INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs inciluded in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48108-1346 USA
800-521-0800

UMI

A FORMAL VERIFICATION ASSISTANT FOR
TROMLAB ENVIRONMENT

FRANGOIS POMPEO

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 1999
© FRrancois PomPEO, 1999

i~l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et .
services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4

Canada Canada
Your tie Votre réfdrence
Our fiie Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-43667-5

Canada

Abstract

A Formal Verification Assistant for TROMLAB Environment

Frangois Pompeo

Formal specifications have become a strong basis in the field of safety critical
systems development. Safety, liveness and time bounded properties are characteristics
of such systems where the need to secure their adequate implementation is very high.
Formal verification of such properties is the research field of this thesis. It presents
an automated tool that enables mechanized axiom extraction from real-time reactive
systems. It is implemented within TROMLAB which is a development environment
based on the Timed Reactive Object Model (TROM). The objective of this tool is to
be used within the verification methodology of TROM as an automated assistant to
facilitate time dependent property proving for model developers.

Acknowledgments

I would like to deeply thank my supervisor, Dr. Alagar. I truly believe that the
implication and devotion demonstrated to his students and research make him part
of the elite class of professors that all students should hope for. I thank Darma
Muthiayen for his insightful discussions.

Je remercie mes parents pour m’avoir donné tout les moyens possibles pour compléter
ce but qui m’étais si important.

Merct maman, grazie papa.

iv

Contents

List of Figures

List of Tables

1

Introduction

1.1 Real-timereactivesystems
1.2 Formal verification o 0.
1.3 Researchgoals.

The GRC formalism

2.1 Imtroduction e e e e
22 Theinformalmodel
23 Theformalmodel
2.4 The TROM logicalsemantics

241 Axiomsystem it ittt e e

GRC verification

3.1 Verification process L.ttt e e e
3.2 About PVS e e e e e e
33 PVSmodelof TROMs
34 AbDOUt SITCE . . - - &« i e i e e e e e e e e e e e e e e e e e e e
3.5 TROM with sinceexpressions « « v v v v o v v o oo
351 Transitionaxioms« ¢ et it
3.5.2 Time-constraintaxioms.,
3.5.3 Synchronization axioms

W GO =

0 NN =N

4 ¥From TROM to axiomatic description

4.1 Descriptionofthe AST
42 From TROMtosince @ . @ i i i i v i,
421 Transitionaxiomst
422 Timeconstraintaxioms.
423 Synchrony axiomscc.....
424 sincetoolstructure,
43 FromTROMtoPVS o .
4.3.1 Transition specifications,
43.2 Timeconstraintaxioms.
433 Synchronyaxioms.co....
4.3.4 Main tool algorithm00

5 Case study: Robotic Assembly System

5.0.5 Problemdescription
5.0.6 Robotic assembly system model,
5.0.7 PVS axiomatic description,
5.0.8 Supplementary axioms
5.1 Generated axiomatic description
5.1.1 Generated PVStheories
5.1.2 Commenting PVS generated output
5.2 since axiomaticdescription
52.1 Tramsitionaxioms,
522 Timeconstraintaxioms.
523 Synchronyaxioms.« c...
5.2.4 Generated sinceaxioms
5.2.5 Commenting since generated output

6 Conclusion

6.1 Worksynthesis

6.2 Future work
Bibliography

Appendix A

................................

28
28
29
29

35
36
37
39
40
41

43
43

45

65
66
70
71
71
74
77
79
85

86
86
87

91

List of Figures

00 =~ O O & W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Existing TROMLAB architecture 6
Anatomy of areactiveobjecto 9
Template for System Configuration Specification. 11
Template for System Configuration Specification. 11
TROMLAB proof process v vt v it e i oo 19
Absolute times at which predicates become false 24
High level AST structure with subset of components shown 29
Pseudo-code for Transition specification since axioms algorithm for a

TROM e e e e e e e e e e e e 31
Pseudo-code for time constraint since axioms algorithm for a TROM 31
Pseudo-code for time constraint secondary algorithm 32
Statechart example 0ol 33
Pseudo-code for Synchrony since axiom generation 36
Pseudo-code for since main tool algorithm 37
since axiom generator tool class diagram 38
Pseudo-code for Transition specification axioms algorithm for a TROM 39
Pseudo-code for Time constraint axioms algorithm fora TROM . .. 40
Pseudo-code for Synchrony axioms algorithm 41
Pseudo-code for main tool algorithm 42
PVS generator tool class diagram 42
Robotic System classdiagram 45
Beltstatediagram, 46
Formal specification forBet GRC 47
Vision System statediagram 48
Formal specification for Vision System GRC 49
Stack statediagram o oo 50

vii

26
27
28
29
30
31
32
33
34

Formal specification for StackStore GRC 51

Left Arm statediagram 52
Formal specification for Left Arm GRC 53
Right Arm statediagram 54
Formal specification for Right Aom GRC_... 55
Tray statediagram 56
Formal specification for Tray GRC 56
Collaboration diagram for robotic assembly system 62
Subsystem for Robotic Assembly System 63

List of Tables

© 00 N O U b W N -

= e
W NN = O

Properties of the sinceoperator. 24
Sample AST operations 30
Since_state attributes 92
Since_Generator attributes 92
Since_Generator operations 93
Since_state operations 94
Since_statelist operations 95
PV S_Generator and PV S _Setup attributes 96
PVS_ FEvent attributes 96
PV S _Generator operations 97
PVS_ Eventoperations 98
PVS_ FEventlistoperations 99
PVS.setupoperations 100

Chapter 1

Introduction

1.1 Real-time reactive systems

Reactive systems have as a characterizing feature the ability to be in continuous inter-
action with their environment. Their behavior obeys a stimulus and response mode
of conduct. Hardware interfaces act for contact to the environment as devices that
react to physical stimulus and as devices that influence or modify the environment.
Examples of such systems are alarm systems, nuclear reactor control systems, air
traffic control systems or telecommunication systems to name a few. When we add
the real-time aspect, time regulation is introduced. In other words, real-time systems
are regulated by time constraints formulated in the design of the system. Real-time
reactive systems are therefore systems that are in constant relationship with their en-
vironment and the stirnulus-response behavior respects time constraints that ensure
its correct and safe operations.

Correctness and safety are inherent goals of the design of real-time reactive sys-
tems as safety critical contexts are most often the environments where these systems
operate. The examples stated above demonstrate this. The analysis of the functional
and timing properties must be as exhaustive as possible. Because the failure of the
real-time reactive systems may have catastrophic consequences, the whole software
community, customers as well as development teams need compelling evidence that
such systems deliver functionality and timing properties as desired [HD96]. To ob-
tain this evidence, people are willing to invest considerable time, effort and money.

Formal methods are currently a well studied avenue to answer this need. Formal spec-
ifications and methods allow demonstration of a system’s ability to uphold critical
properties.

Foundational work has been laid on formal reactive system modeling [Ach95]. The
Timed Reactive Object Model (TROM) formalism and the notion of abstract (generic)
reactive model (GRC) are introduced. The complete semantics of the formalism, and
several case studies demonstrating the expressiveness of the formalism are shown in
[Ach95] and [AAM96]. TROMLAB [AAM96] is a development environment for real-
time reactive systems based on the TROM formalism. An overall architectural view

of TROMLAB can be seen in Figure 1.
The following components of the TROMLAB environment are currently opera-

tional:

¢ Rose-UML translator - [Pop99] A translator to extract TROM specifications
from Rose-UML based on [AM98] UML extensions;

e Graphical User Interface - [Sri99] A graphical front-end modeling and in-
teraction facility to the TROMLAB environment;

e Interpreter - [Tao96] A parser, syntax checker and internal representation
builder, the Abstract Syntax Tree (AST);

¢ Simulator - [Mut96] A subsystem animation tool based on the AST and vali-

dation tool;

e Browser - [Nag99] A library browser for navigation, query and access to system

components.

¢ Reasoning System - [Hai99] A system debugging tool to be used during ani-
mation by facilitating interactive queries of hypothetical nature on system be-

havior.

1.2 Formal verification

It has been identified that the principal advantages to formal methods in designing
real-time reactive systems as being the support for: verification of desired system
properties through application of formal proving techniques; verification of the cor-
rectness of specifications through model simulations; production of preliminary im-
plementation code; and test suite generation for implementation checking [Bol96]. It
is said that formal specifications have as main feature the support of formal deduc-
tion, in other words, the possibility to reduce certain questions to a process closely
resembling calculations that can be checked by others and by machines [CORY95].
Finally and by definition formal methods refer to the use of concepts and techniques
from logic and discrete mathematics.

All of these items are of interesting importance but the focus of the work included
in this thesis relates to verification. The goal of verification as a general term can be
seen by two definitions. The first one being the action of insuring that the behavior
of the implementation is what was intended. The second one is to verify not only
that specifications are respected but to validate the specifications themselves. The
specifications must be complete, consistent, capture the stated needs and finally sat-
isfy critical properties. Such properties are usually categorized into safety properties,

liveness properties, and bounded-time properties.

Model-Theoretic reasoning - Many approaches to state machine model veri-
fication have been developed. One class of algorithm [CES86], model checkers was
successfully used for untimed specifications verification. The algorithms based on
model checking take a finite state machine model of a system and temporal logic
formulas and determine if the formulas are true for the model. The application of
model checking to timed specifications remains a difficult goal since adding time to

the specifications often produces models that are too large to analyze.

Proof-theoretic reasoning - In proof-theoretic reasoning, a theory is developed
about the system in some logic, such as higher-order logic. The system properties are
then expressed as theorems to be validated against the theories. Although developing
proofs can be costly in time and efforts, there are some advantages to the proof-

theoretic reasoning approach.

e Better model abstraction can lead to more generalized results. For example, in
state machine modeling, reasoning can can be on an infinite number of states
and variables can be used for timing constraints (as opposed to finite number
of states and constants)

e By developing proofs, designers gain a deeper understanding of the specifications
and its properties, such as the dependencies and boundary conditions

e State machine is not the only available model, proof-theoretic techniques can
be applied to any mathematical model.

This thesis is developed in the context of the TROM formal model, hence having time
properties. Moreover, the goal is to specifically validate timed properties. Hence,
proof-theoretic reasoning is the selected approach. PVS [ORS9?2] is the selected me-
chanical proof system of our research team, it uses higher-order logic. Other systems
exist, such as Larch Prover [GH93] or Boyer-More prover [BM88], they use first-order
logic. By selecting higher-ordered logic models decrease in complexity and increase
in generalizing power. By using mechanized proof systems, one can increase the con-
fidence in the proof’s validity, especially in safety-critical contexts. A more detailed
description of PVS will be given in Chapter 3.

The current status of the research community regarding proof asisting is fairly
developed. Many provers such as Larch, PVS and others do have capabilities to
perform formal proving. The challenges of this work lie in the axiomatization of
state machine based formal specifications to a formal proving environment. After
consulting the literature within this specific field, it was found that no other tool

currently tackles this problem.

1.3 Research goals

With the methodology introduced in [MA99] as grounds for the work of this thesis, the
objective of my research work was to apply and in some cases refine the methodology
to enable a clear derivation of an axiomatic description of the formal specifications
to apply proof-theoretic reasoning. Moreover, a tool that has for foundation this

methodology, was developed to help real-time reactive system designers in their formal
proving process of safety properties of the model at hand.
Therefore here are the main contributions of this thesis:

1. Refining discussions on axiomatic descriptions of the TROM formalism.

2. The development of a tool within the TROMLAB environment for an automated
axiom derivation based the methodology described in [MA99]

3. An application of the TROM formalism to a Robotic Assembly System with
an application of the axiomatic description methodology with an automated

output.

As described in [MA99], the significance of the axiomatic derivation from the
TROM model is the use of PVS [ORS92] as back-end for mechanized verification.
Moreover, the TROMLAB environment now has a graphical front-end with the recently
integrated ROSE-UML translator from [Pop99]. With the addition, as middle-ware,
of the TROM-axiomatic description generator described in this thesis, we see the
beginning of a fully mechanized specification life cycle starting with graphical input
all the way to mechanized formal proving going through the animation/validation of
the models.

The structure of this thesis is as follows. Chapter 2 presents the formalism of
TROM and presents the notions of GRCs (Generic Reactive Class). Chapter 3 presents
all the needed ingredients for formal proving of safety properties with axiomatic de-
scription through PVS proof mechanization and the since operator. Chapter 4 de-
scribes the design details of the mechanized axiomatic generation tool. Chapter 5
presents a case study using a rather complex example that demonstrates the use-
fulness of the tool. This example is a Robotic Assembly System first introduced in
[AAR95a]. The thesis ends with Chapter 6 which presents the conclusions to be
drawn from this thesis work and also presents the future work angle.

GRAPHICAL USER INTERFACE

w [Abstract Syntax Tree)

3

-
VERIFICATION ASSISTAN'j

g (e)

S—

SIMULATOR

(Object Model Support j

(subeystem Mode Sepport)

[EvestScheduer)

(Event Handler j

(ET—

TWMJ

J

e,

l

I===I"

VALIDATION ASSISTANT

(__otemer)

(_trocepnaieer)

(_ messsingspiem)

=

Figure 1: Existing TROMLAB architecture

Chapter 2

The GRC formalism

2.1 Introduction

This chapter is a brief survey of the basics of generic reactive systems, introducing
the concepts and terminology used in the rest of this thesis.

An object-oriented modeling technique for real-time reactive systems was introduced
in [Ach95). It introduces the Timed Reactive Object Model formalism, and the notion
of an abstract (generic) reactive model. A complete semantics of the formalism, and
several case studies illustrating the expressiveness of the formalism have appeared in

[Ach95, AAR95b].

2.2 The informal model

A generic reactive class (GRC) [AM98] is a visual representation of the Timed Reactive
Object Model formalism [Ach95]. It is a hierarchical finite state machine augmented
with ports, attributes, logical assertions on the attributes and time constraints. Such
an object is assumed to have a single thread of control. A GRC communicates with

its environment by synchronous message passing, which occurs at a port.
Informally, a reactive object consists of the following elements:

e A set of events partitioned into internal, input and output events. Input and
Output events occur at a port and represent message passing. The names of

these events are suffixed by ? and !, respectively. Internal events are assumed

to occur at the null port.

® A set of states. A state can be simple or complex, and a complez state may

be decomposed into sub-states.

e A set of typed attributes. An attribute can be of one of the following two
types: an abstract data type specifying a data model or a port reference type.

e An attribute function. The attribute function defines the association of
attributes to states. For a computation associated with a transition entering a
state, only the attributes associated with that state are modifiable and all other
attributes will be read-only in that computation.

¢ A set of transition specifications. Each specification describes the computa-
tional step associated with the occurrence of an event. A transition specification
has three logical assertions: an enabling and a post-condition as in Hoare logic,
and a port-condition specifying the port at which the transition can occur. The
assertions may involve attributes and the keyword pid for port identifier.

¢ A set of timing constraints. A timing constraint can be associated with a
transition to describe the time-constrained response to a stimulus. A timing
constraint captures the event corresponding to the response, lower and upper
bounds for the time interval during which the event should occur, as well as a
list of disabling states. An enabled reaction is disabled when the ob jects enters

any of the disabling states.

Figure 2 illustrates the elements of a reactive object.

2.3 The formal model

A formal definition of the different components of a reactive object as described above

is presented next.
A reactive object is an 8-tuple (P, £,0, X, L, &, A, T) such that:

Figure 2: Anatomy of a reactive object

e P is a finite set of port-types with a finite set of ports associated with each
port-type. A distinguished port-type is the null-type P, whose only port is the
null port o.

e £ is a finite set of events and includes the silent-event tick. The set £ — tick is
partitioned into three disjoint subsets: &;, is the set of input events, Eyye 1S the
set of output events, and &, is the set of internal events. Each e (Ein U&suer),
is associated with a unique port-type P € P — {P,}.

O is a finite set of states. f; € O, is the initial state.

& is a finite set of typed attributes. The attributes can be of one of the following
two types: i) an abstract data type specification of a data model; ii) a port

reference type.

e L is a finite set of LSL traits introducing the abstract data types used in X.

e ® is a function-vector (®,, ®,,) where,

~ ®, : © — 2° associates with each state 8 a set of states, possibly empty,
called sub-states. A state @ is called atomic, if ®,(6) = 0. By definition,

the initial state 6 is atomic. For each non-atomic state 0, there exists a
unique atomic state §* € ®,(6), called the entry-state.

— &, : © — 2% associates with each state 6 a set of attributes, possibly
empty, called the active attribute set. At each state 8, the set ®,.(0) =
X — ®4(0) is called the dormant attribute set of 6.

e A is a finite set of transition specifications including Ai;;. A transition speci-
fication A € A — {Anie}, is a three-tuple : < (0,0'); e(Pport); Pen = Ppast >;

where:

— 6,8 € O are the source and destination states of the transition;

— event e € £ labels the transition; @p. is an assertion on the attributes in X’
and a reserved variable pid, which signifies the identifier of the port at which
an interaction associated with the transition can occur. If e € £;,,U {tick},
then the assertion @pere is absent and e is assumed to occur at the null-port
0.

— Pen is the enabling condition and ¢y, is the postcondition of the transi-
tion. ., is an assertion on the attributes in X specifying the condition
under which the transition is enabled. ¥Ppost 1S an assertion on the attributes
in tX, primed attributes in ®,,(¢') and the variable pid, and it implicitly
specifies the data computation associated with the transition.

For each 8 € ©, the silent-transition A\, € A is such that,
Asa = (0, 0); tick; true => V € D (0) : x =25
The initial-transition A, is such that Ay : (6o); Create(); Pinie

where ;,;, is an assertion on active-attributes of 6o.

e T is a finite set of time-constraints. A timing constraint v; € T is a tuple
(A, €4, [1, u], ©;) where,
— Ai # A is a transition specification.
— €; € (Eout U Eine) is the constrained event.
— [{, u] defines the minimum and maximum response times.

— ©; C O is the set of states wherein the timing constraint v; will be ignored.

10

A Subsystem Configuration Specification (SCS) is defined to specify a system or a
subsystem by composing reactive objects or by composing smaller subsystems.

Figure 3 shows the template for a class specification. Figure 4 shows the template
for a subsystem configuration specification.

Class < name >
Events:
States:
Attributes:
Traits:
Attribute-Function:
Transition-Specifications:
Time-Constraints:

end

Figure 3: Template for System Configuration Specification.

Subsystem < name >
Include:
Instantiate:
Configure:

end

Figure 4: Template for System Configuration Specification.

2.4 The TROM logical semantics

This section introduces the semantics of the TROM model expressed through a set
of axioms that are called the logical semantics. This logical semantics is used for
two main purposes. First as a set of rules to check the well-formedness of a TROM
model, and second as ground for the formal verification methodology. The currently
used logical semantics were originally described by [Ach95] and later adapted by
[AM99] with the OCL (Object Constraint Language) to comply to their UML TROM

11

definitions. The complete description of all axioms can be found in [AM99]. Therefore
only a subset with the relevant axioms for this thesis will be described in details in the
next Section 2.4.1, which are the transition aziom (9) which describes the effect of an
event within an object, the constrained event aziom(11b) which describes the upper
and lower time limit of a constrained event firing delay and the synchrony aziom (12)
which describes the synchronous message passing between linked objects.

In order to support a semantic definition of the logical assertions, three OCL
domains are introduced. A reactive object domain, a reactive subsystem domain and
a domain for time intervals. All of these are used in the definition of the predicates
on time intervals to assert time-dependent properties on elements from the domain of
reactive objects, that is the TROM logical semantics axioms. Here are the predicates

for the time interval domain:
e HoldAt(s,t) which asserts that an object is in state s at time ¢.

e HoldDuring(s, T) which asserts that an object holds state s for the time interval
T. The HoldDuring can be defined with HoldAt with the following. If time
interval T = [u, v] then for an object A

A.HoldDuring(s,T) impliesVt: u < t < v implies A.HoldAt(s, t).
e Occur(e, p,t) which asserts that event e occurs at port p at time ¢.

With these predicates defined, the logical semantics used as basis for our derivation

algorithms can be stated.

2.4.1 Axiom system

There are eleven axioms of temporal constraints associated with an instance of a
generic reactive class. The Synchrony axiom describes the semantics for synchronous
message passing. An OCL expression of the form

self.events—>forall(e | P(e))

applied to a reactive object, denotes “for all events e of the GRC instance, predicate
P 1s true”. The variable ¢ for the time of an event occurrence denotes a discrete time

point.

12

1.

Atomic-event aziom: =000 eeeieeiee... (AE)

At time ¢, there can be at most one event occurring in a reactive object; at time

¢, an event can occur at only one port.

Silent-event aziom: ...l (SE)

The occurrence of the silent event tick at time ¢ precludes the occurrence of any

other event in the reactive object at time t.

State-hierarchy axioms: 0 ..l (SH)

These axioms assert the relationship between a state and its sub-states. When
an object is in a sub-state of a state 8, it is also in the state 6. Similarly, when
a reactive object is in a non-atomic state 6, it is in at least one of the sub-states

of 6.

State-uniqueness aziom: ...l (su)

A reactive object cannot be in more than one state at any instant, unless the
states are related by the state hierarchy function ®,. That is, a reactive object
can be in two states only if one state is a subs-tate of the other. Formally,

Initial-state aziom: 0 el (1s)

A reactive object has a unique initial state which is atomic. A reactive object
is in its initial state 6y at the initial instant ¢;,;.

Initial-attribute aziom: 00 el (IA)

A formula @;p;, is asserted at the initial time ;,;; such that @init is the maximal
property satisfied by the attributes at t;,;,. The assertion (;,;; is the maximal
property in the sense that, for any other assertion ¢ satisfied by the attributes
at time t;;;, the following holds:

Dormant-attribute ariom: @~ 0 el (DA)

The attribute function partitions the attribute set into modifiable and non-
modifiable sets, at each state. If an attribute is dormant in a certain state then
its value cannot be changed as long as the machine is in that state.

13

8. Occurrence aziom: Liiiiee.... (oc)

10.

11.

For the occurrence of signal Occur(e, p;, t) it is necessary that the reactive object
be in the source-state of some transition A, labeled by e, such that the port-
condition pore Of A is satisfied by p;. This is formalized by the occurrence axiom
asserted for each event e in the reactive object. For an event e let A\y,..., A, be
the transition specifications labeled by e, and let 6; be the source-state of ;,
¢, be the enabling-condition of A; and ¢, be the port-condition of Aj. The
occurrence axiom for e follows.

Transttion aziom: liiiieieeeen (TR)
The transition axiom is defined for each transition specification of a reactive
object. The occurrence of an event results in a state transition to the target state
and the satisfaction of the post-condition in the target state. The transition
axiom applies for each transition specification A : (9,¢); €(Pport); Pen = Ppost-
If the target state ' is not an atomic state, then the atomic state which is the

starting descendant state of # replaces &'.

self. HoldAt(s,,t;) and self.Occur(e, p, t;)
and t; < t2 implies
self.transitions—>exists(r | r.source = s,
and r.destination =s, and self. HoldAt(s,,t,)
and r.postcondition(t,, t, p) = true)

Persistence ariom: L. (PS)

A persistent axiom is defined for each state. It asserts that when no event
causing a transition to leave that state occurs, there is neither a change in that
state nor a change in the values of the attributes active in that state. For a
state 8, let e,,. .., e, denote the events associated with the transitions leaving

8. The persistent axiom for @ is as follows.

Time-constraint azioms: = iiieieeeee.. (TC)

A set of time constraint axioms defines the behavior of a reactive object. The

axioms apply for each time-constraint

14

(’\: €, [lv 'll], ei) =% € T,

where A : (0,0); f(Pport); Pen — ©Yport- We introduce the predicates Enable,
Disable, and Trigger, to describe the status of a reaction after it has been
enabled, and the predicate Within to assert the containment of a time point
within a bounded time interval.

e Trigger(e,t,): A reaction is activated when a transition triggering the
reaction occurs. For a time-constraint v;, the occurrence of a trigger tran-
sition A is marked by a change of state from # to # and the occurrence of
the labeling event f. Trigger(e,t,) is true when a reaction associated with
the constrained event e is activated at time t,. If e is not a constrained

event then Vt, —Trigger(e,t) is true.

Trigger(e,t,) def self.transitions—>exists(r |
r.triggerevent = f and self Occur(f,p;,t,)
and self.HoldAt(r.source, t,)
and self.HoldAt(r.destination, t;)
and ¢; <t, and ¢, < s
and self.timeconstraints—>exists(tc |
tc.assoctransition = r

and tc.constrainedevent = e))

e Disable(e,t): Any activated reaction involving the constrained event e is
disabled at time t due to the reactive object entering one of the disabling
states of e. If e is not a constrained event then Vt, —Disable(e, t) is true.

Disable(e, t) Lef self.timeconstraints—>exists(tc |
tc.constrainedevent = e and
t < tc.upperbound
and tc.disablingstates—>exists(s | self.HoldAt(s,t)))

15

e Enable(e,tq,t): The reaction involving the constrained event e due to the
occurrence of a trigger event at the activation instance ¢, is enabled at time
t. An event e is enabled at time ¢ if it was triggered at time ¢,, t, < ¢,
and it was not disabled or fired at any time ¢/, f, < ¢ < ¢ A formal
definition of the predicate follows from the axioms stated below. If e is not
a constrained event then Vt,,¢, ~Enable(e,t,,t) is true.

e We define the predicate Within(t,,!,u,t) in terms of the basic temporal
predicates.

Within(te,l,u,t) < t, +1<t<t,+u

‘The following axioms use the predicates Trigger (e, ta), Disable(e, t), and Enable(e, t,, t),
and the temporal predicates to describe the behavior of objects of the generic

reactive classes.

(a) Activation aziom: ~ L...... (ac)

A reaction is activated when a transition triggering the reaction occurs.

(b) Constrained-event aziom: 00 @e..... (ce)

A trigger event is necessary for the occurrence of a constrained event.

self.timeconstraints—>forall(tc | tc.constrainedevent = e,
and self.Occur(e,,p;,t) implies
self .transitions—>exists(r | r.triggerevent = e,
and self.Occur(ey, pj, ta)
and Within(t,,l, u,t)

(c) Enabling axiom: ... (en)
The necessary conditions for a reaction already enabled at time ¢ to remain
enabled in the succeeding time ¢’ are: (1) the constrained event e should
not occur at ¢, and (2) the reaction is not disabled at time ¢'.

(d) Disabling aziom: ... (ds)
An enabled reaction will no longer be enabled if the constrained event of
the reaction is disabled due to the object entering into a disabling state.

16

(e) Firing axiom: ...l (fr)
An enabled reaction is fired by the occurrence of the constrained event.
Since the firing of the reaction satisfies an enabled reaction, the reaction
will no longer be enabled.

(f) Prohibition aziom: L (ph)
If a reaction is enabled then the constrained event should not occur during
the minimum delay period from the time of activation. However, if the
minimum delay is less than the atomic interval, then there does not exist
any minimum delay interval.

(g) Obligation aziom: ...l (ob)
If an enabled reaction is not disabled within the maximum time bound
after the activation, then the constrained event should be fired at some
time within the maximum time bound.

(h) Validity aziom: Ll (va)
A reaction involving a constrained event e can be enabled at time ¢ only
if the triggering event f has occurred at time ¢, such that ¢ is within the
maximum bound u from the instant ¢,. In other words, for a constrained
event activated at a given time ¢,, for all time instants ¢, such that, ¢ < ¢,
or t' > t, + u, the constrained event e cannot be enabled. By including
this axiom, we can assert whether or not the predicate Enable(e,t,,t) is
true for all constrained events e and time instants ¢, and ¢.

12. Synchrony aziom: L.l (sY)
The synchrony axiom applies for each port-link 0;.Qq; > 0,.Qq in a Subsystem

Configuration Specification.

self.portlinks—>forall(pl | self.instances—>exists(oy, 0, |
pl.instance, = 0, and pl.instance; = o,
and (0,.Occur(e, pl.port,,t)
implies 0;.0Occur(e, pl.port,, t))
and (02.Occur(e, pl.port,,t)
implies 0,.Occur(e, pl.port,,t)))

17

Chapter 3

GRC verification

3.1 Verification process

In order to understand the motivations behind the axiom generation of the TROM
specifications, we need to present the context in which these axioms are used. The
general context is the TROMLAB environment, which already has tools to handle the
TROM specifications.

The goal as stated in the introduction of this thesis, is to obtain formal certification
of a model’s ability to fulfill its required properties. In Figure 5 it is the goal identified
as A. The process a model designer would go through to achieve this goal is the
following, again referring to Figure 5:

1. User defines the problem at hand and uses one of the three available methods
to enter the formal TROM specifications, UML model [Pop99], formal specifi-
cations [Ach95] or the TROMLAB GUI [Sri99]. All of these methods lead to the
TROM semantics.

2. The formal specifications can be parsed and passed through a semantics checker
to obtain the abstract syntax tree (AST) which is the internal representation
of TROM specifications [Ta096, Sri99).

3. Users can then use the tool developed as part of this thesis work to obtain one
of the sets of axioms, either since expressions or PVS.

4. Users have defined their safety properties that eventually get to be expressed
in PVS.

18

5. Proving of safety property within theorem prover can then be attempted.

" Proof process flow

- == "

Figure 5: TROMLAB proof process

3.2 About PVS

PVS is a prototype system within an interactive environment for writing formal spec-
ifications and constructing proofs [ORS92]. It provides an expressive specification
language based on higher-order logic, augmented with a typing system, parameter-
ized theories and mechanisms to enable definitions of abstract data types such as lists
and trees. Standard types defined in PVS include numbers, records, arrays, func-
tions, sets and many more. The typing system therefore enables type checking for
the specifications at hand and detect many basic specification errors very early. A
detailed description and tutorial for the PVS specification language can be found in
[AM, COR*95).

Coupled with this specification language, an interactive theorem prover, referred
to as a proof-checker, exists is PVS. The high-level functional descriptions of a system

19

can have its desired properties proved. For example if a function that reverses a list
has been correctly specified, a proof that the original list is obtained after reversing
it twice can be built. Hence, absolute confidence about the function’s correctness
is obtained. One can also consider an automated proof assistant such as PVS as a
skeptic rejecting any arguments that are not watertight. Hence requiring specification
refinement or corrections.

The use that the TROMLAB team has for PVS is not a tool for full prototype
specification and then proving properties. It is to use PVS as a back-end system for
proofs of time dependent properties of TROM formalism based specifications. In other
words, TROM specifications are to be transformed in order to use the PVS theorem
prover. In the following sections, the transformations needed to go from TROM to
the PVS environment will be shown first in a theoretic fashion and in Chapter 4 the
algorithms used in the mechanized transformation tool is explained.

3.3 PVS model of TROMs

In [MA99] the following concepts are introduced as grounds for an axiomatic descrip-
tion of design specifications. The computation of an object is a general sequence
of state transitions for an object. This corresponds to a series of events synchro-
nized with these transitions. This correspondence is defined as the duality of event
occurrences and state transitions. These definitions being in the context of reactive
systems, an object’s computation can be infinite due to the nature of reactive systems
which involves constant interaction with its environment. Therefore, the concept of
a period is also introduced which is a segment of the sequence constituting the com-
putation of an object, moreover such a segment starts and ends with the object in
its initial state. Such a segment cannot have the initial state within. Also, different
periods within the computation of an object do not necessarily imply an identical
sequence of events, different periods may mean different transitional paths or event
sequences. A period can also include multiple occurrences of an event due to a cycle
within a period. Hence the need for an event occurrence concept.

Axiomatic description is the basis for the verification methodology of [MA99).
From the TROM reactive system design, three types of axioms can be derived. Tran-
sition axioms, time-constraint axioms and synchrony axioms. A fourth type of axioms

20

supplementary axioms need to be defined but are derived from the specifications, they
are inherent properties to the model that do not appear explicitly in the design. The
combined set of axioms creates a specification set of time properties of the reactive
system against which time related safety properties can be proved. Transition axioms
specify the ordering relation of an object’s state transitions, time-constraint axioms
specify time constraints on reactions to transitions and synchrony axioms specify the
synchronization of message exchange between objects of a system. Finally the sup-
plementary axioms are, as stated above, added to bring specific properties of the
modeled system.

The basis of the PVS axiomatic description is the use of a higher-order function for
every GRC of a system that expresses absolute time. This time function corresponds
to the occurrence of an event within a period of a GRC instance. This function is

defined as follow.

TT: [GRC -> [Period -> [GRC_event -> [occurrence -> Time]]]]

GRC is the set of instances of a generic reactive class, GRC_Event is the set of possible
events within the specific GRC.

Transition axioms and time-constraint axioms are GRC specific. That is, a set
of both type of axioms is to be developed for each GRC. Synchrony axioms are sub-
system specific and therefore such axioms are developed once per defined subsystem.
As for the supplementary axioms, such axioms do not obey specific rules for their
development since they are problem type specific. Such axioms could be needed with
each GRC or in the subsystem or within specific GRCs and so on.

The precise definition of these types of axioms are given in [MA99] therefore
the next paragraphs will show a short theoretical derivation rules for the transition,
time-constraint and synchrony axioms. All of these will be treated in greater detail

in Chapter 4.

Transition axioms - Starting from initial state, if the destination state of a
transition R; is the same as the source state of a transition R, an axiom stating
that the occurrence of event e; triggering the transition R; precedes the occurrence
of event e, triggering the transition time of Ry is to be included.

TT(A)(@)(e1)(45) < TT(A)(i)(e2)(5)

21

Time-constraint axioms - The time interval during which a reaction (event) to
a transition (event) is constrained to occur is to be considered. Therefore, we include
axioms stating that the delay between the occurrence of an activation event e, and
the reaction event e; is to be greater than the lower bound and less than the upper
bound expressed in the time constraints of the specifications.

TT(A)(E)(e2)(G) — TT(A)(E)(e1)(5) > L and
TT(A)()(e2)(G) — TT(A)(E)(e1)(G) < u
where [l, u] is the allowed window for the reaction event.
Synchrony axioms - A synchrony axiom is included for port-links defined in

subsystems’ configurations. Such links express the fact that for an event e occurring
in object A; the same event e occurs in object A;. Hence the occurrence time is

equal.
TT(A1)(?)(e)(5) = TT(A2)(i)(e) ()

The PVS specifications for the axiomatic description of the TROM specifications
are structured in terms of theories. Two standard theories not related to the GRCs
define some ground concepts. First the theory model defines the Time domain as the
set of non-negative reals, the Period and Occurrence as the set of positive naturals.
Secondly, the theory transition_time defines the function T'T as seen earlier. Then a
theory is developed for each GRC of the modeled system. These theories include the

following:
e An uninterpreted non empty type for the instances of GRCs
e An enumerated type defining the set of allowable events in the GRC

e Declaration of universally quantified logical variables for Period, Occurrence

and the class of objects
e The set of transition axioms
e The set of tine-constraint axioms

For each subsystem definition a theory is defined with the following:

22

e An importing clause to include the GRC defining theories
e An importing clause to include the other defined subsystems
e Declaration of universally quantified logical variables for Period and Occurrence

e Declaration of universally quantified logical variables for the classes of objects
in the case of general proofs

e Declaration of constants corresponding to the objects instantiated in the sub-

system
e The set of synchrony axioms

e The set of supplementary axioms

We will see in Chapter 4 the refinement of algorithms to extract from the TROM
specifications the axioms to be generated in the PVS theories. In Chapter 5 the
reasoning behind every axiom generation within a case study with the generated

PVS theories will be given.

3.4 About since

[Sha92] has introduced the since expression as a duration measure for real-time be-
havior reasoning. This measure expresses the time elapsed since a predicate was last
true. In other words, if predicate P becomes false at time ¢, the value of since(P)
(also written [P]) at time ¢ + z is (¢t + z) — ¢, which is z. [CM92] have introduced
earlier a similar operator, punch which also operates on assertions but records the
absolute time at which the assertion last went from false to true. Figure 6 shows
predicates P and Q and their conjunction an disjunction over time. The times ¢, t,
are the absolute times at which the predicates P and Q were last true. t,ny and tpy,
are the absolute times at which the conjunction and disjunction of P and Q were last
true. Table 1 shows the properties of the since operator according to the lemmas
introduced by [Sha92]. The lemmas capture invariants on the behavior of the since
operator.

With this relationship between the since operator and absolute time we are able
to establish a pattern to derive linear equalities, in our case the higher-ordered PVS

time expressions.

23

Table 1: Properties of the since operator.

Using since operator Using absolute times

{lPI<z)I<yD|PI<z+y} tpi<z)i<y = tiPi<z +¥
=tp+z+y

{IlP v Q| < min(|P|, |Q])} trv@ = max(tp, tQ)

{IPvQ|=|P| v [PVQ|=|Q|} tpvg=tPr V tpvg=1tq
{IPAQI=|P| vV |[PA-Q|=|P]} tpaq=tPp V tpr-Qq=tp

{max(|P|, |Q]) < |IPAQ|} tpa@ = min(tp, tq)
{IPI<|PAQI} tp > tpaQ
{lRI<IPARQ|} tQ > tPaQ

[Sha92] also proposes a model for real-time systems using the since operator
embedded in PVS’ higher-ordered logic. The theorem proving techniques that are
demonstrated in his work show that the since operator can be used to obtain real-
time properties proofs. [MA99] show the properties of the since operator useful for
axiomatic description needs which also is used for time dependent properties.

o K 'y Y,
T
P TRUE FALSE TRUE FALSE
Q TRUE FALSE TRUE FALSE
g T
PAQ TRUE FALSE TRUE FALSE
PVQ TRUE FALSE TRUE FALSE
' Y] hhve V7Y] hve

hA—e

Figure 6: Absolute times at which predicates become false

3.5 TROM with since expressions

By instantiating the subset of the axioms of Section 2.4.1 in Chapter 2 with data
from the formal specifications of a TROM design, we can derive a set of axioms based
on the since expression to invlolve duration on state predicates and time intervals.

Such is the proposed methodology given by [MA99].

24

3.5.1 Transition axioms

The objective of transition axioms is to state an ordering relation on the occurrence of
two transitions in an object. By instantiating all transitions with the transition axiom
from the logical semantics, we retain pairs of axiom instantiations where S, = S; and
we obtain the following assuming that post-conditions hold for the transitions:

For all pairs where S; = S3

A.HoldAt(S,,t,) A A.Occur(ey,pi,t1) A (t1 < t;) —> A.HoldAt(S,,t;)
A.HoldAt(S;;, t3) N A.Occur(el,p,-, t3) A (t3 < t.;) — A.HOldAt(S4, t2)

Therefore the resulting since expression shows that after two transitions (ie: once the
object is in the designation state (S;) of the second transition), the time since the
object was in state S; (or S; it is the same state) is smaller than the time since the
object was in state S;. We obtain the following since axiom:

A =S54 C since(A=83) < since(A = S))

3.5.2 Time-constraint axioms

The objective of the time constraint axioms is to express the time interval during
which a reaction to a transition is to occur. Each time constraint of a TROM has a
lower and upper time limit that constrains the occurrence of a reaction within these
limits after the firing transition occurrence. Again, instantiating the time constraint
data of TROM objects with the appropriate logical semantic axiom, in this case the

constrained event axiom, we obtain the following:

A.Occur(ey, pi, t,) — A.Occur(ez, pj, ts) A within(ts, I, u, ty)
where ¢, is the trigger event (e;) occurrence time and ¢, is the constrained
event (e;) occurrence time and where ! and u are lower and upper bounds

of the time constraint

Since we are describing the time relationship between two events, we have to describe
the two transitions that are triggered by these two events. We use the transition
axiom from the logical semantics to describe the two transitions as follow:

25

A.HoldAt(S), t,) A AOccur(er, pi,ta) A (ta < ts) —> A.HoldAt(S,, 1)
A.HoldAt(Ss, tc) A A.Occur(es, p;, t.) A (tc <ty) — A.HoldAt(S,, ti)

With these logical semantics axioms instantiated, we follow the following rules to

extract the since expression.

A. if S, = S, that is if the constrained event is the next event after the firing

transition:

A=84 D since(A=S5)) — since(A=2S,) < I
A=5;D since(A=3S,) — since(A=S,;) > u

B. if S; # S;3 that is if the constrained event does not follow immediately after the
firing transition, then for each state between S, and S; we follow the following:

Two cases to consider:

(a.) Sl = 54

A=S8;Dsince(A=5)) < u
A=S83Dsince(A=5)) < u

and for all states S between S, and S;
A=S8D since(A=8;)<u
(b) S1#S

A =383 D since(A=28,) — since(A=S3) < u
A =84 D since(A=S;) — since(A=S3) >

and for all states S between S, and S;

A=S5Dsince(A=5,) < u

3.5.3 Synchronization axioms

'The objective of synchrony axioms is to express simultaneous change of state within
two communicating objects. For each pair of communicating objects and with each
associated external events (incoming, outgoing) we instantiate the synchrony axiom
with the TROM information which results in the following:

A.Occur(es,pa,t) & B.Occur(eg, pg,t)

26

Since we are describing the time relationship between two events, we have to describe
the two transitions that are triggered by these two events. We use the transition
axiom from the logical semantics to describe the two transitions as follow:

A.HOldAt(Sl,tl) A A.Occur(e,pA, tl) A (tl < t2) g A-HOldAt(Sz, t2)
B.HOldAt(S;;, t3) A B.OCC‘UT(C,pB, t3) A (t3 < t4) > B-HOldAt(S4, t4)

The ensuing since expression shows that two communicating objects with the occur-
rence of the same event (one incoming, one outgoing) have their triggered transitions
at the same time. Therefore when object A is in state S, and when object B is in
state Sy, the time since object A left state S; is equal to the time since object B left
state S3. We get the following since expression:

A =5, AB =584 C since(A = S,) = since(B = S3)

A note has to be added on this derivation algorithm. If S; = S, or if S3 = S, such
an axiom can not be derived. This would apply to events triggering reflexive transi-
tions. For example, assume S; = S,, the above logical semantics axioms would hold
true but the derived since axiom would not be true due to the fact that since(A = S5)
would be equal to 0 and since(B = S;) would be equal to some value z greater than
0. The since axiom would hold true only if the event triggered reflexive transitions
in both of the associated objects, giving since(A = S,) = stnce(B = S3) =0

27

Chapter 4

From TROM to axiomatic

description

In Chapter 2, we presented and explained the components of the TROM specifications
and in Chapter 3, the axiomatic expression of these formal specifications were detailed.
We saw the since operator approach of the axiomatic description and we saw the
PVS theories axiomatic description of TROM specifications. In this chapter, the
requirements for a mechanized derivation of these axioms will be presented, the design
and the implementation details of the axiomatic description generator for both of
these approaches. First, a component of the TROMLAB environment will be presented
in order to better comprehend how the tool interacts within the environment.

4.1 Description of the AST

The abstract syntax tree (AST) is the internal representation of a TROM specifica-
tion. This specification was syntactically checked as the AST is constructed. The
AST, as its name implies, is a tree of links of all components of TROM classes and
subsystems with access methods to all of these components. Figure 7 shows the high
level structure of the AST with the components used by the generator developed. To
navigate through and access information within the AST its developers have created
all access operations needed, a sample of such operations is given in table 2. With
this table, we see that we can retrieve all TROM data.

The development of the interpreter to construct the AST was originally done in

28

LSL_traitlist
Tromciassiist
" Y
SCstim [TROMd.
SCSSimEv
Class rame
port st
event list
staee lim ()
actribue fist Transition speciication }/—\
Is! trmit list Transition label Next ransition specification
ativibuee funcrion list S ‘ is initial transition
transition specification lik ——— source state
time constrain {ist destination stme
\ rigger everc
) port condition
enabling condition
post condition
J
Next Tromclass
')
Time constraing R
Next tme constraint
time constraint label
uamsition specification label
consrained evern.
lower bound
“::CS upper doud
rame disabling stase list
inclode list J
instantiase list
configure lit

Neat SCS ~ == Pointer/ reference

Figure 7: High level AST structure with subset of components shown

the C++ environment [T2096] and then ported to Java [Sri99]. The axiom generator

tool was done with the latest version.

4.2 From TROM to since

As we saw in Chapter 3, since is an interesting operator for duration measurement
in the context of real-time behavior reasoning. We also saw the methodology that
is involved to derive the since axiomatic description of TROMs. In this section the

mechanization of the derivation process is explained.

4.2.1 Transition axioms

We saw in Section 3.5.1, we can derive since expressions from the TROM specifica-
tions. Figure 8 shows pseudo-code for the algorithm used in the axiom generation
tool to extract and build the since transition axioms. The objective of the algorithm

29

Table 2: Sample AST operations

Access operation Informal signification

AST.TROMclasslist.head() retumns the head of the TROM classes’ list _

(TROMclass).get_trans_speciist().head() returns the head of the transition specification list of
a TROM

(time_sconstraint).lower() returns the lower bound of the time constraint

(trans_spec).get_source_state().get_state_name() | returns the name of the source state of the transition

is to find all consecutive transitions. In other words, isolate all pairs of transitions
that come one after the other and generate the axiom for each of these pairs. Some
restrictions must be applied in this algorithm which are to check:

e one of the transitions is reflexive

e it is not a repeated axioms due to parallel transitions. What is meant by parallel
is two distinct transitions that involve the same source and destination state.

4.2.2 Time constraint axioms

The time-constraint axiom generation simple goes through all time constraints and
creates the since inequality with both involved transitions specified in the time con-
straint. That is, the firing transition and the transition triggered by the constrained
event. As stated in Chapter 3, the time-constraint axioms can include more inequal-
ities depending on the relationship between the firing transition and the transition
triggered by the constrained event. In Figure 10 the between algorithm is introduced.
between is a function that returns all states on any paths of a state machine in be-
tween to states. If we take for example Figure 11, stating between(A, E) would return
the statelist C, E; between(A, F) would return C, D, E, G and so on. In other words,
it returns the list of states member of all possible paths between two states.First, here
are the definitions of the main components of the between algorithm:

e edge(A, B) is true if there exists a transition from A to B
o next(A) is the set of states S such that edge(A, S) is true
e path(B, Z) is true if there exists a sequence of transitions from B to Z

30

while trom != null
trans_specl = TROM.transition_specification_list.head()
while trans_specl != null
S1 = trans_specl.source
S2 = trans_specl.destination
trans_spec2 = TROM .transition_specification_list.head()
while trans_spec2 = null
S3 = trans_spec2.source
S4 = trans_spec2.destination
if S2 == S3 AND

S1 !=S4 AND
S1 !=S3 AND
S2 =S4 AND

axiom has not yet been generated THEN
generate axiom :
" (Object = S4) implies since(Object = S3) < since(Object=S1)"
end if
end while
end while
end while

Figure 8: Pseudo-code for Transition specification since axioms algorithm for a TROM

trom = AST.tromlist.head()
while trom != null
time_constraint = trom.time_constraintList.head()
while time_constraint != null
trans_spec = trom.trans_speclist.head()

if time_constraint.constr_event == trans_spec.trig.event
call algorithm in Figure 10 with (trans_spec and transition stated in time_constraint)
end if
end while

end while

Figure 9: Pseudo-code for time constraint since axioms algorithm for a TROM

31

S1 = trans_spec.source()
S2 = trans_spec.destination()
S3 = time_constraint.transition.source()
S4 = time_constraint.transition.destination()
if S2 == S3
output axiom with " Object = S4 -> since(object = S1) -

since(object = S3) > lower bound of time constraint™

"Object = S4 -> since(object = S1) -

since(object = S3) < upper bound of time constraint”

else if S1 == S4

output axiom with "Object = S2 -> since(object = S1) < upper bound of time constraint”
output axiom with " Object = S3 -> since(object = S1) < upper bound of time constraint”

statelist = all states between S2 and S3
state = statelist.head()
while statelist = nuill
output axiom with " Object = state -> since(object = state) <
upper bound of time constraint”
end while
else
output axiom with " Object = S4 -> since(object = S1) -
since(object = S3) > lower bound of time constraint”
" Object = S4 -> since(object = S1) -
since(object = S3) < upper bound of time constraint”
statelist = all states between S2 and S3
state = statelist.head()
while statelist != null
output axiom with "Object = state -> since(object = S1) <
upper bound of time constraint”
end while
end if

Figure 10: Pseudo-code for time constraint secondary algorithm

32

(\ @

Figure 11: Statechart example

o between(A, Z) is the set of states S that are on all paths from A to Z

Here are the more formal definitions for the same components:

e edge(A,B) =(3t e t = non reflexive transition from A to B)
e nert(A) ={ S | edge(A,S) = true}
e path(A,Z) =edge(A,Z)Vv (3 S e edge(A,S) A path(S,Z))

o between(A,Z) = { S| S€ next(A) AS # Z A path(S,Z)} U
{S |3S; @ S; € next(A) A S € between(Ss, Z)}

Finally here is a formal definition of the two main algorithms path(A, Z) and
between(A, Z):

path(A,Z) :
if Z € next(A) then return true
elseif A = Z then return false
else
A.visited = true
return (3 S o S € next(A) A S.visited = false A path(S,Z) = true)

between(A, Z) :
while (3 S o S € next(A) A S.visited = false)

S.visited = true

33

if (S = Z) then return { }
elseif path(S, Z) then
return {S} U between(S, Z)

This algorithm is presented as an alternative to the first path algorithm. The

latter was the selected alternative.

path(A, Z) : (non recursive)
A.visited = true
push(A)
while stack not empty do
while (3 S | S € next(top()) A S.visited = false) do
if (S = Z) then return true
else
S.visited = true
push(S)
pop()
return false

4.2.3 Synchrony axioms

Synchrony axioms shown in Chapter 3 say that an outgoing event occurrence in one
object corresponds to the incoming event occurrence within a communicating object.
We also consider the fact that more than one event type can occur at a specific port
type. Therefore the algorithm to extract from the AST the transitions to build the
since axioms include a loop to repeat the axiom with other transitions that involve
other events that are allowed through the same port-link configuration. The algorithm
first builds a list of events allowed through the port, then then builds the axioms for
each of those events.

At each of those events the following is applied: find the transitions T4 and Tg
triggered by the said event, one in each object, say objects A and B. Use the source
states and destination states of those transitions to build the axiom.

A = destination of T4 and B = destination of T implies that
since(A = source of T4) = since(B = source of Tp)

34

An extra level in the algorithm is added when we add support for multiple tran-
sitions with the same triggering event within a single object. Hence, in the example
of axiom stated above, we must consider adding a disjunction for different transitions
but triggered by the same event. For example, if event e triggers one transition in
object A and two transitions in object B, first find the transition in A, T4, then find
the transitions in B, T}, and T;,. Then the following axiom is built:

A = destination of T4 and B = destination of T}, or T>, implies that
since(A = source of T,) = since(B = source of T;,) or
since(A = source of T4) = since(B = source of Tp,)

Figure 12 shows pseudo code for the implemented algorithm for the synchrony
since axiom generation. Keep in mind that this algorithm progressively builds the
axiom as it traverses the AST. Unlike the two other axiom sets where output is done

once, this progressively outputs the axioms.

4.2.4 since tool structure

In Figure 14 the class diagram of the implementation of the since axiom generator is
depicted. Apendix A contains the definition of all the operations and attributes.

35

Assuming no refiexive transitions are invoived.
configure = AST.SCS.Configurelist_head()
while configure = null
event == an event in the permitted events of the current port-link
while event = null
trans_specl = transition specifiation of the first object of the port-link
while trans_specl != null
if event == trigger event of trans_specl
output : "object A = source of trans.specl”
trans_specl = trans_specl.next
end if
end while
output : "AND"
trans_spec2 = transition specifiation of the second object of the port-link
while trans_spec2 != null
if event == trigger event of trans_spec2
output : "object B = source of trans_spec2”
end if
trans_spec2 = trans_spec2.next
end while
output : "implies”
trans_specl = transition specifiation of the first object of the port-link
while trans_specl = null
if event == trigger event of trans_specl
trans_spec2 = transition specifiation of the second object of the port-link
while trans_spec2 != null
if event == trigger event of trans_spec2
output : "since(object A = destination of trans_specl) =
since(object B = destination of trans_spec2)”

end if
trans_spec2 = trans_spec2.next

end while

end if
trans_specl = trans.specl.next
end while
end while
end while

Figure 12: Pseudo-code for Synchrony since axiom generation

4.3 From TROM to PVS

In Chapter 3, the axiomatic desription of the TROM specifications in the PVS en-
vironment has been described. We will now describe in a high level fashion the
different processes that are applied to extract information from the AST. Each of
these algorithms are used as working components of the application whose high level
description will be given in the next section. We introduced a high-level descirption
of the extracting algorithms in [AMP99] ealier. This section refines the algorithms in
the context of a tool design.

The algorithm that extracts transition specifications and time constraint speci-
fications from the TROM file(s) are to be applied for every object involved in the

36

Create AST

generate time constraint axioms
generate transition axioms
generate synchrony axioms

Figure 13: Pseudo-code for since main tool algorithm

model. As we saw in Chapter 3, a PVS theory is to be generated for every class in
the model. Therefore, the algorithm to extract the transition specifications and the
time constraint specifications will be applied for every TROM class.

4.3.1 Transition specifications

Transition axioms are to be extracted following a very straightforward algorithm. A
transition specification is taken, say R,, and its destination state is compared to all
the transition specifications R, (where 1 < n < number of transitions) starting with
the first transition specification. When the destination state of R; matches the source
state of R, an axiom stating that the time of the triggering event of R; preceeds the
time of the triggering event of R, is to be generated. Figure 15 shows the pseudo
code for this algorithm.

Transition axioms cannot be extracted freely and exhaustively. Users would have
the remaining task of filtering through the generated axioms to make sure that con-
flicting axioms are not included. It is for this reason that some extra restrictions
are to be applied while extracting and therefore commenting or removing all possibly
conflicting axioms. What is meant by conflicting axiom is an axiom that is generated
without regards to cycles within periods which could results in axioms contradicting
other axioms. For example, a reflexive transition in the specifications would result in
an axiom stating an inequality with the same event.

Here are the restriction rules when generating transition axioms:

1. Axioms involving a single reflexive transition are excluded: These cases
are where the compared destination state and source state are from the same
transition specification. The comparision between destination and source states
matches but an axiom should not be generated since only one transition is
involved. What is allowed though is if a transition specification is compared

37

AST Since_main
$Sinca_mainQ) Since_state
Since_statelist ',-."f““
. ate_iist
.""0 o —
’m.:::.moS SSince_state(
_state) Sgat_visited()
5 ontains() Sbeen_visited()
ince_Generator Sqtate_name()
®Tromclasslist s _initisl()
list -
9Since_Generat
g
:gmc_:r_m% PVS Event
nerate_tc_since Evert name
‘ggnerato:sy;_Shceo] Vs, st ®eovent_name
Sdispiay_trans_spec_Since() VS Eventist) ®port_type_name
Sdisplay_time_constraint_Since() Scontains, event) <>
e S T oy
reate el n
Snext_state_ist() Sappend_FVS_Event) ’gd:g:;t_nmo
Sexists_path() ’9‘_90‘.'”'."""‘0}
Shetween()
Screate_svent_list()
$get_gvent_name_from_port_type()
Screate_statelist_from_since_statefist()
Sget_trom_name_from_obj_label)
Scount_events_A28()

Figure 14: since axiom generator tool class diagram

with a reflexive transition. Since these are two distinct transition specifications,

we can assume that one triggering event succeeds the other.

. Axioms involving the initial state as the destination state are ex-
cluded: Since the model involves succeding periods of the state machine, we
have to remove axioms that compare the ”last” and "first” events of the peri-
ods. In other words, axioms involving transitions that lead to the initial state
and transitions that leave the initial state must be excluded. Otherwise axioms
stating that the last event of a period occurs before the first event of a period

will be generated.

. Axioms involving the same event for two compared transitions are
excluded: If two succeeding transitions involve the same event, the generator
will exclude the generation of such an axiom with such two transitions. Other-
wise, an inequality based on the same event name would be generated, hence

38

this inequality could not hold.

4. Axioms involving transitions with trigger events already stated in
earlier axioms are commented out: All axioms that are to be generated
with events in the right hand side of the inequality already generated in an
axiom where the same event is already generated in the left hand side of the
inequality will be commented out. This leads to having different axiom lists
depending on the ordering of the transition specification in the TROM formal
specifications. This is why this restriction is not total. In other words, the
axioms concerned with this restriction will be commented out so that the user
can study the axiom set and make a decision that can not be incorporated in

the algorithm of the tool.

trans_specl = TROM.transition_specification_list.head()

while trans_specl != null
trans_spec2 = TROM.transition_specification_list.head()

while trans_spec2 != null
if trans_specl.destination == trans_spec2.source AND

trans_specl != trans_spec2 AND
trans_specl.trigger_event() != trans_spec2.trigger_event() AND
trans_specl.destination.initial_state() != true then

if trans_spec2.trigger_event() is in temporary_event_list then comment out axiom

generate axiom :

"TT(GRC)(i)(trans_specl trigger_event)(j) <
TT(GRC)(i)(trans_spec2.trigger_event)(j)"

add trans_specl.trigger_event() to temporary_event._list
end if
end while
end while

Figure 15: Pseudo-code for Transition specification axioms algorithm for a TROM

4.3.2 Time constraint axioms

The algorithm to extract time constraint axioms generates one axiom per constrained
reaction which are expressed in the time constraint section of the TROM class defini-
tion. Each time constraint is expressed as an event that must occur at a time ¢ that

39

is between a lower and upper bound stated in the time constraint. That time ¢t is the
difference between the time of the occrence of the constrained event and the time of
the occurence of the event that triggered the transition stated in the time constraint.

Therefore the algorithm will generate an axiom per time constraint which will state
that the difference between the occurence of the constrained event and the occurence
of the event that triggers the transition stated in the same time constraint must
be between the lower and upper bound also expressed in the same time constraint.

Figure 16 shows the pseudo code for this algorithm.

time_constraint = TROM.time_constraint_list.head()
trans_spec = TROM.transition_specification_list.head()

while time_constraint != null
transition_spec_name = time_constraint.get_name._of transition_spec()
while trans_spec != null OR found != true
if transition_spec_name == name of trans_spec
lower = time_constraint.lower()
upper = time_constraint.upper()
constr_event = time_constraint.constrained_event()
trigg-event = trans_spec.trigger_event()
generate axiom in PVS format:
"TT(GRC)(i)(trigg-event)(j) - TT(GRC)(i)(constr_event)(j) > lower AND
TT(GRC)(i)(trigg-event)(j) - TT(GRC)(i)(constr_event)(j) < upper”
found = true
trans_spec = transpec.next()
end_while
time_constraint = time_constraint.next()

end while

Figure 16: Pseudo-code for Time constraint axioms algorithm for a TROM

4.3.3 Synchrony axioms

‘The synchrony axioms are generated in a single PVS theory that corresponds to
the subsytem of the model. Each axiom is a representation of the communication
channels defined by the port-links in the configuration of the subsystem. Each link is a
represenation of the synchronous message passing between the objects. Therefore, the
algorithm to extract the syncrhony axiom will apply only the the subsystem(s) defined
in the TROM model. The algorithm scans through the list of port-link configuration

40

and generates one axiom per allowable event in the port-link per port port-link. That
is, every port-link will generate at least one axiom and more if more than one event
is allowed at the port of the objects involed. Figure 17 shows the pseudo code for

this algorithm.

SCS = AST.SCSlist.head()

while SCS != null
Configuration = AST.SCS.configurationlist.head()

while Configuration != null
Event = Head of list of all allowable events on the port of

the objects of current configuration

while Event != null
GRC.id1 = Identification of left object of configuration

GRC.id2 = Identification of right object of configuration
generate axiom in PVS format :
" TT(GRC.id1)(i)}(Event)(j) = TT(GRC.id2)(i)(Event)(j)"
Event = Event.next()
end while
Configuration = Configuration.next()

end while
SCS = SCS.next()
end while

Figure 17: Pseudo-code for Synchrony axioms algorithm

4.3.4 Main tool algorithm

Figure 18 shows the high level algorithm for the generation of the PVS theories.

41

Create AST Generate generic theories
trom = AST.tromlist.head()

while trom = null

generate the GRC specific information for a theory

generate time constraint axioms
generate transition axioms

trom = trom.next()
end while

generate synchrony axioms

Figure 18: Pseudo-code for main tool algorithm

AST
PVS main
attributes and Smaind
operations of the
AST are defined
in [Sr99) PVS_Generstor
Tromclasshist
fist
$PVS_Generator()
Sun)
SGenerats_theory()

Screste_event_list)
Screste_event_iist_for_trom()
Sget_event_name_from_port_type(
Sget_trom_name_from_obj_tabe()
Soenerale_syn_axioms()
e_{r_axioms()
»_{c_axioms()
Sdispiay_trans_spec_axioms()
ay_time_constraint_axioms()

Sdisplay_syn_axioms()

e_time_expression()

PVS_setup
Tromclasslist
®SCShist

SoVS_setup(

nerate_types_and_vars()
Sgenerate_trom_related_info()
’Mmut:ascs_nldod_hfoo
nt_e
Sun

PVS Event
FVS Eventist Mn?:;':nc
VS Evntiist) | ot iype_name
_PVS_EVOMO ." jc.mo
..pm‘mimo Suet_event_name()
_port_type_name()

Figure 19: PVS generator tool class diagram

42

Chapter 5

Case study: Robotic Assembly
System

This chapter will demonstrate the application of the axiomatic description generator.
The model will be described informally and formally and then the application of the
tool will be shown for both the PVS axiomatic description and the since axiomatic
description.

In this Section we will illustrate the axiomatic description generator applied to a
robotic assembly system. The problem will first be outlined informally followed by its
formal counterpart in the TROM notation. Interleaved with these descriptions will
be the transition, time constraint, synchrony and supplementary axioms as proposed
by [AM99] and described in Chapter 3.

5.0.5 Problem description

The robotic assembly systems consists of six components all interacting together to
obtain the assembly of parts that are submitted to it. The components are : a
conveyor belt, a vision system, a right arm, a left arm, a stack and a tray. The belt
provides the parts to the rest of the system where an assembly takes place (cup is
placed over a dish) and then the assembled unit is deposited onto a tray. In order
to allow for the safe pick-up of the parts, the belt stops for a pre-specified period of
time whenever a part is in a pre-specified location known as pick-up zone. A sensor
located under the belt detects the presence of a part. A part may be lost if it is
not picked up in the pick-up zone. However, it is guaranteed that the parts on the

43

belt are separated by a minimum distance in order to ensure a minimum time delay
between two consecutive parts entering the pick-up zone. The parts may arrive on
the belt in any order. It is required that for any arbitrary placement of n cups and
n dishes on the belt, the system should produce n assemblies. This necessitates that
no cup or dish placed on the belt be lost.

The system after the belt is composed of a vision system, left arm, a right arm and
a stack. The vision system recognizes the incoming parts (cup or dish) and the stack
stores the parts. Whenever a part comes into the view of the vision system’s camera,
scanning and recognition is performed by the vision system and it then signals the
set of arms, within a maximal time delay constraint whether a cup or a dish has been
recognized. This signal will activate the arms to perform the pick up of the part from
the belt.

The arms use an algorithm based on a stack with which a part can be pushed or
popped. Initially the left arm is free and the stack is empty. Whenever both arms
are free and the stack is empty, if the vision systems signals the arms that a part is
on the conveyor belt, the left arm picks up the part from the pick up zone. When the
left arm holds a part, the right arm, if free, picks up the next part from the conveyor
belt. If the part on the right arm, is the same as the part on the left arm, the part in
the right arm is pushed into the stack. Otherwise, the parts are assembled and the
resulting part is placed on a tray. If the left arm is free but the stack is not empty,
the left arm picks up (pops) a part from the stack. In the design of the assembly
process, the left arm is made free soon after the assembly while the right arm is made
free only after placing the assembly on the tray.

For more details regarding the description of events, description of time constraints
and description of the objects please refer to Chapter 2.

5.0.6 Robotic assembly system model

The behavior of the systems entities are modeled using generic reactive classes. Each
of the GRC classes have a UML statechart diagram introduced in Figures 21, 23, 25,
27, 29 and 31. Their corresponding formal specifications are in Figures 22, 24, 26,
28, 30 and 32. Figure 20 shows all GRC classes with their corresponding PortType
classes. Each association between the PortType classes shows the communication
channels between the instances of the GRC classes. All formal specifications have

44

been generated from UML by the Rose UML-TROM translator developed by [Pop99].
The collaboration diagram in Figure 33 shows the configuration of a robotic assem-
bly system with one instance of each classes. Figure 34 shows its formal notation
counterpart. This subsystem corresponds to a robotic assembly floor with one belt
feeding the system and parts being output onto a single tray.

<«PartTypa>> <SCGRC>> Port
= o]
jeverts : st = { Sensed?} <<OmaTypa>> prt : PaniP] [rvonts : sex = { RosegC! . RecogD! 1)
mc:nl-(s«m!) | - 98t = { Recey C? .Asoey0? If
<<ORC>> <«<PortTypar> <PenType>> <<ORC>> <<PorType>>
Sot_lo———! @ —o____ltam ___lp—— —_ -
laverts : sat = { Piok? } Tse = Pkt] <<OmtaType>? prt - Pan) javenss : sat = (FepC! PopOt .isErgty! |}
“"&m» «WOL >
[everss Tsm » [SynC! . SynD1. Assembia?] 19m = PoC? . Pew? kbimety?}
<<ORC>>
RavkNors
<«PonTypar> [<<OmaType>> sk : eack(P.P Stack]
Rverts :set = (SynC? . SynD?. } «h'”.»'.;‘:mm
«M&?»
fevents : sat = (PushC? . hiF)J
<<GRC>> I
{ ___ Ngedwm |
“""‘T\VI"" j«o-arm» L : PafP) cPonTyper>
«M.'IP.)) joverts :sm = { Pick! } :::m:::t;:'-']n -:.-(':Cl PushD! }
avents : set = { Load?) Y \ PortType:
<< >
«h:lvv'-” events : sat = { ResegC? ., RecogD?
jevents : sat = { Msce! }
<<PentTypa>> <<GRC>> I
orZ] Tray
m:;-(uu!) “'.&?’.”
csm = { Mgce?}

Figure 20: Robotic System class diagram

5.0.7 PVS axiomatic description

As [MA99] describe in their methodology, we begin with defining the set of events for

each generic reactive classes.

Belt_Event : TYPE
= {e_0On, e_Sensed, e_0ff, e_Load, e_Stop, e_Move, e_Pick}

VisionSystem_Event : TYPE

45

Sensed / true && TCvar! =0

Mowe{ true &4 true &4 TCvar2
>=58aTC <=7}

stopped slow

Stopf true &L true E& TCvart <= 4 [/ true &4
TCva2 =0

Pick

Figure 21: Belt state diagram

= {e_Sensed, e_Unknown, e_Known, e_RecogD, e_RecogC}
StackStore_Event : TYPE
= {e_PushC, e_PushD, e_PopC, e_PopD, e_IsEmptyl}
LeftArm_Event : TYPE
= {e_RecogD, e_RecogC, e_Pick, e_PopC, e_PopD,
e_IsEmpty, e_SynD, e_SynC, e_Free, e_Assemble}
RightArm_Event : TYPE
= {e_Place, e_SynD, e_SynC, e_PushC, e_PushD,
e_Assemble, e_RecogD, e_RecogC, e_Pick}
Tray_Event : TYPE
= {e_Load, e_Place}

For each class, a higher-order function is defined giving the transition time for
an event occurrence, within a period, for an instance of a class. The signature of
the functions are as follows once function T'T has been overloaded with the theory

transition_time containing the function definition.

[Belt_GRC -> [Period -> [Belt_Event -> [Occurrence -> Timell]]
(VisionSystem_GRC -> [Period -> [VisionSystem_Event -> [Occurrence -> Time]]]]
{StackStore_GRC -> [Period -> [StackStore_Event -> [Occurrence -> Time]]]]
(LeftArm_GRC -> [Period -~> [LeftArm_Event -> [Occurrence -> Time]]lll
[RightArm_GRC -> [Period -> [RightArm_Event -> [Occurrence -> Time]]l]]
{Tray_GRC -> [Period -> [Tray_Event -> [Occurrence -> Time]ll]

233334

46

Class Belt [OP, @Q, @T]
Events: On, Sensed!@P, Off, Load?@T, Stop. Move, Pick?@Q
States: *idle, active, slow, stopped
Attributes:
Traits:
Attribute-Function: idle — {}:active — {}:slow — {}:stopped — {};
Transition-Specifications:

R1: < idle,active >; On(true); true => true;

R2: < active, slow >; Sensed(true); true = true;

R3: < active, idle >; Off(true); true => true;

R4: < active, active >; Load(true); true = true;

RS: < slow, stopped >; Stop(true); true = true;

R6: < stopped, active >; Move(true); true = true;

R7: < stopped, stopped >; Pick(true); true = true;
Time-Constraints:

TCvarl: R2, Stop, [0, 4], {}:

TCvar2: RS, Move, [5, 7], {}:
end

Figure 22: Formal specification for Belt GRC

For the axioms in the transition axioms and time constraint axioms sections, %, j
represent the i-th period in the computation of an object and the j-th occurrence of

an event respectively.

Transition axioms

As the methodology described in Chapter 3, the transition axioms capture the order-
ing relation of the occurrences of events within a period of the object. Assuming that
we can ignore the relationship of occurrences of events across periods we observe the

following.

¢ In the Belt object, the events Sensed, Stop and Move occur only once per period
but Pick and Load can have multiple occurrences within one period.

¢ In the Vision System object, all events can occur only once per period.

e In object StackStore, all events can have multiple occurrences.

e In object Left Arm, the events RecogC, RecogD, Pick and IsEmpty can occur
only once per period but SynC, SynD, Assemble, Free, PopC and PopD can

have multiple occurrences within one period.

47

Figure 23: Vision System state diagram

e In object Right Arm, Assemble, Place, SynC and SynD can occur only once
per period but RecogC, RecogD, Pick, PushC and PushD can occur more than

once.
This information will be useful as we will discover that axiomatic description

cannot be used to establish relationships of occurrence ordering when an event with
multiple occurrences within a single period is involved in the relationship.

Belt class

1. The occurrence of event Sensed precedes the occurrence of Unknown within a
period 7, of an object Belt, Belt_VAR.

TR_AX_1 : AXIOM TT(Belt_VAR)(i)(e_Sensed)(1) < TT(Belt_VAR)(i) (e_Stop) (1)

2. The occurrence of event Stop precedes the occurrence of Move within a period
7, of an object Belt, Belt_VAR.

TR_AX_2 : AXIOM TT(Belt_VAR)(i)(e_Stop)(1) < TT(Belt_VAR) (i) (e_Move)(1)

3. The occurrence of event Stop precedes all occurrences of Pick within a period
i, of an object Belt, Belt_VAR.

TR_AX_3 : AXIOM TT(Belt_VAR)(i)(e_Stop)(1) < TT(Belt_VAR)(i)(e_Pick)(j)

4. All occurrences of event Pick precede the occurrence of Move within a period ¢,
of an object Belt, Belt_VAR.

TR.AX_4 : AXIOM TT(Belt_VAR)(i)(e_Pick)(j) < TT(Belt_VAR)(i)(e_Move)(1)

48

Class VisionSystem [@R, @S]
Events: Sensed?@S, Unknown, Known, RecogD!@R, RecogC!@R
States: *alert,process,identify
Attributes: prt:P
Traits: Part[P]
Attribute-Function: alert — {}; process — {}; identify — {prt}:
Transition-Specifications:
R1: < alert,process >: Sensed(true); true = true;
R2: < process,alert >; Unknown(true); true = true;
R3: < process,identify >; Known(true); true => prt'=cup | prt'=dish;
R4: < identify,alert >; RecogD(true); prt=dish = true;
RS: < identify,alert >; RecogC(true); prt=cup => true;
Time-Constraints:
TCvarl: R1, Known, [0. 3], {alert};
TCvar2: R1, Unknown, {2, 4], {alert};
TCvar3: R1, RecogD, [0, 6], {alert};
TCvar4: R1, RecogC, [0. 6]. {alert};
end

Figure 24: Formal specification for Vision System GRC

Vision System class

1. The occurrence of event Sensed precedes the occurrences of Unknown within a

period i, of an object Vision System, VisionSystem_VAR.

TR_AX_1 : AXIOM TT(VisionSystem_VAR)(i)(e_Sensed)(1) < TT(VisionSystem_VAR)(i)(e_Unknown)(1)

2. The occurrence of event Sensed precedes the occurrence of Known within a

period 2, of an object Vision System, VisionSystem_VAR.

TR_AX_2 : AXIOM TT(VisionSystem_VAR)(i)(e_Sensed)(1) < TT(VisionSystem_VAR)(i)(e_Knowm)(1)

3. The occurrence of event Known precedes the occurrence of RecogC within a

period i, of an object Vision System, VisionSystem_VAR.

TR_AX_3 : AXIOM TT(VisionSystem_VAR)(i)(e_Known) (1) < TT(VisionSystem_VAR)(i)(e_RecogC) (1)

4. The occurrence of event Known precedes the occurrence of RecogD within a

period Z, of an object Vision System, VisionSystem_VAR.

TR_AX_3 : AXIOM TT(VisionSystem_VAR)(i)(e_Known) (1) < TT(VisionSystem_VAR)(i)(e_RecogD)(1)

StackStore class

e No transition axioms can be declared since all of the transitions go through
the initial state, hence we cannot establish event occurrence ordering within a

period.

49

PushC[true && true | /
stk” = push(stk.cup) &
topPrt’ = cup

troe 84

IsEmpty{
size(stk)=0 | /true

PopDy i PopC{ trus &4 size(stk) > O & topP

trus &2 size(stx) >0 & = ph Pr

topPrt = dish |/ stk’ = Pop(stk) cup]/ stk 'muw
& topPrt" = top(stk)

Figure 25: Stack state diagram

LeftArm class

1. The occurrence of event RecogC or RecogD precedes the occurrence of Pick
within a period j, of an object Left Arm, LeftArm_VAR.

TR_AX_1 : AXIOM TT(LeftArm_VAR)(j)(e_RecogD)(1) < TT(LeftArm_VAR)(j)(e_Pick)(1)
TR_AX_2 : AXIOM TT(LeftArm_VAR)(j)(e_RecogC)(1) < TT(LeftArm_VAR)(j)(e_Pick)(1)

2. The occurrence of event Pick precedes all occurrences of SynC and SynD within
a period j, of an object Left Arm, LeftArm_VAR.

TR_AX_3 : AXIOM TT(LeftArm_VAR)(j)(e_Pick)(1) < TT(LeftArm_VAR)(i)(e_SynD) (i)
TR_AX_4 : AXIOM TT(LeftArm_VAR)(j)(e_Pick)(1) < TT(LeftArm_VAR)(i)(e_SynC) (i)

3. Occurrence of event SynC, SynD precede occurrences of Assemble within a
period j, of an object Left Arm, LeftArm_VAR. Occurrences are bound to the
dishcup_occurrence supplementary axiom.

TR_AX_5 : AXIOM TT(LeftArm_VAR)(j) (e_SynD)(dish_occurreance) <
TT(Leftirm_VAR) (j) (e_Assemble) (dishcup_occurrencs)

TR_AX_6 : AXIOM TT(LeftArm_VAR)(j)(e_SynC)(cup_occurrence) <

TT(LeftArm_VAR) (j) (e_Assemble) (dishcup_occurrence)
dishcup_occ_ax : AXIOM dishcup_occurrence =
dish_occurrence + cup_occurrence // see supplementary axioms

4. The i-th occurrence of event Assemble precedes the i-th occurrence of Free
within a period j, of an object Left Arm, Left Arm_VAR.

TR_AX_7 : AXIOM TT(LeftArm_VAR)(j)(e_Assemble)(i) < TT(LeftArm_VAR)(j)(e_Free)(i)

50

Class StackStore [@PL, @QL]

Events: PushC?@QL, PushD?@QL, PopC?@PL, PopD?@PL, IsEmpty!@PL

States: *Active

Attributes: stk:PStack; topPrt:P

Traits: Stack[P.PStack],Part[P]

Attribute-Function: Active — {stk, topPrt};

Transition-Specifications:
R1: < Active, Active >; PushC(true); true => stk’=push(stk.cup) & topPrt'=cup;
R2: < Active, Active >; PushD(true); true => stk’=push(stk.dish) & topPrt'=dish;
R3: < Active, Active >; PopC(true); size(stk)>0 & topPrt=cup => stk’=Pop(stk) & topPrt’=top(stk);
R4: < Active, Active >; PopD(true); size(stk)>0 & topPrt=dish = stk'=Pop(stk) & topPrt'=top(stk):
RS: < Active, Active >; IsEmpty(true); size(stk)=0 => true;

Time-Constraints:

end

Figure 26: Formal specification for StackStore GRC

5. The i-th occurrence of event Free precedes the i-th occurrence of PopC, PopD
within a period j, of an object Left Arm, LeftArm_VAR. z,y are occurrences
variables to capture occurrence relationship in cycles within a period.

TR_AX_8 : AXIOM TT(LeftArm_VAR)(j)(e_Free)(dishcup_occurrence) <
TT(LettArm_VAR) (j) (e_PopC) (cup_occurrence)
TR_AX_9 : AXIOM TT(LeftArm_VAR)(j)(e_Free)(dishcup_occurrence) <
TT(LeftArm_VAR) (j) (e_PopD) (dish_occurrence)
dishcup_occ_ax : AXIOM dishcup_occurrence =
dish_occurrence + cup_occurrence // see supplementary axioms

6. Occurrences of event PopC, PopD precede occurrences of SynC, SynD within a
period j, of an object Left Arm, LeftArm_VAR. The occurrences are bound to
the popc_sync_ax and popd_synd_ax supplementary axioms

// TR_AX_10 : AXIOM TT(Leftirm_VAR)(j) (e_PopC) (pop.cup_occurrence)
< TT(LeftArm_VAR) (j) (e_SynD) (syn_dish_occurrence)
TR_AX_11 : AXIOM TT(LeftArm_VAR)(j)(e_PopC)(pop_cup_occurrence)
< TT(LeftArm_VAR) (j) (e.SynC)(syn_cup_occurrencs)
TR_AX_12 : AXIOM TT(LeftArm_VAR)(j)(e_PopD)(pop.dish_occurrence)
< TT(LeftArm_VAR) (j) (e_SynD) (syn_dish_occurrence)
// TR_AX_13 : AXIOM TT(LeftArm_VAR)(j)(e_PopD) (pop_dish_occurrence)
< TT(LeftArm_VAR) (j) (e_SynC) (syn_cup_occurrence)
popc_sync_ax: AXIOM pop_cup_occurrence - syn_cup_occurrence < 2 // see supplementary axioms
popd_synd_ax: AXIOM pop.dish_occurrence - syn_dish_occurrence < 2 // see supplementary axiom

7. All occurrences of event Free precede the occurrence of IsSEmpty within a period
i, of an object Left Arm, LeftArm_VAR.

TR_AX_14 : AXIOM TT(LeftiArm_VAR)(i)(e_Free)(j) < TT(LeftArm_VAR)(j)(e_IsEmpty)(1)

51

____reedy
antry: TOwm9 = .3
entry: TCver10 = -1

Pick(trus &4 true 84 TCvart <=4 &
TCwar2 <=4 |/pit'= prt £.4. TCva3 = 0
LTCwrd =0

PopC{ true &4 trve B4 TOvaB <= 2]/
prt°=cup A& TOvers = 0

PopD| true &4 true &8 TCvart0 <=2 | 7
prt'= dish && TCvass = 0

SynDf true &4 prt = dish LA
TCvard o= 1 A TOWME o= 1 |
Free{ true &4 true &4 TCwvar7 <= 2|
/true &L TCvaB = 0 & TCval9 = 0
L TCvr10=0 SynC[true &4 pat = cup &4
TCwerd <= 1 & TOvaeS o= 1 |
fersh le A /e Tc~ A=
&4 TCvae7 =0 ."':TM

Figure 27: Left Arm state diagram

Right Arm class
1. The occurrence of SynC, SynD precedes occurrences of RecogC, RecogD within

a period 7 of an object Right Arm, RightArm_VAR.

TR.AX_1 : AXIOM TT(RightArm_VAR)(i)(e_SynD)(1) < TT(RightArm_VAR)(i)(Ce_RecogD) (i)
TR_AX_2 : AXIOM TT(RightArs_VAR)(i)(e_SynD)(1) < TT(RightArm_VAR)(i)Ce_RecogC) (i)
TR_AX_3 : AXIOM TT(RightArm_VAR)(i)(e_SynC)(1) < TT(RightArm_VAR)(i)(e_RecogD) (i)
TR_AX_4 : AXIOM TT(RightArm_VAR)(i)(e_SynC)(1) < TT(RightArm_VAR)(i)(e_RecogC) (i)

- Occurrences of event RecogC or RecogD precede all occurrences of Pick within
a period 1, of an object Right Arm, RightArm_VAR. The occurrences are bound
to the dishcup_occurrence supplementary axiom.

TR_AX_1 : AXIOM TT(RightArm_VAR)(i)(e_RecegD)(cup_cccurrence) <

TT(RightAra_VAR) (i) (e_Pick) (dishcup_occurrence)
TR.AX_2 : AXIOM TT(RightArm_VAR)(i)(e_RecogC)(dish_occurrence) <

TT(RightArm_VAR) (i) (e_Pick) (dishcup_occurrence)
dishcup_occ_ax : AXIOM dishcup_occurrence =

disk_occurrence ¢+ cup_occurrence // ses supplementary axioms

- All occurrences of event Pick precede the occurrence of Assemble within a period
t, of an object Right Arm, RightArm_VAR.

TR_AX_3 : AXIOM TT(RightArm _VAR)(i)(e_Pick)(i) < TT(RightArm_VAR)(i)(e_Assemble)(1)

52

Class LeftArm [OL, @M, @N, €K]
Events: RecogD?@K, RecogC?@K, Pick!@L, PopC!@N, PopD!@N, IsEmpty!@N, SynD!@M,
SynC!@M, Free, Assemble?@M
States: *ready, position,check, taken, finish, wait
Attributes: prt:P
Traits: Part[P]
Attribute-Function: ready — {}:position — {prt}:check — {}:taken — {prt}finish = {}:wait = {}:
Transition-Specifications:
R1: < ready, position >; RecogD(true); true => prt'=dish;
R2: < ready, position >; RecogC(true); true => prt’=cup;
R3: < position, taken >; Pick(true); true = prt'=prt;
R4: < check, taken >; PopC(true); true = prt'=cup;
RS: < check, taken >; PopD(true); true = prt’'=dish;
R6: < check, ready >; IsEmpty(true); true = true;
R7: < taken,wait >; SynD(true); prt=dish = true;
R8: < taken,wait >; SynC(true); prt=cup => true;
R9: < finish,check >; Free(true); true = true;
R10: < wait, finish >; Assemble(true); true = true;
Time-Constraints:
TCvarl: R2, Pick, [0, 4].{}:
TCvar2: R1, Pick, [0, 4], {}:
TCvar3: R3, SynC, [0, 1], {wait};
TCvar4: R3, SynD, [0. 1), {wait};
TCvar5: R4, SynC, [0, 1], {}:
TCvar6: RS, SynD, [0, 1], {}:
TCvar7: R10, Free, [0, 2], {}:
TCvar8: R9, IsEmpty, [0, 2], {taken};
TCvar9: R9, PopC, [0, 2], {ready, taken};
TCvarl0: R9, PopD, [0, 2], {ready, taken};
end

Figure 28: Formal specification for Left Arm GRC

53

4.

- omary: TCverd = -1
SynD / petfr = dish o =t
Ptacef true &4 trus &8
PushCf true 88 (prtL. = RecogD / =
mmw-u}n) mun\:t'f-a
&4 TCOvard <= 2

RecogC/paL’= cup
Assemble{ true £ NOT(pL PushDf frve &2, (prtL= priR) 84 Towrt =0
=paR) &4 TOved =2 |/ iR = dish) &L TCwasS
true 22 TCva =0 / 2] /
Pick{ bus &4 tres &4 TCvert <=4 | L
TCw2 =4 |/pn'=pnt &8 TOWRS =0 &
TOww3 =0 & TOwet =0

Figure 29: Right Arm state diagram

Occurrences of event Pick precede occurrences of PushC, PushD within a period
1, of an object Right Arm, RightArm_VAR. The occurrences are bound to the
dishcup_occurrence supplementary axiom.

TR_AX_4 : AXIOM TT(RightArm_VAR)(i)(e_Pick)(dishcup_occurrence) <
TI(RightArm_VAR) (i) (e_PushC) (cup_occurrence)
TR_AX_S : AXIOM TT(RightArm_VAR)(i)(e_Pick)(dishcup_occurrence) <
TT(RightArm _VAR) (i) (e_PushD) (dish_occurrence)
dishcup_occ_ax : AXIOM dishcup_occurrence =
dish_occurrence + cup_occurrence // see supplementary axioms

Occurrences of PushC or PushD precede occurrences of RecogC or RecogD
within a period 2, of an object Right Arm, RightArm_VAR.The occurrences are
bound to the push_recog.axiom supplementary axiom.

TR_AX_6 : AXIOM TT(RightArm_VAR)(i)(e_PushC)(push_cup_oce) <
TT(RightArm_VAR) (i) (e_RecogD) (Recog_dish_occ)
TR_AX_6 : AXIOM TT(RightArm_VAR)(i)(e_PushC)(push_cup._oce) <
TI(RightAra_VAR) (i) (e _RecogC) (Recog_cup_occ)
TR_AX_7 : AXIOM TT(RightAxm_VAR)(i)(e_PushD)(push_dish_oce) <
TT(RightArm_VAR) (i) (e _RecogD) (Recog_dish_occ)
TR_AX_8 : AXIOM TT(RightArm_VAR)(i)(e_PushD)(push_dish_occ) <
TT(RightAra_VAR) (i) (e_RecogC) (Recog._cup_occ)
push_recog_axiom: AXIOM push_cup_occ + push_dish_occ =
Recog_cup_occ + Recog_dish_occ -~ 1 //see supplementary axioms

54

Class RightArm [QU, @Y, @X, €W, @V]
Events: Place!@Y, SynD?@W, SynC?7@W, PushC!@X, PushD!@X, Assemble!@W, RecogD?@U,
RecogC?@U, Pick!@V
States: ready, finish,*wait, taken, position
Attributes: prtL:P; prtR:P; prt:P
Traits: Part[P]
Attribute-Function: finish — {};wait — {} :taken— {prt}; ready — {prtR}; position — {prtL}:
Transition-Specifications:
R1: < finish,wait >; Place(true); true => true;
R2: < wait,ready >; SynD(true); true => prtR’=dish;
R3: < wait,ready >; SynC(true); true = prtR'=cup;
R4: < taken,ready >; PushC(true); (prtL=prtR) & (prtR=cup) => true;
RS: < taken,ready >; PushD(true); (prtL=prtR) & (prtL=dish) = true;
R6: < taken, finish >; Assemble(true); NOT(prtL=prtR) => true;
R7: < ready, position >; RecogD(true); true => prtL’'=dish;
R8: < ready, position >; RecogC(true); true => prtL’'=cup;
R9: < position, taken >; Pick(true); true => prt'=prt;
Time-Constraints:
TCvarl: R8, Pick, [0, 4]. {}:
TCvar2: R7, Pick, [0, 4], {}:
TCvar3: R9, Assemble, [0, 2]. {ready}:
TCvar4: R9, PushC, [0, 2], {finish,ready}:
TCvar5: R9, PushD, [0, 2], {finish, ready}.
TCvar6: R6, Place, [0, 2]. {}:
end

Figure 30: Formal specification for Right Arm GRC

61)

- Ptlace
Wait

Figure 31: Tray state diagram

Class Tray [©Z, @PZ]
Events: Load!@PZ, Place?@Z
States: *Wait,On
Attributes:
Traits:
Attribute-Function: On — {}; Wait = {};
Transition-Specifications:
R1: < Wait, Wait >; Place(true); true = true;
R2: < Wait, Wait >; Load(true); true = true;
Time-Constraints:
end

Figure 32: Formal specification for Tray GRC

6. The occurrence of event Assemble precedes the occurrence of Place within a
period 7, of an object Right Arm, RightArm_VAR.

TR_AX_6 : AXIOM TT(RightArm_VAR)(i)(e_Assemble)(1) < TT(RightArm_VAR)(i)(e_Place)(1)

56

Tray class

e No transition axioms can be declared since all of the transitions go through
the initial state, hence we cannot establish event occurrence ordering within a

period.

Time constraint axioms

A time constraint axiom is included for each constrained reaction to a transition. An
activated reaction, corresponding to the occurrence of an event, must occur within
a specified time interval which is relative to the occurrence of the transition that
has activated it. The following axioms capture all time constraints expressed in the

specifications.

Belt class

1. The occurrence of event Stop in reaction to the occurrence of the event Sensed,
occurs within an interval of 0 to 4 time units, within a period 7 and for the Belt
object Belt_VAR.

TC_AX.1 : AXIOM TT(Belt_VAR)(i)(e_Stop)(j) ~ TT(Belt_VAR)(i)(e_Sensed)(j) > O AND
TT(Belt_VAR) (i) (e_Stop) (j) - TT(Belt_VAR)(i)(e_Sensed)(j) < 4

2. The occurrence of event Move in reaction to the occurrence of the event Stop,
occurs within an interval of 5 to 7 time units, within a period ¢ and for the Belt
object Belt_VAR.

TC_AX.2 : AXIOM TT(Belt_VAR)(i)(e_Move)(j) - TT(Belt_VAR)(i)(e_Stop)(j) > S AND
TT(Belt_VAR) (i) (e_Move) (j) - TT(Belt_VAR)(i)(e_Stop)(j) < 7

VisionSystem class

1. The occurrence of event Known in reaction to the occurrence of the event
Sensed, occurs within an interval of 0 to 3 time units, within a period i and for
the VisionSystem object VisionSystem_VAR.

TC_AX_2 : AXIOM TT(VisionSystem_VAR) (i) (e_Knowm)(j) -~
TT(VisionSystem_VAR) (i) (e_Sensed) (j) > O AND

TT(VisionSystem_VAR) (i) (e_Knowm)(j) -
TT(VisionSystem_VAR) (i) (e_Sensed) (j) < 3

2. The occurrence of event Unknown in reaction to the occurrence of the event
Sensed, occurs within an interval of 2 to 4 time units, within a period i and for
the VisionSystem object VisionSystem_VAR.

57

TC_AX_1 : AXIOM TT(VisionSystem_VAR)(i)(e_Unknown)(j) -
TT(VisionSystem_VAR) (i) (e_Sensed)(j) > 2 AND
TT(VisionSystem_VAR) (i) (s _Unknown)(j) -
TT(VisionSystem_VAR) (i) (e_Sensed)(j) < 4

3. The occurrence of event RecogC in reaction to the occurrence of the event
Sensed, occurs within an interval of 0 to 6 time units, within a period 7 and for
the VisionSystem object VisionSystem_VAR.

TC_AX_3 : AXIOM TT(VisionSystem_VAR)(i)(e_RecogD)(j) -
TT(VisionSystem_VAR) (i) (e_Sensed)(j) > O AND
TT(VisionSystem_VAR) (i) (e_RecogD)(j) -
TT(VisionSystem_VAR) (i) (e_Sensed)(j) < 6

4. The occurrence of event RecogD in reaction to the occurrence of the event
Sensed, occurs within an interval of 0 to 6 time units, within a period ¢ and for
the VisionSystem object VisionSystem_VAR.

TC_AX_4 : AXIOM TT(VisionSystem_VAR)(i)(e_RecogC)(j) -
TT(VisionSystem_VAR) (i) (e_Sensed)(j) > O AND

TT(VisionSystem_VAR) (i) (e_RecogC)(j) -
TT(VisionSystea_VAR) (i) (e_Sensed) (j) < 6

StackStore class

e There are no time constraint expressed for the design of the class StackStore.

LeftArm class

1. The occurrence of event Pick in reaction to the occurrence of the event RecogC,
occurs within an interval of 0 to 4 time units, within a period i and for the
LeftArm object LeftArm_VAR.

TC_AX_1 : AXIOM TT(LeftArm_VAR)(i)(e_Pick)(j) -
TT(LegtAxm_VAR) (i) (e_RecogC)(j) > O AND
TT(LeftArm_VAR) (i) (e_Pick) (j) -
TI(LeftArn_VAR) (i) (e_RecogC)(j) < 4

2. The occurrence of event Pick in reaction to the occurrence of the event RecogD,
occurs within an interval of 0 to 4 time units, within a period 7 and for the
LeftArm object LeftArm_VAR.

TC_AX_2 : AXIOM TT(LeftArm_VAR)(i)(e_Pick)(j) -
TT(LeftArm_VAR) (i) (e_RecogD) (j) > O AND
TT(LeftArm_VAR) (i) (o_Pick) (i) -
TT(LeftArm_VAR) (i) (e_RecogD)(j) < 4

58

- The occurrence of event SynC in reaction to the occurrence of the event Pick,
occurs within an interval of 0 to 1 time units, within a period i and for the
LeftArm object LeftArm_VAR.

TC_AX_8 : AXIOM TT(LeftArm_VAR)(i)(e_SynC) 4 -
TT(LeftArm_VAR) (i) (e_Pick)(j) > O AND
TT(LeftArm_VAR) (i) (e_SynC) (j) ~
TT(LeftArm_VAR) (i) (e_Pick)(j§) < 1

- The occurrence of event SynD in reaction to the occurrence of the event Pick,
occurs within an interval of 0 to 1 time units, within a period i and for the
LeftArm object LeftArm_VAR.

TC_AX_6 : AXIOM TT(LeftArm_VAR)(i)(Ce_SynD) G -
TT(LettArm_VAR) (i) (o Pick)(j) > O AND
TT(LeftArm_VAR) (i) (e_SynD)(j) -
TT(LeftArm_VAR) (i) (e_Pick)(j) < 1

- The occurrence of event SynC in reaction to the occurrence of the event PopC,
occurs within an interval of 0 to 1 time units, within a period 7 and for the
LeftArm object LeftArm_VAR.

TC_AX_9 : AXIOM TT(LeftArm_VAR)(i)(e_SynC)(j) -
TT(LeftArm_VAR) (i) Ce_PopC) (j) > O AND
TI(LeftArm_VAR) (i) (e_SynC)(j) -
TT(LeftArm_VAR) (i) Ce_PopC) (j) < 1

- The occurrence of event SynD in reaction to the occurrence of the event PopD,
occurs within an interval of 0 to 1 time units, within a period i and for the
LeftArm object LeftArm_VAR.

TC_AX_7 : AXIOM TT(LeftArm_VAR) (i) (e_SynD)(j) -
TT(LeftArm_VAR) (i) (e_PopD) (j) > O AND
TT(LeftArm_VAR) (i) (e_SynD)(j) -
TT(LeftArm_VAR) (i) Ce_PopD) (j) < 1

- The occurrence of event Free in reaction to the occurrence of the event Assemble,
occurs within an interval of 0 to 2 time units, within a period 7 and for the
LeftArm object LeftArm_VAR.

TC_AX_10 : AXIOM TT(LeftArm_VAR) (j)(e_Free)(i) -
TI(LeftArm_VAR)(i)(e_Assemble) (3) > 0 amD
TT(LeftArm_VAR) (j) (e_Free)(i) -
TT(LeftArm_VAR) (i) (e_Assemble) (j) < 2

- The occurrence of event IsEmpty in reaction to the occurrence of the event

Free, occurs within an interval of 0 to 2 time units, within a period ¢ and for
the LeftArm object LeftArm_VAR.

99

10.

TC_AX_5 : AXIOM TT(LeftArm_VAR)(i)(e_IsEmpty)(j) -
TT(LeftArm_VAR) (i) (e_Free)(j) > O AND
TT(LeftArs_VAR) (i) (e_IsEmpty)(j) -
TT(LeftArm_VAR) (i) (e_Free)(j) < 2

. The occurrence of event PopC in reaction to the occurrence of the event Free,

occurs within an interval of 0 to 2 time units, within a period i and for the
LeftArm object LeftArm_VAR.

TC_AX_3 : AXIOM TT(LeftArm_VAR)(i)(e_PopC)(j) -
TT(LeftArm_VAR) (i) (e_Free)(j) > O AND
TT(LeftArm_VAR) (i) (e_PopC) (§) -
TT(LeftArm_VAR) (i) (e_Free)(j) < 2

The occurrence of event PopD in reaction to the occurrence of the event Free,
occurs within an interval of 0 to 2 time units, within a period ¢ and for the
LeftArm object LeftArm_VAR.

TC_AX_4 : AXIOM TT(LeftArm_VAR)(i)(e_PopD)(j) -
TT(LeftArm_VAR) (i) (e_Free)(j) > O AND
TT(LeftArm_VAR) (i) (e_PopD)(j) -
TT(LeftArm_VAR) (i) (e_Free)(j) < 2

RightArm class

1.

The occurrence of event Pick in reaction to the occurrence of the event RecogC,
occurs within an interval of 0 to 4 time units, within a period ¢ and for the
RightArm object RightArm _VAR.

TC_AX_5 : AXIOM TT(RightArm_VAR)(i)(e_Pick)(j) =~
TT(RightArm_VAR) (i) (e_RecogC)(j) > O AND
TT(RightAre_VAR) (i) (e_Pick)(j) -~
TT(RightArm_VAR) (i) (e_RecogC)(j) < &

The occurrence of event Pick in reaction to the occurrence of the event RecogD,
occurs within an interval of 0 to 4 time units, within a period ¢ and for the
RightArm object RightArm_VAR.

TC_AX_6 : AXIOM TT(RightArm_VAR)(i)(e_Pick)(j) -
TT(RightArm_VAR) (i) (e_RecogD)(j) > O AND
TT(RightArm_VAR) (i) (e_Pick)(j) -
TT(RightArm_VAR) (i) (e_RecogD) (j) < &

The occurrence of event Assemble in reaction to the occurrence of the event
Pick, occurs within an interval of 0 to 2 time units, within a period ¢ and for
the RightArm object RightArm_VAR.

TC_AX_4 : AXIOM TT(RightArm_VAR)(i)(e_Assemble)(j) -
TT(RightArm_VAR) (i) (e_Pick)(j) > O AND
TT(RightAra_VAR) (i) (e_Assemble) (§) -
TT(RightArm_VAR) (i) (e_Pick) (§) < 2

60

4. The occurrence of event PushC in reaction to the occurrence of the event Pick,
occurs within an interval of 0 to 2 time units, within a period ¢ and for the
RightArm object RightArm_VAR.

TC_AX_2 : AXIOM TT(RightArm_VAR)(i)(e_PushC)(j) -
TT(RightArm_VAR) (i) (e_Pick)(j) > O AND
TT(RightArm_VAR) (i) (e_PushC)(j) -
TT(RightArm_VAR) (1) (e_Pick)(j) < 2

5. The occurrence of event PushD in reaction to the occurrence of the event Pick,
occurs within an interval of 0 to 2 time units, within a period i and for the
RightArm object RightArm_VAR.

TC_AX_3 : AXIOM TT(RightArm_VAR)(i)(e_PushD)(j) -
TT(RightArm_VAR) (i) (e_Pick)(j) > O AND
TT(RightArm_VAR) (i) (e_PushD)(j) -
TT(RightArm_VAR) (i) Ce_Pick) (j) < 2

6. The occurrence of event Place in reaction to the occurrence of the event Assem-
ble, occurs within an interval of 0 to 2 time units, within a period ¢ and for the
RightArm object RightArm_VAR.

TC_AX_1 : AXIOM TT(RightArs_VAR)(i)(e_Place)(j) -
TT(RightArm_VAR) (i) (e_Assemble)(j) > O AND
TT(RightArm_VAR) (i) (e_Place)(j) -
TT(RightArm_VAR) (i) (e_Assemble)(j) < 2

Tray class

e There are no time constraint expressed for the design of the class Tray.

Synchrony axioms

Message synchronization involves occurrences of input and output events that corre-
spond in two object instances. In other words, the occurrence of an input event e
in an instance of a class means that the same event e occurred as output event in
another class instance. The following axioms are those that correspond to the configu-
ration list of the subsystem described in Figure 34 and illustrated in the collaboration
diagram in Figure 33.

1. Port @S1 of VS1 (class VisionSystem) is linked to port @P1 of object B1 (Belt
class). All occurrences of event Sensed in VS1 occur simultaneously with Sensed

in B1, in any period i.

SY_AX_1 : AXIOM TT(VS1)(i)(e_Sensed)(j) = TT(B1)(j)(e_Sensed)(j)

61

e e
1 =
D 2= N v N
bl
T I =
“\m/%
|

Figure 33: Collaboration diagram for robotic assembly system

2. Port @V'1 of RA1 (class RightArm) is linked to port @Q2 of object Bl (class
Belt). All occurrences of event Pick in RA1 occur simultaneously with Pick in
B1, in any period :.

SY_AX_2 : AXIOM TT(RA1)(i)(e_Pick)(j) = TT(B1)(i)(e_Pick) (6))

3. Port @PL1 of ST1 (class StackStore) is linked to port @N'1 of object LA1 (class
LeftArm). All occurrences of event PopC in ST1 occur simultaneously with
PopC in B1 and all occurrences of event PopC in ST1 occur simultaneously with
PopC in B1 and all occurrences of event IsEmpty in ST1 occur simultaneously
with IsEmpty in LA1l, in any period i.

SY_AX_3 : AXIOM TT(ST1)(i)(e_PopC)(j) = TI(LA1)(i)(e_PopC) (6D
SY_AX_4 : AXIOM TT(ST1)(i)(e_PopD)(j) = TT(LA1)(i)(e_PopD)(j)
SY_AX_S : AXIOM TT(ST1)(i)(e_IsEmpty)(j) = TT(La1)(i) (e_IsEmpty) (j)

4. Port @R?2 of VS1 (class VisionSystem) is linked to port @K1 of object LA1 (class
LeftArm). All occurrences of event RecogD in VS1 occur simultaneously with
RecogD in LA1 and all occurrences of event RecogC in VS1 occur simultaneously
with RecogC in LA1, in any period 1.

62

SCS robot

end

Inciudes:
instantiate:

B1::Belt[@P:1, €Q:2, OT:0];
RAL:RightArm[@U:1, @Y:1, €X:1, @W:1, @V:1];
ST1::StackStore[@PL:1, @QL:1];

TR1:Tray[€Z:1, €PZ:1];

LAl:LeftArm(@L:1, @M:1, ©N:1, @K:1);
VS1::VisionSystem{€R:2, €@S:1);

Configure:

VS$1.051:€S <—> B1.€P1:@P;
RAl1.@V1:@V <— B1.€Q2:€Q:
ST1.@PL1:@PL <> LA1 @N1:@N;
VS1.OR2:@R <=> LA1.0K1l:€K;
VS1L.O@R1:@R <= RA1l.QU1:QU;
LAI.OM1.@M +=> RA1.QW1:Q@W;
ST1.0QL1:QQL <> RA1.@X1:@X;
TR1.€Z1:€2 < RAl1.Q@Y1:QY;
B1.0Q1:€@Q < LAl.QL1:QL;

Figure 34: Subsystem for Robotic Assembly System

SY_AX_6 : AXIOM TT(VS1)(i)(e_RecogD)(j) = TT(LA1)(i)(e_Recogd)(j)
SY_AX_7 : AXIOM TT(VS1)(i)(e_RecogC)(j) = TT(LA1)(i)(e_RecogC)(j)

5. Port @R1 of VS1 (class VisionSystem) is linked to port QU1 of object RA1

(class RightArm). All occurrences of event RecogD in VS1 occur simultane-
ously with RecogD in RA1 and all occurrences of event RecogC in V51 occur
simultaneously with RecogC in RA1l, in any period .

SY_AX_8 : AXIOM TT(VS1)(i)(e_RecogD)(j) = TT(RA1)(i)(e_Recogd)(j)
SY_AX_9 : AXIOM TT(VS1)(i)(e_RecogC)(j) = TT(RA1)(i)(e_RecogC)(j)

. Port @M1 of LAl (class LeftArm) is linked to port @W1 of object RA1 (class

RightArm). All occurrences of event SynD in LAl occur simultaneously with
SynD in RA1 and all occurrences of event SynC in LAl occur simultaneously
with SynC in RA1 and all occurrences of event Assemble in LA1 occur simul-
taneously with Assemble in RA1, in any period 1.

SY_AX_10 : AXIOM TT(LA1)(i)(e_SynD)(j) = TT(RA1)(i)(e_SynD)(j)
SY_AX_11 : AXIOM TT(LA1) (i) (e_SynC)(j) = TT(RA1)(i)(e_SynC)(j)
SY_AX_12 : AXIOM TT(LA1)(i)Ce_Assemble)(j) = TT(RA1)(i)(e_Assemble)(j)

. Port @QL1 of ST1 (class StackStore) is linked to port @X 1 of object RA1 (class

RightArm). All occurrences of event PushC in ST1 occur simultaneously w1:th
PushC in RA1 and all occurrences of event PushD occur simultaneously with

PushD in RA1, in a period 1.

SY_AX_13 : AXIOM TT(ST1)(i)(e_PushC)(j) = TT(RA1)(i)(e_PushC)(j)
SY_AX_14 : AXIOM TT(ST1)(i)(e_PushD)(j) = TT(RA1)(i)(e_PushD)(j)

63

8. Port @Z1 of TR1 (class Tray) is linked to port @Y1 of object RA1 (class
RightArm). All occurrences of event Place in TR1 occur simultaneously with
Place in RAl, in a period i.

SY_AX_15 : AXIOM TT(TR1)(i)(e_Place)(j) = TT(RA1)(i)(e_Place)(j)

9. Port @Q1 of B1 (class Belt) is linked to port @L1 of object LA1 (class LeftArm).
All occurrences of event Pick in B1 occur simultaneously with Pick in LA1l, in
a period 1.

SY_AX_16 : AXIOM TT(B1)(i)(e_Pick)(j) = TT(LA1)(i)(e_Pick)(j)

5.0.8 Supplementary axioms

Supplementary axioms secure additional requirements or limit the reach of previously
too general axioms. These are specific to the model at hand. In the case of the robotic
assembly system, the fact that different parts can be picked up from the belt (cup or
dish) is not precise enough in the previous axioms. Therefore we add the following
axioms.

1. In many state transitions of the classes in the robotic assembly system, some
transitions, say from a state S; to S; can be accomplished by two distinct
transition specifications. Which are afso complementary. That is, one or the
other can occur due to fact that the robot handles a predetermined selection
of parts, cup or dish. This supplementary axiom refines the fact that when
two transitions are available to go from one state to the other, the sum of their
occurrence history is equal to the occurrence history of the preceding transition
if it is single as opposed to having two possible transitions. It can be used
as occurrence variable in another time expression to establish the relationship
between the event occurrence.

dishcup_occ_ax : AKIOM dishcup_occurrence = dish_occurrence + cup_occurrence

2. This axiom applies specifically to the LeftArm class. In order to compare the
PopC, PopD triggered transitions with the SynC, SynD triggered transitions,
the occurrence variable must again be directed by an axiom to establish proper
relationship between transitions. We know that PopC will generate a SynC and
PopD will generate a SynD. We know that SynD or SynC can have occurred
zero time or once before PopD or PopC at the beginning of a period (depending
on whether the part is taken from the stack or from the belt). We also know that
PopC is followed by SynC and PopD by SynD. When PopC occurs for the first
time, SynC will occur for the first or second time, the difference between their
occurrence is zero or 1. This difference will apply for all subsequent occurrences
within a period i, hence the popcsync_ax axiom. The same rationale applies
for the popd_synd_ax axiom.

popc._sync_ax: AKIOM pop_cup_occurrence - syn_cup_occurrence < 2
popd_synd_ax: AXIOM pop_dish_occurrence - syn_dish_occurrence < 2

64

3. Right Arm class. Again in order to establish relationship between two transi-
tions that are doubled due to the cup/dish possibility, another supplementary
axiom is given. When PushC or PushD occurs the next transition is not bound
by a part selection, a new part is picked-up from the belt. Therefore the only
relationship that we can establish between the occurrence numbers of PushC,
PushD and RecogC, RecogD is that the sum of occurrences of PushC, PushD
is equal to the sum of RecogC, RecogD minus 1. Minus 1 because RecogD
or RecogC has occurred at least once before PushC or PushD after the initial

state.

push_RecogC_axiom: AXIOM push_cup_occ + push_dish_occ = Recog_cup_occ + Recog._dish_occ - 1

5.1 Generated axiomatic description

This section includes an automatically generated PVS file that captures all statically
perceptible information regarding transitions, time constraints and synchrony. The
goal of this section is to comment the discrepancies between the automatically gener-
ated axioms and the manually generated axioms and obtain justification and establish
the goals for further enhancements of the tool.

65

© B N A A WN -

nuuﬂh&&&&&“ﬂ&u W W W W W W W N NN NN
R R EEEEEEEEE R R - I B - S B - - BT B TR "R I S

5.1.1 Generated PVS theories

Model: THEORY

BEGIN

Time : TYPE = { r: real { r>= 0}
Episode : TYPE = posnat

Occurrence : TYPE = posnat

END Model

transition_time (GRC: TYPE, GRC_Event: TYPE]: THEORY

BEGIN
IMPORTING Model
TT: [GRC -> (Episods -> [GRC_Event -> (Occurrence -> Time]1ll

END transition_time

Tray: THEORY

BEGIN

Tray_GRC : TYPE+

Tray_Event : TYPE = {e_Load, e_Place}
IMPORTING transition_time[Tray_GRC,Tray_Event]
i: VAR Episode

j: VAR Occurrence

Tray_VAR : VAR Tray_GRC

END Tray

StackStore: THEORY

BEGIN
StackStore_GRC : TYPE+

StackStore_Event : TYPE = {e_PushC, e_PushD, e_PopC, e_PopD, e_IsEmpty}

IMPORTING transition_time{StackStore_GRC,StackStore_Event]
i: VAR Episode

j: VAR Occurrence

StackStore_VAR : VAR StackStore_GRC

END StackStore

RightArm: THEORY

BEGIN
RightArm GRC : TYPE+

RightArm_Event : TYPE = {e_Place, e_SynD, e_SynC, eo_PushC, e_PushD, s_Assemble,

e_RecogD, e_RecogC, e_Pick}
IMPORTING transition_time [RightArm_GRC,RightArm_Event]
i: VAR Episode
j: VAR Occurrence
RightArm_VAR : VAR RightArm_GRC

TC_AX_1 : AXIOM TT(RightAram_VAR)(i)(e_Pick)(j) - TT(RightArm_VAR)(i)(e_RecogC)(j) > O AND
TT(RightAra_VAR) (i) (e_Pick)(j) - TT(RightArm_VAR)(i)(e_RecogC)(j) < 4

TC_AX_2 : AXIOM TT(RightArm_VAR)(i)(e_Pick)(j) - TT(RightArm_VAR)(i)(e_RecogD)(j) > O AND
TT(RightAra_VAR) (i) (e_Pick)(j) - TT(RightArm_VAR)(i)(e_RecogD)(j) < 4

TC_AX_3 : AXIOM TT(RightArm_VAR)(i)(e_Assemble)(j) - TT(RightArm_VAR)(i)(e_Pick)(j) > 0 AND
TT(RightArm_VAR) (i) (e_Assemble) (j) - TT(RightArs_VAR) (i) (e_Pick)(j) < 2

66

53
54
55
56
57

59

61
62

& a8

67

69
70
71
72
73
74
75
76
77
78
79

81

g 238288

89

9l
92
23
94
95
26
97
98

100
101
102
103
104

TC_AX_4 : AXIOM TT(RightArm_VAR)(i)(e_PushC)(j) - TT(RightArm_VAR) (i) (e_Pick)(j) > O AND
TT(RightArm_VAR) (i) (e_PushC)(j) - TT(RightArm_VAR) (i) (e_Pick)(j) < 2
TC_AX_6 : AXIOM TT(RightArm_VAR)(i)(e_PushD)(j) - TT(RightArm_VAR)(i)(e_Pick)(j) > O AND
TT(RightArm_VAR) (i) (e_PushD) (j) - Tr(RightArn_VAR) (i) (e_Pick)(§) < 2
TC_AX_6 : AXIOM TT(RightArm_VAR)(i)(e_Place)(j) - TT(RightArm_VAR) (i) (e_Assemble)(j) > O AND
TT(RightArm_VAR) (i) (e_Place) (j) - TT(RightArm_VAR) (i)(e_Assemble)(j) < 2
TR_AX_1 : AXIOM TT(RightArm_VAR)(i)(e_SynD)(1) < TT(RightArm_VAR) (i) (e_RecogD) (1)
TR_AX_2 : AXIOM TT(RightArm_VAR)(i)(e_SynD)(1) < TT(RightArs_VAR) (i) (e_RecogC) (1)
TR_AX_3 : AXIOM TT(RightArm _VAR)(i)(e_SynC)(1) < TT(RightArm_VAR) (i) (e_RecogD) (1)
TR_AX_4 : AXIOM TT(RightArm_VAR)(i)(e_SynC)(1) < TT(RightAxm_VAR) (i) (e_RecogC) (1)
TR_AX_S : AXIOM TT(RightArm_VAR)(i)(e_PuskC)(1) < TT(RightAra_VAR) (i) (e_RecogD)(1)
TR_AX_6 : AXIOM TT(RightArm_VAR)(i)(e_PushC)(1) < TT(RightArm_VAR) (i) (e_RecogC) (1)
TR_AX_7 : AXIOM TT(RightAxm_VAR)(i)(e_PushD)(1) < TT(RightArm_VAR) (i) (e_RecogD) (1)
TR_AX_8 : AXIOM TT(RightArm_VAR)(i)(e_PushD)(1) < TT(RightArm_VAR) (i) (e_RacogC) (1)
TR_AX_9 : AXIOM TT(RightArm_VAR)(i)(e_Assemble)(1) < TT(RightAzm_VAR) (1) (e_Place)(1)
TR_AX_10 : AXIOM TT(RightArm _VAR)(i)(e_RecogD)(1) < TT(RightArm_VAR) (i) (e_Pick) (1)
TR_AX_11 : AXIOM TT(RightArm _VAR)(i)(e_RecogC)(1) < TT(RightArm_VAR) (i) (e_Pick)(1)
13 TR_AX_12 : AXIOM TT(RightArm_VAR)(i)(e_Pick)(1) < TT(RightArm_VAR) (i) (e_PushC) (1)
4 TR_AX_13 : AXIOM TT(RightArm VAR)(i)(e_Pick)(1) < TT(RightArm_VAR) (i) (e_PushD) (1)
% TR_AX_14 : AXIOM TT(RightArm_VAR)(i)(e_Pick)(1) < TT(RightAzm_VAR) (i) (e_Assemble) (1)
END RightArn
VisionSystem: THEORY
BEGIN

VisionSystes_GRC : TYPE+

VisionSystem_Event : TYPE = {e_Sensed, ¢_Unknovn, e_Known, e_RecogD, e¢_RecogC}
IMPORTING transition_time(VisionSystem_GRC, VisionSystem_Event]

i: VAR Episode

j: VAR Occurrence

VisionSystem_VAR : VAR VisionSystea_GRC

TC.AX_1 :

TC_AX_ 2 :

TC_AX_3

TC_AX_4& :

TR_AX_1 :

TR_AX_2
TR_AX_3

TR_AX_4 :
END VisionSystem

AXIOM TT(VisionSysteam_VAR)(i)(e_Kanown)(j) - TT(VisionSystem_VAR) (i) (e_Sensed)(j) > 0 AND
TT(VisionSystem_VAR) (i) (s_Knowvn)(j) - TT(VisionSystem_VAR) (i) (e_Sensed)(j) < 3

AXIOM TT(VisionSystem_VAR)(i)(e_Unkmown)(j) - TT(VisionSystem_VAR) (i) (e_Sensed)(j) > 2 AND
TT(VisionSystem_VAR) (i) (s_Unknown) (j) - TT(VisionSystem_VAR) (i) (e_Sensed) (j) < 4

: AXIOM TT(VisionSystem_VAR)(i)(e_RecogD)(j)} - TT(VisionSystem_VAR) (i) (e_Sensed)(j) > O AND

TT(VisionSystem_VAR) (i) (e_RecogD) (§) -~ TT(VisionSystem_VAR) (i) (e_Sensed)(j) < 6

AXIOM TT(VisionSystem_VAR)(i)(e_RecogC)(j) - TT(VisionSystes_VAR) (i) (e_Sensed)(j) > O AND
TT(VisionSystem_VAR) (i) (s_RecogC) (j) - TT(VisionSystem_VAR) (i)(e_Sensed)(j) < €

AXIOM TT(VisionSystem_VAR)(i)(e_Sensed)(1) < TT(VisionSystes_VAR) (i) (e_Unknown)(1)

: AXIOM TT(VisionSystem_VAR)(i)(e_Sensed)(1) < TT(VisionSystem_VAR) (i) (e_Known)(1)
: AXIOM TT(VisionSystes_VAR)(i)(e_Kmown)(1) < TT(VisionSystem_VAR) (i) (e_RecogD)(1)

AXIOM TT(VisionSystem_VAR)(i)(e_Known)(1) < TT(VisionSystem_VAR) (i) (e_RecogC) (1)

67

108 Belt: THEORY

108 BEGIN

107 Belt_GRC : TYPE+

108 Belt_Event : TYPE = {e_Sensed, ¢_Load, e_Stop, e_Move, e_Pick}

109 IMPORTING transition_time [Belt_GRC,Belt_Event]

110 i: VAR Episode

it j: VAR Occurrence

112 Belt_VAR : VAR Belt_GRC

13 TC_AX_1 : AXIOM TT(Belt_VAR)(i)(e_Stop)(§) - TT(Belt_VAR)(i)(e_Sensed)(j) > O AND

114 TT(Belt_VAR) (i) (e_Stop) (j) — TT(Belt_VAR) (i) (e_Sensed)(j) < 4

115 TC_AX_2Z : AXIOM TT(Belt_VAR)(i)(e_Move)(j) - TT(Belt_VAR) (i) (e_Stap) (j) > & AND

116 TT(Belt_VAR) (i) (e_Move) (j) - TT(Belt_VAR) (i)(e_Stop)(j) <7

17 TRAX_1 : AXIOM TT(Belt_VAR)(i)(e_Sensed)(1) < TT(Belt_VAR)(i)(e_Stop)(1)

118 TR_AX_2 : AXIOM TT(Belt_VAR)(i)(e_Stop)(1) < TT(Belt_VAR) (i) (e_NMove) (1)

119 TR_AX_3 : AXIOM TT(Belt.VAR)(i)(e_Stop)(1) < TT(Belt_VAR) (i) (e_Pick)(1)

120 TR_AX_4 : AXIOM TT(Belt_VAR)(i)(e_Pick)(1) < TT(Belt_VAR) (i) (e_Move) (1)

121 END Belt

122

123 Leftirm: THEORY

124 BEGIN

125 LeftArm_GRC : TYPE+

126 LeftArm_Event : TYPE = {e_RecogD, e_RecogC, e.Pick, e_PopC, e_PopD, e_IsEmpty, e_SynD,
127 e_SynC, e_Free, e_Assemble}

128 IMPORTING transition_time[LeftArm_GRC,LeftArm_Event]

129 i: VAR Episode

130 j: VAR Occurrence

131 LeftArm_VAR : VAR LeftArm_GRC

132 TC_AX_1 : AXIOM TT(LeftArm_VAR)(i)(e_Pick)(j) - TT(LeftArm_VAR)(i)(e_RecogC)(j) > O AND
133 TT(LeftArm_VAR) (i) (e_Pick)(j) ~ TT(LeftArm_VAR) (i)(e_RecogC)(j) < 4

134 TC_AX_2 : AXIOM TT(LeftArm_VAR)(i)(e_Pick)(j) - TT(LeftAre_VAR) (i) (e_Recogh)(j) > O AND
135 TT(LeftArm_VAR) (i) (e_Pick)(j) - TT(LeftArm_VAR)(i)(e_RecogD)(j) < 4

136 TC_AX_3 : AXIOM TT(LeftArm_VAR)(i)(e_SynC)(j) - TT(LeftArm_VAR)(i)(e_Pick)(j) > O AND
137 TT(Le£tArm_VAR) (i) (e_SynC) (j) - TT(LeftArm_VAR)(i)(e_Pick)(j) < 1

138 TC_AX_4 : AXIOM TT(LeftArm_VAR)(i)(e_SynD)(j) - TT(LeftAra_VAR)(i)(e_Pick) (j) > 0 AND
139 TT(LeftArm_VAR) (i) (e_SynD) (j) - TT(LeftArm_VAR)(i)(e_Pick)(j) <1

140 TC_AX_S : AXIOM TT(LeftArm_VAR)(i)(e_SynC)(j) - TT(LeftArm_VAR)(i)(e_PopC)(j) > O AND
141 TT(LeftArm_VAR) (i) (e_SynC)(j) - TT(LeftArm_VAR)(i)(e_PopC)(j) < 1

142 TC_AX_6 : AXIOM TT(LeftArm_VAR)(i)(e_SynD)(j) - TT(LeftArm_VAR)(i)(e_PopD)(j) > O AND
143 TT(LeftAram_VAR) (i) (¢_SynD) (§) - TT(LeftArm_VAR)(i)(e_PopD)(j) < 1

144 TC_AX_7 : AXIOM TT(LeftArm_VAR)(i) (e_Free)(j) - TT(LeftArm_VAR) (i) (e_Assemble) (j) > O AND
145 TT(LeftArm_VAR) (i) (s_Free)(j) - TT(LeftAzrm_VAR)(i)(e_issemble)(j) < 2

146 TC_AX_8 : AXIOM TT(LeftArm_VAR)({i)(e_IsEmpty)(j) - TT(LeftArm_VAR)(i)(e_Free) (j) > 0 aND
147 TT(LeftArm_VAR) (i) (e_IsEmpty)(j) - TT(LeftArm_VAR)(i)(e_Free)(j) < 2

148 TC_AX_9 : AXIOM TT(LeftArm_VAR)(i)(e_PopC)(j) - TT(LettArm_VAR) (i) (e_Free)(j) > O AND
149 TT(LeftArm_VAR) (i) (e_PopC) (j) - TT(LeftArm_VAR)(i)(e_Free)(j) < 2

150 TC_AX_10 : AXIOM TT(LeftArm_VAR)(i)(e_PopD)(j) - TT(LeftArm_VAR)(i)(e_Free) (j) > 0 AND
151 TT(LeftArm_VAR) (i) (e_PopD) (§) - TT(LeftArm_VAR)(i)(e_Free)(j) < 2

152 TR_AX_1 : AXIOM TT(LeftArm_VAR)(i)(e_RecogD) (1) < TT(LeftArm_VAR)(i)(e_Pick)(1)

153
154
155
156

68

157
158
159
160
161
162
163
164
168
166
187
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184

188
1868

187
188
189

190
191

192
193
194
195
196
197
198
199
200
201

202
203
204
205
208
207
208

TR_AX_2 : AXIOM TT(LeftArm_VAR)(i)(e_RecogC)(1) < TT(LeftArm_VAR) (i) (e_Pick) (1)
TR_AX_3 : AXIOM TT(LeftArm_VAR)(i)(e_Pick)(1) < TT(LeftArm_VAR)(1) (e_SynD) (1)
TR_AX_4 : AXIONM TT(LeftArm_VAR)(i)(e_Pick)(1) < TT(LeftArm_VAR)(i) (e_SynC) (1)
TR_AX_6 : AXIOM TT(LeftArm_VAR)(i)(e_PopC)(1) < TT(LeftArm_VAR)(1) (e_SynD) (1)
TR_AX_6 : AXIOM TT(LeftArm_VAR)(i)(e_PopC)(1) < TT(LeftArm_VAR)(i) (e_SynC) (1)
TR_AX_7 : AXIOM TT(LeftArm_VAR)(i)(e_PopD)(1) < TT(LeftArm_VAR) (i) (e_SynD) (1)
TR_AX_S : AXIOM TT(LeftArm_VAR)(i)(e_PopD)(1) < TT(LeftArm_VAR) (i) (e_SynC) (1)
TR_AX_9 : AXIOM TT(LeftArm_VAR)(i)(e_SynD)(1) < TT(LeftArs_VAR) (i) (e_Assemble) (1)
TR_AX_10 : AXIOM TT(LeftAra_VAR)(i)(e.SynC)(1) < TT(LeftArm_VAR) (i) (e_Assemble) (1)

p 4 TR_AX_11 : AXIOM TT(LeftArm_VAR)(i)(e_Free)(1) < TT(LefzArm_VAR) (i) (e_PopC) (1)

4 TR_AX_12 : AKIOM TT(LeftArm_VAR)(i)(e_Frse)(1) < TT(LettAra_VAR) (i) (e_PopD) (1)
TR_AX_13 : AXIOM TT(LeftArm_VAR)(i)(e_Free)(1) < TT(LettArm_VAR) (i) (e_IsEmpty) (1)

% TR_AX_14 : AXIOM TT(LeftArm_VAR)(i)(e_Assemble)(1) < TT(LeftArm_VAR) (i) (e_Free) (1)

END LeftArm

robot : THEORY

BEGIN
IMPORTING Tray, StackStore, Rightirm, VisionSystea, Belt, LeftATm
i: VAR Episode
j: VAR Occurrence
B1 : Belt_GRC
RA1 : RightArm _GRC
ST1 : StackStore_GRC
TR : Tray_GRC
LAl : LeftArm GRC
VS1 : VisionSystem_GRC
SY_AX_1 : AXIOM TT(VS1)(i)(e_Sensed)(j) = TT(B1) (i) (e_Sensed) (j)
SY_AX_2 : AXIOM TT(RA1)(i)(e_Pick)(j) = TT(B1) (i) (e_Pick)(J)
SY_AX_3 : AXIOM TT(ST1)(i)(e_PopC)(j) = TT(LA1)(i) (e_PopC) ()
SY_AX_4 : AXIOM TT(ST1)(i)(Ce_PopD)(j) = TT(LA1)(1) (e_PopD) (j)
SY_AX_S : AXIOM TT(ST1)(i)(e_IsEmpty)(j) = TT(LAL)({) (e_IsEmpty) (J)
SY_AX_6 : AXIOM TT(VS1)(i)(e_RecogD)(j) = TT(LAL) (i) (e_RecogD) (j)
SY_AX_7 : AXIOM TT(VS1)(i)(e_RecogC)(j) = TT(LAD)(i) (s_RecogC) (j)
SY_AX_8 : AXIOM TT(VS1)(i)(e_RecogD)(j) = TT(RA1)(i) (e_RecogD) (j)
SY_AX_9 : AXIOM TT(VS1)(i)(e_RecogC)(j) = TT(RA1) (i) (e_RecogC) (§)
SY_AX_10 : AXIOM TT(LAL)(i)(e_SynD)(j) = TT(RA1)(i) (e.SynD) (j)
SY_AX_11 : AXIOM TT(LAL)(i)(e_SynC)(j) = TT(RA1)(i) (e_SynC)(j)
SY_AX_12 : AXIOM TT(LA1)(i)(e_Assemble)(j) = TT(RA1) (i) (e_Assemble) (j)
SY_AX_13 : AXIOM TT(ST1)(i)(e_PushC)(j) = TT(RA1)(i) (e_PushC) (j)
SY_AX_14 : AXIOM TT(ST1)(i)(e_PushD)(j) = TT(RA1)(i) (e_PushD) (j)
SY_AX_15 : AXIOM TT(TR1)(i)(e_Place)(j) = TT(RA1)(i)(e_Place) (&)
SY_AX_16 : AXIOM TT(B1)(i)(e_Pick)(j) = TT(LA1)(i) (e_Pick) (j)

END robot2

69

5.1.2 Commenting PVS generated output

This section shows the differences between the manually derived axioms and the
automatically derived axioms. Some axioms will be identified and a reason explaining

the limitations of the tools will be given to justify the difference.

e All three supplementary axioms are not generated by the tool. As explained in
the supplementary axiom section, 5.0.8 on page 64, these axioms are implicit
to the nature of the problem. They are not explicitly described in the TROM
specifications. Hence they are not automatically derived.

e Some axioms get to have their occurrence index controlled by the supplementary
axioms. Hence the automatic derivation process cannot include these corrected

indexes.

— The transition axioms are generated with an index set to 1, since it is the
safest assumption that can be made. That is, by expressing that the first
occurrence of an event follows the first occurrence of the next one, we stay
away from the pitfalls of the cycles problems.

— The time-constraint axioms are generated with an index set to j. Again,
because that would be the safest assumption. In the time-constraints’
case, we assume that within a period each firing transitions correspond to
a constrained event.

— The synchrony axioms are also generated with an index set to j. We assume
in these cases that all synchronized events have an equivalent occurrence

in the other object.

e We see that some transition axioms are commented out, for example the ones
on lines 70, 71 and 72. This is a voluntary mark made by the algorithm to
alert designers that these axioms may be in conflict with previous axioms in
the object theory. Hence, some revision by the designer is to be made. In
this example, these three axioms are not in conflict and can therefore be un-
commented. The same reasoning is to be done for all commented transition

axioms.

e As stated above, the assumption for transition axioms occurrence representa-
tion is to leave set it to 1. We see in the axioms description of the transition

70

axiom section earlier, that axioms such as the ones on lines 59, 60, 61 and 62
can have the right part of the inequality set to j to show that many occurrences
of RecogC or RecogD can occur after the first occurrence of SynD or SynC.

e All time constraint axioms are represented in the generated theories.

e All synchrony axioms are represented in the generated theories.

We see in this section that the main limitation of the tool is due to the supple-
mentary axioms. Unfortunately, since this information is not found in the formal
specifications of the TROM model, we cannot extract the information to generate the
axioms.

Another limitation of the tool, is its inability to fully grasp cycles within state
machines. That is, when a cycle within a computation period exists, the occurrence
indexes must be revised by the designer of the specifications in order to ensure correct

occurrence representation.

5.2 since axiomatic description

As we saw earlier, the since operator is also an appropriate tool to express time
dependent properties of real time systems. In this section we will see the robotic
assembly system expressed with the since operator. Every transition specification,
time constraint and configuration specification in the subsystem can be expressed with
the since operator. In other words, this section will again show a direct relationship
between each a specification expression (transition, time constraint or synchrony) and
a since expression. We will see in the next section that this direct relationship results
in an automatable output from the formal specifications. This automated output is

from the tool described in Chapter 4.

5.2.1 Transition axioms

Transition Axioms for the Right Arm

1. The RightArm enters the state position, received message RecogC or RecogD
after pushing a cup or a dish or after receiving the SynC or SynD event. Applies
for all subsequent states of position within a period.

71

RightArm(RightArm_GRC)(s0) = position v

since(RightArm(RightArm_GAC) (s1)=ready) < since(RightArm(Rightira_GRC) (s2)=swait)
RightArm(RightArm_GRC)(s0) = position ->

since(RightArm(RightArm_GRC) (s1)=ready) < since (RightArm(RightArs_GRC) (s2)=taken)

2. The RightArm enters the state taken, Picked a part from the belt, after receiv-
ing the RecogC or RecogD event.

RightArm(RightArm_GRC) (s0) = taken ->
since(RightArm(RightArm_GRC) (s1)=positicn) < since (RightAra(RightArm_GRC) (s2)=ready)

3. The RightArm enters the state finish, Assembled a part, after picking up a
part.

RightArm(RightArm_GRC)(s0) = finish ->
since(RightArm(RightArm_GRC) (s1)=taken) < since(RightArm(RightArm_GRC) (s2)=position)

4. The RightArm enters the state ready, Pushed a cup or dish, after picking up
a part or received SynC or SynD after sending Place. Counter example for
subsequent.

RightArm(RightArm_GRC) (s0) = ready ->
since(RightArm(RightArm_GRC) (s1)=wait) < since(RightAra(RightAra_GRC) (s2)=finish)

RightArm(RightArm_GRC) (s0) = ready ->
since(RightArm(RightArm_GRC)(s1)=taken) < since(RightArm(RightArm_GRC) (s2)=position)

5. The RightArm enters the state wait, placed an assembled part on the tray, after
assembling it.

RightArm(RightArm_GRC) (s0) = wvait ->
since(RightArm(RightArm GRC)(s1)=finish) < since (RightArm(RightArm_GRC) (s2)=taken)

Transition Axioms for the Left Arm

1. The LeftArm enters the state taken, picked-up a part from the belt after re-
ceiving the RecogC or RecogD event.

LeftArm(LeftArm_GRC) (30) = taken ->
since(LeftArm(LeftArm_GRC) (s1)=position) < since(LeftArm(LeftArm_GRC) (s2)=ready)

2. The LeftArm enters the state taken, popped a cup or a dish after internal event
free.

LeftArm(LeftAzm_GRC) (s0) = taken ->
since(LeftArm(LeftAra_GRC) (s1)=check) < since(LeftArm(LeftAra_GRC) (s2)=tinish)

3. The LeftArm enters the state wait, sent the SynC or SynD event after popping
a cup or a dish or after picking up a part from the belt.

72

LeftArm(LeftArm_GRC) (s0) = vait ->

since(LeftArm(LeftArm_GRC) (s1)=taken) < since (LeftArm(LeftArm_GRC) (s2)=position)
LeftArm(LeftArm_GRC)(s0) = vait ->

since(LeftArm(LaftArm_GRC) (s1)=taken) < since(LaftAra(Leftirm_GRC) (s2)=check)

4. The LeftArm enters the state finish, Assembled a part after sending the SynC
or SynD event.

LeftArm(LeftArm_GRC) (s0) = finish ->
since(LeftArm(LeftArm_GAC)(s1)=vait) < since(LeftArm(LeftArm_GRC) (s2)=taken)

5. The LeftArm enters the state check, internal event free after assembling the
parts.

LeftArm(LeftAxrm_GRC) (s0) = check ->
since(LeftArm(LeftArm_GRC)(s1)stinish) < since (LettAra(LeftArm_GRC) (s2)=vait)

6. The LeftArm enters the state ready, sent the event IsEmpty after internal
event Free.

LeftArm(LeftArm_GRC) (s0) = ready ->
since(LeftArm(LeftArm_GRC) (s1)scheck) < since(LagtArm(LaftArm_GRC)(s2)=finish)

7 The LeftArm enters the state position, received the RecogC or RecogD after
sending the IsEmpty.

LeftArm(LeftArm_GRC) (s0) = position ->
since(LeftArm(LeftAra_GRC) (s1)sready) < since(LeftArn(LeftArm_GRC) (s2)=check)

Transition Axioms for the Belt

1. The Belt enters the state active, internal event Move after receiving the Pick
event.

Belt(Belt_GRC)(s0) = active ->
since(Belt(Belt_GRC) (s1)=stopped) < since(Belt(Belt_GRC) (s2)=slow)

9. The Belt enters the state stopped, received event Stop after sending event
Sensed.

Belt(Belt_GRC)(s0) = stopped ->
since(Belt(Balt_GRC)(s1)=slow) < since(Belt(Belt_GRC) (s2)=active)

3. The Belt enters the state slow, sent event Sensed after internal event Move

Belt(Belt_GRC)(s0) = slow ->
since(Belt(Belt_GRC)(si)=active) < since(Belt(Belt_GRC) (s2)sstopped)

73

Transition Axioms for the VisionSystem

1. The VisionSystem enters the state identify, internal event Known after incom-
ing event Sensed.

VisionSystem(VisionSystem_GRC) (s0) = identify ->
since(VisionSystea(VisionSystes_GRC) (s1)=sprocess) <
since(VisionSystem(VisionSystea_GRC) (s2)=alert)

2. The VisionSystem enters the state process, incoming event Sensed after out-
going event RecogC or RecogD.

VisionSystem(VisionSystem_GRC) (s0) = alert ->
since(VisionSystea(VisionSystem_GRC) (s1)=identify) <
since(VisionSystes(VisionSystem_GRC) (s2)=process)

3. The VisionSystem enters the state alert, internal event Known after incoming
event RecogC or RecogD.

VisionSystem(VisionSystem_GRC)(s0) = alert ->
since(VisionSystem(VisionSystem_GRC) (s1)=identify) <
since(VisionSystem(VisionSystea_GRC) (s2)=process)

5.2.2 Time constraint axioms

Time Constraint Axiom for RightArm

1. The RightArm sends the Pick event within 4 time units after receiving RecogC
or RecogD.

RightArm(RightArm_GRC) (s0)=taken ->

since(RightArm(RightArs_GRC) (s1)=ready) - since (RightArm(RightAra_GRC) (s2)=position) > 0
RightArm(RightArm_GRC) (s0)=taken ->

since(RightArm(RightArm_GRC) (s1)=ready) - since (RightArm(RightArm_GRC) (s2)=position) > 4

2. The RightArm sends the Assemble event within 2 time units after receiving
Pick

RightArm(RightArm_GRC) (s0)=finish ->

since(RightArm(RightArm_GRC)(s1)=position) - since (RightArm(RightArm_GRC) (s2)=taken) > 0
RightArm(RightArm_GRC) (s0)=finish ->

since(RightArm(RightArm_GRC) (s1)=position) - since(RightAirm(RightArm_GRC) (s2)=taken) < 2

3. The RightArm sends the PushC or PushD event within 2 time units after
receiving Pick

RightArm(RightArm_GRC) (s0)=ready ->

since (RightArm(RightAra_GRC) (s1)=position) - since(RightArs(Rightirm_GRC) (s2)=taken) > 0
RightArm(RightArm_GRC) (s0)=ready ->

since (RightArm(RightArs_GRC) (s1)=position) - since(RightAra(RightArm_GRC)(s2)=taken) < 2

74

4.

The RightArm sends the Place event within 2 time units after sending Assemble

RightArm(RightAra_GRC) (s0)=vait ->

since (RightArm(RightAra_GRC)(s1)=taken) - since(RightArm(RightArn_GRC) (s2)=finish) > 0
RightArm(RightArm_GRC) (s0)=vait ->

since(RightArm(RightArm_GRC) (s1)=taken) - since(RightArm(RightArm_GAC)(s2)=finish) < 2

Time constraint axioms for Left Arm

1.

The LeftArm sends the Pick event within 4 time units after receiving RecogC
or RecogD.

LettArm(LeftArm_GRC) (s0)=taken ->

since(LeftArm(LeftArm_GRC) (s1)=ready) - since(Leftirm(LeftArm_GRC) (s2)=position) > 0
Leftirm(LeftArm_GRC) (s0)=taken ->

since (LeftArm(LeftArm_GRC) (s1)=ready) - since(LeftArm(LeftArm_GRC)(s2)=position) < 4

The LeftArm sends the SynC or SynD event within 1 time units after sending
the Pick event.

LeftArm(LeftArm_GRC) (s0)=vait ->

since(LeftArm(LeftArm_GRC) (s1)=position) - since(LeftArm(LeftAra_GRC) (s2)=taken) > 0
LeftArm(LeftArm_GRC) (s0)=vait ->

since(LeftArm(LeftArm_GRC) (s1)=position) - since(LeftArm(LeftArm GRC) (s2)=taken) < 1

The LeftArm sends the SynC event within 1 time units after sending the PopC
event or sends the SynD event within 1 time units after sending the PopD
event.

LeftAirm(LeftArm_GRC) (s0)=vait ->

since(LeftArm(LaftArn_GRC) (s1)=check) - since(LeftArm(LeftArm_GRC) (s2)staken) > O
LeftArm(LeftArm_GRC) (s0)=vait ->

since(LeftArm(LaftArm_GRC) (s1)=check) - since(LeftArm(LeftArm_GRC) (s2)=taken) < 1

The LeftArm has internal event Free event within 2 time units after sending
the Assemble event.

LeftArm(LeftArm_GRC) (s0)scheck ->
since(LeftArm(Leftirm_GRC) (s1)=vait) - since (LeftArm(LeftArm_GRC)(s2)=finish) > O

LeftArm(LeftArm_GRC) (80)=check ->
since(LeftArm(LeftArm_GRC) (s1)=vait) - since(LeftArm(LeftArm_GRC) (s2)=finish) < 2

The LeftArm sends event IsEmpty event within 2 time units after internal
event F'ree.

LeftArm(LeftArm_GRC) (80)=check ->
since(LeftArm(LeftArm_GRC) (sl)=vait) - since (LettArn(LeftArm_GRC) (s2)=tinish) > O

LeftArm(LeftArm_GRC) (s0)scheck ->
since(Leftirma(LeftArm_GRC) (s1)=vait) - since (LegftArn(LeftArm_GRC) (s2)=finish) < 2

75

6. The LeftArm sends event PopC or PopD event within 2 time units after internal
event Free.

LeftAirm(LeftArm_GRC) (s0)=taken ->
since(LeftArm(LeftArm_GRC) (s1)=f inish) - since(LettArn(LeftArn_GRC) (s2)=check) > 0

Leftirm(LeftArm_GRC) (s0)=taken ->
since(LeftArm(LeftArm_GRC) (s1)=finish) - since (LeftArmn(LeftArm_GRC) (s2)=check) < 2

Time constraint axioms for VisionSystem

1. The VisionSystem has internal event Known within 3 time units after the
Sensed event.

VisionSystem(VisionSystem_GRC) (sO)=identify ->
since(VisionSystem(VisionSystem_GRC) (s1)=alert) -
since(VisionSystem(VisionSystem_GRC) (s2)=process) > 0
VisionSystem(VisionSystem_GRC) (sO)=identify ->
since(VisionSystem(VisionSystem_GRC) (s1)=alert) -~
since(VisionSystem(VisionSystesm_GRC) (s2)=process) < 3

2. The VisionSystem has internal event Unknown between 2 to 4 time units after
the Sensed event.
This time constraint cannot be expressed with the since operator. since does
not include the concepts of period therefore including in one logical assertion
since(A = S)) of a previous period and since(A = Sy) of the current period

cannot be done. Hence the following axioms are not conclusive and are to be
excluded from the set of axioms.

VisionSystem(VisionSystem_GRC) (sO)=alert ->
since(VisionSystem(VisionSystem_GRC) (s1)=alext) -
since(VisionSystem(VisionSystem_GRC) (s2)=process) > 2
VisionSystem(VisionSystem_GRC) (sO)=alert ->
since(VisionSystem(VisionSystem_GRC) (s1)=alert) -
since(VisionSystem(VisionSystes_GRC) (s2)=process) < 4

3. The VisionSystem sends event RecogC or RecogD within 6 time units after the
Sensed event.

VisionSystem(VisionSystem_GRC) (s0)=process ->
linc.(VilionSylt.l(VilionSylt.l.GRC)(BI)‘lllrt) <6

VisionSystem(VisionSystem_GRC)(sO)=identify ->
since(VisionSystem(VisionSystem_GRC) (s1)=alext) < 6

Time constraint axioms for Belt
1. The Belt has internal event Stop within 4 time units after the event Sensed.

Belt(Belt_GRC) (s0)=stopped -> since(Belt(Balt_GRC)(s1)=active) - since(Belt(Belt_GRC) (s2)=slow) > 0
Belt (Belt_GRC) (sO)=stopped -> since(Belt(Belt _GRC)(s1)=active) - since(Belt(Balt_GRC)(s2)=slow) < 4

76

9 The Belt has internal event Move between 5 and 7 time units after the internal

event Stop.

Belt(Belt_GRC)(sO)=active -> since(Belt(Belt_GRC)(sl)=slow) - since(Belt(Belt_GAC) (s2)=stopped)
Belt(Belt_GRC)(s0)=active -> since(Belt(Belt_GRC)(sl)=slow) - since(Belt(Belt_GRC) (s2)=stopped)

5.2.3 Synchrony axioms

As the Figure 34 depicts, the scs includes a configuration list that can also be described
axiomatically with the since operator. Each configuration line is a portlink which
shows that the object instances communicate through the association. This section
will enumerate the axioms as extracted by the theory in Chapter 3

1.

When the event Sensed occurs in objects VisionSystem VS1 and in object Belt
B1, VS1 comes in state process and Bl comes in state slow. Therefore the time
since VS1 was in state alert is equal to the time since Bl was in state active.

((VisionSystem(VS1)(s0)sprocess)) ~ ((Belt(B1)(s0)=slov)) ->
since(VisionSystem(VS1) (s1)=alert) = since(Belt(B1)(s2)=active)

When the event Pick occurs in objects RightArm RA1 and in object Belt B1,
RA1 comes in state taken and B1 comes in state stopped. Therefore the time
since RA1 was in state position is equal to the time since Bl was in state

stopped.
No Axiom

When the events PopC and PopD occur in objects StackStore ST1 and in
object LeftArm LA1, ST1 comes in state active and LA1 comes in state taken.
Therefore the time since ST1 was in state active is not equal to the time since

L A1l was in state check.

No axiom

When the event IsEmpty occurs in objects StackStore ST1 and in object Left-
Arm LA1, ST1 comes in state active and LAl comes in state ready. Therefore
the time since ST1 was in state active is not equal to the time since LAl was
in state check.

No axiom

When the events RecogC and RecogD occur in objects VisionSystem VS1 and
in object LeftArm LA1l, VS1 comes in state alert and LAl comes in state
position. Therefore the time since VS1 was in state identi fy is equal to the
time since LAl was in state ready.

7

>5
<7

10.

11.

((VisionSystem(VS1)(sO)=alert)) ~ ((LeftArm(LA1) (s0)=position)) ->
since(VisionSystem(VS1) (s1)=identify) = since(LeftArm(LA1) (s2)steady)

When the events RecogC and RecogD occur in objects VisionSystem VS1 and
in object RightArm RA1, VSI comes in state alert and RA1 comes in state
position. Therefore the time since VS1 was in state identify is equal to the
time since RA1 was in state ready.

((VisionSystea(VS1)(sO)=alert)) ~ ((RightArm(RA1) (sO)=position)) ->
since(VisionSystem(VS1) (s1)=identify) = since(RightArm(RA1) (s2)=ready)

When the events SynC and SynD occur in objects LeftArm LA1l and in object
RightArm RA1, LAl comes in state active and RA1 comes in state taken.
Therefore the time since LAl was in state taken is equal to the time since RA1l

was in state watzt.

((LeftArm(LA1) (sO)mswait)) - ((RightArm(RA1)(s0)=resdy)) ->
since(LeftAra(LA1) (s1)=taken) = since(Rightirm(RA1)(s2)=vait)

When the event Assembles occurs in objects LeftArm LA1 and in object RightArm

RA1, LAl comes in state finish and RA1 comes in state finish. Therefore the
time since LA1 was in state wait is equal to the time since RAl was in state

taken.

 (LeftArm(LA1) (sO)=finish)) ~ ((RightArm(RA1)(sO)=finish))} ->
since(LeftArn(LA1) (s1)=vait) = since(RightArm(RA1)(s2)=taken)

When the events PushC and PushD occur in objects StackStore ST1 and in
object Right Arm RA1, ST1 comes in state active and RA1 comes in state ready.
Therefore the time since ST1 was in state active is not equal to the time since
RA1 was in state taken. .

No axiom

When the event Place occurs in objects Tray TR1 and in object RightArm
RA1, TR1 comes in state wait and RA1 comes in state wait. Therefore the
time since TR1 was in state wait is not equal to the time since RA1 was in

state finish.

No axiom

When the event Pick occurs in objects StackStore Belt B1 and in object LeftArm
LA1, Bl comes in state stopped and LAl comes in state taken. Therefore the
time since Bl was in state stopped is not equal to the time since LAl was in

state position.

Ko axiom

78

O ® N O N A DN e

NN NN NN ~
B ERNRRBRRBIYINEBIST &S &adrawnme~ o

5.2.4 Generated since axioms

Transition axioms for Tray
Transition axioms for StackStore
Transition axioms for RightArm

RightArm(RightArm_GRC) (s0) = ready ->
since(RightAra(RightArm_GRC) (s1)=vait) < since (RightArm(RightArm_GAC) (s2)=finish)

RightArm(RightArm_GRC) (s0) = position ->
since(RightArm(RightArm_GRC) (s1)=ready) < since(RightArm(RightArm_GRC)(s2)=wait)

RightArm(RightArm_GRC)(s0) = position ->

since(RightArm(RightArm_GRC) (sl)=ready) < since(RightArm(RightArm_GAC)(s2)=taken)
RightArm(RightArm_GRC) (30) = wait ->

since(RightArm(RightArm_GRC) (s1)=finish) < since(RightArm(RightArm_GRC) (s2)=taken)
RightArm(RightArm_GRC) (30) = taken ->

since(RightArm(RightArm_GRC) (s1)=position) < since(RightArm(RightArm_GRC) (s2)=ready)

RightArm(RightArm_GRC)(s0) = ready ->
since(RightArm(RightAxm_GRC) (s1)=taken) < since(RightArm(RightArm_GRC)(s2)=position)

RightArm(RightArm_GRC) (30) = ready ->
since(RightArm(RightArm_GRC)(si)=taken) < since(RightArm(RightArm_GRC) (s2)=position)

RightArm(RightArm_GRC)(s0) = finish ->
since(RightArm(Rightira_GRC) (s1)=taken) < since (RightArm(RightArm_GRC) (s2)=position)

Transition axioms for LeftArm

LeftArm(LeftArm_GRC) (s0) = taken ->
since(LeftArm(LeftArm_GCRC) (s1)=position) < since(LeftArm(LaftArm_GRC) (s2)=ready)

LeftArm(LeftArm_GRC) (s0) = wait ->
since(LeftArm(LeftArm_GRC) (s1)=taken) < since(Leftirm(LeftArm_GRC) (s2)=position)

LeftArm(LeftArm_GRC)(s0) = wait ->
since(LeftArm(LeftArn_GCRC) (s1)=taken) < since(LeftArn(LeftArm_GRC) (82)=check)

LeftArm(LeftArm_GRC) (s0) = position ->
since(LeftArn(LeftArm_GRC) (s1)=ready) < since(Leftirm(Leftirm_GRC) (s2)=check)

LeftArm(LeftArm_GRC)(s0) = finish ->
since(LeftArm(LeftArm_GRC) (s1)=wait) < since(LeftArn(LeftArm_GRC) (s2)=taken)

LeftArm(LeftArm_CRC) (s0) = taken ->
since(LeftArm(LeftArm_GRC) (s1)=check) < since(LeftArn(LeftArs_GRC) (82)=tinish)

LeftArm(LeftArm_GRC) (s0) = ready ->
since(Leftirn(LeftArm_GRC) (s1)=check) < since(LeftArn(LeftArm_GRC) (82)=finish)

LeftArm(LeftArm_GRC)(s0) = check ->
since(LeftArm(LeftArm_GRC) (s1)=finish) < since(LeftArm(LeftArm_GRC)(s2)=vait)

79

Transition axioms for VisionSystem

VisionSystem(VisionSystem_GAC) (s0) = identify ->

since(VisionSystem(VisionSystem_GAC)(s1)=process) < since(VisionSystem(VisionSystem_GRC)(s2)=alert)
VisionSystem(VisionSystem_GAC)(s0) = alert ->

since(VisionSystem(VisionSystem_GRC)(s1)=identify) < since(VisionSystem(VisionSystem_GRC) (s2)=process)
VisionSystem(VisionSystem_GRC)(s0) = alert ->

since(VisionSystea(VisionSystem_GRC)(s1)=identify) < since(VisionSystem(VisionSystem_GRC) (s2)=process)
VisionSystem(VisionSystem_GRC)(s0) = process ->

since(VisionSystem(VisionSystem_GRC)(s1)=alert) < since (VisionSystem(VisionSystem_GRC) (s2)=identify)
VisionSystem(VisionSystem_GRC)(s0) = process ->

since(VisionSystem(VisionSystes_GRC) (s1)=alert) < since(VisionSystem(VisionSystem GAC) (s2)=identity)

Transition axioms for Belt

Belt(Belt_GRC)(s0) = stopped ->

since(Belt(Belt_GRC) (s1)=slow) < since(Belt(Belt_GRC)(s2)=active)
Belt(Belt_GRC)(s0) = active ->

since(Belt(Belt_GAC) (s1)=stopped) < since(Belt(Belt_GRC)(s2)=slow)
Belt(Belt_GRC)(s0) = slov ->

since(Belt(Belt_GRC) (s1)=active) < since(Belt(Belt_GRC)(s2) =gtopped)

TC Axiom : TCvarl of RightArm.
RightArm(RightAra_GRC)(s0)=taken ->

since(RightArm(RightArm_GRC)(s1)=ready) - since (RightArm(RightArm_GRC) (s2)=position) > 0
RightArm(RightArm_GRC) (s0)=taken ->

since(RightArm(RightArm_GRC) (s1)=ready) - since(RightArm(RightArm_GRC) (s2)=position) < 4

TC Axiom : TCvar2 of RightArm.
RightArm(RightArn_GRC)(s0)=taken ->

since (RightArm(RightArm_GRC) (s1)=ready) - since(RightArm(RightAra_GRC) (s2)=position) > 0
RightArm(RightArm_GRC) (s0)=taken ->

since(RightArm(RightArm_GRC)(s1)=ready) - since(RightArm(RightArm_GRC) (s2)=position) < 4

TC Axiom : TCvar3 of RightArm.
RightArm(RightArm_GRC) (s0)=tinish ->

since(RightArm(RightArm_GRC) (s1)=position) - since(RightAra(RightArm_GRC) (s2)=taken) > 0
RightArm(RightArm_GRC)(s0)=finish ->

since(RightArm(RightArm_GRC) (s1)=position) - since(RightArm(RightArm_GRC)(s2)=taken) < 2

TC Axiom : TCvar4 of RightArm.
RightArm(RightArm_GRC) (s0)=ready ->

since(RightArm(RightArm_GRC) (s1)=position) - since(RightAra(RightArm_GRC) (s2)=taken) > 0
RightArm(RightArs_GRC) (s0)=ready ->

since(RightArm(RightArm_GRC) (s1)=position) - since(RightArm(RightAra_GRC) (s2)=taken) < 2

80

101
102
103
104
108
106
107
108
109
110
11

113
114
115
116
117

119
120
121
122
123
124
125
126
127
128
129
130

TC Axiom : TCvarS of RightArm.
Rightirm(RightArm_GRC) (s0)=Teady ->

since(RightArm(RightArm_GRC)(s1)=position) - since(RightArm(RightArs_GRC} (s2)=taken) > O

RightArn(RightAra_GRC) (s0)=ready ->

since(RightArm(RightArm_GRC)(s1)=position) - since(RightArm(RightArm_GRC) (s2)=taken) < 2

TC Axiom : TCvarf of RightArm.
RightArn(RightArm_GRC) (s0)=vait ->

since(RightArm(RightArm_GRC) (s1)=taken) - since(RightArm(Rightirm_GAC)(s2)=finish) > O

RightAirm(RightArm_GRC) (s0)=vait ->

since(RightArm(RightArm_GRC) (s1)staken) - since(Rightirm(Rightirm_GRC)(s2)=tinish) < 2

TC Axiom : TCvari of VisionSystems.

VisionSystem(VisionSystea_GRC) (s0)=identify ->
since(VisionSystem(VisionSystem_GRC) (s1)=alert)

VisionSystem(VisionSystem_GRC) (s0)=identity ->
since(VisionSystem(VisionSystea_GRC) (s1)=alert)

TC Axiom : TCvar2 of VisionSystea.

VisionSystem(VisionSystem_GRC) (s0)=alert ->
since(VisionSystem(VisionSystea_GRC) (s1)=alert)

VisionSystem(VisionSystem_GRC) (sO)=alert ->
since(VisionSystem(VisionSystea_GRC) (s1)=alert)

TC Axiom : TCvar3 of VisionSystem.
VisionSystem(VisionSystes_GRC) (sO)=process ->
since(VisionSystem(VisionSystem_GRC) (s1)=alert)
VisionSystem(VisionSystem_GRC) (sO)=identify ->
since(VisionSystea(VisionSysten_GRC) (s1)=alert)
VisionSystem(VisionSystem_GRC) (s0)=alert ->
since(VisionSystem(VisionSystem_GRC) (s1)=alert)

TC Axiom : TCvard4 of VisionSystem.
VisionSystea(VisionSystem_GRC) (sO)=process ->
since(VisionSystem(VisionSystem_GRC) (s1)=alert)
VisionSystem(VisionSystem_GRC) (s0)=identify ->
since(VisionSystem(VisionSystem_GRC) (s1)=alert)
VisionSystem(VisionSystem_GRC) (sO)=alert ->
since(VisionSystem(VisionSystem_GRC) (s1)=alert)

TC Axiom : TCvarl of Belt.
Belt(Belt_GRC) (s0)=stopped ->

since(VisionSystem(VisionSystem_GRC) (s2)=process)

since(VisionSystem(VisionSystea_GAC) (s2)=process)

since(VisionSystem(VisionSystem_GRC) (s2)=process)

since(VisionSystea(VisionSystem_GRC) (s2)=process)

since(Belt (Belt_GRC)(s1)=active) - since(Belt{Belt_GRC) (s2)=slow) > 0

Belt (Belt_GRC) (sO)=stopped ->

since(Belt (Belt_CRC)(s1)=active) - since(Belt(Belt_GRC) (s2)=slovw) < 4

81

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
158
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

TC Axiom : TCvar2 of Belt.
Belt(Belt_GRC)(sO)=active ->

since(Belt (Belt_GRC)(s1)=slow) - since(Belt(Belt_GRC) (s2)=stopped) > §
Belt(Belt_GRC) (s0)=active ->

since(Belt (Belt_GRC) (s1)sslow) - since(Belt(Belt_GRC)(s2)=stopped) < 7

1C Axiom : TCvarl of LeftArm.
LettArm(LeftArm_GRC) (s0)=taken ->

since(LeftArm(LeftArm_CRC) (s1)sready) - sinceCLeftArm(Leftirm GRC)(s2)=position)
LeftArm(LeftArm_GRC) (s0)=taken ->

since(LeftArm(LeftArm_GRC) (s1)=ready) - since(LeftArm(LeftArm_GRC) (s2)=position)

TC Axiom : TCvar2 of LeftiArm.
LeftArm(LeftArm_GRC) (s0)=taken ->

since(LeftArm(LeftArn_GRC) (s1)=ready) - since(LeftArm(Leftirm_GRC) (s2)=position)
LeftArm(LeftArm_GRC) (sO)=taken ->

since(LeftArm(LeftArm_GRC) (s1)=ready) - since(Leftira(Lsftirm_GRC) (s2)=position)

TC Axiom : TCvar3 of LeftArm.
LeftArm(LeftArm_GRC) (s0)swait ->

since(LeftArm(LeftArm_GAC) (s1)sposition) - since(LeftArm(Leftirm GRC) (s2)=taken)
LeftArm(LeftArm_GRC) (s0)=vait ->

since(LeftArm(LeftArm_GRC) (s1)=position) - since(LeftArm(Leftirm_GRC) (s2)=taken)

TC Axiom : TCvard of LeftArsm.
LeftArm(LeftArs_GRC) (s0)=vait ->

since(LaftArm(LeftArm_GRC) (s1)=position) - simce(LeftArm(LeftArm_GRC) (s2)=taken)
Leftirm(LeftArm_GRC) (s0)=vait ~>

since(LeftArm(LeftArm_GRC) (s1)=position) - simce(LeftArm(LeftArm_GRC) (s2)=taken)

TC Axiom : TCvar5 of LeftArm.

Leftirm(LeftAra_GRC) (s0)=wvait ->
since(LeftArm(LeftAra_GRC) (s1)=check)

LeftArn(LeftArm_GRC) (s0)svait ->
since(LeftArm(LeftArm_GRC) (s1)=check) - since(LeftAru(LeftArm_GRC) (s2)=taken) <

since (LeftAra(LeftArn_GRC) (s2)=taken) >

TC Axiom : TCvar6 of LeftArm.

LeftAxrm(LeftArm_GRC) (s0)=wait ->
since(LeftArm(LeftArm_GRC) (s1)=check)

LeftArm(LeftArm_GRC) (sO)swait ->
since(LeftArn(LeftArm_GRC) (s1)=check)

since (LettArm(LeftAra_GRC) (s2)=taken) >

since (LeftArn(LeftAra_GRC) (s2)=taken) <

TC Axiom : TCvar7 of LeftArm.
LeftArm(LeftArm_GRC) (s0)=check ->

since(LeftAra(LeftArm_GRC) (s1)=vait) - since(LeftArm(LeftAra_GRC) (s2)=finish) >
LeftArm(LeftArm_GRC) (s0)=check ->

since(LeftArm(LeftArm_GRC) (s1)=vait) - since(Leftirm(LeftArm_GRC) (s2)=finish) <

82

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
208
206
207
208

210

TC Axiom : TCvar8 of Leftirm.

LeftArm(LeftArm_GRC) (s0) =sready ->
since(LettAirm(LeftAra_GRC) (s1)=finish)

LeftArm(LeftArm_GRC) (s0)=ready ->
since(LettArm(LeftArm_GRC) (s1)=finish)

TC Axiom : TCvar9® of LeftArm.

LeftArm(LeftArm_GRC) (s0)=taken ->
since(LettArm(LeftArm_GRC) (s1)=finish)

LeftArm(LeftArm_GRC) (s0)=taken ->
since(LeftArm(LeftArm_GRC) (s1)=finish)

TC Axiom : TCvariO of LeftArm.

LeftArm(Lef tAzm_GRC) (s0)=taken ->
since(LettArm(LeftAxm_GRC) (s1)=finish)

LeftArm(LeftArm_GRC) (s0)=taken ->
since(Leftirm(LeftArn_GRC) (s1)=finish)

Configuration line & 1

since(LeftArm(LeftArm_GRC) (s2)=check)

since(LeftArm(LeftArm_GRC) (32)=check)

since(LeftArm(LeftArm_GRC) (s2)=check)

since(LeftArm(LeftArm_GRC)(s2)=check)

since(LeftArm(LeftArm_GRC) (s2)=check)

since(LeftArmn(LeftArm_GRC) (s2)=check)

((VisionSystem(VS2)(s0)=process)) ~ ((Belt(B2) (s0)=slow)) ->
since(VisionSystem(VS2)(s1)=alert) = since(Belt(B2) (s2)=active)

Configuration line & 2

((RightArm(RA2) (s0)=taken)) ~ ((Belt(B2)(s0)=stopped)) =>
since(RightArm(RA2) (s1)=position) = since(Belt(B2) (s2)=stopped)

The preceding axiom is an INVALID AXIOM

Configuration line $ 3

((StackStore(ST2)(s0)=Active)) - ((LeftAra(LA2) (s0)=taken)) ->
since(StackStore(ST2) (si)=Active) = since(LeftArm(LA2) (82)=check)

The preceding axiom is an INVALID AXIOM

((StackStore(ST2)(s0)sActive)) ~ ((LeftArm(LA2) (s0)=taken)) ->
since(StackStore(ST2) (s1)=Active) = since (LeftATm(LA2) (82)=check)

The preceding axiom is an INVALID AXIOM

¢ (StackStore(ST2)(s0)=Active)) =~ ((LeftAra(LA2) (s0)=xeady)) ->
since(StackStore(ST2) (s1)=Active) = since(LeftArm(LA2) (82)=check)

The preceding axiom is an INVALID AXIOM

Configuration line # 4

((VisionSystem(VS2)(s0)=alert)) ~ ((LeftArm(LA2) (O)=position)) ->
since(VisionSystem(VS2) (s1)=identity) = since(LeftAra(LA2) (s2)=ready)

83

>0

<2

>0

<2

>0

<2

233 ¢ (VisionSystem(VS2)(s0)=alert)) - ((LeftArm(LA2)(s0)=position))} ->

238 since(VisionSystes(VS2) (s1)=identity) = since(LeftArm(LA2) (32) =ready)
237

238 Configuration line 8 §

239 ((VisionSystem(VS2)(s0)=alert)) ~ ((RightArm(RA2) (s0)=position)) =>
240 since(VisionSystem(VS2) (s1)=identify) = since(RightArm(RA2) (s2)=ready)
241

242 ((VisionSystem(VS2)(s0)=alert)) ~ ((RightArm(RA2) (s0)=position)) ~>
243 since(VisionSystem(VS2) (s1)=identify) = since(RightAirm(RA2) (s2)=ready)
244

245 Configuration line 8 6

248 ((LeftArm(LA2) (s0)=vait)) ~ ((RightArm(RA2)(sO)=ready}) ->

247 since(LeftArm(LA2) (s1)staken) = since(RightArm(RA2)(s2)=wait)

248

249 ((Leftirm(LA2)(s0)=vait)) - ((RightArm(RA2)(s0)=ready)) ->

250 since(LeftArm(LA2) (s1)=taken) = since(Rightirm(RA2)(s2)=vait)

251

252 ((LeftArm(LA2)(s0)=finish)) ~ ((RightArm(RA2) (s0)=finish)) ->

253 since(LeftArm(LA2) (s1)=vait) = since(RightArm(RA2)(s2)=taken)

254

255 Configuration line 8 7

256 ((StackStore(ST2)(s0)sActive)) = ((RightArm(RA2)(sO)=ready)) ->

257 since(StackStore(ST2) (s1)=Active) = since(RightArm(RA2)(s2)=taken)
258 The preceding axiom is an INVALID AXIOM

259

260

261 ((StackStore(ST2) (s0)=Active)) - ((RightArm(RA2)(sO)=ready)) ->

262 since(StackStore(ST2) (s1)=Active) = since(RightArm(RA2) (s2)=taken)
263 The preceding axiom is an INVALID AXIOM

264

265

266 Configuration line 8 8

267 ¢ (Tray(TR2)(s0)sWait)) - ((RightArm(RA2)(s0)=vait)) —->

268 since(Tray(TR2)(s1)=Wait) = since(RightArm(RA2) (s2)=tinish)

269 The preceding axiom is am INVALID AXIOM

270

271

272 Configuration line & §

273 ((Belt(B2)(s0)=stopped)) - ((LeftArm(LA2)(sO)=taken)) ->

274 since(Belt (B2) (s1)=stopped) = since(LeftArm(LA2)(s2)=position)

275 The preceding axiom is an INVALID AXIOM

276

277

278

279

280

281

282

283

284

- 84

286

5.2.5 Commenting since generated output

This section shows the differences between the manually derived since axioms and the
automatically derived axioms. Some axioms will be identified and reasons explaining
the differences, hence the limitations of the tool will be given.

The transition axioms and the time-constraint axioms respect the manually gen-
erated axioms.

The generated set of synchrony axioms have some axioms identified as invalid
instead of simply being suppressed. The reason for this is that the algorithm that
generates the synchrony axioms treats the information incrementally and outputs as
it goes through the AST. Moreover, the characteristics that identify the axiom as
being invalid is scanned late in the algorithmic process. We therefore have an axiom
output and a comment is added afterwards. The axiom identified by the lines 205 to
208 is an example.

Also in the synchrony axioms, the axioms shown on lines 238 to 243 are repeated.
This is due to the fact that some transitions are doubled by the cup or dish duality.
That is, going from state S, to Sz can occur through two different transitions triggered
by two different events, in this case the events RecogC and RecogD.

85

Chapter 6

Conclusion

6.1 Work synthesis

The flow of this thesis can be briefly resumed with the following items:

e Chapter 1 introduces the high level concepts of the field of this thesis’ work
which are reactive systems, formal methods and formal verifications.

e Chapter 2 introduces the model with which this thesis is to work with, the
TROM model. Its formalism, attributes and characteristics are presented.

e Chapter 4 presents the design of the axiomatic description generator tool. The
PVS generator and the since expression generator are shown. The requirements,
the associated algorithms to solve the main problems and the structure of the

tool is presented.

e Finally, Chapter 5 presents a new case for the application of the deriving
methodology described in [MA99] and the associated application of both tools,
the PVS generator and the since generator.

Chapter 5 also presents commented results of the tool. Since limitations do exist,

they have been highlighted and described.

With the development of the TROM axiomatic description generator described in
this thesis, TROMLAB users now have the grounds set for a complete mechanically
assisted prototype development cycle. The tools along the development cycle are:

86

e The UML TROM model for UML graphic based TROM specifications [AM99]

e The UML-ROSE translator that brings the UML TROM specifications to the
original TROM formal semantics [Pop99]

e The TROM interpreter that parses and creates the AST internal structure
[Ta096, Srig9)

e The TROMLAB simulator to validate models [Mut96)
e The reasoning system to further enhance model validation [Hai99]

e The axiomatic description generator to execute translation to a mechanical
proof tool described in this thesis

e The PVS tool to use for its theorem prover [Sha92]

6.2 Future work

As we saw through the tool specifications and through the case study, one of the
current challenges to a more complete set of rules for automatically axiomatizing
the TROM model, is the complexity induced by cycles. This limitation can also be
applied to any algorithm trying to grasp specifications modeled on state machines.
We saw that the relationships between occurrences of events can often be quickly
understood with an intuitive analysis but trying to create algorithms to derive the
factual data from models it became evident that a deeper analysis would be required.
Therefore, an area for future works that would bring a lot of benefits to the formal

specifications community would be cycle analysis of state machine models.

By having such limitations, we see that the current level of the developed tool is
still at an assistant stage. The day of a fully automated axiomatizing tool, where
minimal intervention from model designers would be required is still a few research
iterations away. Nonetheless, we must remain optimistic towards the available results
that are provided by formal specifications which enable the creation of safer, more

reliable and better quality software.

87

Bibliography

[AAMO6]

[AAR95a]

[AAR95b]

[Ach95]

[AM]

[AMo8]

[AM99]

V. S. Alagar, R. Achuthan, and D. Muthiayen. TROMLAB: A software
development environment for real-time reactive systems. Submitted for
publication in ACM Transactions on Software Engineering and Methodol-
ogy (Being revised), October 1996.

R. Achuthan, V. S. Alagar, and T. Radhakrishnan. An object-oriented
modeling of real-time robotic assembly system. In Proceedings of IEEE
First International Conference on Engineering of Complez Computer Sys-
tems, ICECCS’95, Florida, October 1995.

R. Achuthan, V. S. Alagar, and T. Radhakrishnan. TROM - an object
model for reactive system development. In The 1995 Asian Computing
Science Conference, ASIAN’95, Thailand, December 1995.

R. Achuthan. A Formal Model for Object-Oriented Development of Real-
Time Reactive Systems. PhD thesis, Department of Computer Science,
Concordia University, Montréal, Canada, October 1995.

V.S. Alagar and D. Muthiayen. Notes from comp748. Course notes for
Comp748, Concordia University, Montréal, Canada.

V. S. Alagar and D. Muthiayen. Specification and verification of complex
real-time reactive systems modeled in UML. Submitted for publication in
IEEE Transactions on Software Engineering (being revised), July 1998.

V. S. Alagar and D. Muthiayen. A formal approach to uml modeling of
complex real-time reactive systems. Submitted for publication in IEEE

Transactions on Software Engineering, July 1999.

88

[AMP99]

[BMSS]

[Bol96]

[CESS86]

[CM92]

[COR*95]

[GHO3]

[Hai99]

[HD96]

[MA99]

V. S. Alagar, D. Muthiayen, and F. Pompeo. From behavioral specifica-
tions to axiomatic description of real-time reactive systems. In Proceedings
of Fifth IEEE Real-Time Technology and Application Symposium Work-
in-Progress Session, RTAS’99 WIP, Vancouver, Canada, June 1999.

R. Boyer and J. Moore. A Computational Logic Handbook. Academic
Press, New-York, 1988.

T. Bolognesi. Constraint-oriented specifications style for time-dependent
behaviours. In Formal Methods for Real-Time Computing, pages 195-202.
John Wiley & sons, 1996.

M Clarke, E Emerson, and A. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions

on Programming Languages and Systens, 1986.

J. Carruth and J. Misra. Proof of real-time mutual-exclusion algorithm.
Notes on UNITY, 1992.

J. Crow, S. Owre, J Rushby, N Shankar, and S. Mandayam. A tutorial
introduction to pvs. In Workshop on Industrial-Strenght Formal Specifi-
cation Techniques, Boca Raton, Florida. SRI International, 1995.

J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal
Specifications. Springer Verlag, 1993.

G. Haidar. Simulated reasoning and debugging of TROMLAB environment.
Master’s thesis, Department of Computer Science, Concordia University,
Montréal, Canada, March 1999. Under preparation.

C. Heitmeyer and Mandrioli D. Formal methods for real-time computing:
An overview. In Formal Methods for Real-Time Computing, pages 1-32.
John Wiley & sons, 1996.

D. Muthiayen and V.S. Alagar. Mechanized verification of real-time reac-
tive systems in an object-oriented framework. Submitted to IEEE Software

Transactions on Software Engineering, 1999.

89

[Mut96]

[Nag99]

[ORS92]

[Pop99]

[Sha92]

[Sri99]

[Tao096]

D. Muthiayen. Animation and formal verification of real-time reactive
systems in an object-oriented environment. Master’s thesis, Department
of Computer Science, Concordia University, Montréal, Canada, October
1996.

R. Nagarajan. Vista - a visual interface for software reuse in TROMLAB
environment. Master’s thesis, Department of Computer Science, Concor-
dia University, Montréal, Canada, April 1999.

S. Owre, J. M. Rushby, and N. Shankar. PVS: a prototype verification
system. In Proceedings of 11th International Conference on Automated
Deduction, CADE, volume 607 of Lecture Notes in Artificial Intelligence,
pages 748-752, Saratoga, New York, 1992. Springer Verlag.

O. Popista. Rose-grc translator: Mapping uml visual models onto formal
specifications. Master’s thesis, Department of Computer Science, Concor-
dia University, Montréal, Canada, March 1999.

N. Shankar. Mechanized verification of real-time systems using pvs. Tech-
nical report, SRI, 1992.

V. Srinivasan. An intelligent graphical interface system for TROMLAB.
Master’s thesis, Department of Computer Science, Concordia University,
Montréal, Canada, March 1999. Under preparation.

H. Tao. Static analyzer: A design tool for TROM. Master’s thesis, De-
partment of Computer Science, Concordia University, Montréal, Canada,
August 1996.

Appendix A

Class dictionary for Generator tool

Since_main - This class is the controlling class. It the main called where the
AST building operator is called and then it creates the Since_generator class

and calls its run() routine.

Since_Generator - This class is where the bulk of the work is. It creates the
necessary objects and then calls the axiom generating algorithms.

Since_Statelist - This class is an extension of the List class. It it used to
maintain lists of states used in the Since_generator class.

Since_State - This class defines the state object used in Since_Generator.

PVS_main - This class is the controlling class. It the main called where the
AST building operator is called and then it creates the PVS_generator class and

calls its run() routine.

PVS_Event - Class representing the event type needed for the axiom gener-

ator.

PVS_setup - Class that contains routines for the setup of the PVS theories,
files

PVS_Eventlist - List of PVS_Event, an extension from the List class

PVS_Generator - This class is where the bulk of the work is. It creates the
necessary objects and then calls the axiom generating algorithms.

91

Table 3: Since_state attributes

[Attribute || Type definition
state_name || String State name
is_initial boolean if state is an initial state, is_initial is true
visited boolean to be used in graph search algorithm, if the state is visited
while graph being searched, visited is set to true
substate_list | Since_statelist | if state is a complex state the list of its substates
Table 4: Since_Generator attributes
Attribute || Type definition

trom_asts | Tromclasslist | List of ﬁMs in the built AST

scs_asts [| SCSlist Lists of SCSs in the AST at hand

92

Pqerfqo woly
12qe] 193{qo aureu woi) 19qe] 109{qO e wi01) SUIeU W01} ¥ SUINIAI -dureu wo1e8
adAy-y10d-woxy
aureu od4y j30d AUIVU JUIAD ad£ j10d ® w01} JUAAD UL 5UINYDI -dUIRU AT }08
ut “i8t[a7eIs aoulg
| uio1) ‘garess ‘yoreys 181 93838 53)8}S OM} U3OM}3Qq 539838 JO JSI[aje)s SUINIal u3aMI3q
looq pajsia
| “syore15-a0mg ‘aress ‘wion 151{97e35”30UIg 37e)s © 0 JXaU §3)8}S SUINIDI 18I 37e)5"1XoU
151[3)815-00ULG '351[97898"30UIS
_ ‘791918 ‘19118 ‘wol) uesjooq 3785 0M] U3aMi}aq yied e §,313Y) J1 SUINIAI jyed-s)sixo
A ‘Ziaqeefqo ‘1aqefqo
‘aureuwiol) ‘oureuu1o} ‘yuy proa swornce uAs ay) sfejdsiq auig uds Aejdsip
(97) apoN ‘(INOUL)3PON UG ureIIEU0D"
(s3)opoN ‘(s3)3poN ‘juf ploA ofe uaMm}aq ay) sasn ‘sworxe *Jsu0d auily Ay sAe(dsiq -ouny-Aeydsip
IWOM.L)3PoN ‘(s1)opoN duig oads”
(83) apoN ‘i PIOA sutorxe uoyisuesy ay) sfeydsiq -sue1)-Keydsip
81[97e)8 181{91@I5-00UIG 151 91018 INOY L ® WOJ]J 81| 378)8 NUIS ¥ 5238310 151[979)5"33eaNd
A[uo 9duaIajel v Surjeald 03 pasoddo se 123(qo 181 | 781[aILITIUIS WO
181[7e95"30UIG Jst{are38~a0uUILg 199(qo 18t[9eI8~20UIg ® Jo AdoD ® 837aId BUIINOX SIY], -181[97€75"33¥a1d
uoissardxe ouss
urejqo 0} UOIJeWIO)SIel) 8]} 9INIBXI pue I GV 9Y3 W01} suiorxe
[ploa Auonpuds 2y} 1oe1IX3 0} wWy)jLIoB[e urew ay) st JUINOI SIYY, | doulg uds-aesouas
suolssardxa aouss
ureIqo 0} UOIIBULIOJSURIY 3} IINIIXI pue [SV 9Y) UI01} suIoIXe
nu P10A | qure1jsu02-aul) 3Y) joRIIXa 09 WIYjLIoB[e ureus ay) S1 3UNINOI SIY], 20UIS~27"9)e 19U
suoissardxe aouse
urejqo 0} UOIJBULIOJSURI} 3Y} 3INIIXI pue [V 9Y) Wolj swoixe
[iu pioA UOI)ISURI) 8Y) 7081)Xd 09 WYILI03[e urew 8Yy) S| SUIIN0I 1], U817 9)8IBU3
sunyyI03[e Jurjelouss
{u PIOA wonce 3y3 {[e s|[ed 3] '107813UIK) DUIS YY) JO SUIRNOI U]\ un
IBIISOS ‘sl[ssepwOL], 107813U35)~92U(S 1079Nn1jSU0) 101813Ud5)"3DUIG
s1939urered suInjal ajou uonyeradQ

suotjerado Lovuduan~a0ULG G d[qe],

93

u | 9syerers aoutg 181] 938I8QNS BY) 0) SOUIIDJOI AY) SUINYDI | JSI9LISqNS 1B

[1e3]00q 9e)s fenjiuy ue se padfey s1 91e)s aY) JOYIPYM SUINIIY fenurst

Ju Suing aureut 9je3s ayj suInPY aureuaye)s

u uedjooq | AjBuip10d0e Ue3[00q SUINIAL pue UEI[00q PINSIA oY) L 10) PaNsIA-uaaq

[u ploA 8N} 0} UBI[00q PIYISIA Y] 519G PpoNsIATIas
Jejs-aoulg 1030n138U00) 9eIFa0UIG

s10jourered si1an9ja1 ajou uoneladQ

suotje1ado 23v3s-a0ulg 9 9|qe],

94

SWeU 9383 Y} PUY SIOP I JI UERJOOQ € SUINJAI pue
sweu aje3s ues|ooq | serewesed) paawgns aweu S3e3s Y3 10 35 Y SRR sujeju0od
aweu jels | aleISdUIG 123(qo 93€35 3Y3 suinza 2115399

PioA [3si@iess-aouig J012NM135U0Y) | ISIPI€IS IS
[ssapowesed suImay | 10U uonesndg

suotjesado 781)a3035-90ULg) 91qe],

95

Table 8: PV S_Generator and PV S_Setup attributes

Attribute || Type definition
trom_asts |] Tromclasslist | List of TROMs in the built AST
scs_asts ﬂ SCSlist Lists of SCSs in the AST at hand

Table 9: PV S_FEvent attributes

Attribute || Type | definition
grc_name [String | GRC name
event_name || String | event name
port_type_name | String | port_type name

96

1aqer(qo-woyy

199(qo Juing SOS 943 Jo [3qe| © wolj ureu WOYL oY) suInjaL -aureu wo1)"198

ad£y-yu0d-woay

W3A3 ‘ad£y q10d '018 Suing 0d£) 110d ® uy pamojfe aureu Juand ue 53938 -Ureu JusAd-103

WOYL Y3 woJj I8y AT SAJ ®© $9ea1d wI013"J05 981

won | IsuULAT SAd ~JUBAT 938310

1 | IsIusAd SAd QYD 8Y) woy 181 WAF SAJ ® 5318310 181 JUIAD)LD

140 ‘wony ploA | SAd Jo d9ds ey ® Jo Jeuniof ayy ut Sut)s € £3)8310 jey) duyynoa | uoissaidxe-awny-ayelsual

149 ‘7[qo ‘[qo ‘goureu ‘{aureu ‘yuj ploA | Surherdsip ay) sandaxa utoxe-uAs” Lejdsip
UIOIXe Jutel}suod”

woi) ‘s} ‘03 ‘g pIoA Buifejdsip oY) s3yN2AX3 -swy-Aeydsip
woxe-deds

ueajooq ‘4811340 ‘Z83 ‘18) ‘] PIOoA Surkerdsip ay3 532X -sue1y-Ae(dsip
ltu pioa sutotxe AuoxypuAs ay) sajelou’d suiolxe-uds-ajerausd

uion pioa SUIOIX® JURIISUCD-JUNY) 9Y)} S9jeIoua] suIotXe-2)"9erauald

won pioa SuIoIXe uolisrer) ay) sajeIausl SUIOIXe"13"3)e13udl

199{qo dnjas ‘wony pioA Sunyeurio) pue uonersual £109y) 3y} saypjedsip jey) sunnoy £100Y)-2)e13u3r)

v ploA §32001d 3Oy 9Y) 18]S 0) UrRUr A J Aq Pajed sunnoy uni

ISIISOS ‘siissejwoL], | J0jeIUID)"SAd 100N135U0]) 107813U35)"GA d
s13jourered SUIN}aI T aj0u uorye1adQ

suotjerado Low.ausy G A 0T 2198l

97

ju Sug | adAy 1od ay; Jo aweu ay) 398 | aweuradhy-yod 198
jtu Suing JUaA3 3Yy3 Jo aweu 3y} s31a8 aweujuans-1a8
fiu Sung 248 3y3 jo aweu ayj s3a8 aweuds8-328
ju [w3Ag"SAd 1039N435U0 WIAT SAd
[siorowesed | susnjas aj0u uonesadq |

suonyeiado juang S Ad 11 9Iqel,

98

WIAT SAd ploA 151} 3Y3 03 UaA3 ue spuadde | Juang-gA 4 puadde
29 ‘e WIAISAJ | 381 3y wouy Judnd parsanbas ayy suinyas U GAJ 198
28 ‘e Ue3|00q | JUIAI Ue SUIeIUOD SISI| Y] JAYIBYM SUINYL JUIAI SUIEIU0D

ju | ISIUIAT SAd 1032N135U0d ST SAJ
sijawesed suIn3a) aou uonjessdQ

suonyesado 3s1puang S Ad ‘21 91q8L

99

ju ploA | ojui syndyno | oyur-pazejRs~sas-3jesaual

woxn PioA | ojul sIndINO | OjuI-pajejas-woiy-d)esuB

jlu pioA | ojui sindino sien-pue-sadAy-ajesaus’

uni

dn3ss"SAd

siajowesed | sunjal ajou uonesadp

suoryesado dnjas~g Ad ‘€1 d|qe],

100

