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ABSTRACT

Generation of Program Synchronization Skeletons using
declarative descriptions of Interaction Protocols.

Gurudath.B.Subbanna

Interaction Protocols capture the interactions between agents that communicate with each
other to achieve specific goals. These protocols specify the conversation of agents in a
Multi Agent System. Many attempts have been made to capture the semantics of Agent

Interaction Protocols through the deployment of different tools and formalisms.

This report describes the execution of Interaction Protocols through the use of Agent
Unified Modeling Language (AUML), an extension of the Unified Modeling Language
(UML) developed specifically for agent interactions. The report describes generation of
synchronization skeletons for any user-defined Interaction Protocol based on a meta-
model for AUML and the Eclipse Modeling Framework. Validation of the model and
scope of extensibility of the model are also discussed. This mainly provides for
developers to quickly input any agent conversation protocol and successfully converts the

same into code for further development over an agent platform.
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1. Introduction

This report describes a UML meta-model generated for execution of Interaction Protocols
specified in the graphical Agent Unified Modeling Language (AUML). Validation of the
meta-model for correctness and provisions for extensibility are also detailed. This meta-
model executes graphical declarations of Interaction Protocols specified in the graphical
Agent Unified Modeling Language (AUML). AUML is a graphical language based on
the Unified Modeling Language for specifying Interaction Protocols in the form of
sequence diagrams. Sequence diagrams are used to describe the flow and the sequence of
messages or interactions while addressing a problem. Sequence diagrams are slightly
different from Collaboration diagrams of UML[51] in the sense that while Collaboration
diagrams emphasize on the relationships between objects, Sequence Diagrams emphasize

on the sequence of messages between different objects.

The meta-model is developed using specific Computer Aided Software Engineering
(CASE) tools and is implemented using the Eclipse Modeling Framework [EMF][1] and
the designed meta-model is also validated. Provision for extensibility of the meta-model

has been built in keeping in mind possible future additions to the meta-model.



1.1 Motivation

Agent Interaction Protocols (AIP’s) capture the interactions between agents that
communicate with each other to achieve certain goals during execution. These software
agent Interaction Protocols are currently described using a variety of informal and formal
notations. These notations are then understood by software developers and are interpreted
and translated into program code to simulate the very same Agent Interaction Protocols.

A sample situation has been illustrated in the figure below.

Request for Int sell (house,
sellingahouse > | | l l —| rate)
> {/* Code */ }
Problem —

Protocol Diagram :
Implementing

on an agent
platform

Figure 1: Agent implementation of a protocol

An idea or a problem could be described using a Protocol Diagram. These diagrams
specify the sequence of interactions and how the flow of communication takes place. This
Interaction Diagram can be written in any implementation language ready for execution.
This language is then specifically mapped on to an agent platform and executed using
software agents. It must be noted that, to describe a protocol, an explanation of the

underlying notation is necessary before the protocol itself could be described. This
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protocol model needs to be interpreted by the developer and then a software design needs
to be created which is then executed on an agent platform. This implements a

conversation for a Multi Agent System (MAS)[28].

The semantics of Agent Interactions Protocols are defined by the sequence of Sequence
Diagrams and descriptions in natural languages. These semantics are usually ambiguous
and vague. We need formal semantics to address Agent Interaction Protocols. There
already exist a few agent development tools that support and make use of different
formalisms to model interaction protocols. For example, Petri-nets enjoy widespread
support amongst agent development tools for execution as part of the agent control flow.
Unified Modeling Language (UML) on the other hand can be used to notate both static
and dynamic models. This allows for different aspects of a system to be modeled in a
single language. UML 1is general purpose and extensible. UML is in fact touted a
complete modeling language in the sense that it supports modeling needs in all software
development phases, from requirements specification through analysis, design and
implementation to the final test. Finally, one main advantage of UML is that it is now
becoming a new standard and there are quite a few tools these days that support it.
Having such a notation that is easier and simple to use and is supported by tools makes it
easier for developers to apply and build systems on. All these make UML[51] a widely
accepted for modeling in the software development community. Hence a notation for
Interaction Protocols that is based on UML would be highly acceptable to software

developers as they are already familiar with the basic concepts and working of UML.



Such a notation would be easy to learn and additional features, again based on UML

could be added with ease.

Such a notation that is developed needs to be standardized. There might be different
developers that develop agents on different platforms. If they need to collaborate with
each other, they need to follow a standard Interaction Protocol such that every agent
follows the same protocol. In such a scenario an agent developer can just download such
a protocol template, attach agent specific application code and later run this code on an
agent platform to get the Interaction Protocol working. This facilitates collaboration of
agents across different platforms to seamlessly synchronize with each other. Without
such a standard notation for developing Interaction Protocols, each software developer
has to design his own Interaction Protocol, implement the protocol as code and then
execute the same code on an agent platform. Thus conversation code would have to be
created each time from scratch. Apart from having the possibility of errors, such a
scenario does not allow for inter-agent collaboration built on different platforms.
Extensibility of such an application might also pose a problem, as future developers
would have to use the same implementation language or the same platform as that of the
original application. It would be easier and would limit errors if the developer could
design and implement the protocol in a single step and later on build it onto an agent

platform.



Request for Implementing
selling a house | | | | »| on an agent
Implementation | platform
code

A

Problem

Protocol Diagram

Figure 2: Agent Implementation with direct execution of Interaction Protocols

To make this possible a precise, formal and machine-interpretable notation for Interaction
Protocols is necessary. One such graphical notation is the Agent Unified Modeling
Language (AUML). How ever, one problem currently faced by this notation is that it
does not yet have well-defined semantics, is abstract, not precise and cannot be
interpreted by machines. AUML primitives consist of boxes, lines, arrows and comments
in English or a programming language that cannot be understood by machines without

any meta-data.

AUML needs to define the meaning of its descriptive concepts, the rules for putting them
together and the syntax that is used to represent them. Based on these needs, the work

described in this thesis mainly details upon the following concepts:

o Understanding of Multi Agent Systems

e Developing a meta-model for the Agent Unified Modeling Language

(AUML)



e Validation of the meta-model and provision for extensibility.

¢ Automatic generation of code that would enable agents to execute these

Interaction Protocols.

Possible work in the same field of research could have also included development of
formal semantics for AUML and proof of correctness of the meta-model but this remains

outside the scope of this thesis.

1.2 Main accomplishments of this thesis

A meta-model based on the UML 2.0 superstructure [24] has been proposed that executes
AUML interaction protocol diagrams. The meta-model incorporates most of the main
primitives that appear in Interaction Diagrams as proposed by the standards set by the
Foundation for Inter-Operable Agents (FIPA). Various tools have to build the meta-
model have been evaluated and finally the Eclipse Modeling Framework (EMF) has been
chosen for such a purpose. The actual design of the meta-model has been drafted using a
Computer Aided Software Engineering (CASE) tool, Rational Rose[18]. Using these
tools, the meta-model has been designed, developed and implemented and a few

Interaction Protocols have been tested and implemented.

This report is mainly structured in the following way:



Chapter 2 incorporates a background study of agents, Multi-Agent Systems, Interaction
Protocols and other tools to evaluate and execute Interaction Protocols.

Chapter 3 describes the proposed meta-model for AUML. It also describes validation of
the meta-model and provisions made for extensibility.

Chapter 4 presents a few sample results obtained upon testing of certain standard
examples of Interaction Protocols.

Chapter 5 presents the Conclusion and talks about possible future work in this field.

Chapter 6 provides a list of references studied to better understand the field of work.



2. Multi-Agent Systems

2.1 Introduction

There is no general definition for the term agent in the context of distributed systems or
for software agents in general. Wooldridge and Jennings[26] point out that ¢ An agent is
generally a hardware or more usually a software based computer system that enjoys the
following properties.
e Autonomy: Agents operate without the direct intervention of humans or any
others and have some kind of control over their actions or internal state.
e Social ability: Agents interact with other agents and possible humans in some
form of interaction language.
e Reactivity: Agents perceive their environment ( which may be the physical world,
a user via a graphical interface , a collection of other agents , the INTERNET or
perhaps all of these combined ) and they respond in a timely fashion to the
changes that occur in it.
e Pro-activeness: Agents do not simply act in response to their environment. They

are able to exhibit goal-directed behaviour by taking the initiative.’

Maes[64] defines agents as ‘Autonomous agents are computational systems that inhabit
some complex dynamic environment , sense and act autonomously in this environment
and by doing so realize a set of goals or tasks for which they have been designed.” Hayes-

Roth [25] define the same as: ‘Agents continually perform three functions-perception of



dynamic conditions in the environment, actions to affect conditions in the environment
and reasoning to interpret perceptions, solve problems, draw interferences and determine

actions.’

Bradshaw [22] lists nine main attributes of an agent: reactivity, autonomy, collaborative
behaviour, ‘knowledge-level’ communication ability, inferential ability, temporal
continuity, personality, adaptivity and mobility. In any problem, that needs to be solved
by an agent, the agent should more or less possess some of the above attributes.
Wooldridge [12] discusses the difference between agents and objects. He says that the
main difference between the two is autonomy of agents. An object has no control over its
behaviour. If the method of an object is called, the object has no control over the method.
An agent can only be asked to do something. It cannot be forced. Agents also have
flexible behaviour. They react either pro-actively or reactively. Hence an agent is in
control of itself and this is what exactly defines the autonomy of an agent. An agent may
either co-operate with another agent to carry out complex tasks that they alone cannot
handle or an agent can also move to another system to access remote resources or to even
meet other agents. These are the properties of the agent paradigm that developers need to
solve applications and find good solutions. Most uses of agents are mainly emphasized
under two main headings- Agents used in simplified distributed computing as Intelligent
Resource Managers or agents as Personal Assistants for overcoming interface problems.
This solving ability of agents along with their properties, mainly autonomy and
collaborative behavior led to the development of Multi-Agent Systems in the field of

Distributed Computing. Durfee and Lesser [27] state that ¢ A Multi Agent System can be



defined as a loosely coupled network of problem solvers that interact to solve problems
which are beyond the individual capabilities or knowledge of each problem solver.
Sycara [28] points out that the characteristics of Multi-Agent systems are that a) each
agent has incomplete information or resources for solving the problem by itself and thus
has a limited viewpoint b) there is no system global control c¢) data is de-centralized and

d) computation is asynchronous.

Multi-agent systems deal with autonomous agents that interact either selfishly or co-
operatively with each other. These agents could either pursue a common goal or follow a
free market economy where they are in pursuit of their own individual goals. Hence, one
main advantage of a multi-agent system is its modularity. These kind of multi-agent
systems are most ideally suited to open systems as in the field of Distributed Computing
wherein the system is continually changing. The characteristics of such a system are that
its components are not known in advance and can consist of heterogeneous agents

implemented by different people at different times.

The main motivations of an agent system are as follows. The first is to solve problems
that are too large for a centralized agent to solve because of resource limitations or the
sheer risk of having one centralized system that could be a performance bottleneck or
even fail at certain times. The second is to allow for the inter-connection and inter-
operation of multiple existing legacy systems. Third is to provide solutions to problems
that can naturally be regarded as a society of interacting-component agents. The fourth is

to provide solutions that efficiently use information resources that are spatially
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distributed. The fifth is to provide solutions in domains in which the expertise is
distributed. The sixth and the most important motivation is to increase performance along
the lines of a) computational efficiency as concurrency of computation is exploited b)
reliability as other agents can take up the responsibility if a particular agent fails c)
extensibility because the number and capabilities of agents working on a particular
system can be altered d) robustness because of the system’s ability to tolerate uncertainty
¢) maintainability because MAS are easier to maintain because of their modularity
f) flexibility because agents can adaptively organize to solve the current problem and g)
reusability because the same agents can be used in different systems. A few main
advantages of Multi-Agent Systems are that: Sophisticated individual agent reasoning can
increase MAS coherence because each individual agent can reason about non-local
effects of local actions, form expectations of the behaviour of others, or explain and
possibly repair conflicts and harmful interactions. Secondly, reactive agents do not have
representations of their environment and act using a stimulus-response type of behaviour.
They respond to the present state of the environment in which they are situated. Thus one
can allow for a dynamically changing system without knowing each component in
advance. Multi-agent systems also provide an extremely high degree of encapsulation.
This is because even though different developers might have built the agents, they can
still work together as long as they understand the common means of communication.
Agent communication is one of the most important issues that an agent developer has to
deal with. The field of agent communication deals with the messages, the message

exchange interactions and finally the content language representations.
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2.2 Agent Communication Languages (ACL’s)

The most noble and profitable invention of man was that of speech, consisting of names
or appellations and their connexions whereby men register their thoughts, recall them
when they are past and also declare them to one another for mutual utility, understanding
and conversation without which there had been amongst men neither Commonwealth, nor
society nor contract nor peace no more than amongst lions, bears or wolves or any other
of the kind [Leviathan, 30]. Language is defined as communication of thoughts or
feelings through a system of arbitrary signals, voice or symbols. This system also
proposes its rules for combining the components of the system. It could also refer to a
particular manner of expression. Language fosters complex interactions between
members of any community. Not all languages are natural languages. Some languages
such as the language for the deaf and dumb exhibit a fundamental property of languages.
The meanings of their tokens are shared and are understood by all members of that
particular community. This in turn leads to the fundamental meaning of a language:

Communication between willing and occasionally unwilling participants.

Languages for communication agents seem to play the same role, as does natural
language in its human counterparts. An agent communication language allows agents to
interact while hiding the details of the internal workings or thoughts of the agent. This
helps for greater understanding and correspondence amongst agents in inter-agent
communities. In short, an Agent Communication Language provides agents with means
of exchanging information and knowledge [Finin, 31]. An ACL handles propositions,

rules and actions rather than simple objects with some well-formed meaning attached to
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each of these rules. An ACL message expresses a desired state or meaning in a
declarative form rather than as a procedure. An ACL message must be described as a
speech-act [Burkhadt, 32] that states a belief, desire and motivation on behalf of the agent
to express itself to another agent, either within the same community or in a different
community of agents. The challenge with respect to developing an Agent Communication
language is to make an agent of one community talk to any other agent, not just another
agent of its own community. Hence the common language developed should be mutually

understandable across agents.

Some of the needs of an Agent Communication Language are that a) It must have a well
defined syntax such that all agents can parse their communication statements in a similar
fashion b) The communication language must have well-defined meaning or semantics
such that all agents can understand the statement in the same way c) It must be following
a certain standard such that developers across different organizations can use the same
standard to develop further on the communication language and d) The communication
language should be able to express exactly the intended ideas that the agent wants to

express.

Finin[31] states that there are certain requirements that must be met by every Agent
Communication Language. They are as:

e Form: A good Agent Communication Language should be declarative,

syntactically simple and should be easily readable, easy to parse and easy to

generate.
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Reliability: A communication language must support reliable and secure
communication amongst agents. In other words, agents should be able to express
to each other their basic ideas without having to go into details of their internal
working.

Semantics: This is especially important if communicative acts can take place
across a range of applications. This enables application designers to have a shared
understanding of the primitives and those protocols that come with the use of
those primitives. The semantics of a communication language must exhibit the
same properties expected by the semantics of any other language. It should be
grounded in theory and should be unambiguous. It should exhibit a canonical
form wherein similarity in meaning would lead to similarity in expression.
Implementation: The implementation of the communication language must be
efficient and must fit well with the existing software technologies. The interface
should be easy to use.

Environment: The environment in which agents work will be highly distributed,
heterogeneous and very dynamic. It must support inter-operability protocols, as
the communication language might have to regularly communicate with the
outside world.

Content: A communication language should be designed such that it fits well
with other systems. The language should commit to a well-defined set of
primitives termed as Communicative Acts. There has to be a distinction between
the Communicative Language that expresses the Communicative Acts and the

Content Language that specifies the domain.
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Similarly there are certain requirements on agents that have to be met if they follow a
certain Communication Language. Some of them are as:
e The agent should send across a Not-Understood message anytime it receives a
communicative act the contents of which it cannot comprehend.
e The agent should only choose any subset of the Communicative Acts provided by
the Communication Language that it chooses to implement.
e An ACL compliant agent must implement the Communicative Act correctly with
respect to its definition.
e An ACL compliant agent should not generate a Communicative Act on it’s own.
e ACL compliant agents that send or receive Communicative Acts must execute

based on the semantics of the Act as defined by the Communication Language.

At the moment there are mainly two standard Agent Communication Languages used by
the agent developer community. The first is the Knowledge Query and Manipulation
language (KQML) that was developed mainly for the exchange of information amongst
knowledge based systems that are sharable and usable. It is a message format and a
message handling protocol to share run time information amongst agents. An application
program to interact with intelligent systems to share knowledge in co-ordinated problem
solving can use KQML. KQML consists of a set of performatives [33] that perform some
action on virtue of being sent. The primary definition of KQML extensions was by
definition of new performatives that conform to the standard set by KQML.
Another standard of an Agent Communication language developed was the ACL by the

Foundation of Inter-Operable Agents (FIPA) [34], a non-profit organization. The FIPA
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ACL message contains a set of one or more parameters. Precisely, which parameter is
used depends on the situation when the Communicative Act takes place. The FIPA
Communicative-Acts too are based on the speech-act theory. The act allows for the
sending agent to communicate to the receiver that it intends the receiver to perform some
action that it wishes to. This action performed could be a query, a response or in turn

another action based on the sender’s belief or proposition.

How ever, one major drawback of the FIPA ACL is that it attempts to capture the mental
state of the agents (such as beliefs, uncertainty and expectations) that participate in the

Communicative Acts, the semantics of which cannot exactly be captured.

2.3 Ontologies

A body of formally represented knowledge is based on a conceptualization: the objects,
concepts, and other entities that are assumed to exist in some area of interest and the
relationships that hold among them (Genesereth & Nilsson, [59]). A conceptualization is
an abstract view of our world. It is a simplified version of the abstractness of an idea that
roots from the human mind. According to Gruber[35], an Ontology is the explicit
specification of a conceptualisation. Labrou[29] states that ‘An Ontology is a particular
conceptualisation of a set of objects, concepts and of other entities of which knowledge is
expressed, and of the relationships amongst them. An Ontology consists of terms, their
definitions and axioms relating to them’. Ontology is the description of the concepts and
relationships that can exist for an agent or for a community of agents. In short, and

ontology is a formal statement of a theory. It could also be defined as a set of

-16 -



specifications in declarative formalism. These specifications in turn ensure that agents
use the same term with the same meanings during communication. Ontologies are
important so that agents can communicate within a particular domain using just the
shared ontological entities without sharing any global theory or without sharing of any
local information. A common ontology enables agent to share queries and assertions. An
agent commits to an ontology if its visible actions are consistent with the specifications as
defined in the ontology. Agents have to use the ontological statements in a coherent and
co-operative manner. Hence, we can say that Ontologies lead to information sharing

amongst agents across different platforms.

Once ontology has been specified for a set of agents, the next thing that should be
considered is the sequence of messages passed amongst agents. Given that agents follow
a certain ontology, how exactly do they interact with each other? The way the
interactions between agents are captured and the sequence of interactions between agents
becomes an important issue in multi-agent systems. These concepts are captured by what

the agent community defines as Interaction Protocols.

2.4 Interaction Protocols (IP’s)

The main inspiration of wusing an agent communication language for agent
communication comes from communication between humans. Humans basically use
predefined, commonly understood languages and parameters for daily life

communication. This way of communication is very effective when there is no expected
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behavior required from both parties that want to communicate. But when there is a need
for some expected behavior in communication between humans, there are certain ways of
behaving. Societies of agent collaborate to collectively perform tasks by entering into
conversations with each other. These conversations consist of messages sent by one agent
to another and with the receiver responding back to the sender agent by performing some
action or by responding back with another message. These messages are placed spatially
in time and they follow a certain order. Sequence of messages that might be as simple as
a request for information / release information duo might have multiple negotiations
involved between the two agents. In order to enable to communication in such a fashion
with each other such that they are hidden from each other’s implementation details, a
concept called as Interaction Protocols has emerged. Interaction Protocols has been one
of the foremost standards for agent inter-operability. Since Interaction Protocols are tools
for defining Agent Communication, public Interaction Protocols might even lead to open,

dynamic agent societies.

Wikipedia [39] defines Interaction Protocols as possible communication scenarios
between individual agents in a multi-agent system . The basic foundation for Interaction
Protocols was built by Bradshaw and Greaves, [66] when they defined the problem for
conversation amongst agents and termed it as the Conversation Policy. They state that
agents must agree on the range of possible sequences and contents of messages when
they are collaboratively communicating on solving a long-term goal. How ever, they also
state that the existing ACL’s do not suffice for this purpose and the precise semantics of

messages are not clearly defined.
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Based upon this, they came up with what they termed as the Basic Problem which stated:

Modern ACL’s, especially those based on logic are frequently powerful enough to
encompass several different semantically coherent ways to achieve the same
communicative goal and conversely also powerful enough to achieve several

different goals with the same message.

As a solution to this problem, Greaves et al suggest that agents need to conform to a
specific policy to follow when establishing conversations with each other. This policy is
modeled and defined by the Interaction Protocol. The Interaction Protocol functions as a
template to order the form, content and ordering of possible messages such that a single
communicative goal could be reached co-operatively. In short, an Interaction Protocol
describes the sequence and flow of messages between agents in a multi-agent system.
They constrain the possibility of messages to form sequences of a particular type as
Interaction Protocols significantly reduce the search space for possible responses. In
comparison to human interactions, the Interaction Protocol could be viewed as a set of

responses in answer to a particular question.

Cranefield [38] states that an Interaction Protocol should satisfy the following:

e Other developers should be able to implement the protocol without confusion.

e Software agents should be able to interpret these protocols for generating
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meaningful conversations.
e The Interaction Protocols should specify the generality of meaning. It should

hold the same meaning for a given set of messages in any situation.

There should exist a clear distinction between Interaction Protocols that defines the
agreement with respect to the flow of messages between agents and the Conversation
Policy that states how an agent communicates with another agent. While the first
approach is more policy-centric the second approach is more agent-centric. Interaction
Protocols are better refinement versions of Conversation Policies. Greaves et al [40]

pointed out the requirements to be met by any Interaction Protocol. They are as:

e The separation of Protocol and Implementation: The behavior of an agent should
be specified independent of the implementation methods used.

e The specification of Interaction Protocols should allow the identification of
equivalent classes of interactions across different formalisms.

e Protocols should be flexible enough to allow agents with different levels of
sophistication to talk to each other.

e Protocols should be compositional. Different pieces should be able to be put

together so that they could govern different domain specific interactions.
One fundamental advantage of an Interaction Protocol is that it restricts flexibility of the

agent to choose from a variety of responses. At the same time, it gives agents enough

freedom to talk to any other agent of their choice and establish a pattern or sequence of
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messages with them. To facilitate such communication amongst agents that satisfy the
requirements as presented above, the protocol by itself must be a) unambiguous (should
not be vague and must be specific) b) correct (there must be no contradictory states in the
Protocol) ¢) complete (no state in the protocol must be half defined) and d) verifiable (the

correctness properties of the protocol can be proved).

The ability to express correct protocols depends on a large part on the specification
language or the tool that is used to model the protocol. There are a number of
requirements for specification language / modeling tools to be able to represent an
Interaction Protocol. There is much formalization available that can be used to describe
Interaction Protocols. Each one of them has their own advantages and disadvantages.
How ever, one main criterion for using a formal tool for denoting Interaction Protocols is
that the protocol modeled using the tool could later be verified for correctness. Jennings
[41] states that there are a few requirements that need to be considered while developing
or choosing a language that can represent protocols.
e Provide a graphical representation for ready perception of structure by developers.
Be close to an executable language for implementation purposes.
e Have an unambiguous formal specification language with clear semantics for
verification.
e Provide well-defined program logic for ensuring complete protocols and
validating the properties of the protocol.
e FExhibit enough expressiveness for agent interactions and nested interactions.

o Allow ease of re-use and abstraction of protocols.
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e Maintain a pre-positional form of a formal language.

e Allow a methodology for compatibility with existing methodologies and
Interaction Protocols. For the sake of referring to part of an interaction, the
modeling language has to represent both the possible states and the possible

actions.

There are many tools and description languages available that are used to specify

Interaction Protocols that comply with the above requirements.

2.5 Modeling Formalisms for Interaction Protocols

Interaction Protocols modeled with Petri-nets

Jensen [43] states that Colored Petri nets form a graphically oriented language with a
formal specification for design, specification, simulation and verification of systems.
Colored Petri nets aid in modeling concurrent conversations in an integrated fashion.
Colored Petri Nets are similar to ordinary Petri nets in the sense that they use the same
notations- places and transitions and arcs connecting these two elements. The notation of
Colored Petri Nets (CPN’s) introduces the concept of tokens over Petri nets, each of
which are marked by different colors that represent arbitrary data values. Each place has
an associated type that may determine the type of data that the place may contain. These
structured tokens could be evaluated to yield new net marking when transitions are fired.
To be able to occur, a transition must have sufficient tokens on its input places and these

tokens must have values that match the arc expressions. An advantage is that CPN
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models can be analyzed in different ways. Automatic simulation is one option wherein
the Colored Petri Net model developed can be simulated to establish the working of the
model. It is also possible to specify time delays that describe the duration of different
actions that are modeled in the system. Colored Petri Nets have formal semantics that
make the execution and simulation of Petri Net models unambiguous. Another major
advantage of Color Petri Nets is that they can be represented graphically and also support
concurrency. They can be well understood and can be applied to many real-world
applications. Finally, Petri nets can model both states and events which is an important

aspect required to model agent communication.

Purvis et al [42] have described Interaction Protocols using Colored Petri-nets. The
authors illustrate the FIPA Request Protocol [46]. In this protocol, there are two
participating roles, an Initiator and a Participant, which are modeled using agent(s). The
Initiator requests the Participant for some information. The Participant, upon receiving
the message has two options. In the first case, it does not understand the message sent and
responds by sending a Not-Understood message. In the second case, when the Participant
understands the message, it again has two options. It can either agree to the Initiator’s
request and provide the Initiator with the information or it can refuse to provide the
Initiator with the information requested. This is the protocol that has been modeled using
Colored Petri Nets. The model for the Request Interaction Protocol for the Initiator has

been shown below.
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Fig 3: The Request Interaction Protocol for the Initiator role

The Petri Net scheme for the Participant role is shown below. The role-names Initiator
and Participant are provided by FIPA. The ‘Get’ transition has code associated with it
that obtains information from the agent’s message receiving module and places it in the
‘In’ place. Transitions connected to ‘In’ have the guards on them such that transitions are

only enabled by the tokens at the ‘In’ place with appropriate qualification.
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Fig 4: The Request Interaction Protocol for the Participant role

The Participant role-playing agent gets the message and places it in the ‘In’ place. Once
that is done the transitions are fired as specified by the protocol. In any case, if either the
Initiator or the Participant does not understand a particular message, it fires a

NotUnderstood transition, one of the basic features of an ACL compliant agent. The
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dashed lines indicate that these nodes are placed on parallel nets that deal with
exceptions. Thus an Interaction Protocol has a specific Petri Net for each node in the
conversation. The participating roles can make use of the Petri Nets to keep track of what
stage they are in the conversation. Cost et al [45] proposed another method of modeling
Interaction Protocols based on Colored Petri Nets wherein they use a single graphical
model for description of the entire Protocol. There are no separate Petri Nets for different
roles and the entire Protocol is integrated into one single Petri Net. According to this
model any conversation always has just one final or accepting state and the final state
denotes the result of the conversation. How ever, in some situations the authors state that
it might be desirable to possess multiple accepting states. If denoted using this method,

the FIPA Request Protocol could be denoted as below.

~ Start

L’jRequest

Execute
Refuse

Execute

Request Not- Process

Terminated

Fig 5: Depiction of the Request Protocol in the Petri Net Model using Costs method
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Colored Petri Nets appear to be one of the formalisms for specifying Interaction
Protocols where tools are available for integrating these protocols into a multi-agent
system. Since they are easily verifiable too, Colored Petri Nets are widely used in the

agent community for modeling Interaction Protocols and implementing them.

2.6 Interaction Protocols in Agent Unified Modeling Language

Agent Unified Modeling Language

Bauer [48] proposed that Agent Unified Modeling Language (AUML) be another
formalism for specifying multi-agent interactions. Agent UML is an extension of the
Unified Modeling Language, a de-facto standard for object oriented analysis and design.
Let us first take a look at the Unified Modeling Language, its standards and formalism

and how it led to the development of its agent extension, AUML.

Unified Modeling Language

Model-Driven Architecture and the Object Management Group.

Computing infrastructures are expanding into new horizons and technologies are
developing everyday. These new technologies now face ‘challenges of integration’ as
they expand into organizations. As computers and networks become faster day-by-day,

interconnection standards must evolve. To maximize flexibility, investors are buying
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hardware and software that implement open, inter-connection standards. Because this
speed of innovation and invention is very high, it becomes very hard to develop systems
that can be used efficiently for a very long time. The Object Management group (OMG)
addresses this problem with the concept of a Model Driven Architecture (MDA) [48][49].
Modeling is the design of a system before coding. A model ensures that functionality is
complete and correct, that end-user needs are met and program design supports
requirements for scalability, robustness, security, extendibility and portability before
implementation in code that makes design changes expensive to achieve at a later stage.
The MDA states that building an abstract model that is independent of implementation
issues can be used to specify any system or a subsystem. Hence MDA allows long-term
flexibility of a) Implementation b) Integration c) Maintenance and d) Testing and

Simulation.

The MDA separates the specification of the operation of a system from the way the
capabilities of the system are implemented. In brief, MDA provides an approach for
specifying a system independently of the platform that implements this system. This
platform-independent model is then transformed onto a platform specific model and by
applying suitable transformations that are required for that particular platform. This way,
if technology changes or if new sub-systems are implemented or if the model itself is
slightly changed, all that needs to be done is a slight modification of the mapping from
the Model-specified Architecture to the platform. Portability, Re-usability and
Interoperability are three main concerns of the MDA. The OMG states that some of the

core concepts of MDA are as described below:
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e System: This may include a program, a computer, a network or combination of
hardware and software parts.

e Model: The description of a system and its environment for a particular purpose.

e Architecture: Specifications of parts and connectors of the system and rules for
interactions using these parts.

e Platform: A subset of technologies and sub-systems that provide for a set of
functionality though interfaces and specified usage patterns.

e Application: The functionality being developed that is based on the specification

of a model.

Interaction Protocols can be viewed as being Model Driven. They are independent of the
platform on which they would be implemented and provide a specification of the
operation and behavior of the system. They are later implemented on a specific platform
and any addition to an Interaction Protocol would just involve addition of the new
mapping in the Protocol onto the specification. Interaction Protocols provide an abstract
viewpoint on the generic behavior of a system in a particular environment. Hence, we can

make use of Model Driven Architectures and concepts to approach Interaction Protocols.

The Unified Modeling Language (UML)

The Unified Modeling Language [51] is specified by the Object Management Group
(OMG) and the foremost thought leaders were Rumbaugh, Jacobson and Booch.

According to them ‘ UML is a general-purpose tool for a Visual Modeling Language that
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is used to specify, visualize, construct and document the artefacts of a software system. It

captures decisions and understanding about systems that must be constructed’. There

were different approaches to Object Oriented Analysis and Design before the OMG was

set up. How ever, later on they merged to become the standard set by the OMG defined

as the UML. The latest standard of UML is UML 2.0 [24] on which most of this work is

based.

Rumbaugh et al [50] state that UML models the following properties of an Object

Oriented System.

Static Structure: This models the key concepts of an application, the internal
properties and the relationships between the different concepts. This includes
class diagrams and package diagrams as well.

Dynamic Behavior: This models the life history of an object or an application as
it interacts with the rest of the world and also models the communication patterns
of a set of connected objects as they interact to implement a certain behavior. This
includes Interaction Diagrams, State Charts and Activity Diagrams.

Use Cases: The specification of actions that a system can perform through
interactions with actors in the outside world.

Implementation Constructs: UML models both logical analysis and physical
implementation and certain constructs used can model implementation too.

Model Organization: The modeling information is divided into coherent pieces
so that different teams could work on different pieces concurrently. The entire

model is divided into sub-models.
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o Extensibility Mechanisms: UML provided limited extensions capability for day
to-day needs. Constraints, tagged values and stereotypes are some of the most

common extensibility mechanisms used in UML.

UML is used as of the tools for the Model Driven Architecture as it is platform
independent and can be used to specify models of systems as described above. Moreover,
any UML model combines two major factors-semantic representation and visual
notations. The semantic model also includes the syntactic structure, well formedness and
execution rules. This is used for code-generation, validity checking etc. The visual
presentation represents this semantic information in a form that can be seen, browsed and
validated by humans. UML also pushes the following factors to be considered while
developing a model- a) Abstraction vs. Detail b) Specification vs. Implementation c)
Description vs. Instance and d) Variations in Interpretation. Due to these aspects of UML

it is tightly bound to the development of Model Driven Architecture.

The Unified Modeling Language and Multi-Systems.

Since UML is well known in the software engineering community, many researchers and
organizations proposed that UML be used for development of multi-agent systems.
Botelho and Bento [52] proposed that UML could be used for representing Ontologies in
multi-agent systems. According to them some of the main benefits of doing so are the
graphical representations, the use of UML primitives and the availability of an Object

Constraint Language. Parunak et al [53] make use of the concepts of UML to represent
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agent interactions and state that UML based tools are ideal to model agent based
Interaction Protocols. Odell et al [54] go further to represent social structures in UML.
They compare agent societies to human societies and state that capturing of agent
interactions is the foremost step in understanding agent collaborative behavior. They also
propose ideas that capture the concepts of groups, roles, dependencies and speech-acts
into a coherent structure for describing organizational structures and propose UML

extensions to support the analysis, design and implementation of multi-agent systems.

Object oriented methodologies encourage encapsulation but it is sometimes essential to
share knowledge amongst different interacting agents. The behavior of agents might
differ from methods in the sense that they are non-deterministic and can vary over times.
But at the same time agents can inherit knowledge from plans (similar to methods) and
beliefs which are similar to instance variables. With appropriate modification, agent
interactions can be easily compared to that of objects and can be captured using UML.
This along with the ease of use of AUML, its visual notations and growing popularity

make it an ideal tool for capturing agent interactions in multi-agent systems.

2.7 The Agent Unified Modeling Language (AUML)

Since multi-agent systems were always characterized as extensions of object oriented
systems, system designers always had difficulties trying to capture the unique features of
MAS using object oriented tools. In response to this difficulty, the Agent Unified

Modeling Language or AUML was developed. Rather than relying completely on UML,

-32-



AUML reuses the Unified Modeling Language where necessary. AUML is developed in
association with FIPA and the OMG with the main aim of specifying formalism for

agent-based systems.

Bauer [55] was one of the first few who suggested the application of UML for agents to
and suggested the development of layered protocols. FIPA adopted this and developed a
standard for binding agent interactions and UML together and is standardized by the
FIPA modeling Technical Committee [57]. Some of the main objectives of the FIPA

Modeling TC are as:

e Facilitate advances in state-of-the-art agent modeling.

e Enable developers to better understand hot to develop agent based
models

e Recommend technologies to enable adoption of common
semantics, meta-models and syntax for agent based models and

applications.

¢ Promote inter-operability across the lifecycles of AUML tools / products.

Currently FIPA is underway developing specifications for AUML based on the latest
version of UML release by the Object Management Group-UML 2.0 and their first drafts
are in progress. One of the main specifications that FIPA tries to model is the

communication interaction between agents. Normally, agents follow a specified pattern
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of communication with other agents in a multi-agent system to reach a common goal.

This pattern of communication can be defined as an Agent Interaction Protocol.

Parunak et al[38] define an Agent Interaction Protocol as a communication pattern of an
allowed sequence of messages between agents and the constraints of the content on those
messages. AUML is normally used to model Interaction Protocols because they are
complex enough to illustrate the non-trivial use of AUML and are used commonly
enough to make this useful to other agent-application developers. Agent Interaction
Protocols are said to be good examples of software patterns which are useful in one
particular context and probably useful in others too. A specification of an Agent
Interaction Protocol provides an example that could be used in solving problems in an
agent-oriented system design. AUML provides a specification technique for AIP’s with
both formal and intuitive semantics with a user-friendly graphical notation. The
semantics should provide precise, usable definitions of the model and the graphical
representation should make the Agent Interaction Protocol understandable to humans. An
Agent Interaction Protocol is a slight modification of the Sequence Diagram as denoted
by UML, except that it has abilities to capture and represent interactions between
communicating agents. Agent Interaction Protocols are the foremost steps a developer

has to follow when establishing multi-agent societies.
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Fig 6: The FIPA Request Protocol
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This is a standard FIPA AUML representation of an Agent Interaction Protocol, in this
case the FIPA Request Protocol. The UML Sequence Diagram depicts the inter-agent
transactions that are needed to implement the protocol. An Interaction Protocol consists
of the following elements: Lifelines that denote the duration of life of a particular agent.
A lifeline is represented by a vertical dashed line with the name of the lifeline enclosed
within a box at the top of the lifeline. A lifeline depicts one or more actors or in the case
of agents one or more agent roles. Agent Roles depict the different roles or types that are
participating in the conversation. A role is an instance- focused term. In this case, the
roles are those of the Initiator and the Participant. A single agent is capable of
representing multiple roles too. Different lifelines are connected through messages
represented by a horizontal line and an arrow at one end. The lifeline to which the head of
the arrow points to is the receiver of the message while the lifeline at the tail of the arrow
indicates the sender of the message. A lifeline can be associated with actions that are
represented by boxes represented on the lifelines. These boxes are points along lifelines

wherein the sending or receiving of messages take place.

Any Sequence Diagram is read from the top to bottom and the messages along lifelines
are ordered along time. This means that the first message in reading the diagram from top
to bottom is the first message interaction, the second message appearing in the same
order is the second message interaction and so on. Most of the primitives used in
Sequence Diagrams are described by the FIPA Interaction Protocol Specifications [58]
that specify how different Interaction Protocols can be modeled using the provided

primitives. AUML also supports nested and interleaved protocols and protocol templates.
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2.8 Interaction Protocols specified using other formalisms

Various tools have been proposed by researchers for specifying Interaction Protocols.
Yan and Qi [65] have proposed the development of ROMAS: A Role Based
Methodology for Agent Systems. This approach is mainly role based and proposes to
express interactions as constraints applied on the role. Gervais et al [60] focus on
building an Architecture Description Language. Mylopolous et al [61] devised a tool,
TROPOS that tried to mainly capitulate on the mental states of an agent during software
development and required both the understanding of the environment in which the agents
operated as well as their interactions with other systems. Burmeister et al [62] tried
capturing agent interactions using Dooley graphs. Wooldridge, Jennings and Kinny [63]
present the Gaia methodology for agent-oriented analysis and design. Gaia is a general
methodology that supports both the micro-level (agent structure) and macro-level (agent
society and organization structure) of agent development. The motivation behind Gaia is
that existing methodologies fail to represent the autonomous and problem-solving nature
of agents; they also fail to model agents' ways of performing interactions and creating
organizations. These apart, many other formalisms have been specified for representing
Agent Interactions. So far, only Colored Petri Nets and the Agent Unified
Modeling Language have been able to gain widespread popularity mainly because of
their a) ease of use b) graphical representations ¢) exact specifications of syntax and
semantics and d) provisions for scalability. Also, the Petri Net and UML models are
widely known and can be easily learnt. The other formalism methods are slightly tougher

to learn when compared to these two methodologies.
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One of the main advantages of Colored Petri Nets over Agent Unified Modeling
Language is that there are currently no tools or editors supporting the graphical
representations of AUML. How ever, at the same time Colored Petri Nets enjoy
enormous support when it comes to translating Petri Net models into executable code.
There are numerous tools that aid developers in validating a CPN model , accepting it
from the developer and inputting it into the system. As far as we know, AUML does not
enjoy this tool-based support. Currently there are no graphical editors that can accept an
AUML Protocol Diagram and generate code that can act as a synchronization skeleton

for the provided Interaction Protocol.
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3. The AUML meta-model.

3. 1 Definition of a meta-model

(13

Ingenias [36] describes the concept of a meta-model as “ A meta-model describes
formally the model elements, and the syntax and semantics of the notation that allows
their manipulation. In other words, a meta-model describes the elements of a modeling
language. Hence, they are used to specify other models. For example, the meta-model of
a relational database system would specify the types ¢ Table’, ‘Record’ and ‘Field’. A
meta-model can also be seen as a precise definition of the constructs and rules needed for
creating semantic models. A meta-model is an explicit model of the constructs and rules
needed to build specific models within a domain of interest. A valid meta-model is an

ontology but not all ontologies are built explicitly as meta-models. Overall, a meta-model

can be viewed from three different facades:

e As a set of building blocks and rules used to build other models.
e As amodel of a domain of interest and

e As an instance of another model.

Hence, we can understand that meta-models are always made for a particular purpose.

A few common purposes for meta-models are as:

o A ‘schema’ for semantic data to be interchanged.

-39.



e As a language that supports a particular methodology or a process, for example as
in the UML meta-model

e As alanguage to express additional semantics of existing information.

Meta-models are always about precise meaning so that an understanding of the elements
being modeled can be created and its very important that precision is taken care of when
those meanings are defined. Hence meta-models are typically built according to a strict
rule-set. Meta modeling is gaining popularity in the recent days because of the following

reasons:

e The advent of meta-model driven packages such as CASE tools which are fully
extensible or fully configurable. This allows customisation of software

development methodologies.
e The increasing availability of meta-model driven technologies and standards.

e A general need to raise the level of abstraction.

Consider a simple AUML Interaction Diagram as shown below.
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Figure 7: An example of a AUML Interaction Diagram
depicting a few sample AUML elements

As we can see an AUML Interaction Diagram consists of many AUML primitives-
lifelines, messages, message endings and so on which are represented as boxes, lines and
arrows. Exactly these elements and the relationships between then are captured in the
AUML meta-model. The AUML meta-model tries to impress upon the underlying
semantics of the AUML primitives as defined by the FIPA specifications. As an example:
It is always mandatory that messages are exchanged between lifelines, every message has
a corresponding message ending and so on. Thus a meta-model becomes important
because every user-defined Interaction Diagram can be expressed as an instance of the
meta-model. In other words, the described meta-model supports the methodology of
model-development as described above. Fig 7 is now expressed as an instance of the

meta-model as shown below.
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Figure 8§ : The AUML Interaction Diagram
expressed as an instance of the meta- model.

Since all these objects are expressed graphically, they cannot be understood by a machine
or a computer. Hence, the next step would be to express the meta-model into a machine-
understandable format. AUML is based and adapted from the Unified Modeling language
and many of the AUML primitives are derived from UML and are modified based on the
needs of agent interactions. Following this, the meta-model for AUML too has been
based on the UML 2.0 superstructure. The following section deals with the proposed

meta-model.

3.2 Description of the meta-model

A detailed description of the different classes referred to in the meta-model and their

relationships with each other are explained in this section .
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Figure 9: The AUML meta-model.

InteractionConstraint

@iminint : Integer
Eimavint : Integer

Each of the above classes along with their intended semantics, their associations and

attributes are described in the following pages.
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1. Interaction Fragment

Interaction Fragment is an abstract notion of the most general Interaction unit. An
Interaction fragment is just a piece of an interaction and can refer to any interaction that
takes place in the model. It is described as an abstract class.

Attributes:

name:String- The name of the fragment

Associations:

operand: InteractionOperand[0..1]- The operand that encloses this fragment.

extends: Lifeline[*]- References the lifelines that the fragment involves.

interaction:Interaction[0..1]- The Interaction enclosing this fragment.

2. Interaction

An interaction is defined as a unit of behaviour that deals with the observable exchange
of information. Interaction is a specialization of Interaction Fragment and also encloses
the class.

Attributes:

language:String- The language of the Interaction

ontology:String- The ontology for this Interaction Protocol

variables-String Global set variables.

Associations:

lifeline:Lifeline[*]- This association specifies the participating entities in the Interaction.
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event:MessageEnd[*]- The Message Ends refered to by this Interaction.
message:Message[*]- The Messages contained in the Interaction.
fragment:InteractionFragment[*]- The set of Interaction Fragments contained within

this Interaction.

3. Message

A Message is defined by the UML 2.0 superstructure as a particular communication
between Lifelines of an Interaction. Hence, the messages not only involve just an act, but
they also specify a sender and a receiver and correspondingly a sending event and a
receiving event. Hence, a Message associates with itself two EventOccurences- a sending
EventOccurrence and a receiving EventOccurrence. Message is an abstract class.
Associations:
interaction:Interaction|[1]- The enclosing interaction that contains the message.
sendEvent:MessageEnd[1]- Refers to the sending of a message.
receiveEvent:MessageEnd|[1]- Refers to the receiving of a message.
Constraints
e [f the sendEvent and the receiveEvent of a message are ordered on the same
lifeline, i.e. if a lifeline is sending a message to itself, the sendEvent must be
executed before the receiveEvent.
¢ sendEvent and receiveEvent are mutually exclusive and cannot be referenced by a

single MessageEnd at the same time.
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4. MessageEnd

As described above, a MessageEnd represents the start or the end of a message during
an interaction.

Associations:

sendMessage:Message[0..1]- References the message that contains the information
of a sendEvent.

receiveMessage:Message[0..1]- References the message that contains the
information of a receiveEvent.

interaction:Interaction[1]- The enclosing interaction that owns the message end.
Subclasses of MessageEnd define the appropriate semantics that they represent. This

shall be looked into later.

5. Lifeline

A Lifeline represents one or more agents. It can either represent a particular role the
agent is playing or can refer to the specific agent itself.

Attributes:

name;String- The name of the Lifeline.

Associations:

interaction:Interaction[1]- References the Interactions enclosing this Lifeline.

eventOccurrence:Interaction[*]- References the EventOccurrences of the Lifeline.
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extendsTo:InteractionFragment|[*]- References the InteractionFragments that cover
the Lifeline.

Semantics of Lifeline:

The order of EventOccurrences along a Lifeline is significant and they denote the

order in which these EventOccurrences are going to occur.

6. EventOccurrences.

EventOccurrences represent specific moments of time with which certain actions are
associated. An EventOccurrence is the basic semantic unit of Interactions. The
sequences of EventOccurrences make up the meaning of Interactions in their entirety.
An EventOccurrence is a specialization of InteractionFragment and of MessageEnd.
EventOccurences are ordered along a Lifeline. The namespace of an
EventOccurrence is the Interaction in which it is contained.

Associations

startExecutionOccurrence:ExecutionOccurrence[0..1]- References the
ExecutionOccurrence of the sta rt of an action
finishExecutionOccurrence:ExecutionOccurrence[0..1]- References the
ExecutionOccurrence of the finish of an action.

lifeline:Lifeline[1]- References the Lifeline on which the EventOccurence appears.

It has to be noted here that each ExecutionOccurrence is described and generated as

an instance of an EventOccurrence.
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fromContinue:Continue[1]- References the EventOccurrence of the point from
where the execution previously stopped
toContinue:Continue[1]- References the EventOccurrence of the point from where

the execution would Continue

7. Stop

Stop is an EventOccurrence that occurs along a particular Lifeline. It defines the
termination of the instance specified by the Lifeline along which Stop occurs.
Constraints:

No other EventOccurrences may appear below a Stop on any given Lifeline in an

InteractionOperand.

8. ExecutionOccurrence

An ExecutionOccurrence is defined by the UML 2.0 superstructure as being the
instantiation of an action. Since the ExecutionOccurrence is normally of some
duration it is represented by two EventOccurrences. One is the start EventOccurrence
which specifies the beginning of the action of the ExecutionOccurrence and the other
is the end EventOccurrence which specifies the ending of the action. An

ExecutionOccurrence is an InteractionFragment.
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Attributes:

methodName: String- The name of the method which should be called by the
application specific code.

startConstraint:String- This specifies the startConstraint of the action and this
usually specifies the input parameters of the method used.

finishConstraint: String- This specifies the finishConstraint of the action and this
usually specifies the handling of the result produced by the method.

Associations:

start:EventOccurrence[1]- References the EventOccurrence that specifies the start
of the action.

finish:EventOccurrence[1]- References the EventOccurrence that designates the
finish of the action.

startingCombinedFragment:EventOccurrence[0..1]- References the Combined
Fragment that is started by this ExecutionOccurrence.
endingCombinedFragment:EventOccurrence[0..1]- References the Combined
Fragment that is finished by this ExecutionOccurrence.

Constraints:

The startCombinedFragment and the endCombinedFragment must be on the same

Lifeline
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9. InteractionOperand

An InteractionOperand is contained in a CombinedFragment. It always represents one
operand of the expression given by the enclosing CombinedFragment. An
InteractionOperand is an InteractionFragment which may be guarded by an
InteractionConstraint. Only those InteractionOperands with a guard that evaluates to
true at some point in the Interaction would be considered for production of traces for
the enclosing CombinedFragment. Traces define the semantics of Interactions as
given by the UML 2.0 superstructure. If no guard is present this is taken to be a true
guard. InteractionOperands always contain an ordered set of InteractionFragments.
These InteractionFragments are ordered vertically in any Interaction Diagram. The
geometrical position of the InteractionFragment is given by the topmost vertical co-
ordinate of its contained EventOccurrences.

Associations:

fragment:InteractionFragment[*]- Specifies the InteractionFragment enclosed by
the operand.

guard:InteractionConstraint[0..1]- Specifies the constraint of the operand.
Constraints:

The guard must always be placed above the EventOccurrence that will become the
first EventOccurrence within this InteractionOperand. The guard must contain only
references to values local to the Lifeline on which it resides, or values global to the

whole Interaction.
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Attributes:

type:Boolean- Determines the truth value of the Operand

10. CombinedFragment

A CombinedFragment defines an expression of interaction fragments. A
CombinedFragment is always defined by an interaction operator and corresponding
interaction operands. CombinedFragment is a specialization of InteractionFragment.
Attributes:

interactionOperator:InteractionOperator: This specifies the operation that defines
the semantics of the combination of interactionFragments.

Associations:

cfragmentGate:Gate[*]: Specifies the Gate that forms the interface between a
combinedFragment and its surroundings.

operand:InteractionOperand[1..*]- The set of operands of the CombinedFragment.
startAction:ExecutionOccurrence[l]- The Action executed before this fragment.
endAction:ExecutionOccurrence[1]- The action executed after this fragment.
Constraints:

If the interactionOperator is neg,loop or op, there can be only one operand.
Semantics:

The semantics of CombinedFragment depends on the attribute of the

interactionOperator.
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Alternative. This means that several paths are possible to follow the interaction and
agents have to choose at most one to continue. Guards are associated with different
alternatives. Hence, the alternative that is chosen is the alternative that has its guards
evaluated to true. In case no guard is evaluated to be true, no alternative is chosen. In
such a case, the alternative CombinedFragment is not executed.

Option:

The Option operator considers only one path in the CombinedFragment. If the
conditions associated with this path is evaluated to true, then that path is executed
otherwise nothing happens and the interaction continues after this
CombinedFragment. The Option operator can be represented as a CombinedFragment
with an Alternative operator and two paths: the first one contains the set of messages
that are executed if the conditions are satisfied and the second one is empty
corresponding to the conditions not satisfied.

Break:

The Break operator defined a breaking scenario that stops the current execution and
executes the scenario in the Break CombinedFragment. The broken current execution
will not be resumed.

Parallel:

The parallel operator depicts the parallel execution of paths in any order. It allows
representation of concurrent sending of messages.

Weak Sequencing:

The Weak Sequencing operator means that the messages within this

CombinedFragment on the same Lifeline are ordered but it is not safe to make the
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same assumption about the ordering of messages coming from different Lifelines in
the same CombinedFragment.

Strict Sequencing:

This operator refines the Weak Sequencing operator and ensures that all messages in
the CombinedFragment over all Lifelines are ordered vertically.

Negative:

This operator describes the set of messages that will be considered as invalid in the
interaction.

CriticalRegion:

The CriticalRegion operator implies that the sequence of messages in the
CriticalRegion should occur atomically. This sequence of messages cannot be
interleaved with any other sequence of messages. This is akin to the critical region of
Distributed Systems.

Ignore:

This represents the set of messages that should be ignored during the interaction.
Assertion:

The Assertion operator indicates that the sequence of messages in the
CombinedFragment is the only acceptable sequence of messages for the current state
of the interaction.

Loop:

The Loop operator allows designers to represent that an ordered set of messages need

to be repeated a certain number of times. Upper bounds, lower bounds or a Boolean
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expression could be used for the same purpose. As long as these conditions are

satisfied, the loop is executed and the messages are sent or received.

11. InteractionConstraint

An InteractionConstraint is a Boolean expression that guards an operand in a
CombinedFragment. The InteractionConstraint also contains two expressions
designating the maximum and minimum number of times a loop should execute.
Attributes:
minint:int[0..1]- The minimum number of times the loop should execute.
maxint:int[0..1]- The maximum number of times the loop should execute.
expression:String[1]- The Boolean expression which is evaluated.
Constraints:

¢ Both minint and maxint, must evaluate to a non-negative integer.

e maxint and minint can be specified only if the InteractionConstraint is

associated with a loop CombinedFragment.

e maxint must always be greater than or equal to minint , if specified.

12. InteractionOperator

The InteractionOperator is just an enumeration designating the different kinds of

operators for CombinedFragments. This operator enumerates the possible values for
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the interactionOperator attribute for CombinedFragments. The literals for the
operators are as alt, opt, par, loop, ignore, consider, neg, seq, strict, critical and assert.
Semantics:

The value of the InteractionOperator is important for the semantics of the

CombinedFragment as seen above.

13. Gate

A Gate relates a Message outside an InteractionFragment to a Message inside an
InteractionFragment. Gates are connected through Messages. Gate is a specialization
of MessageEnd.

Constraints:

The Message leading to or from a Gate from within a CombinedFragment must
correspond to the Message leading from or to the CombinedFragment on its outside.
Semantics:

Gates are named either explicitly or implicitly. Gates may be identified either by the

name of the Gate if specified, or by a constructed identifier.

Though the meta-model has been based on the meta-model for the UML 2.0
superstructure, the classes GeneralOrdering and Part-Decomposition have been
deleted because they addressed specific constructs of UML not required for the meta-
model developed. The meta-classes NamedElement and ConnectableElements have

been deleted as they provided for generalization of classes, which was again not
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required for developing the meta-model. Based on the FIPA specifications for
Interaction Protocols, the attributes ‘language’, ‘ontology’ and ‘variables’ were added
to the class Interaction. The class Message is an abstract class because of the
incorporation of communicative acts[67] defined by FIPA. For every communicative
act, there exists a subclass of Message in the meta-model and these classes need to be
instantiated. The Messages referred to in the meta-model are always complete, i.e.

both the Sender and the receiver have to be known for the Message to be sent across.

Message communication, how ever could be either synchronous or asynchronous.
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Fig 10: The abstract class Message and its included subclasses
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14. AddRole

This class enables multiple roles over a single Lifeline. The agent over the same span of
time can take on different roles at different instances of time. This is also termed as role

cardinality.

Attributes:

RoleName:String- The name of the role to be played.

Cardinality:Integer- The number of roles being played onto the same Lifeline.
Agentldentifier: String- The name of the agent taking on the role.

Constraints:

The lifetime of a role is always lesser than or only as long as the lifeline. A role cannot

live beyond the longevity of the lifeline.

15. Continue:

This is an abstract class. It defines continuations of different branches of
CombinedFragment.

Associations:

from:EventOccurrence[1]- Specifies the EventOccurrence that denotes the end of
activity from where continuation would next occur.

to:EventOcurrence[1]- Specifies the EventOccurrence that denotes the activity of the

occurring continuation
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4. Developing the meta-model

4.1 Introduction to the Eclipse Modeling Framework

There are many tools that aid the use of formal models and development of meta-models
in Software Engineering. These tools mostly follow the Model Driven Architecture
(MDA) and mostly support the Unified Modeling Language (UML). The Eclipse
Modeling Framework (EMF ) is one of these tools. EMF is based on Eclipse [15], which
is a platform-independent, open-tool platform. The Eclipse Platform provides building
blocks and a foundation for constructing and running integrated software-development
tools. It allows tool builders to independently develop tools that can integrate seamlessly

with other tools and applications.

The Eclipse Modeling Framework (EMF) is a JAVA application for building tools and
other applications based on a structured model. Using a combination of UML diagrams
such as Class diagrams, Collaboration diagrams and so on, a complete model of an
application can be specified. This model could then be used as an input to generate part
of or the entire application. EMF basically uses XML Metadata Interchange (XML) as its
canonical form of model definition. The core EMF framework provides run time support
to create JAVA implementation classes for a given model. The second layer or the
EMF .edit framework provides extends and builds on the core framework adding support
for generating adapter classes that enable viewing and command based editing of a

model.
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EMEF was chosen because of the following reasons:
e EMF is well documented and well supported. A host of plug-ins are available for
model development.
e EMF provides a graphical user interface. Hence Interaction Protocols can be

defined by instantiating meta-model instances.

4.2 Using EMF to generate an Interaction Protocol

The meta-model is loaded into the Eclipse Modeling Framework in a tree-based structure.
The core framework provides support for the classes while the overlying EMF.edit
framework provides support for the attributes and associations for each of the classes.
This enables the AUML meta-model to be displayed as a tree-based graphical Interface.
Any user-defined Interaction Protocol can now be fed into the system as an instantiation
of the AUML meta-model. Instances of the model and the meta-model objects generated
using the graphical interface are then serialised to be able to store and transfer them. As
discussed before, EMF serializes objects using XMI. XMI is a widely used serialisation

standard that supports UML primitives.

The AUML meta-model described in the previous chapter was designed using Rational
Rose[18], a Computer Aided Software Engineering (CASE) tool. A Rational Rose file
can be imported into EMF and then serialised into the XMI format. Each of the classes,

their attributes and associations are loaded and stored in the XMI format. Any later
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manipulation in the model, is reflected in the XMI code as well and updated
automatically by the EMF framework. This reduces developer effort into updating both

the model and its resultant code.

Once serialised, the UML classes can then be converted into JAVA code. Each execution
occurrence is labelled as a method name for a class. The details of method execution are
then filled in along with both input and output parameters. Hence, a meta-model instance
representing the Interaction Protocol can be accessed directly via the JAVA classes and
JAVA objects and synchronization skeleton in the form of JAVA code is obtained for

every instance of the meta-model entered.

Thus, program skeletons can be generated for any Interaction Protocol Diagram.

4.3 Extensibility of the meta-model

Extensibility is a vital aspect of software systems. Software system environments are
continually subject to change and these changes demand corresponding modifications in
the software system. Extensibility refers in this context to the ability of creators of
information objects to extend their documents.

Wikipedia defines Extensibility as follows. “ Extensibility is a system design principle
where the system implementation takes into consideration future growth. It is a
systematic measure of the ability to extend a system and the level of effort required to

implement the extension. Extensions can be through the addition of a new functionality
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or through modification of existing functionality. The central theme is to provide for

change while minimising impact to existing system functionality.”

We make use of Packages for meta-model extensibility. Packages are used to define and
structure both the meta-model and its extensions. Different aspects of a meta-element can
be defined in different packages that makes it very simple to be edit/delete existing
packages or to add a new package. A package allows for an element of a meta-model to
be selected and specialized. A given meta-model element can be introduced in any one
package and then extended to other packages that have a generalization relationship to it.
UML 2.0 specifies that “Any package can have generalizations to other packages. This
means that the public and protected elements owned or referenced by a package are also
visible to its heirs and can be used in the same way as any element owned or referenced
by the heirs themselves. A package can also own or reference other packages”. This is a
good approach against modeling extensibility by using subclasses as using subclasses
provides for extensive multiple inheritance which contaminates very quickly as and when
the meta-model is extended. Hence, package extension is an excellent way to support and

structure meta-models.

The AUML meta-model too is structured in the form of a package. The specifications for
Package have been adopted from the Kernel class of the UML 2.0 superstructure
specification. The entire meta-model itself is stored as a package. This package in turn
consists of other packages with which it shares a generalization relationship. The package

FIPA consists of another package, Agent UML that contains the set of classes (UML
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classes) and their associations with each other. The class Message has been defined as a
package such that all its subclasses (the different communicative acts as specified by
FIPA) have been defined within this package. Thus, any modifications, additions or
deletions to the set of communicative acts would not affect the rest of the meta-model.
The model has also been divided into different views for future convenience. There is a
use case view that could possibly incorporate future use-case additions over the meta-
model. There is also a deployment view that consists of all the components used in the
model. Thus any addition or deletion of future components would not affect the rest of
the packages. Assuming that a developer would later want to introduce new definitions of
ACL onto the same meta-model, he can do so by building in the new ACL definitions in
a separate package and later specify a generalization onto other packages already existing
in the meta-model. Hence a developer can not only define his own package but also

continue to use the already existing packages in the meta-model.

Extensibility in the meta-model is described in the diagram below. The yellow boxes
denote packages where as the white boxes denote different components within those
packages. The relationship between the different meta-model packages as well as the
relationship of each package to the main meta-model itself is shown. Packaging makes
the meta-model extremely modular, re-usable and scalable without affecting much of its

present day performance.
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4.4 Validation of the meta-model

Validation, in simple English is defined as finding or testing the truth of something.
Validation is also considered as the process of checking if something satisfies a certain
criterion. Here, validation is the process of demonstrating that the generated model
produces reliable output as the capacity of the model is proved upon generation of
credible and verifiable results. We would label validation as “Proof of attainment of a
certain level of accuracy with respect to the results of the meta-model”. Validation in turn
verifies the intended semantics of the model. Though we do not prove the correctness of
the meta-model in this dissertation, we do try to attain partial-correctness by means of

validation.

We look into the AUML specifications as specified by FIPA and prove that the meta-
model tries to achieve the necessary functionality as given in the FIPA specifications.
We look into the definition of each term as provided by the FIPA specification [58] and
then establish that our meta-model achieves exactly the same functionality as described

by the specification.

The Interaction Protocol Library Specification, states that the semantics of any Protocol
Diagram, can be represented by an Interaction, which is a set of messages exchanged
amongst different roles within collaboration to affect a desired behaviour of other Agent
Roles or agent instances. We model exactly the same behaviour in the meta-model by

making an Interaction Fragment the basic semantic unit of any Protocol Diagram. An
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‘Interaction Fragment’ is modeled as the general unit of behaviour and can refer to any
interaction that takes place in the model.

The FIPA specification defines an ‘Interaction’ as a sequence of communications that
specifies a communication between a sender role and a receiver role. The meta-model
defines an ‘Interaction’ as a unit of behaviour that deals with the observable exchange of

information, usually between a sender Lifeline and a receiver Lifeline.

An agent Lifeline, as defined by the FIPA specifications, denotes the time period of the
agent , as long as it exists. In short, it defines the lifetime of a particular Agent Role. Only
during this period can an agent participate in a protocol. The meta-model defines a
Lifeline as representing one or more agents. The Lifeline in the meta-model can represent
either the specific agent itself or one or more roles that the agent is participating in. This
way, the Lifeline in the meta-model not only supports agent lifetimes, but also provides
inherent support for multiple roles as well. The Lifelines in the meta-model may also be
split to describe AND / OR parallelism. The FIPA specification states that the order of
messages along a Lifeline is important as they represent the order of interactions
occurring in the Protocol Diagram. We map the same concept onto the meta-model. Each
message being sent by a Sender and being received by the receiver is represented as an
Event Occurrence. These Event Occurrences represent specific moments of time with
which certain actions are associated and Event Occurrences represent the basic semantic
unit of Interactions and the sequences of EventOccurrences make up the meaning of

Interactions in their entirety.
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Messages in the FIPA specification is defined as the communication from one AgentRole
to another that conveys information with the expectation that the receiving AgentRole
would react according to the semantics of the communicative act. The protocol
specification says nothing about the implementation of the same. Mapping the same
concept onto the meta-model, a Message in the meta-model defines a communicative act
between a sender and a receiver, each of which are associated with a sending event and a
receiving event. A Message in the meta-model always associates itself with two Event
Occurrences, a Sending EventOccurrence and a Receive EventOccurrence , each of
which are encapsulated within a MessageEnd. A MessageEnd denotes either the start or
the end of a message. The FIPA specification states that any message within a Protocol
Diagram can be associated with different options-such as cardinality, guard condition and
argument list. The same sets of conditions have been mapped on to the Message class in
the meta-model such that each of these could be set during runtime. Complex messages
as defined by the FIPA specifications, such as in parallel messages could be represented
in the meta-model by passing multiple messages associated with multiple

EventOccurrences at the same time instant.

The FIPA specification library however, does not specify any formal specifications for
Combined Fragments. It just states that a Combined Fragment defines the splitting and
merging of message paths, and this is simply re-defined to be a ‘Thread of Interaction’
between paths. How ever, the FIPA library does specify the operators for a Combined
Fragment as in Alt,Break,Opt,Par, Seq,Weak,Neg and Assert as we have seen before.

Redefining these same concepts onto our meta-model, by slightly specializing into the
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definition of a Combined Fragment, we define a Combined Fragment to be an expression
of different Interaction Fragments. Each of these Interaction Fragments are defined by the
associated Interaction Operand-Alternative, Break, Parallel, Negative, Assert, Weak
Sequencing, Strict Sequencing, Option and Loop, which are in turn defined by the FIPA
specifications. We make use of the FIPA specifications to define our Interaction
Operands and in turn let the Interaction Operands re-define different Interaction
Fragments that sum up to form a Combined Fragment. The FIPA specification associates
a Guard value with every Combined Fragment which we specify as an Interaction
Constraint in our meta-model. We define an Interaction Constraint to be a Boolean

expression that guards an operand in a CombinedFragment.

The primitives described above are described in the FIPA Interaction Protocol Library
Specifications, each of which have been applied in the meta-model. As the meta-model
captures the inherent behavior of the different FIPA primitives, as defined by the FIPA

specifications, we prove that the meta-model has been validated.
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4.5 Usability of the meta-model.

The meta-model can be used to describe any Interaction Protocol. The protocol that is fed
as input would be defined as an instance of the meta-model. Since a meta-model can
specify instances, each of which are in turn models, a user-generated Interaction Protocol
can be easily developed. The meta-model developed provides a graphical user interface.
It is displayed on an editor as a tree-based structure. All that the developer / user who

wishes to input an Interaction Protocol into the system needs to do is to choose options

from the tree-based menu as he wishes. A sample screen shot of the menu is as shown .
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Fig 12: A sample screen shot of the generated editor
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The basic starting unit for a model is ‘Interaction’. Interaction is the basic unit of activity
in the model. Since any Protocol defines the interaction occurring within by means of
communication activity between two lifelines, ‘Interaction’ is normally chosen as the
starting point for defining any new instantiations. ‘Interaction’ can in turn define other
activities such as an ‘Event Occurrence’ or an ‘Execution Occurrence’ or other AUML
primitives such as a Lifeline, Interaction Operand , Message Types and so on either as a
new child or a new sibling. A new child establishes a level of hierarchy between the
parent and child, whereas ‘New Sibling’ places events ( or primitives ) within the same

hierarchy.

Any primitives entered as objects of the meta-model instance can have their properties
defined by the user. The user could define the name, the cardinality, the ontology, the
language, the interaction operand from a list of choices and so on. This way, any data that
needs to be defined as value attributes of the objects in the meta-model instance can be
set to different user-defined values. These values can be edited from time-to-time by
viewing the ‘Properties’ menu. Any labels in the main editor would be updated
automatically each time any value attribute in the ‘Property’ view is changed. Similarly
any reference to a child / sibling could be modified and updated at any instant of time.
Hence, this ease-of-use enables easy input of Interaction Protocols in a serialized format
enabling developers to generate synchronization skeletons for developing applications for

agent platforms.
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Let us now look into two sample use-cases wherein the meta-model is used to build a
Protocol Diagram. First, we would consider the standard example being used elsewhere
in this thesis, the FIPA Request Protocol. Secondly, we would consider a user-generated
Protocol Diagram and look into how this diagram can be fed into the system using the

meta-model.

Case Study I: The FIPA Request Protocol.

The FIPA Request Protocol has been depicted in Chapter 2. Now us now take a step-by-
step look as to how the same protocol could be fed into the system using the meta-model.
a. The user, as the first step towards building the Protocol Diagram chooses the
primitive ‘Interaction’. This option is available in the drop down menu and since

the basic unit of any Protocol Diagram is ‘Interaction’, the same is chosen as the

root modeling object in the user interface too.

-70 -



R teviclior

'3 Requestagentuml

i platformifrescurce/AUML e stfMy.agentumi
A,
-+ InlracieR

b. The next step would be to now define the rest of the Protocol Diagram. We first
define a Lifeline along which the first Interaction would occur. We could define
additional properties along this Lifeline that include ‘Agent Identifier’, ‘Agent
Cardinality’, ‘Covered By’, ‘Event Occurrence’ and ‘Role Name’. We set the
Agent Identifier to ‘Agent Initiator’, ‘Agent Cardinality’ to be 1 and ‘Role Name’
to be ‘Initiator’. The first Interaction along this Lifeline would be the ‘Request’
message being sent. Since the sending of a message is modeled as an Event

Occurrence, we define an Event Occurrence-‘Request’ along this Lifeline.
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c. Now that we have defined a Lifeline along with the Event Occurrence — Request
occurs, we next define a corresponding Participant Lifeline. This lifeline, like the

Initiator lifeline is defined along another corresponding ‘Interaction’ event.

-72-



ava - Request-protucolagentun - Edlipse SOK

3equestPReq

4 Interaction
< Life Line Initator
< RequestAgent_Request Message
% EventOccurence

S-$ Interaction

Rl it Lin Raciedan

Agontidentifier g
Cardinality s Sl
Comed®y

Role Name i*% Participant

d. Once the Participant Lifeline has been defined, a set of three possible messages are
listed-‘Not Understood’, ‘Agree’ or ‘Refuse’ based upon the action that the agent
might choose to execute. As this is one choice out of a possible three, these messages
point to the same Event Occurrence, establishing the fact that only one message could
be sent as response. Each of these messages in turn have properties that could be

defined- The Receiving Event Occurrence, Name, Cardinality and so on.
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e. If the message sent is ‘Agree’, the Participant could in turn perform one of three
actions- send a ‘Failure’, an ‘Inform-Ref” or an ‘Inform-If’ message, each of which is an
Interaction. Associating these messages with just one Event Occurrence indicates that

only one out of the three messages could be sent back to the Initiator as response.
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This way the FIPA Request Protocol is generated using the meta-model. Once the
Protocol Diagram has been generated, the meta-model can also be used to generate JAVA

code.
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Case Study II: A user-defined Interaction Protocol

Consider a user-defined Protocol Diagram as shown below:

Initiator, Participant:
Request-When, Agree,
Refuse, Confirm,
Inform-Done, Failure

Initiator

Request-When
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X
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<&

A

Ont
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3
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Fig 13: A user-defined Protocol diagram
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In this Protocol, the Initiator requests the Participant for some Information. The
Participant can either Refuse to give the information to the Initiator it might Agree to the
same. If it agrees, based upon whether a certain condition is true, the Participant might
again confirm with the Initiator. Finally, the Participant might Inform the final result to

the Initiator or might communicate a Failure.

This is represented using the meta-model as follows:

Step 1: Using ‘Interaction’ as the base model object, we build the communications
between the two lifelines for the messages-Request-When, Agree and Refuse. The first
communication sent from the Initiator Lifeline is modeled as an Execution Occurrence.
Since the participant can respond back with only one of two different messages-Agree or

Refuse, we associate only one Event Occurrence with the Participant Lifeline.
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Step 2: Now we bring about the Option-Combined Fragment using the meta-model. We
associate the ‘Combined Fragment’ with an ExecutionOccurrence. This Execution
occurrence is associated with an Interaction Operand Opt through the Interaction
Operator enumeration. Since any Combined Fragment is guarded, we set the guard in the
meta-model to be a Boolean Condition (which is normally checked during run time). If

the guard evaluates to true, the Combined Fragment is executed.
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Step 3: Finally, the rest of the Protocol Diagram is built in by using the meta-model. The
Participant Lifeline sends one of two messages as a response to the Initiator Lifeline —
Inform Done or Failure depending upon its outcome. These messages are again
associated with only Execution occurrence to signify that only one messages can be
executed. The properties associated with the different model objects-such as cardinality,
sending Event Occurrence, receiving Event Occurrence and so on can be set by the user

in the meta-model at the time of building the Protocol.
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Hence, the meta-model can be used to generate any user-defined protocol too. The
features provided in the meta-model such as the graphical user-interface, drop down
menus, property tabs and code generation modules aid in development of Protocol

Diagrams without any prior knowledge of the same.
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4.6 A thought on Composition

Composition refers to the process of enabling one single agent to run more than one role
at the same time. In other words, it is the process of composing a single agent onto
multiple roles. Though Composition has not been currently implemented as part of this
dissertation and has been classified as future work to be carried on in this field, a small

thought process on Composition is provided below.

The agent platform JADE provides inherent support for role composition. This can be
explained as follows. JADE supports multiple behaviors. In other words, it can run
multiple threads with one agent, wherein each thread can represent a different behavior
(or if seen from an implementation point of view — a method of a behavior). This
provides for inherent support for role composition. Each role can be viewed as a unique
behavior. The scheduler can then schedule different roles such that the objective of

composition can be achieved.

Composition implemented as co-routines.

This method involves user-input to a certain degree The agent platform JADE has an in-
built scheduler that automatically schedules different agent behaviors in a round-robin
fashion. It is nothing but one single agent running multiple threads for multiple behaviors
and these behaviours are called in an orderly fashion one after the other, automatically by

the scheduler application.
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Each Execution Occurrence is generated as a method and hence, we have methods for
different Execution Occurrences. This in turn is mainly nothing but a method generated
for every sending of a message from one role to another. We would then need to build
this program skeleton model into the JADE scheduler such that different roles can be

scheduled onto one agent.

The answer to this question could be obtained by viewing each role as a behaviour. The
user provides the different method names of each role (method name: role name) to the
scheduler. So, at any moment, the scheduler can call each of these methods in a round
robin fashion. But how ever, such a setting does not mimic a conversation. Hence, the
application programmer interferes such that one method calls another. Hence when the
scheduler implements these methods, the starting method (again given as input by the
application programmer) is first executed, which in turn calls another method (possibly of
another role) which is then executed. This recently executed method in turn calls the next
method to be executed (again possibly of another role) and so on until the conversation

ends. Hence composition could be achieved.

The main disadvantage of this method is that it is simpler and requires a significantly
high amount of interference on the part of the application developer as the application
developer manually feeds the method names of the Execution occurrences to the agent

scheduler.
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5. Conclusion

The work described in this thesis makes an effort to understand the semantics of
Interaction Protocol Diagrams as described in AUML and generate program skeletons for
the same using a validated, extensible model. The following was looked at in the course
of work pursued:
¢ A meta-model for AUML was developed.
o There was an evaluation of tools that could be possibly used to develop the
model.
e The generated model was validated.
¢ Provisions were built in for extensibility.
e A simple evaluation of the model was undertaken and a few sample program
skeletons were generated.
This work mainly tries to generate synchronization skeletons for Interaction Protocol
Diagrams. This in turn enables use of the agent ideology onto more complex applications
across multiple platforms such that there can be seamless inter-agent communication.
This also enables developers to input any Interaction Protocol into the system without

being tied to a particular implementation language.
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5.1 Future Work

‘Research is always to be researched’ as the saying goes. Although much has been done,

a lot more needs to be achieved in this field. Future work would ideally comprise of:

Agent Composition: Incorporating multiple roles onto a single agent. Although
work on this front did take off, time constraints did not prevent full execution and
implementation of Composition. This would give the AUML meta-model much
more usability.

Incorporation of the Object Constraint Language (OCL) to specify constraints in
the meta-model. Although some work has been undertaken by the OCL group at
Kent University in this regard, full implementation of an OCL toolkit needs to be
undertaken.

Finally, an editor that can take as input the different AUML primitives such as
lifelines, messages and so on graphically and store them in a machine-
understandable format would provide ease-of-use to even a novice who would

want to work on Interaction Protocols.
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Appendix

Code generated by the meta-model for the FIPA Request Protocol:

The meta-model generates two levels of code- an Ecore level of code and an Eimpl level
of code. The Ecore code basically defines only the function names being called while the
Eimpl code gives the implementation of these functions too. For purposes of simplicity,

we have included only the Ecore code in the Appendix

package request_code;

import junit.framework. TestCase;

public class CodeType extends TestCase {
public static void main(String[] args) {

junit.awtui. TestRunner.run(CodeType.class);
3

public CodeType(String name) {
super(name);
}

protected void setUp() throws Exception {
super.setUp();
}

protected void tearDown() throws Exception {
super.tearDown();
}

}

package request_code;

public class Req {

public Req() {

super();
// TODO Auto-generated constructor stub
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}
/*param args™®/

public static void main(String[] args) {
// TODO Auto-generated method stub

}

package fipa.agentuml;

package fipa.agentuml.messagetypes;
import fipa.agentuml.Message;

import org.eclipse.emf.common.util. EList;

import org.eclipse.emf.ecore.EObject;

public interface Interaction extends InteractionFragment {

EList getLifeline(Initiator);

Elist getMessage(Request);

Elist getEvent(SendEventOccurrence);

interface Initiator extends EObject {
String getRoleName(Initiator);
getCoveredBy(SendEventOccurrence,ReceiveEventOccurrence, finalEvent
Occurrence)
}

interface Request extends message{

string getAction();

void string setAction();
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}

public interface Interaction extends InteractionFragment {
SendEventOccurrence extends InteractionFragment,MessageEnd {
Lifeline getLifeline(Participant);
Set StartExecutionOccurrence(name.EventOccurrence);
switch (eDerivedStructuralFeatureID(Value)) {
case AgentumlPackage. EXECUTION OCCURENCE NAME:
return NAME_EDEFAULT ==null ? name !=null :
'NAME EDEFAULT.equals(name);
case AgentumlPackage. EXECUTION OCCURENCE _START:
return start != null;
case AgentumlPackage. EXECUTION OCCURENCE __FINISH:
return finish != null;
}
Message extends Eobject Message
getReceiveEvent(participant_agree,participant_refuse,Not Understood);
protected Object doSwitch(int classifierID, EObject theEObject) {
switch ( ReceiveEvent) {
case MessagetypesPackage.agree:
case MessagetypesPackage refuse:
case MessagetypesPackage Not_Understood:

}

SetReceiveEventOccurrence(message value);
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}

public interface Interaction extends InteractionFragment {
SendEventOccurrence extends InteractionFragment,MessageEnd {
Lifeline getLifeline(Participant);
Set StartExecutionOccurrence(value);
Message extends Eobject Message getReceiveEvent(failure,inform-ref,inform)
protected Object doSwitch(int classifierID, EObject theEObject) {
switch ( ReceiveEvent) {
case MessagetypesPackage.failure:
case MessagetypesPackage inform-ref:
case MessagetypesPackage inform:
}
public interface finalEventOccurence extends InteractionFragment, MessageEnd {
Lifeline setLifeline(Initiator);
Void StartExecutionOccurrence(ExecutionOccurrence value);

void setFinishExec(ExecutionOccurence value);

}

This is the core skeleton generated by the EMF model as part of the fipa.agentuml.request
package. The implementation code is also generated as part of fipa.agentuml.request.impl
package. This is the skeletal code generated by the meta-model for the FIPA Request

Protocol.
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