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Abstract

Solving Railway Routing and Scheduling Problems
in an Intermodal Freight Transportation System

Li Zhang

The railway line haul is the terminal-to-terminal segment of a door-to-door intermodal
transportation system. This research concentrates on the routing and scheduling of the
railway line haul. Routing and scheduling is the most important portions of the planning
activities performed by railway companies. In this research, we developed an integer
programming model to determine optifnal operations in minimizing the most significant
cost figures involved in such operations. Although the intermodal transportation system
combines several transportation modes, our model concentrates on rail segment operations
because improving the on-time performance of the rail segment can increase the
timeliness of the entire intermodal route. Given container demands differentiated by origin,
destination, arrival date at origin, and due date, the objective is to determine a train
schedule and container routing scheme to minimize operational costs while meeting
on-time delivery requirements of the shipments. The model was extensively tested by

example problems of practical backgrounds, derived from those available in literature.
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Chapter  One

Introduction

1.1  Background

The Canadian railway industry played a leading role in North American freight
transportation. Although Canada has just 9.9% of the North American population and
6.6% of its retail sales, it handles close to 15% of North American containerized trade with
the world. And it has emerged as a transshipment hub for US-bound cargo. Between 1990
and 2000, the value of US-bound cargo transshipped through Canada increased 210%,

amounting to over $28 billion per year (Viewpoint - August 2004).

Figure 1.1 shows trends in intermodal traffic over the last several years. Between 1996 and
2002, CN and CPR intermodal tonnage grew by 9.2 million tonnes, an average annual

growth rate of 7.1%.

As Figure 1.2 shows, volumes of Canadian origin—destination increased at an even higher

average annual growth rate of almost 10% over this period.
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Growth in total rail intermodal volumes was significant between 2001 and 2002 (10 per
cent) after only a small growth the year before. Volumes of North American traffic
remained strong, increasing by 9% and accounting for 44% of total rail intermodal

volumes (Transportation in Canada 2003 Annual Report).

Because of the increased amount of freight traffic, more stringent environmental
requirements, as well as the long haul efficiency of trains results in savings in terminal
costs and labour cost Where used for a distance of at least 500 miles, the growing

importance of intermodalism as a transportation option is without question.

1.2 About Intermodal Transportation

The European Conference of Ministers of Transportation defines intermodal freight
transportation as "the movement of goods in one and the same loading unit or vehicle,
which uses successively various modes of transport (road, rail, water) without any
handling of the goods themselves during transfers between modes." The major part of the
journey is done by rail, inland waterway or sea, and any initial and/or final legs carried out
by road are as short as possible. In this contribution, intermodal transportation is
characterized by the combination of the advantages of rail and road, rail for long distances

and large quantities, road for collecting and distributing over short or medium distances.
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Figure 1.3 The Intermodal Journey

Figure 1.3 provides a simple depiction of intermodal freight transportation. Drayage
operations take place by truck between a terminal and shippers or receivers. The Rail Line

Haul is the terminal-to-terminal segment of the door-to-door intermodal trip.

This research concentrates on the routing and scheduling of “Rail Line Haul”. Routing and
scheduling represent the most important portion of the planning activities performed by

railway companies.

Demand for freight transportation is usually expressed in terms of tonnage of certain
commodities to be moved from an origin to destination. Given these demands, the railroad
must establish a set of operating policies that will govern the route of trains and freight.

For every origin-destination pair of traffic demand, the corresponding freight may be



shipped either directly or indirectly. When demand is important enough, delivery delays
are obviously minimized by using direct trains as opposed to sending the traffic through a
sequence of links. To benefit from economies of scale, trains are thus often formed by
grouping cars with various commodities and having different origins and destinations.
These trains operate between particular nodes of the network, called classification yards.
At these yards, cars are separated, sorted according to their final destination, and
combined to form new outbound trains. However, because the classification process
requires considerable resources, cars are not reclassified at every yard on their trip from
origin to destination. Instead, cars with different final destinations but sharing some initial
portion of their trips are assembled into blocks. Cars in the same block may then pass
through a series of intermediate classification yards, being separated and reclassified only
after they have reached the destination of the block. The blocking policy specifies what
blocks should be built at each yard of the network and which cars should go into each

block.

In each yard, blocks are built on classification tracks where they await the departure of an
outbound train. The list of potential blocks that may go into each outbound train is
specified by the makeup policy. Also, when a train passes through an intermediate
classification yard, it may leave or pick up blocks of cars. A block left by an inbound train
is either transferred to a different train or it is broken up and its cars are reclassified. Hence,
although the origin and destination of a block may correspond to those of a train, a block

may also switch trains several times before reaching its final destination.



The nature of intermodal transportation distinguishes itself from traditional rail haul
networks in five areas. First, in intermodal transport, fixed schedules are used. While in
traditional rail haul networks, trains run only when full and excessive classification at
intermediate nodes takes place. Intermodal goods are not only more fragile, but they are
also more time-sensitive. Therefore, these goods are treated with a greater sense of
urgency, and timetables for running intermodal trains have been established. Second,
intermodal traffic incurs fewer stops and reclassifications between its origin and
destination than traditional rail system. Third, Fleet management issues in intermodal
transport are more complex, because of the separation of the transport unit (rail flatcar)
and the load unit (container/trailer). One aspect of the flatcar management problem is the
tremendous variety of flatcars (including double stack cars), along with the variety of
trailers and containers that the flatcars need to move. In contrast, in traditional rail
transport, only boxcars (loaded and unloaded) are modelled. Fourth, because the transport
unit can be separated from the load unit, rail-rail transhipment terminals can replace
intermediate rail yards for classification. Fifth, location decisions for intermodal rail-road
terminal are different from rail yards, as the former needs to connect two types of

infrastructure.

1.3 Research in This Thesis

In this research, we developed an integer programming model to optimize operation costs



of the rail segment of container intermodal transportation to decide when and how to route
intermodal trains and which containers to send on each train. Although the intermodal
transportation combines several transportation modes, our model concentrates on rail
segment operations because improving the on-time performance of the rail segment can
increase the timeliness of the entire intermodal route. Given container demands
differentiated by origin, destination, arrival date at origin, and due date, the objective is to
determine a train schedule and container routing scheme to minimize operational costs

while meeting on-time delivery requirements of the shipments.

1.4  Thesis Organization

" The remainder of this thesis is organized as following.

Chapter Two presents an overview of literatures. In Chapter Three we formulate a
discrete-time integer programming model to achieve minimum operational costs of the rail
segment of container intermodal transportation by improving daily train schedules and
container routes. Chapter Four presents numerical example and analysis. Chapter Five
summarizes the major conclusions of this thesis and conceives an objective in future

research.



Chapter Two

Literature Review

Intermodal freight transportation research has emerged as a new transportation research
application field while it still is in a pre-paradigmatic phase. Since 1990s a substantial
number of analytical publications specifically addressing intermodal transport issues have
appeared (Bontekoning, 2004). In this chapter, we will present the literature review about
rail freight operations and intermodal freight operations. Based on the four main activities
in intermodal transportation, the review about intermodal freight operations will be
categorized to four areas: (1) drayage operations, (2) terminal operations, (3) network

operations, and (4) intermodal operations.

2.1  Rail Freight Operations

Because our research focuses on the “rail line haul” portion of intermodal transportation,

we give a brief overview of prior research on traditional rail freight operations.

Marin and Salmeron (1996) formulated an integer programming model to determine

optimal train schedules for a traditional rail network. They used simulated annealing and



tabu search methods to solve the model. For small problem instances with several hundred
variables and constraints, they compared their results with exact solutions obtained from a
specialized branch and bound algorithm. They concluded that for these smaller problem
instances, their solution procedures provide results that are approximately 5% to 15%

from the optimal solutions.

Cordeau et al. (1998) presented a review of optimization models for rail transportation
problems. They proposed a classification of models and described their important
characteristics by focusing on model structure and algorithmic aspects. The review mainly
concentrated on routing and scheduling problems in rail transportation. Routing and
scheduling represent the most important portion of the planning activities performed by
railways. Routing models concern the operating policies for freight transportation and
railcar fleet management. Scheduling models address the dispatching of trains and the
assignment of locomotives and cars. They found that early models were usually built by
linear programming or network optimization, whereas some recent models were solved
with more sophisticated mathematical programming techniques. Others were solved using
meta-heuristics which are very effective for several classes of discrete optimization

problems.

Yano and Newman (2001) considered a problem of scheduling trains and containers (or
trucks and pallets) between a depot and a destination. Goods arrive at the depot

dynamically over time and have distinct due dates at the destination. There is a fixed



-charge transportation cost for each vehicle, and each vehicle has the same capacity. The
cost of holding goods may be different at the depot and at the destination. The objective is
to minimize the sum of transportation and holding costs. They extended several results of
the single-item problem to correspond multi-item cases and showed that the optimal
vehicle schedule can be obtained by solving a related single-item problem in which the
item demands are aggregated in a particular way. The optimal assignment of vehicles can

be found by solving a linear programming problem.

Forkenbrock (2001) used information of internal and external costs arising from intercity
freight railroad operations. The external costs for four types of freight trains were
estimated. For each type of freight trains, they estimated three general types of external
costs were estimated and compared with internal costs experienced by railroad companies.
The general types of external costs include: accidents (fatalities, injuries, and property
damage); emissions (air pollution and greenhouse gases); and noise. Resulting internal and
external costs were compared with those of freight trucking, estimated in an earlier article.
Rail external costs are 0.24 cent to 0.25 cent (US) per ton-mile, well less than the 1.11 cent
for freight trucking. That is, on a per-ton-mile basis, trucking generates over three times
the external costs of any of the four types of freight trains considered in the analysis.
External costs for rail transportation generally constitute a larger amount relative to
internal costs. Because the internal cost (direct cost to the transportation provider) is much
lower for rail, rail external costs often constitute larger amounts relative to internal costs

than trucking.



Caprara et al. (2002) proposed a graph theory model to formulate a train scheduling
problem. They used a directed multi-graph in which nodes correspond to
departures/arrivals at a certain station at a given time instant. They considered a single,
one-way track linking two major stations, with a number of intermediate stations in
between. The train scheduling problem is to determine a periodic timetable for a set of
trains that does not violate track capacities and satisfies certain operational constraints.
The trains must run every period in a given time horizon. This formulation was used to
derive an integer linear programming model solved by Lagrangian relaxation. A novel
feature of the model is that the variables in the relaxed constraints are associated only with
nodes (as opposed to arcs) of the graph. This allows a considerable speed-up in the
solution of the relaxation. The relaxation was embedded within a heuristic algorithm
which makes extensive use of the dual information associated with the Lagra-n-gi-an'

multipliers.

Kraft (2002) proposed a method for managing a reservation based and capacity
constrained car scheduling process for freight railroads shipments. The method was to
compute a "real dollar" objective function for future locomotive and crew distribution
systems, allowing a direct tradeoff between the values and the cost to provide extra
capacity. The concept of scheduling appointment times directly follows patterned after
current motor carrier industry practice, so that customers can plan for rail or truck

deliveries in the same way. The author compared it with a widely used revenue



management formulation and suggested a Lagrangian heuristic for obtaining a primal

solution.

Lingaya et al. (2002) addressed an operational car assignment problem (OCAP)
encountered at VIA Rail Canada (hereafter referred to as VIA) although the proposed
model and solution methodology may also be applied to other passenger railways that rely
on a similar planning process. They introduced a formulation and a solution approach for
the complicated operational problem. They developed a modeling and solution
methodology for the car assignment problem. This methodology considers both typical
constraints such as maintenance requirements and more complex constraints such as
minimum connection times. The problem was solved heuristically by a branch-and-bound
method in which the linear relaxations were solved by column génération. Simulation
experiments performed on realistic data show that the solution approach yields good

quality solutions in very short computing time.

Mancuso and Reverberi (2003) used a transcendental logarithmic (Translog) short-run
variable cost function for an Italian railway company with 1980-1995 data. A major
implication of their findings is that the rail network is not used optimally, so that a cut in
the frequency of trains or significant infrastructure investments may be needed. They also
examined possible policy implications of the results obtained at the company level and
estimated a variable cost function and thus performed a short-run analysis. They found that

the presence of diseconomies of density does not preclude the possibility that some form of

12



competition can be successful. It also revealed that joint or specialized production of
passenger and freight carryings would be pursued, mainly depending on the size of the
company. In particular, small companies are more likely to specialize to their economic

activity than large ones.

2.2 Drayage Operations

Drayage operations involve the provision of an empty trailer or container to the shipper

and the subsequent transportation of a full trailer or container to the terminal.

Morlok and Spasovic (1995) identified and discussed approaches for improving service
quality and reducing cost in the highway portion of rail;tfuck intermodal transportation. In
intermodal transportation, a load is moved between the origin and the destination in the
same container in a coordinated manner using two or more transportation modes. The
specific system of concern in the paper is how to use conjunction with rail-truck
intermodal or piggyback service. In piggyback service, highway trailers or containers
loaded on rail flat cars are hauled by train in line-haul service between the origin and the
destination intermodal terminals, and locally picked up and delivered by trucks between
the terminals and shippers, and terminals and receivers (termed consignees). Drayage
costs are very high, and because these do not vary with the length of the intermodal haul,
they preclude profitable intermodal service in the shorter domestic freight markets of less

than 600 miles where the highest truck volumes are found. In addition, the inferior service

13



quality precludes intermodal from competing for high quality premium traffic. The
potential for overcoming these disadvantages through reorganization of the drayage
operation and use of centralized dfayage operations was discussed. Specific changes in

the organizational structure of intermodal and in its operating procedures were outlined.

Choong et al. (2002) presented a computational analysis of the effect of planning horizon
length on empty container management for intermodal transportation networks. The
analysis was based on an integer programming that seeks to minimize total costs related to
moving empty containers, subject to meeting requirements for moving loaded containers.
Although the appropriate length of the planning horizon depends on the network under
consideration, a longer planning horizon (used on a rolling basis) can give better empty
container distribution plans for the earﬁér -periods. The longer horizon allows better
management of container outsourcing and encourages the use of slower and cheaper
transportation modes. However, the advantages of using a long rolling horizon might be
small for a system that has a sufficient number of container pools, since such a system has

small end-of-horizon effects.

Taylor et al. (2002) developed two alternative methods of intermodal ramp assignment for
minimizing total non-productive miles associated with circuity (out of route miles) and
empty travel (brought about by imbalance and geographical separation between freight
origins and destinations of intermodal freight movements). The authors compared two

heuristic solutions to the intermodal ramp allocation problem to determine the robustness

14



of the methods with respect to alternate ramp location assumptions and other pertinent
parameters. Their results support the goal of determining how two heuristic solutions are

performed under varying operational conditions and constraints.

2.3  Terminal Operations

Kozan (2000) discussed the major factors influencing the transfer efficiency of seaport
container terminals. To increase the efficiency and speed of transportation, transportation
companies should reduce the cost of maritime transport, mainly by reducing cargo
handling and costs, and ships’ time in port by speeding up handling operations. A network
model is designed to analyse container progress in the system and applied to a seaport
container terminal. The problem Béiﬁg investigated is the minimization of handling and
traveling time of containers from the time the ship arrives at port until all the containers
from that ship leave the port. This mathematical model can be used as a decision tool

investment appraisal of multimodal transportation.

Trip and Bontekoning (2002) discussed the possibility of implementing innovative
bundling models and new-generation terminals to integrate small flows, mainly from
outside the economic core areas in intermodal transport systems. The integration of the
small flows would increase the transport volume that is potentially suitable for intermodal
transportation, and could therefore add to the modal shift from road to rail. Their

conclusions indicated that it is possible to apply the concept of complex bundling with new

15



generation terminal operations. The general theoretical advantages of such concepts can be

shown in terms of a higher loading level and larger geographical coverage of the network.

Ballis and Golias (2002) evaluated technical and logistic developmenté to increased
economic and technical efficiency of rail-road transport terminals. The main design
parameters were identified (length and utilization of transshipment tracks, train and truck
arrival patterns, type and number of handling equipment, mean stacking height in the
storage area, terminal access system and procedures) and analysed. A comparative
evaluation of selected conventional and advanced technologies was performed by an
analysis tool developed for this purpose. The study consisted of a series of complementary
parts designed to analyses requirements for integrated terminals and rolling stock in
relation to market. fofces, transport modes, intermodal transport units, advanced
intermodal terminal technology (including tests and demonstrations of pilot equipment),
trunk haul production forms and Trans-European network effects. The analysis consisted
of three modules (an expert system, a simulation model and a cost calculation module).
The paper concluded with two groups of results: (a) A comparative evaluation of
conventional and advanced technologies, (b) A critical assessment of terminal capacity
issues. It is identified that the capacity limitations are imposed mainly by the

transshipment track sub-system rather than by the handling equipment.

Rizzoli et al. (2002) presented a simulation model for the flow of intermodal terminal units

(ITUs) within inland intermodal terminals. This module described the processes taking

16



place in an intermodal rail/road terminal based on discrete-event simulation. The basic
processes of the flow of the intermodal terminal units in the terminal had been considered
in the model. The train arrivals are defined in a train timetable, while the patterns of truck
arrivals for ITU delivery and pick-up can be either statistically modeled or given as a
deterministic input. The simulation user can define the terminal structure and test
alternative input scenarios to evaluate the impact of new technologies and infrastructures
on existing terminals. The simulator can be used to simulate a single terminal or a rail
network with two or more interconnected terminals. During the simulation, various
statistics are gathered to assess the performance of the terminal equipment, the ITU

residence time, and the terminal throughput.

24  Network Operations

The network operations face decision problems concerning infrastructure planning
(strategic level), service schedules, pricing of services (tactical level) and daily operations
of the services (operational level). Many of the studies related to intermodal infrastructure
decisions deal with the interconnectivity of modes in order to achieve intermodal transport

chains and the location of intermodal terminals.

Nozick and Morlok (1997) constructed a comprehensive model for an intermodal
rail-truck system. The objective of their model was to minimize the cost of delivery such

that the movements are physically feasible and the goods are delivered on time. They
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addressed the movement of freight from the shipper to the intermodal terminal, along the
line haul portion of the trip to another intermodal terminal, and then to the consignee.
Additionally, the model can be used for determining the optimal fleet size and the mix of

equipment as well as the costs associated with providing various levels of service.

Gorman (1998a, 1998b) considered the problem of providing train service on a set of
predetermined paths while simultaneously routing shipments to meet service requirements
in the traditional rail boxcar operational setting. Other constraints, such as yard, line, and
train capacity, are included. The formulation does not distinguish direct and indirect train
service explicitly. Certain constraints, such as meeting the demand and adhering to train
capacity constraints, may be violated with a penalty. Genetic and tabu-enhanced genetic
searches were employed to determine a train schedule. Because the genetic search
procedure does not necessarily perform well on larger problem instances, an enhanced
tabu search procedure is adopted and incorporated in the genetic algorithm. This enhanced
solution procedure provides results within 10% of the optimal solutions when compared
with an exact solution procedure for smaller problem instances under the assumption of
origin-destination independence. The procedure was then compared to current operational
procedures of a railroad assuming origin-destination interdependence. A case study was
performed on Santa Fe’s intermodal operations using this algorithm. The result showed

that great savings can be achieved.
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Powell and Carvalho (1998) proposed a dynamic model for optimizing the flows of
flatcars. The problem was formulated as a logistics queuing network that can handle a
wide range of equipment types and complex operating rules. They formulated a global
model to provide network information to local decision makers. The approach should be
relatively easy to implement given current rail operations. Initial experiments suggested
that a flatcar fleet that is managed locally, without the benefit of their network information.
It can achieve the same demand coverage as a fleet that is 10% smaller, but is managed
locally with their network information. The result shows that the gradient approximations
provided by the Logistics Queuing Network approach can be used to improve the total
contribution by 3.0% when compared to a series of myopic local problems solved over the

entire horizon.

Newman and Yano (2000) addressed a problem to determine schedules for both direct and
indirect (via a hub) trains and to allocate containers to these trains for the rail (line- haul)
portion of the intermodal trip. The objective was to minimize operating costs, including a
fixed-charge cost for the train, variable transportation and handling costs for each
container and yard storage costs, while meeting on-time delivery requirements. They
formulated the problem as an integer programming and developed a novel decomposition
procedure to find near-optimal solutions. They also developed a method to provide
relatively tight bounds on the objective function values. Finally, they compared their

solutions to those obtained with heuristics designed to mimic current operations, and
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showed that savings between 5% and 20% can be gained from using their solution

procedure.

Ziliaskopoulos and Wardell (2000) presented a time-dependent intermodal optimum path
algorithm in multimodal transportation networks. This path algorithm arises from the
development of intelligent transportation systems (ITS) and intermodal freight systems. A
simple representation of the mode-to-mode switching options was introduced that results
in a substantially improved design, with computational complexity independent of the
number of modes. A preprocessor was designed that constructs the necessary input data
from common transit timetables. The algorithm was coded, implemented, and tested on
real size networks with promising results. Computational results indicated that the
performance of the algorithm is substantially better than the worst case bound, suggesting
almost linear computational time with the number of nodes and time intervals, and

invariance to the number of modes.

Southworth and Peterson (2000) described the development. of a large and detailed
multimodal network, created and stored in digital form for use in a specific freight traffic
routing study: the 1997 United States Commodity Flow Survey. The paper focused on the
routing of the large number of intermodal freight movements. Routings involve different
combinations of truck, rail and water transportation. Selection of appropriate intermodal

routes requires procedures for linking freight origins and destinations to the transportation
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network, for modeling intermodal terminal transfers, and for generating multimodal

impedance functions to reflect the relative costs of alternative routes.

2.5  Intermodal Operations

Intermodal operators organize transportation of shipments on behalf of shippers.
Intermodal operators buy services from drayage, terminal and network operators.
Decisions made by intermodal operators deal with route and service choices in existing

intermodal networks.

Aggarwal et al. (1994) proposed a heuristic method for obtaining near solutions to the
multicommodity maximum flow and minimum cost flow problem. The heuristic was
based on identifying a solution that maximizes flow along the arcs for a single commodity.
In this case, common arc capacities are allocated among individual arcs. The solutions
were used as a solution for the multicommodity problem. Flows on the arcs were
readjusted using dual information to reallocate arc capacity. The heuristic is shown to

perform well on various instances.

Barnhart et al. (1998) presented a solution methodology for integer multicommodity flow
problem with fixed capacity constraints. They transformed the traditional formulation into
a path-based formulation in which paths from the source to the sink are explicitly

enumerated. They applied the column generation procedure to the linear relaxation of this
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problem. This procedure constructs an initial set of paths. The problem was solved with a
customized branch-and-price procedure. An improvement in these computational results
can be realized from the use of a more specialized procedure and a

branch-and-price-and-cut procedure.

Nozick and Morlok (1997) presented a thorough description of the nature of intermodal
transportation and its differences from classical boxcar operations. Boxcar and intermodel
traffic are handled‘ in different ways. Many boxcar operations use the concept of blocking,
in which groups of cars bound for destinations in close proximity, or along the same rail
line, travel together on a train. At intermediate terminals, or hump yards, these blocks are
regrouped into different trains according to their destinations. Because of the jarring
motion caused by sending the boxcars over the reclassification humps, intermodal
transportation is separated from boxcar traffic. In general, intermodal transportation has
fewer stops and reclassifications between its origin and destination than boxcar
transportation. Furthermore, intermodal transportation originates at and is bound for
intermodal terminals, as opposed to boxcar operations. The nature of the goods shipped
intermodally also differs from those sent in boxcars. Intermodal goods are not only more
fragile (e.g., finished as opposed to raw materials such as coal, gravel, or sheet metal), but

they are also more time-sensitive.

Macharis and Bontekoning (2004) reviewed operations research techniques applied to

solving intermodal transport problems. They believed that intermodal freight
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transportation research is still in a pre-paradigmatic phase and needs different types of

models from those for uni-modal transport.

Bontekoning et al. (2004) reviewed 92 publications in the area of the intermodal
transportation research. They concluded that the problems in intermodal transportation are

complex and require new knowledge to solve them.

2.6  Summary

The literature review in this chapter shows that intermodal transportation is an importation
research area for solving practical transportation problems in today’s global economy. It
also shows that different math models and solution procedures have been developed to
solve different types of intermodal transportation problem. In this research, we will
present our integer programming for the optimal minimum cost of “rail line haul” part of

intermodal transportation.
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Chapter  Three

Mathematical Formulation and Problem Structure

In this chapter, we will present our integer, discrete-time scheduling program used to

optimize the rail segment of intermodal transportation.

3.1 Problem Description

Although the intermodal transportation combines several transportation modes, our model
concentrates on rail operations. We choose this as our focus, because of the greater
potential for increasing timeliness of the entire intermodal journey by improving the

on-time performance of the rail segment.

The railroad offers several speeds of service and charges a premium for faster delivery. As
shown in Figure 3.1, containers can be sent directly from an origin intermodal terminal
O,, to a destination terminal D, without stopping at a hub H providing the fast available
service. Alternatively, trains carrying containers bound for several destinations may be
sent to a hub H, where containers with different origins but for a common destination are
consolidated onto a train outbound from the hub. This consolidation activity can lead to a

delay of up to several days. Part of the delay is due to the need to transfer containers or to
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the need to transfer containers or to reposition rail cars between trains. Further delays also

occur when inbound and outbound schedules are not coordinated.

Each train has a limited capacity, where the capacity depends upon the power of the
locomotives and the terrain over which the train will travel. Typically, for each
transportation segment, locomotive capacity is determined in advance on the basis of
demand forecasts, and from this, the train capacity is derived, expressed in terms of the

number of containers to carry.

Yard storage space for containers waiting to be shipped, awaiting a transfer at the hub, or

waiting to be picked up, is limited at all terminals. As the number of containers in storage

increases, containers are stacked higher and more densely. This increases the time required

to retrieve a container and places a further burden on material handling equipment which

may already be a bottleneck.

In this research, we develop an integer programming model for the line-haul portion of the
intermodal transportation. Given container demands differentiated by origin, destination,
arrival date at origin, and due date, the objective is to determine a train schedule and
shipment plan to minimize operational costs while meeting on-time delivery requirements

and adhering to train capacity restrictions.

We refer to a time period as a “day”. We assume that transit and hub delay times are
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deterministic and constant across the time horizon. Transit times and delays at the hub are
expressed in terms of days. We also assume that the demand, arrival date at the origin, and
the due date at the destination are known in advance or can be forecasted over the time

horizon for planning purposes.

The operation costs consist of both fixed cost and variable cost. Fixed cost includes
locomotive requirements costs and operators’ wages. We assume that equipment is
available where we need. We also assume that the capacity of a train on e‘ach
transportation segment and the fixed cost of each train on a specific segment are known.
We assign the fixed cost for a train to be approximately equal to the transportation cost per
container multiplied by the capacity of a train. We estimate the fixed costs at origin and the

hub to be commensurate to the distance traveled between locations.
The variable cost of each container consists of three parts:

) Transportation costs, such as fuel, oil, and track maintenance. We assume that the
transportation costs per container are constant over time and they depend only on the

origin-destination pair.

2) Handling costs caused for moving containers on and off the rail cars and
repositioning the rail cars at an intermediate terminal. Handling cost per container is based

on an hourly wage of yard operators and the approximate time needed to load a container
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onto a stack car. They mainly depend on the equipment used for such operations.

3) Inventory costs consist primarily of yard storage costs. Inventory costs per
container per day are asSigned a low value as a slight deterrent to occupying yard space
with containers. In actuality, the opportunity cost of capital, which constitutes most of the
holding cost, is incurred by the shipper or consignee, and not the railroad. We assume that
customers will accept early deliveries, so no inventory is held at the destinations.
Inventory cost only occurs at origins and the hub. We set that there is no inventory before

the first day, and there is no inventory in the last day.

The relative values of the parameters change between problem instances in order to reflect
particular physical settings. For example, handling costs that are lower at fhe hub than at
the origin and destination reflect greater handling requirements at the initial and terminal
nodes. This could result from the need to move containers on and off the rail cars at the
origin and destination, respectively, only to re-order rail cars at the hub. Conversely,
higher handling costs at the hub represent instances in which the containers must be
transferred between cars. Similarly, if the fixed cost of an indirect train is higher at the
origin than at the hub, it reflects a longer travel time between the origin and the hub, than
between the hub and the destination. A reverse relationship in the relative magnitude of
these fixed costs would reflect the scenario in which the origin and the hub were closer
than the hub and the destination. Although the indirect fixed costs at the origin and the hub

are each less than the direct fixed cost at the origin, the total indirect fixed cost per train is
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always more than the direct fixed cost.

To summarize, the object of our problem is to minimize the operational costs by choosing
train schedules and routes of containers. It consists of a fixed charge per train (FCOST)
with a given capacity, a transportation cost per container (TCOST), both of which
dependent on the origin and destination, handling cost per container (HCOST) dependent

upon the location, and inventory holding cost for containers (ICOST) held at origins and

hub.

3.2 Mathematical Formulation

Base on the above discussion and a careful study of the problem, integer programming is
chosen as the problem solving approach due to its simplicity and reliability because it is
straightforward to handle alternate analysis. The following sub-sections will present the

model.

3.2.1 Notation and Variable Definition

In presenting the mathematical programming model, the following notation and variables
are defined.

The parameters in the model are as follows:
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M Total number of origins
N Total number of destinations
H The only hub
T Total time span in days
J Total number of container sets arriving to all origins
K Total number of container sets sent from the hub
o, Origin, m=1, 2..M
D, Destination, n=1, 2...N
t Time (day),t=1, 2...T
J Container set, j=1,2..J
k Container set, k = 1, 2..K
® Time
., Direct shipping time from origin m to destination n
By Shipping time from origin m to the hub
B Shipping time from the hub to destination n
o Delay time at the hub
Bon Indirect shipping time from origin m to destination n
Vm Holding time at origin m
Yy Holding time at the hub H
v, Due date of container set j
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® (Cost

CFOD,,  Fixed cost of running a train directly from origin m to destination n
CFOH , Fixed cost of running a train from origin m to the hub

CFHD, Fixed cost of running a train from the hub to destination »

CTOD,,,  Unit cost of transporting a container from origin m to destination n
CTOH,, Unit cost of transporting a container from origin m to the hub

CTHD, Unit cost of transporting a container from the hub to destination »

CHO,, Handling cost of placing a container on the train at origin m

CHH Handling cost of rearranging a container at the hub

CHD, Handling cost of removing a container from the train at destination n

Ccio, Inventory cost of holding a container at origin m per day

CIH Inventory cost of holdihg a container at the hub per day

® Capacity

NTO, Maximum number of trains sent from origin m each day

NTH Maximum number of trains sent from the hub each day

NOD,, Capacity of a train (number of containers) directly from origin m to
destination n

NOH,, Capacity of a train (number of containers) from origin m to the hub

NHD, Capacity of a train (number of containers) from the hub to destination »

NIO, Maximum number of containers in inventory at origin m

NIH Maximum number of containers in inventory at the hub
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® Transportation demand

NAOD;!,

Number of containers in container set j at origin m on day ¢ to be transported

to destination n with a due date of v f

The decision variables in the model are as follows:

® Number of Containers Shipped

NSOD,,

NSOD!.,

NSOH;,

NSHD!,

NSOH!

NSHD!

NSHD!

NAHD,"

Number of containers in container set j shipped from origin m directly to
destination # at day ¢, which are required to be at destination n by day v,
Total number of containers sent directly from origin m to destination » at day
t

Number of containers in container set j shipped from origin m at day ¢ to the
hub, which are required to be at destination n by day v,

Number of containers in container set k shipped from the hub at day ¢ to
destination n

Total number of containers sent from origin m to the hub at day ¢:

Number of containers shipped from the hub at day ¢, which are required to be

at destination n by day v

Total number of containers sent from the hub to destination # at day ¢

Number of containers arriving at the hub on day ¢ bound for destination n

with a due date of day v,
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® Number of Trains sent
NTOD,,  Number of trains sent directly from origin m to destination # at day ¢
NTOH,, Number of trains sent from origin m to the hub at day ¢

NTHD; Number of trains sent from the hub to destination » at day ¢

® Inventory Number of Containers

NIO;, Inventory number of containers at origin m at day ¢

NIH' Inventory number of containers at the hub at day ¢
3.2.2 Constraints

In this section, the constraints of the integer programming model are presented in the form

of mathematical equations with explanations relevant to the planning procedure.

® Constraints about the Inventory Balance at Origin O,
As shown in Figure 3.2, each set of containers arriving at origin m will be sent from origin
m e¢ither directly to destination n or passing the hub in the following days, and they

must be sent to destination n before the due date. This can be expressed by:

Vi~ Oy vj—,B,",,
NAOD|, = > NSOD,. + > NSOH Vm,n,j,t  (3.1)
i=7

=7

The number of containers shipped directly from origin m to destination » at day ¢ should

be equal to the total number of containers in all container sets shipped directly from origin
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m to destination » at day ¢.

J
NSOD;,, => NSOD’". Vm,nt (32)

Jj=1
The number of containers shipped from origin m to the hub at day ¢ should be equal to the

total number of containers in all container sets shipped from origin m to the hub at day .

J N
NSOH, =" NSOH' Vm,t  (3.3)

J=1 n=1
The inventory number of containers at origin m at day ¢ should be equal to the total
numbers of containers of all sets arriving at origin m at day ¢ and shipped from origin m

directly to destination » or passing the hub after day .

NIO,, = iiNAOD;{n - iii(NSOD;;n + NSOH ") Vm, t<T-1 (3.4)

t=0 j=1 t=0 j=1 n=1
The total inventory number of containers at origin m at day ¢ should be less or equal to the

capacity of inventory at origin m.

!
NIO,, < NIO,, VYm, t<T-1 (3.5

There is no inventory before the first day.

NIO:' =0 Vm,t=0 (3.6)
® Constraints about the Inventory Balance at the Hub

As shown in Figure 3.3, the number of containers arriving at the hub at time ¢ bound for

destination n should be equal to the number of containers in all container sets shipped

from all origins at day (t- 8,,, ).

M J
NAHD, =" NSOH - /r Vn, B <t<T+pf. (7

Jjmn
m=1 j=1

The number of containers arriving at the hub at day ¢ bound for destination r should be
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shipped from the hub to destination » at day (¢+J') till day (v, - B,).

Vj":BHn
NAHD, = > NSHD;’ Vn, B <t<T+B, (38)

=145

The number of containers shipped from the hub to destination » at day ¢ should be equal to

the total number of containers in all sets shipped from the hub to destination » at day .

K
NSHD; = NSHD;, Vn, By +S<t<T+B,,+8 (39

k=1

The inventory number of containers at the hub at day ¢ should be equal to total numbers of
containers of all sets arriving at the hub before day (¢ + § ) and shipped from the hub to

destination n after day ¢.

NIH' = TfNAHD;— Z iﬁ:NSHD,; By +8<t<T+B. (3.10)

=B 1=y +6 k=1 n=1
The total inventory number of containers at the hub at day ¢ should be less or equal to the
capacity of inventory at the hub.
NIH' < NIH But6s<t<T+p, (3.11)
There is no inventory after day 7 + f3,,, .

NIH' =0 T+By <t<T+p,+6 (3.12)

® Constraints of Due Date
All containers should arrive at their destinations before the due date.

Yt Oy SV, Vm,n, j (3.13)

}/n1+ﬂmn+}/Hsvj ﬂmn: leH+§+ﬂHn ) Vm)na,j (314)
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® Constraints of Freight Volume
For all origins, destinations and time periods, the number of containers sent from origin m
to destination » and the hub or from the hub to destination m at day # must not exceed the

total capacity of the departure trains.

NTOD,, > NSOD,, /| NOD,, Vm,nt  (3.15)
NTOH, > NSOH! /| NOH Vm,t  (3.16)
NTHD! > NSHD. /| NHD, Vnt o (3.17)

The number of trains sent from origin m or the hub at day ¢ cannot exceed the maximum

capacity of the railway system.

N
Y NTOD,, +NTOH!, < NTO, (3.18)

n=1

N
D" NTHD, < NTH (3.19)

n=1

® Constraints on decision variables

The following constrains represent that all decision variables are nonnegative and integers.

NSOD!, 20  and integer Vm,n,t  (3.20)
NSOH! >0 and integer Vm,t 3.21)
NSHD. >0 and integer Vn,t (3.22)
NTOD, >0  and integer Vm,n,t (3.23)
NTOH! >0 and integer Vm,t (3.24)
NTHD. >0 and integer Vn,t (3.25)
NSOD;V,{ >0 and integer Vi, m,n,t (3.26)
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NSOH!’ >0
NSHD," >0
NAHD, >0
NIO!, >0

NIH 20

3.2.3 The Objective Function

and integer
and integer
and integer

and integer

and integer

Vj,m,t

Yj,m,t
Vj,m,t
Vm,t

Vit

(3.27)
(3.28)
(3.29)

(3.30)

(3.31)

The object function of this model is to minimize the total operation costs. The operation

costs consist of both fixed costs and variable costs. Fixed costs include locomotive

requirement cost and operators’ wages. Fixed cost per train with a given capacity depends

on the origin and the destination.

Fixed Cost:

FCOST = iii(CFODmn x NTOD.,)) + ii(CFOHm x NTOH,) +

t=1 m=1 n=1

ZT: i (CFHD, x NTHD!)

t=1 n=l

Variable costs of each container consist of three parts:

(1) Transportation costs, such as fuel, oil, and track maintenance. Transportation cost

per container depends on the origin and the destination.
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Transportation Cost:

T M N T M
TCOST= ) > > (CTOD,,xNSOD,,) + Y > (CTOH, x NSOH,) +
t=1 m=1 n=1 t=1 m=1
T N
Y>> (CTHD, x NSHD})
t=1 n=I
) Handling costs caused for moving containers on and off the rail cars and

repositioning the rail cars at an intermediate terminal. They mainly depend on the

equipment used for such operations.

Handling Cost:

i (CHO, x NAOD!. ) + i i (CHH x NAHD,) +

n=1 t=1 n=1

HCOST=

M"!
Mk

..,
T
3
i
L

M=
M=

>

t=1

(CHD, x NAOD. )

]
—

In

3
[

3) Inventory costs for containers held at origin and the hub consist primarily of yard

storage costs.

Inventory Cost:

T M T
ICOST= > (CIO, x NIO.,) + > (CIH x NIH")

t=1 m=1 t=1

The total cost considered in this model is the summation of the four cost items:

Total Operation Cost = FCOST + TCOST + HCOST + ICOST
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3.2.4 Mathematical Formulation

The complete mathematical formulation for minimizing total operation costs of the

considered container transportation problem in summarized below.

Min Z = [iii(CFODmanTOD,‘M) + ii(CFOmeNTOH;) +

t=1 m=1 n=1 t=1 m=1

i f (CFHD, x NTHD')1+[ i f ﬁ (CTOD,, xNSOD ) +
t=] n=1 t=1 m=1 n=l1
I N

M-
Mk

(CTOH, x NSOH') + > (CTHD,x NSHD,)]+

t=1 n=1

~
it
LA
3
o

X

[ET:Zﬁ:(CHOmeAOD;,,) + iﬁ:(CHHxNAHD,") +

t=1 m=1 n=] t=1 n=l

M~
Mk

i(CHD,, x NAOD., )]+ [if(cmm x NIO') + ZT: (CIH x NIH") ]

¢ 1 n=1 t=1 m=1 t=1

n
By
il

Subject to
vi—a, Vi =Boun
NAOD}! = Z NSOD}/, + Z NSOH Ym,n, j,t  (3.1)
t=71 t=7
J
NSOD,,, = NSOD’, Vm,nt  (3.2)
j=1
J N
NSOH,, =" NSOH,,, Vmt  (3.3)
Jj=1 n=1
T J r J N
NIO., =% NAOD;! > > (NSOD}, + NSOH /) Vmt<T-1 (3.4
=0 j=1 t=0 j=1 n=1
NIO'. < NIO,  Umgts<T-1  (35)
NIOS =0 Vm,t =0 (3.6
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NAHD, = i iNSOH‘.“ﬁmH’”f

Jjmn

Vo, BusSt<T+p,

m=1 j=1
vj_ﬂﬁn
NAHD, =  NSHD;’ Vn, By <t<T+pB .

t=1+8

K
NSHD,, = NSHD,,

k=1

NIH' = §NAHD; - Z i
=B,y t=P,p+8 k=1 n=1

NIH' < NIH

NIH' =0

VT SV,

Vo B + ¥ <V,

NTOD), > NSOD!, /NOD,,

NTOH! > NSOH' /| NOH,

NTHD. = NSHD! / NHD,

N

> NTOD,, +NTOH!, < HTO,,

n=1

N
> NTHD, < NTH

n=1

NSOD!, >0
NSOH! 20
NSHD! 20

NTOD!, 20
NTOH! 20

NTHD! >0

and integer
and integer
and integer
and integer
and integer

and integer

Y NSHD;,

Vn, Buto<t<T+p ,+3J

B+ <t<T+p,.,

By +O<t<T+p,,
T+, ,<t<T+B,,+0
Vm,n, j
Bon = Bt + 6 + By, Ymym, j
Vm,n,t
Vm,t

Vn,t

Vm,t

YVt

Vm,n,t
Vm,t
Vn,t

Ym,n,t
Vm,t

Yn,t
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(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
(3.12)
(3.13)
(3.14)
(3.15)
(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
(3.21)
(3.22)
(3.23)
(3.24)

(3.25)



NSOD.’ 20
NSOH,"' >0
NSHD." 20
NAHD," >0
NIO., >0

NIH' 20

and integer
and integer
and integer
and integer

and integer

and integer

Yj,m,n,t
Vj,m,t
Vj,m,t
Y, m,t

Ym,t

Vit

(3.26)
(3.27)
(3.28)
(3.29)

(3.30)

(3.31)

The above integer programming model can be solved directly using off-shelf optimization

software for problems considered in this research. If the size of the problems becomes

much larger with large number of integer variables, efficient solution methods should be

developed for solving such large problems.

In the next chapter, several numerical examples are provided to illustrate the model and its

solutions.
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Chapter  Four

Numerical Examples and Analysis

This chapter presents several numerical examples and the analysis on the computational
results. To demonstrate the developed model presented in Chapter Three, we consider a
netWork with two origins O, and O,, one hub H and two destinations D, and D, as
shown in Figure 4.1. The example data are generated based on those given in Newman and

Yano (2000) as shown in Table 4.1.

Table 4.1 Parameters for Test Problem Instances |

Parameter Range
Container arrival rate per day 0-65
Fixed cost at origin (direct train)($/train) 11000-15000
Fixed cost at origin (indirect train)($/train) 5000-8500
Fixed cost at hub ($/train) 6200-9800
Transportation cost ($/container) 40-100
Handling cost ($/container) 1.0-2.0
Inventory holding cost ($/container/day) 1.5-2
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Origin (O1)

Destination

(D)

Hub (H)

Origin (Oz)

Destination

()

Figure 4.1 Network with Two Origins, One Hub and Two Destinations

45




4.1  Features of the Example Problems

In this example, containers can be sent directly from the two origins to the two
destinations or indirectly passing the hub H. The direct travel time between any origin and
any destination is four days, and indirect travel time is six days, which includes two days'
travel time from the origin to the hub, three days' travel time from the hub to the

destination, and one day of delay at the hub.

Figure 4.2 illustrates that containers are shipped directly from origins O, and O, to
destinations D, and D, or indirectly passing the hub H. Data related to container
transportation demands considered in this example are given ih Table 4.2. It shows the
time, the containers are ready to be transpdﬁed; the size of the container sets, their origins

and destinations of transportation and their due dates.
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Origin (O1) )
(Day0) |7
Origin (02) ||
(Day 0)
H R Destination
[ TT~(Day 3) (DY)
Origin (O1)
Dayl) || S
Origin (02) C H N
(Day1) y 4)
Destination
(D7)
Origin (O1) |,
Oy2) |]
N
Days) |
Origin (02)
(Day2)

Figure 4.2 Figure of Network with Two Origins and Two Destinations
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Table 4.2 Transportation Demand and Due Date

Available | Container Set Number of Due Date
Origin Destination
On Number () Containers (v;)
1 380 o) Di 7
2 220 01 D1 5
3 160 02 D1 8
Day 0
4 150 (0)} D2 6
5 100 02 D> 7
6 160 o D2 4
7 165 01 D1 6
8 100 01 D1 5
Day 1 9 220 O Di 7
10 160 01 D> 8
11 160 02 D> 4
12 130 (0)} Di 5
13 105 02 Di 6
Day 2
14 120 01 D2 4
15 160 02 D2 7
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4.2  Determining Optimal Routing and Scheduling

Table 4.3 presents the data for the first example, Example L. In this example, we assume

that there is no limit on the number of trains sent from the origins and the hub.

Example 1
Table 4.3 Data for Example I

Train capacity (container/train) 100
Fixed cost from origin to destination ($/train) 11000
Fixed cost from origin to hub ($/train) 5500
Fixed cost from hub to destination ($/train) 6500
Transportation cost from origin to destination ($/container) 100
Transportation cost from origin to hub ($/ coﬁtainer) 50
Transportation cost from hub to destination ($/container) 60
Handling cost at origih ($/container) 2
Handling cost at hub ($/container) 2
Handling cost at destination ($/container) 2
Inventory cost at origin ($/container/day) 1.5
Inventory cost at hub ($/container/day) 2
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The integer programming model developed in Chapter Three was solved with the given
data by LINGO 8.0 software on a PC computer. The optimal solution was obtained after
56 seconds of computation. The solution is presented in Table 4.4 - Table 4.6. The
corresponding optimal objective function value is 540497.5. Table 4.7 shows the routings

of the containers considered in the Example.

Table 4.4 Optimal Solution for Example I: Day 0

.. Oriein O
rom Origin O rigin O:
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
oy j=1 380 j=3 100
Destination 600 100
Dy
j=2 220
| =4 150 | j=5 40
Destination 150 200
Do
J=6 160
j=3 60
Inventory 120
j=35 60
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Table 4.5 Optimal Solution for Example I: Day 1

Origin O, Origin O:
rom
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
. j=7 165 J=9 200
Destgatlon 200 200
1
j=8 35
.. j=10 100 j=3 40
Dest;matlon 100 200
2
j=11 160
j=38 65 j=3 60
Inventory | j=10 60 125 j=35 20 100
j=9 20
Table 4.6 Optimal Solution for Example I: Day 2
rom Origin O Origin O2
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
j=8 65 j=3 60
Destination | . _ 130 195 | j=9 20 185
D:
j=13 105
. j=10 60 j=3 20
Destglatlon 180 180
2
j=14 120 j=15 160
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Table 4.7 Routing and Scheduling of Example I

Container Set Transportation
Rout
Number (/) oute and Schedule Time (Day)
] 380 (Day o 2
2 220 (Day o 2

60 (Day 2]

100 (Day O

é/

150 (Day 0

i
;

0 (Day 9,

40 (Day 1

i
f}\
[N
2
\O/
o]
M
EoN

20 (Day 2

160 (Day 0y

165 (Day 1)

00

Y
v
)

00

~
0

35(Day 1

65 (Day 2

it
o

200 (Day 1

20 (Day 2

it

Ve

100 (Day 1
60 (Day 2

11 160 (Day 1 2

12 130 (Day 2 2

] 3 105 (Day 2 2

1 4 120 (Day z 2

15 l60 (Day 2 2
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From this result we can see that the total number of trains sent from origin Or is 15, the
total number of trains sent from origin O: is 11, and there is no train sent from the Hub H.

All containers arrive at their destinations before or on their due dates.

Example 11

In this example, we investigate the situation when the fixed and variable costs are different
from those in Example I. In particular, the fixed cost is reduced from $5500 and $6500.

The new set of data is shown in Table 4.8.

With the information presented above used in the integer programming model, the optimal
solution was found by LINGO 8.0. The optimal solution is presented in Table 4.9 - Table
4.14. Figure 4.3 is the sketch map. The corresponding optimal objective function value is

$472680. Table 4.15 is the routing and scheduling of Example II.

From this result we can see that the total number of trains sent from origin O: is 15, the
total number of trains sent from origin Oz is 11, and the total number of trains sent from
the Hub H is 15. So, the total number of trains used is 41. Comparing to the results in

Table 4.7 of Example I, we can see that some of the containers are shipped indirectly.
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Table 4.8 Data for Example II

The limited containers number of the train (container/train) 100
Fixed cost from origin to destination ($/train) 11000
Fixed cost from origin to hub ($/train) 2500
Fixed cost from hub to destination ($/train) 2800
Transportation cost from origin to destination ($/container) 50
Transportation cost from origin to hub ($/container) 25
Transportation cost from hub to destination ($/container) 28
Handling cost at origin ($/container) 25
Handling cost at hub ($/container) 22
Handling cost at destination ($/container) 20
Inventory cost at origin ($/container/day) 3
Inventory cost at hub ($/container/day) 2
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Table 4.9 Optimal Solution for Example II: Day 0

.. ioin O
rom Origin Or Origin O:
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
Destination =2 200 200
Dy
Destination J=3 40
200
D; .
j=6 160
j=1 380 j=3 160
Hub
I . 530 . 180
j=4 150 j=3 20
Inventory | j=2 20 20 j=3 40 40
Table 4.10 Optimal Solution for Example II: Day 1
rom Origin O: Origin O2
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
j=2 20
Destination
= 100
D j=7 50
j=8 30
Destination j=3 40
D 200
j=11 160
j=7 115 j=9 200
Hub
o 195 200
Jj=10 80
j=8 70 j=9 20
Inventory 150 20
j=10 80
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Table 4.11 Optimal Solution for Example II: Day 2

Origin O: Origin O:
rom
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
Destinati j=8 70
estination
D 200
j=12 130
Destiati Jj=10 80
estination
D 200
j=14 120
j=9 20
Hub
; =13 105 285
j=15 160
Table 4.12 Optimal Solution for Example II: Day 3
Hub H
rom
Sent to . .
Set Number Shipped Containers Total Number
Destination j=1 380
IS 500
j=3 120
Destination J=4 150
270
D2 .
Jj=3 120
Inventory j=3 40 40
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Table 4.13 Optimal Solution for Example II: Day 4

Hub H
rom
Sent to . .
Set Number Shipped Containers Total Number
j=3 40
Destination .
Di j=7 115 300
j=9 145
Destination =10 20 20
D:
Inventory j=9 55 55
Table 4.14 Optimal Solution for Example II: Day 5
Hub H
rom
Sent to . .
Set Number Shipped Containers Total Number
L. j=9 75
Destination
180
D:
j=13 105
Destination .
D j=15 160 160
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Table 4.15 Routing and Scheduling of Example II

Container Set Transportation
, Route and Schedule . P
Number () Time (Day)
] 380 (Day 0)’@380 (Day 3 6
200 (Day O;
’ é 3 3
20 (Day 1
120 (Day 3
’ *@ '
160 (Day O 40 (Day 4’
4 150 (Day 0@150 (Day 3 6
40 (Day 0
40 (Day 1
50 (Day 1
7 Qe OO 6
115 (Day 1 115 (Day 4
30 (Day 1
8 3
O1 70 (Day 2) » D1
200 (Day 145 (Day 4),
’ @ ) !
20 (Day 2 75 (Day 5;
80 (Day 2.
T @D |
80 (Day 1 80 (Day 4
12 @ s ‘@ 2
]3 105 (Day 2»@-105 (Day 5 6
]5 160 (Day 2@160 (Day 5 6
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Figure 4.3 Sketch Map of Example 11
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4.3  Optimal Solution Analysis

As shown in Example I and Example Il, the variation of the input data will change the
optimal solution obtained from the model. For recognizing the critical factors on the
economical performance, we will carry out the following experiments for the analysis on:
<% Increase the number of available locomotives

< Increase the power of the locomotives

< Increase the inventory capacity at the origins and the hub

4.3.1 The Impact of the Total Number of trains

The number of locomotives is an important factor in railway trahsportation. In the
following computational tests, we will investigate the impact of the number of

locomotives on the quality of the solutions and the transportation costs.

Example 111

Test 1

In this test, we use the same data for Example II, except that the total number of trains sent
from origin O/, O2 and H is 40. The optimal solution with this limit is presented in Table
4.16-Table 4.21. The corresponding optimal objective function value is $475860. Table

4.22 is the routing and scheduling of Test 1.
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Table 4.16 Optimal Solution for Test I: Day 0

Origin O Origin O
rom
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
Destination | 7 ! 80
D 300
7
j=2 220
Destination J=9 40 200
D2 .
j=6 160
j=1 300 j=3 160
Hub
o ‘ 450 . 180
j=4 150 j=3 20
Inventory j=3 40 40
Table 4.17 Optimal Solution for Test I: Day 1
oin O Origin O
om Origin O rigin O:
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
Destination | 7~ 7 70
D 100
i)
j=8 30
Destination J=5 40
200
D:
j=11 160
j=7 95 j=9 200
HI‘;b 175 200
j=10 80
j=8 70 j=9 20
Inventory 150 20
j=10 80
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Table 4.18 Optimal Solution for Test I: Day 2

Origin O Origin O:
rom
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
Destinat; j=8 70
estination
D 200
j=12 130
Destinati j=10 80
estination
D 200
j=14 120
j=9 20
Hub
; j=13 105 285
j=15 160
Table 4.19 Optimal Solution for Test I: Day 3
Hub H
rom
Sent to . .
Set Number Shipped Containers Total Number
Destination J=1 300
D 400
j=3 100
Destination j=4 150
170
D> .
J=35 20
Inventory j=3 60 60
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Table 4.20 Optimal Solution for Test I: Day 4

Hub H
rom
Sent to . .
Set Number Shipped Containers Total Number
j=3 5
Destination .
D j=7 95 300
j=9 200
Destination
D2 j=10 80 80
Inventory ji=3 55 55
Table 4.21 Optimal Solution for Test I: Day 5
Hub H
rom
Sent to . .
Set Number Shipped Containers Total Number
Jj=3 55
Destination =9 20 180
D
j=13 105
Destinati
estination =15 160 160
D:
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Table 4.22 Routing and Scheduling of Test I

Container Set Transportation
hedul
Number () Route and Schedule Time (Day)

80 (day O,

|

300 (Day O 300 @ay 3

220 (Day O

i
:

100 (Day 3,

[e 2]

3 lGO(DayO S (Day 4;
55 (Day S¥
4 150 (Day 0)@—\50 Day 3 6
40 (Day O,
40 (Day 1
6 @ 160 (Day 0

70 (Day 1

95 (Day 1»@—95 (Day 4

~
) 4
° @
[\

30 ay 1

70 (Day 2|

I\
y

200 (Day 1), 200 (Day 4),

20 (Day 2 20 (Day 5

o

80 (Day 2

10

80 (Day 1 80 (Day 4

N

/
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Test 11

In this test run, the only difference from Test I is that the total number of trains sent from
origin O1, Oz and H is 39. The optimal solution was found after 3 minutes and 34 seconds
of computation. The optimal solution is presented in Table 4.23-Table 4.28. The

corresponding optimal objective function value is $479060. Table 4.29 is the routing and

scheduling of Test II.
Table 4.23 Optimal Solution for Test II: Day 0
om Origin O Origin O:
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
Destination | 7 ! 180
400
Dy .
j=2 220
Destination j=3 40
200
D: .
j=6 160
j=1 200 j=3 160
HI‘;b 350 180
j=4 150 j=35 20
Inventory j=35 40 40
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Table 4.24 Optimal Solution for Test II: Day 1

Origin Or Origin O:
rom
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
Destinati
estination =8 100 100
D
Destination J=3 40
D 200
j=11 160
j=7 95 j=9 200
H]‘;b 175 200
j=10 80
j=7 70 j=9 20
Inventory 150 20
j=10 80
Table 4.25 Optimal Solution for Test II: Day 2
Origin O: Origin O:
rom
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
Destinati j=7 70
estination
Di 200
j=12 130
Destinati j=10 80
estination
D, 200
j=14 120
j=9 20
Hub
I j=13 105 285
j=15 160
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Table 4.26 Optimal Solution for Test II; Day 3

Hub H
rom
Sent to . .
Set Number Shipped Containers Total Number
Destination j=1 200
D 300
! j=3 100
Destination J=4 150
D 170
j=35 20
Inventory j=3 60 60
Table 4.27 Optimal Solution for Test II: Day 4
Hub H
rom
Sent to . .
Set Number Shipped Containers Total Number
j=3 5
Destination .
D j=7 95 300
j=9 200
Destination =10 20 20
D:
Inventory j=3 55 55
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Table 4.28 Optimal Solution for Test II: Day 5

Hub H
rom
Sent to . .
Set Number Shipped Containers Total Number
j=3 55
Destination =8 20 180
D;
j=13 105
Destination i=1s 160 160
D2 '
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Table 4.29 Routing and Scheduling of Test 11

Container Set Transportation
Route and Schedul .
Number (5 ) oute and scheduie Time (Day)
180 (day O’
’ Cormemm G Jromenno) 6
200 (Day 0 200 (Day 3

220 (Day O

i
:

100 (Day 3).
3 l60 (Day 0 5 (Day 4 ° 8
55 (Day SY
4 150 (Day o»@lso (Day 3 6
40 (Day O
5 ° 20 (Day oy@m (Day 3 ° 6
40 (Day 1
6 160 (Day O a 2
70 (Day 1
7 ° 95 (Day 1)—’@—95 (Day 4. a 6

100 (Day 1

i
:

200 (Day 1), 200 (Day 4),

20 (Day 2 20 (Day 5,

o}

80 (Day 2

80 (Day x)—p@——so (Day 4;

10

oo}

117 160 (Day 1 2
12 130 (Day 2 2
13 105 (Day 2»@105 (Day 5 6
14 @ 120 (Day 2) @ 2
1 5 160 (Day 2»@160 (Day s 6
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Other Tests

Several other test runs were conducted based on the same input data with the total number
of trains sent from origin O;, O:zand H varying from 25 to 41. The optimal solutions for

these run are presented in Table 4.30.

From Table 4.30 we can see that (1) when the total numbers of trains’ decreases, the
number of trains’ from the hub decreases, the number of trains’ from the origins do not
change and the total cost increases as shown in Figure 4.4. We can increase investment of
purchasing locomotive to decrease transportation cost. (2) Hub is very important. (3) We
can increase handling efficiency of locomotives and transportation efficiency. (4) When
the total number of trains is 26, all of containers are shipped directly from origins to
destinations. Table 4.31 - Table 4.33 show the optimal solution in this case. (5) When the
total number of trains is less than 26, the problem is infeasible. Table 4.34 is the routing

and scheduling of the test when total number of trains is 26.
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Table 4.30 Summary of Example III

Nrmber | ot | of s | NUmberof | Tol Cost | Clelation

of trains in O1 in O2
41 15 11 15 472680 0:10
40 15 11 14 475860 1:37
39 15 11 13 479060 3:34
38 15 11 12 482260 10:58
37 15 11 11 485460 12:05
36 15 11 10 488660 11:49
35 15 11 9 491860 26:02
34 15 11 8 495060 26:52
33 15 11 7 498260 24:15
32 15 11 6 501460 13:34
31 15 11 5 504660 8:25
30 15 11 4 507920 2:01
29 15 11 3 511240 0:39
28 15 11 2 515055 0:10
27 15 11 1 518755 0:04
26 15 11 0 523585 0:01
25 Infeasible

I
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520000
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480000

470000
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490000
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1

Figure 4.4 Total Cost vs. Total Number of Trains

Table 4.31 Optimal Solution When the Total Number of Trains is 26: Day 0

rom Origin O Origin O
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
L j=1 380 j=3 100
Destination 600 100
D
j=2 220
L. j=4 100 j=35 40
D
estination 100 200
D>
J=6 160
j=4 50 j=3 60
Inventory 50 120
j=3 60
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Table 4.32 Optimal Solution When the Total Number of Trains is 26: Day 1

Origin O Origin O2
rom
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
. j=7 165 j=3 60
Destination 200 200
Dy ,
j=8 35 j=9 140
o j=4 40 j=3 40
Destination 200 200
D2
j=10 160 j=11 160
j=4 10 j=3 20
Inventory 75 100
j=8 65 j=9 80

Table 4.33 Optimal Solution When the Total Number of Trains is 26: Day 2

com Origin O: Origin O:
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
L j=8 65 j=9 80
Destglatlon 195 185
j=12 130 j=13 105
o j=4 10 j=35 20
Destination 130 130
D:
j=14 120 j=15 160
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Table 4.34 Routing and Scheduling of Test When the Total Number of Trains is 26

Container Set Transportation
Number (/) Route and Schedule Time (Day)
] 380 (Day 0 5
2 220 (Day o 3

100 (Day O,

60 (Day 1

i
o

00 (Day O;

40 (Day 1

'
/@\
Y
g
v

10 (Day 2

40 (Day O

(Day 1

Y

9]

N
9.}

“
P\
I

20 (Day 2

160 (Day O,

:

165 (Day 1

i
|

5(Day 1

65 (Day 2

i
g

140 (Day 1

80 (Day 2

It
o
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4.3.2 'The Impact of the Power of the Locomotives

We use the next example, Example IV, to investigate the impact of the power of the
locomotives on the problem solution. The power of a locomotive can vary in terms of the
number of containers it can take. In this example, we use the same data as in example II
except assuming that the locomotives can take 100 to 125 containers. The solutions are
shown in Table 4.35. Figure 4.5 shows the relationship between the total operation cost
and the number of containers taken by the trains. As we can see, when the capacity of train

increases, the total operation cost decreases and the total number of trains decreases.

Example IV
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Table 4.35 Optimal Solutions with Different Train Capacity

Maximum | Number | Number | Number Total
Containers of of of Number Total Cost | Calculation
Number of | Trains | Trains | Trains : )] Time
of Trains
Train at O, at O: at H
100 15 11 15 41 472680 0:10
105 14 11 14 39 466470 0:16
110 14 10 13 37 461070 0:04
115 13 10 13 36 452620 0:01
120 12 10 13 35 442190 0:04
125 12 10 12 34 438660 0:05
475000 1\
470000 \
- 465000 \
&
< 460000 \
§ 455000 \\
§ 450000 N
|t
445000 + \\
440000 —
435000 . | ; : 1
100 105 110 115 120 125

Limited Containers Number of Train

Figure 4.5 Total Cost vs. Limited Containers Number of Train

76




4.3.3 Increasing Inventor Capacity at an Origin or Hub

In the next example, Example V, we vary the capacity of the inventory level at an origin or
at the hub. We assume that the number of containers that can be held at these locations
varies from 90 to 200. The solutions are presented in Table 4.36. Figure 4.6 shows the
relationship between the total operation cost and the capacities of inventory. As we can see,
when the capacities of inventory increases, the total operation costs decrease and the total
number of trains decreases. The cost deduction is less significant when the inventory level
is more than 80 containers. When the inventory level is more than 150 containers, the total

operation cost and the total number of trains do not change.

Example \4
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Table 4.36 Optimal Solutions with Different Capacities of Inventory

I(rjlii:t::)tr};(;ft‘ Numbgr Numbpr Numb.er erl;?rizler Total Calculation
an Origin or of Trains | of Trains | of Trains of Cost (5) Time
the Hub at o1 at 02 atf Trains

200 15 11 15 41 472680 0:18
190 15 11 15 41 472680 0:18
180 15 11 15 41 472680 0:20
170 15 11 15 41 472680 0:09
160 15 11 15 41 472680 0:10
150 15 11 15 41 472680 0:09
140 15 11 15 41 472930 0:05
130 15 11 15 41 473150 0:03
120 15 11 1»5. _ 41 473390 0:02
110 15 11 15 41 473630 0:01
100 15 11 15 41 473870 0:01
90 15 11 15 41 474115 0:00
80 15 11 15 41 474430 0:01
70 16 11 15 42 477195 0:01
60 16 11 16 43 479900 0:02
50 16 11 16 43 480140 0:01
40 17 11 16 44 482885 0:02
30 17 11 17 45 486040 0:02
20 17 11 18 46 489190 0:02
10 17 13 17 47 497710 0:04

0 17 13 18 48 500950 0:01
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495000 \X
490000
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480000

475000

470000 1 T [ ;
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Figure 4.6 Total Cost vs. Capacities of Inventory

44  Optimal Combinations of the Tested Parameters

From the results of the previous examples, we selected a new set of the values of the
parameters as shown as in Table 4.37. The optimal solution based on this set of data is
presented in Table 4.38-Table 4.43. The corresponding optimal objective function value is

3474430. Table 4.44 is the routing and scheduling for this example, Example VL
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Example VI

Table 4.37 Data for Example VI

The limited containers number of the train (container/train) 100
Total number of trains (train) 41
Capacity of inventory at an origin or the hub (container) 80
Fixed cost from origin to destination ($/train) 11000
Fixed cost from origin to hub ($/train) 2500
Fixed cost from hub to destination ($/train) 2800
Transportation cost from origin to destination ($/container) 50
Transportation cost from origin to hub ($/container) 25
Transportation ;Jést from hub to destiﬁatién ($/container) 28
Handling cost at origin ($/container) 25
Handling cost at hub ($/container) 22
Handling cost at destination ($/container) 20
Inventory cost at origin ($/container/day) 3
Inventory cost at hub ($/container/day) 2

80



Table 4.38 Optimal Solution for Example VI: Day 0.

Origin O: Origin O2
rom
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
Destination =2 200 200
D1
Destination J=3 40
200
D: .
j=6 160
j=1 360 j=3 160
HI‘;b 500 180
j=4 140 j=3 20
j=1 20 j=3 40
Inventory | ;=2 20 50 40
j= 10
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Table 4.39 Optimal Solution for Example VI: Day 1

Origin Os Origin O:
rom
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
Destination | 7 2 20 100
Dy
j=8 80
Destination J=3 40
200
D:
j=11 160
j=7 135 j=9 200
Hub
o 295 200
j=10 160
j=1 20 j=9 20
j=4 10
Inventory 80 — 20
j=7 30
j=38 20
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Table 4.40 Optimal Solution for Example VI: Day 2

Origin O Origin O:
rom
Sent to Set Demand Total Set Demand Total
Number | Transportation | Number | Number | Transportation | Number
j=1 20
Destination =7 30
D 200
1
j=8 20
j=12 130
Destination | 7 4 10
130
D2
j=14 120
j=9 20
Hub
13 =13 105 285
j=15 160
Table 4.41 Optimal Solution for Example VI: Day 3
Hub H
rom
Sent to . .
Set Number Shipped Containers Total Number
Destination J=1 360
500
Dy
j=3 140
Destinati
estination =4 100 100
D:
j=3 20
Inventory j=4 40 80
j=3 20
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Table 4.42 Optimal Solution for Example VI: Day 4

Hub H
rom
Sent to . .
Set Number Shipped Containers Total Number
Destination J=7 135
D 300
! j=9 165
Destination j=4 40
D 200
’ j=10 160
j=3 20
Inventory j=3 20 75
j=9 35
Table 4.43 Optimal Solution for Example VI: Day 5
Hub H
rom -
Sent to . .
Set Number Shipped Containers Total Number
j=3 20
Destination j=9 55 180
Dy
j=13 105
o j=3 20
Destination 130
D:
j=15 160
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Table 4.44 Routing and Scheduling of Example VI

Container Set Transportation
Number (/) Route and Schedule Time (Day)

20 (day 2’
1 >

200 Day O

140 (Day 3),

: oo 6

10 (Day 2.
4

40 (Day O

20 (Day o»@zo ay 5]

40 (Day 1

W

6 FlGO (Day O

30 (Day 1

135 (Day 1@135 {Day 4

~
[\

80 (Day 1

D1’

20 (Day 2

Co
@\
Y
w

200 (Day 1), 165 (Day 4),

20 (Day 2 55 (Day 5

0)
ol
0

10 160 (Day 1 160 (Day 4]

0
e
®

11

160 (Day 1

b

i

12

130 (Day 2

) 4
@
[\

13

105 (Day 2 105 (Day 5.

0
g

14 O 120 (Day 2;

y
@
M
N

9jl0/l0

g
¢

15

160 (Day 2 160 (Day 5

85




4.5  Summary

In this chapter, the integer programming model for the line-haul portion of intermodal
transportation was tested by several realistic example problems using several data sets
modified after published cases. Using a network with two origins, one hub and two
destinations, we carried out several experiments with vary number of locomotives,
locomotive power and inventor capacity at an origin or the hub. The main observations

from these experiments are:

(1) Increasing the number of locomotives properly can decrease the total operation
cost. When the total number of trains decreases, the number of trains in the hub is
decreased, the number of trains in the origins does not change and total cost increases. The
hub is very important in intermodal freight transportation. Operation cost will increase
greatly without the hub. One should also consider more investment on locomotive to

decrease total transportation cost.

2) Increasing locomotive power is also effective to decrease the total cost. When the
train capacity increases, the total operation cost decreases and the total number of trains

decreases.

3) When the inventory level increases, the total operation cost decreases and the

total number of trains decreases. The cost reduction is less significant when the inventory
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capacity exceeds certain level.
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Chapter  Five

Conclusions and Future Research

In this chapter, we first briefly summarize the research done in this thesis and then discuss

some future work topics in this area.

51  Summary

In this thesis, an integer programming model was developed to provide optimal solutions
to the problem of determining train scheduling and container routing decisions in an
intermodal transportation system. The model can be solved to obtain optimal solutions of
different problem settings of practical sizes within reasonable computation time on PC

computers. The main contributions of this work include:

(1) The development of a generic mathematical model to find optimal solutions for a

certain type of problems arising in supply chain management.

2) Solving realistic problems with hypothetical data sets.

3) Experimentation in investigating different features of the model and the impacts
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of various factors on the optimal solutions. The investigated factors include capacity of
railway network, power of trains and inventory capacity limits at the origin and the hub in

the considered network.

To our knowledge, this is a new attempt in modeling this type of problems and there are no

existing model and computational results in the current literature.

The developed model is not limited to applications within the railway industry. The model
can be applied to solving problems in other transportation systems involving tradeoffs
between direct transportation and indirect transportation through one or more hubs with
demand being freight or passengers. For example, commercial airlines face decisions
regarding the time-cost trade-off of sending their passengers on direct versus connecting
flights. Express delivery companies may route their packages through hubs to save cost.
The developed model could be extended without much difficulty to solving problems in
those applications. Similar or more extensive analysis can be performed to obtain more
conclusive results in solving such problems. This research also demonstrates that
mathematical programming is a powerful and effective approach in obtain solutions for
complicated optimization problems such as railway operation scheduling problems
studied in this thesis. It requires careful data collection and data processing in conjunction
with model developing. The optimal solutions reached by solving the validated model
with correct data sets can provide the users with references and guidelines in practical

operations.
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5.2. Future Work

The model developed in this thesis is based on a realistic but rather simple network with a
single hub. This is based on a typical railway segment of intermodal transportation. The
model can be extended to include more hub locations in more general transportation
systems including ocean, highway and air transportation system segments. As for the
presented model itself, it may be further extended to allow certain flexibility of the train
capacity. That is, the number of containers in a train is able to take may be within a certain
limited range, rather than being rigid with a fixed number. Such flexibility normally exists
in real world railway operations. Another realistic consideration may be built into the
model is the flexibility of the due dates for container transportation. This can be imposed

by associating penalty terms with the lateness of container deliveries at the destinations.

The above mentioned model modification and variations will lead to more complexity of
the developed model. The increase of the complexity will be more significant if the model
is modified to solving problems with multiple hubs in the network. In this research, we
used an off-shelf optimization software to solve the example problems directly. The size of
the model and the number of integer variables do not require excessive computational time
using the direct solution approach to obtain optimal solutions for various problems with
assumptions consistent with practical railway operations. However, if the above
mentioned model modifications take place, effective and efficient solution methods must

be developed to overcome the computational deficiencies resulted from the model
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complexity. Developing such methods based on proven and new heuristic algorithms to

solve the more complicated models is also one of the tasks in future research in this area.

91



References

Aggarwal, C. C., Orlin, J. B. and Tai, R. P., 1994. Optimized crossover for the
independent set problem. Research Report. Operations Research Center, MIT,
Cambridge, MA.

Ballis, A. and Golias, J., 2002. Comparative evaluation of existing and innovative
rail-road freight transport terminals. Transportation Research, Part A, No.36, pp.
593-611.

Barnhart, C., Hane, C. and Vance, P., 1998. Using branch-and-price to solve
origin—destination integer multicommodity flow problem. Operations Research, Vol.
32, No. 3, pp.208-220.

Bixby, R. E. and Lee, E. K., 1998. Solving a truck dispatcﬁiﬁg scheduling problem
using branch-and-cut. Operations Research, Vol. 46, No. 3, pp. 355-367.
Bontekoning, Y. M., Macharis, C. and Trip, J. J., 2004. Is a new applied
transportation research field emerging? — A review of intermodal rail-truck freight
transport literature. Transportation Research, Part A, No. 38, pp.1-34.

Caprara, A., Fischetti, M. and Toth, P., 2002. Modéling and solving the train
timetabling problem. Operations Research, Vol. 50, No. 5, pp. 851-861.

Choong, S., Cole, M.H. and Kutanoglu, E., 2002. Empty container management for
intermodal transportation networks. Transportation Research, Part E, Vol. 38, No. 6,
pp. 423-438.

Cordeau, J. F.,, Toth, P. and Vigo, D., 1998. A survey of optimisation models for train

92



10.

11.

12.

13.

14.

15.

16.

17.

routing and scheduling. Transportation Science, Vol. 32, No. 4, pp. 380-404.
Forkenbrock, D. J., 2001. Comparison of external costs of rail and truck freight
transportation. Transportation Research, Part A, No.35, pp. 321-337.

Geng, G and Li, L. X, 2001. Scheduling railway freight cars. Knowledge-Based
Systems, No.14, pp. 289-297.

Golob, T. F. and Regan, A. C., 2002. Trucking industry adoption of information
technology: a multivariate discrete choice model. Transportation Research, Part C,
No.10, pp. 205-228.

Golob, T. F. and Regan, A. C., 2000. Trucking industry perceptions of congestion
problems and potential solutions in maritime intermodal operations in California.
Transportation Research, Part A, No.34, pp. 587-605.

Golob, T. F. and Regan. A. C., 2000. The percéfvéd usefulness of different sources of
traffic information to trucking operations. Transportation Research, Part E, No.34, pp.
97-116.

Gorman, M. F., 1998a. An operating plan model improves service design at Santa Fe
railway. Interfaces, Vol. 28, No. 4, pp. 1-12.

Gorman, M. F., 1998b. An Application of Genetic and Tabu Search to the Train
Scheduling Problem. Annals of Operations Research, No. 78, pp. 51-69.

Holmberg, K., Joborn, M. and Lundgren, J. T., 1998. Improved empty freight car
distribution. Transportation Science, Vol. 32, No. 2, pp. 163-173.

Kozan, E., 2000. Optimizing container transfers at multimodal terminals.

Mathematical and computer modeling, No. 31, pp. 235-245.

93



18.

19.

20.

21.

22.

23.

24.

25.

26.

Kraft, E. R., 2002. Scheduling railway freight delivery appointments using a bid price
approach. Transport Management, No.36, pp.145-165.

Lingaya, N. and Cordeau, J. F., 2002. Operational car assignment at VIA Rail Canada.
Transportation Research, Part B, Vol. 36, No.9, pp. 755-778.

Macharis, C. and Bontekoning, Y. M., 2004. Opportunities for OR in intermodal
freight transport research: A review. European Journal of Operational Research,
No.153, pp. 400-416.

Mancuso, P. and Reverberi, P., 2003. Operating costs and market organization in
railway services. The case of Italy, 1980-1995. Transportation Research, Part B, No.
37, pp. 43-61.

Marin, A. and Salmeron, J., 1996. Tactical design of freight networks. Part I: Exact
and heuristic methods. European J dufnal of Operational Research, Vol. 90, No. 1, pp.
26-44.

Morlok, E. K. and Spasovic, L. N., 1995. Approaches for improving drayage in rail
truck. Research Report, University of Pennsylvania.

Morlok, E. K. and Chang, D. J., 2004. Measuring capacity flexibility of a
transportation system. Transportation Research, Part A, No. 38, pp.405-420.
Newman, A. M. and Yano, C. A., 2000. Scheduling direct and indirect trains and
containers in an intermodal setting. Transportation Science, Informs, Vol. 34, No.3, pp.
256-270.

Nozick, L. K. and Morlok, E. K., 1997. A model for medium-term operations

planning in an intermodal rail-truck service. Transportation Research, Part A, Vol. 31,

94



27.

28.

29.

30.

31.

32.

33.

34.

No. 2, pp. 91-107.

Powell, W. B. and Carvalho, T. A., 1998. Real-time optimization of containers and
flatcars for intermodal operations. Transportation Science, Vol. 32, No. 2, pp.
110-126.

Racunica, I. and Wynter, L., 2005. Optimal location of intermodal freight hubs.
Transportation Research, Part B, No.39, pp. 453-477.

Rizzoli, A. E., Fornara, N. and Gambardella, L. M., 2002. A simulation tool for
combined rail/road transport in intermodal terminals. Mathematics and Computers in
Simulation, No.59, pp. 57-71.

Southworth, F. and Peterson, B. E., 2000. Intermodal and international freight
network modeling. Transportation Research, Part C, No.8§, pp. 147-166.

Taylor, G. D., Broadstreet, F., Meinert, T. S. and Usher, J. S., 2002. An analysis of
intermodal ramp selection methods. Transportation Research, Part E, No.38, pp.
117-134.

Trip, J. J. and Bontekoning, Y., 2002. Integration of small freight flows in the
intermodal transport system. Journal of Transport Geography, Vol. 10, No. 102, pp.
221-229.

Yano, C. A. and Newman, A. M., 2001. Scheduling trains and containers with due
dates and dynamic arrivals. Transportation Science, Vol. 35, No. 2, pp. 110-126.
Ziliaskopoulos, A. and Wardell, W., 2000. An intermodal optimum path algorithm for
multimodal networks with dynamic arc travel times and switching delays. European

Journal of Operational Research, No.125, pp. 486-502.

95



Appendix

Code of an Integrated Methodology for Choosing

Routing and Scheduling of Intermodal Freight Transportation

! The objective;

[TTL_COSTIMIN = FCOST + TCOST + HCOST + ICOST;

! The demand constraints;
! FOR ORIGIN A, B;
I DAYI,
NS1ACI + NS1AH1IC + NS1AC2 + NS1AH2C + NS1AC3 = 380;
NS2ACI + NS2AC2 = 220;
NS6BC1 + NS6BH1C + NS6BC2 + NS6BH2C + NS6BC3 + NS6BH3C = 160;
NS9ADI! + NSSAHID + NS9AD2 + NS9AD3 = 150;
NS10BD1 + NS10BHI1D + NS10BD2 + NS10BH2D + NS10BD3 = 100;
NS11BD1 = 160;
- NS1AC1 - NS2AC1 + NSAC1 = 0;
- NS9ADI + NSAD1 =0;
-NS6BC1 + NSBC1 = 0;
- NS10BD1 - NS11BD1 + NSBDI = 0;
-NS1AHIC - NS9AH1D + NSAH1 = 0;
-NS6BHIC - NS10BH1D + NSBH1 = 0;
- NS1AC2 - NS1AH2C - NS1AC3 - NS2AC2 - NS9AD2 - NS9AD3 + NIAI = 0;
- NS6BC2 - NS6BH2C - NS6BC3 - NS6BH3C - NS10BD2 - NS10BH2D - NS10BD3 + NIBI = 0;
NIAL <= 150;
NIBI <= 150;
! DAY2;
NS3AC2 +NS3AH2C + NS3AC3 = 165,
NS4AC2 + NS4AC3 = 100;
NS7BC2 + NS7BH2C + NS7BC3 + NS7BH3C = 220;
NS12AD2 + NS12AH2D + NS12AD3 + NS12AH3D = 160;
NS13BD2 = 160;
- NSTAC2 - NS2AC2 - NS3AC2 - NS4AC2 + NSAC2 = 0;
- NS9AD2 - NSi12AD2 + NSAD2 = 0;
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- NS6BC2 - NS7BC2 + NSBC2 = (;
- NS10BD2 - NS13BD2 + NSBD2 = 0;
- NSIAH2C - NS3AH2C - NS12AH2D + NSAH2 = 0;
- NS6BH2C - NS10BH2D - NS7BH2C + NSBH2 = 0;
- NSI1AC3 - NS9AD3 - NS3AC3 - NS4AC3 - NS12AD3 - NS12AH3D + NIA2=0;
- NS6BC3 - NS6BH3C - NS10BD3 - NS7BC3 - NS7TBH3C + NIB2 = 0;
NIA2 <= 150;
NIB2 <= 150;
! DAY3;
NS5AC3 =130;
NS8BC3 + NS8BH3C = 105;
NS14AD3 = 120;
NS15BD3 + NS15BH3D = 160;
- NS1AC3 - NS3AC3 - NS4AC3 - NS5AC3 + NSAC3 = 0;
- NS9AD3 - NS12AD3 - NS14AD3 + NSAD3 = 0;
- NS6BC3 - NS7BC3 - NS8BC3 + NSBC3 = 0;
- NS10BD3 - NS15BD3 + NSBD3 = 0;
- NS12AH3D + NSAH3 = 0;
- NS6BH3C - NS7TBH3C - NS8BH3C - NS15BH3D + NSBH3 =0;
NIA3 =0;
NIB3 =0;
'FOR HUB H;
' DAY3; oo
-NS1AHIC - NS6BHIC + NAH3C = 0;
- NS9AHID - NS10BH1D + NAH3D = 0;
NAH3C - NS1HC4 - NSTHCS - NSTHC6 = 0;
NAH3D - NS1HD4 - NS1HDS - NS1HD6 = 0;
- NAH3C - NAH3D + NAH3 = 0;
1 DAY4;
- NS1AH2C - NS6BH2C - NS3AH2C - NS7BH2C + NAH4C = 0;
- NS10BH2D - NS12AH2D + NAH4D = (;
- NAHAC - NAH4D + NAH4 = 0;
NAH4C - NS2HCS - NS2HC6 = 0;
NAHA4D - NS2HDS - NS2HD6 = 0;
- NSIHC4 + NSHC4 = 0;
- NS1HD4 + NSHD4 = 0;
- NS1HCS5 - NSTHC6 - NS1HDS5 - NS1HD6 + NIH4 = 0;
NIH4 <= 150;
! DAYS;
- NS6BH3C - NS7TBH3C - NS8BH3C + NAHSC = 0;
- NS12AH3D - NS15BH3D + NAHSD = 0;
- NAH5C - NAHSD + NAHS = 0;
NAHS5C - NS3HC6 = 0;
NAHSD - NS3HD6 = 0;
- NSTHCS5 - NS2ZHCS5 + NSHCS5 = 0;
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- NS1HDS - NS2HDS5 + NSHDS = 0;

- NS1HC6 - NS1HD6 - NS2HC6 - NS2HD6 + NIHS = 0;

NIH5 <= 150;
I DAY6;

- NSTHC6 - NS2HC6 - NS3HC6 + NSHC6 = 0;
- NSTHD6 - NS2HD6 - NS3HD6 + NSHD6 = 0;
! The limited containers number of the train is 100;
100*NTACI - NSAC1 >=0;
100*NTAC2 - NSAC2 >= 0;
100*NTAC3 - NSAC3 >= ¢
100* NTADI1 - NSAD1 >=0;
100¥*NTAD2 - NSAD2 >= 0,
100*NTAD3 - NSAD3 >= 0;
100* NTAHI - NSAH1 >=0;

100*NTAH2 - NSAH2 >=0;
100¥*NTAH3 - NSAH3 >= 0;
100*NTBCI - NSBC1 >=0;
100*NTBC2 - NSBC2 >= 0,
100*NTBC3 - NSBC3 >=0;
100* NTBD1 - NSBD1 >= 0;
100*NTBD2 - NSBD2 >= 0;
100*NTBD3 - NSBD3 >= 0;
100¥*NTBHI1 - NSBH1 >= 0,
100*NTBH2 - NSBH2 >= 0;
100*NTBH3 - NSBH3 >= 0;
100*NTHC4 - NSHC4 >= 0;
100*NTHCS - NSHCS >= 0;
100*NTHC6 - NSHC6 >= 0,
100*NTHD4 - NSHD4 >= 0,
100¥*NTHDS - NSHDS5 >=0;
100* NTHD6 - NSHD6 >= 0;

- NTACI1 - NTAC2 - NTAC3 + NTAC = 0;
-NTBC1 - NTBC2 - NTBC3 + NTBC = 0;
-NTADI - NTAD2 - NTAD3 + NTAD =0;
-NTBD1 - NTBD2 - NTBD3 + NTBD = 0;
- NTAHI - NTAH2 - NTAH3 + NTAH = 0;
- NTBHI1 - NTBH2 - NTBH3 + NTBH = 0;
- NTHC4 - NTHCS - NTHC6 + NTHC = 0;
- NTHD4 - NTHDS5 - NTHD6 + NTHD = 0;
- NSAC1 - NSAC2 - NSAC3 + NSAC=0;
- NSBC! - NSBC2 - NSBC3 + NSBC = 0;
-NSADI - NSAD2 - NSAD3 + NSAD = 0;
- NSBDI1 - NSBD2 - NSBD3 + NSBD = 0;
- NSAH1 - NSAH2 - NSAH3 + NSAH=10;
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- NSBHI! - NSBH2 - NSBH3 + NSBH = 0;
- NSHC4 - NSHCS - NSHC6 + NSHC = 0;
- NSHD4 - NSHDS5 - NSHD6 + NSHD = 0;
-NAH3 - NAH4 - NAHS5 + NAH=0;

NTACI + NTAD1 + NTAHI +NTBC1 + NTBDI1 + NTBH1+NTHC4 + NTHD4 +NTAC2 + NTAD2 +
NTAH2+NTBC2 + NTBD2 + NTBH2 +NTHCS + NTHD5+NTAC3 + NTAD3 + NTAH3 +NTBC3 + NTBD3 +
NTBH3 +NTHC6 + NTHD6 <=100;

NTAC! + NTAD1 + NTAH1 +NTAC2 + NTAD2 + NTAH2+NTAC3 + NTAD3 + NTAH3 -NTA = 0;
NTBCI1 + NTBD1 + NTBHI+NTBC2 + NTBD2 + NTBH2 +NTBC3 + NTBD3 + NTBH3 -NTB = 0;
NTHC4 + NTHD4 +NTHCS5 + NTHD5+NTHC6 + NTHD6 —-NTH = 0;
! Fixed cost of each train sent from origin A to destination C is 11000,

Fixed cost of each train sent from origin to hub is 2500,

Fixed cost of each train sent from hub to destination is 2800;

FCOST - 11000 * NTAC - 11000 * NTBC - 11000 * NTAD - 11000 * NTBD - 2500 * NTAH - 2500 * NTBH - 2800 *
NTHC - 2800 * NTHD = 0;
! Transportation cost is 50 from origin to destination,

Transportation cost is 25 from origin to hub,

Transportation cost is 28 from hub to destination;

TCOST - 50 * NSAC - 50 * NSBC - 50 * NSAD - 50 * NSBD - 25 * NSAH - 25 * NSBH - 28 * NSHC - 28 * NSHD =
0;
! Handling cost is 25 at origin,

Handling cost is 22 at hub,

Handling cost is 20 at destination,

Handling Cost=25NAAC+20NAAC+22NAH;

HCOST - 22 * NAH = 112050;
! Inventory cost is 3 at origin, is 2 at hub;

ICOST - 3 *NIA1 -3 *NIBI - 3 * NIA2 - 3 *NIB2 - 2* NIH4 -2*NIHS = 0;

@GIN(NTACI);

@GIN( NTAC2);

@GIN( NTAC3);

@GIN( NTBC1);

@GIN( NTBC2);

@GIN( NTBC3);

@GIN( NTAD1);

@GIN( NTAD?2),

@GIN( NTAD3);

@GIN( NTBD1);

@GIN( NTBD2);

@GIN( NTBD3);

@GIN( NTAH1),

@GIN(NTAH2);

@GIN( NTAH3),

@GIN( NTBH1);

@GIN(NTBH2),
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@GIN( NTBH3);
@GIN( NTHC4);
@GIN( NTHCS);
@GIN( NTHCG6);
@GIN( NTHD4);
@GIN( NTHDS);
@GIN( NTHD6);
@GIN( NSACH);
@GIN( NSAC2);
@GIN( NSAC3);
@GIN( NSBC1);
@GIN( NSBC2);
@GIN( NSBC3);
@GIN( NSADI);
@GIN( NSAD2);
@GIN( NSAD3);
@GIN( NSBD1);
@GIN( NSBD2);
@GIN( NSBD3);
@GIN( NSAHI);
@GIN( NSAH2);
@GIN( NSAH3);
@GIN( NSBH1);
@GIN( NSBH2);
@GIN( NSBH3);
@GIN( NSHC4),
@GIN( NSHCS);
@GIN( NSHC6);
@GIN(NSHD4);
@GIN( NSHDS5);
@GIN( NSHD6);
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