear output layer (Eq. (5.5)) are capable of approximating any function with a finite
number of discontinuities [Hornik, 1989]. That is the reason why back-propagation

networks have been widely used in many fields, also no exception in this research.

a' = wansig (IW"' p+b') , a® = purlin(IW?' a'+b?) (5.5

5.2.2 Architecture of Elman recurrent networks

The Elman network is one of popular recurrent networks. In an Elman network, there
is a recurrent layer comprised of context nodes which accept the feedback from the
hidden output nodes, so the output of the network depends on an aggregate of previous

states and the current input [Elman, 1990].
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Compared with other types of multilayered network, such as MLP, the most
important advantage of the Elman network is its robust feature extraction ability, which
provides feedback connections from the hidden layer to the input layer. More over,
feedback connections from the hidden layer to the input layer support the capability of
reflecting dynamical characters of natural systems. A two-layer Elman network is shown

in Figure 5-2 [MATLAB 7.0, Handbook].

D

at(k-1)
akl=y
P 1w, M=y
Rix1 nz S3x1
s'xr!
f Sx1 7L
19 b
R! stxl st 52
/L A J
Input Recurrent tansig layer Output purelin layer

Figure 5-2 A two-layer Elman network.

In Figure 5-2, the Elman network has S' tansig neurons (with hyperbolic tangent

sigmoid transfer functions) in its hidden (recurrent) layer, and S* purelin neurons (with
linear transfer functions) in its output layer. This combination is special in that the two-
layer networks with these transfer functions can approximate any function (with a finite
number of discontinuities) with arbitrary accuracy. The only requirement is that there
must be enough neurons in the hidden layer. In practical, more hidden neurons and layers

are needed for more complex systems.
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The input p is a R' x1 vector, weight IW"'is a.S' x R' matrix, and bias b'is a S' x1

vector. The a'(k) is the output of the recurrent layer at time k& [Matlab 7.0, Handbook].
a'(k) = tansig((W"'p +LW"'a' (k -1) +b") (5.6)

The weightlW?>'is a§? xS' matrix, and bias b”is a S’ x1 vector. The a’(k) is the

output of the second layer at time & [Matlab 7.0, Handbook].
a’(k) = purelin(LW*'a' (k) +b?) (5.7)

Except the hidden recurrent layer, Elman networks are similar to MLP networks, so
the training algorithm of Elman recurrent networks is also back-propagation training
based, such as quasi-Newton back-propagation, and Levenberg-Marquardt back-
propagation (LM). However, LM algorithm tends to proceed so rapidly that it does not
necessarily do well in Elman networks. The detail explanation of training algorithms can

be found in much literature [Hagan M.T., Demuth H.B., Beale M.H., 1996].
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5.3 Neural networks based driver steering behavior models

5.3.1 Interaction between driver model and vehicle model

“Vehicle dynamic parameters:

Vehicle status:

Longitudinal velocity v, eloci
Lateral velocity Vehicle dynamics model ;r:’ N o‘;lty Displacement:
Longitudinal acceleration (2DOF, 3DOF, 8DOF) p ang e Longitudinal, Lateral
. Roll angle
Lateral acceleration

Driver model
{Neural Network based)

Steering angle

Displacement
expectation

Figure 5-3 Interaction between vehicle model and driver model

Normally, driver models and vehicle models are used simultaneously in close-loop
Driver-Vehicle-Environment simulation systems. One of the major functions of vehicle
dynamics models is to calculate the next vehicle state according to the current vehicle
state and the given steering angle. Driver models calculate the steering angle (including
throttle control sometimes) based on the current vehicle state and the displacement

expectation (or the displacement error).

In this study, in the artificial neural network based driver models, the input vector
contains following parameters: (1) longitudinal velocity X , (2) lateral velocity Y , 3)
longitudinal acceleration X, (4) lateral acceleration Y , (5) yaw velocity y, (6) roll angle

p, (7) lateral displacement expectation AY, and (8) driver’s mental workload level.

The desired output vector contains only one parameter: (i) steering angle & .
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In order to investigate the impacts of driver’s mental workload variance, the
quantified driver’s mental workload should be contained in the input vector of driver
models. In this study, a constant mental workload and a continuous varied mental
workload are added to two driver models for the comparison, respectively. The constant
mental workload is set as the average (mean) value of the driver’s mental workload in

each manoeuvre.

When steering angle ¢ has been calculated out by ANN based driver models, it can
be input to a 2-DOF vehicle model to investigate the variance of yaw rate and slip angle,
and even to estimate the longitudinal displacement and the lateral displacement. Thus, the
impacts of driver’s mental workload on the driver’s steering performance can be

observed.

5.3.2 Back-propagation network based driver model

Figure 5-4 shows a MLP network based driver model. The MLP neural network has
two layers. The hidden layer is comprised of a sigmoid transfer function, and the output
layer is comprised of a linear transfer function. Levenberg-Marquardt back-propagation
algorithm is used for neural network training. The training goal is to make the least mean

square error of the expected output meet a designated small value.
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Figure 5-4 MLP network based driver model

In order to simulate a driver’s steering behavior, the MLP neural network based

driver model should be trained thoroughly. It means that the training pairs should contain

enough experimental data coming from multiple single-lane change manoeuvre, double-

lane change manoeuvre, and sine-lane motion manoeuvre at many different speeds.

5.3.3 Elman network based driver model

<

Input layer

¢~ Longitudinal velocity ™

Lateral velocity

Longitudinal acceleration
Lateral acceleration

Yaw rate

Mental workload

D

Hidden layer
(sigmoid transfer)

Output layer

(linear transfer)

=

—>» Steering angle

Figure 5-5 Elman network based driver model

Figure 5-5 shows an Elman network based driver model. The Elman neural network

based driver model has two layers plus a recurrent layer. The hidden layer is comprised
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of a sigmoid transfer function, and the output layer is a linear transfer function. In Figure
5-5, D represents one order delay. Quasi-Newton back-propagation algorithm is used for
the neural network training. The training goal is to make the least mean square error of

the expected output meet a designated small value.

Simialr to MLP networks, Elman neural networks should also be trained thoroughly
before simulating a driver’s steering behaviors. In order to compare the performance of
MLP network based and Flman network based driver models, the training pairs and

simulation targets should be the same as those of the former discussed MLP networks.

5.4 Two-DOF linear vehicle model

5.4.1 State equations of 2-DOF vehicle model

There are numerous degrees of freedom associated with vehicle dynamics. One of
simplified vehicle dynamic models is the two-degree-of-freedom bicycle model (2-DOF),
representing the lateral and the yaw motions. The idea behind this model is that
sometimes it is not necessary or desirable to include the longitudinal direction because it

does not affect the lateral or the yaw stability of the vehicle.

The 2-DOF model is especially suitable for the application in which the longitudinal
velocity remains almost constant. In fact, previous literature have pointed out that the 2-
DOF model is applicable when the lateral acceleration is less than 0.2g [Hernandez J.I. &
Kuo C.Y., 2004]. Therefore, because the drivers in the experiments of this study were
required to maintain their vehicle’s velocity at a constant speed roughly and without
sharp turning, the 2-DOF model should be able to simulate the vehicle movement

including single-lane change, double-lane change, and sine-lane motion.
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Figure 5-6 Two-degree-of-freedom vehicle model [Wong , 1978]

Figure 5-6 shows a two-degree-of-freedom vehicle steering model (SAE vehicle axis

system). The sate equations of the motion of this system are described as follows [Wong ,

1978]:

7=Ay+Bu

where
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Here, S,y indicate the slip angle and the yaw rate of the vehicle, respectively.
M,V ,I_indicate the vehicle mass, the velocity, and the vehicle yaw moment of inertia,
respectively. [,(/,) shows the distance from the center of gravity to the front (rear) tires.
¢,(c,) shows the cornering stiffness at the front (rear) tires. & shows the front steering
angle.

The trajectory of the center of gravity can be derived by Egs. (5.12) (5.13) (5.14)

follows [Wong , 1978]:

0=0,+ [yt (5.12)
X=X,+V J:cos(,B+;/)dt (5.13)
Y=Y +V J(:sin(ﬂ+}/)dt (5.14)

where X,,Y;,0, mean the initial position and the yaw angle at time ¢ =0.

5.4.2 Validation of the 2-DOF vehicle model

In order to validate the 2-DOF model whether it is accurate enough for the current
research, the yaw rate and the slip angle are simulated based on the acquired
experiﬁental data. The mean square error (MSE) of the steering angle between the
simulation value and the experimental data are calculated for the vehicle model’s

performance comparison.
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Table 5-1 Vehicle parameters used for 2-DOF simulation [Lin, 1997]

Property Value
Vehicle mass (M) 1570 Kg
Yaw moment of inertia (/,) 2873 Kg.m"2
Front axle to the center of gravity (/,) 1.1m
Rear axle to the center of gravity (/,) 1.58 m
Cormnering stiffness at front , rear tires ( ¢,, «¢,) 20417 N/rad,
58653 N/rad

Figure 5-7 shows the 2-DOF model based yaw rate simulation of the #2 single-lane
change manoeuvre at 60 Km per hour. Figure 5-8 shows the yaw rate simulation of the #1
sine-lane motion manoeuvre at 50 Km/h. The mean square error of the yaw rate between
the experiment data and the simulation result for the #2 single-lane change manoeuvre
and the #1 sine-lane motion manoeuvre are 0.1077 and 1.3523, respectively. The two
mean square errors are very small compared with the absolute value of the yaw rate. In
fact, the longitudinal acceleration and the lateral acceleration in the experiments are far
less than 0.2g and meet the requirements of the 2-DOF model; therefore, the 2-DOF

model can provide acceptable simulation results for this research.
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5.5 Experiment and simulation

5.5.1 Simulation results of MLP networks

Based on the grouping of the experiment data, this research uses one part of the
experiment data for the neural network training, and another part of the experiment data
for the test.

The training pairs of MLP neural network come from the following motions:

(1) PY62: #2 single-lane change manoeuvre at 60 Km per hour;

(2) PYAL: #1 single-lane change manoeuvre at 100 Km per hour;

(3) QY61: #1 double-lane change manoeuvre at 60 Km per hour;

(4) QY82: #2 double-lane change manoeuvre at 80 Km per hour;

(5) SY61: #1 sine-lane motion manoeuvre at 60 Km per hour.

The simulation target is the steering angle in the following motions:
(1) PY61: #1 single-lane change manoeuvre at 60 Km per hour;

(2) PY81: #1 single-lane change manoeuvre at 80 Km per hour;

(3) PYA2: #2 single-lane change manoeuvre at 100 Km per hour;
(4) QY81: #1 double-lane change manoeuvre at 80 Km per hour;

(5) SY51: #1 sine-lane motion manoeuvre at 50 Km per hour.

In the MLP network based driver models (Figure 5-4), the lateral displacement

expectation is not included into the input vector because of its unavailability. The driver’s
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mental workload is considered in the following two ways to construct driver models. The
first driver model contains an overall mental workload level (a constant mental workload
level) (Const. MWL) in the input and the second model contains a continuous varied
mental workload level (Cont. MWL) in the input. Other inputs of the two models are
totally identical. Hence, the impacts of driver’s mental workload variance on the steering

performance can be compared between the two models.

In this research, the overall mental workload level (Const. MWL) in the input is

assumed as the average MWL in each manoeuvre. They are shown in Table 5-2.

Table 5-2 Average mental workload in each trial

Manoeuvre type Mean value Standard deviation value
1* Single-lane change at 60Km/h 0.2996 0.1066
2" Single-lane change at 60Km/h 0.2438 0.0591
1* Single-lane change at 80Km/h 0.2701 0.0584
1* Single-lane change at 100Km/h 0.2709 0.1170
2" Single-lane change at 100Km/h 0.2820 0.0874
1* Double-lane change at 60Km/h 0.4412 0.1396
1 Double-lane change at 80Km/h 0.4700 0.1401
2™ Double-lane change at 80Km/h 0.5184 0.1496
1** Sine-lane motion at 50Km/h 0.4843 0.1261
1** Sine-lane motion at 60Km/h 0.5572 0.1480

The value in Table 5-2 is calculated out according to Table 3-15. The mental

workload variance is derived by smoothing the discrete value of the mental workload
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level. Because for the same manoeuvre with similar motion velocity, the difference of the
average mental workload level between #1 trial and #2 trial is very small, it means that
the neural network can obtained a nearly full training. In another word, the little
difference of constant mental workload in the neural network input will not bring
significant impact to the output when compared with a same fixed value. That is why it is

used for the reference to compare with the influence of continuous mental workload

variance.

The hidden layer of the MLP network is comprised of a sigmoid transfer function
with 40 neurons, and the output layer is a linear transfer function with 1 output neuron.

The training goal (the least mean square error) is set to 2e-4 and 300 epochs maximum.

Performance is 0.00019843, Goal is 0.0002

Training:

54 Epochs

Figure 5-9 Training procedure of the MLP network

According to Figure 5-9, the LM back-propagation algorithm is very efficient. It

reaches the goal in only 55 steps.
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In Figure 5-10, EXP means the experiment data while BPNN means the simulation

results by the MLP based driver model.
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Figure 5-10 Simulation results of steering angle based on two MLP driver models
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Table 5-3 MSE of the steering angle between the simulation and the experiments

Motion type Single-lane | Single-lane | Single-lane | Double-lane | Sine-lane
(60 Km/h) | (80 Km/h) | (100 Kmv/h) | (80Km/h) (50 Km/h)

MSE 107.4 106.0 39.6 360.1 147.5

(Const. MWL)

MSE 234 13.5 57.1 238.5 79.3

(Cont. MWL)

Comparison of | Better Better Slightly Better Better

the simulation poorer

results

According to Table 5-3, the majority of MLP driver models with the input of
continuous MWL variance provide better simulation results of steering angle than those
MLP driver models with the input of constant MWL. It implies that the mental workload

variance can make good contributions in the driver steering behavior models.

5.5.2 Simulation results of Elman networks

The training pairs of the Elman neural networks are the same as those of the MLP
networks. There are also two Elman network based driver models. One contains a
constant mental workload level as input and another contains a continuous mental
workload variance as input. Hence, the simulation results of the steering angle between

the two models can be compared.
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2Peﬂ‘ormance is 0.00349885, Goal is 0.0002

10

300

Figure 5-11 Training procedure of the Elman network

According to Figure 5-11, compared with LM algorithm, the quasi-Newton back-
propagation algorithm is not very fast. Furthermore, the goal is difficult to meet. The
final MSE is only 3.5e-3 after the training of 300 epochs.

In Figure 5-12, EXP means the experiment data and RC-NN means the simulation
results by the recurrent network based driver model.

According to Table 5-4, the majority of Elman network based driver models with the
input of MWL variance provide better simulation results of steering angle than those
Elman driver models with the input of constant MWL. It also shows the benefits of

considering mental workload variance in the driver steering behavior models.
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Figure 5-12 Simulation results of steering angle based on two Elman driver models

To compare Table 5-3 and 5-4, it can be found that the simulation results of Elman
networks are closer to the experiment data than those of MLP networks. It indicates that
Elman recurrent networks are more likely suitable to simulate drivers’ steering behavior
than Multi-Layer Perceptron networks. The better performance of Elman networks than
that of MLP networks is just because of its recurrent capabilities as discussed in section

5.2.2.
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Table 5-4 MSE of the steering angle between the simulation and the experiments

Motion type Single-lane | Single-lane | Single-lane | Double-lane | Sine-lane
(60 Km/h) | (80 Km/h) | (100 Km/h) | (80Km/h) (50 Km/h)

MSE 17.6 21.2 34.8 327.3 67.8

(Const. MWL)

MSE 9.8 27.7 13.8 150.2 39.9

(Cont. MWL)

Comparison of | Better Slightly Better Better Better

the simulation poorer

results

To compare Table 5-3 and 5-4, it can be found that the simulation results of Elman
networks are closer to the experiment data than those of MLP networks. It indicates that
Elman recurrent networks are more likely suitable to simulate drivers’ steering behavior
than Multi-Layer Perceptron networks. The better performance of Elman networks than
that of MLP networks is just because of its recurrent capabilities as discussed in section

5.2.2.

5.5.3 2-DOF model based vehicle state simulation

Although the vehicle’s longitudinal displacement and the lateral displacement can
be calculated out according to Egs. (5.15, 5.16), they cannot be used as criteria to
measure the results of 2-DOF simulation in this study because the practical trajectory was

not recorded during the former experiments.
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According to Wong [1978], the yaw rate of the vehicle in response to a steering input
is a good index for a handling and steering response, so in this research, the yaw rate of
the vehicle in experiments is used to evaluate the simulation results of neural networks by
using the 2-DOF vehicle model-based simulation.

According to Tables 5-3 and 5-4, the simulation results of the steering angle based on
Elman recurrent networks are closer to the experiment data than those by MLP networks,
so the yaw rate simulation by 2-DOF vehicle models is based only on the output of the
Elman networks in this research.

Besides the performance measurement of mean square error (MSE), correlation
coefficients (C.C.) can also be used to estimate the proximity between the simulation
value and the experiment value of vehicle yaw rate. The correlation coefficients are
calculated in Eq. (3.25).

In terms of mean square error, according to Table 5-5, most of the Elman network-
based driver models with the input of MWL variance provide better simulation results of
the yaw rate than those Elman network models with the input of constant MWL.

In terms of the correlation coefficient, according to Table 5-6, all ElIman network-
based driver models with the input of MWL variance provide better simulation results of
yaw rate than those Elman network models with the input of constant MWL.

Although it is commonly known that there is uncertainty in the training procedure of
neural networks, Tables 5-5 and 5-6 do suggest that mental workload variance is more
likely to provide positive implications on Elman networks based driver steering behavior

simulation.
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It can also be noticed that, in Tables 5-3, 5-4, 5-5, 5-6, and Figure 5-11, compared
with the simulation results of single-lane changes and sine-lane motions, the simulation
results of the double-lane change at 80 Km/h seem extraordinarily inferior. The fact is
that this trial is not an acceptable double-lane manoeuvre because of the driver’s
abnormal operation. Both the MLP networks and the Elman networks do not obtain a

complete training regarding this abnormal behavior.
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Figure 5-13 Yaw rate simulation on results of Elman network based driver models

(with Cont. MWL)
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Table 5-5 MSE of the yaw rate between the simulation and the experiments

Motion type Single-lane | Single-lane | Single-lane | Double-lane | Sine-lane
(60 Km/h) | (80 Kmv/h) | (100 Km/h) | (80Km/h) (50 Km/h)

MSE 2.6579 1.3474 2.5964 35.5389 3.7942

(Const. MWL)

MSE 1.5585 1.4415 0.7665 19.4 0.9242

(Cont, MWL)

Comparison of | Better Similar Better Better Better

the simulation

results

Table 5-6 C.C. of the yaw rate between the simulation and the experiments

Motion type Single-lane | Single-lane | Single-lane | Double-lane | Sine-lane
(60 Km/h) | (80 Km/h) | (100 Km/h) | (80Km/h) (50 Km/h)

C.C 0.9646 0.9602 0.9250 0.7041 0.9820

(Const. MWL)

C.C. 0.9768 0.9893 0.9766 0.8583 0.9946

(Cont. MWL)

Comparison of | Better Better Better Better Better

the simulation

results

5.6 Summary

In this chapter, the architectures of two artificial neural networks (Multilayer
Perceptrons and Elman recurrent networks) used to build drivers’ handling behavior

models were first discussed. The average driver mental workload (a constant value) and
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the continuous driver mental workload variance (a variable) were contained in the two
neural network-based driver models, respectively. The performance of handling behavior
in terms of the steering angle was verified by the two degrees of freedom vehicle model.
The movement of the vehicle, in terms of the yaw rate, was evaluated using the mean

square error and the correlation coefficient.

The simulation results indicate that Elman recurrent network-based driver models are
superior to Multilayer perceptrons-based driver models in the simulation of the drivers’
steering behaviors due to the characteristics of time-series. Moreover, both the MLP-
based driver model and the Elman network-based driver model show simulation results
closer to the experiment data when the driver mental workload variance is taken into
account. This indicates that the driver mental workload variance has positive implications

for the neural network-based driver models.
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK
6.1 General conclusions

Driver mental workload is an important factor in driving safety. Researchers have
pointed out that mental workload has close correlations with drivers’ performance, but so
far few researchers have reported the method of mental workload quantification and the

corresponding driver models with the influence of mental workload.
The main contributions of this thesis work are the following:

(1) An ECG features-based driver mental workload quantification method was

proposed. It is based on clustering analysis and Learning Vector Quantization.

The estimation results of the mental workload in typical vehicle manoeuvre are
consistent with both common sense and the RSME scale. The measure also demonstrates

the possibility of reducing subjectivity.

(2) A preliminary model of driving risk level was established. Driving risk level can

be estimated by using a fuzzy space model of the danger zone of a moving vehicle.

Driver mental workload variance shows a close relationship to the alteration of the
driving risk level. The driving risk level is likely to indicate the driver’s mental workload

over-reduction.

(3) Neural network-based driver models with the input of the driver mental workload

were proposed. They show good performance in typical vehicle manoeuvre simulations.

Elman recurrent networks are superior to Multilayer perceptrons (MLP) to simulate a

driver’s steering behaviors due to the driver’s behaviors’ time series characteristics.
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Moreover, both neural network-based driver models show better driver performance

simulation when the driver mental workload variance is taken into account.
6.2 Recommendations for future work

This present study is limited to the data source. The following future work is

recommended:

(1) Only ECG features are studied in this present research. In the further research,
other physiological signals possibly indicating the mental workload change, such as EEG,
eye movement, could also be included. The estimation results would thus be more
reliable.

(2) Time headway is one of the major parameters to build the fuzzy space in the
danger-zone model of the present research. Other factors, e.g., the kinetic energy
indicating the risk severity, could also be utilized in the modeling.

(3) In the recurrent network-based driver models, the input vector could contain more
parameters, e.g., the lateral displacement error, the previewed lateral displacement.
Furthermore, the instant driving risk level, combined with the reduced driver mental
workload, could be added to the driver models to provide the opportunity to speculate on
whether the driver model’s steering performance can be improved. If so, the driving risk
level may be valuable in the establishment of the compensation for the driver mental
workload over-reduction.

(4) The simulation results obtained in this stage have only logical and qualitative
support. Experiments and simulations should be extended to cover more subjects to

conduct a further statistical data analysis.
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APPENDIX A

Rating Scale Mental Effort

Please indicate, by marking the vertical axis below, how much
effort it took for you to complete the task you've just finished

150 ——
140 ——
130 ——
120 —|
110 — Extreme effort
100 — Very great effort
90 —
Great effort
80 —
70 — Considerable effort
60 —
Rather much effort
50 —
40
Some effort
30 |
A little effort
20 —
10 — Almost no effort
0 [T Absolutely no effort

Rating Scale Mental Effort (Zijlstra, 1993)
Score is indicated by the digits on the left, the official scale is
sized such that 150 equals 150 cm from origin to top
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