INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI fiims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand cormer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 8 x 9" black and white
photographic prints are availabile for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48108-1346 USA
800-521-0800

UMI

EXTRACTION OF SEMANTIC HEADER FROM
RTF DOCUMENTS

ABDELBASET ALI

A Major Report
in
The Department
of
Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec

August, 1999

© ABDELBASET ALI, 1999

vl

National Library
of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4
Canada

395, rue Wi
Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Ottawa ON K1A ON4

Bibliothéque nationale

services bibliographiques

Your file Votre référence

Our fis Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-43664-0

Canada

Abstract

Extraction of Semantic Header from RTF Documents

Abdelbaset Ali

The problem of indexing and retrieval of electronic information resources becomes more
critical as the amount of information and the number of Internet users continues to grow.
The Semantic Header, proposed by Desai [3], is a portion of each document that contains
the meta-information for each publicly accessible resource on the Internet. The Semantic
Header for document-like Internet resources is a powerful means of helping users locate
documents and other types of data among large repositories. In environments that contain
many different types of data, content indexing requires type-specific processing to extract

information effectively.

In this project which is a part of the ASHG system (Automatic Semantic Header
Generator), we present a model for type-specific, information extraction that
automatically extracts the meta-information from RTF (Rich Text Format) documents,
and stores it in a Semantic Header which will be used as an index for the document. This
shall provide a useful tool in searching for a document based on a number of commonly
used criteria. The information from the Semantic Header could be used by the search

system to help locate appropriate documents with minimum effort.

Acknowledgements

I would like to thank my supervisor, Dr. Desai, for his guidance and encouragement
throughout this project. I would like to express my deepest gratitude to him for having
made my project work a pleasant and extremely educational experience. I am forever
indebted to you Dr Desai, and I am hopeful that we will meet and work again sometime
in the future.

To all my friends and colleagues in the Department of Computer Science, thank you for

your encouragement, thoughtful discussions, and help.
I would like to thank my friends for being there for me in times of need.

Finally, I would like to thank my wife for her patience and encouragement.

iv

To the memory of my parents

Contents

List Ofmm.....‘ ‘.Q...Q...vlll

LiSt Of TADIES...cureeeeccoccccccscssscsssessscessssosssssssssssssssassssossssessseveelX

1. Introduction 1
1.1 The Discovery Problem.......... o eeeremeeicminiineiiniinnensneessnocceessssccscss 1
1.2 CINDI’S QPPrOACKH.....c..ccorreriirrensnenranresncoecirosatssuesssenssaneessnssassnnsensnsosssacs 1

1.2.1 Meta-Information INdeXingccceceeemieemmmmaniinseeiecciccnneiieneccsnsaneennes 2
1.3 Organization oOf the TEPOLt..........coeeeeieerectrcniniticsniiiennesarassasacseenescans 2

2. The CINDI System 3

2.1 Overview of CINDIcoeeeecesensnneemreniammessessnessessaassssessssssessesssannses 3
2.1.1 The Semantic Header of CINDIccooiainiieeiinicieeniaaeaaneee. 4
2.1.2 Semantic Header’s Mark-up Schemaccooeiceccciriiiinionnnnnenn.. 6
2.1.3 Database System of the Semantic Headercccccceceerumnnrannnnn... 7
2.1.4 CINDI's Search SYStEmcoveemeeeieeceroncrsesncarcciesnerrensassnnasasensonnas 8

3. Rich Text Format 9

3.1 Rich Text Format (RTF) Specification........cccccocioueiecciecnnmnieeessonnnannnenn. 9
3.1.1 RTF SYNLAX.....ccereeceeereceecreccrseessssresssnmmassssastssasnsansssasssss sosssssssanassnasnans 9
3.1.2 Contents of an RTF filecooemiiiiirieinienecreeecceecsesssnenenneneens 10

3.1.2.1 DOCUMENE ATEAccoccceerrrmemrereemmmnrassanioseresssensssnsassorssseesssassnns 10
4. Automatic Semantic Header Generator (ASHG) 13

4.1 INTOAUCHOMN. ..cueeececraneeeceseeerneeesscnssesssssmnasenssnmsanessssesssonsossasassacesenenssanes 13
4.3 Document Type ReCOZNItiON.......cccccevvmrreramecennerenscioiicnnnccnecceiesssencnenes 14
4.4 The Thesaurus for ASHGccoorrieeeeecieicrciiccrneeneeeee 16
4.4.1 The subject Hierarchiesccoceeeeemeeciinienicniciniescnicscnecccennnnnns 16
4.5 ASHG’s Document Subject Headings Classification scheme.............. 17
4.5.1 The AlOrithm..............oocerirrereeeernnretieecessecseenescsnsaccrssecseresnesanens 17
4.6 Applying ASHG’s EXIACLOLSccoerreeemriomensennnessuescrensscnsescssccsecsssesnns 18
4.6.]1 RTF _EXIIACOLoeereeerereeerencreeacmcssessscsssscssesmsnmssssssssnnssssesannesnsane 18
4.6.2 Generating an implicit list of Keywordscccceeeeeiniecceiccccenneenn. 21
4.7 Semantic Header Validation...........cccocceeeeeernnrnnieciinceenenenienesecnsoesescnens 25
5. ASHG’s Experiments 26
5.1 EXPEIIMENLScoeeerneerencerrerecceecsaensmeeesesssanassssassssmssssssssnnesasssasssssssosses 26
5.2 Sample RESULLS.........oociiireeeeeeensrccrenteceretenesetisssnnasscessnessanaosasesesssas 28
6. Conclusion and Future Work 37
6.1 CONCIUSION ...covoeieeeiceiereiieeeeeeereeensseenreseeasssssnensasssnntesssnessansanassasssessens 37
6.2 FUUIE WOTKoeeeoereeereeirriceencneenrreenreanentestiesessssanesesasnneenssssnsossescans 38
References 42

List of Figures

Figure 1: ASHG’S SEePS ..cccceeceecennincccncececcccccscccscccssssssscsccccscsence 16
Figure 2: Subject EXtractioncc.ccccecceeeieccccccccrccces cesssssssessssesase 19
Figure 3: RTF eXtracCtOr...ccccccceciescccccccsioccocecccccscsssssccscscesccescene 21
Figure 4: ASHG extraction for RTF document......ccccccceeveecececencces 24
Figure 5: CINDI’ Semantic Header Graphical interface (a) 33
Figure 6: CINDI’ Semantic Header Graphical interface (b) 34
Figure 7: CINDI’ Semantic Header Graphical interface (¢) 35

viii

List of Tables

Table 1: Definitions of Control words (a)

Table 2: Definitions of Control words (b)

Table 3: Summary of ASHG’s RTF test against the authors and INSPEC’s results..........

Chapter 1
1. Introduction
1.1 The Discovery Problem

At this time, a number of information sources, both public and private are available on
the Internet. They include text, computer programs, books, electronic journals,
newspapers, local and national directories of various types, and private information
services. Rapid growth in data volume, user base and data diversity renders Intemet-
accessible information increasingly difficult to locate efficiently. Browsing a hierarchy
containing millions of directories is infeasible, particularly given the erratic organization
that results when many different people create the data. Instead, there is a need for an
automated search and for a system that allows easy "search for and access to” resources
available on the Internet. For this automated search to help users in locating relevant
information require indexing the available information. Thus, secondary information
called meta-information must be extracted and used as an index to the available primary
resource. In turn, building this index requires information extraction methods tailored to
each specific environment. To this end, the semantic of the files in which the primary
resource is stored will be exploited to extract and summarize the relevant information. To
do this, the primary file type should be identified and then the type specific selection and
extraction methods are applied to the file.

It is envisaged that regional and/or specialized databases would be created to maintain
archives of Semantic Header. These databases could be searched by the cooperation of
distributed expert systems to help users locate pertinent documents. Such a system is
currently under development at Concordia University and is called Concordia Indexing
and Discovery systems, or CINDL

1.2 CINDDI’s approach

CINDI (Concordia Indexing and Discovery system), a system under development at
Concordia University, provides a mechanism to register, search and manage the meta-
information, with the help of easy to use graphical user interface. The meta-information,
which is described in chapter 2, is the Semantic Header, that is stored in the CINDI
system. CINDI has been designed to avoid problems caused by differences in semantics
and representation, and incomplete or incorrect data cataloging. This meta-information
could either be entered by the primary resource provider or assisted in this by the
Automatic Semantic Header Generator (ASHG). ASHG is a software that generates some
meta-information of the submitted document, and assists the user in this process. This
major report introduces ASHG for RTF documents, which aims at saving time for the

primary resource provider by automatically generating and extracting part of the meta-
information (Semantic Header) of the document and classifying the resource under a list
of subject headings. The provider helps in this process by verifying and correcting the
Semantic Header entry.

1.2.1 Meta-Information Indexing

Constructed meta-information could support queries based on content as well as
traditional queries based on items such as title, author, subject, etc. This means that actual
sources could be separated from their meta-information, thereby simplifying the storage
of the resources. Professional catalogers have found the need for the mentioned elements
in indexing applications. The dependence on titles as the most commonly used search
criterion suggests that they must indicate the contents of the document. Furthermore, the
author or the cataloger has to add annotations, keywords, or key phrases to indicate its
actual content. Including reviewers’ opinions can indicate the accuracy or quality of a
document. However, such opinions are rarely accessible to the traditional cataloger.
Another feature of importance is the presence of an accurate abstract. An abstract
provides a summary of the material, and thus is more indicative of the contents than the
title and keywords supplied by the author [14].

1.3 Organization of the report

This report is organized as follows. In Chapter 2, the CINDI system is introduced.
Chapter 3 describes Rich Text Format (RTF). Chapter 4 describes the Automatic
Semantic Header Generator (ASHG). This chapter covers the type recognition and the
extractors, and a description of the Thesaurus used at the beginning of this chapter. In
chapter 5, we test and compare the classification of our generated index with those
produced by cataloguers. Lastly, in chapter 6, we give our conclusion and discuss future
work.

Chapter 2
2. The CINDI System
2.1 Overview of CINDI

The trend in most research institutes, universities and business organization of
interconnecting their computing facilities using a digital network has become the
accepted method of sharing resources. Such networks, in turn, are interconnected
allowing information to be exchanged across networks by using a common interchange
protocol (TCP/IP). The number of such interconnected networks (Internet) continues to
grow and with the emergence of powerful workstation-based servers connected to these
networks, it is possible to support local as well as remote search and retrieval of
information stored on any component of the interconnection .

There is a need for the development of a system, which allows easy search for and
access to resources available on the Internet. It has been observed that distributed
information systems, even though under control of a single administrative unit, create
multiple problems typically caused by differences in semantics and representation, and
incomplete and incorrect data dictionaries. The building of a standard index structure and
a bibliographic system using standardized control definitions and terms can solve these
problems and lead to a fast, efficient and easy access to the documents. Such definitions
could be built into the knowledge base of expert system based index entry and search
interfaces. The purpose of indices and secondary information is to inventory the primary
information and allow easy access to it. Preparing a secondary information requires
finding the primary source, identifying it as to its author, title subject, abstract, keywords,
etc. Since an index is to be used by many users, it has to be accurate, easy to use (usage
via author, title, subject, etc.) and properly classified.

Attempts to provide easy searching of relevant documents has lead to a number of
systems including WAIS, and more recently a number of Spiders, Worms and other
creepy crawlers [1], [6], [10], [12], [16], [15], [17], [18). However the problem with
many of these indices is that their selectivity of documents is often poor [4]. The chances
of getting correct documents and missing relevant information because of poor choice of
search terms are large. In addition, the user is required to access the actual resource,
based just on the title and author information as provided through a library catalog, and
decide whether the resource meets the needs. These problems are addressed by CINDI
using an appropriate index entry called Semantic Header which includes title, abstract,
keywords, and subject; and providing a mechanism to register, manage and search the
bibliography.

The overall CINDI system uses knowledge bases and expert sub-systems to help the
user in the register and search process. The expert system will help the user in entering

those attributes required for indexing or updating a Semantic Header. CINDI standardizes
the terms. The index generation and maintenance sub-system uses CINDI's thesaurus to
help the provider of the resource select correct terms for items such as subject, sub-
subject and keywords. Similarly, another expert sub-system is used to help the user in the
search for appropriate information resources [3]-

2.1.1 The Semantic Header of CINDI

CINDI uses a meta-data description called a Semantic Header to describe an information
resource. The Semantic Header includes those elements that are most often used in the
search for an information resource. Since the majority of searches begin with a title, name
of authors (70%), subject and sub-subject (50%) [9], CINDI requires the entry for these
elements in the Semantic Header. Similarly, since the abstract and annotations are
relevant in deciding whether or not a resource is useful, they are also included. [14,4].
The description of the semantic header elements follows:

Title, Alt-title
The title field contains the name of the resource that is given by the creator(s). The
alternate title field is used to indicate a secondary title of the resource.

Subject
The subject and sub-subject of the resource are indicated in the next field, which is a
repeating group. This field contains a list of possible subject classifications of the
resource.

Language, Character Set
The character set and the language are the same as those used in the resource.

Author and other responsible agents

The role of the person associated with the document, for instance, author, editor, and
compiler. This includes fields such as name, postal address, telephone number, fax
number, and email address.

Keyword
This field contains a list of keywords mentioned in the resource.

Identifier

The identifier for the document. Example of identifier are ISBN (International Standard
Book Number), URL (Universal Resource Locator) of the document. This is a multi-
valued slot in case the document is available in many formats or is electronically stored at
more than one site.

Date
The date on which the document was created, catalogued, and the date the document will

expire.

Version
The version number and the version number being superseded, if any are given in these
elements.

Classification
The classification of the document such as legal’, 'security’, or other types. For each, the
nature of classification is specified.

Coverage
It indicates either the target audience of the document or the cultural and temporal aspects
of the document’s content.

System Requirements

Being an electronic document certain system requirements for it to be displayed or used
are necessitated. The components involved are the hardware, the software, or the network
and the minimum needs for each of these.

Genre
It is used to describe the physical or electronic format of the resource. It consists of a
domain and the corresponding values or size of the resource.

Source and Reference

The Source indicates the documents being referenced or that was required in its
preparation. It could also be the main component for which the current document is an
addendum or attachment.

Cost
In case of a resource accessible for a fee, the cost of accessing it is given.

Abstract
The abstract of the document is either provided by the author or by ASHG.

Annotations
Annotations put in by readers of the document.

User ID, Password
A provider ID of at least six characters and a password of four to eight characters. More
than one semantic header by the same provider can have the same ID and password

2.1.2 Semantic Header’s Mark-up Schema

The heart of any bibliography or indexing system is the record that is kept for each item
that is being indexed. The syntax of the semantic header is the HTML markup language,
which is based on the SGML markup language. The following entries will form the meta-
information of the primary resource, which will be stored in the Semantic Header
database. Once this index is filled by the provider of the resource or by the proposed
ASGH system, it will be registered as bibliographical information about the resource.

<semhdr>

<title> required </title>
<alt-title>OPTIONAL </alt-title>

<Subject>required: a list each of which includes fields for subject and up to two levels of
sub-subject: at least one entry is required </Subject>

<language>OPTIONAL: of the information resource</language>
<char-set>OPTIONAL: character set used</char-set>
<author> required: a list each of which includes name, organization, address, etc. of each
person/institute responsible for the information resource: at the least, the
name of the organization and address is required </author>
<Keyword>required: a list of keywords </Keyword>
<Dates>
<Created>required:</Created>
<Expiry>OPTIONAL.:</Expiry>
<Updated>system generated</Updated> </Dates>
<Version>OPTIONAL: version of the resource </Version>
<Coverage>OPTIONAL: audience, spatial, temporal </Coverage>
<Classification>OPTIONAL.: nature security level of the resource</Classification>

<URL>A list of locations (URL) Unique Universal Resource Locator-Call No for this
resource: at least one required</URL>

<Abstract>OPTIONAL but recommended</Abstract>

<Annotation>OPTION AL </Annotation>

<SysReq>OPTIONAL.: list of requirements in hardware and software
<Hardware>OPTIONAL.: list of hardware required</Hardware>
<Software>SOPTIONAL.: list of software required</Software>
</SysReq>

<size>size of the resource in bytes</size>

<Cost>OPTIONAL.: cost of accessing the resource</Cost>

<control>

<Ac>account number</Ac>

<password>required: encoded password or digital signature of provider of resource for
initial entry and subsequent update</password>

<signature>digital signature of the resource for authentication</signature>
</control>

</semhdr>
2.1.3 Database System of the Semantic Header

The index entry system provides a graphical interface to facilitate the provider of a
resource to register the bibliographic information about the resource. Once the
information is correctly entered, the provider can decide to register the Semantic Header
entry in the database. The index entries registered by a provider of a resource are stored
in a distributed database system (SHDDB). The underlying database may be considered
to be a monolithic system from the point of view of the users of the system. In reality, it
would be distributed and replicated allowing for reliable and failure-tolerant operations.
The interface hides the distributed and replicated nature of the database. The distribution
is based on subject areas and as such the database is considered to be horizontally
partitioned [2].

The Semantic Header information entered by the provider of the resource using a
graphical interface is relayed by client process from the user’s workstation to the database
server process at one of the nodes of the SHDDB. The node is chosen based on its
proximity to the workstation or on the subject of the index record. On receipt of the
information, the server verifies the correctness and authenticity of the information and, on
finding everything in order, sends an acknowledgment to the client.

The server node is responsible for locating the partitions of the SHDDB where the entry
should be stored and forwards the replicated information to appropriate nodes. For
example, the semantic header entry would be part of the SHDDB for subjects Computer
Science and Library Studies.

2.1.4 CINDI’s Search System

The search system also uses a graphical interface and a client process allow a provider to
enter search requirements consisting of sub-string and synonyms. The search interface
providing the precise statement of a user query by allowing complex predicates based on
search items such as author, subject, keywords, dates, and words appearing in the
abstract. Once the user has entered a search request, the client process communicates
with the nearest SHDDB catalogue to determine the appropriate site of the SHDDB
database. Subsequently, the client process communicates with this database and retrieves
one or more semantic headers. The result of the query could then be collected and sent to
the user’s workstation. The contents of these headers are displayed, on demand, to the
user who may decide to access one or more of the actual resources. It may happen that
the item in question is available from a number of sources. In such a case the best source
is chosen based on optimum costs. The client process would attempt to use appropriate
hardware/software to retrieve the selected resources [4].

Chapter 3

3. Rich Text Format
3.1 Rich Text Format (RTF) Specification

RTF (Rich Text Format) allows for the exchange of text files between different word
processors and operating systems. For example, a file created using Microsoft Word 97 in
Windows 95 can be saved and sent as an RTF file to someone using Wordperfect 6.0 on
Windows 3.1. This RTF file will have a ".ntf" file name suffix.

Control words and symbols serving as "common denominator” formatting commands
are defined by RTF specifications using the PC-8, Macintosh, ANSI, and IBM character
sets. An RTF writer processes files saved in the Rich Text Format and convert’s the word
processor’s markup to the RTF language. The RTF reader processes and converts the
RTF language so that it can be displayed on a different word processor. In this way, the
Rich Text Format (RTF) Specifications [13] serves as a bridge’ that allows for the
interchange of text and graphics between different operating systems, operating
environments, and output devices.

The actual software that turns a formatted file into an RTF file is called a writer. It

writes a new file containing the text and associated RTF groups. This RTF file is then
translated into a formatted file by a reader [13].

3.1.1 RTF Syntax

An RTF file is comprised of control words, control symbols, unformatted text, and
groups [13]. A control word takes the following form:

\ LetterSequence<Delimiter>
Note that each control word is preceded by a backslash.
The LetterSequence is made up of lowercase alphabetic characters.
A control symbol consists of a single, non-alphabetic character preceded by a

backslash. For example, \~ represents a non-breaking space. Control symbols take no
delimiters [13].

A group consists of text and control words or control symbols enclosed in braces ({ }).
The start of the group is marked by an opening brace ({) and the end of the group by a
closing brace (}). Each group specifies the text affected by the group and the different
attributes of that text. The RTF file can also include groups for fonts, styles, screen color,
pictures, footnotes, annotations, headers and footers, summary information, fields, and
bookmarks, as well as document-, section-, paragraph-, and character-formatting
properties. If the font, file, style, screen-color, revision mark, summary-information
groups and document-formatting properties are included, they must precede the first plain
text character in the document. These groups form the RTF file header (13].

Some control words have only two states. For example, bold, which is either turned on
or turned off. When such a control word has no parameter or has a nonzero parameter, it
is assumed that the control word turns on the property. When such a control word has a
parameter of O (zero), it is assumed that the control word tumns off the property. For
example, \b turns on bold, whereas \b0 turns off bold [13].

Within a document, the beginning of a collection of related text that could appear at
another position, or destination, is distinguished by certain control words referred to as
destinations. Braces must enclose destination control words and any text following them.
The control words, control symbols, and braces constitute control information. All other
characters in the file are plain text. As previously mentioned, the backslash (and braces ({
}) have special meaning in RTF. To use these characters as text, precede them with a
backslash, as in \\, \{and \} [13].

3.1.2 Contents of an RTF file

An RTF file has the following syntax:

<File> '{' <header> <document>'}’

It is important to include here an explanation of the document area because
RTF _extractor exploits the use of mark-up fields to extract the meta-information. It
extracts the title, explicitly stated keywords, subject, language, author(s), dates (Created,

Expiry), and the abstract from the RTF document. This will be described in another
chapter. '

3.1.2.1 Document Area

The document area has the following syntax.
<document> <info>?<docfmt>*<section>+

10

Information group

The information group, which contains information about the document, is introduced by

the \info control word. This can include the title, author, keywords, comments, and other

information specific to the file [13]. This group has the following syntax:

<info> '’ <title>? & <subject>? & <author>? & <operator>? & <keywords>? &
<comment>? & \ version? & <doccomm>? & \ vern? & <creatim>? &
<revtim>? & <printim>? & <buptim>? & \ edmins? & \ nofpages?
& \ nofwords? &\ id? '}’

<title> (’\ title #PCDATA '}’

<subject> ’(’\ subject #PCDATA '}’

<author> ’(’\ author #PCDATA '}’

<operator> ’{’\ operator #PCDATA '}’

<keywords> ’{’\ keywords #PCDATA "}’

<comment> ’{’\ comment #PCDATA ’}’

<doccomm> ’{’\ doccomm #PCDATA '}’

<creatim> ’(’\ creatim <time> '}’

<revtim> ’(’\ revtim <time> ’}’

<printim> ’(’\ printim <time>’}’

<buptim> ’(’\ buptim <time> '}’

<time> \yr? \mo? \ dy? \ hr? \ min? \ sec?

#PCDATA : Text (without control words)

Some applications, such as Word, ask a user to type this information when saving the document
in its native format. If the document is then saved as an RTF file or translated into RTF, the RTF
writer specifies this information using the following control words. These control words are
destinations and both the control words and the text should be enclosed in braces ({}) [13]).

11

Ontl'olword | PRI

title itle of the document.
subject Subject of the document.
author Author of the document.

\ operator _ JPerson who last made changes to the document.

keywords Selected keywords for the document.
comment omments; text is ignored.
e version number of the document.
doccomm omments displayed in Word’s Edit Summary Info dialog box.

Table 1: Definitions of Control words (a)

The RTF writer can automatically enter other control words, including the following:

[Control word [Meaning ~
A vernN e internal version number
I creatim [The creation time
A revtim _ |The revision time
R printim The last print time
R\ buptim The backup time
edminsN The total editing time (in minutes)
yrN The year
A moN The month
R dyN The day
A hrN The hour 1
A minV The minute
A secN The seconds
nofpagesN JThe number of 1
nofwordsN [The number of words
R nofcharsN [The number of characters |
hidv The internal ID number ____ |

Table 2: Definitions of Control words (b)

Entries without the N parameter have the \ yr \ mo \ dy \ hr \ min \ sec controls [13]. An example
of an information group follows:

{\info{\title The Semantic Header and Indexing and searching on the Internet} {\author
Bipin C. Desai} {\keywords Bibliographic record, Content description, Indexing, Index
aid, Database system, Expert system, Searching, URC, URL }}

12

Chapter 4

4. Automatic Semantic Header Generator (ASHG)
4.1 Introduction

In this chapter, the Automatic Semantic Header Generator (ASHG) of the CINDI for RTF
documents with ASHG is presented. ASHG saves time for the document’s author by
generating an initial set of subject classification and a number of components of the
Semantic Header for the document. ASHG measures both the frequency of occurrence
and positional weight of keywords found in the document. By matching those keywords
with the controlled terms found in the controlled term subject association a list of subject
headings is then generated [7].

The selection of important terms may be based either upon position (the term’s location
in the document), semantic, or pragmatic (a system which would consider proper names
as highly significant). Another criterion used for selecting important terms is Statistical
term weight. Since the frequency criteria are not very reliable, additional criteria should
be used such as contextual inference (the word location or the presence of cue words),
and syntactic coherence criteria [11,5].

Meta-information from HTML, Latex, Text, RTF, and Unknown documents is
extracted by the ASHG and is stored in a Semantic Header. This meta-information may
include such fields as the document’s title, abstract, keywords, dates, author, author’s
information, size and version. The significance of these is measured by ASHG using
frequency occurrence and positional schemes. A base form for each word is generated by
Word stemming and then matched to the controlled terms found in the controlled term
subject association [7]. If a match is found the subject headings associated with the
controlled terms are extracted and ranked accordingly. The following describes the major
steps of ASHG.

e Document Type Recognition: In order to apply the correct ASHG to a document, the
type of the document has to be recognized. The system currently understands
HyperText Markup Language (HTML), Latex, plain text, and Rich text format (RTF)
documents.

e File Type Validation: The user validates the file type recognized by ASHG.

e Applying ASHG’s Extractor: The summarizer corresponding to the type of document
is applied to the input document.

13

e ASHG’s Document Classification: A classification of subject headings is assigned to
the document. It involves:

1. Word stemming: A stemming process is applied by the system to map the
words found in the extracted fields onto a base root word.

2. A Look-up into the Controlled Term Subject dictionary.

e Semantic Header Validation: The generated Semantic Header is presented to the
user to validate, correct, and register using the GUI [21].

4.3 Document Type Recognition

Name conventions are used by the system to assist in recognition of document type. If
this does not work, the system will then examine the contents. If the document type
remains unrecognized, the user is informed by the system, and is asked to either choose a
document type or generate the Semantic Header manually. The two steps used in the
document type recognition process follow:

o Naming conventions and heuristics.
o Examining file contents in determining the file types.

Upon submitting, the document file is passed to a function called byname. This function
checks the document’s name extension. If the extension of the file indicates that it is an
HTML, Latex, text or RTF then the function user_verify is called. If the naming
convention fails in recognizing the document type, the function bycontent is called.

if (document.extension == .html or HTML or .htm) then
{
The file is an html file.
Call function user_verify.
}
else if (document.extension == .tex or .TEX) then
{
The file is a latex file.
Call function user_verify.
}

else if (document.extension = .rtf or .RTF) then

{
The file is a rtf file.

Call function user_verify.

14

}

else if (document.extension == .doc, or .txt
or .info or .ascii) then

{

The file is a text file

Call function user_verify.
}
else {

Examine the document contents by calling the function bycontent.

}

In user_verify, the user either confirms or rejects the result. If the user rejects the result,
he should choose a type from a list that is displayed. If the user confirms the document’s
type as recognized, ASHG applies the extractor corresponding to the type confirmed by
the user. Otherwise, he should choose a type and then apply ASHG.

In the function bycontent, the semantics of the HTML, Latex and RTF content is
exploited when attempting to recognize the file type.

If (the file contents match the html file semantics, such as the
existence of the <HTML> tag) then

{
the file is of html type
call function user_verify

}

else if (the file contents match the latex semantics, such as the
existence of the \begin{...} tag) then

{
the file is of latex type
call function user_verify

}

else if (the file contents match the rtf semantics, such as the
existence of the \rtf tag) then

{
the file is of rtf type
call function user_verify

}

else

{
Unrecognized file type, The user should select a type.

}

If the file type is not HTML, Latex, Text, or RTF, it remains unrecognized, and ASHG
extracts the size of the file and the date of creation.

15

Input: Output:
RTF Semantic
Document DOCUMENT v“m oN zxrggron Header
—> m-:cgcY:EmON VALIDATION |[——>
Figure 1: ASHG’s steps
4.4 The Thesaurus for ASHG

The ASHG's Thesaurus is composed of a three level subject hierarchy and a set of control
terms associated with the subject headings found in the subject hierarchies. The
Thesaurus used by ASHG contains four object classes: Level 0 which represents the
general subject of the subject hierarchy, Level_I which represents the sub-subject of the
general subject and is derived from Level_0; Level_2 which represents the sub-subject of
the Level_1 subject and is derived from Level_I, and finally Control_term which contains
the root terms that are derived from the subject headings. A root term is the origin of all
possible terms that can be generated from it by adding the suffixes and prefixes [7].

4.4.1 The subject Hierarchies

Since different subject headings may be used to convey the same subject, and since
different people may have different perspectives on the same single subject, controlled
subject headings have been derived. The CINDI system focuses on the standardization of
subject headings. This database helps the provider of the primary resource in selecting the
correct subjects and sub-subjects’ headings for the semantic header entry.

CINDI’s subject hierarchy is made up of three levels, where level O contains the
general subject heading. Currently we have included only two general subject headings:
Computer Science and Electrical Engineering. Level_I contains all the subjects that fall
under level_0 subjects, and similarly level_2 will contain more precise subjects that fall
under level_1 subjects.

16

4.5 ASHG’s Document Subject Headings Classification
scheme

An important step in constructing the semantic header is to automatically assign subject
headings to the documents. The title, explicitly stated keywords, and abstract are not by
themselves enough to convey the ideas or subjects of the document. Since the author tries
to convey or to summarize his ideas in the previously mentioned fields, there is a need to
use all English none noise words found in those fields. To assign the subject headings,
ASHG uses the resulting list of significant words generated from the previous section and
CINDTIs controlled term subject association. The subject heading classification scheme
relies on passing weights from the significant terms to their associated subjects, and
selecting the highest weighted subject headings [7].

4.5.1 The Algorithm

Having the keywords, title words, abstract words and other tagged words, will help us
select the most appropriate subjects for a given document. The following algorithm is
used:-

e Three lists of subject headings are to be constructed. The list of Level O subject
headings, the list of Level 1 subject headings and the list of Level_2 subject
headings.

e For each term found in both CINDI's controlled terms and the generated list of words,
the system traces the controlled term’s attached list of subjects headings (list of level
0, level I and level 2), and adds the subject headings to their corresponding list of
possible subject headings.

e Weights are also assigned to the subject hierarchies. The weight for a subject is given
according to where the term matching its controlled term was found. A subject
heading having a term or set of terms occurring in both title and abstract, for instance,
gets a weight of seven. The matched terms’ weights are passed to their subject
headings.

e The system extracts Level 2, Level 1 and Level O subject headings having the
highest weights from the three lists of possible subject headings.

e After building the three lists for the three level subject headings, the system:
1. Selects the subjects using the bottom-up scheme.

2. Having selected the highest weighted level 2 subject headings, the system
derives their level_1 parent subject headings.

17

3. An intersection is made between the derived level_1 subject headings and the
list of the highest weighted level_1 subject headings. The common level 1
subjects are the document’s level_1 subject headings.

4. The system uses the same procedure in selecting level_0 subject headings.

4.6 Applying ASHG’s Extractors

Based on the document’s type uncovered in the document type recognition step, ASHG
applies an extraction procedure. ASHG uses its understanding of HTML, Latex, text and
RTF syntax documents to extract the document’s meta-information. ASHG’s

RTF _extractor, are applied to RTF type documents and to unrecognized type documents

respectively.

Using the document’s syntax, ASHG extracts summary information, such as the title,
keywords, dates of creation, author, author’s information, abstract and size. In HTML,
Latex and RTF documents, the author might explicitly tag some of the fields to be
extracted. In case these fields were not explicitly tagged, ASHG attempts to extract them
using some heuristics. For example, extracting the keywords in an RTF document, The
RTF _extractor extracts words that are between keywords control word braces in
{\keywords...}. However, if the explicit keywords were not found in the document, then
words found in the title, abstract and other tagged words would be used to extract an
implicit list of keywords.

4.6.1 RTF _extractor

After identifying the document’s type, the corresponding extractor is applied to the
document, thus aiming to retrieve the corresponding meta-information to build its
Semantic Header.

The RTF _extractor extracts the title, explicitly stated keywords, language (English),
author(s), dates (Created, Expiry), size of the file, and the abstract from a RTF document.
Generating both implicit keywords and a list of subject headings for a document will be
described in a later section, since they are a standard procedure for all extractors.

1) Extracting the title from RTF document: The title could be extracted from what is
between title control word braces in {\title...}. For example, if the RTF document
contains {\title Automatic Semantic Header Generator}, RTF_extractor extracts
Automatic Semantic Header Generator as the document’s title. If this fails, it then
extracts the first sentence.

2) Extracting the subject from RTF document: The subject could be extracted from
what is between control word braces in {\subject...}, or the RTF_extractor uses the
resulting list of significant words generated from the subsection: 4.6.2 and CINDI's
controlled term subject association. The subject heading classification scheme relies

18

3)

4)

on passing weights from the significant terms to their associated subjects, and
selecting the highest weighted subject headings. The subject will be selected only
after the keywords from the documents. And these keywords will lead the system in
identifying the right subject by using the Keyword-Subject database.

EXTRACTOR

RTF Parsed
Document

1t ABSTRACT [P KEYWORDS [SUBJECT
EXTRACTOR EXTRACTOR EXTRACTOR

|| OTHER [|
WORDS
EXTRACTOR

Figure 2: Subject Extraction

Extracting the language from RTF document: The language could be extracted
from what is after \deflang control word (default is English).

Extracting the author(s) RTF document: The author name is extracted from what is
between author control word braces in {\author...}. For instance, if the RTF
document contains {\author Abdelbaset Ali}, the RTF_extractor extracts Abdelbaset
Ali as the author of the ducument. Extraction can also be made by looking for the
patterns: edited by, written by, revised by, author, when selecting the author and what
follows it which will then be assumed to be the author. The following information
could also be extracted:

19

3)

6)

8)

9)

& The e_mail: will be extracted by looking for the **@”’ symbol which is
the worldwide usable symbol for an e_mail.

< The phone: will be extracted by looking for the pattern phone or tel.
< The fax: will be extracted by looking for the pattern fax.

Extracting the abstract from RTF document: The abstract could be extracted from
what is between control word braces in {\abstract.....}. If it fails, it then extracts the
paragraph headed by the tagged word abstract. If it fails to locate an abstract heading,
it applies an automatic abstracting method. This method, which is similar to Luhn’s
automatic abstracting method, attempts to extract a section or paragraph that is
headed by introduction. Based on the number of significant root words in the
sentence, a numerical measure is developed for a sentence. The automatic abstracting
includes the highest measured sentences in the abstract. If it fails, the RTF_extractor
extracts the first paragraph after removing the RTF tags and applies the automatic
abstracting method, described above, to this paragraph.

Extracting explicitly stated keywords from RTF document: The keywords are
extracted from what is between keywords control word braces in {\keywords...}. For
example, if the RTF document contains control word {\keywords type , require,
object , define , act , abstract , issue}, the RTF_extractor extracts these as the
documents’s keywords. If it fails then the pattern keywords are looked for, and what
follows are assumed to be the keywords of the document.

Extracting the created date from RTF document: The created date could be
extracted from what is after \‘creatim control word. For example, if
{\creatim\yr1999\mo8\dy10\hr12\min9} was found in the RTF document,
RTF _extractor extracts 10/08/99 as the document’s date. If no \creatim command is
found in the RTF document, RTF_extractor uses the stat and GM-time commands to
extract the date of creation. stat unix command contains information about the file
such as File size in bytes, Time of last access, Time of last data modification and Time
of last file status change. GM-time unix command converts the time to Coordinated
Universal Time (UTC), which is what the UNIX system uses internally.

Extracting other tagged words from RTF document: The RTF_extractor extracts a
list of tagged words. For example, if the RTF document contains the meta tags \b
Computer \bO, the RTF_extractor includes Computer in the list of other tagged words.
The extracted words will be used in the generation of an implicit list of keywords and
the generation of a list of significant words used in the document’s classification
scheme. This process of generating an implicit list of keywords and a list of
significant words will be described in subsection 4.6.2.

Extracting the version from RTF document: The version could be extracted from
what is after \version control word.

20

10) Extracting the size of the RTF document: using the stat unix command, the size of
the file can be extracted.

EXTRACTING GENERATOR
Title

Language

Author

Author’s information

Abstract

Keywords

Subject

Dates

Version

RTF Parsed
RTF Document Document

—> PARSER >

L 2K B BN K BE K BE N 4

Figure 3: RTF extractor

4.6.2 Generating an implicit list of keywords

ASHG generates an implicit list of keywords in case explicit keywords are not found in
the document. It derives a list of the most significant words, which is used in the
document classification scheme.

In case keywords are not found in the document, the system derives a list of words from
the words found in the title, abstract, and other tagged fields. This list of derived words
will also be used in classifying the document. However, if the keywords are explicitly
stated in the document, then ASHG will generate a list of words from the words found in
the title, abstract, keywords and other tagged fields. This list is used to assign a list of
subject headings for the document.

Generating both lists of words relies on the stemming process that will map the words
into their root words, the stemmed word frequency of occurrence and the word location
in the document. It uses the following algorithm in generating the list of implicit
keywords, this algoritm being the same used for the extraction implicit keywords from
HTML, Latex documents [7]. In cases where the keywords are not found in the

document, and the words used in the classification scheme:-

21

Extract the title, abstract and other tagged fields.

English Noise words constitute usually around 30 to 50 percent of a document. The
Information Retrieval community calls them the Stop List [7]. These words are
dropped from the extracted fields.

The remaining words are sent to the stemming process. This process will remove the
words’ suffixes and prefixes. The aim of the stemming process is to generate a base
word class, which includes all the forms that could be generated from it.

Because the terms are not equally useful for content representation, it is important to
introduce a term weighting system that assigns high weights for important terms and
low weights for the less important terms [19]). Therefore, the weights constitute the
importance of a word. The system assigns weights to both lists of root words. The
weight assignment uses the following scheme:

1. If the word appears in the explicitly stated keywords, it is assigned a weight of
five. Since authors explicitly state the keywords to convey some important terms
that their document covers, it is assigned the highest weight.

2. Usually, words found in the abstract are the second most important words,
because this is where the author tries to convey his/her idea. Therefore, words
found in the abstract are the second most significant since they convey the idea of
the article more than any words found in other locations [20]. If the word appears
in the abstract, it is assigned a weight of four.

3. If the word appears in the title, it is assigned a weight of three.
4. If the word appears in the other tagged words, it is assigned a weight of two.

Each numeric weight is a class by itself defining the words’ location. The system has
the following classes:

1. A class weight of two defines the OTHER WORDS class. This class contains the
terms found in only the OTHER WORDS field.

2. A class weight of three defines the TITLE class. This class contains all the terms
found only in the title field.

3. The class weight four contains all the terms found only in the abstract field.
Therefore a class weight of four defines the ABSTRACT class.

4. A class weight of five includes all the terms found in either the keywords’ field or
in the title and other words fields.

5. A class weight of six includes all the terms found in both the abstract field and the
other words fields.

6. A class weight of seven includes all the terms found in either the keyword and
other words fields or the abstract and title fields.

7. A class weight of eight contains all the terms found in keyword and title fields.

8. A class weight of nine contains all the terms found in either the abstract, title and
other words fields, or abstract and keywords fields.

9. A class weight of ten contains all the terms found in the other words, title and
keywords fields.

10. A class weight of eleven contains all the terms found in the other words, abstract
and keywords fields.

11. A class weight of twelve contains all the terms found in the title, abstract and
keywords fields.

12. A class weight of fourteen contains all the terms found in the other words, title,
abstract and keywords fields.

A term appearing in other words field is less important than the one appearing in the
abstract field. Furthermore, a term appearing in both title and other words fields is less
significant than the one appearing in the keywords, abstract and title field. In high class
weights, we are interested in extracting more terms than in lower class weights. Thus, we
tend to extract more terms from the high weight classes. To limit the number of extracted
terms, we use the term’s frequency of occurrence. Significant terms have the highest
frequency of occurrence in the low weight classes. As the class weight increases, more of
its terms are regarded as significant. To include more significant terms, the domain of the
terms’ frequencies is expanded. The more the class weight, the wider is the domain
frequency of the significant terms.

For each class, we set the maximum class frequency to be the maximum frequency of
occurrence of a term found in that class. For example, if in ¢lass four, we had three terms
having two, four and six as frequencies, the system would select six as the maximum
class four frequency. The words’ frequencies are compared with their corresponding
maximum class frequency. For low weight classes such as two and three, significant
terms have the maximum class frequencies thus limiting the number of significant terms.
However, all terms found in class eight and more are significant regardless of their
frequency of occurrence.

RTF
Document

Document Type Recognition W

Y

Extract Title

A Z

Extract Author, and
Author’s information

L 2

Extract Dates,Version,
and Size

w

Extract Other Tagged
Words

If Keywords
Are In RTF
Document?

Generate A list of implied
Keywords

Extract Explicit
Keywords

L 72

Generate Subject <
Headings

v
< Semantic Header)

Figure 4: ASHG extraction for RTF document

4.7 Semantic Header Validation

Once the process of extracting the meta-information or secondary information is
completed, the semantic header is displayed for the source provider to modify, add or
remove some of the attributes. Once the provider finishes, the semantic header can be
stored in the CINDI database.

Chapter S

5. ASHG’s Experiments

In this chapter, we illustrate how the ASHG system extracts the meta-information from
the RTF documents, and demonstrate ASHG’s automatic subject heading classification.
For each of these document types, we apply ASHG and show the results. We compare the
subject classification generated by ASHG with that of INSPEC for the same set of
documents.

5.1 Experiments

After applying the ASHG on a set of RTF documents, the titles of these documents can
be viewed in the appendix. The generated index fields such as title, keywords, abstract
and author are compared with those that are found in the document. The ASHG’s
automatic subject headings classification results are compared with the INSPEC’s
classification.

The experiments were conducted on twenty-five documents to test the accuracy of the
generated index and the subject heading classification results. These documents deal
with computer science and electrical engineering subjects. ASHG was able to extract all
the explicitly stated fields such as title, abstract, keywords and author’s information with
a hundred percent accuracy. If the abstract was not explicitly stated, ASHG was able to
automatically generate an abstract that would describe the paper. However, ASHG's
implicit keyword extraction generated a list of words that included some words that are
insignificant. These insignificant words in turn lead to the diversion in subject
classification.

Based on the consultation with the papers’ authors on the ASHG’s subject classification
results done by Haddad [7]. Their response was divided into three categories: good,
OK/Not sure and poor subject hierarchy selection. Good subject hierarchy selection
implied that the authors would have chosen them as subject hierarchies for the
documents. OK/Not sure subject hierarchy selection implied that the authors doubt the
results and that they would not choose them. Finally, the poor subject hierarchy selection
implied that the selected subject hierarchies described another different subject.

We compared the ASHG’s subject classification results against the INSPEC’s
classification done by expert cataloguers and thesaurus. Some of the ASHG’s subject
classification had different words than INSPEC's even though they described the same
subject. That was due to the fact that our computer science subject classification was built

26

from ACM and not from INSPEC. Since our system was only based on the frequency
and location of words in a document to determine the document’s keywords and subject
classification, it has missed the importance of the word senses and the relationship
between words in a sentence. We have compared the result for HTML_extractor for
HTML documents, Latex_extractor for Latex documnets, and Text_extractor for text
documents with the result for the same document in RTF format which extracted by

RTF_extractor.

RTF Number of Subject Author’s Opinion Accuracy OK/Good’s
Headings generated by ASHG Accuracy
(RTF_extractor) A: Author
Good | OK/Not Sure | Poor § I: INSPEC
10 4 4 2 40% (A) 80%
6 0 2 4 0(A 33.33%
4 0 2 2 0(A) 50%
4 0o 2 2 0 (A) 50%
25% (D)
4 0 4 0 0(A 100%
5 1 3 20% (A) 40%
5 0 5 0 0 (A) 100%
20% (1)
6 2 3 1 33.33(A) 83.33%
14 14.28%
4 25% ()
5 1 4 0 20% (A) 100%
20% (I)
4 1 2 1 25% (A) 75%
3 1 1 3333 (A) 66.66%
66.66 (I)
3 1 0 2 50% (A) 50%
50% (D)
5 1 0 4 20% (A) 20%

27

RTF Number of Subject Author’s Opinion Accuracy OK/Good'’s
Document | Headings generated by ASHG Accuracy
(RTF_extractor) A: Author
Good | OK/Not Sure | Poor | I: INSPEC
Docl6 3 0(A)
3333 QD)
Doct? 7 I 0N I
DocTs 7 — | ol
DocTo : - oo |
Doc20 4 - 25% (I)
Doczl 3 I R A I
Docz2 g Goxm ||
5oz 7 IO
| Doz 5 — oo | —
Do ? I RO
Averages _ _ — — 28.98% 60.59%

Table 3: Summary of ASHG’s RTF test results against the authors and INSPEC’s results

5.2 Sample Results

In this section, we will show some of the indexes generated by ASHG for RTF
documents.

Result 1

<semhdrB>

<useridB> <useridE>

<passwordB> <passwordE>

<titleB> Designing a Class Library <titleE>

<alttitleB> <alttitleE>

<subjectB>

<generalB> Computer Science <generalE>

<sublevell B> Programming languages <sublevel 1IE>

<sublevel2B> Computer program language <sublevel2E>

<generalB> Computer Science <generalE>

<sublevel1B> Theory of computation by abstract devices <sublevel IE>
<sublevel2B> Complexity measures and classes <sublevel2E>
<generalB> Computer Science <generalE>

<sublevel1B> Theory of computation by abstract devices <sublevel1E>
<sublevel2B> Complexity measures and classes hierarchies <sublevel2E>
<generalB> Computer Science <generalE>

<sublevel1 B> Theory of computation by abstract devices <sublevel 1IE>

28

<sublevel2B> Complexity measures and classes reducibility and completeness <sublevel2E>

<generalB> Computer Science <generalE>

<sublevel1B> Theory of computation by abstract devices <sublevel1E>

<sublevel2B> Relations among complexity classes <sublevel2E>

<subjectE>

<languageB> English <languageE>

<char-setB> <char-setE>

<authorB>

<aroleB> Author <aroleE>

<anameB> Peter Grogono <anameE>

<aorgB> <aorgE>

<aaddressB> Department of Computer Science, Concordia University de Maisonneuve Blvd., Montreal,
Quebec Canada H3G IM8 <aaddressE>

<aphoneB> 848-3000 <aphoneE>

<afaxB> 848-2830 <afaxE>

<aemailB> grogono@concour.cs.concordia.ca <aemailE>

<authorE>

<keywordB> library , class , programmer , program , problem , presentation , main , lay , internal , environ
, do , develop, dee , complex , collect, call , built , browse , advantage , abstract <keywordE>
<identifierB>

<domain3B> FTP <domain3E>

<value3B> <value3E>

<identifierE>

<datesB>

<createdB> 1999/6/14 <createdE>

<expiryB> 1999/6/14 <expiryE>

<datesE>

<versionB> 1 <versionE>

<spversionB> <spversionE>

<classificationB>

<domain4 B> <domain4E>

<value4 B> <value4E>

<classificationE>

<coverageB>

<domainSB> <domainSE>

<value5B> <valueSE>

<coverageE>

<system-requirementsB>

<componentB> <componentE>

<exiganceB> <exiganceE>

<system-requirementsE>

<genreB>

<formB> <formE>

<sizeB> 4503 <sizeE>

<genreE>

<source-referenceB>

<relationB> <relationE>

<domain-identifierB> <domain-identifierE>

<source-referenceE>

<costB> <costE>

<abstractB>

One of the functions of a class library is to provide a collection of data structures. We argue that if a class
library is to be useful, it must do more than this: it must provide useful abstractions and it must allow
choices of representation to be deferred until late in program development. We have designed a language
and a development environment called Dee. The class library of Dee is built in layers and has a complex
internal structure. A sophisticated class browser conceals the complexity of the class library from

29

programmers. We introduce the salient features of Dee, describe the structure of its class library, explain
the advantages of this structure, and discuss the remaining problems.

<abstractE>

<annotationB>

<annotationE>

<semhdrE>

<EOF>

Result 2

<semhdrB>

<useridB> <useridE>

<passwordB> <passwordE>

<titleB> Issues in the Design of an Object Oriented Programming <titleE>
<alttitleB> <alttitleE>

<subjectB>

<generalB> Computer Science <generalE>

<sublevell B> Programming languages <sublevel IE>

<sublevel2B> Abstract data types in language constructs and features <sublevel2E>
<generalB> abstract <generalE>

<sublevel1B> theory of computation by abstract devices <sublevel 1E>
<sublevel2B> abstract data types in language constructs and features <sublevel2E>
<generalB> Computer Science <generalE>

<sublevel 1B> Programming languages <sublevel1E>

<sublevel2B> Classes and objects in language constructs and features <sublevel2E>
<generalB> Computer Science <generalE>

<sublevel 1B> Theory of computation by abstract devices <sublevel 1[E>
<sublevel2B> Complexity measures and classes <sublevel2E>

<generalB> Computer Science <generalE>

<sublevel1B> Theory of computation by abstract devices <sublevel1[E>
<sublevel2B> Complexity measures and classes hierarchies <sublevel2E>
<generalB> Computer Science <generalE>

<sublevell B> Theory of computation by abstract devices <sublevell[E>
<sublevel2B> Complexity measures and classes reducibility and completeness <sublevel2E>
<generalB> Computer Science <generalE>

<sublevel 1B> Theory of computation by abstract devices <sublevell1E>
<sublevel2B> Relations among complexity classes <sublevel2E>

<subjectE>

<languageB> English <languageE>

<char-setB> <char-setE>

<authorB>

<aroleB> Author <aroleE>

<anameB> Peter Grogono <anamecE>

<aorgB> <aorgE>

<aaddressB> Department of Computer Science, Concordia University de Maisonneuve Blvd. West, Montr
eal, Quebec Canada H3G IM8 <aaddressE>

<aphoneB> 848-3000 <aphoneE>

<afaxB> 848-2830 <afaxE>

<aemailB> grogono@concour.cs.concordia.ca <aemailE>

<authorE>

<keywordB> type , require , object , define , act , abstract , issue <keywordE>
<identifierB>

<domain3B> FTP <domain3E>

<value3B> <value3E>

<identifierE>

30

<datesB>

<createdB> 1999/6/4 <createdE>

<expiryB> 1999/6/4 <expiryE>

<datesE>

<versionB> 1 <versionE>

<spversionB> <spversionE>

<classificationB>

<domaind B> <domain4E>

<value4B> <value4E>

<classificationE>

<coverageB>

<domain5B> <domainSE>

<valueSB> <valueSE>

<coverageE>

<system-requirementsB>

<componentB> <componentE>

<exiganceB> <exiganceE>

<system-requirementsE>

<genreB>

<formB> <formE>

<sizeB> 73741 <sizeE>

<genreE>

<source-referenceB>

<relationB> <relationE>

<domain-identifierB> <domain-identifietE>

<source-referenceE>

<costB> <costE>

<abstractB>

The object oriented paradigm, which advocates bottom-up program development, appears at first sight to
run counter to the classical, top-down approach of structured programming. The deep requirement of
structured programming, however, is that programming should be based on well-defined abstractions with
clear meaning rather than on incidental characteristics of computing machinery. This requirement can be
met by object oriented programming and, in fact, object oriented programs may have better structure than
programs obtained by functional decomposition.

The definitions of the basic components of object oriented programming, object, class, and inheritance,
are still sufficiently fluid to provide many choices for the designer of an object oriented language. Full
support of objects in a typed language requires a number of features, including classes, inheritance,
genericity, renaming, and redefinition. Although each of these features is simple in itself, interactions
between features can become complex. For example, renaming and redefinition may interact in unexpected
ways. In this paper, we show that appropriate design choices can yield a language that fulfills the promise
of object oriented programming without sacrificing the requirements of structured programming.
<abstractE>
<annotationB>
<annotationE>
<semhdrE>
<EOF>

31

Example :

The following example shows CINDI Semantic Header Graphical interface, We have
used RTF document to extract meta-information. The generated Semantic header is
written into a file where it is read and displayed into the CINDI's GUL The ASHG’s
result will be used as a starting point by the author, and he/she has the opportunity to
correct the errors and include fields of the Semantic Header not given before registering
it.

32

s e e e

e L e Lt |

i ‘ I’ S Header Grapcal interface (a)

33

gure CINDY’ Semantieader Graphi interface (b)

e

Figure 7 : CINDI’

Semantic

Graphi ac (c)

35

Semantic Header Registration

The system will perform a number of steps in order to register a Semantic Header. At the
beginning, the parser will verify the syntax of the input file and make sure that the
mandatory attributes of the Semantic Header have been entered. These attributes include
those needed to assign a Semantic Header Name which are: title, first general subject,
name of first author, date of creation, and finally version; as well as first identifier and
one keyword. The non-noise words of the Semantic Header will be stored in temporary
variables and data structures for later use. The next step would be for the database
module to verify the status of the user ID and the password. Subsequently, it will be
assured that such a Semantic Header does not exist in the database. Finally, the words
and the Semantic Header are indexed into the database.

Semantic Header Deletion

A Semantic Header can be deleted by the user who registered the Semantic Header only
if no annotation after the Semantic Header was registered. The procedure of deleting a
Semantic Header is similar to that of registering it. The Semantic Header and the SHN
mdintained in the word object with the value corresponding to each non-noise word will
be deleted from the database. If a word object happens to contain no SHNs, it will be
deleted from the database as well.

Semantic Header Update

A Semantic Header can be updated by the user who registered the Semantic Header and
requires the user ID and the password during the initial registration. However, a number
of the attributes of a Semantic Header cannot be modified. These attributes are those
comprising the Semantic Header Name as well as the annotation field added after the SH
was registered. It updates those fields that are modified by the user. For each modified
field, the deletion and addition of words are also managed by this method.

36

Chapter 6

6. Conclusion and Future Work

6.1 Conclusion

Content indexing provides a powerful means of helping users locate relevant information
among large repositories. To be most effective, content indexing must exploit the
semantics of the different types of data and different environments in which it is used. In
this major report, we presented a model that will automatically extract and generate an
index or meta-information. We have integrated this model which is called RTF extractor
with ASHG.

ASHG exploits the file naming conventions and the data within a document to
determine the document file type. ASHG exploits the semantics of the document’s types
in extracting the meta-information. It also assigns weights for terms depending on their
location in the document. Both term weight and occurrence frequency was used in
assigning terms for a document. These extracted terms were used to classify a document
using the association between CINDI’s controlled term and their subject headings in the
thesaurus. CINDI has a three level subject hierarchy for Computer Science and Electrical
Engineering. CINDI's computer science subject hierarchy was based on ACM and
CINDTs electrical engineering subject hierarchy was based on INSPEC. LCSH was used
to augment both subject hierarchies. We also derived control terms from CINDI's subject
headings. These control terms were associated with their subjects in CINDI's thesaurus.
In addition, we presented a method of generating a Semantic Header, called ASHG. This
scheme automatically extracts and generates an index or meta-information.

The improvements made by the introduction of ASHG are that it extracts more
information than other similar systems and it also tries to select the subject of the
document by looking into our own thesaurus and the keyword-subject database.

Lastly, we applied ASHG to a collection of test RTF documents and compared the results
to the actual assignments made by INSPEC. The results showed a hundred percent
accuracy in extracting the explicitly stated fields such as the title, abstract, author and
keywords. They also showed some level of accuracy in generating the abstract.

37

6.2 Future Work

Some of the system’s refinements should include:

Terms, which are not significant alone, but are significant if they appear adjacent to
another term, should be extracted as significant terms. For example, the term wire
should not be extracted unless it is followed by another term such as wire grid.
ASHG's keyword extraction process should handle more than single controlled terms.
Future work should explore the effect of extracting noun phrases and compound
controlled terms.

Word senses and determining the relationships that those words have to each other
should be resolved. The semantic level language processing should be handled by
ASHG.

The controlled terms and their synonyms should belong to the same control term and
they should be associated with the same subject headings.

The domain of the stop-word list should be explored, and more significant terms
should be associated with the subject headings.

Build more subject hierarchies such as Civil Engineering, and Mechanical

Engineering. Extend the type of documents that ASHG can extract meta-information
from.

38

Appendix
Papers Used in Testing ASHG for RTF_extractor

The following is the list of papers used in testing ASHG for RTF_extractor

Docl Grogono P., Designing for Change, Department of Computer Science, Concordia
University, Montreal, Canada.

Doc2 Grogono P., Designing a class library, Department of Computer Science,
Concordia University, Montreal, Canada. ’

Doc3 Grogono P., A Code Generator for Dee, Department of Computer Science,
Concordia University, Montreal, Canada.

Docd Butler G., Grogono P., Shinghal R., and Tjandra L, Retrieving Information from
Data Flow Diagrams, Department of Computer Science, Concordia University,
Montreal, Canada.

DocS Grogono P. and Santas P., Equality in Object Oriented Languages, Department of
Computer Science, Concordia University, Montreal, Canada and Institute of Scientific
Computation, ETH Zurich, Switzerland.

Doc6 Grogono P. and Gargul M., A Computational Model for Object Oriented
Programming, Department of Computer Science, Concordia University, Montreal,
Canada.

Doc7 Grogono P. and Gargul M., A Graph Model for Object Oriented Programming,
Department of Computer Science, Concordia University, Montreal, Canada.

Doc8 Grogono P. and Gargul M., Graph Semantics for Object Oriented Programming,
Department of Computer Science, Concordia University, Montreal, Canada.

Doc9 Khorasani K., Adaptive Control of Nonlinear Systems Using Output Feedback,
Department of Electrical and Computer Engineering, Concordia University, Montreal,
Canada.

Docl10 Nascimento M. A. and Dunham M. H., A Proposal for Indexing Bitemporal
Databases Via Cooperative B+ trees, Southern Methodist University, Dallas, USA.

Docll Grogono P., Issues in the Design of an Object Oriented Programming
Language, Department of Computer Science, Concordia University, Montreal, Canada.

39

Docl2 Grogono P., A Model for Computing with Objects, Department of Computer
Science, Concordia University, Montreal, Canada.

Docl3 Paknys R. and Raschkowan L. R., Moment Method Surface Patch and Wire
Grid Accuracy in the Computation of Near Fields, Department of Electrical and
Computer Engineering, Concordia University, Montreal, Canada.

Docld Paknys R., On the Accuracy of the UTD for the Scattering by a Cylinder,
Department of Electrical and Computer Engineering, Concordia University, Montreal,
Canada.

Docl5 Davis D., Paknys R., and Kubina S. J., The Basic Scattering Code Viewer A
GUI for the NEC Basic Scattering Code, Department of Electrical and Computer
Engineering, Concordia University, Montreal, Canada.

Doc16 Grogono P. and Cheung B., A Semantic Browser for Object Oriented Program
Development, Department of Computer Science, Concordia University, Montreal,
Canada.

Docl7? Ounis I, Pasca M., An Extended Inverted File Approach for Information
Retrieval, Grenoble, France.

Docl8 Kienle H. M. and Fortier P. J., Exception-Handling Extension for an Object-
oriented DBMS, University of Stuttgart, Germany and University of Massachusetts
Dartmouth, USA.

Docl9 Nascimento M. A. and Dunham M. H., A Proposal for Indexing Bitemporal
Databases Via Cooperative B+ trees, Southern Methodist University, Dallas, USA.

D20 Ludwig A., Becker P. and Guntzer U., Interfacing Online Bibliographic
Databases with Z39.50, University of Tubingen, Germany.

Doc21 Park C. and Park S., Alternative Correctness Criteria for Multiversion
Concurrency Control and a Locking Protocol via Freezing, Sogang University, Seoul,
Korea.

Doc22 Woo S., Kim M. H. and Lee Y. J., Accommodating Logical Logging under
Fuzzy Checkpointing in Main Memory Databases, Department of Computer Science
Korea Advanced Institute of Science and Technology, Taejon, Korea.

Doc23 Cho E. S., Han S. Y., Kim H. J. and Thor M. Y., A New Data Abstraction Layer
Required For OODBMS, Department of Computer Science and Computer Engineering,
Seoul National University, Seoul, Korea.

Doc24 Ehikioya S. A., A Formal Specification Strategy for Electronic Commerce,
Department of Computer Science University of Manitoba, Winnipeg, Manitoba, Canada.

40

Doc2S Revesz P. Z. and Li Y., MLPQ: A Linear Constraint Database System with
Aggregate Operators, Dept. of Computer Science and Engineering, Lincoln, USA.

41

References

[1] De Bra, P., Houben, G-J., & Komalzky Y., Search in the World-Wide Web,
http://www.win.tue.ni/he

[2] Desai, B. C., An Introduction to Database Systems, West, St. Paul, MN 1990.

(3] Desai B. C., Cover page aka Semantic Header,
http://www.cs.concordia.ca/~faculty/bcdesai/semantic-header.html, July 1994, revised

version, August 1994.

[4] Desai B. C., The Semantic Header Indexing and Searching on the internet, Department of
Computer Science, Concordia University. Montreal, Canada, February 1995.
http://www.cs.concordia.ca/ faculty/bcdesai/cindi-system-1.1.html

[5] Edmundson H. P. and Wyllys R. E., Automatic Abstracting and Indexing Survey and
Recommendations, Communications of ACM, 4:5, pp. 226-234, May 1961.

[6] Fletcher, J. 1993., Jumpstation, http://www stir.ac.uk/jsbin/js

[7]1 Haddad S., ASHG: Automatic Semantic Header Generator. Master’s thesis,
Department of Computer Science, Concordia University, Montreal, Canada, 1998.

[8] Hardy D. R., Shwartz M. E., Customized Information Extraction as a Basis for Resource
Discovery, Department of Computer Science, University of Colorado. March 1994; Revised
February 1995.

[9]1 Katz, W. A., Introduction to Reference Work, Vol. 1-2 McGraw-Hill, New York, NY.

[10] Koster, M., ALIWEB(Archie Like Indexing the WEB),
http://web.nexor.co.uk/aliweb/doc/aliweb.htm!

[11] Luhn, H. P., The automatic creation of literature abstracts, IBM Journal of Research and
Development, 2, pp. 159-165, 1958.

[12] McBryan, Oliver A., World Wide Web Worm,
http://www.cs.colorado.edu/home/mcbryan/WWWW_html

[13] Rich Text Format (RTF) Specification; RTF Version 1.3 documents.
http://night.primate.wisc.edu:80/software/RTE/

[14] Shayan N., CINDI: Concordia INdexing and DIscovery system. Master’s thesis, Department
of Computer Science, Concordia University, Montreal, Canada, 1997.

[15] Thau, R., Sitelndex Transducer,
http://www.ai.mit.edu/tools/site-index.htm]

42

[16]) Search WWW document full text,
http://rbse.jsc.nasa.gov/ei X

[17] http://web.soi.city.ac. isr/okapi

[18] http://www .qpat.com/info/help/stemhelp.html

[19] Salton G., Allan J. , Buckley C., and Singhal A. , Automatic Analysis, Theme Generation,
and Summarization of Machine-Readable Texts, Science, Vol264, pp. 1421-1426, June 1994.

[20] Salton G., The SMART Retrieval System, Prentice-Hall Inc.,4-6, 1971.

[21] Youquan Zhou, CINDI: The virtual Library Graphical User Interface. Master’s
thesis, Department of Computer Science, Concordia University, Montreal, Canada, 1997.

[22] UNIX Programming Perl, 2™ Edition By Larry Wall, Tom Christiansen & Randal L.
Schwartz 2™ Edition September 1996.

[23] UNIX Learning Perl Second Edition 1997 By Randal L. Schwartz and Tom Christianse.

43

