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Abstract

Specification-Level Change Impact Analysis with Use Case Maps

Jacqueline Hewiltt

Changes in both customer needs and technology are driving factors influencing software
evolution. Consequently, there is a need to assess the impact of these changes on existing
software systems. Currently, the majority of change impact analyses approaches focus on
determining changes at the source code level, requiring already an understanding of the
source code and the system. There exists a need to raise the level of abstraction to be able to
analyze and predict the potential impact of changes on a system without the need to

comprehend the underlying source code.

In this research, we present a lightweight approach to identify the impact of requirement
changes at the specification level. We use specification information included in Use Case
Maps to analyze the potential impact of requirement changes on a system. We propose
dependency definitions and algorithms to identify Use Case Map scenario and component
relationships.  Also, techniques for ripple effect analysis at the scenario, component and
element levels of abstraction are presented. Further, we present our tool that implements the
proposed approaches showing the possibility of automation. A simple case study makes use
of this tool to analyze an existing Use Case Map to show the information that is returned by

our approach and its applicability in change impact analysis.
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1. Introduction

Currently, the majority of change impact analysis approaches focus on determining
changes at the source code level, requiring an understanding of the source code and the
system. There exists a need to raise the level of abstraction to be able to analyze and
predict the potential impact of changes on a system without the need to comprehend the
underlying source code. In this chapter we will introduce the present state of change
impact analysis and highlight the need for impact analysis to be performed at a higher
level of abstraction. This will signify the relevance of the presented research that seeks to

promote Use Case Maps as a viable model on which to perform change impact analysis.

1.1 The Current State of Change Impact Analysis

Changes in both customer needs and technology are driving factors influencing software
evolution. As such, there is a need to assess the impact of these changes on existing
software systems. For many users, technology is no longer the main problem, and it is
likely to become a progressively smaller problem as standard solutions are provided by
technology vendors. Instead, there is a need for research to start focusing on the interface

of the software with business practices.

Currently, the majority of change impact analysis approaches focus on determining
changes at the source code level [GOR93, LAWO03, TONO3]. Although this often results
in an accurate analysis of change impact (since source code represents the final

implementation of the design), the analysis itself is extremely time consuming. Also the



information provided by the source code analysis can be overwhelming, especially if one
is only interested in an overall assessment of the affected components related to potential

requirements changes [ARN93].

For large systems, whether confined or distributed, research ([SET04][BOHO02]) claims
that it is difficult to use a low-level change impact methodology to analyse the effects of
a change because those techniques are usually focused on instances where the code has
been changed. To use low-level change impact analysis techniques to determine all

possible ripples effects of a large system would be inefficient and time consuming.

Therefore a need exists to analyze, predict, and assess the impact of a requirement or
specification change at the design or requirement level, “this is due to the increasing
trend in Software Engineering towards Model Driven Development” [SET04]. As well,
the proactive methodology has been shown to be more beneficial than the traditional
reactive one; predictive impact analysis where software maintainers complete a change
implementation plan is better than dealing with the consequences of the change after it is
actualized [LAWO3]. Predictive impact analysis typically requires a complete

understanding of the system in order to assess the scope of the change.

1.2 The Use Case Maps Solution

The ability to assess the effect of a change at the level of a design or specification
requires a notation that describes the relationships of the system. We propose the use of

Use Case Maps (UCMs) as a model for performing change impact analysis. To our



knowledge change impact analysis approaches have not yet been applied to the UCM

specification model.

The application of UCMs to maintenance activities allows comprehension and change
impact analysis to be performed on the same model. Specifically, UCMs incorporate use
case scenarios and system components into its design that provides the ability to trace
user requirements described in use case scenarios to the relevant system components.
Also, the system structure coupled with behavioural information has the advantage of
providing a high level and dynamic view of the system functionality. Finally, UCMs
encompass both the software and non-software requirements needed to provide an
architectural view of all entities involved in a system’s functionality. These features

make UCMs a desirable model for performing change impact analysis.

1.3 Research Hypothesis and Goals

The goal of this thesis is to address the issue of change impact analysis at the
architectural level. We suggest a change impact analysis approach that makes use of a
system’s UCMs specification so that the scope of the change may be determined at an
early stage of the change life cycle — before the underlying source code has to be (fully)

comprehended or an actual modification is performed.

Our research hypothesis, therefore, is that change impact analysis techniques can be
applied to UCMs. Specifically, we conjecture that UCMs provide enough information

about the structure and behaviour of the system under analysis that they can be used to



help scope the impact of a change through the use of dependency analysis. The Null-
Hypothesis is that UCMs do not provide sufficient information to be useful for change

impact analysis.

In order to prove our hypothesis, information provided by UCMs will be used for the
application of current change impact analysis techniques. The following are the intended
sub-goals of this research:
1. Apply existing dependency definitions to UCM components and scenarios to
generate dependency relationships for the purpose of system comprehension.
2. For a changed UCM element, generate an impact set for ripple effects.
3. Automate the creation of dependency relationships and extraction of impact sets
by means of UCMs.
If all these can be implemented then we will conclude that our hypothesis has been

proven and the Null-Hypothesis can be rejected.

Our proposed research goals have the capability of providing an efficient, industry-viable
change impact analysis approach at a time when it is greatly need — a time when software
systems are large and widely distributed and the difficulty of comprehending these

systems at the source code level becomes an ever growing factor.

1.4 Organization of Thesis

Chapter 2 provides the necessary background related to software evolution, specifically

change impact analysis and its current approaches. The definitions and algorithms that



will be applied to UCMs are introduced in order to provide the basis for their use.
Background discussion is continued in Chapter 3 where the focus is on UCMs. We
propose our approach of applying change impact analysis techniques to UCMs in Chapter
4. To show that indeed automation is possible, our developed tool that implements our
presented theories is detailed in Chapter 5. This is followed in Chapter 6 with the
application of the tool to a simple case study. Finally, conclusions and future works are

discussed in Chapter 7.



2. Software Evolution

In developing software systems, it is rare that the initial design is the final design or
implementation. In fact, software is used to implement solutions that are expected to
change periodically to adapt to environmental changes [BOH96]. In general, after the
system is complete and in use change usually occurs. Lehman’s first law of software
evolution [LEH80] states that “a program that is used in a real-world environment
necessarily must change or become progressively less useful in that environment”; any
changes made after the initial deployment of the software are considered evolutionary in
nature [BENOO]. Evolution is critical in the life cycle of all software systems and the

efficient management and execution of these changes are essential to software quality

[LEHS8O0].

This chapter details the related areas of software system evolution, including
requirements evolution, software maintenance, software comprehension techniques, and

finally change impact analysis.

2.1 Requirements Evolution

Although requirements changes are not the only cause of system evolution, they do
account for approximately 80% of software maintenance activities [LAM99]. When
requirements evolve the design that specifies the system’s implementation needs to also
evolve to reflect any changes [NANO2]. In this section we discuss requirements

evolution since this research is based to some extent on requirements.



A requirements change is a modification or deletion of an existing requirement or the
addition of a new one. Requirements changes occur for both social and technical reasons
including: users needs change leading to a new or modified feature [JAV04][LAM98];
production constraints [JAV04]; environment changes [NANO2]; or redefinitions of non-
functional requirements to increase quality [NANO2] or performance [LAM98]. Figure
2-1 depicts the EVE cycle proposed in [LAM98] to define the cyclic process of
requirements evolution. This cycle clearly shows the link between environment changes

and changes to the system.

Environment | Change

evolves within generates

Existing
SOystem Requirements

Figure 2-1: Requirements Evolution Cyclic Process

Any of the aforementioned changes to requirements, during the development cycle or
after the system is installed, are a large source of risk [STR96]. In particular, those

changes made after the requirements have been specified are typically the driving factors



for cost and schedule overruns and may cause more defects [MAL98]. Therefore, it is
important that requirement changes are managed in order to reduce the cost of
implementing the change [LAM98][NANO2]. In order to manage requirements
completely, Lam et al. in [LAM99] specify 4 main areas of concern that must be
addressed: 1) planning the requirements change; 2) assessing the impact of the change;
3) determining the volatility of the change; and finally assessing the maintenance team’s
ability to handle the change [LAM99]. Furthermore, Strens et al. in [STR96] claim that
both sensitivity analysis and impact analysis are needed in a pro-active approach to

requirement change analysis.

2.2 Software Maintenance

The IEEE Standard Glossary of Software Engineering Terminology [IEE90] defines
software maintenance as “the process of modifying a software system or component after
delivery to correct faults, improve performance or other attributes, or adapt to a changed
environment.” This definition further describes three types of maintenance: 1)
Corrective Maintenance that modifies the software to fix defects; 2) Adaptive
Maintenance that consists of modifications made to keep the system usable after changed
or changing environment; and 3) Perfective Maintenance that improves performance or

maintainability.

The IEEE Standard for Software Maintenance [IEE98] clearly defines 7 key steps that are
involved in maintaining software (these steps are shown in Figure 2-2 and are discussed

in [PIGO5]). The first step is to identify, classify and prioritize the problem. This



assumes an understanding of the system to be maintained [PIG05]. This step is followed
by a feasibility analysis that will, among other things, determine the impact of the
change. Steps three to seven of the maintenance process involve implementing the

change and ensuring the quality of the changed system.

Figure 2-2: IEEE Maintenance Process

The focus of this research is on step two of the maintenance process — determination of
the impact of the change. This step relies on step one that requires an understanding of
the system. The next two sections will detail how software systems are understood and

then how change impacts are determined.

2.3 Software Comprehension Techniques

Once it is determined that a change to the system is required, that system must first be

understood before it can be modified [BENOO]J[BOH02]. This is generally termed



software comprehension and has been defined in [RUG95] as “the process of acquiring
knowledge about a computer program”. This step consumes approximately 50% of time
during software maintenance [NEL96]. We elaborate on some techniques that can be
used in the process of software comprehension. Further details and references can be

found in [RUG95].

At the most basic code level, syntactic analysis is performed by a parser to create a parse
tree to show how the program code is broken down into its constituents. The abstract
syntax tree (AST) removes details unrelated to program understanding leaving a
meaningful tree that can be traversed and is the basis for most sophisticated program
analysis tools. An example parse tree and the corresponding abstract syntax tree are
depicted in Figure 2-3 [CSWPI]. Abstract syntax trees are used as the system

representation in [FIE95] and [CHA9S].

Parsa Traa AST
N A

E + T P{\ B
| |

T ¥
| i

F B

i

A

Figure 2-3: Example Parse Tree and Corresponding AST

Pattern recognition involves searching program code for instances of common
programming patterns. A detailed listing of such standard patterns may be found in
[GAMD94]. An understanding of how the patterns work and their intent can contribute to

the understanding of relationships within the source code [RILO3].
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Also at the source code level, control flow analysis generally takes on two forms: intra-
procedural and inter-procedural. Intra-procedural control analysis determines the order
of statement execution. It creates a control flow graph from the AST that can give an
abstract view of how the program executes using blocks (statements executed) and arcs
that represent flows of control between the blocks. Inter-procedural analysis determines
which blocks invoke others, effectively creating a call graph. Figure 2-4 shows a control
flow graph where the solid arrows represent a node (labelled circles) calling another

node and dashed arrow represents recursive calls [LAWO03].

Figure 2-4: Example Call Graph

Data flow analysis is concerned with identifying how data definitions flow and where
they are used in the programs. Data flow analysis focuses on describing what happens to
the variable’s contents during the execution of the program, not just where it is used.
Program Dependence Graphs (PDGs) can be used to represent either control or data
dependencies or both [BOH96]. Control flow or data flow analysis has been used as the

basis for comprehension techniques in [HAR98], [WUO01], [CAR99], and [ZHAO1].
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Dynamic analysis obtains information for comprehension purposes by systematically
executing the program. This technique is generally used for performance checking,
ensuring correctness in system execution, or system reengineering to support

understanding [ZHAO01][BOJOO][LHAOS][SNEO0O].

Program slicing is a well researched software comprehension technique
([BEC93][RUSO02][FIE95][AGRO1][TIP96][HAR98][HAS04][KORO03]) that has been
used to aid in understanding of both system source code and models. The next section is

devoted to the explanation of slicing.

2.3.1 Program Slicing

Program slicing is program comprehension technique that was developed to reduce the
amount of source code that needed to be understood; it achieves this by removing parts
of the program that are not relevant to the analysis [WEI81]. Generally, a program
dependence graph is formed from the program source code to show data and control
dependencies. This graph is then used to extract the program slice. As an example,
Figure 2-5 shows a program dependence graph (provided in [HAR98]) with data

dependencies denoted by solid arrows and control dependencies by dotted arrows.

First introduced in [WEI81], the technique has been modified and customized over the
years that have led to distinctions between static and dynamic slicing as well as forward

and backward slicing.
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Static Slicing

Static slicing uses data and control flow analysis to find the parts of the program relevant
to a given input. The input to the slicing tool is a program and a variable v at some point
of interest (called the slicing criterion). Given this input, the goal of static slicing is to
find those parts of the program that are responsible for the computation of v at the point
of interest. The output is a slice that consists of the parts of the program that could affect
v for all inputs to the program. This is the technique that was introduced in [WEI81] and

is currently known as backward static slicing.

Dynamic Slicing

Dynamic slicing, introduced by Korel and Laski [KOR90], creates an executable part of
the program P with respect to some variable v, for some input x. The behaviour of the
output slice is the same for input x as in the original program. The basis of the approach
is to record an execution trace of the program for input x and then trace the execution
backwards to collect dynamic data and control dependencies to create the PDG.

Similarly, the dynamic slice could be created during run-time without requiring recording

of an execution trace.
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Figure 2-5: Program Dependence Graph

Forward Slicing

While a backward slice includes with it all the program statements and variables that may
affect (static slicing) or actually affect (dynamic slicing) the variable v at some point P, a
forward slice, distinguished by Horwitz et al. in [BRO83], is generated using the same
slicing criterion as a backward slice but instead consists of all statements and predicates

of the program that might be affected by the value of v at point P.
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2.4 Change Impact Analysis

Once the software is understood, the proposed change must be analyzed. Since it is
unlikely that the entire software will change at once, change impact analysis in some
form is necessary to determine what other parts of the software may be affected if a
change is implemented. Ideally, impact analysis is an iterative process that is performed
as early as possible in the change cycle in order to determine the scope, the cost, and the
risk of the change [QUE94] — essentially step two of the previously defined maintenance
process. The actual impacts of a change in this case, are not known until the change

implementation is complete [LAWO03][BOH96].

An impact is a part of the software system determined to be affected by the change, thus
requiring further inspection [BOH96]. Impact analysis then is “the activity of identifying
the potential consequences of a change, or estimating what needs to be modified to
accomplish a change” [BOH96]. We adopt this definition because it emphasizes the

estimation of the impacts of a change.

Change impact analysis is a process that may involve several steps before coming to a
conclusion. The IEEE Standard Glossary of Software Engineering Terminology [IEE90]
does not provide a definition for impact analysis, but Standard 1219-1998: IEEE
Standard for Software Maintenance [IEE98] provides a guideline for what software

change impact analysis should entail during the analysis phase of software maintenance.

15



The standard states that impact analysis should:
o Identify potential ripple effects;
e Allow trade-offs between suggested software change approaches to be
considered;
e Make use of documentation abstracted from the source code; and

¢ Consider the history of prior changes, both successful and unsuccessful.

These guidelines can serve as a basis for determining what should be accomplished
during the impact analysis process, but they do not necessarily define a process. Bohner
and Arnold in [BOH96] and [ARN93] attempt to define the sequential steps of an ideal
impact analysis process. Figure 2-6 provides a visual of a generic impact analysis
process discussed in [ARN93], showing the inputs and outputs of the impact analysis
approach. The process begins with a change proposal that is analyzed to plan its
implementation. After this, the change is scoped out by determining what parts of the
system are initially affected by the change implementation chosen. Once the initial
impacts of the change are determined, the potential ripple effects may be determined.
These ripple effects may require further investigation while implementing the change.
The accumulation of the impacts and their ripple effects provide the potential impact set
of the change. This impact set can then be used to plan, predict, and accomplish that

change task.

Change impact analysis aims primarily to identify these software parts that are affected

by proposed changes with the goal to minimize unexpected side effects found during
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regression testing [BOH96][QUE94]. This includes both determining impacts within the
software (dependency analysis) and between different software products used during the

development process (traceability analysis).
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Figure 2-6: Generic Impact Analysis Process

2.4.1 Traceability Analysis

Traceability analysis is one of the two major areas of change impact analysis.
Requirements traceability focuses on determining if the requirement has been
implemented and if so, where? Once the requirement has been traced to the desired level
of abstraction, a more specific impact analysis technique can be used to determine how
the change will affect the system [BOH96]. It is said that requirements should be
traceable to different design products (vertical traceability), within these design products

(horizontal traceability), and also to the code that implements them [STR96]. Some say
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requirements traceability provides critical support for managing change in an evolving

software system [SET04].

Software life cycle objects (SLOs) generated or modified during the development process
are traceable if they provide the ability to associate the information between them
[BOH96]. This is important because each software life cycle object, while essentially
detailing the same system, provides a different view of the system at varying levels of
abstraction. Thus, traceability analysis involves “examining dependency relationships

among all types of SLOs” [BOH96].

Traceability information relies heavily on software documentation [BOH96], including
but not limited to requirements specifications, designs, and user documentation
[LAMO98b]. The relationships between the various documentations can be illustrated in a
graph structure. An example of such a graph is shown in Figure 2-7 [LAM98b] where
the relationships between different artefacts (rectangles) within the same document (CSS
Requirements Document) and then between different documents are labelled with
specific identifiers (di). This benefits impact analysis by providing information on what
other life cycle products are affected by the proposed changes, allowing effective

navigation for more detailed impact analysis [LAM98b].

There exists a body of research ([STR96][SET04][KNEO03]) on approaches to effectively
perform traceability analysis for change impact analysis. The mentioned references focus

on how to trace requirements to design documents and models.
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2.4.2 Dependency Analysis

Dependency analysis represents the second major branch of impact analysis and is used
for determining the impact of changes within the system. Dependency analysis involves
“examining detailed dependency relationships among program entities” [BOH96]. In
[BOH96], it is stated that this type of analysis is narrowly focused, providing detailed
evaluations at the code level but not at higher levels of abstraction. At the time of their
assessment this may have been true, but over the years dependency analysis approaches

have been developed for higher levels of system abstraction [KOR04][ZHA02].

A general definition for a dependency provided in [COXO01] is “relations, D, between

some number of entities wherein a change to one of the entities implies a potential
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change to others”. Furthermore, this research also defines directed dependencies and
categorizes them into unidirectional and bidirectional: a unidirectional dependency
d(A,B) exists if node A depends on node B, while a bidirectional dependency exists if A
depends on B and B depends on A (as in a recursive call). This work also details a set of
attributes that are common to all dependencies. Some of these include sensitivity,
stability, importance, and impact. Impact meaning in what ways is the dependent entity’s

functionality compromised by failure of this dependency.

Dependency analysis can be performed manually or automatically using techniques like
program slicing, control- and data-flow analysis, test-coverage analysis, and cross
referencing to evaluate the data, control, and component dependencies between system
entities [BOH96]. Additionally, dependency analysis may be performed on static system
information, such as a class diagram, or on dynamic information, such as actual execution

traces of the system.
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Figure 2-8: Schema for a Traditional Dependency Graph

Dependency information about the system under analysis is usually stored in a
dependency graph that includes system entities and the respective relationships between
them. The schema for this is shown in Figure 2-8 [HASO03]. Bohner et al. in [BOH96]

define three main categories of system dependencies: data dependencies, which are
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depicted in data dependency graphs, show relationships among system entities that define
and use data; control dependencies are “relationships among program statements that
control program execution”; and component dependencies are “general relationships

among source code components such as modules files, and test runs”.

Dependencies and dependency graphs have also been defined for abstraction levels
higher than that of source code. Most relevant to our research are the scenario
dependencies that have been defined. The next section is dedicated to their detailed

discussion.

24.2.1 Scenario Dependency Analysis

Scenarios, defined in [RADZI] and [BREOO], have been used to describe the execution
sequences of system functionality for a long time because they provide a good
compromise between informal use cases and formal designs [AMYOlc]. The use of
scenarios allows advantages such as: validation of requirements and the comparison of
requirement alternatives [KAZ96]; reduction of complexity in requirements
understanding [WEI98]; and aiding in requirements agreement among different

stakeholders [WEI98].

Scenario dependencies have been detailed in [TSAO3], [PAUO1], [TSAO1], [BAIO2],
[BORO1] and [BREQO]. Each describes a slightly different set of scenario relationships
and/or dependencies as they relate to their own research area. We summarize these

research findings here because scenarios are vital to this research.

21



Functional Dependency

Bai et al. in [BAI02] describe how to define scenario groups to create test scenarios.
They discuss working from the requirements and decomposing each functional feature in
order to define the groups that the scenarios may fit into. They conclude that functional
dependency among scenarios exists if the scenarios belong to the same group that
represents common system functionality. Figure 2-9 [BAIO2] shows an example of the
scenario model in which the functions of a Banking System are decomposed

progressively into multiple levels of scenario groups, scenarios, and sub-scenarios.

A predecessor of this research is [TSAO1] where discussion pertains to arranging thin
threads hierarchically for the purposes of generating test cases, performing risk analysis,
and accomplishing ripple effect analysis. In their approach, a thin thread tree is created
and the root of the tree is the system under test. Each branch of the tree represents a
group of scenarios related by functionality, while each leaf represents a concrete scenario.

This, they claim, effectively creates a functional decomposition of the system.

Containment Dependency

In [PAUO1] and [BAIO2] a “path-contained relationship” for a scenario execution path is
defined. For two scenarios A and B, if the complete path of A is part of the path of B,
then A is contained in B and B depends on A. Similarly, in [BREOO] a subset
relationship is discussed. They define a scenario to be a subset of another if one scenario

shares the context of the other scenario.
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Figure 2-9: Example of Modeling Scenarios

Condition Dependency

In [BAIO2], scenarios are said to be condition dependent if they are affected by the same
conditions. Comparably, [PAUO1] specifies that scenarios are condition dependent if
they share pre- and/ or post-conditions. ~Additionally, in these works, the relationships
that exist between the conditions themselves are defined. Some of the relationships
defined for conditions include independent - two conditions can happen irrespective of
the other, mutually exclusive — two conditions cannot exist at the same time, and related

— the two conditions are used in the same thread.
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Execution Dependency

Execution dependency is discussed by Paul in [PAUO1] and Tsai et al. in [BAIO2] within
the context of generating test scenarios. They briefly define execution dependency to
exist between scenarios that interact through their execution paths and share common
software components such as code modules or interfaces. In [PAUO1], Paul claims that
scenarios may be dependent on each other in 3 ways: identical paths, covered paths, and

crossing path, but provide no further definition of these dependencies.

2.4.3 Ripple Effect Analysis

Ripple effect analysis is a sub-process within impact analysis. A ripple effect is “the
effect caused by making a small change to a system which affects many other parts of a
system” [BOH96][ARNO93]. This definition is not limited to the source code level and

can be extended to include design and specification models as well [WAN96].

Figure 2-10 visualizes the iterative generic ripple effect analysis process defined in
[WANO96] that includes: 1) Making the initial change; 2) Identify potentially affected
areas due to that change; 3) Determine which of these areas needs further changes; and 4)

Determine how to make that change.

Ripple effect analysis (REA) focuses on determining what parts of the system may be
affected by a change. Using a chosen approach, the location of the initial change is

identified and the effects of that change are recorded to create the impact set. How the
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impact set is identified depends on the approach itself that either uses dependency

analysis or traceability analysis as its basis.
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Figure 2-10: Generic Ripple Effect Analysis Process

To determine the impact associated with a change, the system model must be searched to
identify relationships among system entities. In [BOH96] and [BOHO2], the following
summary of several search algorithms which form the basis of many ripple effect analysis
approaches is provided. They state that some search algorithms may be semantically
guided where the impacts are obtained from a predetermined semantic network of
objects; others may be heuristically guided in which a predetermined set of rules suggest
possible paths that may contain impacts. Stochastically guided searches use a given
situation as the basis for determining the probabilities of impact. Hybrid searches
combine the aforementioned algorithms, while unguided searches attempt to find impacts

in a brute force manner. Transitive closure used on call graphs is used as the basis for
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many of these algorithms to determine the impact sets of a change

[LEEOO][BRIO3][LAWO3].

2.4.4 Change Impact Analysis Approaches

A large amount of research exists that details change impact approaches that range from
analysis at the source code level up to the system architecture level. Queille et al. in
[QUE94] identify three issues that need to be resolved when performing impact analysis:
First, the system must be represented to show the system objects and the relationships
between these objects. A dependency graph is an example of such a system
representation. Next, the data to populate this model must be collected. Finally, a
method of tracing through this representation, such as a call graph to determine the

impact set must be created.

From our research, we ascertained that most impact analysis approaches use either
dependency or traceability information as their basis for impact determination. In the
following section we provide a survey of some existing approaches that use dependency

analysis.

244.1 Source Code-based Approaches

Source-code change impact analysis uses the source code of the system as its basis for
determining relationships within the system. These approaches have the advantage of

being very accurate in the analysis since they identify impacts in the final product,
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however, they have the disadvantage of being extremely time consuming, limited in
scope, and they require implementation of the change before the impact can be

determined [BRIO3].

Kung et al. in [KUN94] discusses the type of code changes that can occur in object-
oriented classes (class changes, method changes, etc.) and provide a solution to determine
their impacts. Further, Lee et al. in [LEEOO] define object-oriented data dependency
graphs (OODDG) that emphasize data relationships relevant to object-oriented systems
between such items as classes, class members, and constants. The OODDG actually
consists of three graphs specific to method, inter-method, and inter-classes relationships
in the system. This work provides algorithms to evaluate changes and metrics to

quantitatively evaluate change impacts.

Similarly, Kim et al. in [KIM99] investigate the impact of changes to object-oriented
software in distributed environments and propose a distributed program dependency
graph (DPDG) that shows relationships that include data, design documents, servers, and
classes. They argue that conventional change impact analysis is hard to apply to
distributed systems because their characteristics are limited to centralized system

environments.

In [BLAO1], Black proposes using a developed approximation algorithm to completely

automate the computation of ripple effects for C programs. In [REN04], Ren et al. detail
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their tool Chianti that analyzes two versions of an application and decomposes their

differences into a set of atomic changes.

Other methodologies focus on determining impacts from a dynamic representation of the
system where a representation is created based on execution traces of the system. Law
and Rothernel in [LAWO3] propose a novel approach for impact analysis using “whole
path profiling” based on dependency analysis at the procedure level. It uses low cost
instrumentation to retrieve dynamic information about system execution and then builds a
representation from that collected information. This approach incorporates call-order and
call-returns in the impact set. Similarly, work in [ORSO03] take this one step further and
provides algorithms for impact analysis using instrumentation information from deployed
software. They claim that this provides better results for impact sets than using

fabricated system executions.

24.4.2 Slicing Based Approaches

Various implementations of program slicing algorithms exist for all the previously
mentioned categories of slicing (see section 2.3). With respect to impact analysis,
program slicing can be used to determine the potential effects of making a change
[WAN96]. Static slicing determines dependencies for all program inputs while dynamic
slicing searches the dependency graph for dependency based on the input given
[LAWO3]. The following discussion summarizes some of the major approaches that

make use of slicing algorithms to compute impact sets.
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In [TONO3] a novel approach is introduced that combines slicing and concept analysis,
called “Concept Lattice of Decomposition Slices”. The authors claim that the approach is
an extension of the decomposition slice graph in that the graph is obtained from concept
analysis and it can be used to assess change impacts at given program points. Similarly,
in [CHE96], researchers discuss how to create a dependency graph from a C++ program
(termed “C++ Program Dependence Graph”) to capture declaration, message, and class
dependencies relevant to object-oriented systems. Impacts on this representation are
determined by the application of developed C++ specific slicing algorithms to slice

classes, messages, and programs.

Some other works have applied slicing algorithms to system models instead of a
dependency graph created from the source code. For example, in [KOR03], an approach
is presented that applies slicing to extended finite state machines (ESFM) in effort to
analyze the system with respect to a particular functionality. They create an ESFM
dependency graph using the data and control dependencies of the model and suggested
that this approach can help in understanding how the model will interact with changes
made to the system. Similarly, in [HEI98], slicing is applied to hierarchical state
machines with the goal of performing impact analysis on the Requirement State Machine

Language (RSML).

2443 Model-based Approaches

There is a growing trend towards model-driven development. It is creating a need to

perform change impact analysis on a representation of the system that is at a higher level
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of abstraction than source code [SET04]. The benefit of these model-based approaches is
their ability to determine impacts without implementation of the change, although they

may provide less precise results [BRIO3].

In [BRIO3], Briand et al. propose a static, UML model-based approach to impact analysis
that can be applied before changes are implemented to help in the planning process.
They first check for consistency between the diagrams and the implemented system.
Then, changes between the two models (the original and the changed) are identified using
a “change taxonomy” to associate their formally defined (using Object Constraint
Language) impact rules with types of changes. Finally, impacts are determined using the

defined impact rules and transitive closure.

A dynamic impact analysis approach that supports understanding the effects of changes
on an ESFM is presented in [KOR04]. Using both the original model and the modified
one, they provide an algorithm for automatically determining the differences between the
two models. The algorithm identifies parts of the model that may be affected by the

change using model-based dependency analysis.

Finally, Zhao et al. in [ZHAO2] propose an approach for change impact analysis that is at
the architectural level. Based on an architectural slicing and chopping technique, they
use a formal description of the architecture of the system modeled in WRIGHT
Architectural Description Language (ADL) and automate the determination of change

impact using architectural slicing and a new technique called architectural chopping.
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2.4.5 Change Impact Approaches Discussion

In an attempt to provide software maintainers with a way of assessing impact analysis
(IA) approaches for effectiveness, [ARN93] proposes a framework for comparing
different impact analysis approaches. This framework focuses on three main areas that
can be used to compare and evaluate various impact analysis approaches regardless of the
abstraction level. The areas can be summarized as follows:

o JA Application examines how the IA approach is used to accomplish impact
analysis by assessing the inputs and outputs of the approach.

e IA Parts is concerned with the functional parts of the IA approach — the internal
model used to represent the system and its dependencies, the rules and semantics
of rclationships between the model entities, and the algorithms for determining
the impact set.

e JA Effectiveness is concerned with how well the approach accomplishes impact
analysis. The estimated impact set is compared to the actual impact set to assess

its effectiveness.

These general guidelines of how impact analysis can be accomplished provide us with an
understanding of what the goals of an approach should be. We highlight the main
features of the distinct approaches discussed in Section 2.4.4 in Table 2-1 using some of

the sections of the mentioned framework as headings.

As discussed in Section 2.4, change impact analysis at each level of abstraction has its

advantages. These include impact set accuracy at the source code level and ability to
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scope the impact of the change at the design model level. We extend that discussion and

outline some limitations that exist in impact analysis techniques at both the source code

and model levels.

Distributed Program
Distributed object- methods, data Dependency Graph semantically
oriented source code | members, classes, (DPDG) with data and guided
[KIM99] [ objects servers, documents | control dependencies searching

Object-oriented
system dependency graph | transitive

object-oriented data members, with data and control closure
[LEEQO] source code objects classes, methods dependencies on graph
forward and
backward
searching
executed whole path directed guided by
[LAWO03] | source code methods | class methods acyclic graph execution traces
forward slicing
statements, data concept lattice of on
[TONO3] | source code objects members decomposition slices lattice nodes
C++ dependency graph forward and
object-oriented methods, classes, with message, class, and backward
[CHE96] | source code objects objects declaration dependencies | slicing
transitive
system states and data and control closure on
[KOR04] | EFSM system model | transitions dependence graph graph
classes, interfaces,
sequence
UML conceptual and | messages, state UML models (sequence, transitive
[BRIO3] class models machines state or class diagrams) closure
architectural
backward and
system architecture architecture WRIGHT architectural forward slicing
[ZHAO2] | objects components structure and chopping

Table 2-1: Change Impact Approaches Comparison

The mentioned source code-based approaches all require the source code to understand

and identify impacts of a change. As such, they return impact sets that are very specific
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and possibly too detailed for assessing change impacts in large systems. Further, source
code based approaches do not support scoping the impact of a change; they require a

change implementation before impacts can be identified.

Conversely, model-based impact analysis approaches require a representation of the
system to identify change impacts. When impact analysis is performed on an abstraction
of the system, the assumption is that the model is up to date and consistent with the code.
Although this can be verified using traceability tools [BRIO3], there is still the possibility
of inaccurate representation. Furthermore, not all developed systems are modelled using
a design notation, thus change impact analysis at this level of abstraction may require the

extra step of reverse engineering the system to the required model.

From the perspective of this research impact analysis approaches (at any level of
abstraction) can be categorized into two main categories termed static and dynamic, as
defined in [BOH96]. Static impact analysis analyzes the source code structure without
executing the code. Since it is independent of any particular program execution, static
analysis considers all potential system executions and all entities that are related to the
changed entity are added to the impact set. The disadvantage of this method is that a

large, possibly inaccurate impact set may be returned [BOH96].

Dynamic impact analysis, on the contrary, relies on an execution trace of the system

[BOH96]. Dynamic analysis has the benefit of returning an impact set that is determined

from tracing through an execution of the system, implying that the results returned are
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almost certainly impacted [LAWO3]. The disadvantage is that the execution trace(s) used
may not account for all the possible executions that involve the changed entity. This
results in an impact set that may not contain all the impacted parts of the system

[BOHY6].

This concludes the first required background of our research study. We now focus on the
second aspect that we need to have an understanding about in order to fully achieve our

research goals.
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3. Use Case Maps

Use Case Maps (UCMs) are a high-level design notation developed by R.J. Buhr and his
colleagues [BUH96b]. It is intended for use at the requirements specification level to
help in the reasoning of “large-grained behaviour patterns in systems” [BUH96b]. The
goal of the notation is to link system behaviour and structure in a lightweight and visual

way.

This chapter describes UCMs including its features, its notation, and how it defines and
makes use of scenarios. We also provide a brief overview of the existing tool that
supports the creation of UCM models before concluding with UCM scenario and formal

definitions that have been developed.

3.1 UCM Features

UCMs have been developed to help provide an understanding of the scope of a system
that is defined as a set of collaborating components [BUH96b]. For UCMs, a system
includes both software and non-software entities. The intended application of UCMs is
for the specification of systems whose behaviour can be detailed in terms of paths with
minimal concurrency [BUH96b]. As an example of such a system, Figure 3-1 depicts a
simple point-to-point fax system UCM. The scenarios of the system are defined by the

paths that go from one point to another with no concurrent paths.
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According to the creators of UCMs [BUH96b], the advantages that UCMs provide
include:

e Ability to reason about system behaviour

¢ Ability to show intended coupling between large-grained behaviour patterns

¢ Bridging the gap between requirements and detailed designs

e Provide a behavioural framework for reasoning about architectural issues

e Document high level decisions

e Combine real-time and object-oriented issues in one design.
The following subsections elaborate on how UCMs have been shown to provide these

advantages.

Telephane
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Figure 3-1: UCM Fax Machine Example
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3.1.1 Ability to Reason about System Behaviour

The UCM notation is said to be lightweight because it is at the architectural level, aiding
in high-level understanding, designing, and reengineering that require this attribution of

behaviour to architecture [BUH96].

Scenarios have been shown to be useful for modeling behaviour. However, the common
UML notation for expressing scenarios, message sequence charts, reduces their
scalability with their dependence on detail [BUH96b]. The detailed information in these
diagrams that include the specification of operations, assembly, and inheritance lowers
the level of abstraction below a level that is appropriate for architectural specification.
UCMs, on the other hand, describe the behaviour at the system architecture level without
including message passing details and therefore allows for high-level reasoning of the

architecture [BUH96].

3.1.2 Ability to Show Intended Coupling Between Large-Grained Behaviour

Patterns

UCMs show the interaction of entities for a single use case in a map-like diagram. Each
UCM shows several scenarios of the use case together in one map with paths showing the

progression of each scenario within the system [BUH99].

Scenarios in the UCM sense correspond to something more abstract than the traditional

message sequence charts used in UML [MIGO1]. UCM scenarios are continuous paths
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which are superimposed on organizational structures whose sequence is determined by

component responsibilities.
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Figure 3-2: UCMs in Context of Other Models

3.1.3 Bridging the Gap Between Requirements and Detailed Designs

UCMs are developed from use cases that are formed directly from the requirements. This
raises UCMs above the level of message passing diagrams, allowing the design model to

be scalable for the specification of large systems [AMYO01b].

The goal of the introduction of UCMs was not to replace existing design models, but
rather complement them by filling the conceptual gap that currently exists when
transitioning from requirements to design [AMYO01b][MIGO1]. Figure 3-2 shows UCMs

in the context of the development cycle, while [BUH96b] describes how UCMs

38



complement and are compatible with other notations like Object Oriented Software
Engineering (OOSE), Real-time Object Oriented Modeling (ROOM), and Object

Modeling Technique (OMT).

These complementary aspects of UCMs were further extended by Amyot et al. in
[MIGO1] with their approach for converting UCMs into detailed UML message sequence
charts. An example output of their approach is shown in Figure 3-3. According to
[AMYO1] the UCM notation is simple, intuitive, and has a low learning curve so using it

in conjunction with other models is a benefit.
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Figure 3-3: UCM Transformation to MSC

3.1.4 Provide a Behavioural Framework for Reasoning about Architectural Issues

UCMs are powerful for expressing and understanding important macroscopic aspects of
behaviour in relation to architecture. Such aspects are very difficult to deal with at the
level of message passing [BUH96]. In [BUH99] the following benefits of the abstraction

level provided by UCMs are outlined:
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e Path interactions in concurrent systems are visible at a glance

e Performance becomes a property of paths, rather than a non-functional
property of a whole system, as it is usually considered to be

e Large scale dynamic situations can be made visible at a glance

e Paths directly indicate how the architecture satisfies use case requirements

The fact that scenario definitions are the basis for the visualization means that UCMs

show the dynamic functionality of the system. This is a benefit when attempting to

model

dynamic systems where scenarios and structures may change at run-time

[AMYO1].
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Figure 3-4: Root UCM for Simplified Wireless System

UCMs are intended to be used to guide system architectural design [BRUOO][AMYO01]

and the notation has been used in the describing the design of a wide range of systems

including: operating systems, agent systems, Wireless ATMs, Intelligent Networks, and

GPRS

([UCM] provides the necessary references). As an example, Figure 3-4 shows a
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proposed UCM for a wireless system [AMYO03]. As well, UCMs have been used to help
capture, understand, analyze, reuse, and change high level behaviour patterns

[BUH95][NAKOO].

3.1.5 Document High Level Decisions

UCMs can also be used to document the high-level decision [BUH96b]. Proof of their
usefulng:ss in documenting design decisions is the fact that UCMs is part of the set of
User Requirements Notation (URN) standards proposed to the International
Telecommunications Union (ITU-T) [AMY03] for describing functional requirements as

causal scenarios.
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Figure 3-5: UCM Showing Concurrent Paths

3.1.6 Combine Real-Time and Object-Oriented Issues in One Design

UCMs incorporate several different aspects into their notation. Real-time issues such as
concurrency and parallelism, modeled using UCM AND-joins and forks (an AND-fork is

visible in Figure 3-5 [BIL04]), are included and represented in the notation [BUH99].
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Furthermore, scenario paths assume that real time is required to progress from start to
finish [BUH96b]. Object-oriented issues are included in the model through the support
of different instances of the same component that are differentiated using component role
names. Also polymorphism can be modeled by allowing the context to provide different

meanings for responsibilities with the same name.

We have discussed in detail the benefits that UCMs provide in an effort to substantiate
the claims of its usefulness. In the next section we focus on the notational aspects of

UCMs.

3.2 The UCM Notation

The UCM notation contains three main elements that are the basis for all maps: paths
that trace scenarios through the components of the system; responsibilities that link paths
to components; and components that perform responsibilities [BUH96b]. Paths,
responsibility points, and component boxes, labelled in Figure 3-6 [UCM], are all formal
elements of the notation. These formal elements all have name labels to aid in the
understanding process. According to Buhr in [BUH99], this lack of formality in the

details is what makes the notation lightweight.

3.2.1 UCM Scenario Paths

UCM scenario paths begin at the start points (represented by a filled circle) that indicate

triggering events and/or pre-conditions for the commencement of the scenario. Scenario
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paths (wiggly lines) are progressed to end points (short vertical bars) that represent
terminating events or post-conditions of the scenario execution. In between, component
responsibilities are executed showing how the initial stimulus affects the system. System

scenario paths are end-to-end as they show complete system behaviour [BUH96b].
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Figure 3-6: UCM Main Notational Elements

A path is defined by the conditions that govern its execution. This forms the context of
the scenario that consists of the state of the system at the time the scenario is executed
and the data that triggers the start points. Scenario variables (called global variables)

have been introduced to represent system conditions and control the choice of alternative

paths [MIGO1].
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Figure 3-7: Interacting Paths

Scenario paths do not occur in isolation - a benefit of UCMEs is the ability to show various
logical interactions of different scenario paths [BUH96b]. Figure 3-7 depicts the

different types of interactions that may occur between scenario paths [UCM].

3.2.2 UCM Responsibilities

As previously mentioned, UCM paths execute responsibilities that are bound by
components. Thus, responsibilities link paths and components. UCM responsibilities are
defined as events or tasks that the component must be able to perform. It is important to
note that UCMs can be created without any component structure in which case
responsibilities are not confined. The interactions between responsibilities form scenario
paths, however responsibility relationships are not static; the cause-effect relationship

between two responsibilities is determined by the path that creates the context [BUH96b].
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3.2.3 UCM Components

UCM components are system objects or processes that are self-contained with internal
states and interfaces [BUH96b]. Components can either be fixed (solid outlines) or slots
(dotted outlines). Fixed components are components that are persistent in the
architecture of the application, while slots indicate where dynamic components (along
with their dynamic responsibilities) are created, moved (change visibility), or destroyed.
A pool holds the dynamic components that are available to be moved into the slot where

a single component is active [BUH96][UCM].

As an example, Figure 3-8, which can be found in [BUH96b], shows a model-view-
control (MVC) design that makes use of the two component types. The map shows an
MVC triad where the model component is a slot to allow different drawings (from the

pool of drawings) to be in its position at different times.

Controtler

View

move
ot of
path

Drawings NOTATION

Figure 3-8: Example of Structural Dynamics Expressed with a UCM

If components exist within the UCM design, then the responsibilities displayed in each

component are bound by that component. When a path links two components together, it
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implies that during that scenario execution some type of interaction exists between the
two connected responsibilities. Those pairs of components that bind the connected
responsibilities may actually involve several interactions in order to complete the

execution, thus the responsibilities are considered as shared [BUH96].

3.2.4 UCM Stubs

UCMs provide the ability to layer the diagrams to show different levels of abstraction. A
stub is a placeholder for the insertion of a sub-map, called a plug-in. Stubs can be static
or dynamic and are bound to the parent map by input and output segments of the root
map to the start and end points, respectively, of the sub-map. This ensures the continuity

of the scenario sequence.
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Figure 3-9: Stubs and Plug-ins



Static stubs only have one plug-in that can be inserted into the map. They are represented
by solid diamonds in the location of the root map where they are to be inserted.
Contrarily, dynamic stubs (represented by dotted diamonds) have multiple plug-ins that
are chosen dynamically at run-time based on their selection policy and the system state
[AMYO03b]. Figure 3-9 [UCM] shows the notational difference between static and

dynamic stubs.

3.2.5 UCM Concurrency

Concurrency can be shown in UCMs by allowing more than one scenario path to be
traced at the same time [BUH96]. The UCM elements that show concurrency include
AND-Forks and AND-Joins (Figure 3-10 [UCM]). Alternative paths that may be chosen
depending on guard conditions are shown on UCM using OR-Forks and OR-Joins
(Figure 3-11 [UCM]). The joins effectively show merging paths, while the forks show
alternatives that can be taken depending on the preconditions of the scenario. OR-Forks
have no logic attached to them and OR-joins are not synchronized; they are simply the

result of several scenario paths being contained in one UCM [BUH96b].
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Figure 3-10: OR-forks and OR-joins
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Figure 3-11: AND-forks and AND-joins

This section introduced the major elements of the UCM notation. Several notational
details have been omitted from this overview in the interest of space and relevance. For a
complete overview of the subtleties of the UCM notation, readers are advised to consult

[UCM].

3.3 UCM Navigator

In an effort to support the use of UCMs, a tool has been developed to facilitate their
creation. UCM Navigator (UCMNav), developed at Carleton University, aids in the
development of properly structured UCMs and is freely available from the UCM website

[UCM].

UCMNav provides basic features for creating UCMs that are syntactically correct by
ensuring proper bindings of plug-ins to stubs and of responsibilities to components and

paths. Figure 3-12 displays the user interface of UCMNav.
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Figure 3-12: UCMNav User Interface

The user interface allows the creation of UCMs with all the previously discussed
notational elements. It also supports the definition of UCM scenarios and global
variables that create the context for the scenario. Once the maps are created, they can be
saved as an XML (*.ucm.xml) file or exported to several visual formats. The *.ucm.xml
files that save the created UCM are valid according to a defined UCM Document Type
Definition (DTD) that is available at [UCM]. This DTD describes the formal definition
of UCMs with respect to their notation and how these definitions can be applied.
UCMNav uses this DTD to ensure that syntactic and static semantic rules are satisfied

[MIGO1].
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Furthermore, UCMNav provides the ability to convert created (or imported) UCMs to
other models such as the performance model Layered Queuing Networks (LQN) and
message sequence charts (details on how these transformations are accomplished can be
found in [PET02] and [MIGO1] respectively). As well, the simple path data model
supports scenario definitions that permit the export of individual scenarios to an XML

file [AMYO03b].

In what follows, we provide an in-depth discussion on UCM definitions that are
particularly relevant to this research. The scenario definition specifies how scenarios are
outlined in UCM models while the formal definition of UCM specifications allows for an

unambiguous interpretation of the developed map.

3.4 UCM Scenario Definition

The methodology of extracting individual scenario details from UCMs is discussed in
[AMYO03b]. In that research, algorithms were developed to extract the details of a single
scenario from a UCM and output it to a format that would be amiable to further
transformations. XML was chosen as the output format. We concern ourselves with the
specifics of this extraction because these XML files will be used as input for our

developed tool that will automate the approaches we later define.
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<! ELEMENT
< ! ELEMENT
< !ATTLIST

< | ELEMENT

scenarico-list (scenario-group)¥* >
scenario-group (scenario-definition)* >
scenario-group
name NMTOKEN  #REQUIRED
description CDATA #IMPLIED >
scenario-definition {{scenario-start)*,
{variable-init})*,

{(postoondition) *)

<!ATTLIST scenario-definition
name NMTOKEN  #REQUIRED
description CDATA #IMPLIED >
<!ELEMENT scenario-start EMPTY >
<IATTLIST scenario-start
map-id IDREF #REQUIRED
start-id IDREF #REQUIRED >
<|ELEMENT wariable~init EMPTY >
ZIATTLIST variable~init
variahle-id IDREF #REQUIRED
value (TIF) #REQUIRED »
<|ELEMENT postcondition EMPTY >
<!ATTLIST postcondition
variable~id IDREF #REQUIRED
value {T|F) #REQUIRED »

-

e

Figure 3-13: Scenario Definition DTD

According to [AMYO03b], system scenarios must be defined in UCMNav before
information about them can be extracted. Scenario definitions describe scenarios
represented in the UCM in terms of their initial values for the system global variables and
their start points triggered. Figure 3-13 [AMYO02] presents the DTD that formally defines
the structure of scenario definitions. Definitively, each scenario definition must contain a

name, the list of start points to be triggered, the initial values of the global variables

(either true or false), and (optionally) a post-condition used to assert the validity of a

scenario once the traversal has completed [AMYO03b].
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Furthermore, individual scenarios are separated from UCMs by applying a scenario
traversal algorithm that was developed as part of the research of [AMYO03b]. This
algorithm traverse the UCM with respect to the chosen scenario and ensures that the
contents of the outputted XML file (valid with respect to the Document Type Definition
shown in Figure 3-14) contains all the relevant information about path concurrency,
responsibilities, components, and plug-ins,. The XML elements that specify the extracted
scenario contain attributes that preserve the traceability information to the original UCM

[AMYO03b].

The research presented in [AMYO03b] has been integrated into UCMNav. The tool
provides the interfaces for defining scenarios and organizing them into groups and for
selecting global variable values that form scenario conditions. UCMNav can also

produce an XML file containing individual scenarios or groups of scenarios.

The XML DTD (Figure 3-14 [UCM]) for extracted scenarios specifies that scenarios can
be part of one or more group and that a scenario supports the recursive use of sequence
(<seq>) and parallel (<par>) XML elements to detail its sequences and concurrent paths.
The extracted scenarios are partial orders and, as such, contain information about
sequences and concurrency, but not alternatives [AMY03b]. Plug-ins within UCMs are
resolved as follows: the appropriate plug-in for the scenario is selected and plug-in

components and elements are allocated to the component containing the parent stub

[AMYO03b].
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<l

* XML DTD for Use Case Map Beenariog

# Authors: Xiangyang He {hexlangysrpdhotmail com)
# Dantal Amyot {demyot@iaite uottawa.ca)
#Version: 1.0

# Oxganization: SITE, Undversity of Otiaws

# Date: 2002108023

# Root Elsment: scenarios

.}

<|ELEMENT stenarios (groug*)>

<IATTLIST sienarios
dabs CDATA  #REQUIRED
uemefile.  CDATA ¥REQUIRED
detign-name  COATA  #IMPLIED
ucm-dasign-varsion COATA ¥REQUIRED >

<IELEMENT troup {scenario)*>

=IATTLIST group
group-id NMTOKEM #HWPLIED
nais CDATA FREQUIRED

descripion.  GDATA HMPLIED >
<|ELEMENT scenatio (saq | par)s

<|ATTLIST scenarlo
soanaris-definition-id NMTOKEN. . iIMPLIED
name CDATA FREQLIRED

description”  CDATA #MPLIED >
<(ELEMENT aieq {do | condition | par)'>
<IELEMENT par  (do | condition | seq)*>
<IELEMENT do EMPTY>

<= WP_Enter: Whan the scenatio gats to & walling place
WP _Leasve: After the wailting place Is triggeradivisitad
Connect Stare: Start point of & phigrin (connection only)
Connect End: End polnt of & plig-in {connection only)
Triggar. End: End point conheciad to & stait point of walliing place

3.

<ATTLIET do
hyperedpa-id  NMTOKEN FREQUIRED
name CDATA #MPLIED

type (Roap | Start [ End_Poliit
| WF_Enter | WP _Laaves
[ Connect_Stat | Connect_End
| Trgger End | Timer Set
| Timer_Raset | Timsout) #REQUIRED

dascription  COKTA #MPLIED

componant-name COATA #HMPLIED

commpanantid - NMTOKEN FMPLIED >
<|[ELEMENT condition EMPTY>

<l axpreasion is the boolean expression used in the selectad branch —>
<l-- label is e niame sasoclated to the next siply point i that branch —
<|ATTLIST condition

hyperedpe-id  NMTOKEN SREQUIRED

label COATA #REQUIRED

sxpression  CDATA #IMPLIED »

Figure 3-14: Scenariol.DTD
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3.5 UCM Formal Definition

As previously mentioned, UCMs are intended to be used for specifying requirements.
The UCM notation itself and its underlying semantics can be regarded as informal. There
is an ongoing research effort to formalize the semantics of UCMs. Hassine et al. in
[HASO04] provide a formal definition for a UCM specification; it defines what a UCM

consists of and how its elements are related.

Hassine assumes a UCM Requirement Specification, RS, is denoted by (D, C, V, A, B)
where:
e D is the UCM domain that includes all possible UCM domain elements (start
points, responsibilities, end points, etc.)
e Cis the set of components in RS (C = & for unbound UCM)
e Vis the set of global variables in RS
e A is atransition relation defined as: A=DXxDXE, where E is the set of the logical
formula over V.
¢ B is a Binding relation, defined as: B=DXxC. B defines which element of D is

associated with which component of C.

a2
1 E1

] ]

3 K1
- tx)) Ez

Figure 3-15: Simple UCM




The following example, also provided in [HASO04], serves to clarify the meaning of this

formal definition. The UCM in Figure 3-15 can be described as follows:

D = {S,R1,R2,R3,El, E2, OF1} where OF1 is the OR-Fork.

e C={C1,C2}

« V=i{x)

e A= {(S, RI, true),(R1, OFI1, true),(OF1, R2, x),(OF1, R3, -x),(R2, El,
true),(R3, E2, true) }

e B={(, Cl1),R1, C1),(R2, C2),(E1, C2)}

The defined grammar of this formal definition of UCMs provides the basis our developed
definitions that are relevant to change impact analysis. We make use of this grammar in

the chapters to follow.

This concludes the background section of this research. In the first part we discussed
software evolution, specifically change impact analysis and current approaches used for
identifying the impact of a change. This was followed by a detailed review of UCMs —
their notation, their benefits and current applications, and the definitions that have been
applied to them. In what follows the contributions of this research are presented with

focus on applying current change impact approaches to UCMs.
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4. Applying Change Impact Analysis Techniques to UCMs

The goal of this research is to show that UCMs can be used during change impact
analysis by applying existing dependency-based impact analysis techniques to them. The
stated goal is based on two major factors: defining the approaches that we will apply to
UCMs as well as defining the algorithms necessary to produce the desired output. We
use the formal definition of UCM specifications discussed in section 3.5 to support our
approaches. In this section details on the dependency analysis approaches that we
applied to UCMs are presented. This is followed by a section discussing how the impact

sets for changed UCM elements are identified.

4.1 UCM Scenario Dependencies

Identification of scenario dependencies can support the understanding of system
operations and their inter-relationships. In what follows, we describe in detail how
scenario dependencies (discussed earlier in section 2.4.2.1) can be applied to UCMs. We
ascertain that these dependencies can be applied to UCM scenarios to understand the

relationships among system scenarios.

4.1.1 Functional Dependency

Scenario functional dependency, as discussed in [BAIO2] and [TSAO1], captures the

coexistence of two or more scenarios inside the same conceptual (or logical) cluster. At
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the UCM level, one can apply the idea of functional system decomposition via a scenario

tree, in which the functional dependencies for each scenario are determined.

The thin threads used to form the basis of the system functional decomposition in
[TSAO1] are comparable to UCM scenarios. A thin thread is defined as a minimum
usage scenario that describes a complete system scenario from the end users’ point of
view. This effectively defines UCM system-level scenarios (assumed henceforth and
simply referred to as system scenarios) which require external stimulation and propagate
through the system at the root level. These system scenarios include within their paths

plug-in scenarios.

Before one can create a functional hierarchy of a system, functional groups within the
UCM have to be defined. Functional groups are sets that contain system scenarios that
carry out the same goal and suggest functional dependency among its elements with

respect to the requirement specification.

This functional dependency among scenarios can then be arranged hierarchically to form
a functional decomposition tree. The structure, shown in Figure 4-1 can be described as
follows: The UCM for which this composition applies is set as the root of the tree, while
the defined groups form the tree’s internal branches. The system scenarios of the UCM
form the functional decomposition tree’s leaf nodes. Plug-ins, which may be contained
within scenarios, are not included within this hierarchy since the same plug-in can be

included in multiple scenarios, thus multiple groups.
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Figure 4-1: UCM Functional Decomposition Tree

UCM scenarios describe the functionality of the system in the context of the system’s
components. System behaviour may consist of large numbers of scenarios that describe
each functional execution as well as its alternatives. This functional decomposition aims
to provide some structure to the UCMs’ defined scenarios to support system

comprehension.

4.1.2 Containment Dependency

As discussed earlier, UCMs support model abstraction by allowing some scenario details
to be hidden from the root map through the use of stubs and plug-ins. At run-time, the
stubs are filled with the appropriate plug-in map that contains the hidden execution

details, endorsing the usage of plug-in maps in multiple scenarios. We aim to identify
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which parts of a UCM system scenario is actually part of a plug-in map through the

extension of previously defined notions of containment dependency.

For UCMs, we define a containment dependency to exist between two scenarios, A and
B, if the path of A is fully contained within the path of B, but does not equal B. A UCM
scenario is actually a sequence of executed responsibilities, a subset of the transition
relations (A ) in the domain of the UCM. We then denote the sequence of a scenario, X,

by Ax.

Definition: (Containment Dependency)
For two scenarios A and B and their sequencesAs andAs, respectively, A is

contained in B if As C As.

Since the export feature in UCMNav does not provide plug-in paths outside the context
of the system scenarios in which they are contained, a work around has to be provided.
We must resolve the UCM domain elements within the scenario traversal that are
bounded by a plug-in map. Plug-in start and end points are actually UCM domain
elements called connect_start and connect_end, respectively, so that they can be
differentiated from start and end points that require external stimulation. Thus, we
identify scenarios that contain plug-in path segments by searching the UCM domain
elements within its sequence for one or more domain elements of type connect_start. If a

plug-in start point is encountered, then all the succeeding elements up to and including
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the corresponding connect_end domain element are deemed to be those enclosed by the

bounds of the plug-in map.

Once a plug-in path is identified, we separate the sequence of domain elements that
constitute the plug-in scenario traversal and create a relationship between this contained
path and the scenario that makes use of it. Subsequent discoveries of the same path in

other scenarios also create a relationship between these scenarios and the plug-in path.

Root Map Display Plug-in

open. app for;n‘mt 1
(4]

. 5% ]

Figure 4-2: UCM Root Map and Plug-ins

After the isolation of plug-in paths, it is then possible to produce containment
dependency information. For a given system scenario, hierarchical list of all its
contained paths (hierarchical because plug-in paths may in turn contain their own plug-in
segments) can be generated to show all the sub-scenarios upon which the scenario
depends. Similarly, all the scenarios that contain a specific plug-in path can also be
generated to show these scenarios that are related through their dependency on the plug-
in path. This dependency information can then be used to provide an understanding of all

the scenarios that may be affected if a plug-in path is changed.
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As an example, Figure 4-2 displays a root UCM that contains a stub, called display,
which is required by both scenarios. The plug-in for the stub is shown on the right. The
start and end point of the plug-in path would be defined in UCMNav and the scenario
XML file as connect_start and connect_end respectively, allowing for the identification
of the plug-in within both system scenario paths. Thus, an analysis of either scenario
would confirm a containment dependency between it and the plug-in sequence on the
right. Furthermore, an analysis of the scenarios that make use of the shown plug-in

scenario would produce a set containing both of the scenarios in the root map.

4.1.3 Global Variable Dependency

Conditions are used to define the context for when a scenario executes and (implicitly)
when it does not. UCMs make use of Boolean global variables to represent system state.
A True value for the global variable implies the existence of the system state, while a
False value represents the opposite. That is, each variable v € V has two values that it
can be assigned which we denote as vt and vf, for True and False, respectively. At the
time of scenario definition, a value for each global variable that is required for scenario
execution must be specified. Figure 4-3 shows the user interface in UCMNav that

provides the means for accomplishing this.

Since scenarios within a UCM make use of the same global variables, we propose
definitions of relationships between these scenarios based on their conditions (global

variable values). To do this we exploit the condition relationship definitions presented in
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[PAUO1]. We first identify relationships between conditions as described in [PAUO1]
and then relate the scenarios that execute based on these conditions to generate
dependency information at the scenario level. We have defined four different types of
dependencies between scenarios and their global variable values: Related, Value Related,

Value Alternate, and Independent.

Figure 4-3: UCMNav Global Variable Value Selection

For a given scenario, we define a Global Variable Related set as one containing those
scenarios that are dependent with the input scenario through the requirement of the same
global variable(s), regardless of the value of the variable. We suggest a further reduction

of this set by introducing the notion of a Global Variable Value Related set — a set that
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includes only scenarios that use the same value for any of the global variables required by

the input scenario. The formal definitions of these two dependencies are as follows:

Definition: (Global Variable Related)
Let a value for a global variable be vx | vx=vt or vx=vf. Also let the set of global
variable values for a specific scenario be Vx. Two scenarios, C and D are

condition related if for a value vx of v (ve V), vx € Vxc andvx € Vxp

Definition: (Global Variable Value Related)

Let a value for a global variable be vx | vx=vt or vx=vf. Also let the set of global
variable values for a specific scenario be Vx. Two scenarios, C and D are
condition value related if for a value vx of v (v € V), (vx=vt € Vxc and vx=vt

€ Vxp) or (vx=vfe Vxc andvx=vfe Vxp)

Table 4-1 depicts an example of scenario initializations for a UCM (where “/”
cotresponds to a variable that has not been initialized for that particular scenario). Given
scenario S1 as the input for the analysis, scenarios S2 and S3 would be included in the
Global Variable Related set, while only S2 would be included from the Global Variable

Value set.

S1 T F [T
S2 T /I /
S3 / T |F

Table 4-1: UCM Scenario Initializations
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Furthermore, scenarios that are related by the same global variable but use the opposite
value are part of a more specific set, so-called Global Variable Value Alternates.
Scenarios that are deemed to be alternates have opposing condition values for the same
global variable implying that they cannot occur at the same time. Referencing Table 4-1

with the S as input, S3 would be an alternate scenario.

Definition: (Global Variable Value Alternates)
Let a value for a global variable be vx | vx=vt or vx=vf. Also let the set of global
variable values for a specific scenario be Vx. Two scenarios, C and D are global

variable alternates if for a value vx of v (ve V), vx=vt € Vxc and vx=vf€ Vxp

The last global variable-based dependency we define actually refers to a lack of
dependency; these scenarios do not share any of the same global variables with the given
scenario. This definition is the exact opposite of that of Global Variable Related and is

termed Global Variable Independent.

Definition: (Global Variable Independent)
Let the set of global variable values for a specific scenario be Vx. Two scenarios,

C and D are global variable independent if for any condition v ( ve V) such that v

€ Vxc v& Vxp

As shown in Table 4-1, for the input scenario SI, the Global Variable Independent set

would be empty since the other two scenarios do share its conditions.
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4.1.4 Execution Dependency

UCMs depict behaviour over a static system using scenario paths. Since the structure of
the system within the model is fixed, the scenarios must share existing system elements
(domain elements and/or components). To provide information on how scenarios relate
through these system elements we make use of execution dependencies defined in

[PAUO1] and [BAIO2].

For UCMs, we propose that scenarios are execution dependent if they share common
elements. That is, these scenarios execute the same components or domain elements
along their paths. We have also defined the inverse of execution dependent, execution

independent, as two scenarios that do not execute any common UCM elements.

Furthermore, we can analyze scenario execution dependencies at two levels of
abstraction: component and domain element. At the component level we ascertain that a
dependency exists between two scenarios if they both contain the same component in
their execution sequence (termed Component Execution Dependency). At the more
specific level, two scenarios are domain element execution dependent if they both
execute the same UCM domain elements (termed Domain Element Execution
Dependency).  Scenarios that are domain element execution dependent are also
component execution dependent since responsibilities are contained within components,

however, the inverse does not hold. The formal definitions are as follows:
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Definition: (Component Execution Dependency)
For two scenarios A and B and their respective sequences As and As, A and B are
component execution dependent if a component ¢ (c€ C) exists such that ¢ € Aa

andc e As.

Definition: (Domain Element Execution Dependency)
For two scenarios A and B and their respective sequences As and As, A and B are
domain element execution dependent if a domain element r (re D) exists such that r

€ Aa andre As.

Figure 4-4 illustrates a UCM that contains three scenarios, referred to as A, B, and C
whose start and end points are respectively: (b,x), (b, ¥), and (c,z). Notice that scenarios
A and B share the same starting point, b. Given scenario A as input for execution
dependency analysis, scenarios B and C would be deemed component execution

dependent, while only scenario B would be considered domain element execution

dependent.

Figure 4-4: UCM for Execution Dependency
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For a given scenario, its execution dependent scenarios are determined by analyzing all
the domain elements executed by the scenario. Iteratively, for each domain element in
the scenario sequence, we obtain all the other scenarios that execute that domain element
and add them to the set of dependent scenarios. To identify component execution
dependencies among scenarios, the component by which each executed domain element
is bound are identified. These components are then further analyzed to discover the other
domain elements they bind. The scenarios that execute these other domain elements are
then added to the dependency set. Therefore, the component execution dependency set

for a given scenario will include the scenarios that share the same components.

4.2 Component Dependencies

UCMs support the comprehension of the components that make up a modeled system
through the analysis of the scenario’s paths that inter-connect these components. The
scenarios explicitly create relationships between the components of the system, implying
that component relationships depend on the system scenarios to provide the semantic
information about their dependencies [WEI98]. Since UCMs do not provide information
on the type of dependency (control or data), we can only determine that a dependency

exist between components.

In this section we elaborate on the current definition of UCM component interfaces and

detail our component dependency definition.
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4.2.1 Component Interfaces

UCM scenario paths traverse the system and along its way responsibilities that are bound
to components are executed. If any path traverses one component and enters another then
the two components must interact to ensure the causality required by the scenario occurs
between the two components [HASO04]. In [WUO1], an interface is defined as access
points of the component that invoke events within that component when it is accessed.

Further, Hassine in [HAS04] defines a UCM interface as follows:

Definition: (Component Interface) [HASO4]

Let RS = (D, C, V,A , B) be a UCM, R is the set of responsibilities, start/end points
of RS(R S D) and c € C a component. A component Interface Ic is defined as a
subset of R (Ic=R’ and R’ = R) where R’ is the set of responsibilities, start/end

points that defines the interaction between c¢ and other components in C.

The above definition specifies that a component interface is a responsibility, a start point,
or an end point that defines interaction with other components. Start and end points must
be included in the component interface set since the start point is where the component
receives stimuli and the end point is where it returns control. We extend this definition to
clarify the component interface responsibility in an effort to make future automatic

extraction more specific.
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Definition: (Component Interface) Revised

LetRS=(D,C,V, A ,B)beaUCM. LetR be the set of responsibilities, start/end
points of RS (R S D) and c € C a component. A component Interface Ic is a
subset of R (Ic=R’ and R° & R) where R’ are the start/end points and
responsibilities bound to ¢ ((R’, ¢c) CB’) such that for each domain element, r, in Ic

there exists a transition to a domain element w (w € R and (r, w)€ A ) and w is not

bound to c ((w, c) € B).
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Figure 4-5: UCM with Component Interfaces Highlighted

Figure 4-5 shows a UCM with the interfaces of each component highlighted.
Specifically, component X has domain elements b and c as interfaces; component Y has
m, n, and k as interfaces; and component Z has ¢, s, and ¢ as its interfaces. As defined, all
start points, end points and responsibilities which have paths that lead to other

components are included in these sets.

We introduce the concept of component interface domain elements but refrain from

describing any operational details of the interface. The general definition provided
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simply implies that the identified interface domain elements are used to support the

necessary collaboration between it and other components.

4.2.2 Component Dependency Identification

UCM scenario paths create relationships among the components by which the domain
elements they execute are bound. For this reason, a UCM can easily be viewed as a
component dependency graph. We make this assumption by applying to UCMs the
following definition of a component dependency graph presented by Yacoub et al. in

[YACO4]:

Definition: (Component Dependency Graph) [YACO4]

A tuple (N,E,s,t), where (N,E)is a directed graph and s is the start node and t is

the end node. N is the set of nodes in the graph and E is the set of directed edges.

A UCM corresponds to a graph with directed edges created by the causal nature of its
scenarios — scenario paths begin at start points and progressively continue to end points,
explicitly indicating direction. This concept is visualized in Figure 4-6 where the UCM
includes directional arrows to further specify scenario directions. The components within
the UCM correspond to the nodes in the graph, while the path segments between
components (implying component interaction) can be regarded as the directed edges.
The start and end nodes where the scenarios begin and end, are contained within

components, thus these components form the sources and sinks of the graph. A UCM
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graph, due to the possible containment of multiple scenarios may contain multiple start

and end points.

W

' 4
N

Figure 4-6: UCM Showing Scenario Direction

The dependencies of a component are identified by analyzing the scenarios that execute
its domain elements. A component dependency exists between two components if there

is a directed edge between them.

Definition: (Component Dependency)

For a given component x (x € C), let its interface set be Icx. A componenty (y €
C) has a dependency with x if there exists some scenario A and its execution
sequence, Aa, such that an interface of x, r (r € Icy) executes before or after an

interface, q of y (q € Icy).

Due to the sequential nature of a scenario execution, we can further refine our defined

component dependencies to specify whether one component depends on another or
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whether another component depends on it. We term these two component dependency
specifications backward and forward dependency, respectively. This notion is derived
from work in [KOR04] where Korel et al. define affecting and affected state chart

transitions.

Components are Forward Dependent on a specific component c, if within at least one
scenario sequence their interface domain elements are executed after that of ¢. That is,
there exists a directed edge from c to these other components. Similarly, ¢ is Backward
Dependent on other components if directed edges exist which emanate from them and
lead to ¢. In Figure 4-7 the dependencies of component Y are highlighted; component X

is backward dependent with Y where as Z is forward dependent.
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Figure 4-7: UCM with Component Dependencies of Y Highlighted

Viewing a UCM as a component dependency graph allows us to perform component

dependency analysis using UCM. Component dependency information extracted from
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UCM is useful in change impact analysis for the same reasons a general dependency

graph is useful — as an indicator of component interactions and its level of coupling.

4.3 UCM Impact Analysis

Impact analysis is the process of identifying the other parts of the system that may be
affected by a change. In order to advocate UCMs as a system model for performing
change impact analysis, we realize that the identification of impacts must be supported.
In this section we present our approach for generating the impact sets with respect to
UCMs. Initially we specify our assumptions about the initial change set and follow with

discussions on how we identify ripple effects of UCM elements.

4.3.1 The Initial Change Set

The initial change set consists of elements known to be affected by the planned change.
The identification of the elements that need to be modified first to accomplish the change
does require some effort to analyze the change and the system. We assume that these
initial elements are known and therefore focus our approach on identifying what may be

affected by these initial changes.

Since all aspects of the UCM notation are related (scenarios, components, and domain
elements), it is possible to identify the impact set for a change at all three levels of
granularity; scenarios are the highest level of abstraction, while the impact set at the

domain element level would provide the most specific analysis. Depending on the level
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of analysis desired, we require that the initial change element at that level be provided as
input. For instance, if impact analysis is desired at the component level, but a change
actually occurs to a domain element, then the component by which the changed domain

element is bound is the requisite for determining the impacted components.

4.3.2 Scenario Impact Set

Scenario impact sets can be determined with the use of the scenario dependencies defined
in section 4.1. This concept is based on a similar technique employed by Tsai et al. in
[PAUO1b] for the determination of impact sets for test scenarios. That work discusses a
slicing method that requires a changed scenario and the dependency attribute as the
slicing criterion. Based on this input the selected dependency is applied to scenarios to

determine the impact set.

In this research we do not make use of a slicing algorithm but do adopt the idea of
allowing users to choose the dependency to apply for the generation of an impact set.
This is done to avoid making claims about the appropriate dependencies that should be
applied to a given changed scenario. Making such claims would require empirical
evidence to validate them, which is unavailable in the existing literature. Also,
conducting an empirical analysis would go beyond the scope of this research.
Consequently, for a given scenario and a selected dependency, the impact set will contain

all scenarios dependent with the given scenario with respect to the selected dependency.
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4.3.3 Ripple Effect Analysis

The behavioural specifications contained in UCMs support the identification of two types
of impact sets that we term static and dynamic. A static impact set contains all the
components or domain elements (depending on the desired level of analysis) that interact
with the given input through any of the modeled scenarios. Similar to other approaches
that have been defined as static, this impact set includes any UCM elements that could
possibly be impacted by the change irrespective of any behavioural details.
Alternatively, a dynamic impact set is specific to an execution path. It contains a

(possibly) more distinct set of elements which are specific to a given scenario.

In order to generate the impact set that contains the ripple effects of the change, we
implement a transitive closure algorithm that identifies all elements in the UCM that are
reachable from the given input. We conclude that a UCM element is reachable if an

element in the impact set contains a transition to it [PAUO1b][TSA03].

Definition: (Forward Reachable Element)
For two elements d and e, e is reachable from d if there exists a scenario sequence
(Ax) such that a transition relation containing d executes before a transition

relation containing e.

We again make use of the notion of ripple effect discussed in [KOR04] and identify two

types of ripple effects using our transitive closure algorithm. Elements that are forward

reachable from the given input are deemed to be forward ripple effects while elements
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from which the given input is reachable constitute backward ripple effects. The
identification of backward ripple effects makes use of our developed definition of

backward reachable elements.

Definition: (Backward Reachable Element)
For two elements d and e, e is backward reachable from d if there exists a scenario
sequence (Ax) such that a transition relation containing d executes after a

transition relation containing e.

These definitions are applied to determine both component and domain element ripple

effects as detailed in the following sections.

4.3.3.1 Component Ripple Effect Analysis

Our component ripple effect analysis technique aims to identify other components that
may be affected by an initially changed component. Since UCMs may be created without
components, we assert that component ripple effect analysis can only be performed on

those UCM models that contain component specifications.

For a given component, the impact set is determined by applying our previously defined
forward and backward component dependencies. For static ripple effect analysis, the
forward and backward dependent components for the given input are identified and added
to the respective impact set. The complete backward impact set is then generated by

iteratively identifying backward dependencies for all components in that set, marking
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each as it is analyzed. Similarly, the forward impact set is produced by identifying the
forward dependencies of the given component and each component is added to the set.

The process ends when there are no further unprocessed elements in the impact set.
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Figure 4-8: UCM Showing Ripple Effects of Component F

Dynamic ripple effect analysis requires the additional input of the scenario that should be
used to identify the possible change impacts. Given this and the initially changed
component, the analysis of the impact sets follows the same methodology as that of static
analysis, except only the dependencies occurring with respect to the input scenario path

are included in forward and backward ripple effect set.

As an example, Figure 4-8 shows the identified ripple effects for component F. Applying
static impact analysis would produce a forward impact set containing components H and
L and a backward impact set containing components £ and K. Dynamic impact analysis
with respect to the scenario that begins in component K and ends in component J, would
have a forward impact set that includes only component J whereas the backward set

would remain unchanged, containing both E and K.
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4.3.3.2 Domain Element Ripple Effect Analysis

Once the initial changed domain element is known, forward and backward ripple effects
for both static and dynamic analysis can be identified as defined below. Similar to
components, a static change impact set is generated for a given domain element by
analyzing all the scenarios that execute it. The forward impact set contains all the
domain elements that are reachable from the input , while the backward impact set will be
comprised of those domain elements that are backward reachable from the given domain

element.

Figure 4-9: UCM Showing Path Specific Impact Set of s

A restricted dynamic impact is produced by requiring a scenario as an additional input.
The forward and backward ripple effects are then identified only with respect to the given
scenario. This effectively limits the forward impact set to those domain elements that are
executed after the given input during the specified scenario’s execution and the backward

impact set to those domain elements that execute before it.
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As shown in Figure 4-9, the dynamic impact set for responsibility s with respect to the
scenario that begins at ¢ and ends at o is highlighted; the forward impact set includes
domain elements r and o while the backward impact set includes domain elements x and
c. Static ripple effect analysis on this UCM, with s as input, identifies a forward impact
set containing domain elements y, p, r, and o and a backward impact set containing

domain elements ¢, x, f, d.

In this chapter definitions and algorithms were proposed that can be regarded as a
framework for using UCMs for change impact analysis. Scenario and component
dependencies were introduced as an aid to system comprehension, while the ripple effect
analysis methods can be used to scope the impacts of a change at three levels of
abstraction. The next chapter details how we automated our theories through tool

support.
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5. UCM Analyzer

This chapter describes in detail the tool that was developed to automate the ripple effect
analysis at the UCM level, called UCM Analyzer. We provide a brief overview of its

usage and then discuss some implementation details with respect to the tool design itself.

5.1 UCM Analyzer Usage

The goal of UCM Analyzer is to: 1) create the relationships among elements of a UCM
to support further analysis, and 2) provide dependency and ripple effect information
about the UCM. The tool’s interface is divided into four main areas that support the

analysis of the UCM.

Scenario Importer

To create an accurate representation of the UCM, we require the scenario XML files
produced by UCMNav be available as input for our tool. In order to analyze all the
relationships among the UCM elements it is necessary to import all the scenario XML
files for the UCM into UCM Analyzer. The Scenario Importer interface allows users to
select these XML files which are then automatically parsed by UCM Analyzer to derive

the necessary relationships among the scenario elements.

UCM Details
The tool displays the details of the chosen UCM. Since the UCM Analyzer supports the

storage of data for multiple UCMs, the user must select a UCM from the list that is
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populated from the database. Once selected, all scenarios, Boolean global variables,
components, and domain elements that comprise the selected UCM are listed in the

display area.

Dependency Analyzer

For dependency analysis, users select the desired dependency analysis level — either
scenario or component. For the scenario dependency analysis it is necessary that the
scenario and the type of dependency that should be applied are provided as input.
Alternatively, for component dependency information, users must input a specific
component from the list of components and select a scenario from the list of available

scenarios if a path-specific dependency is desired.

Impact Analyzer

Users can choose among three different levels of granularity when requesting impact
information. Scenario impact analysis makes use of scenario dependency information,
and users are redirected to the Dependency Analyzer section to obtain information on
dependent scenarios. Component and domain element impact analysis can produce ripple
effect information for all scenarios or a specific scenario (if a scenario is also provided as
input). The displayed information identifies the impact set for both forward and
backward impacts indicating to the user which components or domain elements are

affecting and are affected by the input.
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5.2 Tool Design

5.2.1 Tool Architecture

UCM Analyzer is a Java implementation that was developed using the IBM Eclipse IDE
and the MySQL database management system. The architecture of UCM Analyzer is

depicted as a UML?2 component diagram in Figure 5-1.

The user interface for the tool is referred to as Change Analysis. It handles all user input
and produces text output to the display area. If the input is an XML file that is to be
parsed the user interface accesses the UCM Generator component to handle this task.
The tool is populated by each XML file individually so that the relationship information
between the scenario and its elements is maintained. During parsing, UCM Generator
accesses the Object Manager component to create the necessary objects and relationships
for each UCM element found in the XML file. The objects in the Object Manager
component access the database via the DB Manager component for the purpose of saving
and retrieving information. The DB Manager component accesses the MySQL database
using the Java Database Connectivity (JDBC) API standard SQL database access

interface.

The Component Dependency Manager component applies the algorithms for determining
other component dependencies for the given input. Similarly, the Scenario Dependency
Analyzer, given the scenario and the desired dependency type to be analyzed, applies the

necessary algorithms to produce the resulting output set.
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Figure 5-1: UCM Analyzer Component Diagram

The Ripple Effect Analyzer determines the impact set for a specific UCM element. If the
impact set for a component is desired, given the initial component, it recursively makes
use of the Component Dependency Manager unit to generate a complete impact set. The
same concept is applied for the scenario impact set with interactions with the Scenario
Dependency Manager unit. If the impact set for a UCM domain element is favored, then
the Ripple Effect Analyzer handles the implementation of the necessary algorithms for

generating the set.

5.2.2 Scenario XML File Parsing

Each scenario file contains a hierarchy of related elements as shown in Figure 5-2. A
UCM element contains groups which in turn contains scenarios. Scenarios are comprised

of conditions and executed UCM domain elements, with the latter containing the
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component by which it is bound. We parse each scenario file to extract the elements,
their attribute values, and their relationship information using the following logic. The
attribute values of each XML element are those provided by the UCM creator or
UCMNav to identify the UCM element. (For clarity XML file elements and attributes

referenced are written in italics).

UCM
Group
Scenario
I |
Constructs Conditions
Components

Figure 5-2: Scenario XML File Element Relationship Hierarchy

The UCM for the current scenario file is identified by its filename (ucm-file attribute)
which we assume is unique among UCMs. A UCM can contain several defined groups;
for each new group that is identified (distinguished by its unique group-id attribute), a
relationship is created with its UCM. A scenario can only be a part of one group forcing
a relationship between each scenario and its specified group. Individual scenarios are

identified by their scenario-definition-id attribute.
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The ordered UCM domain elements (<do> elements) form the scenario’s execution
sequence and allow for the creation of a relationship between each domain element and
the scenario. Scenario sequence information is preserved by creating a previous-next
relationship between the ordered UCM domain elements. Path concurrency is preserved
with by creating objects to represent the <par> and <seq> elements that provide
structure to the scenario sequence in the XML file (visible in the sample file in Figure 5-
3). A parent-child relationship is created between each concurrency element and the

UCM elements that it binds.

Due to the fact that UCM domain elements may be contained within several scenarios, it
is necessary to avoid duplicates within the UCM by validating the uniqueness of the
value of the hyper-edge-id attribute of each element. UCMNav applies a unique hyper-
edge-id to each modeled element to identify the element within UCM. The first time an
element is parsed, it is represented in UCM Analyzer while successive identifications
simply cause the creation of a relationship between the existing representation and the
scenario currently being parsed. Contrarily, domain elements are bound by only one
component whose information is contained within an attribute of its XML element.
Components are uniquely identified by both their component id and role name (multiple
instances of the same component within a UCM are given the same component id but
different role names). As with domain elements, each component is only represented
once in UCM Analyzer, causing only relationships to be created between existing

components and successive elements that they bind.
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<?xml version="1.0' standalone="no"?>
<!DOCTYPE scenarios SYSTEM "scenariosl.td™s

<scenarios date ="Thu Jun 9 08:15:26 2005” ucmi-file = “SDLforum10.ucm™ design-name = "SDLforum10” ucm-design-version = "134™>
<group name = "Teenline” group-id = "3" »
<scenario name = "TLActivePINInvalid” scenario-definition-id = "4” >
<seq>
<par:
<s&q>
<do hyperedge-id="0" name="req" type="Stan" component-name = "User” component-id= "1" component-role= "Oriy” />
<do hyperedge-id="50" name="start" type="Connect_Start" comiponent-name = "Agent" componentid= "0" component-role= "Oriy" />
<o hyperedge-id="55" name="InitFeatures” type="Resp” component.name = "Agent” component-id= "0" componentrole= "Orig" />
<condition label="TeenLing" expression ="chkTL&amp;amp;{ichkOCS}" hyperedge id="65" />
<do hyperedye-id="66" name="start” type="Connect_Start" component-name = "Agent” componentid= "0" component-role= "Orig" />
<do hyperedye-id="68" name="checkTime" type="Resp"” componentname = "Agent” componentid= "0" component-rele= "Orig” />
<condition hyperedge-id="70" label="[Active]" expression ="TLactive" /»
<do hyperedge-id="72" name="yetPIN" type="Timer_Set" /»
</seq>
<seq>
<do hyperedye.-id="31" name="PIN-entered" type="Start" component-name = "User" compeonent-id= "1" component.role= "Orig” />
<do hyperedge-id="93" type="Trigger_End" component-name = "Agent™ component-id= "0" component-role= "0rig" />
</seq>
<ipar»
<do hyperedge-id="72" name="getPIN" type="Timer_Reset" />
<do hyperedge-id="89" name="checkPIN" type="Resp” compenent-name = "Agent” component-id= "0" component-role= "Orig" />
< condition hyperedye-id="74" label="InotPINvalid]" expression ="IPiNvalid" />
do hyperedge-id="82" name="deny" type="Resp"” componentname = "Agent” component-id= "0" component-role= "Orig" />
<do hyperedye-id="78" name="fail" type="Connect_End" component-name = "Agent” component-id= "0" component-rele= "Orig” />
<do hyperedge-id="34" name="fail" type="Connect_End" component-name = “"Agent” componentid= "0" component-role= "Orig" />
<do hyperedge-id="4" name="notify" type="End_Point" companent-name = "User" component-id= "1" cemponent-role= "Oriy" />
</sei>
</scenario»
</group>
</scenarios>

Figure 5-3: Example Scenario XML File Contents

Finally, scenario sequences can also contain global variable values that represent
selection conditions during a path execution. These conditions are located at the point in
the sequence where the selection occurs. Each detected condition (uniquely identified by
its label and expression attributes) is represented once and a relationship is created
between the condition and any scenarios that make use of these variables. Pre- and post-
conditions are not included in the generated UCMNav scenario XML file. This
information is manually extracted from the original UCM design (the *.xml.ucm file) file

created by UCMNav. Relationships are then created between global variables and their
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values. As well, relationships are created between these global variable values and the

scenarios that make use of them.

It should be noted that not all UCM domain elements as defined by Hassine et al. in
[HASO04] are included in the UCM Analyzer representation of the model due to the
limited contents of the scenario XML files generated by UCMNav. Specifically, any
path selection domain elements such as OR-forks and OR-joins are not included in the
UCM domain elements, since scenario alternatives are resolved before the scenario is
exported to the XML file. AND-joins and AND-forks, although preserved in the scenario
trace are not actual domain elements in the scenario XML file, thus, they are not included

in the scope of this research either.

5.2.3 Object Manager Class Diagram

The static structure of the Object Manager component is shown in Figure 5-4 to provide
a better understanding of the relationships between the base classes of UCM Analyzer.
The properties and methods of the classes have been omitted in an effort to maintain the

focus on the relationships.

As shown in Figure 5-4, the scenario class is the core part of the application. The
Scenario class is used by the Group class to create all the scenarios that are part of a
group, which, in turn, is related to the UCM class. The scenario instance relates to all the

BooleanVariableValue objects that form its execution state. These values comprise one
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half of an instance of a BooleanVariable object, so the related value is either TRUE or

FALSE.
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Figure 5-4: Class Structure of Objects Manager

A scenario is composed of exactly one sequence and one graph which is a refinement of
that sequence. A Sequence object is a tree structure of the four types of elements that
may be contained in a sequence: domain element, condition, par, and seq. The <seg>
and <par> elements from the XML file are kept to maintain the structure for parallel
sequences. In order to create this sequence tree, when the XML file is parsed, the

database stores a relationship to its parent element for each element within the sequence.
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The Graph instance of a given Scenario object refines the sequence by removing the seq,
par, and condition element types from the sequence while creating a graph from the tree
of (possibly) parallel sequences to facilitate forward and backward traversal along all the
scenario’s paths. The graph’s vertices are the domain elements executed by the scenario

and the edges are the transitions among these elements.

The Element class is refined for the domain element and condition elements types with
the Domain element and Condition classes, respectively. A Domain Element is part of

one Component and each domain element has a type defined by DomainEelementType.

This chapter described in detail the overall implementation of the UCM Analyzer and
how the change impact analysis at the UCM level is performed using the tool. The next
chapter describes an initial case study to illustrate the use of the UCM Analyzer for

change impact analysis on an existing UCM.

89



6. Case Study: Simple Telephony System

The purpose of the presented case study is to provide an initial proof of concept of the
presented approach. In what follows we will apply the approaches discussed to an
existing UCM in order to show that it is possible to apply change impact analysis
techniques to UCMs. In particular, this brief study will select various elements of the
UCM and apply the different aspects of our approach to produce dependency and ripple

effect information.

6.1 UCM Details

The Simple Telephony System UCM, presented in [MIGO01] and referenced in [HAS04],
describes the simple connection phase of an agent-based telephone system. The UCM
describes the basic call request sequence with the features of call screening and call
display. Figure 6-1 shows the root UCM that includes four components (originating and
terminating users and agents) and two static stubs. Static stub Sorig contains the
Originating plug-in of Figure 6-2a, while Sterm contains the Terminating plug-in of
Figure 6-2c. Each stub also contains a dynamic stub, Sscreen and Sdisplay, respectively,
which contain either the default plug-in (Figure 6-2¢) or their corresponding feature plug-

in shown in Figure 6-2b and Figure 6-2d.

Sscreen Plug-ins:
= Qriginating Call Screening (OCS) — implements a call screening feature that

either denies or allows a call.
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» Default — used in the case where the caller does not subscribe to any originating

features.
root Root Map
Uscx:Ogg User:Term
weq re
. i
noi[fy display
|
busy
1
|
tinei
|

Figure 6-1: Simple Telephony System Root Map

Sdisplay Plug-ins:
* Call Number Delivery (CND) — implements a call display feature where the
number of the originating caller is displayed while ringing.

" Default — used in the case where the user has not subscribed to any terminating

features.
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Figure 6-2: Simple Telephony System Plug-ins

Further, the start and end points of the plug-ins in Figure 6-2 are not triggered by external
events but are connectors to the input/output segments of their parent stubs. The bindings
between stubs and their plug-ins and the conditions that govern the selection of the plug-

in map, described in [HAS04], are arranged in Table 6-1.
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Sorig Originating | TRUE {(IN1, start), (OUT1, success), (OUT2, fail)}
Sscreen OCS subOCS {(IN1, start), (OUT1, success), (OUT2, fail)}
Sscreen Default 1subOCS {(IN1, start), (OUT1, continue)}

{(IN1, start), (OUTI1, success), (OUT2, fail),
Sterm Terminating | TRUE (OUTS3, reportSuccess, (OUT?2, disp)}
Sdisplay CND subCND {(IN1, start), (OUT1, success), (OUT?2, display)}
Sdisplay Default IsubCND {(IN1, start), (OUT1, continue)}

Table 6-1: Plug-in Input/Qutput Bindings

6.2 Simple Telephony System in UCM Analyzer

In order to create relationships of the Simple Telephony System in UCM Analyzer, we
populated the system’s scenarios by parsing their respective XML files. Additionally, we
manually added to UCM Analyzer information about the Boolean global variables
obtained from the Simpletelephonesystem.xml.ucm file that UCMNav created to store the
details of the created UCM. The Boolean values related to each scenario were obtained
from the exported Encapsulated PostScript (.eps) file that provides meta-information

about the UCM model and its scenarios.

Table 6-2 details the scenarios that were parsed by UCM Analyzer to support further
analysis. The Scenario ID field contains the unique identifier for the scenario provided
by UCM Analyzer whereas the group and scenario names are those that have been
extracted from the scenario XML file as provided at the time of scenario definition in
UCMNav. Each scenario has an associated value of true (T) or false (F) for each global

variable or no defined value (/). Please note that the complete UCM for the Simple
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Telephony System includes an additional plug-in and several scenarios that we have

omitted from the model in order to simplify the case study.

Basic Call BCbusy

BCsuccess

CND CNDbusy

CNDdisplay

0OCS OCSbusy

OCSdenied

OCSsuccess

FI_OCS_CND OCS_CNDbusy

[« )30 RV I AT Ho 00 N I (VNI FUN T f (O 3
S RS R AT -
Simlmem|~~~]|~

OCS_CNDOnList

e IGIGIE IR Ly
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Table 6-2: Simple Telephony System Scenarios

The UCM Analyzer representation of the UCM also contains the components and the
domain elements they bind. The Simple Telephony System implements two instances of
a component, causing the names of the components to be the same, but their role names
to differ. This results in the representation by UCM Analyzer for all four components
shown in the root map (Figure 6-1). Domain elements within the plug-in maps are bound
to the components that contain them. For example, the elements of Default plug-in
(Figure 6-2¢) actually have two instances that are bound to different components since

the plug-in may be substituted for either the Sscreen or the Sdisplay stub.
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L

User Orig 4 all 10

4
Agent Orig 14 5 all 10
Agent Term 14 5 1,2,3,4,5,7,9, 10
User Term 2 2 2,4,9,10

Table 6-3: Simple Telephone System Components

Table 6-3 summarizes each component’s relationship information as follows:

User:Orig — contains 4 domain elements (shown in Figure 6-1) and all of them act
as interfaces for access to this component. Domain elements bound by this
component are executed by all ten of the scenarios listed in Table 6-1.

Agent:Orig — contains 14 domain elements where 5 act as interfaces. The domain
elements bound by this component can be seen in the following plug-in maps:
Figure 6-2a, Figure 6-2b, and Figure 6-2e. Domain elements bound by this
component are executed by all ten of the scenarios listed in Table 6-1.
Agent:Term - contains 14 domain elements where 5 act as interfaces. The domain
elements bound by this component are shown in the following plug-in maps:
Figure 6-2c, Figure 6-2d, and Figure 6-2e. The listed scenarios execute the
domain elements bound by this component.

User:Term — contains only 2 domain elements (shown in Figure 6-1) that both act

as interfaces. The four scenarios listed execute these either or both of these

domain elements.

Furthermore, each domain element has an associated domain element type (all possible

types are shown in Table 6-4) that classifies its role in the UCM. As well, all the domain
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elements extracted from the scenario files are classified as do element types, while the

selection condition elements contained within the file are classified as condition element

types.

Start Start A start ucm domain
element

Responsibility Resp A ucm responsibility

End Point End_Point A UCM scenario end
point

Waiting Place Enter | WP_Enter When PT gets to a waiting
place

Waiting Place Leave | WP_Leave After a waiting place is
visited

Plugin Connect Start | Connect_Start | Start point of a plugin

Plugin Connect End | Connect_End | End point of a plug-in

Trigger End Trigger_End Connected end point

Timer Set Timer_Set A timer is set

Timer Reset Timer_Reset A timer is reset

Timeout Timeout A timeout domain
element

Table 6-4: UCM Domain Element Types

6.3 Scenario Dependencies

In order to demonstrate the scenario dependency outputs provided by the UCM Analyzer,

we selected the scenario OCSsuccess as input for dependency analysis.

6.3.1 Functional Dependency

Querying UCM Analyzer for the scenarios that are functionally dependent with

OCSsuccess returns a list of all the scenarios that are in its group. Table 6-5 displays the
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information returned by UCM Analyzer — the other scenarios that are in the same UCM

group as the given scenario.

Input Scenario: 9 OCSsuccess 0CS 2
Functionally Dependent Scenarios:
8 OCSdenied OCS 2
7 OCSBusy OCS 2

Table 6-5: Functional Dependencies for OCSsuccess

6.3.2 Global Variable Dependency

Global variable dependency analysis returns scenarios related to OCSsuccess with respect
to its conditions. Previously we described four types of global variable dependencies but
we limit our case study to improve readability to two types of variable dependency

analysis for OCSsuccess. The results of the analysis are shown in Table 6-6.

The Global Variable Value dependent scenarios listed share the values of any of the input

scenario’s global variables, while the Global Variable Value Alternate scenarios use the

opposite value of the global variable to that used by the input scenario.
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Input Scenario: 9 OCSsuccess
Global Variable Value Dependent:

5 OCS_CNDbusy

10 OCS_CNDdisplay

2 BCsuccess

1 BCbusy

8 OCSdenied

6 OCS_CNDOnList

3 CNDbusy

4 CNDdisplay

Global Variable Value Alternates

6 OCS_CNDOnList

3 CNDbusy
CNDdisplay

10 OCS_CNDdisplay

2 BCsuccess

1 BCbusy

7 OCSbusy

Table 6-6: Global Variable Dependencies for OCSsuccess

6.3.3 Execution Dependency

The notion of execution dependency aims to identify the scenarios that share component
or domain elements (depending on the level of detail desired). Due to the fact that all the
scenarios of the Simple Telephony System begin at the start point req, UCM Analyzer
will compute all scenarios to be both component and domain element execution
dependent with OCSsuccess based on the domain element req. So, in order to show some
unique data, we requested execution dependent scenarios for a specific component and a

specific domain element.
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Input Scenario: 9 | OCSsuccess

Input Component: 4 | User:Term
Dependent Scenarios:

2 | BCsuccess
4 | CNDdisplay
10 | OCS_CNDdisplay

Table 6-7: Component Specific Execution Dependency for OCSsuccess

The returned results for execution dependency analysis with respect to component
User:Term are shown in Table 6-7. The results indicate that the listed scenarios are
component execution dependent with OCSsuccess. In Table 6-8 the scenarios that are
domain execution dependent with OCSsuccess with respect to domain element snd-req

are listed.

9 | OCSsucess
Input Responsibility: 9 | snd-req

Input Scenario:

Dependent Scenarios:

BCbusy
BCsuccess
CNDbusy
CNDdisplay
OCS_CNDbusy
OCSbusy

10 | OCS_CNDdisplay

Table 6-8: Domain Element Execution Dependency for OCSsuccess

=N | AW
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6.4 Component Dependency

Component dependency information is obtained by making use of the scenario sequences
that execute the domain elements bound to components. The Simple Telephony System
contains only four components whose interactions are shown in Figure 6-1. UCM

Analyzer organizes these dependencies into forward and backward sets.

Table 6-9 details all the dependencies of input component Agent:Orig. Evidently,
components Agent:Term and User:Orig are both forward and backward dependent with
respect to Agent:Orig. For reference purposes, we added to the table the interfaces of the
respective components that cause this dependency. These are specified in the Interface
Transitions field. If a component is forward dependent with the given component then
the transition (start, end) means that the “start” domain element is bound to the input

component while the “end” domain element is bound to the dependent component. The

inverse is true for the backward dependency.

Input Component: 2 | Agent | Orig

Forward Dependent Components:
3 | Agent | Term | {(success, start)}

{(fwd_sig, ringing), (fail, notify),
1 | User Orig | (fwd_sig, busy)}

Backward Dependent Components:
1 | User Orig {(req, InitFeatures)}

{ (reportSuccess,fwd_sig),
3 | Agent | Term | (fail, fwd_sig)}

Table 6-9: Component Dependencies for Agent:Orig
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Table 6-10 shows the dependencies for Agent:Orig with respect to the scenario
OCSdenied in which the caller is on the screening list and has been denied. The

additional input of the component limits the resulting dependency list, identifying only

User:Orig as being both forward and backward dependent.

Input Component: 2 | Agent | Orig
Input Scenario: 8 | OCSdenied
Forward Dependent Components:

| 1 | User | Orig | {(fail, notify)}
Backward Dependent Components:

|1 |User |orig | {(req, nitFeatures)}

Table 6-10: Scenario Specific Component Dependency

6.5 Ripple Effect Analysis

Ripple effect analysis aims to determine what other parts of the system are affected by a
change to the given component or domain element. In what follows we perform ripple
effect analysis on different elements and at two different levels of abstraction for the

Simple Telephony System.

6.5.1 Component Ripple Effect Analysis

Assuming a proposed change to component Agent:Orig, Table 6-11 lists the forward and

backward ripple effects. The forward ripple set implies that from Agent:Orig there are

101



paths that lead to the other three components (forward ripple effects). Conversely, only

paths from Agent:Term and User:Orig lead to Agent:Orig (backward ripple effects).

Input Component; 2 | Agent | Orig
Forward Ripple Effects:

1 | User Orig
4 | User Term
3 | Agent | Term

Backward Ripple Effects:

3 | Agent | Term
1 | User Orig

Table 6-11: Component REA for Agent:Orig

6.5.2 Domain Element Ripple Effect Analysis

For a more detailed view, we chose to obtain ripple effect information for the domain
element send-req that is bound by the component Agent:Orig. The scope of the analysis
if further refined to focus on the scenario OCSsuccess. Table 6-12 summarizes the
forward and backward ripple effect sets for the provided criteria. The domain element

name, its type, and the component to which it is bound are specified.

4 Input Domain

Element: 9 | snd-req Responsibility 2

Input Scenario: 9 | OCSsuccess

Forward Ripple Effects:
10 | success Plugin Connect End 2
11 | start Plugin Connect Start 3
20 | start Plugin Connect Start 3
21 | continue Plugin Connect End 3
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22 | ringTreatment Responsibility 3
23 [ success Plugin Connect End 3
24 | ring End Point 4
25 | ringingTreatment | Responsibility 3
26 | reportSuccess Plugin Connect End 3
27 | fwd_sig Responsibility 2
28 | ringing End Point 1
Backward Ripple Effects:
40 | success’ Plugin Connect End 2
38 | checkOCS Responsibility 2
37 | start Plugin Connect Start 2
4 | InitFeatures Responsibility 2
3 | start Plugin Connect Start 2
2 |regq Start 1

Table 6-12: Domain Element REA for send-req and OCSsuccess

6.6 Discussion of the Results and Limitations

The presented results produced by UCM Analyzer for the Simple Telephony System
show that an automatic implementation of our novel approaches for impact analysis at the

UCM level is possible.

The results for our defined UCM scenario dependency analysis approach show clearly
that for a given scenario and a selected dependency type, it is possible to determine the
scenarios that are related to the given criteria. Furthermore, component dependency
analysis also accurately (according to our definitions) identifies those components that
are forward and backward dependent for the given input. Finally, ripple effect analysis

allows the analysis and identification of those UCM elements (components or domain
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elements) that are reachable (affected) from the input (forward ripple effects) and those

that lead to the specified input (backward ripple effects).

The results do not make any claims as to what extend the provided information is
applicable in determining real change impacts. To validate this we would require actual
changes and their implementation to compare the estimated dependencies and ripple
effects determined by our approach to the actual impact sets [ARN93]. Due to the
unavailability of this information, we cannot make any conclusions about the
effectiveness of the presented approach. However, as mentioned, this particular goal was

not the intent of our research.

In spite of our encouraging early results, our implementation does have some limitations.

The following describes some of the issues that currently exist in UCM Analyzer.

Although it would have been ideal to relate the Condition and BooleanVariableValue
classes, since they essentially are referring to the same UCM condition, the lack of
consistency in the naming of conditions and the global variable they represent made this
impossible. Global (Boolean) variables that apply to the UCM and their relationships to
scenarios must be entered into UCM Analyzer manually in order to provide the tool with
all the global variable values that apply to a specific scenario (the XML file for the
scenario only contains selection conditions). The documents from which we obtain the
global variable and their relationship details — the *.xml.ucm file and the *.ps file

outputted by UCMNav, do not have the same names for the global variable values as that
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of the scenario XML file. So to avoid making incorrect associations we simply omitted

the relationship between these two elements.

At the current stage of development, UCM Analyzer does not implement the scenario
Containment Relationship defined as part of our approach. The reasons for this are

discussed as part of our future investigation.

Finally, since our approach requires the input of the initial change set, some additional
work is required to use our approach for change impact analysis. That is, some effort is
still required to identify the initial impacts of the proposed change before our approach

can be used to identify the dependencies and ripple effects of the changed element.
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7. Conclusion and Future Investigations

In this research, we demonstrated how dependency and ripple effect analysis techniques
can be applied to UCMs for use during change impact analysis. The proposed approach
introduced the concept of UCM scenario and component dependencies, providing
definitions and algorithms for their determination. As well, definitions and algorithms
were presented for UCM ripple effect analysis of components and domain elements
[HEWO0S]. Table 7-1 provides a summary of our proposed approach by making use of
criteria from the change impact analysis comparison framework presented in [ARN93]
and discussed in section 2.4.5. Further, we described our developed tool that implements
our defined approach and supports automation. The applicability of the presented
approach was exemplified using an existing UCM as a case study. The initial case study

helped to validate both our theoretical and implementation approach.

A major contribution of this research is the novel idea of using UCM for change impact
analysis. While many approaches focus on change impact analysis at the source code or
detailed model level, our proposed approach raises the level of analysis to that of
requirements specification, allowing the scope of the change to be analyzed.
Furthermore, in our proposed approach, analysis may be performed at different levels of

granularity, providing flexibility in analysis.

In [HASOS5], we present an extension of our proposed approach. Specifically, the domain

element ripple effect analysis technique is further developed through the application of
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the UCM slicing algorithm presented by Hassine et al. in [HAS04]. The produced impact

set confines to the defined formal definition of the slicing approach.

UCM
scenarios, UCM transitive
UuCM components, scenario | closure based
requirements domain dependency | on scenario relational load,
specifications elements graph specifications | database browse

Table 7-1: Proposed Approach Summary

Another major contribution of this work is the developed tool. UCM Analyzer
implements the discussed methodologies and effectively automates the analysis process.
We have shown that this tool can be effectively used to extract dependency and ripple

effect information from UCMs.

As part of future investigation a complete integration of the implementations of UCM
Analyzer into UCMNav would be desirable. This would remove the need to recreate the

UCM relationships from exported data.

Another issue for future work is the need to further evaluate and validate our approach.
There is a need for further validation of the effectiveness in identifying the actual ripple
effects and dependencies as well as their precision. One possible validation approach that
we are currently exploring is the extension of our defined scenario containment

dependency through the use of concept analysis.
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An interesting research area would be to assess how our approach can be applied to
feature interaction. That is, for a changed feature, assess whether our proposed approach

provides sufficient information for change impact analysis.

Finally, synchronization and notion of time are not considered in this research. Though

UCMs do support the modeling of time and concurrency, current research that is

attempting to formalize UCMs has not modeled the notion of time.

108



8. References

[AGR91] Hiralal Agrawal, Richard A. DeMillo, Eugene H. Spafford, “Dynamic Slicing
in the Presence of Unconstrained Pointers,” Symposium on Testing, Analysis,
and Verification 1991, pp. 60-73.

[AMYO01] Daniel Amyot, Gunter Mussbacher, “MiniTutorial on UCMs Notation,”
http://www.usecasemaps.org/urn/cascon01/UCMintro.pdf.

[AMYO01b] Daniel Amyot, Gunter Mussbacher, “Bridging the Requirements/Design Gap
in Dynamic Systems with Use Case Maps (UCMSs),” International
Conference on Software Engineering 2001, pp. 743-744.

[AMYOl1c] D. Amyot, A. Eberlein, “An Evaluation of Scenario Notations for
Telecommunication Systems Development,” 9th Int. Conference on
Telecommunication Systems (9ICTS), Dallas, USA (March 2001).

[AMYO02] Daniel Amyot, “UCM Scenarios and Path Traversal,” SG17, Geneva, 2002,
www.itw.int/itudoc/itu-t/com17/urn/urnp2_pp7.ppt

[AMYO03] Daniel Amyot, “Introduction to the User Requirements Notation: Learning by
Example,” Computer Networks 42, 3 (Jun. 2003), pp. 285-301.

[AMYO03b] Daniel Amyot, Xiangyang He, Yong He, Dae Yong Cho, “Generating
Scenarios from UCM Specifications,” International Conference on Quality
Software (QSIC), 2003, pp.108-115.

[ARN93] R.S. Arnold, S. A. Bohner, “Impact Analysis - Towards a Framework for
Comparison”, Proc. Conf. Software Maintenance, 1993, pp. 292-301.

[BAIO2] Xiaoying Bai, Wei-Tek Tsai, Ke Feng, Lian Yu, Ray J. Paul, “Scenario-
Based Modeling and Its Applications,” WORDS 2002: 253-260.

[BEC93] J. Beck and D. Eichmann, “Program and Interface Slicing for Reverse
Engineering,” IEEE/ACM 15th Conference on Software Engineering
(ICSE'93), 1993, pp. 509-518.

[BENOO] K. H. Bennett, V.T. Rajlich, “Software Maintenance and Evolution: a
Roadmap,” In Proceedings of the Conference on the Future of Software
Engineering (Limerick, Ireland, June 04 - 11, 2000), ICSE '00. pp. 73-87.

[BILO4] Edward Billard, “Patterns of Agent Interaction Scenarios as UCMs,” IEEE
Trans. Syst., Man, Cybern., pp. 1933-1939, 34B:4:2004.

109



[BLAO1]

[BOHO2]

[BOH96]

[BOJOO]

[BORO1]

[BREOO]

[BRIO3]

[BROS3]

[BRUOO]

[BUH95]

[BUH96]

[BUH96b]

Sue Black, “Computing Ripple Effect for Software Maintenance,” Journal of
Software Maintenance 13(4), 2001, pp. 263-279.

Shawn A. Bohner, “Software Change Impacts - An Evolving Perspective,”
Int’l Conference on Software Maintenance 2002, pp. 263-272.

S. Bohner and R. Amnold. Software Change Impact Analysis. IEEE Computer
Society Press, 1996, pp. 1-26.

Dragan Bojic, Dusan M. Velasevic, “A Use-Case Driven Method of
Architecture Recovery for Program Understanding and Reuse
Reengineering,” Proceedings of the Conference on Software Maintenance
and Reengineering, 2000, pp. 23-32.

Francis Bordeleau, Jean-Pierre Corriveau, “On the Importance of Inter-
Scenario Relationships,”
www.usecasemaps.org/urn/cascon01/scenarioRelationships.pdf

K. Breitman, J. C. Sampaio do Prado, “Scenario Evolution: A Closer View
on Relationships,” Proceedings. 4th International Conference on
Requirements Engineering, 2000, pp. 95 - 105.

Lionel C. Briand, Yvan Labiche, L. O'Sullivan, “Impact Analysis and Change
Management of UML Models,” Int’l Conference on Software Maintenance
2003, pp. 256-265.

Ruven Brooks, “Towards a Theory of the Comprehension of Computer
Programs,” International Journal of Man-Machine Studies, 18 (6), 1983, pp.
543-554.

Hans de Bruin, Vrije Universiteit, “UCMs a Technique for Communicating
Validating Behavioral Aspects of Architectures,”
http://www.serc.nl/lac/LAC-2001/1ac-2000/2-
validatie/use%20case%20maps.pdf

R.J.A. Buhr, R.S. Casselman, T.W. Pearce, “Design Patterns with UCMs: A
Case Study in Reengineering an Object-Oriented Framework”, SCE 95-17,
www.usecasemaps.org/pub/dpwucm.pdf

R.J.A. Buhr, “UCMs for Attributing Behavior to Architecture,” Proc. 4th Int'l
Workshop on Parallel and Distributed Real Time Systems, 1996.

R. J. A. Buhr, R. S. Casselman, Use Case Maps for Object-Oriented Systems,
Prentice-Hall, Inc. 1996.

110



[BUH99]

[CAR99]

[CHA98]

[CHE96]

[COXO01]

[CSWPI]

[FIE9S]

[GAM94]

[GOR93]

[HAR9S]

[HASO03]

[HASO4]

R. J. A. Buhr, “Making Behaviour a Concrete Architectural Concept,” 32nd
Annual Hawaii International Conference on System Sciences (HICSS-32),
1999.

S. Jeromy Carriére, Steven G. Woods, Rick Kazman, “Software Architectural
Transformation,” Working Conference on Reverse Engineering, 1999, pp. 13-
23.

Melissa P. Chase, Steven M. Christey, David R. Harris, Alexander S. Yeh,
“Recovering Software Architecture from Multiple Source Code Analyses,”
Proceedings of the SIGPLAN/SIGSOFT Workshop on Program Analysis For
Software Tools and Engineering (PASTE), 1998, pp. 43-50.

Xiaoping Chen, Wei-Tek Tsai, Hai Huang, Mustafa H. Poonawala, Sanjai
Rayadurgam, Yamin Wang, “Omega - an Integrated Environment for C++
Program Maintenance,” Int’l Conference on Software Maintenance, 1996, pp.
114-123.

Lisa Cox, Harry S. Delugach, David Skipper, “Dependency Analysis Using
Conceptual Graphs,” Supplementary Proc. 9th Int’l. Conference. on
Conceptual Structures, 2001.

http://web.cs.wpi.edu/~kal/courses/compilers/module4/mysa.html

J. Field, G. Ramalingam, and F. Tip, “Parametric Program Slicing,” In
Proceedings of the 22nd ACM SIGPLAN-SIGACT Principles of
Programming Languages (POPL), 1995, pp. 379-392.

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns —
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1994.

Tarak Goradia, “Dynamic Impact Analysis: A Costeffective Technique to
Enforce Error-propagation”, Proc. of the 1993 ACM SIGSOFT Intl.
Symposium on Software Testing and Analysis, 1993, pp. 171- 181.

Mary Jean Harrold, Ning Ci, “Reuse-Driven Interprocedural Slicing,” Int’l
Conference on Software Engineering, 1998, pp. 74-83.

Ahmed E. Hassan, Richard C. Holt, “ADG: Annotated Dependency Graphs
for Software Understanding,” VISSOFT 2003: 2nd Annual DESIGNFEST On
Visualizing Software For Understanding And Analysis, Amsterdam, 2003.

Jameleddine Hassine, Rachida Dssouli, Juergen Rilling, “Applying Reduction

Techniques to Software Functional Requirement Specifications,” System
Analysis and Modeling (SAM), 2004, pp.138-153.

111



[HASO5]

[HEI9g]

[HEWO0S5]

[IEE90]

[IEE98]

[JAVO04]

[KAZ96]

[KIM99]

[KNEO03]

[KORO3]

[KORO04]

[KOR90]

Jameleddine Hassine, Juergen Rilling, Jacqueline Hewitt, “Change Impact
Analysis for Requirement Evolution using UCMs,” 8th International
Workshop on Principles of Software Evolution (IWPSE), 2005, pp. 81-90.

M. P. Heimdahl, J. M. Thompson, and M. W. Whalen, “On the Effectiveness
of Slicing Hierarchical State Machines: A Case Study,” In Proceedings of the
24th Conference on EUROMICRO - Volume 1, 1998.

Jacqueline Hewitt, Juergen Rilling, “A Light-Weight Proactive Software
Change Impact Analysis Using UCMs,” ICSM, Proceedings of the Special
Session on Software Evolvability, 2005.

IEEE, IEEE Standard Glossary of Software Engineering Terminology, report
IEEE Std 610.121990.

IEEE, IEEE Standard for Software Maintenance, report IEEE Std 1219-1998.

T. Javed, Manzil-e-Magsood, Qaiser S. Durrani, “A Study to Investigate the
Impact of Requirements Instability on Software Defects,” ACM Software
Engineering Notes, 29, 3 (May 2004), pp. 1-7.

Rick Kazman, Gregory D. Abowd, Leonard J. Bass, Paul C. Clements,
“Scenario-Based Analysis of Software Architecture,” IEEE Software 13(6),
1996, pp. 47-55.

Kyung-Hee Kim, Jai-Nyun Park, Yong-Ik Yoon, “A Graph of Change Impact
Analysis for distributed object-oriented software,” 8th IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), 1999. Volume 2, pp. 1137 -
1141.

Antje von Knethen, Mathias Grund, “QuaTrace: A Tool Environment for
(Semi-) Automatic Impact Analysis Based on Traces,” Int’l Conference on
Software Maintenance 2003, pp. 246-255.

Bogdan Korel, Inderdeep Singh, Luay Tahat, Boris Vaysburg, “Slicing of
State-Based Models,” Int’l Conference on Software Maintenance, 2003,
pp.34-43.

Bogdan Korel, Luay H. Taha, “Understanding Modifications in State-Based
Models,” 12th International Workshop on Program Comprehension (IWPC),
2004, Italy, pp. 246-250. ‘

B. Korel, J. Laski, “Dynamic slicing of computer programs, ” Journal of
Systems and Software, 13(3), 1990, pp.187-195.

112



[KUN94]

[LAMO9g]

David Chenho Kung, Jerry Gao, Pei Hsia, F. Wen, Yasufumi Toyoshima,
Cris Chen, “Change Impact Identification in Object Oriented Software
Maintenance,” Int’l Conference on Software Maintenance, 1994, pp. 202-211.

W. Lam, Martin Loomes, “Requirements Evolution in the Midst of
Environmental Change: A Managed Approach,” Conference on Software
Maintenance and Reengineering, 1998, pp. 121-127.

[LAM98b] W. Lam, V. Shankararaman, S. Jones, J. Hewitt, C. Britton, “Change

[LAM99]

[LAWO03]

[LEEOO]

[LEHS80]

[LHAOS]

[MAL9S]

[MIGO1]

[NAKO00]

Analysis and Management: a Process Model and Its Application Within a
Commercial Setting,” Symposium on Application-Specific Systems and
Software Technology (ASSET-98), March 1998, pp. 34 - 39.

W. Lam, Martin Loomes, V. Shankararaman, “Managing Requirements
Change Using Metrics and Action Planning,” Conference on Software
Maintenance and Reengineering, 1999, pp. 122-129.

James Law, Gregg Rothermel, Whole Program Path-Based Dynamic Impact
Analysis,” International Conference on Software Engineering, 2003, pp. 308-
318.

M. Lee, A. J. Offutt, and R. T. Alexander, “Algorithmic Analysis of the
Impacts of Changes to Object-Oriented Software,” Computer Performance
Evaluation: Modelling Techniques and Tools, 11th International Conference,
TOOLS, 2000.

M. M. Lehman, “Programs, lifecycles and the Laws of Software Evolution,”
Proc. IEEE, vol. 68, no. 9, September 1980.

Abdelwahab Hamou-Lhadj, Edna Braun, Daniel Amyot, Timothy Lethbridge,
“Recovering Behavioral Design Models from Execution Traces,” Conference
on Software Maintenance and Reengineering, 2005, pp.112-121.

Y. Malaiya, J. Denton, “Requirements Volatility and Defect Density,” In
Proc. of the 10th International Symposium on Software Reliability
Engineering, pp. 285. 1998.

Andrew Miga, Daniel Amyot, Francis Bordeleau, Donald Cameron, C.
Murray Woodside, “Deriving Message Sequence Charts from UCMs
Scenario Specifications,” SDL Forum, 2001, pp.268-287.

Masahide Nakamura, Tohru Kikuno, Jameleddine Hassine, Luigi Logrippo,

“Feature Interaction Filtering with UCMs at Requirements Stage,” Feature
Interactions in Telecommunications and Software Systems, 2000, pp.163-178.

113



[NANO2]

[NEL96]

[ORSO03]

[PAUO1]

[PAUO1D]

[PETO02]

[PIGO5]

[QUE9%4]

[RADZI]

[RENO4]

[RILO3]

[RUG9Y5]

Vivek Nanda, Nazim H. Madhavji, “The Impact of Environmental Evolution

on Requirements Changes,” Int’l Conference on Software Maintenance,
2002, pp. 452-461.

M. L. Nelson, “A Survey of Reverse Engineering and Program
Comprehension,” ODU CS 551-Software Engineering Survey, April 19 1996.

A. Orso, T. Apiwattanapong, and M. J. Harrold, “Leveraging Field Data for

Impact Analysis and Regression Testing,” In proc. of the 9th ESEC and 10th
ACM SIGSOFT Int’l Symp. on Foundations of Software Engineering, 2003,
pp 128-137.

Raymond Paul, “End-to-End Integration Testing,” 2nd Asia-Pacific
Conference on Quality Software (APAQS), 2001, pp. 211-222.

Ray J. Paul, Lian Yu, Wei-Tek Tsai, Xiaoying Bai, “Scenario-Based
Functional Regression Testing,” 25th International Computer Software and
Applications Conference (COMPSAC), 2001, pp. 496-501.

D. Petriu, M. Woodside, "Software Performance Models from System
Scenarios in Use Case Maps", Computer Performance Evaluation / TOOLS,
2002, pp.141-158.

Thomas M. Pigoski, “SWEBOK Knowledge Area Description for Software
Evolution and Maintenance (version 0.5),”
http://www.swebok.org/stoneman/version_0.5/KA_Description_Software_Ev
olution_Maintenance(Version_0_5).pdf

J-P. Queille, J-F. Voidrot , M. Munro, N. Wilde, “The Impact Analysis Task
in Software Maintenance: A Model and a Case Study,” Int’l Conference on
Software Maintenance, 1994.

Eimutis S. Radzius, “A Methodology for the Planning of a Scenario Based
Test Program,” http://www.usecasemaps.org/pub/test planning SBT.pdf

Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara Ryder, and Ophelia Chesley,
“Chianti: A tool for change impact analysis of Java programs,” Conference

on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), 2004, pp. 432-448.

Juergen Rilling, Tuomas Klemola, “Identifying Comprehension Bottlenecks
Using Program Slicing and Cognitive Complexity Metric,” International

Workshop on Program Comprehension, 2003, pp. 115-124.

S. Rugaber, “Program Comprehension,” Encyclopedia of Computer Science
and Technology 35(20), 1995, pp.341-368.

114



[RUSO02]

[SET04]

[SNEOO]

[STRI6]

[TIP96]

[TONO3]

[TSAO1]

[TSA03]

[UCM]

[WAN96]

[WEIg1]

[WEI98]

J. T. Russell, “Program Slicing for Codesign,” In Proceedings of the Tenth
International Symposium on Hardware/Software Codesign (CODES '02),
2002, pp. 91-96.

Raffaella Settimi, Jane Cleland-Huang, Oussama Ben Khadra, Jigar Mody,
Wiktor Lukasik, Chris DePalma, “Supporting Software Evolution through
Dynamically Retrieving Traces to UML Attifacts,” 7th International
Workshop on Principles of Software Evolution (IWPSE), 2004, pp. 49-54.

H. M. Sneed, “Source Animation as a Means of Program Comprehension,”
International Workshop on Program Comprehension, 2000, p.179.

M.R. Strens, R.C. Sugden, “Change Analysis: A Step towards Meeting the
Challenge of Changing Requirements,” IEEE Symposium and Workshop on
Engineering of Computer Based Systems (ECBS'96), 1996, p. 278.

Frank Tip, Jong-Deok Choi, John Field, G. Ramalingam, “Slicing Class
Hierarchies in C++,” Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), 1996, pp. 179-197.

Paolo Tonella, “Using a Concept Lattice of Decomposition Slices for
Program Understanding and Impact Analysis,” IEEE Trans. Software
Engineering, 2003, 29(6), pp. 495-509.

Wei-Tek Tsai, Xiaoying Bai, Ray J. Paul, Weiguang Shao, Vishal Agarwal,
“End-To-End Integration Testing Design,” 25th International Computer
Software and Applications Conference (COMPSAC), 2001, pp. 166-171.

W.T. Tsai, L. Yu, X. X. Liu, A. Said, Y. Xiao, “Scenario-Based Test Case
Generation for State-Based Embedded Systems,”
http://asusrl.eas.asu.edu/Publications/IPCCC2003.pdf

http://www.usecasemaps.org/index.shtml

Yamin Wang, Wei-Tek Tsai, Xiaoping Chen, Sanjai Rayadurgam, “The Role
of Program Slicing in Ripple Effect Analysis,” 8th International Conference
on Software Engineering and Knowledge Engineering (SEKE), 1996, pp.369-
376.

Mark Weiser, “Program Slicing,” Int’l Conference on Software Engineering,
1981, pp. 439-449.

K. Weidenhaupt, K. Pohl, M. Jarke, P. Haumer, “Scenarios in System
Development: A Report on Current Practice,” IEEE Software, 1998.

115



[WUO01]

[XIA03]

[YACO04]

[ZHAO1]

[ZHA02]

Ye Wu, Dai Pan, Mei-Hwa Chen, “Techniques for Testing Component-Based
Software,” 7th International Conference on Engineering of Complex
Computer Systems (ICECCS), 2001, pp. 222-232.

Daniel Amyot, Xiangyang He, Yong He, Dae Yong Cho, “Generating
Scenarios from UCM Specifications,” International Conference on Quality
Software (QSIC), 2003, pp.108-115.

S. Yacoub, B. Cukic, H. H. Ammar, “A Scenario Based Reliability Analysis
Approach for Component Based Software,” IEEE Transactions on
Reliability, Vol. 53, No. 4, pp. 465-480, December 2004.

Youtao Zhang, Rajiv Gupta, “Timestamped Whole Program Path
Representation and its Applications,” Conference on Programming Language
Design and Implementation (PLDI), 2001, pp. 180-190.

Jianjun Zhao, Hongji Yang, Liming Xiang, Baowen Xu, “Change Impact

Analysis to Support Architectural Evolution,” Journal of Software
Maintenance 14(5), 2002, pp. 317-333.

116



