CNDROBOT — A ROBOT FOR THE CINDI DIGITAL
LIBRARY SYSTEM

CONG ZHOU

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE & SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE AT
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

DECEMBER 2005

© CONG ZHOU, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14343-6
Our file Notre référence
ISBN: 0-494-14343-6
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

CNDROBOT - A Robot for the CINDI Digital Library System

Cong Zhou

Web robots or crawlers are an essential component of all search engines. Major search
engines such as Google and AltaVista use their own robots (GoogleBot and Mercator) to
crawl and index billions of Web pages over the Internet. Web robots are also increasingly
adopted by digital libraries to collect data and on-line documents. The crawling process
requires massive amounts of hardware and network resources as well as time. However,
when only information about a predefined topic set is desired, the use of traditional

crawling strategy becomes inefficient and cost ineffective.

This thesis presents issues in developing a focused crawler - CNDROBOT, which only
explores well-selected domain sites and collects potential on-topic documents for the
CINDI digital library. The research was concerned with the studies on various search
engines, types of Web robots, and crawling strategies. The research primarily involved
the design and implementation of the CNDROBOT as well as the integration of the
Document Filtering Subsystem. Finally, a Web application for the CNDROT was
developed and an extensive test was conducted for various components and functions of
this system. This thesis demonstrates that the CNDROBOT is capable of effectively and
efficiently discovering large amounts of desired documents and supplying them for the

CINDI digital library.

iii

Acknowledgements

First, I would like to thank my supervisor, Dr Bipin C. Desai, for his support, care and
patience. His insight and ideas formed the foundation of this thesis as much as mine did.
His guidance helped me go through various hurdles during my graduate years. I admire

his down-to-earth work spirit, which has set a great example for me in my work.

Second, I would like to thank my aunt and uncle for their generous love and support.
When [was swamped by writing this thesis and working a full-time job, they took care of

almost everything for me in my daily life without any complaints.

Many thanks to my team members who worked on various components of the CINDI
system, including Zhang Tong, Wang Tao, and Xue Furong. Zhang Tong designed and
implemented the DFS subsystem that runs seamlessly with the CNDROBOT. Wang Tao

also gave me a hand whenever I needed him.

Special thanks for Mary O’Malley in the Student Learning Service office for the writing

assistance on my thesis.

I would also like to thank Halina Monkiewicz, the secretary of the department of

Computer Science & Software Engineering, for her patience and advices.

Finally, I would like to thank my parents who are back in China for their love and
encouragement. Many years ago, they made a tough decision to send their only son to a
country thousands miles away. I am very grateful for their unselfish decision. I know they

are proud of me as always. I hope that we will live together one day soon.

iv

Contents

LIST OF FIGURES Vil
LIST OF TABLES.......ccccveicvcrensnnessanssas VIII
CHAPTER 1... 1
INTRODUCTION teseeesnereserseessanessasesssransresessateessatttassttosarsesabEsesbEE 1
1.1 PROBLEM STATEMENTuuvtieiiuireeersteteeenneeteesatreeeeasmnsetessstsessasseseessnmeeeesesssenessssrsnses 1
1.2 PROPOSED SOLUTIONccvvteiuteeeinreesitreessesssseessneeeaseeeaasesessaesssrnessasessasesesaresesaseeennees 1
1.3 ORGANIZATION OF THE THESIS ...uuivriteeieiteee sttt ettt et eeamnneesrernnnen s 2
CHAPTER 2 3
BACKGROUND ON WEB ROBOTScoeccrenrensencrsnsressenssssreasasssssssssssssnesssssssssssssassses 3
2.1 OVERVIEW OF DIGITAL LIBRARIES AND CINDI SYSTEMcccvveiieimminiennecieeneeeeens 3
2.2 EXISTING SEARCH ENGINES, DIGITAL LIBRARIES AND WEB ROBOTSccceevevvnnnenn. 3
2.2.1 Major Search Engines and Digital Librariesc..c..cccccoovviciiiiiciinncns 4
2.2.1.1 General -Purpose Search Engines.........c.ccoovevivecccvcnninnniieeiicees 4
2.2.1.2 MetaSearch ENgiNes.........covveriiiiimiiniiieiieneeneenee e sreeseeereenne 6

2.2.1.3 Specialized Search Enginesccceoeviiiiniininiinneniiieneiesee e 7
2.2.1.4 Survey on Major Search ENgines.........cccccovevieiniineenincce e 9

2.3 GENERAL PURPOSE WEB ROBOTS AND FOCUSED WEB ROBOTSoovviiiiiiireiene 10
2.4 CNDROBOT AND OTHER SUBSYSTEMS ...ceeititiirieeiteeeeeeieeeseeeeaneeeeaseneesenaaneeenns 12
CHAPTER 3 15
CNDROBOT ARCHITECTURE, APPROACH AND HEURISTICS.....ccccoecveruncenns 15
3.1 CNDROBOT ARCHITECTUREcceiieriianereaeeateeareeesseessesseeeseasseessseessnesssesssseessens 15
311 SCCA FINACY ..ot e e ees e eeeeens 16
312 Webh CHAWIEE ...t 18

3 L3 FHIE FCICHEE ...ttt 19
3.1.4 SEALISTICS ANQIYZEFovoneeeeeeeeeeee ettt st 20
3.5 Link ANGLYZET ... 21

3.2 CNDROBOT DATABASE ...cvviiiiiieiiiieeeieeesieesree e eeessaeesteessnsesassnesesssnessssesansenssnsns 21
3.3 APPROACH ...c.vveiiiieeteeieeee st et e seee st e stae et esee s s esaa st e et e asaasseeaaasaasteeaseessaseesseaseeneessansas 33
3.3.1 Overview of Crawling APProachc.cccceceeveniieiecicceicciiiineee e 34
3.3.2 The Standard for Robot EXCIUSION..............ccccoeeioiioiiiiieicaceiieiee e, 35
3.3.3 Parse the HTML DOCUMENToooveviiiieieeeeeeieeieeeaeeee e 36
3.3.3.1 Parse AltaVista Web Pageccccvvevrieiiniciiece e 37

3.3.3.2 Convert Relative URL to Absolute URL........ccccoovviiiiiioiieieeee e, 38

3.3.3.3 Meta TagS...eeeiiiieirieiie ettt e e e e st e eta e b naenas 39

3.3.3.4 Enforce Canonicalization Rules and Error Correctioneoovvveeveeennnee. 40

3.3.4 Seeds Rescheduling AIGOVItRM................c.ccooeeeeiiieceieeieieeeeeeeeee e 43
3.3.5 Priority Level for Site ReVISItING............ccoouevemierieeisiieciesciecreieeieseesesieennens 47
3.3.6 Subsequent CrAWIINGccoccveieeiieeeeceeee ettt 48

B4 HEURISTICS ...eeneieiteeieenirentrt et et e sateeseesaeesneeaseesaeesaseeaseesaaanseeaseasnseeasseassaessnessseensens 49

3.4. 1 MOAified HEUFISTICS.........ccveeeeeeeieiiiieeireeeeeeee e 49

3.4.2 AdQIfioNal HEUFISTICS «....veeeeeeeeeeeeeeeee e ee ettt eetreeae e s s aeviree s e e e e e r e aes 51
CHAPTER 4 . tessssessessssessassesseresesessssssssesessnsssssssarensens 54
IMPLEMENTATION OF CNDROBOT... 54

4.1 SEED FINDER ...ccotttiieeteeeeeeee e 54
4.2 WEB CRAWLER ..cotttuuie e et ieeiteetiee s s e e e et eeeteeeeseseeetsasaaasssesssteesssssanessessssssnnessssenesannnns 56

4.2.1 Crawling AIGOVItRIS.coccovceiiviicieiiiieiieieceee et 56

4.2.2 PAGE CLASSIIET ..ottt ettt 58

4.2.3 Crawling TerminatiON.c.ccoeeeiiiiieiiiieseeeeeee ettt 59

B 2.4 CrAWI RESUINE ..ottt e e re e 60

4.2.5 RODOt SCTIPE File ...t 60

Q3 FILE FETCHER ...cooviiiiiniieiee ettt et r et e e s e e e e sntttateeessonsnsranseraaaessssasarbaneasssss 61
4.4 STATISTICS ANALYZER ..ocettieueeeeeeeeirtetnaeeereeressensasssssessessssmssesseseeeeesnaeaesessersnsnnsses 66
A5 LINK ANALYZER oueeeeeeeeeeeitteeeeeeee e e ettt aeaesetseeenttnaaeseeetssssntasssnnseesereeenaaaseseeenrarnansss 72
4.6 WEB INTERFACES. ... cittteetttttesseessseeetetesaeeeeeeeeteeeannaaeereereanrersnsstrssssessaaasseeeeeresnnnans 76
CHAPTER S.eeereeeccrrrnssennrecesesssrsesnrarecsssssssssassssssssssssssnasssssessesssnssas 87
EXPERIMENTAL RESULTS, EVALUATION AND PERFORMANCE
IMPROVEMENT 87
5.1 EXPERIMENTS ON SEED FINDER.....cuuitiieeeieiieeeeteeiieee e ee e eteeeeeeseeeeeseseaeeasanaeeeasaeaeaes 88
5.2 EXPERIMENTS ON WEB CRAWL....ouuiiiiiiiittteeeeeeeeeeteeeiaetresseeessssstsessereeseenenaasesesaeenes 88
5.3 EXPERIMENTS ON FILE FETCH ...t e 90
5.3.1 FUNCHONAL TOSES c.c.oeeeeeeeeeee ettt e e e e et teea e e e e e eae e 9]
5.3.2 Correlation ANGLYSISc.cc.ccccmimiminiiiiinieeeee e 95
5.4 EXPERIMENTS ON STATISTICS ANALYZER ...ceeoeitetieteeee et eeeeeeeeeeeeeeeeeaenaeaaaanens 96
5.4.1 Improvement on the Selection Rule................c.cccocvvvivmniroenicisceceareine, 100
5.5 EXPERIMENTS ON DOCUMENTS DISCOVERABILITY ..euvueeeeeieeeeeeitieeeeeeeeeeeesseaeeseeanees 101
CHAPTER 6 . 104
CONCLUSION AND FUTURE WORKS . 104
0.1 CONCLUSIONccitttiiiiititiiee e e e e 104
6.2 CONTRIBUTION OF THIS THESIS .eeeeeeteeieeeeeee e e e e e eeeeeetteeesseaaeseenereeeesssssssessssrensaeeas 104
B. 3 FUTURE WORKcueiiiieiee et ee et ettt et e e e st eeesee e s e s e e e s e aeeeeanarreessaenes 105
REFERENCES . 107
APPENDIX A ..oovvvrnreeeeeeeenneeeeenreeseereeseenens . w111
APPENDIX B tereeesessesssssesanes « 117
APPENDIX C...oeveveeeeeeeeneeenevneeneeeesssssessessssassssssssomssssnn teeeeresesessasssnnnsannnannns .. 118
APPENDIX D ..ccaeeeeeeeeennnneeensnneeennesesssssssssssessesssssssssssssssssss 124

vi

List of Figures

Figure 1 Illustration of a typical crawling process........cccocevuvvvineneiiieniiiiineseeecc, 10
Figure 2 Components of the CINDI System.........ccccoiviriiiiiinnies 12
Figure 6 AltaVista Search Result Page........ccccoiviiiiiniiiiiiccee, 38
Figure 7 Sample of Robot Script Fileccccociiiiviiniiiciccii, 60
Figure 8 Sample Output 0f M5 ..o, 64
Figure 9 Sample of Relationship Between DOWNLOAD_STATUS Table and

VISITED PAGES Tableccoceiiiiiiiiiiiiiicnee e 75
Figure 10 Login Page.......cccooioiiiiiiiiiiciriienee s ecae s 76
Figure 11 Main Page.......ccccooviiiiiiiiiccc 77
Figure 12 Find Seeds Page.......ccooo e 78
Figure 13 Processing Pagecccvvviiineniniicitcci 79
Figure 14 Running Status Page.........ccoceeiiiiiiiiininiiiniiei i 80
Figure 15 Show Process Pagecooceriiiiiiiiiiiiiicrccieciicci e 80
Figure 16 Web Crawl Pagecoovviiiiiiieiiiiieeicecic ettt sinesene e 81
Figure 17 Schedule Process Pageccccevieieiiininiinini it 82
Figure 18 Job QUEUE PaBecoovvveuiirieiecieetce et 82
Figure 19 Running Status (Web Crawl) Page.........ccccooivviniiinniice, 83
Figure 20 Running Status (File Fetch) Page.........ccoocovieiiiiiii 84
Figure 21 Running Status (File Filter) Pagec.ccccoovvivieniiiii e 84
Figure 22 Running Status (File Restore) Page........c.ccocvvvviriiineicicnnceeneenne 85
Figure 23 CINDI Database Main Pagecccccoveriniiininincceecccnec e 86
Figure 24 View Table DOWNLOAD_STATUS......cco ot 86
Figure 25 Distributions of Downloaded File Typesccccooevvecccviininenecececceeeene 91
Figure 26 Sample of File Fetching Log File.........ccooiiiiiiiiiice 92
Figure 27 Document Size and Document Qualitycccoovevirinieiiniininnininceeee, 95
Figure 28 Search results of CiteSeer and ACM Digital Libraries on Selected Research

PaPETS .o e e e e e raee e 103

vii

List of Tables

Table 1 Survey on Major Search ENgines........c.ccccoevieiieviiiiccnenininieiicine s 9
Table 2 Phrase to Search: computer science department...........ccoceeeveveeverceennenenneneenne. 16
Table 3 Phrase to Search: computer science publicationscocceveieiviicieniienenineneene. 17
Table 4 Sample of NEW _SITES table.......ccooovviiiieiiiiieei e, 17
Table 5 Seeds and the SEED _URL Tablec..cccooioiiiiiiinii 18
Table 6 Schema of the SEED URL Tablecooovieiiiiiiiiccece 23
Table 7 Schema of the VISITED PAGES table..........cccooveivinnciicciiciencn 24
Table 8 Sample of the FOREIGN _LINK Tableccocervinirineieicieecicne e 25
Table 9 Schema of the DOWNLOAD_STATUS Table........cccoccceviemminininieeceieene, 26
Table 10 Sample of the SITE_ STATS Tablecccoviiiiiiiiciniieiiieeeccceee 27
Table 11 Sample of the LEVEL STATS Tablecccoeiniiinineieiecccceneecee 28
Table 12 Schema of the SITE REF BY Table ..o 28
Table 13 Sample of the RDVT Tableccccccooviiniiiiiiccc 29
Table 14 Schema of the CRAWLED SITES Table.......ccccciveriinieniniiniineicneceieenen 30
Table 15 Significance of Priority LeVel.......ccoovviviviiieiiiieirireieiccie e 31
Table 16 Sample of the STOP_DIR_LIST Table......ccccccccvviiimiiininnennccccreccene 32
Table 17 Sample of DIR TO BE AVOIDED Tablecccocvvnininininneccenccce, 32
Table 18 Interpretation of Relative URL Symbols.......cccccvviininiiiiniiinecicecen 39
Table 19 Crawled Seeds in SEED URL Tablecccoccovvieiiiiinniiiiiiieeiereee e 45
Table 20 RanKed Sitescccvviiiiiiirii ettt ene e nae e 46
Table 21 Sample of New SEED _URL Tablecccceoceiiiiiiiiriciecieee e 47
Table 22 Increased Accepted Document Rate (ADR).......ooveiivinceiiiiciiccinieneee e, 48
Table 23 Decreased Accepted Document Rate (ADR)......occvvviiiiecveriiinie e 48
Table 24 Sample of Temporary STOP_DIR_LIST tablecccoceecicceniiinininnenene 74
Table 25 SEED URL Table of Initial Crawl........cccccceiiiiiiniininiiiineecsee e 89
Table 26 Distributions for HTTP Errors.......cccovveivirinininicneceiccinen e 89
Table 277 Document ID# 41047 in DOWNLOAD_STATUS Table.......cccoceveeereceenennee. 92
Table 28 Document ID# 40000 in DOWNLOAD STATUS Table.......c.ccoeveeiecvineinnnnn. 93
Table 29 Record in DOCUMENT REF BY Table.......cccooeovrinveeineeeeeeeeee 94
Table 30 Sample of Test Documents and Testing Resultsccccoccccereninininiiiincnnnne. 94
Table 31 Test Samples in FOREIGN LINK Table......c..ccccooimvieriineeniiiecceie e, 97
Table 32 Validations of Accepted HOSEScccoviviriiiiniiiiiiiceccie e 99
Table 33 Statistics on 1¥" Seed Selection TeSt...........overvrvevevereeeeieeee e seeens 100
Table 34 Statistics on 2™ Seed Selection TESt.........c.errereerrreerereesesreiesiesisseesseeseseanss 101

viit

Chapter 1

Introduction

1.1 Problem Statement

The size of the Web is growing exponentially. Current estimates are that the number of
searchable web pages of text, images and various multimedia information on the web
have exceeded 8.9 billion [LV03] with numbers doubling in less than one year [PR99].
On one hand, the Web provides us with a vast resource for information and facilitates
commercial and academic intelligence research; on the other hand, the enormous size of
the Web, its diversity and its dynamic nature makes the task of seeking appropriate
information difficult. Exploring the Web and locating relevant documents to
automatically build a significant collection (digital library), to serve the general web
community has evolved as an active research area in the past decade. Web crawling
technology, originally developed for the benefit of search engines, now is being seriously
considered as an important strategy for building large-scale digital libraries. However,
designing and implementing a crawling tool to effectively and efficiently discover
desired Web documents from the large and heterogeneous Web resources poses many
challenges. CINDI Web robot integrated as part of CINDI (Concordia INdexing and
DIscovering System) digital library project helps collect, populate relevant on-line

documents (research papers, technical notes, FAQs) in the computer science field.

1.2 Proposed Solution

Web robots which are also referred to as crawlers, worms, spiders or wanderers, retrieve
pages from the Web by recursively following URL links in pages using standard HTTP

protocols [MCO03].

Digital libraries have typically used exhaustive crawlers to build and update large

collections of documents. However, the design of a good crawler has many challenges.

Externally, the crawler must avoid overloading Web sites or network links as it goes
about its business [MK95]. Internally, the crawler must deal with a huge volume of data.
Unless it has unlimited computing resources and unlimited time, it must carefully decide
what URLSs to scan and in what order. The crawler must also decide how frequently to
revisit pages it has already seen, in order to keep its client informed of changes on the

Web [JC98].

CINDI web robot is a focused crawler, which starts with a set of seed URLSs; these are the
trusted sites with high hub and authority scores. CNDROBOT extracts and follows the
hyperlinks from the Web pages, filters unwanted documents (email archives, discussion
group, video and audio files etc) [TZ04] downloads and indexes the good research
materials e.g. research papers in different file formats to local repository and revisits the
Web pages to maintain the freshness of the digital library and discover new resources.
After the first crawling, the Document Filter System (DFS) determines quality (good or
bad document) for each downloaded files. The statistics analyzer calculates the values
(gives scores) for each seed site, which has valid downloaded papers according to the
feedback from DFS and then determines frequency of visiting and determines those sites,

which should not be revisited.

1.3 Organization of the Thesis

This thesis is organized as follows: Chapter 2 introduces background on Web robots,
presents an overview of digital libraries and CINDI System, highlights some existing
search engines, describes general-purpose and focused web robots, and illustrates the role
of CNDROBOT in the overall CINDI system as well as interaction with other subsystems.
In Chapter 3, the architecture and approaches of the CNDROBOT are presented and
some heuristics to evaluate and improve its performance are illustrated. Chapter 4
describes the details of implementation of CNDROBOT - a focused web crawler.
Chapter 5 discusses the analysis of testing results and some performance improvements.

In Chapter 6, we draw our conclusions and present the future work on CNDROBOT.

Chapter 2
Background on Web Robots

2.1 Overview of Digital Libraries and CINDI System

The US Library of Congress, the largest library in the world, has collected more than 130
million items [LC]. It has a user population of approximately 100,000 people. However,
there are one thousand times more potential users of the Web with the number still
growing rapidly to a level of a few billion [RMC]. Digital libraries modeled on traditional
libraries have advantages over them in terms of potential number of users, volume of
collections and accessibility. The other benefit of digital libraries is to shift from
dependency on expensive human labor to the combination of relatively inexpensive
computing power and intelligent algorithms. There are many large scale digital libraries
specialized on scientific research documents, such as CiteSeer [SLDL], California Digital
Library [CDL], Stanford Digital Library [SDL], ACM Digital Library [ADL] and
National Science Digital Library [NSDL].

The CINDI (Concordia Indexing and DIscovering System) system was conceived in 1994
[BC94]. The purpose of developing such a system is to allow users easy search for and
access to resources available on the Internet. It provides fast, efficient and easy access to
Web documents by using a standard indexing structure and building an expert system-

based bibliographic system using standardized control definitions and terms [SHBC].
2.2 Existing Search Engines, Digital Libraries and Web Robots

“The grandfather of all search engines was Archie, created in 1990 by Alan Emtage, a
student at McGill University in Montreal.” [WT98] Around that time, the Hyper Text
Transfer Protocol (HTTP) was being developed and the primary method of storing and
retrieving files was via File Transfer Protocol (FTP). Archie combined a script-based data

gatherer, which fetched site listings of anonymous FTP files, with a regular expression

matcher for retrieving file names matching a user query. Its gatherer scoured FTP sites
across the Internet and indexed all files it found. Its regular expression matcher provided
users with access to its database. Nowadays, using search engines such as Google,
Yahoo!, Altavista [AVA], InfoSeek [IFSK], Excite [ECT], Lycos [LCS], and MSN is the

most popular way to search for information on the Web.

2.2.1 Major Search Engines and Digital Libraries

Search engines can be categorized as general-purpose search engines, MetaSearch
engines and specialized search engines. Both search engines and digital libraries rely on

the robot to discover resources and collect documents, which are then indexed.

2.2.1.1 General -Purpose Search Engines

Alta Vista

Alta Vista was originally developed at the Western Digital Palo Alto Research Center
(PARC) of the Digital Equipment Corporation [SSAV] and had great impact beginning
December 15, 1995. Its presence on the web helped to establish search engines as part of
the Internet landscape. It was the first in many categories: first to do full-text index, first
with multiple language searching capability, first with multi-language translation, with
support for non-Latin alphabets such as those used in Chinese, Japanese and Korean, first
with a spell checking function and one of the first to do a good job with image and non-
text documents. Among its special features is a technology called Real/Names that checks
the search terms entered by the user against an internal database of registered and
common-law company, product and concept names and marketing slogans. If RealNames
finds a match, it points to the name-owner’s Web page. Another of AltaVista’s powerful
features is its ability to index over 200 types of documents. This means it can read the
contents of files such as Word documents that are put up on the web. However, AltaVista
crawls only the HTTP protocol and therefore cannot find files on FTP, Gopher, or NNTP
sites [NL02].

Google

The success of Google has become a legend in information technology and business
success. Google (earlier named WebBase) started out as a research project at Stanford
University. Google uses a modified “link cadinality” [GHOO] algorithm that takes into
account the domain of the citing source, giving greater weight to an .edu or .org domain
than a .com domain. Link cardinality essentially counts the number of other sites linking
to a given site. Google uses it as one of the metrics to identify the most important and
credible sources of online information and give rank to a Web page. Google has
trademarked this with the name PageRank™. Another useful feature is retaining a local
copy of the Web page when its crawler originally downloads and analyzes it so that users
can always have access to that page even if it no longer exists. In addition, Google can
also search for documents in PDF format, a standard for a great many documents. Google
has become the most powerful and comprehensive search engine in terms of the volume
of its indexed Web pages. According to Google, it has indexed more than 8 billion pages
[GB].

MSN

Microsoft released a public preview of its long-awaited web search technology in July
2004, over a year after first embarking on the project. [DS04]. MSN is still beta-testing
its search engine, which relies upon results from Overture [OV] (formerly GoTo) and
Yahoo. Although the results provided by MSN searches do not vary considerably from
Yahoo, Microsoft has been able to employ its considerable market weight in operating
systems to spread the word of its upcoming search engine in advance. MSN.com is the
default in most IE browsers including Windows 2000. Microsoft claimed that they had
made significant improvements to this Beta search engine. Some of these improvements
include vast index of information (it has indexed 5 billion documents and refreshed
continuously); direct answers (direct answers are provided in a number of categories,
including definitions, facts, calculations, conversions, and solutions to equations);

content-specific search (MSN Search offers the ability to search for specific type of

information using search tabs, including web, news, and images); search near me (users
receive search results tailored to their geographic location); and search builder
(customize search results by emphasizing or de-emphasizing certain search criteria, such

as specific sites or domains, country or region or language) [SANDBOX].

2.2.1.2 MetaSearch Engines

Metasearch engines employ a selected number of other search engines to run a search.
They act like middlemen, wholesalers, who send a search to their partners and retrieve

the cream of the results.

Unlike the individual search engines and directories, the Meta Search Engines, do not

have their own databases and do not accept URL submissions.

In theory, this is a good idea, since they should be able to take advantage of the combined
strengths and indexing depths of a range of other search engines. In practice, they have
some considerable drawbacks. Because they take one search query and translate it into a
form that can be processed by each of their feeder search engine partners, there is often a
loss of precision, particularly for all but the simplest queries. In addition, because
MetaSearch engines usually collect the first few results from each search engine; this

strategy would miss some relevant information that users may need [FEIS].

Obviously, MetaSearch engines will never be better than the strongest of the various
partner search engines. They deliver poor performance when the search, sent to the
different partners, hits a time out (a fairly frequent occurrence) or have difficulties for

any reason [MSE].

MetaCrawler

MetaCrawler started as a university project in 1994, at the University of Washington.
Professor Oren Etzioni and graduate student Erik Selberg launched it in 1995, and it was

one of the first MetaSearch engines. It employs the following search engines as its
“scouts”: Google, Yahoo, AskJeeves, About, LookSmart, Overture (formally GoTo)
[OV], AltaVista, and FindWhat. Although this list is impressive, any given search will
only be sent to a handful of search engines all at once. The results are then blended
together into one page. MetaCrawler displays to the users the sorted list of results based

on how frequently a web site appears in the top rankings of each partner search engine.

IXQUICK

For searches on the Web, Ixquick utilizes AOL, AltaVista, EuroSeek, Excite, Fast Search
(AlltheWeb), FindWhat, GoTo, LookSmart, MSN, and Yahoo. For the document formats
such as video, audio files, they utilize a smaller number of specialized search engines,

which seem to work quite well.

Ixquick makes a very nice first impression: a good clean interface and the opportunity to
use over a dozen, mostly European languages, from Finnish to Turkish. Choice of

document formats includes Web documents, News, Movies and Images.

Results are cleanly listed, with enough information to help a user decide whether to visit
the site or not. Sponsored links are clearly marked and relatively unobtrusive. The help-
screens are very good, and provide not only basic information but also show clearly how

to get the most out of IXQUICK.

2.2.1.3 Specialized Search Engines

An article written by Gary D. Price [GP01] lists a few reasons why specialized search
engines are vital. First, the specialized search engines can accomplish higher precision
rate 'and recall rate® since they focus on searching Web space limited to a specific

subject, domain or format. Second, the specialized search engines can support the needs

! Precision rate is the ratio of the number of relevant pages retrieved to the total number of documents
retrieved.

? Recall rate is the ratio of the number of relevant pages retrieved to the number of all relevant pages on the
Web.

of users who do not have the time or interest to learn how to use the general engines at an
advanced level. Third, the specialized search engines can provide fresher content to the
database than general search engines do since they have much short crawling period
compared to those for general search engines, which usually take weeks. Finally,
specialized search engines often provide access to “hidden” Web space, which are the

contents not crawled by general search engines.

There are many specialized search engines that have been built to explore particular Web
site(s), specific topics (such as computers or medicine), languages, file types (such as
images or research papers) and so on [MCHCO3]. These specialized search engines
usually provide more precise results and more customizable functions. For example,
Wikipedia offers a free content encyclopedia in many languages (German, French,
Chinese, Japanese and many more). Industrial Quick Search searches for company
information and ZI-Bot specializes in searching for ISBN and ISSN information from
more than 600 libraries. There are also content-type-specific search engines. For instance,
FindSounds searches the web for sound effects and musical instrument samples; CiteSeer

provides the services for users searching for computer and information science papers.

CiteSeer

CiteSeer is a specialized search engine for scientific research literature. CiteSeer is a free
public service, and is the world’s largest free full-text index of scientific literature. It
acclaims that it has indexed 723,152 articles with links to ACM Portal and DBLP [CITE].
It provides many interesting features in algorithms, techniques, and software that can be
used in other digital libraries. For example, CiteSeer includes algorithms and machine
learning techniques for automatically extracting information such as the title and author
from indexed documents and individual citations. It also can automatically create an
index of the links between scientific articles. Another impressive feature is that CiteSeer

provides full-text indexing of the content of Postscript and PDF documents.

2.2.1.4 Survey on Major Search Engines

Search Robot Purpose Software | Software Owner’s
Engine Language | Platform Name
Google / GoogleBot Indexing C++ Linux Google
Netscape Inc.
AltaVista Scooter/Mercator | Indexing C Unix AltaVista
MSN MSNBot Indexing C++ Windows Microsoft
Server Corp.
2000/2003
AOL/InkTomi | Slurp Indexing, | C/C++ Unix InkTomi
Statistics Corp.
Excite / ArchitextSpider | Indexing, | Perl 5and | Unix/Solaris | Architext
Webcrawler Statistics C Software
InfoSeek InfoSeek Robot | Indexing Python Unix/Solaris | Steve
1.0 Kirsch

Table 1 Survey on Major Search Engines

Table 1 shows a survey conducted of existing major search engines from various sources
[WRD] [TOP] on the World Wide Web. The survey collected information on the Robot,
Purpose, Language, Platform and Owner for some popular search engines. Note that all
of the search engines are used as tools of indexing web pages. It should not be surprising
that most web robots are written in C/C++ since it was the most dominant programming
language at the time they were developed. Most of them run on Linux or Unix operating

systems.

CNDROBOT has been written in Java programming language, which has a reputation for
developing large scale, distributed, robust, portable, multithreaded, and dynamic projects,
like the CINDI system. CNDROBOT is designed in a modular way and takes advantages
of Java’s rich libraries as well as its support for several aspects of run-time performance,

including garbage collection, and heap allocation.

2.3 General Purpose Web Robots and Focused Web Robots

Web robot is an automated program, which implements as a graph search algorithm that
works by treating web pages as nodes and links as edges. Each time a Web page is
reached, it is parsed in order to find both its text content and the Universal Resource
Locators (URLs) that it links to. The robot adds these URLs to a queue of pages to be
visited; this queue is often referred to as the crawl frontier. The robot uses the URLs from
the queue in some order, and repeats the process until the queue is empty. A typical

crawling process is illustrated in Figure 1:

Qi_l

O Web page — " link edge
——————— + URLs extracted and stored
Figure 1 Illustration of a typical crawling process
Figure 1 shows that Web page po is parsed and URLSs (1, L,ls) are extracted and placed in
the queue Q.. The web robot picks the next link (11) from the head of the queue, fetches
the corresponding Web page (p1), extracts the URLs (l4, 1s) from p1and appends them to

the queue.

Web robot usually traverses the Web using one of the following methods [VG97]: In one

scheme, a set of “seed URL” is used for initiating exploration. The web robot fetches the

10

seed pages, extracts from them hyperlinks pointing to other Web pages, and then visits
each of these URLs recursively using breadth-first or depth-first searching algorithm.
Alternatively, the robot begins with a set of popular web sites’ home pages with the
rationale that these pages contain URLs that point to the most frequently sought
information on the local and other Web servers and then searches recursively. A robot
may partition the Web space based on Internet names or country codes and assigns one or

more robots to explore the space exhaustively.

Both search engines and digital libraries rely on web robot to collect vast amount of
documents from the World Wide Web. A web robot can be categorized as either a
general-purpose web robot or a focused web robot from the point of view of scalability
and goal. Unlike general purpose web robots, which have a goal of providing search
capability over the Web as a whole and strive to cover Web pages as widely as possible,
focused web robots have a goal of selectively seeking out and following the hyperlinks
that may lead to more topic-related Web pages. They take a set of well-selected Web
pages related to a predefined set of topics and recursively explores the linked Web pages.
Usually the focused crawlers rely on a classifier to maintain the crawler focus by
evaluating the relevance of a Web page using domain keywords or exemplary documents

and following relevant links and filtering away irrelevant links that lead to off-topic areas
of the Web.

Davison [DB00] presented empirical evidence that there is a topical locality on the Web.
The author defines topical locality as the degree of relevance of textual content of a Web
page to the topic. He concludes that by following links from a page that is relevant to the
topic, the chance is significantly higher to get topically related pages than following other
randomly selected pages. This locality were used in designing effective techniques for
focused crawlers, for example Atrax/Mercator crawler [HA99][NMO1], which starts at a
few well-chosen points and maintains the crawler within range of these known topics in

order to discover new resources.

I1

2.4 CNDROBOT and Other Subsystems

Warld Wide Weh

-1 - Sged-finder - -1

Temporary PDF

Non_PDF

Repository

Repository

Ty

PDF Repository

v

_—————“‘

> Document ;
w:
— Ty
SHDB
Repository

Web Based User Interface

Figure 2 Components of the CINDI System

12

As illustrated in Figure 2, the CINDI system consists of the following eight essential
subsystems: CNDROBOT Subsystem, File Converting Subsystem (FCS), Document
Filtering Subsystem (DFS), Automatic Semantic Header Generator (ASHG), Virtual
Query and Answering Subsystem (VQAS), Semantic Header Searching Subsystem
(SHSS), Natural Language Processor for Querying CINDI (NLPQC), Conference
Management Subsystem (CONFSYS) and CINDI Registration Subsystem. This thesis
will focus on the CNDROBOT Subsystem and its interaction with the File Converting

Subsystem.

The CINDI library collects the academic documents in two ways: using either the push or
pull paradigm. In the push scheme, authors submit documents in PDF, TXT, LaTeX, RTF
and HTML formats directly through the CINDI Registration Subsystem or Conference
Management Subsystem. In the pull scheme, the CNDROBOT traverses the World Wide
Web and downloads documents, which follow HTTP or HTTPS protocol in PDF, DOC,
HTML, TXT, RTF, XML, PPT, LaTeX, and PS formats.

In the pull method, effectively and efficiently locating documents on the Web,
downloading them to a local repository and indexing for future user inquiry are the base
of other CINDI subsystems. The CNDROBOT uses Seed Finder to acquire good starting
URLs for crawling the Web, HTML Parser to extract the links from the Web page, File
Fetcher to download the documents and Statistics Analyzer to evaluate the crawling
results by taking into account the feedback from DFS and schedule the subsequent

crawling order.

The main task of FCS is to convert the non-PDF documents to PDF format. Then those
converted documents are filtered by DFS. DFS evaluates the quality of a document, by
examining its content as well as its structure. DFS rejects irrelevant documents such as
emails, letters, news, pictures, assignments, application forms, slides and others and
throws them into CINDI trash. DFS accepts relevant documents such as research papers,
technical reports, FAQs, theses and academic papers, and stores them in a permanent

repository.

13

Automatic Semantic Header Generator (ASHG) subsystem fetches documents from PDF
directory that are converted into plain text file, generates Semantic Headers [ZZ02],
which include author, title, subject and abstract; and then stores them in the SHDB. It
also stores a copy of text files in the Text Repository where VQAS uses them to create

indexes for virtual query and answer.

Another CINDI subsystem the Natural Ldnguage Processor for Querying CINDI
(NLPQC) takes users’ queries in natural language, processes them and returns relevant
contents. Users can also access the PDF version of documents in the Document
Collection Repository through the links provided in the response. CINDI allows users via
the Semantic Header Searching subsystem to query SHDB using simple or complex

combination of author, title, subject, or keywords.

As shown in Figure 2, the CNDROBOT, FCS, DFS, ASHG and VQAS share the CINDI
database. The CNDROBOT stores into this database the information about downloaded
documents, which is retrieved and updated by FCS, DFS, ASHG and VQAS subsystems.

This section has described the major components in the CINDI system and the role of the
CNDROBOT in the system. The CNDROBOT infrastructure, database tables, crawling
approach and some heuristics to improve crawling performance will be presented in the

following chapter.

14

Chapter 3

CNDROBOT Architecture, Approach and Heuristics

3.1 CNDROBOT Architecture

World Wide Web

CNDROBOT

Local Storage

Database

Figure 3 Architecture and Components of CNDROBOT

15

Fig 3 illustrates the architecture and components of the CNDROBOT. It consists of the
following five components: Seed Finder, Web Crawler, File Fetcher, Statistics Analyzer,
and Link Analyzer. The Web Crawler works with other components in an interactive way.
It first takes the seeds generated by the Seed Finder and then crawls the seed sites to
discover potential documents. In the crawling process, the Web Crawler performs various
tasks e.g. page download, content parsing, and links extraction, etc. It also stores relevant
information into various tables in the CINDI database. Some of this information is used
by File Fetcher to download documents to local storage. File Fetcher stores information
regarding the downloaded documents, their URLs, types, sizes, and location. DFS
retrieves the downloaded documents from the local storage; determines their quality; put
them into a permanent location or trash; and writes back the decision to the database. The
Statistics analyzer and Link Analyzer take into account the feedbacks provided by the
DFS while analyzing the previous crawling data so that it can provide more practical

suggestions as to improve the performance of the subsequent crawl.

3.1.1 Seed Finder

Finding sites that would most likely contain topical related documents is the main task of
Seed Finder and it is vital for the success of a focused Web crawler. CNDROBOT uses
two popular Web search engines Google and AltaVista to locate a set of well-selected
seed URLs for crawling the Web. We select a specific search engine and use multiple
search engines based on the following criteria: the chosen search engine is able to provide
us more results (seeds) than the others and by using multiple search engines. We can find

a more significant number of unique sites than by using single one.

AltaVista MSN Google

Max # of Accessible 1,000/ 100 250/25 902/91
Results / Pages

Web Search Results | 23,700,000 23,919,807 67,700,000

Table 2 Phrase to Search: computer science department

16

AltaVista MSN Google

Max # of Accessible 1,000/ 100 250725 875/87
Results / Pages

Web Search Results | 10,600,000 3,408,297 36,100,000

Table 3 Phrase to Search: computer science publications

We manually submitted the query phrases “computer science department” and “computer
science publications” to three major search engines: AltaVista, MSN and Google.
Returned search result pages are given in Figure A to J in Appendix A. Tables 2 & 3
summarizes some facts found in those figures. We can observe from Figure A and B that
AltaVista found 23,700,000 results for the query of “computer science department” and
users can access up to 1,000 of them. From Figure C, D, and E, we can see that MSN and
Google display to users 250 and 902 results respectively. Accessible results imply the
maximum number of seeds that can be accessed by the seed finder. Use of MSN is ruled
out because it has much fewer accessible Web pages than the other two. Both Google and
AltaVista can be queried through the application and they have a similar number of
accessible results. The choice left is to use one or both of them. We also wrote two
programs to extract the sites from Google and AltaVista’s Web pages (details in section
4.1). Using the keyword phrase “computer science department”, Google acquires 892
unique sites and 835 by AltaVista. There are 432 common sites that are included as
results by both of them. There are 403 results that AltaVista has but Google does not and
460 results that Google has but AltaVista does not. The result demonstrates that we can
obtain more seeds by combining their results than only using one. The seed finder first
combines all the results retrieved from each search engine; eliminates the duplicated ones
and stores the remaining into NEW_SITES table. The results are stored in the DB table as
presented in Table 4.

| 20 | www.cis.upenn.edu |
| 21 | www.cs.purdue.edu |
I 221 www.cs.unc.edu |
o e -+

Table 4 Sample of NEW_SITES table

17

Later, the data in NEW_SITES table would be retrieved by the Web Crawler and inserted
into the SEED_URL table. These sites combined with some revisiting sites (will be
discussed in section 3.2 & 3.4.2) are the seeds that serve as the starting URLs for the
CNDROBOT. The following is an example of seeds in the SEED URL table.

4

! ' : :
T T T T

ID | Link | Host_name | Is_new seed | Resume_flag | SDATE | ‘EDATE | Yum ref by |

I

| 21 | wuw,cs.cuu; edu | NULL i 1] 1| 2005-08-02 16:30:42 | 2005-08-04 04:58:18 | WULL |
| 22 | wuw.cs.und.edu | NULL | 1] 11 .2005-08-04 04:58:18 | 2005-08-04 20:46:49 | NULL |
| 23 | L] 1]

| www, cs.cortiell.edu | NULL

2005-08-04 20:46:49 | 2005-08-07 02:07:42 | NULL |

4

! $
T T

Table 5 Seeds and the SEED_URL Table

3.1.2 Web Crawler

CINDI web crawling infrastructure is composed of five parts, which are frontier,
preliminary filter, page fetcher, HTML parser and classifier. The crawl frontier refers to a
list of unvisited pages. As the crawl starts, the frontier head is always a seed URL
retrieved from SEED URL table. The crawler explores the seed’s web structure to
retrieve new pages by traversing outer links extracted from previously retrieved ones.
The preliminary filter has four objectives: Firstly, it excludes the outer links from adding
to the frontier if they are already in the frontier or have been visited already. Secondly,
the filter is used to avoid irrelevant subdirectories such as “images” and “vita”. Thirdly,
the filter sorts out the links ending with certain file extensions (such as gif, jpg, mov, avi,
and rm), Lastly, the preliminary filter determines if the link is a foreign link by
comparing the seed host name with the current page’s host name. If the link has the same
host name, the preliminary filter will accept the link and insert it into the
VISITED_PAGES table, otherwise, the link will be treated as a foreign link and inserted
into the FOREIGN_LINK table. To restrict the robot crawling within the domain site,
foreign links should not be explored; however they are placed in the FOREIGN LINK
table. Page fetcher is a HTTP client that sends an URL to the remote server, waits for the
response and then downloads the page. The page fetcher is different from the file fetcher
that downloads any types of files from the URL provided by the Web crawler and stores

18

T

them permanently in local repository. The page fetcher only fetches the Web page in
HTML format and stores it in a string buffer temporarily for the purpose of quick content
parsing and links extraction. Once a page has been fetched, HTML parser will parse its
content to extract information such as title, anchor text and outer links that will supply
and direct future crawling path. The outer links are first sorted to find the file links that
link to Web documents. File links are inserted into PRE DOWNLOAD_INFO table
waiting to be processed and others are added to the frontier if they are not visited before.
Classifier processes the fetched page and searches for predefined keywords set such as
abstract, introduction, references, and appendix in the page. Then based on the search
results, classifier makes a relevance judgment on whether it is one of our targeted
document types namely thesis, academic paper, technical report, FAQs in HTML format
or other type of Web page whose content does not satisfy our collection goals. The web
crawler stores each parsed page in the cache. Only the page that passes the classification
will be stored physically in a non-pdf directory for later filtering by DFS and its related
information such as URL, file format and size will be inserted into

DOWNLOAD_STATUS table for the indexing purpose.

Each crawling cycle involves picking a URL to be searched from the frontier, fetching
the page, parsing the page content, filtering links, classifying the Web page and adding
outer links to the frontier. The crawling process terminates if the frontier is empty or the
download rate (number of downloaded / number of pages visited) is lower than a

predefined threshold (detail in section 4.2.3).

3.1.3 File Fetcher

File fetcher uses file links in PRE DOWNLOAD_INFO table to connect to the remote
servers; takes input stream from them; eliminates duplicated files; filters files with
undesired file names and sizes; stores downloaded files in local repositories; checks file
digital signature; and inserts fetched file information into the database. The file fetcher
can be broken down into 5 major components: URL parser, download filter, file writer,

digital signature checker, and file information collector. Web pages are actually the files

19

in various formats (e.g. HTML, pdf, ps, doc, txt, and etc.). From the perspective of file
download, the URLs for Web pages are the file locations on the Web. File fetcher first
parses the file URL to obtain the directory level at which the file is stored, and then
checks if the file has already been downloaded in order to eliminate the possibility of
duplicated files being downloaded from the same source. Download filter ensures that
files with certain names such as CV, resume and files with small size (file size of 0) will
not to be downloaded because the statistics from our previous crawling experiences
indicate that these types of files are most likely not be accepted as candidates for CINDI.
The experimental results will be shown in Chapter 5. Before writing the input stream to a
file, the file name will be checked against the file names in the local directory. Digital
signature checker verifies if two downloaded documents with the same file name are
identical. Finally, the file fetcher uses the functions in java libraries to collect the
information such as file type, length, and last modified date that is sent back by the server

once the connection is open.

3.1.4 Statistics Analyzer

Once the seeds crawling, file fetching and document filtering have been done, statistics
analyzer starts. Statistics analyzer analyzes the information and data gathered from the
previous crawling process as well as the feedback provided by DFS to acquire some
knowledge on crawling history and documents downloaded. In addition, it uses the
accumulated statistical results to make the robot more selective during the subsequent
crawling. Statistics analyzer is a crucial component to optimize the CNDROBOT system.
Generally, statistics analyzer performs the following tasks. Firstly, it generates various
statistical results (e.g. document download rate, accepted document rate, rejected
document rate, etc.) for each crawled site. Then, initializes a seed list for the subsequent
crawling. The seed list includes the sites selected from crawled sites and the sites selected
from sorted foreign links. The statistics analyzer also performs other functions such as
discovering new sites, updating site references to identify the popularity of a crawled site;

updating cross-references through a link to a downloaded document; and setting

20

predefined searching depth level for the subsequent crawl. Details will be covered later in

section 4.4.

3.1.5 Link Analyzer

Given a finite amount of crawling time, avoiding irrelevant directories from a given Web
site hierarchy can significantly increase the potentially acceptable document download
rate, which is defined as the total number of potentially acceptable documents
downloaded over the total number of Web pages crawled. The main task of the link
analyzer is to identify possible irrelevant directory names based on previous crawling
experiences and the filtering results for downloaded documents produced by DFS so that

the efficiency of future crawling can be improved. Details will be discussed in section 4.5.

3.2 CNDROBOT Database

CNDROBOT uses MySQL as its database server due to the fact that MySQL has the
capability of supporting over 50,000,000 records [MYSQL]. With JDBC interface,
developers can easily write applications to access and manipulate data in the database.

CNDROBOT, written in Java, manages database tables and accesses data in tables

through JDBC API.

As depicted in Figure 4, CNDROBOT creates and operates on 16 database tables.

NEW SITES table stores the new sites that have never been crawled by the
CNDROBOT. Before the initial crawl, the sites in the table are generated by the seed
finder. When the crawl starts, the first 30 sites will be retrieved and stored in SEED_URL
table. We set the number of the seeds to 30 based on our experiments (see Chapter 5). We
estimate that the time to complete 30 sites crawling, file fetching, document filtering,
result analyzing a new crawling cycle are less than one month. For sites with a large

crawling cycle, the frequency of revisit would be smaller. After each crawling period, the

21

table will expand with new sites discovered from foreign link hosts, which are found

through the crawling process.

PRE DOWNLOAD INFO ‘

o . . i

DOMAIN KEYWORD

Figure 4 CNDROBOT Database and Interaction with Modules

22

SEED URL table stores the seeds used for the current crawling. The seeds usually
include the new sites retrieved from the NEW_SITES table and the “already crawled”
sites selected from the CRAWLED_ SITES table. However, there are two exceptions: In
the initial crawl, all the seeds are new sites because no sites have been crawled yet. Later,
if there were no data in the NEW_SITES table, all the seeds in the SEED_URL table
would be the crawled sites from the CRAWLED_SITES table. The SEED_URL table
also keeps a record of start time and finish time for each seed using the attributes of
SDATE and EDATE. The crawling time varies significantly from site to site. A huge
Web site such as www.w3.org, with more than 150,000 Web pages takes approximately 5
days to finish crawling whereas a relatively small Web site for example

www.eecs.berkeley.edu with 11,053 Web pages takes about 6 hours to complete. The

crawling time is determined by many factors, for example site size, page size, server

network speed and traffic.

Fomm e e e - +-———- T oo +
| Field | Type | Null | EKey | Default | Extra |
o e LRt o - e Fomm +
ID	int(200)		PRI	NULL	auto_increment
Link	blaob	YES		NULL	
Host_name	warchar(200)	YES		NULL	
Is_new_seed	int(l)	¥ES		NULL	!
Resume_flag	smallint(l)	¥YES		NULL	
SDATE	datetime	YES		NULL	
EDATE	datetine	TES		NULL	I
Bum_ref by	int(100)	TES		NULL	
e et N e E T e o —— e e +

Table 6 Schema of the SEED_URL Table

The attribute Resume _flag is used, as a guide when resuming the crawling process if the
robot terminates abnormally. This attribute Is_new_seed is used to indicate if the seed is
an “already crawled” site or a new site. The distinction is imperative because the goal of
crawling new sites is to discover new documents whereas the goal of crawling “already
crawled” sites is to check for updates, therefore, the crawling algorithm is different for

these two types of seeds (see section 4.2). The attribute Num_ref by keeps the counts of

number of times each site is referred through the links in other hosts.

23

VISITED PAGES table holds the information for all the visited pages in crawled sites.
From the crawl history point of view, the VISITED PAGES table stamps the path of the
crawler as it traverses a seed site. In the course of crawling a seed site, if the page being
visited is within the domain of the seed site, the CNDROBOT inserts the page url, name,
title, parentID, siteID, is_valid and last modified date into the VISITED PAGES table
(see Table 7). If the host name of the visiting page is different from the page where the
link was found, its URL, parent ID and the page’s host name will be inserted into
FOREIGN_LINK table. The outer links extracted from a Web page are the children of it.
When they are inserted into the VISITED PAGES table, their parent ID is the parent’s
PID. The starting Web page for each seed is the root for that site and it has the parent ID
of 0. By tracing the parent ID of each visited page with the siteID, the Web structure of

each seed site can be unveiled.

Frmm e e e o o o e e L L e +
| Field | Type | Mull | Key | Default | Extra |
o e e oo oo Fom o e it +
| PID | bigint(20) unsigned | | PRI | NULL | auto_increment |
| url | blob | YE5 | | HULL | I
| title | warchar(100) | YE3 | | NULL | |
| page_name | warchar(100) | YES | NULL | I
| is_walid | smallint(l) | YES | | NULL [I
| parentID | bigint(20) unsigned | YEI | | NULL | i
| sitelD | bigint(20) unsigned | YES | | HNULL | |
| PDATE i date | YES | | HULL | |
Fomm e o Fmmm +-mm - N e e et +

Table 7 Schema of the VISITED_PAGES table

FOREIGN LINK table maintains the URLs extracted from the Web page, which are
different from the site’s host name. The hosts of these foreign links are used to extend the
number of sites for the subsequent crawling. From the sample given below, we can see

that most of them are good candidates for the new sites, for example,

www.geneontology.org and www.ccs.neu.edu. However, some are not because they are

off the topic, for example, www.cciw.ca and www.genisis.ch. The approach to sort out

new sites from foreign links will be discussed in section 4.4.

24

| FID | url | host_nane | PID !
t t + + +
8001	htrp://cermi-s.concordia.ca/abstracts-2005.pdf	cermm-s.concordia.ca	- 23635
19002	‘http://www.cs.utoronto.cas/s7Ejuris/cecb04. htn	wuww.cs.utoronto,ca I 23635	
9003	http://uwyw.cciv.ca/wygrjc/38-2/38-2-227.htm	www.cciw.ca	23635
9004	http://www.cciw.ca/vyric/ugrjce.htn	wuw.cciw.ca	23635
2005	http://wwi, geneontology.ory/	wuw, geneontoloyy.ory	23650
] 9006	http://imgproj.cs.man,ac.uk/tamhis/	imgproj.cs.man.ac.uk	23650
9007	hotp://www, ariadnegenonics. con/technology/ontology.htnl	wuw,ariadnegenomics.con	23650
9008	http://www.biowisdon.con	www.biowisdom.com	- 23650
9009	http://dags.stanford, edu/PRMS/	dags.stenford.edu	23651
9018	http://robotics.stanford.edu/%7Ekoller /papers/ijcai99lprm, htal	robotics.stanford.edu	23651
{ 9011	http://www.cs.und,.edu/%7Egetoor,/talks.htnl	www,cs,und, edu 1 23851	
9012	http://robotics.stanford.edu/s7Eerans/	robotics.stanford.edu	23651
9013	htep://www.cs.huji.ac.il/3$7Enix/	www,cs.huji.ac.il	23651
9014	http://uww.stanford.edu/$7Egrenager /prm_tutorial 2003_02_20.ppt	www.stanford. edu	23651
9015	http://web.engr.oregonstate.edu/s7Etyd/clazses/539/	web.engr.oregonstate.edu	23651
-9016	http://blinp;cs.queensu.ca/	blimp.cs.gueensu.ca	23652
9017	http://uwi.ccs.neu.edu/home/futrelle/bionlp/papers/HirschnanReviewl202.htnl	www.ccs.neu.edu	23652
9018	hutp://textony.iit.nrc.ca/cgi-bin/BNLPB_ix.cgi	textomy.iit,nrc.ca	23652
1 9019 | | 23652 |

htep: //www. genisis.chy/~natlanyg/NLPBA02/IJMIToc. htnl | www,genisis.ch

Table 8 Sample of the FOREIGN_LINK Table

Once the web crawler finds a URL ending with txt, pdf, ps, doc, xml, rtf, tex or latex
from a Web page, the URL and the Web page ID in the VISITED PAGES table are kept
temporarily in the PRE DOWNLOAD INFO table and wait for the File Fetcher to
download. File Fetcher starts to operate either automatically when one site searching has
been complete or manually when we trigger it. As long as there is a record in the
PRE DOWNLOAD_INFO table, File Fetcher retrieves the URL from the table and uses
it to download the file to the local repository. In the meantime, file related information
such as URL, original file name, system file name, temporary location, file type, file size,
location level, is_different format, is renamed, and last modified date are inserted into
the DOWNLOAD_STATUS table. The schema of the DOWNLOAD STATUS table is

shown in Table 9.

25

s LR e - e oo - T EE LR +
| Field | Type i Null | Eey | Default | Extra

Fom e o m e Fmmmm e +-—m—= e fomm e +
| ID | bigint{20) unsigned | | PRI | NULL | auto_increment |
| prefix_url | blob | YES | | NULL | |
| orig_file_name | warchar (200} | YE3 | | HULL | I
| file_name | varchar(200) | TES | | NULL i |
| temp_ location | warchar(100) | YES | | NULL |

| final location | warchar(100) | YE5 | | NULL | |
| ddate | date | YES | | NULL [

| size | int(l0) | ¥E3 | | NULL | I
| file_type | warchar (20) | YES | | NULL | |
| ewel | int(l0) | YE5 | | HULL | I
| pdf_flag | smallint(l) | YE§ | | NULL l |
| ashg flag | smallint(l) | YES | | NULL |

| filter_ flag | smallint(l) | YES | | NULL |

| is_diff_ format | smallint{l) | YES | | NULL |

| is_renamed | smallint(l) | YES | | NULL [

| parentID | bigint(20) unsigned | YES | | NULL |

| mum ref by | int{100) | YES | | WULL | |
e e Tt e e e T T s +————— e e e e e e +

Table 9 Schema of the DOWNLOAD_STATUS Table

In order to facilitate other CINDI subsystems’ work, we purposely divide a URL address
into two parts: prefix URL and file name. Suppose that a file URL

http://www.speech.cs.cmu.edw/air/papers/speechwear.ps is extracted from the Web page

http://www.speech.cs.cmu.edw/air/papers.html. It will be stored into table by its prefix

URL http://www.speech.cs.cmu.edu/air/papers/ and its file name speechwear.ps. Since it

is a non-pdf file, this file will be first stored in a temporary location, the directory
“/download/”. DFS is responsible for setting the attribute final location and updates the
filter flag to indicate whether this document is accepted or not. If another file with the
same file name is already in the directory e.g. “/downloads/”, the file name must be
changed to prevent the existing file being overwritten. The values for the attributes
orig_file name and file name would be the same if the file name were not changed. The
attribute is_renamed is set to 1 if the file was renamed; otherwise, it is set to 2. If this
page contains an URL, for example

http://www.speech.cs.cmu.edu/air/papers/speechwear.pdf, it means that the file is the

same file in different format because it has the same trimmed file name and prefix URL.
This file is still downloaded but its attribute is_diff format is set to 1 to indicate that the
file has different formats than the existing file. The attribute level is the directory level

26

where the file is located and it is equal to 3 in the case above. The attribute parentID is
the identification number of the Web page from which the URL for the file is extracted
and represents the relationship between a downloaded file and a Web page. The attribute
num_ref by records the number of times that the document is referred in other Web sites.
The attribute ashg flag is used by ASHG to indicate that a semantic header has been

generated for this accepted document.

Statistics analyzer analyzes the data retrieved from SEED URL, VISITED PAGE,
DOWNLOAD STATUS, and FOREIGN_ LINK tables and then inserts and updates the
results into SITE STATS, LEVEL STATS, LINK REF BY, SITE REF BY, RDVT,
STOP_DIR LIST, DIR TO BE AVOIDED, and CRAWLED_SITES tables.

The site ID and details about it such as total number of visited Web pages, total number
of downloaded documents, total number of accepted documents, total number of rejected
documents, download rate, accepted document rate, rejected document rate, and time to
complete for each site are kept in SITE_STATS table. The values in these attributes
indicate the quality of the site. These are important parameters for the CNDROBOT
when selecting new sites for recrawling. For example, a site with higher download rate
and accepted document rate should have higher priority for recrawling than the one with
lower rates because crawling a site with higher download and acceptance rates is more
cost effective and the crawler would likely discover new documents in that site. A sample

of SITE_STATS table is presented in Table 10.

SID | t'pages | t_downloaded | t_accepted | t_rejected | p_doimloaded | ‘p_accepted | p_rejected | time_periocd |

{
+

' ! il
+ +

i ‘) ' i '
+ + T+ + +: +

18468 | 3437 | 665 | 2772 |

- —— 4 — +

1] 18 | 19 | 80 | 1201 |
21 15045 | 2042 | 137 1| 1905 | 13 1 | 93] 516 |
31 39679 | 3794 | 674 | 3120 | 9 17 1 82 | 3763 |

-+ 4. +. . +. +
t 1 t t T t

Table 10 Sample of the SITE_STATS Table

LEVEL _STATS table maintains the statistic results for directory levels where the
documents are located. The results are used to set the maximum search depth level. For

example, we can see in Table 12 that most of the documents are located at directory level

27

of 2,3,4 and 5 and there are no documents below level 7. Therefore, we can control the
search depth in the future crawl by tuning the robot to not visit any URL whose level is

greater than 7.

————————————————— e bt
num_of_document | percentage |

95 |
3537 |
2512l |
33911 |
32703 |
10789 |
260 |

+

———————+ — +

Table 11 Sample of the LEVEL_STATS Table

LINK _REF_BY table maintains the records of link cross references for downloaded
documents. For example, suppose that the document cindi.pdf is discovered while

crawling the site www.cs.concordia.ca and later it is downloaded from the URL

http://www.cs.concordia.ca/~bcdesai/cindi.pdf. As the robot crawls another site

www.umc.edu, the same URL for the file is found as a foreign link while parsing the

Web page http://www.umec.edu/paper/2005/. It means that the file is referred once

because the author of the Web page in another host recommends this file by providing the
link of the file in the page. To keep a record for this type of referencing, the file ID in
DOWNLOAD STATUS table and the link ID in FOREIGN LINK will be inserted into
LINK _REF_BY table.

SITE_REF_BY table contains three attributes and it has the table structure given in Table
12:

e e e e o e ettt +
| Field | Type | Hull | Key | Default | Extra |
o= G LT R o m o e o L L L e +
ID	bigint(20) unsigned		PRI	NULL	auto_increment
SID	bigint(20) unsigned	YES		WULL	
FID	bigint(20) unsigned	YES		NULL	
e e e oo e e T +

Table 12 Schema of the SITE_REF_BY Table

28

The SID is the ID for the site in SEED_URL table and FID is the identification number
for the foreign link in FOREIGN _LINK table. SITE REF BY table represents the
relationship between the site in SEED_URL table and the foreign link and its host in
FOREIGN_LINK table and indicates the popularity of the crawled site. Assume that the
site. www.unc.edu with ID of 22 in SEED_URL table is referred by the foreign link
http://www.cs.umd.edu/%7Egetoor/talks.htm] with FID of 9011, the ID of the host

www.cs.umd.edu, one of the crawled sites. Therefore, an entry with SID of 22 and FID of

9011 will be inserted into SITE_REF_BY table. The number of occurrences for each SID

is the number of times that site is referred by other hosts.

Representative Document Vector Table (RDVT) table contains the anchor texts that
appear most frequently in the home pages of sample seeds, which are the sites in the
SEED_URL table. These pages are also referred to as exemplary documents. These
anchor texts are used to compare the similarity between a Web page and the exemplary
documents. The table is used by statistics analyzer to select new sites from the foreign
link hosts. Since foreign links were extracted from subpages in those sites, we expect that
newly selected sites should at least have some characteristics of sample seeds. A sample

of the table is presented in Table 13:

o s +
| anchortext | count |
o o +
| people | 8 |
| publications | 71
| research | 7|
B it e +

Table 13 Sample of the RDVT Table

The attribute count is the number of exemplary documents that contain the anchor text.
Only the anchor text with a count greater than a quarter of total number of exemplary

documents is stored in RDVT table.

The keywords in DOMAIN KEYWORD table are extracted from subject classification
of INSPEC (the Database for Physics, Electronics and Computing) [INSP] [XUEO03].

29

These 174 keywords combined with sample anchor texts in the RDVT table are the
measurement of selecting new seeds from the FOREIGN_LINK table (see section 4.4).
Newly selected seeds are inserted into the NEW_SITES table.

CRAWLED SITES table contains the information for the already visited sites. The
CRAWLED_SITES table is the master table of the SEED URL table and it has a table
structure similar to the SEED_URL table as shown in Table 14.

T S R E T TR A e et e EEE L EE PR +
| Field | Type | Hull | Key | Default | Extra |
e e oo o e e bt +
ID	int{200) I	PRI	HULL	auto_increment	
Link	blob	YES		NULL	
Host_tiame	wvarchar (200}	YES		NULL	
Priority lewel	int{l0)	YES		NULL	
SDATE	datetime	YES		WULL I I	
EDATE	datetine	YE3		NULL	
Bum ref by	int(l00)	YE5		NULL I	
e L L o e oo Tt R T LS S +

Table 14 Schema of the CRAWLED_SITES Table

In the CRAWLED SITES table, we replace the attribute Is new seed used in the
SEED_URL table with a new attribute Priority level. The attribute Priority level
represents the minimum waiting time for the site before the next crawl. It has five values,
corresponding to different time periods as shown in Table 15. If the site has never been
crawled before, its priority level is set to 1 to indicate that it is eligible to be crawled 15
days after its last crawling end time. If the site were recrawled and found that the
accepted document rate decreased (see section 3.3.5), its priority level would be degraded
one level down, which means this time it has to wait at least 30 days to be recrawled.
Once the priority level reaches 5, the site will be discarded. On the other hand, if the
accepted document rate of the site was found to increase, the site’s priority level will be
promoted one level up. However, if the site’s priority level is already 1, then the same
level is kept. Once sites crawling, file fetching and statistics analyzing is completed, the
seeds in the table will be merged with SEED URL table. The information about the
“first-time crawl” sites: link, host name, starting time and finish time is inserted into the

CRAWLED_SITES table and their attribute Priority level is set to 1 to indicate that they

30

are eligible for the next crawl as long as they have waited enough time. The time for a

site has waited is calculated as follows:

wt=cd—ed

wt: waited time cd: current date ed: finish date of last crawl for the site

A crawled site has waited enough time if its wt is greater than the time value

corresponding to its priority level.

Since “already crawled” sites have entries in the CRAWLED SITES table, the attributes
SDATE and EDATE will be updated with the new times and their attribute priority levels
will be updated according to the new value for the accepted document rate. After merging,

the SEED_URL table is empty and ready for accepting new seeds.

The attribute Num_ref by in the CRAWLED_SITES table has the same indication as the

one in SEED URL table. It will be updated as more references to the sites are found.

Priority Level Time Waiting Period
1 15 days

2 30 days (1 month)

3 60 days (2 months)

4 180 days (6 months)

5 infinite

Table 15 Significance of Priority Level

The Link Analyzer manipulates the data in the DOWNLOAD STATUS and
VISITED PAGES tables (see section 4.5) and records the analyzed information into
STOP_DIR_LIST and DIR_TO BE AVOIDED tables. The STOP_DIR LIST table
holds the directory names under which no downloaded documents are found to be
acceptable. It is most unlikely to confirm the genre of documents under them and the
directories names (in Table 16) are used to predict the relevance of a URL while crawling

the site,

31

B eata b L BT o e
| dir_name | mum of_ invalids
B et T D N e L L E L
| images | 36
| inlp2004a | 25
| lectureNotesWeb | 76
| msi | 16
| pdf-6up | a2
| pdf-color | 69
| puzzle | 18
| review | 37
| sections | 20
| transparencies | 33
Rt kel e e e e e

e R S

o —m— e ——— 4+ — 4
[
o
o

Table 16 Sample of the STOP_DIR_LIST Table

In Table 16, the attribute num_of invalids denotes the total number of rejected

documents whereas the attribute num of downloads represents the total number of

downloaded documents from the directory with the given name. The attribute percentage

represents the rejected percentage of downloaded documents.

DIR_TO_BE_AVOIDED table maintains the site ID, directory name, and URL for the

directories under which no document can be found in the crawled sites.

+ + e — e —— +- - + - e — e e
| siteID | host | dir_name | url

Frmmm e L e e LT + - B i T -

| 3 | wuww.cs.indiana.edu | Contacts { http://www.cs.indiana.edu/Contacts/

{ 3 | www,cs.indiana.edu | Courses | http; //www, cs, indiana. edu/Courses/

t 3 | www,cs,indiana,edu | Academics | http://www.cs. indiana, edu/Acadenics/
| 3 | wuw.cs,indiana.edu | Research | http://uww, cs.indiana, edu/Research/

| 3 | www.cs.indiana.edu | People | http://www,cs. indiana,. edu/People/

| 3 | www.cs.indiana.edu | Calendar | http: //uwww, ¢s, indiana. edu/Calendar/

| 3 | www.cs.indiana.edu | Resources | htep: //www, c8. indiana. edu/Resources/
| 3 | wow.cs.indiana.edu | Facilities | http://wuw.cs.indiana.edu/Facilities/

Table 17 Sample of DIR_TO_BE_AVOIDED Table

For example, in Table 17, CNDROBOT could not find any relevant document under the

directories of “Contacts”, “Courses”, and “Academics” and their subdirectories. The

rationale and approach of doing this will be discussed in the next chapter.

32

3.3 Approach

Extensive research and experiments have been made on various Web search strategies,
for example, breadth-first search [MNO1], best-first search [JC98], shark search [MH98],
focused crawling [SB99], reinforcement learning [MA99] and page rank [PR99].

Because one strategy does not fit all situations, search engine robots adopt different
search algorithms depending upon their crawling purposes and judgments. Mercator, a
Web crawler used by AltaVista, employs the breadth-first search algorithm since they
found that this algorithm is able to discover the highest quality pages during the early
stages of crawling [MNO1]. GoogleBot utilizes best-first search with page rank metrics to
crawl the Web [PR99]. They count the back links to a page to produce the rank, the
popularity of the page. They believe that pages with more reference count have higher

quality and therefore higher crawling priority.

CNDROBOT focuses on exploring the Web pages inside the seed sites, using the
breadth-first search algorithm to find computer science literature. We assume that all the
pages inside the seed site are relevant to our goals and all the documents contained in the
pages are potentially desired document. The breadth-first algorithm places unvisited
URLs in the frontier in the order in which they are discovered. They are retrieved from
the queue in first-in, first-out fashion. The reason we select breadth-first as our crawling
strategy is because it has the advantage of being easy to implement and has proved able

to find more high quality Web pages at the early crawling phases [MNO1].

The CNDROBOT is designed to run infinitely and attempts to cover as many potential
sites as it can. To achieve this, the web crawler continuously discovers new potential
seed sites in the course of crawling and the statistical analyzer supplies new selected
seeds to the web crawler. Details of crawling approach, new seed selection rules and seed

reschedule algorithm will be given in this section.

33

3.3.1 Overview of Crawling Approach

Start i
Is frontier
empty? Yes
Submit queries
P ,__1\1_"__{____\
aVista
- Download
Web page
Ve ~ | S —
Combine y
\ search results] Classify page
Initialize seed Parse page
URL list and extract
links
J/
%4
f__!'—\
Yes Filter links
 —
—_—
No Add links to
frontier
|
Pick a seed
URL and add (Fetch
to frontier ete
> documents
from seed sites
_
L 4
Check for [Filter new documents "——‘_

robot.txt file

~
Initialize seed Analyze Select new
URL list links seeds

Figure 5 Crawling Process Diagram

34

Figure 5 shows the basic crawling process of the CNDROBOT, it starts with submitting
queries (“computer science department”, “computer science publications” and “computer
science technical reports™) to Google and AltaVista search engines. The combined results
from both search engines are stored into the NEW_SITES table and 30 sites from the
table are used to initialize the seed URLs list. The CNDROBOT adopts breadth-first
search algorithm while traversing the seed site to locate the documents. Crawling frontier
maintains a list of unvisited URLs, which are extracted from previously crawled pages. A
crawling loop always involves 6 steps: 1) Check if the frontier is empty 2) Download
Web page 3) Classify page 4) Parse page and Extract links 5) Filter the URLs 6) Add
URLs to the frontier. When there are no URLs in frontier, the crawling loop stops. It
indicates crawling for a particular seed site is complete. The next crawling cycle starts by
picking the next available seed URL from the seed list. The current crawling process
stops when the seed list is empty, i.e., all the seed sites initialized previously have been

crawled. At this time, the File Fetcher commences to download the discovered documents

from crawled seed sites.

After the file fetching process is complete, DFS starts to check for newly downloaded
documents and evaluates the quality of these documents. Once the DFS has completed
filtering all the downloaded documents, statistics analyzer starts to analyze the crawling
history data and document information; selects revisiting sites from “already crawled”
sites; and digs out new sites from foreign link hosts and inserts them into the
NEW_SITES table. It also forms the seeds list for the next crawl, which includes the new
sites and revisiting sites. Then, the crawl restarts once the new seed URL list is ready, i.e.,
SEED URL table is not empty and the link analyzer has created the
DIR TO BE_AVOIDED and DIR_STOP_LIST tables.

3.3.2 The Standard for Robot Exclusion

The Standard for Robot Exclusion [KM94] was proposed to restrict crawlers from
accessing certain parts of a site. The standard involves creating a plain-text file named

robots.txt and placing it at the root of a web site.

35

The robots.txt file can be used to advise robots not to index an entire site, specific
directory or its subdirectories, or even a particular file. For example, the following entry

is part of a robot.txt file at IBM’s Web Site. (http://www.ibm.com/robots.txt, see

Appendix B). It specifies that robots or crawlers be forbidden to access the directory of

http://www.ibm.com/Admin.

User-agent: *

Disallow: /Admin

This standard has gained widespread acceptance, and basically all search engines abide
by it. Although complying with the standard is voluntary, the CNDROBOT respects it by
first checking the existence of the robots.txt file at the root of the seed site before starting
to crawl the site. If the robot.txt file exists, all the disallowed path entries will be
extracted to the robot safe checklist. The outer links extracted from Web pages will be

examined against the list before being added to the crawling frontier.

3.3.3 Parse the HTML Document

Generally there are four kinds of hyperlinks in HTML documents: anchor (<A>) tags;
Image () tags; Map and Area tags; and Frame and iFrame tags [NLOO]. Anchor
tags are the most commonly used. They have several attributes including name, title, alt,
on-mouse-over, and href. When CNDROBOT parses a Web page, it determines the title,
hyperlinks in the page, and anchor texts that describe the hyperlinks. HTML standard
requires the author of a Web page to set the page title between the tag <title> and </title>
in the <head> section. The value of a hyperlink pointing to another page is normally
found within the tag and the description for the link can be found right
after the hyperlink tag and before the tag . Because the goal of CNDROBOT is to
discover and collect scientific literature from the Web, we ignore the information

contained in Image, Map and Frame tags.

36

3.3.3.1 Parse AltaVista Web Page

In AltaVista’s Web result pages, all the hyperlinks for results in the display are situated
after the tag . The class defined in Cascading Style Sheets (CSS) adds
the style (e.g. fonts, colors, spacing) to a Web document. Since AltaVista is a commercial
search engine, it includes sponsored matches at the top as well as at the bottom of each
page (see the highlights in Appendix D). We exclude those commercial sites from the
seed list since they are spams, which contain little information related to our search topic.
This raises the problem of identifying sites from the sponsored ones. To solve this
problem, CINDI seed extractor parses the result pages twice. We notice that for
unsponsored URLs in the results, AltaVista offers “More pages ...”. Sponsored links do
not have such a feature. In the first parsing, we extract all the hyperlinks between and including sponsored links, for example, the sponsored link

www.nextag.com and the link www.indiana.cdu (see Figure 6) and insert them into a

temporary database table. In the second parsing, we first extract the hyperlinks right after
the string “More pages from” and then compare this trimmed URL “cs.indiana.edu” with

the URL www.cs.indiana.edu in the temporary table. If there is a similar entry in the

table, we know that www.cs.indiana.edu is a real seed and it will be inserted into the

NEW_SITES table. In this way, we can screen out commercial hyperlinks. One could ask
why we do not just make the second parse and affix “www” to the trimmed URL. The
reason is that it works for most cases but not all. For example, the URL for the

department of computer science at Australian National University is http://cs.anu.cdu.au/,

however, the host name www.cs.anu.cdu.av/ is invalid.

37

L3 AltaVista Search: computer science department - Mozilla Firefox

Eile . Edit Wew Go -Bookmarks . Tools . Heip

Jter+science--depar

US residents fi gree in business, education, nursing, IT, computer science, health, web/graptic design and more from
a dirgctory of accredited universities.
WL FE @) O

Lomputer Science Department

Earn. your It degree at University of Phasnix Online. Request a fres, no-risk Infopak today.

it uphoenix org

rennedy Westerm Uni. Computer Sciencs

Kwu, a leader in distance education, offers online Camputer Science degrees. Study at your own pace, in your own home. Register

for a free.catalag. Must be 23 with §+ years experience.

et K e du

MG Computer Science Departmant

Complete AMD 2200 plug w/40- HD, DVD-burner and frée shipping- ends Friday.
B7 14917628

Fulfts Wit Foael 29,080,800 vesntix

) Computer Scienca Tment

... Welcome to the Indiana University Computer Science Departiment website. VWe are proud to present these ... Award for faculty
in the Computer Sclence department is Professor Kent Dybvig ...

et g ndidre, ady

More pages from ce indiana, edy

Figure 6 AltaVista Search Result Page

3.3.3.2 Convert Relative URL to Absolute URL

CNDROBOT involves retrieving thousands of Web pages and interpreting tens of

thousands of URLSs in these pages every hour. In order to obtain precise URLs, one must

pay special attention to resolve the various forms of expression of hyperlinks on a page.

A hyperlink that specifies the location of a file/directory on the network can be presented

in two forms, either in absolute URL or in relative URL. Absolute URL is a complete

URL, which gives a full path name to the target file, for example: a document latex.html

is retrieved using http://www.cs.concordia.ca/help/latex.html. For the base URL

http://www.cs.concordia.ca/, a relative URL can be given as /help/latex.html or

help/latex.html. Generally, the absolute URL is a concatenation of the base URL and the

relative URL. The forms of the relative URL can be summarized in Table 18.

38

Relative URL Syntax Refers to

J Current directory

o/ Parent directory

vl oo Up to two levels of directory

#foo Fragment identifier in a Web page
foo.html Concatenation to the base URL
/f00.html Concatenation to the host URL
//WWW.XyZ.com Replacing everything from the host URL

Table 18 Interpretation of Relative URL Symbols
3.3.3.3 Meta Tags

There are several meta tags defined by search engines for indexing the Web pages.
CNDROBOT is only interested in two of them, i.e. “meta keywords” and “meta http-
equiv="refresh"”. The “meta keywords” tag is used to describe the content of a Web page
using one or more keywords. For example, the “meta keywords” used to describe Sun
Microsystems’s home page is <meta name="keywords" content="Java, platform" />.
CNDROBOT can examine the relevance of the Web page search topic (computer science)
by comparing keywords extracted from the tag with the domain keywords in the
DOMAIN KEYWORD table. If no keywords are given or keywords are not matched
with ones in the table, the page content and anchor texts around the links are examined to

determine the relevance of the page (see chapter 4).

“meta http-equiv="refresh"” is not a standard meta tag; it sends a HTTP signal to the
browser or search engine robot to reload the current page or redirect it to a new page. By
downloading the home page of a well-known scientific publication Web site

(www.elsevier.com), its content is determined as follows:

<HTML>
<HEAD>
<META HTTP-EQUIV="Refresh" CONTENT="0;URL=/wps/find/homepage.cws home">
</HEAD>
</HTML>

39

The value 0 in attribute CONTENT is the number of seconds the robot waits before
loading the specified URL. As mentioned before, the HTML parser only extracts the

9

values in link tag Without checking for “meta http-equiv="refresh"”,
CNDROBOT has no way to determine the new home page location given as

www.elsevier.com/wps/find/homepage.cws_home and hence CNDROBOT might miss

an entire site. The redirected page could be the home page of a site as in the example
above or a Web page containing the links to documents. In either case, the cost of
missing them is unnecessary and avoidable. Hence, searching for http-equiv meta tag and

finding the redirected page is a mandatory task for CNDROBOT while parsing a Web
page.

3.3.3.4 Enforce Canonicalization Rules and Error Correction

Since HTML is a semi-structured language and a HTML page does not need to be
compiled, many unpredictable human mistakes in Web pages prevent CNDROBOT from
locating correct links or can even result in run time errors. In addition, the nature of the
HTML language itself can sometimes also hinder the crawling process. Applying
canonicalization rules and implementing the error protection mechanism can significantly
reduce the probability of occurrence of these problems, improve the crawling efficiency

and avoid an endless crawling loop. The canonicalization rules are described below.

Canonicalization Rules

Gautam Pant [GP04] presented some canonicalization procedures for a typical URL, such
as converting the URL string to lower case; considering “index.html” as the default Web
page which can be retrieved using the base URL, therefore removing the URL with this
page name from the crawling list; and performing URL encoding on some special
characters, for example, encoding “?” to “%3f”. In implementing canonicalization rules
for CNDROBOT, we used Pant’s rules as guidelines to improve the robot’s performance.
Here, we give three examples of adpated rules to illustrate the importance of applying

canonical forms rules:

40

Remove “..” and its parent directory

The symbol of “..” indicates one level up from the current directory. It might appear in an

URL, for example http:/www.cis.upenn.edu/~rwash/bike/. /papers/mjw.html and

http://www.cs.cmu.edu/~help/windows/../security/viruses.html. The same Web page can

[

be retrieved if the “..” and the parent directory are removed. Hence, these URLs can be

reduced to http://www.cis.upenn.edu/~rwash/papers/mjw.htm} and

http:// www.cs.cmu.edu/~help/security/viruses.html

Remove fragment indicator “#”

The symbol “#” in the URL string is used to link to a target location in a HTML

document. In the page http://www.cs.concordia.ca/help/help.html, there are 7 URLs

ending with “H’s and their targets. For example:

http://www.cs.concordia.ca/help/help.html#FAQS and

http://www.cs.concordia.ca/help/help. htm#FHOWTOS. Comparing them literally, they

are different URLs. However, they are pointing to exactly the same Web page. Without
applying this canonicalization rule, this page would be visited, downloaded, and parsed 8
times. By removing “#” and its target, a single base URL is discovered. This prevents the

same page from being crawled more than once.

Avert Spider Trap

A spider trap happens when a Web page is crawled repeatedly and endlessly. For

example in page http://www.st-andrews.ac.uk/foi/login_form/enabling_cookies/, there is

a relative URL <a href="enabling_cookies"™. In most cases, CNDROBOT simply
concatenates this type of relative URL to the base URL and then a “new” URL

http://www.st-andrews.ac.uk/foi/login form/enabling cookies/enabling cookies is

formed and inserted into the queue waiting for its turn to be crawled. When there are no

URLs in the queue ahead of it and all other URLs on this page have been visited, it would

41

be the only URL in the queue to be crawled. Because the “new’ URL is still directed to

the same page and the same relative URL is extracted, there will be another “new” URL

http://www.st-

andrews.ac.uk/foi/login form/enabling cookies/enabling cookies/enabling cookiess/ena

bling_cookies created. Notice that no matter how many “enabling cookies” are
appended, they still point to the same page. The crawling progress will be stalled at this

point because of this endless loop.

There are actually two techniques used by CNDROBOT to avert this spider trap. The first
technique is to use a “predefined depth level”, which is not designed for that purpose in
the first place but has the functionality of stopping the trap when it happens. “Predefined
depth level” limits the levels in a Web structure to which CNDROBOT will search, at the
same time; it also confines the ability of the robot to expand the URL to a certain level so
that the trapping can be discontinued. Details of this technique will be covered in Chapter
4,

The second technique is to compare the current URL’s page name with the relative URLs
to be extracted. The page name is the character string after the last “/” if it’s not empty.
For example, we define the page name for URL

http://www.cdf.toronto.edu/workathome/index.php3 as index.php3. If the URL ends with

“/”, the page name is the characters between the last two slashes, which is still index.php3.
If the robot finds a link tag such as , it knows that this relative

URL is the same as the current page name and will ignore it for extraction.

Error Correction

Human mistakes can also cause severe problems for the robot. The following is a list of
problems encountered by CNDROBOT while parsing HTML pages.

42

Use of Slash in URL

A standard URL includes slashes “/” to refer to the directory. Some web page authors
mistakenly use back slash “\” instead of “/” in the hyperlink. For example: when parsing

the page http://www2.cs.uh.edu/~vtbui/, the link <a href=

"http:\\www.cs.uh.edu\~vtbui\whoami.htm"> causes the robot a problem

Unconventional Relative URL

In page http://www.cs.concordia.ca/~cliff/dai/dai-home-page.html, the author uses to represent a relative URL to the file “dai-list.html”.

Miscellaneous Errors

Some authors prefer using single quotation marks instead of double ones for URLs.
Typing errors such as one slash “/” instead of two slashes *“//” after “http:” occur very

often.

The above-mentioned problems are resolved by the auto-correction mechanism in
CINIDI robot. For instance, to handle the first case, before adding to the uncrawled list,
all the links are checked for compliance to canonicalization forms, and if back slashes in

the URL were found, they would be replaced by slashes.

3.3.4 Seeds Rescheduling Algorithm

After the initial crawl, seed sites need to be recrawled periodically to check for updates
and for new documents posted in these sites. However, given the limited time and the
time needed to spend on crawling new sites, only a fraction of the previous seed sites can
be placed in the seed URLs list for the next crawl. We apply the Round-Robin algorithm

to schedule revisiting orders for “already crawled” seeds as well as new seeds.

43

The Round-Robin Algorithm is one of the most popular scheduling algorithms, designed
originally for process scheduling in operating systems [AS92]. All the processes are
placed in a queue. A new arriving process can be placed in the queue in different ways.
However each process is only allocated a slice of processor time, called quantum. By
using this algorithm, the average waiting time for each process is significantly reduced.
CNDROBOT can be viewed as the processor and the seeds as the processes. The
uncrawled sites and new sites discovered from previous crawling have priority; therefore
they will be placed at the head of the next seed URLs list. We use the mean completion

time of the last crawl as the quantum and calculate it using the formula as follows:

2. Time for Seed Crawling to Complete

Mean Completion Time (MCT) =
Number of Completed Seeds

Before the initial crawl, the seed finder extracts a total of 3,130 unique seeds and stores
them into the NEW_SITES table. In the first crawl, we crawled 30 new sites; downloaded
106,416 documents from them; filtered 51,215 documents and moved the rest of
documents to the trash directory. The crawling period including document downloading
took 26,672 minutes, which is approximately 18 days. The MCT can be calculated as
26,672 / 30 = 889 minutes = 15 hours.

Assume that each seed site would get 15 hours of time units (one sub-cycle), and then
ideally each site would wait no longer than 15*30 time units before its next quantum.
However, our principle for the subsequent crawling is to allocate half of the total time for
new sites while still maintaining approximately the same completion time as the previous
crawl. Therefore, in the case above, there are 15 quanta for the new sites and another 15
quanta left for these 30 crawled sites. 15 new sites are taken from the NEW_SITES table,

which has a minimum of 3,130 — 30 = 3,100 uncrawled sites.
Because the number of crawled sites (30) is greater than the number of places (15)

available, these crawled sites have to compete for the places. To be eligible for

competing, the priority levels for those sites are checked to ensure they have waited long

44

enough for revisiting. From Table 19, we can see that the last seed finished on July 12.

Suppose that the next crawl will start on July 22. Using the priority and time waiting

period translation sheet in Table 12, the last three seeds with ID of 28, 29 and 30 are

ineligible for competing because it has not waited more than 15 days since its crawling

was completed. It will become eligible only after the next crawl finishes.

ID | Link SDATE EDATE

1 www.cs.umass.edu 2005-05-14 16:32:41 | 2005-05-15 12:33.58
2 www.cs.concordia.ca 2005-06-01 14:46:14 | 2005-06-01 23:23:08
3 www.cs.indiana.edu 2005-06-03 01:57:10 | 2005-06-05 16:40:24
4 www-cs.stanford.edu 2005-06-07 15:20:03 | 2005-06-07 15:31:28
5 www.cs.cornell.edu 2005-06-08 02:36:26 | 2005-06-09 09:54:34
6 www.cs.cmu.edu 2005-06-09 14:15:37 | 2005-06-11 01:34:23
7 www.cs.umd.edu 2005-06-11 15:50:36 | 2005-06-13 03:04:42
8 www.cs.uiuc.edu 2005-06-13 11:45:37 | 2005-06-13 11:54:26
9 www.cis.upenn.edu 2005-06-18 22:55:38 | 2005-06-19 18:42:12
10 | www.cs.purdue.edu 2005-06-20 00:50:39 | 2005-06-20 10:35:42
11 | www.cs.unc.edu 2005-06-20 12:15:38 | 2005-06-21 11:40:45
12 | www.cs.toronto.edw/DCS/index.html 2005-06-22 14:15:39 | 2005-06-23 00:23:18
13 | www.cs.columbia.edu 2005-06-23 13:46:38 | 2005-06-24 04:09:36
14 | liinwww.ira.uka.de/bibliography 2005-06-28 15:31:58 | 2005-06-29 05:14:16
15 | dmoz.org/Computers/Computer_Science/Publications 2005-06-29 15:04:17 | 2005-06-30 12:56:34
16 | www.elsevier.com 2005-07-01 03:05:24 | 2005-07-01 20:54:16
17 | www.computer.org 2005-07-01 20:59:59 | 2005-07-02 05.58:20
18 | www.sciencedirect.com 2005-07-02 15:58:37 | 2005-07-02 16:09:52
19 | www.cs.virginia.edu/studpubs 2005-07-02 16:39:28 | 2005-07-02 22:05:57
20 | www.cs.kent.ac.uk 2005-07-02 23:51:40 | 2005-07-03 11:15:57
21 | cjtes.cs.uchicago.edu 2005-07-03 16:33:41 | 2005-07-03 16:38:08
22 | www.dmtcs.org 2005-07-03 16:38:08 | 2005-07-03 16:51:16
23 | www.mcs.vuw.ac.nz/comp/Publications/ 2005-07-04 00:09:33 | 2005-07-04 14:04:32
24 | reports-archive.adm.cs.cmu.edu/cs.html 2005-07-05 03:26:40 | 2005-07-05 04:08:22
25 | www.cs.bu.edu/techreports/ 2005-07-05 13:50:41 | 2005-07-05 18:26:44
26 | cs.anu.edu.aw/techreports/ 2005-07-05 18:26:44 | 2005-07-07 07:55:26
27 | www.cs.arizona.edu/research/reports.html 2005-07-07 07:55:26 | 2005-07-07 22:53:51
28 | www.cs.rpi.edu/research/tr.html 2005-07-11 16:50:41 | 2005-07-11 20:38:07
29 | www.cs.umich.edu 2005-07-11 20:38:07 | 2005-07-11 20:40:39
30 | www.lib.utk.edw/refs/computersci 2005-07-11 20:40:39 | 2005-07-12 21:25:24

Table 19 Crawled Seeds in SEED_URL Table

We set a selection procedure for the situation when there are more “already crawled”

sites competing for limited places for recrawling. First, we rank the “already crawled”

sites according to their accepted document rate (ADR) and seed site reference count

(SSRC) (see section 3.4.2). If two sites have the same accepted document rate, the one

45

with high SSRC will have higher rank than the one with low SSRC. The 27 ranked sites
with their ADR and SSRC are presented in the table below.

Rank | ID [Link ADR SSRC
1 19 | www.cs.virginia.edu/studpubs 22 206
2 1 www.cs.umass.edu 19 77
3 8 WWW.cs.uiuc.edu 18 91
4 3 www.cs.indiana.edu 17 151
5 18 | www.sciencedirect.com 17 147
6 6 www.cs.cmu.edu 16 658
7 7 www.cs.umd.edu 16 225
8 5 www.cs.cornell.edu 15 424
9 9 www.cis.upenn.edu 14 452
10 2 www.cs,concordia.ca 13 25
11 20 | www.cs.kent.ac.uk 13 8
12 4 www-cs.stanford.edu 12 137
13 10 | www.cs.purdue.edu 11 130
14 11 | www.cs.unc.edu 10 198
15 12 | www.cs.toronto.edu/DCS/index.html 10 153
16 13 | www.cs.columbia.edu 9 221
17 14 | liinwww.ira.uka.de/bibliography 7 81
18 21 | cjtes.cs.uchicago.edu 6 9
19 24 | reports-archive.adm.cs.cmu.edu/cs.html 6 7
20 25 | www.cs.bu.edu/techreports/ 5 144
21 26 | cs.anu.edu.au/techreports/ 5 78
22 23 | www.mcs.vuw.ac.nz/comp/Publications/ 4 11
23 15 | dmoz.org/Computers/Computer _Science/Publications | 3 15
24 16 | www.elsevier.com 2 100
25 27 | www.cs.arizona.edu/research/reports.html 1 122
26 17 [www.computer.org 0 384
27 22 | www.dmtcs.org 0 0

Table 20 Ranked Sites

We arbitrarily select some cut-off points to decide whether a crawled site is good,
medium or bad. If the site rank is above 75% of the total number of eligible seeds, we
consider that the site is a good site and all good sites are selected for the revisitng. In our
case, there are 25% * 27 = 7 good seeds, i.e., the seeds with rank 7 and above are first
selected for the next run. There are 15 — 7 = 8 places left for the remaining seeds. The site
rank is between 50% and 75% of the total, i.e., the sites which rank between 7 and 14, are
considered as medium seed and 50% of them are selected; hence, the sites with rank 8, 9,
10, and 11 are selected. The seeds, which rank lower than 50%, are treated as bad seeds.
We still assign the remaining 8 — 4 = 4 places for them because they might have the

potential to become good seeds if CNDROBOT finds some new accepted documents

46

from the sites in the next run. Therefore, the sites with rank 15, 16, 17 and 18 are also
selected. Finally, these selected sites are inserted after the new sites into the SEED_URL
table for the next run. Below is the new SEED_URL table that contains the seeds for the

next crawl.

I ID | Link | Host_name | Is_new_seed | Resume_flag | SDATE | EDATE | Num_ref_by
I 1) ww.cs,9pi.edu | NULL 1 U] 1 | 2005-07-22 23:55:41 | 2005-07-23 11:32:43 | NULL
I 21 ww,w3iorg | RULL | 01 1| 2005-07-23 13:32:41 | 2005-07-28 15:31:41 | NULL
{ 3| dis.cs.umass.edu | NULL | g1 1 | 2005-07-28 15:31:41 | 2005-07-28 15:33:43 | NULL
I 4 | mas.cs.unass,edu { NULL 1 0 1 | 2005-07-28 15:33:43 | 2005-07-28 15:38:44 | NULL
| 5| ca.conncoll.edu | NULL i 0| 1 | 2005-07-28 15:38:44 | 2005-07-28 15:41;39 | NULL
| 6 | lass.cs.uma3ss.edu | -NULL | 0} 1 1.2005-07-28 15:41:3% { 2005-07-28 15:51:55 | NULL
| 7 | wyw-edlab.cs,uness.edu | RULL I 01 1 | 2005-07-28 15:51:55 | 2005-07-28 15:52:15 | NULL
| 8] desl.cs.unass.edu | NULL i 0| 1 | 2005-07-28 15:52:15 | 2005-07-28 15:52:50 | NULL
I 9 | cise.nsf.gov | NULL i 0| 1 | 2005-07-28 15:52:50 | 2005-07-28 15:53:47 | NULL
| 10 | www.cse.ucsc.edu | NULL | 01 1 | 2005-07-28 15:53:47 | 2005-07-29 16:25:24 | NULL
| 11 | www,soe,ucsc.edu { NULL 1 01 1 | 2005-07-29 16:25:24 | 2005-07-30 08:15:07 | NULL
| 12 | wvw.eecs.berkeley.edu { WULL I 0| 1 | 2005-07-30 17:31:41 | 2005-07-31 00:15:55 | NULL
| 13 | mallet.cs.umass,edu | NULL |] 1 | 2005-07-31 00:15:55 | 2005-07-31 00:53:49 | NULL
| 14 | ripples.cs.unass.edu 1 NULL | 01 1 1 2005-07-31 00:53:49 | 2005-07-31 00:55:58 | NULL
| 15 | wwy.cs.vt.edu | NULL 1 [ON} 1 | 2005-07-31 00:55:58 | 2005-07-31 00;56:00 | NULL
| 16 | www,cs.virginia,edu/studpubs i WULL | 11 1 1 2005-07-31 00:56:00 | 2005-08-01 06:07:06 | NULL
| 17 | www,cs.unass.edu | NULL { 1 1 | 2005-08-01 06:07:06 | 2005-08-01 09:40:00 | NULL
| 18 | wuw,cs.uluc.edu { NULL 1 14 1 | 2005-08-01 09:40:00 | 2005-08-01 09:46:13 | NULL
| 19 | wew,cs.indiana, edu] NULL | 1 1 1 2005-08-01 09:46:13 | 2005-08-02 16:28:33 | NULL
{ 20 | wwy.sciencedirect.com | NULL { 1} 1 | 2005-08-02 16:28:33 | 2005-06-02 16:30:42 | NULL
| 21 | wvw,cs.cmu, edu i NULL | 1 1 | 2005-08-02 16:30:42 | 2005-08-04 04:58:18 | NULL
| 22 | wew,cs.und. edu | NULL 1 1 1 | 2005-08-04 04:58:18 | 2005-08-04 20:46:49 | NULL
| 23 | www.cs.cornell,edu | NULL | 1 1 | 2005-08-04 20:46:49 | 2005-08-07 02:07:42 | NULL
{ 24 | wvw.cis.upenn.edu | NULL | 1] 1 | 2005-08-07 02:07:42 | 2005-08-07 16:52:05 | NULL
| 25 | www.c¢s.concordia.ca | NULL { 1 1 | 2005-08-07 16:52:05 | 2005-08-07 20:56:20 | NULL
| 26 | wuw.cs.Kent,ac.uk { NULL | 11 1] 2005-08-07 20:56:20 | 2005-08-08 00:55:45 | NULL
| 27 | wyw,cs.toronto.edu/DCY/index html | NULL | 11 1 | 2005-08-08 00:55:45 | 2005-06-08 16:45:43 | NULL
| 28 | www,cs.columbis,edu | NULL [11 1 | 2005-08-08 16:45:43 | 2005-08-09 07:46:41 | NULL
| 29 | liinwwy.ira.uke.de/bibliography | ‘NULL 1 1} 1 | 2005-08-09.07:46:41 | 2005-08-09 08:51:48 | NULL
1 30 1 cjtesies.uchicago.edu | NULL | 11 1 1 2005-08-09 08:51:48 | 2005-08-09 08:56:23 | NULL

Table 21 Sample of New SEED_URL Table

Note that the unselected “already crawled” sites have to compete again with other eligible
sites for the third run. However, the number of new sites found could be fewer, in which

case more quanta can be allocated to “already crawled” sites.

3.3.5 Priority Level for Site Revisiting

As mentioned in section 3.2, the priority level specifies the minimum time that a site has
to wait for the next visit and it will be re-evaluated after each crawl. The priority level

will be upgraded if the accepted document rate increases as illustrated in Table 22.

47

Downloaded Documents | Prior Crawl Current Crawl
Total 1000 1100

Accepted 10 60

Rejected 990 950

ADR 1% 5%

Table 22 Increased Accepted Document Rate (ADR)

The priority level will be downgraded if the accepted document rate decreases as

illustrated below.
Downloaded Documents | Prior Crawl Current Crawl
Total 100 105
Accepted 20 20
Rejected 80 85
ADR 20% 19%

Table 23 Decreased Accepted Document Rate (ADR)

3.3.6 Subsequent Crawling

Niran and Amon in their article [NAO2] point out that the first crawl is not as efficient as
the subsequent crawling because the crawler has no prior “knowledge” about the Web
pages at any site. Along with the accumulated crawling experiences and the built
knowledge base, the crawler will become more efficient. Three objects in their

knowledge base are seed URLSs, topic keywords, and URL prediction.

The purpose of our subsequent crawling is to discover documents from new seed URLs
as well as to recrawl the previous seeds for updates. In order to improve performance in
successive crawling, CNDROBOT takes advantage of the input fed by Document Filter
Subsystem (DFC) and the results generated based on past crawling data by Link Analyzer
and Statistics analyzer to better select seed URLs, control search depth levels, prune

irrelevant directories, and predict URLs, etc. Details will be covered in Chapter 4.

48

3.4 Heuristics

While designing a Web robot, using heuristics to improve its performance is critical. In
the past, researchers have studied and developed metrics used to evaluate the relevance
and importance of a Web page and crawling efficiency. Generally, they can be
summarized as being of two types: linked-based and similarity- based. Hub, authority,
backlink count, forward link count, and page rank [JC98] are commonly used for link-
based measures. Topics or keywords similar to the centroid of example pages and to the
anchor texts surrounding the links [SM99] are used in similarity-based metrics to gauge

the relevance of a Web page.

There are few published reports [SC99] [SK99] on crawling heuristics specifically for
digital libraries. The goals of CNDROBOT differ from those of other search engines or
focused crawlers in many ways. For example, CNDROBOT pays special attention to the
quality of the downloaded documents; this indicates the effectiveness of our robot and the
nature of the site. In addition, as an integrated part of a digital library, CNDROBOT uses
the heuristics, which might enhance other subsystem’s work. In order to bridge the
difference between CINDI’s goals and those of other search engines, we modified some

of the existing heuristics and developed some of our own.

3.4.1 Modified Heuristics

Keyword in Web Page

The heuristic of keyword in Web page is a similarity-based metric that we used to find
the number of domain keywords appearing in the text of Web page. New sites are
selected from the foreign links extracted from previously crawled pages. We consider the
hosts of these foreign links as good new seed candidates since they are contained in the
Web pages of the seed site. From the theory of topical locality discussed in section 2.3,
we know that the chance of getting topically related pages is higher by following these
links. While the robot is selecting new sites, the Web pages of the foreign link hosts are

49

fetched and searched for domain keywords. Our experiments on 300 foreign link hosts (in
chapter 5) show that one keyword found in the page is not significant enough to
determine that the Web page is relevant to the topic. We use two keywords as the
threshold.

Anchor Text in Web Page

We employ restrictive measures when selecting new sites from foreign link hosts. In
addition to considering the keywords in a Web page, we also take into account the
number of matches of anchor texts in the current page to the ones in the exemplary
documents because the anchor texts in a Web page, to some extent, represent the
characteristics of the page. For example, the home page of the computer science
department usually includes the anchor texts of “people”, “faculty”, “admissions”, and
“academics”, etc. and for a computer science publication Web site, its home page often
includes anchor texts such as “publications”, “research”, and “abstract”. Sometimes, we
are not able to determine that the page is relevant by looking at the anchor texts. For
instance, the home pages of non-computer science departments in a university also
include “people” and “faculty” as anchor texts; however, these pages are not computer
science related. Therefore, we use this heuristic with the keywords in the Web page to

determine if a page is relevant or not. To qualify as a new site, at least one anchor text

and one keyword must be found in the Web page of the host,

Document Link Citation Count

Document link citation count (DLCC) is similar to the backlink count metric. Backlink is
defined as the number of links to a Web page that appears over the entire Web [JC98].
The backlink count is for citation count of a Web page whereas DLCC counts the number
of times the document link is cited over the progress of crawling. For example, the

document link http://www.csd.uch.gr/~hyS58/papers/cho-order.pdf is cited on page

50

http://www.cs.usfca.edu/~wolber/blogs/internet/000537.html. Hence, we determine that

the document “cho-order.pdf” is cited once by the Web page author.

Document Link Count

Document Link count is an extension of the backlink count metric. If CNDROBOT
downloads the same document from different sites, for example, the document cho-

orderpdf is found at http://oak.cs.ucla.edu/~cho/papers/cho-order.pdf and

http://'www.csd.uch.gr/~hy558/papers/cho-order.pdf, we increase the document link

count by one. The procedure of updating the document link count and DLCC will be
discussed in detail in chapter 4. Both heuristics are used to recognize the popularity of a

downloaded document in the CINDI digital library.

3.4.2 Additional Heuristics

Seed Site Reference Count

Seed site reference count (SSRC) is defined as the number of times a seed URL is cited
by pages from other domain names. We compute it by counting the number of times a
seed host is shown in the column attribute host name in the FOREIGN LINK table. As
mentioned early in this chapter, FOREIGN URL table keeps the records of hyperlinks
extracted from visiting pages and the hyperlinks that have different host names than their
seeds. The higher the SSRC score, the more trusted the seed is. It is one of the important

metrics that is used when selecting “already crawled” sites for recrawling.

Document Download Rate
Document download rate, which can also be called harvest rate, is a measure of a seed

site and we define it as the ratio of the number of documents downloaded over the

number of Web pages visited for a site.

51

Number of Documents Downloaded

Document Download Rate (DDR) =
Number of Web Pages Visited

The document download rate implies the density of the links to files in the Web page.
High DDR indicates that the site might be a hub that contains many documents. It might
be a digital library or a technical report archive. We use the DDR to determine if the
robot should stop crawling this site and move on to crawl the next available one. A site
with low DDR (< 1%) will not be further crawled because it is not cost effective. Details

will be discussed in section 4.2.3.

Accepted Document Rate

Accepted document rate is defined as the ratio of the number of documents accepted over

the number of documents downloaded.

Number of Documents Accepted

Accepted Document Rate (ADR) =
Number of Documents Downloaded

The accepted document rate is the most important heuristic that measures the value of the
site to the CINDI library. A site that has a high accepted document rate has priority to be

revisited.

Rejected Document Rate

Document rejected rate is defined as the ratio of the number of documents rejected over

the number of documents downloaded.

Rejected Document Rate (RDR) = 1- ADR

52

The rejected document rate is the complement of the accepted document rate. A site with

a high rejected document rate should be visited less frequently.

All of the above-mentioned heuristics are computed and analyzed by CINDI statistics
analyzer (see section 4.4). The DDR, ADR and RDR for each seed indicate the nature of
a site and they are maintained in the SITE _STATS table. The ADR and the SSRC
determine the rank of the crawled seeds. A high ranked seed has priority to be selected
first for revisiting, and then the lower ranked one because of the likelihood of discovering
high quality documents from it. The heuristics “keyword in Web page” and “anchor text
in Web page” are used for screening out new seeds from the hosts in the
FOREIGN_LINK table. If the Web page of the host contains enough keywords and
sample anchor texts, it will be considered as a new seed in the subsequent crawl. The
document link citation count and document link count are used to measure the popularity
and authority of a downloaded document. They do not have direct effect or implication
on the work of CNDROBOT. However, they enrich the feature of CINDI digital library.
For example, when the user searches for documents via the VQAS, the title, author name,
and document abstract of the returned documents can be displayed with the document

link citation count.

53

Chapter 4
Implementation of CNDROBOT

In this chapter, we describe the implementation of CNDROBOT that runs on a Linux
platform. Recall that the seed finder, web crawler, file fetcher, statistics analyzer and link
analyzer are 5 modules of the CNDROBOT. We start out with the details of the
algorithmic techniques for each module and a demonstration of Web interfaces for this

application will be presented at the end of this chapter.
4.1 Seed finder

To find the start URLs for CNDROBOT to crawl with, the seed finder first submits a
number of topic related queries to the Google and AltaVista search engines. Two
temporary tables are used to hold the results returned from each search engine. The
shared results, sites extracted by both search engines, are first stored in the NEW_SITES
table followed by the remaining unique results. The order of the sites in the table is an
insignificant matter because we consider them equally important. They would be

randomly selected for the next crawling cycle.

We use the Google Web APIs in our application while performing the seed finding
through Google. Google provides the Web APIs service for the developers to query its
Web pages through computer applications. To access this service, a free account needs to
be activated and a license key has to be included in the application when submitting
queries. Google also places a limit of a maximum of 10 results received for each query up
to 1000 results [GAPI]. Therefore, for each search term, 100 queries need to be issued to
get 1000 results

Retrieving sites from AltaVista Web pages requires extra work. For example, we need to

determine the URLs for each query term and the starting index for the result pages before

downloading and parsing the pages. By examining the URL strings of AltaVista’s Web

54

result pages, we can determine the scheme used for the URL string. If we submit the
query using the keyword phrase “computer science department”, for the first page, the
URL string is

http://www.altavista.com/web/results?itag=ody&g=computert+science+department& kgs=

0&kls=0&stg=0.

The URL string for the second page is
http://www.altavista.com/web/results?itag=odyv&qg=computer+sciencet+department& kgs=
0&kls=0&stq=10.

Notice that the query phrase is concatenated using “+” and included between “&q=" and
“&Kkgs”. We also find that only one element in the string was changed, that is the number
after “stq=", which indicates the starting index number for the page. The overall

algorithm of seed finding is shown below.

Input: Selected keyword phrases
Output: Sites extracted from Google and AltaVista’s Web pages
Begin
Connect_to_CINDI_database;
//Google search
GoogleSearch (keywords);
Begin
while(num_of queries < 100) {
set_key(googleKey);
set_query_string(keywords);
set_max_results(10);
set_start result(startIndex);
urls := get URLs in_page ();
foreach url (urls) {
isDuplicated := check_for_duplicated_url ();
if(! isDuplicated)
store_url_into GOOGLE_SEED_URL_table (url);
}

//start index incremented by 10 because each query returns 10 results
startIndex := increment_start index (startIndex, 10);
}
End
//AltaVista search
AltaVistaSearch (keywords, number of parse);
Begin
/ftransform to the form of computer+science+department
k := tokenize (keywords, “+”);
¢ := adapt to_AltaVista URL pattern (k);
//in the first round, extract the links including commercial sites

55

while (num_of pages < 100 && number of parse == 1){
content := fetch_the result_page (c);
ps ;= parse_the_result_page (content);
/lencode URLs e.g. Substitute %2F with "/"
eps := encode_special_characters_in_URL (ps);
store_into TEMP_SEED URL_table (eps);
}
/fin the second round, remove the commercial sites
while (num_of pages < 100 && number of parse = = 2){
content ;= fetch_the result page (c);
//get links near the “similar” tag
gs ;= get_similar_ web_page URLs (content);
egs := Encode_special_characters_in_URL (gs);
if(has_a_similar record in_ TEMP_SEED URL table (egs)){
eps :=retrieve_from_TEMP_SEED URL_table;
store_into ALTAVISTA_SEED_URL_table (eps);
}

}
End

//Combine the search results
comSites := get_shared_results (GOOGLE TABLE, ALTAVISTA TABLE);
diffSites := get_unique_results (GOOGLE_TABLE, ALTAVISTA_TABLE);
store_into NEW_SITES table (comSites, diffSites);

End

4.2 Web Crawler

4.2.1 Crawling Algorithms

The Web crawler has been implemented using two algorithms: Crawling with no
crawling experience, also called naive crawling, which is used for the initial crawling;
The second algorithm is crawling with some knowledge acquired from previous crawling

experiences. This algorithm is intended for subsequent crawling.

Both algorithms are essentially breadth-first search algorithms. They both comprise the
same procedures of retrieving seed URLs; building the seeds list; initializing crawling
frontier; downloading Web pages; extracting outer links; and expanding the frontier. The
difference between them lies in determining if an extracted link should be appended to
the crawling frontier. Without knowledge, the crawler cannot predict if the link is

relevant or not. The only condition of not adding to the frontier is that the link has been

56

crawled already or it is not robot safe. Based on the experiences accumulated from the
past crawlings, CNDROBOT is capable of determining that certain URLs should be
ignored, deciding which site branches should be pruned and predicting if a subdirectory is

irrelevant because of the semantics of its name.

In order for the robot to determine if the current crawling is the first time or not, the
attribute Is new_seed in the SEED_URL table is checked at the beginning of the crawl.
If the values of this attribute are all 0, it indicates that the crawl is an initial crawl with all
new seed sites and then the naive algorithm will be used. Otherwise, crawling with

knowledge algorithm will take effect. The overall algorithm for crawling is given below.

Input: Seeds from SEED_URL table
Output: Potential desired document links and new seed links
Begin
Connect_to CINDI database;
/Iretrieve the seed URLs
seed urls ;=retrieve_seed_urls from SEED URL table ();
//set resume flag to O for all the seeds in SEED_URL table
Set_resume_flag in SEED URL _table (seed_urls);
//check if the values of attribute Is_new_seed are all zero
isAllZero := check SEED URL table ();
If (isAllZero = = true)
Crawling_with_no_experience (seed_urls);
else
Crawling_with_experience (seed_urls, knowledge);
Begin
sceds_list := initialize_seeds_list (seed_urls);
While (#seeds_list > 0){ //while the seeds list is not empty
su :=pick_first_seed (seeds_list); //get the first available seed URL
remove_picked seed from list (su);
//check the robots.txt file placed at the root of the site
exist := check robot_exclusion (su, “robots.txt”);
if (exist == 1) //there is robots.txt for the seed
dp := get_disallowed_paths (su); //dp is a list of disallowed paths
else
dp :=set_list_empty ();
//keep a record of start datetime for the current seed in SEED_URL table
record_start date_time (datetime, su);
//the first item in the frontier is the seed url
frontier := initialize crawling_ frontier(su);
while (#frontier > 0 && download_rate > threshold){ //condition of stopping
url := dequeue (frontier, 1); //crawling the site
if (is_a_file link) //a URL ends with txt, doc, pdf, ps, etc.
insert_into PRE_DOWNLOAD_INFO table (url);

57

if (is_a_foreign_link) //a URL has different host name than the one of seed site
‘insert_into_ FOREIGN_LINK _table (url);
clse
insert_into_VISITED_PAGES _table (url);
content := fetch_the page (url);
pass := classify (content);
if (pass) {
write_to_a file (content); //store the file into a non pdf directory
store_into DOWNLOAD_STATUS _table (url);
!
links := parse_the page (content);
foreach link (links){
dirName := get_the_directory_name (link); //the string between last two ““/”
level := get the depth (link); //get # of levels of the URL
if (is_initial_crawl) {
if (is_robot_safe)
frontier := enqueue (frontier, link);
}

else {
if (is_not_crawled_before &&
is_robot_safe &&
level <= predefined_depth _level &&
is_not_in_DIR_ TO_BE_AVOIDED_table (link, dirName) &&
is_not_in STOP DIR_LIST table (dirName))
frontier := enqueue (frontier, link);
}
} //end foreach
}//end while
record_finish_date time (datetime, su); //one site crawling finishes, the next
update_resume_flag (su, 1); //starts
} //end while
End
End

4.2.2 Page Classifier

A Web page can be a legitimate document in HTML format or simply a link carrier. The
function of page classifier is to determine if a downloaded page is the genre of documents
in CINDI library. As shown in the crawling algorithm, the content of each Web page is
evaluated after it is downloaded. The classifier first searches for the words “abstract”,
“keywords”, “chapter”, “introduction”, “bibliography”, ‘“acknowledgements”,
“references”, “FAQ”, “?”, “question”, “answer” and “appendix”. Then it will calculate
the number of times each word appears on the Web page. A page is marked as potential

RN 19

“research paper” if the words: “abstract”, “keywords”, “introduction” and “references”

58

bR IN11

appears at least once. If the words: “chapter”, “bibliography”, “acknowledgements” or
“appendix” appear at least once, the page is classified as “thesis/report”. If the page
contains the words “FAQ”, “Frequently Asked Questions” or the number of pairs of
“question” and “answer” is greater than 3, we categorize it as a potential FAQ document.
At this stage, we use a relatively loose classification policy to lower the probability of
omitting a good document. The DFS subsystem, which is scheduled to run after
document downloading from a site has been completed, will perform further filtering to

eliminate ineligible documents.

4.2.3 Crawling Termination

The entire crawling process terminates in a normal and safe way if all the seeds in the
seed list have been crawled. Switching from the current seed to the next seed happens
either when the frontier of the current seed is empty or when the document download rate

is less than the cut off point.

We specify two checkpoints for stopping the crawling of a site: the initial check takes
place after 10,000 Web pages have been visited. Crawling fewer than 10,000 pages takes
reasonable time (approximately 20 min/per 1,000 pages * 10 = 200 minutes) with
reasonable system and network resources. Therefore, terminating crawling for one site
will be considered only after 10,000 Web pages have been visited. The crawler will check
if fewer than 100 file links from the site have been found. Less than 1% document
download rate (DDR) is neither satisfactory nor cost effective. If 10,000 pages have been
visited and DDR is less than 1%, the crawler will set the stop flag to 1 to indicate that a

follow-up check is necessary

If the stop flag has been set to 1, the follow-up check is performed after another 1,000
pages have been visited. The document download rate will be re-calculated. If the rate is
still less than 1%, the crawler will stop the crawling process for the current seed site and

move to the next seed. Otherwise, the crawler will reset the stop flag to 0 and wait until

59

20,000 pages are visited. The stop condition will be repetitively checked for every 10,000

pages visited.

4.2.4 Crawl Resume

If the crawler ceases abnormally, the crawler needs to know the resuming point, i.e. what
the first uncrawled site is so that the crawler does not have to start from scratch. The
values in the column attribute Resume_flag are set to 0 for all the sites in the SEED_URL
table when the sites are retrieved to initialize the seed list. Once crawling for a site has
finished, the Resume flag for the site will be updated to 1. By checking the value in the

Resume_flag column, the crawler is able to find the restarting point.

4.2.5 Robot Script File

A cshell script file has been written to run the web crawler, keep a log file as well as

rebuild the program java files.

#1/bin/csh

#ceshell.ex

echo "Crawler starts at: " > output

date >> output

echo "By User:" >> output

whoami >> output

echo "Use command: at -f robotscript -m hh:mm" >> output
echo "Result: " >> output

echo "HHHHHHHHHTHHHHHHHH A AR >> output
compile >> output

echo "execute using command java cndrobot"

java cndrobot >> output

echo "finished at " >> output

date >> output

Figure 7 Sample of Robot Script File

As shown in Figure 7, we use the Linux/Unix “at” command to execute the robot script

file at a specified time. Output is a log file that keeps a record of the program start time;

60

23

finish time and crawling history generated by the “cndrobot” program. The file “compile
is another script file, which is used to clean old java class files and compile and build new

java files.

4.3 File Fetcher

While CNDROBOT performs the crawling process, links for documents to be
downloaded are maintained in the PRE_ DOWNLOAD INFO table. When the download
cycle starts, CINDI File Fetcher (CFF) retrieves the records from the
PRE DOWNLOAD_INFO table and initializes a list of documents to be downloaded. It
picks one file object from the download list; the object contains the url, file name and
parent ID. Then CFF attempts to connect to the remote server using the given URL. A
failure to connect can result from one of the following reasons: the file link is no longer
valid or the access is password protected or there are network or server problems. When
errors occur, CFF aborts the download process for this file and moves to the next

available one.

Once a connection is open, CFF requests the file object. Before sending back the actual
content of the URL, the server first sends back some information about the content of the
URL, such as its length (size) and when it was last modified. If the size were too small,
for example 0 bytes, the file would not contain enough information and would not be
valuable for CINDI’s collection. However, the size that is too small to be downloaded is
to be judiciously determined. To that end, we did an experiment on the 8,376 records in
the DOWNLOAD_STATUS table. We found that the download acceptance rate (DAR)
decreases as the file size decreases. For instance, for a PDF file type, the DAR is 5.8%
for file sizes less than 50K and the DAR is reduced to 0.7% when the file size is less than
10k. According to these empirical data, we establish a rule for the PDF files; we consider
them insignificant if the size is less than 8K. Thus, the CFF will not download files

smaller than this size.

61

Before checking if the current file is a new one or not, the URL of the file will be
encoded to remove some special characters. The purpose of doing this has been discussed
in Chapter 3. To avoid downloading the same file repetitively, CFF searches the
DOWNLOAD STATUS table, where the history of downloaded files is maintained. If
there exists a record, which has the same URL address, file name and file size, it means
that the current file has been downloaded before and the download process for this file is

aborted.

When two files with the same file name and prefix url, but different file sizes are found,
the chance is high that the already existing one is the old version and the one to be
downloaded is an updated version. In this case, CFF checks the filter _flag for the existing
file in the DOWNLOAD_STATUS table. If the filter flag is 1, which indicates that the
file has been accepted as a good document or the value is 0, which indicates that the file
has not been filtered yet, CFF will download the file. If the file has been rejected by DFS,

it will not be downloaded. For the older version, CFF will move it to the trash directory.

All the PDF files will be downloaded to a temporary directory “/pdf_tmp/”, from which
the CINDI subsystem DFS would filter them, then move accepted ones to a permanent
directory “/pdf/” and throws rejected documents to the directory “/trash/”’. For non-PDF
files, CFF will save them under the directory “/downloads/”, where FCS retrieves and

converts them into PDF format for filtering.

The Web page author might post the same document in different formats. For example, in
CiteSeer, most of the documents are offered in pdf, ps, and ps.gz formats. To recognize
the existence of different formats, the file name without file extension and the prefix
URL will be used to compare the records in the DOWNLOAD_ STATUS table. If both
the prefix URL and the file name are matched with one of the records, CFF will
recognize it as a file with different format and set the attribute “is_diff format” to 1 in the
table. For the file with only one format, its attribute is set to 2 by default. To provide
more viewing and downloading choices for CINDI library users, CFF will download all

of them.

62

To prevent the existing file from being overwritten, CFF checks if there is a duplicate file
name in the designated location before writing the file input stream to a file. Consider a
file with the name hello.pdf which is to be stored in the directory “pdf _tmp”. CFF looks
up the DOWNLOAD STATUS table to find if there is a record whose file name and
location are the same as the one for the new file to be stored, in this case hello.pdf. If so,
the rename policy would take place. First, the file extension is removed. And then a
digital number 0 will be appended to the stripped file name “hello”. The new file name
“hello0.pdf” will be used for the next search. As long as an instance can be found in the
table, rename policy keeps changing the file name by adding a digital number and
appending to the tail of the stripped file name. The final file name would be its system
file name. We must keep a record of the original file name and system file name in the
table since the original one is part of URL where the file was downloaded and the system

one is used to track the file in the CINDI system.

As previously mentioned, a file will be treated as a new one if there is no record which
matches the prefix url, file name and file size in the DOWNLOAD_STATUS table. But if
two files with the same file name and file size are downloaded from different domain
hosts, then a further verification is required. CFF resolves this issue by checking the file
digital signature using the tool MDS5. The MDS5 algorithm was invented by R. Rivest at
MIT laboratory [RR92] and it has been used to generate the “fingerprint” of a file.
Theoretically, no two files will ever produce the same fingerprint unless they are
identical. As shown in the algorithm (Fig. 12), the md check flag is set to 1 if the
condition of further checking is met; otherwise, the md check flag is set to 2. The
current file is first saved to the designated location after its name is changed if required.
Then if the check flag is equal to 1, CFF retrieves the location and file name for the
previously downloaded file from the table and executes MDS on both files. In the
following example, the current file “cho-order.pdf” is prepared for digital signature
verification. Since the file name already exists in the system, its name is first changed to

“cho-order0.pdf”. Then the file “cho-order.pdf” from the directory “/cndoc1/pdf” for the

63

existing file is retrieved. CFF determines if the two files are identical by comparing their

128 bit hash values calculated by using the MDS5 signature.

MDS5 (/ecndoc1/pdf/cho-order.pdf) = 30cefae7d6d7daf6f116e6d{83558960
MDS5 (/endocl/pdf_tmp/cho-order0.pdf) = 30cefae7d6d7daf6f116e6df83558960

Figure 8 Sample Output of MDS

If two files are found to have the same MDS5 signature, but were downloaded from
different sources, we are interested in knowing which one is the original and how often it
is referred by other sites. The one that is referred by others, we call the source and the
one that refers to the other, we name it as referrer. To determine which document is more
“original” than the other, we compare the last modified date for the downloaded files and
deem the one with the earliest modified date as the “original”. The currently chosen
source might become a referrer if an earlier “original” one were found later on. We mark
-1 for the referrer and the number of references for the source in the column of
“Num_ref by” in the DOWNLOAD STATUS table. The value of the attribute
“Num_ref by” is an important measurement of the document “popularity”. In addition,
we maintain a detailed record for the relationship between referrer and source documents
in the DOCUMENT _REF_BY table. Finally, the duplicate file will be removed from the

system. The overall file download algorithm is given as follows:

Input: prefix_url, file_name, parentID in PRE_ DOWNLOAD_INFO table
Output: 1 if a file has been successfully downloaded under local directory

0 if file download has been failed

Begin

Connect_to_CINDI_database;

//nitialize a list of file download info po

po :=retrieve_download_info from PRE DOWNLOAD_INFO _table ();

while (#po > 0) { //while the list is not empty

fi := get_one_file to_be_downloaded_info (po); /fi is one element in po
is_downloaded (fi); //return 1 or 0

begin
fn := get_file name (f1); //file name with the file extension
fu = get_file URL (f1); //get URL address of the file

dl := get num_of back_slash (fu); //find directory level of the file
ft ;= get_file_type (fn);

fu :=remove_special_characters (fu); //encode the URL string
conn := connect_to_server (fu);

if (conn = = null) //invalid URL

64

return 0; //download fails
fs := get_content_length (conn); //get file size
fd := get_file last modified_date (conn);
if (ft == “pdf”) //pdf files are stored in “pdf tmp” directory
lo :=set_file location (“pdf_tmp”);
else //other types of files are stored in “downloads” directory
lo :=set_file_location (“downloads™);
// filter duplicated file
is_contained := check is_matched (fn, fu, fs);
if (is_contained = = 1) // same file has been downloaded from the same link
return 0; // move to the next file;
if (is_contained = = 0) //not downloaded before
continue;
//check if the file has different formats
df := check is_different format (fn, fu);
1: if return true;
2: if return false;
//rename if a duplicate file name exists in local directory
ofn :=set_original file name (fn);
new_file name := rename_policy (fn, lo);
if(new_file name ! = fn) { // file has been renamed
rn := set_is_renamed (1);
fn :=new_file name;
}
else {
m := set_is_renamed (2);
}
/ffurther check if there exists a file with the same name and size but
//different URL in DOWNLOAD_STATUS table
dID := file_trace (fu, fn, fs);
if (dID > 0) //if document ID > 0
mdf ;= set md_check flag (1); //need further to check file signature
else
mdf ;= set_ md_check_flag (2); //no need to check file signature
/ffilter some small size file and file with name such as cv, resume
filter file (fn, fs);
write_file_to_directory (fn);
change file access_mode (fn); //allow group member to r/w
if (mdf = = 1){ //check file signature using md5
m] :=perform_md_check (ofn);
m2 := perform_md_check (fn);

}

if (m1 == m?2) //two files arc identical
id ;= set_identity flag (1);

else

id :=set_identity flag (2);
//store downloaded file info into DOWNLOAD STATUS table
store_info (fu, ofh, fn, lo, fd, ft, s, dl, df, rn, parentID);
/fupdate DOCUMENT _REF_BY table
if(id==1) {
//check if the document has been referred before

65

rid := get_referred_file ID (ofn);

if (rid > 0) { //meaning file has been referred before
reset_ref by(ofn, rid);

}

else {
set_ref by (ofn);

remove_identified file from_directory (fn, lo);

return 1; //indicate the file has been successfully downloaded
end
}/end while
End

4.4 Statistics Analyzer

CINDI Statistics Analyzer (CSA) retrieves and analyzes the data in SEED URL,
VISITED PAGES, FOREIGN_LINKS, DOMAIN KEYWORD and
DOWNLOAD_STATUS tables to produce a series of statistical results and store them
into tables SITE STATS, SITE REF BY, LINK REF BY, RDVT, and
LEVEL_STATS respectively. It also updates the CRAWLED_SITES table and creates a
new SEED URL table for subsequent crawl.

The first step is to build the SITE_STATS table. CSA first retrieves the site ID and URL
for all the sites in the SEED URL table. For each site, CSA goes to the
VISITED PAGES table to get the total number of pages. The number of pages for a site
is calculated as the difference between the index number of the last visited page and that
of the starting page. The starting page of a specific site is the first record with the specific
siteID in the VISITED PAGES table and the starting page always has a value of 0 in its
attribute parentID. The last visited page of a specific site is the last record with the
specific siteID. The index number of a page is the value of the attribute PID. Next, CSA
starts to count the number of downloaded documents for each site. CAS determines that a
document is downloaded from a specific site if the parentID of the document in the
DOWNLOAD STATUS table is within the range of the starting page index and the last
visited page index for the site. Therefore, the total number of downloaded documents for

a site is the total number of downloaded documents whose parentID values are greater

66

than the starting page’s index number and less than the last visited page’s index number
for the site. We can get the total number of accepted documents and rejected documents
for a site in the same way, but we need to check the values of the filter flag for those
documents. The download rate, accepted document rate and rejected document rate are
calculated (discussed in Chapter 3). The crawling time for a site is computed as the
difference between the starting time and the finish time, which are stored in the attributes

SDATE and EDATE in the SEED URL table.

The priority levels for the revisited sites in the SEED _URL table are reevaluated
according to the new accepted download rate. The siteID in the CRAWLED SITES is
retrieved and used to find the old accepted document rate for the site in the
SITES STATS table. The two accepted download rates are compared, and then the
priority level for the site in the CRAWLED _SITES table is updated according to the
policy discussed in section 3.3.5. The priority level for newly crawled sites is 1. Finally,
the total number of pages visited, total number of documents downloaded, total number
of documents accepted, total number of documents rejected, download rate, accepted
document rate, rejected document rate, and completion time for the newly crawled sites

are inserted and those for revisited sites are updated in the SITE_STATS table

The next step is to select seeds for the subsequent crawl. For the subsequent crawl, we
attempt to maintain half the number of seeds for the new sites if there are enough sites in
the NEW_SITES table. Before retrieving new seeds from the NEW_SITES table and
storing in the SEED URL table, CSA first discovers the new seeds from the hosts of
foreign links in the FOREIGN _LINK table, as we discussed in Chapter 3. These hosts are
first selected for uniqueness and then stored temporarily in a table. The temporary table is
joined with the CRAWED _SITES table and the NEW_SITES table to ensure that these
seed candidates have not been crawled before nor have been already selected. To qualify
as a new seed, two general criteria must be met: 1) the candidate’s Web page must
contain domain keywords 2) there is similarity between the candidate’s Web page and the
exemplary documents. For each candidate, CSA downloads the Web page and searches

for domain keywords in its content. The number of different keywords that appear in the

67

text of the Web page is recorded. To compare the similarity, a Representative Document
Vector table, which contains the most common anchor texts in exemplary documents, is
first built. An exemplary document is the home page of the seed in the SEED_URL table.
All the anchor texts in the exemplary documents are first extracted and stored into a
temporary table. We group duplicated anchor texts on a page to represent a single anchor
text and we count the number of documents in which the anchor text occurs to find what
is the representative anchor text used to describe an exemplary document. A temporary
table is needed for processing raw data because the version of MySQL we used does not
support some of the functions, such as “view” function. If the count of a specific anchor
text is greater than 25% of the total number of exemplary documents, this anchor text is
representative enough and will be stored into the RDVT table. For example, if an anchor
text occurs on more than 7 (25%*30) exemplary documents out of 30, it is representative.
The percentage of 25% is chosen based on the experimental results from 30 sites with
584 anchor texts. When a candidate’s Web page is downloaded, the anchor texts in it are
extracted and compared with anchor texts in the RDVT table. The number of matches
together with the number of different keywords recorded is used to determine if the
candidate is qualified as a new seed. If both of the numbers are greater than 0 or either
one of these numbers is greater than 1, we consider it as a new seed; otherwise, it will be
treated as a stop URL, which should never be crawled. Those selected candidates will be
inserted into the NEW_SITES table.

All the sites in the SEED_URL and CRAWLED_SITES tables will be checked for the
time period that they have waited to determine if they are eligible to compete for
revisiting. To obtain a list of eligible crawled sites, the priority levels of sites are
retrieved, translated and this time is added to their last end crawl time. This represents the
wait time and is subtracted from the current time. If the value is less than 0, it means that
the site has waited sufficiently and is eligible for competition. Otherwise, the site has to
wait for the next cycle. The number of available places for the “already crawled” sites is
calculated by subtracting the number of places taken by new sites from the total number
of places available, which is set to 30. The numbers of places for the “already crawled”

sites will increase if fewer new seeds are found. If the number of places is greater than

68

the number of eligible seeds, all the “already crawled” seeds will be selected for
recrawling. If not, the following selection procedures will be taken. First, all eligible
seeds are ranked according to their document accepted rates. Second, quality evaluation
points are calculated. The crawled seeds are selected according to the policy discussed in
chapter 3 and then stored in a revisiting site list, which includes all the revisiting sites for

the next run.

In order to know the number of times a site has been referred by other hosts in previous
crawling, CSA builds the SITE REF_BY table by joining two tables: SEED_URL and
FOREIGN LINK on a common attribute host name. The number of instances for a site in
the table is the number of times of reference for the site. Then CSA goes to the
SEED URL table to update the value of the attribute Num_ref by for a site that has a
record in the SITE_REF BY table.

The next task is to build the LINK_REF_BY table and update the column num_ref by
(see Table 7) in the DOWNLOAD_STATUS table. LINK_REF BY is built by selecting
the attribute prefix url in the DOWNLOAD_STATUS table and the url in the
FOREIGN_LINK table if the values in the two tables are equal. One instance of a record
in the LINK_REF BY table means that the URL that links to a downloaded document in
the DOWNLOAD_STATUS table has been cited in another domain host. The total
number of instances will be counted for each document and is used to update
corresponding entries in the DOWNLOAD_STATUS table.

While the File Fetcher downloads the document, the directory level for the document is
obtained by counting the number of “/” in the file URL. The value of the directory level
is kept in the attribute level (see table 9) in the DOWNLOAD STATUS table. CSA goes
through the table and computes the percentage of occurrences for each level. The
percentage indicates the probability of the directory level where the document is located.

Finally, these statistical results are stored in the LEVEL _STATS table.

69

Finally, CSA stores the information of the newly crawled sites from the SEED URL
table into the CRAWLED SITES table; updates the information of the revisited sites in
the CRAWLED_SITES table and removes newly crawled sites from the NEW_SITES
table. Once this has been done, the SEED URL table will be recreated and will retrieve
seeds from the NEW_SITES table and from the revisiting site list. The general statistical

analysis algorithm is exemplified as followings:

Input: data in SEED_URL, NEW_SITES, VISITED_PAGES, FOREIGN_LINKS,
DOMAIN_KEYWORD, CRAWLED_SITES and DOWNLOAD_STATUS tables
Output: data in statistics tables: SITE_REF BY, LINK REF BY,
SITE_STATS, RDVT, NEW_SITES, SEED_URL
Begin
Connect_to_CINDI_database;
Begin
//build site statistics for each crawled site
sites := get_crawled_sites ();
foreach site (sites){
tp := get_total pages (site); //get total number of visited pages
td := get_total downloads (site); //get total number of downloaded
ta := get_total_accepted (site); //get total number of accepted documents
tr := get_total_rejected (site); //get total number of rejected documents
sd ; =get_start_date time (site);
ed := get_end_date_time (site);
pd := compute_percentage_of download (tp, td); /get DDR
pa := compute_percentage of accepted (td, ta); //get ADR
pr := compute_percentage of rejected (td, tr); /get RDR
time_period := compute_time_period(ed, sd); //crawling period for each site
update_priority level (site);
store_into_SITE_STATS_table (tp, td, ta, tr, pd, pa, pr, time_period);
}
End
Begin
//select new seeds from foreign links
foreach sampleSeed (sites) {
content ;= download_page (sampleSeed);
ats := extract_anchor_texts (content);
store_into_ TEMP_RDVT _table (ats);
}
//group by anchor text and count the number of occurrence
sl := sort TEMP_RDVT table ();
store_into RDVT _table (sl);
ks := get_domain_keyword_set ();
sas := get_sample_anchor_text_set ();
flhs := get_foreign_link _host_URLs ();
foreach flh (flhs) {
content := download_page (flh);

il

70

pats := extract_page_anchor_texts (content);
n ;= compare_similarity (sas, pats); //return # of occurrences
m ;= search_keywords (ks, content); //return # of occurrences
if(n>0 && m > 0) {
store_into NEW_SITES table (flh);
¥
elsc(m>1] m>1){
store_into NEW_SITES _table (flh);
}
} //end foreach
End
Begin
/lget eligible crawled sites
ecl = get_eligible crawled sites ();
ns ;= get_number_of place available for crawled seeds (#sites, #newseeds);
if (ns >= #ecl){
//store selected old seeds for revisiting into the list
list := store_into_revisiting_sites list (ecl);
}

else {
I
) | I | I I
/I UM MU MD ML LM LL
//rank crawled sites and select some for the subsequent crawl
rsl ;= rank_sites_order_by_accept percentage (ecl); //return ranked site list
mp := get_mid_point (#rsl); //get middle point of the total number of sites
um := get_upper_mid_point (#rsl);
mu := get_mid_upper_point (#rsl);
ml := get mid_lower_point (#rsl);
//select the remaining crawled seeds according to policy
ns! := select_remaining_sites_from_list (mu, md, ml, rsl);
//store selected old sites for revisiting into the list
list := store_into_revisiting_sites_list (nsl);
}
End
Begin
//build SITE_REF_BY table
sids :=build_SITE_REF BY table (); //return seed ID list
/flupdate num_ref by in SEED_URL table
update_num_ref by (sids);
End
Begin
/fbuild LINK_REF BY table
build LINK_REF BY table ();
/Mouild LEVEL STATS table
build LEVEL_STATS_table();
End
Begin
//store the site info in SEED URL table into CRAWLED SITES table
store_site_info_to CRAWLED_SITES _table ();
//remove newly crawled sites from NEW_SITES table

71

remove_sites from NEW_SITES table ();
recreate SEED_URL _table ();
//retrieve new sites from NEW_SITES and store them in SEED _URL table
ns ;= get_new_sites_for_subsequent_crawl ();
//store both new seeds and revisiting sites to the table
store_into SEED URL table (ns, list);
End
End

4.5 Link Analyzer

Link Analyzer (LA) first analyzes the URL of downloaded files and visited Web pages,
and then builds the STOP_DIR LIST and DIR_ TO BE_AVOIDED tables by examining
the relationship between the directory name and the URL of the visited Web page that
contains all rejected documents as well as the relationship between the crawled seed sites
and the directories to be avoided. The STOP_DIR LIST table contains the general
directory names to be avoided for any sites whereas the DIR_ TO BE AVOIDED table
maintains the specific directory names related to some crawled sites. The overall link

analysis algorithm is illustrated as follows.

Input: data in DOWNLOAD_STATUS and VISITED PAGES tables
Output: data in STOP_DIR LIST and DIR TO BE AVOIDED tables
Begin
//find directory name whose directory contains bad documents
//get URLs, parentID, count for invalid downloads from DOWNLOAD STATUS
//table, group by parentID
bds := get_invalid documents URL ();
foreach bd (bds) {
url := get URL (); //get prefix url of the downloaded file
count := get Number_of Invalids ();//get # of invalids downloaded from the same page
pid := get_parentID(); //parentID is the PID in VISITED PAGES table
//get total downloads from one page
nd := get_number_of documents _downloaded_from one_page (pid);
//parse the URL to get the directory name
dn := get_directory name (url);
store_into_temp_dir_stop_list_table (dn, count, nd);
}
//group by directory name, sum(#invalids), sum(#downloads)
sort temp_STOP_DIR_LIST table ();
store_into_STOP_DIR_LIST_table();
End
Begin

72

//find directory name, which has no documents at all
//get all the parentIDs in DOWNLOAD_STATUS table
pids := get_parentIDs_from DOWNLOAD_STATUS_table ();
//get seed sites' PIDs in VISITED PAGES table
spids := get_seeds_PID();
foreach spid (spids) {
//for each seed, get page’s siteID, PID, url at the first level
/ffrom VISITED PAGES table
pis := get_first_level_page_info (spid);
foreach pi (pis) { //for each page at the first level
sid := get_site_ID ();
pid := get_pagelD ();
link := get URL ();
//initialize a flag to indicate if a document found under that directory
pass := true;
//find if the page has child
hasChild := find_children_of the_page (pid);
while (hasChild = = true) {
//get children IDs
childIDs := get_child_IDs (pid);
foreach childID (childIDs) {
//check if there is document downloaded from that page
hasDocument := check_is_in DOWNLOAD_STATUS_table (pid);
if (hasDocument = = true)
return pass := false;
else
find_childrean_of the page (childID); //recursive call

}
} //end while
if (pass ==true) {
//parse the URL to get the directory name
dn := get_directory_name (link);
store_into DIR TO BE AVOIDED _table (sitelD, directory, link);

}
} /lend foreach

}//forecach
End
End

The attribute parentID in the DOWNLOAD_STATUS table is the primary key PID in the
VISITED PAGES table (see Fig 9). The parent ID of a downloaded document is the
page ID of the visited Web page that contains the hyperlink to the document. We know if
the document is accepted or rejected by checking the filter flag updated by DFS. To find
the names of the directories that contain all the rejected documents, LA first goes to the
DOWNLOAD_ STATUS table; groups the rejected documents by parent ID; counts the

number of occurrences (bc) to know how many bad documents are downloaded from the

73

parent Web page and then retrieves the prefix urls and parent IDs of these documents.
Next, using the parent ID, LA gets the total number of documents downloaded (¢d) from
the same page. If bc is equal to #d, it means all the documents downloaded from that page
are invalid. LA searches the VISITED PAGES table; finds the page whose PID matches
the documents’ parent ID and then retrieves the page’s URL, which is parsed to get the
directory name. The directory name, bc, and td are stored into a temporary table with the
corresponding columns of dir, num_of invalids and num_of downloads for sorting. A

sample table of results is shown in Table 24:

————————————————— e e
nun_of_inwvalids | num_of_dounloads |

papers
previous_tests

|

|

|

1 willie

| techreports
| ranwveex

| public_pdfs
| 2005

| handouts

| handouts

| concepts

| 2003sp

| documents

| Lectures

i

+
|
+
1
|
pdrt | 54
|
1
|
|
|
|
|
1
|
|
|
Lectures |

Table 24 Sample of Temporary STOP_DIR_LIST table

From the table above, we notice that the directory names “handouts” and “Lectures”
appears twice, which means that two sites have these directory names included in one or
more of the URLs of the Web pages. All of the documents under them are invalid. Thus,
we can determine that directories with either of these names are the ones that the robot
should skip crawling in the future. However, if a valid document were found under a
directory, we would not skip it. Therefore, to establish the STOP_DIR LIST table, LA
first groups the directory names and adds up the number of invalids and the number of
downloads in the temporary table. A directory name is stored into the STOP DIR LIST
table only if the percentage of invalids is 100.

After a seed is crawled, we can determine which Web pages and consequently which

directories in the seed site contain no document at all. For example, in Figure 9, the

visited Web pages with PID 1, 2, 3, 4, and 5 do not contain any documents because they

74

have no entries in the DOWNLOAD STATUS table. However, their child pages might
have documents downloaded, for example, the child page 7 and 8 of the page with PID of
5 have 4 downloaded documents. Thus, the robot cannot skip crawling the page with PID
1, 2, and 5, but can ignore page 3 and 4 because they and their children do not contain
any documents. Although it is too early to conclude that the robot should avoid these
Web pages because there might be new documents discovered on them in the next visit, it
is safe to suspect that these Web pages will be highly unlikely to have any documents. If
the same situation persists after the seed has been revisited two or more times, we can

determine that these Web pages should be skipped in future runs.

1D parentID PID parent]D
1 6~ 1 0
2 6 _ 2 \§ gl
3 6 ~—~ 3 N\ %1
4 7 4]
5 7 5 2
2 S \ 6 2
7 8 T 7 5
8 5

DOWNLOAD _

STATUS Table VISITED PAGES

Table

Figure 9 Sample of Relationship Between DOWNLOAD_STATUS Table and
VISITED_PAGES Table

A directory and Web pages to be avoided are obtained by using the following procedures:
1) start from the root (the visited Web page with parent ID of 0); 2) check if the current
page contains a document link, i.e. has an entry in the DOWNLOAD_STATUS table,
return false if one is found, meaning that we abort further searching action and continue
to check the next element; 3) check if the page has a child, return true if no child,
meaning that no document is found and we store the url, siteID, and PID into the
DIR_TO_BE_AVOIDED table; 4) use the recursive call to get child and grand child

pages, which should also contain no documents.

75

4.6 Web Interfaces

To accommodate the need to control and monitor the CNDROBOT related activities
through the Web, a secure, dynamic and easy-to-use Web application is designed and
implemented using PHP programming language. Through the Web interfaces,
authenticated users are able to start, schedule, stop and resume the crawling process, find
seeds, fetch files, filter downloaded documents and view database tables. In addition, this

application provides a utility to restore missed files if a copy of file is corrupted, lost or

deleted accidentally.

E3CINDE Robot Login Page - Mozilla Firefox
Ele Edt View Go Hookmatks Tools Helo

@ M LT?;” N [@ % 1 hetpsifcindig.concordiaicafendrobiotwliagin bl

l CINDH Virtual Library E

CNDROBOT

Login 1D, wobol

Password [TT1 .
version 1,0 ((Reset)

For sign up OR password
remind

© CINDI System Senid an-email o Webi Master

Figure 10 Login Page

76

I end2.comordica: 4]

3 Welcome to CINDI Robot - Mozilla Firefox
pls Edt- Mew. Go Bookmerks Took: “Help

G - fﬁi & L

l CIND Virtuat Bibrary E

CNDROBOT

Help logout

Y

L3
- Find Seeds View Tables
¥
4 Web Crawl Feteh Files
e
. .
Filter Docwments b 4 Restore Filex

® CINDI System

0N i Bl T T e ke e T

Figure 11 Main Page

CINDI Web server uses Apache Secure Sockets Layer (SSL) to establish a secure
connection between a client and a server, over which data can be transmitted securely. In
addition, users need to identify themselves from the login page as shown in Figure 10.

After identity is verified, users can access to the main page in Figure 11.
It is required to go through the process of finding seeds before the initial crawling.

However, at any time, we can find more seeds by following the steps illustrated in Figure

12.

77

53 F NI SEEDS - Mozilla Firefox
Blo ~ Edt Vew Go- Gookmarks ‘Totts fwlp ’
~ el @5 G) [T Mepsifindz. concod calonchabatifindsesdsfindseads prp

l CHNDH Vireual Library E

FIND SEEDS

Home Logout

AllaVista
. |Keyword to search:
Suep 1 |
Display resubs, |
..Govgle
Sten [Keyword to search:
SR i S o
:Display results
: i) e Mewe i ii
i : i
Step 3
“ |) |

Porie. 7 | gnd2 concordia.c £

Figure 12 Find Seeds Page

Users need to input the query keywords in the text box and then click the “Submit”
button to start the search. They can view the search results of the search engine employed
by clicking the corresponding ‘“Display results” button. After clicking the “Submit”
button, a processing page (Figure 13) will be displayed. On the page, users have the

choice either to stop the process or to continue to view the running status.

78

ing - Mozitla Firefox

Eie- EdE Yiew. ..Go " Bookmarks -Jook ol

o - 8 S @ [0 v

-6, dayssaved B)-~ i

i cojendkobotwiindsesdsgoogielgoogesearh pho ' Ayl O s (K]]

I CINDI Wil Library E

Stop Seuchina View Status

Dore. e i it B o e i end2 concordanca £ .
Figure 13 Processing Page

If users select to view the status, they can monitor the search process in the running status
page (Figure 14). If users decide to stop the search in the middle, they can click the “Stop
process” button, which has the same effect as the “Stop searching” button in Figure 13.
They all bring users to the show process page as shown in Figure 15. The show process
page lists the processes owned by the current user, including the process that ran the
search program. To stop searching, users need to key in the ID belong to that search

process and click the “Kill” button.

79

aktavistafstatis.php

CIND Wivtua) Lilsvary

RUNNING

Link vo ba insercad into davabase wew.cu.umaks.edases
Link to be inverted into davabase wow.cs.cornell.edumms
Link 6o be inserted inte davabase wuw.cs.uvk.edumms
Link vo be insesbed invo davabase www.cs.ucsh.edumm
Link vo be inserved into davabais wiw.cs.umd.sdu==e
Link o be inserced inte davibase iv.uphoenix.orgwe=
Link vo be insested inve database vech.carsiz-edu.nev=am
Link vo be -inserted inve davabass www.college-tevitw.nesms=
usvTing 1% hovp://wow. alvavista. com web/ casulbs?gmconp:
Link vo be inserted ints davabase §v.uphoenix.orgwer
v uphoenix:ory. has alzeady beon in table ..
Lifk vo de insesved inve dayabare vech.cazer-edu.nagane
Sech.caresi-aduines Ras wlready been in sable .
Link vo be invezbed inve davabare www.college-zevigm nevsss
wwin, collegarisview.net has alieady bean in cable .
Link o Be inserved inbo davabase
Link %o ba inserted inve davabase kwu.tollegerinfo.opgsms
Link vo be insarved intoe davabase www.cs.azisona.edus==
Link %o be Inserved invs davibass wew.es.iastave.edumss
Link to be inverbed indo davibase wow.cs.wisc.edusns
[Lirk o be insezved invo datidare www.cr.ucla.eduwes
Link 5o be inserved inte databare www.cy.cmu.edusss
Link to be insarted into davabass www.cslutexas.edumEs
Link vo be inzested into davabase wins.cr.colostave.edumex
Link ©o e insarved into davibase www.cd.zochesver.sduvss

#=15v0q=10

sciendat

(Exitto Main Meny Sli Process

Dene

cindiZ.concordia.ca (4 .

Figure 14 Running Status Page

3 Show Process - Mazilla Firafox

ple. Edk . Yiew. -Go ‘Bookmarks. Tools: Help

I

CINDE Virtual Libvary

SHOW PROCESS

23 PID ACPU sumM USE ASE TTY STAT BTART T IME. .COMMAWD
nobedy 2189 0.0° 0.1 15675 124 351 Novd? 0i00 »DNSRespondsr
nobody 12703 0.0 0.7 96984 7698 2 5 Fovi® 0:00 /uss/lecal/aZmyopu/ apache/bin/hutpd
staze ~DESL
inobody 12708 0.0 0.7 86983 7568 ¢ 3 Wovl? 0:0L /usr/local/aZmyopu/ apache/bin/hovpd ~k
suaze ~DEIL
nobody 12705 0.0, 0.7 85988 77042 R Wovl¥ 0:01 /usz/lecal/azmyspw/ apache/bin/hovpd -k
staze -0
nobedy 12707 0.0 0.7 85944 78167 3 Wovl? 0:00 /usz/local/aZmyopu/apache/bin/hespd k
wtars -DSSL
nobody 12708 0.0 0.7 85920 74807 3 Hovl9 0:00 /uws/local/aZmyopw/ apache/bin/hovpd. ~k
stare -D3SL
nobody < 12709 0.0. 0.7 36985 644 7 S Wovl¥ 0:01 /usr/local/azmyopw/ spache/bin/hvepd ~k
sodss -DSIL
nokiody 16193 0.0 0.7 88935 7388 7 3 Wovzs 0:00 /uwr/locall aZwyopw/ apache/binfhuspd ~k
vacy ~DIIL
nobedy 31949 0.0 0.7 .$8312. 7168 3 Fov2Z6 0:00 /usx/local/aimyopu/apache/bin/hovpd -k
stasy ~DBIL
nobody 15198 0.0. 0.7 85950 75287 S Hov26 0:00 /ust/lecal/atmyopu/ apache/Bin/houpd -k
woars ~DIEL
mobody 1823 0.0 0.5 86808 73857 5 Hov2? 0:00 /uss/local/ aZmyopw apache/bin/huspd ~k
weazy DI
netiody 31192 0.0 0.1 $4983. 12§67 I8 0:00 sh
nebody 31193 0.0 0.1 $9%16 1036 7 ax ©100 /bin/barn
nobody IL195 9.8 2.0 271908 21340 7 38} 0:06 /usc/local/ jdk/bin/ dava Sead compuvez
sclence dopazomeny
SV w04 0 RARAR . AK2..0 T RO A N o

Ik I

Done ..

cinchiziconcordia.ca £ .

Figure 15 Show Process Page

80

To run the web crawler, click the link “Web Crawl” on the main page. The web crawl

page is shown in Figure 16.

3 ¢ rawl Sites.- Mozilla Firefox
file Edk. Yiew . Go Bookmatks . Toolks Help

B B Q[iz oo

I CINDE Virtuat Library E

5.8 days:saved

Botferawl.php o @ 6o |[GL

CRAWL SITES

Homae Logout

frgportend: Check if Bwre 18 a crawler neing obrsady! I

-

g
{
[Start imanediately i
Craml & & Y
! ‘Schedule in 45 %) minuces Schedule.
ISsart inanediately |
‘Reswme i - N ’ . ’
Schedule in "5 minutes Schedus
. ' O ——— ; . e s
OO0 o i i S e o o cnd2.concordace (1

Figure 16 Web Crawl Page

Before starting the crawl process, it is important to check no other crawler running by
clicking the “Check Process” button and ensure that seeds are ready by clicking the
“View Seed Sites” button. If this is an initial crawl, select the buttons in the middle table.
If this is a resume crawl, apply the functions provided in the last table. Both the initial
crawl and resume crawl can start immediately or schedule to run at a specified time.
Suppose that a user has scheduled to resume the crawl and decide to cancel the task now.
After reaching the schedule process page (Figure 17), he/she can remove the scheduled

task in the job queue page as shown in Figure 18.

81

%3 schedaling - Moxzilla Firafox

= . 5.8 days saved &) ~

mp,;”cha concordia;caj

l CIMD Virtual Library E

Freslt

%3 dob Queve - Mozilla Firefox
Ble Edt View ‘Go Bookmarks “Tools [l

l CINDS Virsuat Library

JOB QUEURE

&
5
£
=1

268 £065-12-08 66749 4 nobody

S I |

] : . : | -cndi2.concordiaca ¢4l |

Figure 18 Job Queue Page

82

1 zHI e
Efe’ ‘Edit Viaw. G Bookmarks Tooks. Help

e 8 CF TR [T Rebsiiende concorda coltnerobotwfietabotistatusohe, .
I CINDEVirtaal Libraey E

»3coto/NoRobot

ek

RUINNING STATUS

@2 wow, ¢3.princevon.edu ==

** www,cr.princevon.edu/ **

Baye URL howp://wwm.cs.princevon.edu
1P addsess is: 128.112,136.95
BASE wow.cs.princeson.edu

Toval mamosy. 2 HB
Java memory in use ™ LI5S KByses

Toval memory Afvex GC called 2 i

Java mewory in ure After GU called ® 847 KByses
Seazch Vscvor capacivy 10

Cuzzent Search Vector sise 1 1

Beazched Vacvos siss 0.0

Downl odded Vector sise O

DeadLink Veevor sise 0

Pexziivs ion Denied Vactor 0

Checking svop precondivions

Wov cheek svop condivion begause Seazched size iz 0
0 --~ ¢

......... Ty

* Visiving Web Page *

ExittoMain Menu

Done . S y . ; . . e o cindiz concordiaica 94 |

Figure 19 Running Status (Web Crawl) Page

Samples of running status pages for the Web crawl, file fetch, file filter and file restore
are shown in Figure 19, 20, 21 and 22 respectively. Recall that the file fetcher and file
filter start automatically and run sequentially after a crawling cycle finishes (section
3.3.1). However, the file fetcher and file filter can also be activated to run at any time as
long as there are files to be fetched (section 3.2) and to be filtered. Users can run the file
restore to check the stored documents against the records in DB when necessary. If any

file were found missing, it would be re-fetched from its URL in our database.

83

e

Edic

View -~ Go . Bookmarks 1oaVs Heip

5:8.days saved €.~ £

Qﬂ} . Eﬁr& " w a F}fﬁ]L} htxps::ycintﬁé-,' coitia, calérei @/déwnloéd{ atusiptip

<

CINDIVirtus) Libvery

RUNNING 8TATU

File fetching starts at;
Mon Dec 5 07:;42:00 EST 2005
By User:
mobody
Use command: at -f£ downloadscript time
Resulty

Deleting files in the trash dixectory ...

Ttash directory is empty

“=File Downloasd database connection establishedss

3ite crawl hias done, starts downloading files from site ...

=e DB_downloed URL_info ==

SELECT prefix_url, file neme, modified; url, parentID FROM NEY_PRE _DOUNLOAD_INFQO WHERE parentID > 348060
liinwww.ira.uka,de/ca/nfcs-98/ contains 3 backslash

unmodified_URL: filelink --> http://liinwew.ira.uks.de/ce/unfcs-58/partin.ps

Starting to downloading from URL http://liinwvw.irs.uka.de/ca/nfcs-98/martin.ps

[Encoding the URL string ,...

IURL to be inserted into table http://liinwwv,ira.uka.de/ca/mfcs-98/marcin.pg=ss=
=cwmames==a==IELECT ID FRON DOWNLOAD_STATUS WHERE orig_file neme = ‘martin.ps’ AND prefix_ucl =
‘hrep: //liinwww. izxa,uka, de/ca/nfcs-98/naxrtin. pa' AND size =« 269031

[DB_check_is_watched: mertin,ps has already been in table

DownloadFilter: check_is_watched

File existed in DB table,.ready to skip downléed...

Skip download besuse martin.ps hias already been downloaded from URL

s

1. dediz, concordiaica 79

”Edt yiew: Go. Bookmarks.. Jools

Help

CINDE Virtaal Libeary

RUNNING STATUS

[Fiiver Documenss soarte av:
Mon Dec 5 08:25:03 BT 2008
By Upex:

nobody

Resulc:

DFS for CINDI system
version 2.2
Ahugusv, 2004

(€) Tong Zhang

TR R
da A

Connacting bo CINDI Robou Davabase ...
Connsceed JUCCESSTULLY!

£11enane®ITBY202990.pdt

_Exitto Main Meny {_Stop Process

Figure 21 Running Status (File Filter) Page

84

§ su‘uvus Mozilla Firefox
Plo Edk’ iew. b -Bookmarks. Tooks' Heb ‘ . 5.8 days ssved @) -
Gy B 6 EY 0w [l

I TINTH Virtaal Libiaiy E

‘l* !Lj egs:ffcndigiconcordia,cafendrobotwirestoreFilefstatus.php

RUNNING STATUS

allocator-locality,pdf is found

1
Check File # 9 J
Systen File Name: f034-hertz.pdf

Search output: £034-hertz.pdf ‘
£034-hertz. pdf is found |

Check. File # 10 |
Systen File Name; plOS-sachindran.pdf: |
Jeatch output: ploS~sachindran.pdf i
(pl05-sachindran.pdf is found |

ICheck File # 11

|3ysten File Name: isun-2004-heapsize,pdf
[Séarch output: isum-2004-heapsize.pdt |
1auu-2004-heapsize,pdf is found

Check File # 12

System File Name: whitepaper-mobmanip.paf
Search outpur: whitepaper-mobmenip.pdf
'whitepaper-mobmanip.pdf is found

Check File # 13
Systen File Name: ix-271.pdf
Searnch output: 1ir-27).pdf

DONE 0 ol Lo g S T e e e e cind2.concordia.ca

Figure 22 Running Status (File Restore) Page

To view the database tables of CNDROBOT, users can access to the database main page
as shown in Figure 23. The table on the page contains all the DB tables that relates to the
CNDROBOT. To view the records in a table, simply click the link corresponding to the
table name. Figure 24 shows the records in the DOWNLOAD_ STATUS table.

85

EdE ylew: GO

Bookinarks. Todls. Help

5.8 davs saved)+ T

2 htps; yfé(ndl, c F

}“D'GO H’G&L ‘

CINDIVirtual Libvary

Diatabagse Tabl¢

Home logowt ©
: 4) v(:'olm'oylyl;(i;. o
[V . S R by . |
Maintains the uncrawled seeds oblained from Allavista and Google search rosults Seed Finder
ﬁ}Stu,r ¢ seeds used for the current crawling . i Seed Finder :
lvtsxm) PAGES IHolds the informatioh for all the visited pages in crawled sites ‘évr:;m
{FOREIGN LINK Iiaintains the URLs eiracted from the Web page, which are different from the sité’s host rame ‘C”r;‘;m
[PRE DOWNLOAD INFO Keeps information. for potential documents to be downloaded ‘(’;]:Wlu
DOWNLOAD STATUS | Stores telated information on downiloaded files File Fetcher
i : . - jand Filter
| . Ep N |Statistics
SITE STATS Keeps the atmblylyl:s that mﬂdm:ateyhuw gnqd asiteis. ‘ o
EVEL STATS Mai the statistic resulis for diréctory levels where the documents are-located Stausu:
LINK REF BY M the:records.of link cross references for downloaded documents Statistics
X Analyzer
SITE REE.BY, ; it #iig caferrad i afer hingts [Statistics ¥
Done. - | andi2.concordia.ca 1y

Figure 24 View Table DOWNLOAD_STATUS

86

Fis Edt view Go Bookmarks Tools Help 5.2 days'saved @) v <))
G- iy - B O P [tepsifand? concordin.s lviewTablesivieds, php |
Display first 196 resuits - o N
Total ber of files downloaded: 138984
i e pame " Ple_pame . - [tenp jocation ;1 final Jocation | [ddate, Ll dlevel x
A b cs.ume al . &pring al . spring jendocl{pdf_tmp! 2005-05-03 307332 4 1
2! http:fjwww.cs.ume - sigbits_spring08.pc - sighits_spring0S.pc fendoct fpdf _tmpf 2005-05-03 743721 4 t
3 hetpiffwwies.ume alummatters_Faliod slummatters_fallo4 jcndoct fpdf_tmp/ 2004-11-09 185441 4 1
4 1 €5.umé _sprlng al ;_spring fendocd fpdf_tmp 2005-01-14 143982 4 1
‘5 hetpi) cs.ume al fallo3 al _fallo3 jendoct fpdf _tmp) 2005-01-14 177445 pdf 4 1
6, hetpif e all _spring ol s_spring Jendoct/pdf_tmp} 2003-05-28 192167 pof 4 1
77 hitps £5.umé _faloz al _falliz jcndoctfpdf._tmp/ 2005-01-14 18922 pdf 4 1
B | httpifi csume al ,_Spring §_spring fendoc {pdf _tepf 2005-01-14 69707 pdf 4 1
% - http:fh cs.ume ak _fallol al ;_fall0s jendocifpdf_tmpf 200%-05-14 106294 pdf 4 1
0, hteptffwww.cs.ume alummatters,_sprine alummatters_spring jendoc! fpdf _tmpf 2005-01-14 B4678 pdf 4 1
i httpiffwww.cs,ume biblio.ps bibtio.ps fendoctfdownload: 2005-05-02 95063 ps 2 o
http:ffi ! 0 03-pas fendocl {pdf _tmpf 2004-02-67 25986 pedf 3 1
htepr:ffwww.cs,ume 04-17,pdf 04-17 pdf Jendaci fpdf _tmpf 2004-03-23 1189935 pof 3 1
147 htp:ffwwwcs.ume 04-16,pdf 04-16.pdf Jendoct fpdf_trp! fendoci fpdfi 2004-03-23 270486 pdf 3 1
15 | http:ffwww.cs,ure 04-15.pdf 04-15.pdf fendocjpdf tmpf fendocLipaff 2004-03-23 282333 pdf 3 1
16 | hetpifjwaww.cs.ume 04-14.pdf 04-14.pdf Jehdoclfpdf_tmpj jendoct fpdf) 2004-03-23 2138704 pdf 3 1
17 hitp:ffwww.cs ume 04-14.4xt 04-14.kxt Jendoc fdownload: 2004-03-23 1651 [£13 3 [¢]
8 i cs.ume berger i berger fendocd fpdf _tmpf fenidoct fpdff 2003-10-16 433424 pdf 3 1
19 http:ffwww.cs,ume berger-pldi2001.pc berger-pldi20ol.pe fcndoct fpdf _tmp/ fondocl fpdff 2003-10-16 109254 pdf 3 1
Th <s.ume berger berger fendocd jpdf_tmp/ fendacfpdff 2003-10-16 134785 pdf 3 1
Kttp;ffwwyvics,ume berger-phi-thesis. bérger-phdithesis. fcndacl/pdf_tmp} jendoc) fpdff 2003-10-16 1545499 pdf 3 1
22 httpiffwww.csiume sighits. Fall0d4.pdf sighits_Falod.pdf fondoc fpdf_tmp/ 2004-11-09 669317 pdf 4 1
 hetpsfiwaw.Cs i sighits_spring04,pc sighits_siring04.p¢ jcndacs Jpdf_tmp/ 2005-01-14 491022 pdf 4 1
24 | hep:flwivw.cs.umk - sighlts fallo3.pdf sigbits_fallod,pdf* fondocfpdf _trpf 2005-01-14 391606 pdf 4 1
25.. htep:/jwwi.cs um: sigbits_spring03.pc sigbits_spring03.pe fendoci fpdf _tmp) 2003-05-28 579165 pdf 4 1
26 Py €5.ume s pdf sig! pdf jendoct fpdf_tmp/ 2005-01-14 150965 pof 4]
e http:ffwww.cs.ume sighits_springd2.pc sigbits_spring02.pc fendocpdf_tmp) 2005-01:14 27705% pof 4 1
28 hetp:f L ighil 01 pdf i pdf fendoct fpdf_tmp! 2006-01-14 318710 pdf 4 1
29 http:ffwww.cs.ume sigbits_springB1.pc sigbits_springD1.pe fendoctjpdf_tmpf 2005-01-14 250249 pdf 4 1
30 - http:ffwww.cs.ume sigbits_spring00.pc sighits_springD0:pc fendoc [pdf_tmp/ 2005-01-14 128267 pdf 4 1
PRV - HE e " " el " A nd
Doris o . dndi2 concorda.ca #3

Chapter S
Experimental Results, Evaluation and Performance

Improvement

In this chapter, we will present some preliminary test results and evaluations based on
CNDROBOT’s crawling experiences. Our experiments were performed on CINDI2
server (cindi2.concordia.ca) at Concordia University Computer Science Department.
CNDROBOT ran an initial crawl and a subsequent crawl over a period of 35 days. The
initial crawl took approximately 18 days. The robot randomly retrieved and crawled 30
sites from 3,130 sites acquired by the seed finder. In the initial crawl, the robot visited
348,173 Web pages and downloaded 106,416 documents, of which 20,348 were accepted
by the DFS. After the DFS filtered the downloaded documents and the statistics analysis
and link analysis were performed, the robot selected 15 crawled sites and retrieved
another 15 new sites for the subsequent crawling. The subsequent crawl took
approximately 17 days with 348,258 Web pages visited and 155,195 documents
discovered. The third crawl is in process and it has crawled 19 sites with 283,265 Web

pages visited and 118,263 potential documents discovered.

The crawling process was not continuous during this period. The robot stopped and
resumed two times due to a system reboot and a network failure. In addition, there were
several crashes since, at that time, our web crawling program could not perform adequate
error protection and corrections while parsing the HTML Web pages that were not well
written. After each crash, changes to the program were implemented and the robot was

restarted at a resuming point. So far, the robot can run smoothly without interruption.

The information and data collected through the initial crawl are primarily used to test the
performance of the Web crawler, file fetcher, statistic analyzer and link analyzer. The
information gathered from the subsequent crawl is used to test the performance

improvement over the initial crawl.

&7

5.1 Experiments on Seed finder

The seed finder extracts 1,295 seeds using the phrase “computer science department” and
obtains a total of 2,419 seeds after submitting “computer science publications” query to
the Google and AltaVista search engines. Finally, a total of 3,130 unique seeds are
acquired and stored into the NEW_SITES table after submitting the query “computer

science technical reports”.

As mentioned in section 3.3.3.1, seed finder parses the AltaVista’s Web pages twice in
order to discover real seeds from the mixtures. To test the accuracy of identifying real
seeds, we ran the seed finder using the keyword phrase “computer science department”.
After the first parse, the seed finder extracted 1,035 links and stored them in the
TEMP_SEED URL table. After the second parse 840 seeds were spotted and 195
sponsored and redundant links were removed. We manually verified each seed to
determine that none of them was sponsored link and there is no redundant link in the

table.

5.2 Experiments on Web Crawl

From the NEW_SITES table, 30 new seed sites for the initial crawl are randomly
retrieved. They are stored in the SEED_URL table as given in Table 25. Since the seeds
for the initial crawl are the new sites, they have a value of 0 for the attribute
“Is_new_seed” All other attributes in the table are set to either 0 or NULL before the
robot starts. The crawling time for a site depends on the quantity and average size of Web
pages in the site. On average, crawling a site takes approximately 15 hours for the initial

crawl and 14 hours for the subsequent crawl.

88

;

Link

+ "
Host name | I3 new_seed | Resume_flag | SDATE

+

+ +
| I | | | EDATE | Num_ref by |
I 11 wow,cs.unass,edu | NULL l 01 0 | 0000-00~00 00:00:00 | NULL | 01
| 2 | wvw.cs.concordia.ca | RULL | 0l 0 | 0000-00-00 00:00:00 | NULL | 01
| 3 1 www.cs.indianae.edu | NULL t 01 0 | 0D00-00-00 00:00:00 | NULL | 01
I 4 | vuw-cs.stanford.edu | NULL | '] 0 | 0000-00-00 00:00:00 | NULL | 01
| 5 | www.cs.cornell.edu | NULL] 01 0 | 0000-00-00 00:00:00. | NULL | 01
i 6 | wwy,cs.cnu,edu | NULL ! o 0 | 0000-00-00 00:00:00 | WULL | 01
I 7 1 wuw,cs,und, edu | NULL] (U] 0 | 0000-00-00 00:00;00 | NULL | 01
i 8 | www.cs,uiuc.edu | NULL | 0l 0 | 0000-00-00 00:00:00 | NULL | a1
I 9 | www.cis.upenn.edu | NULL]] 0 | 0000-00-D0 00:00:00 | NULL | 01
i 10 | www,cs.purdue.edu | NULL I 0t 0 | 0000-00~00 00:00:00 | NULL | 01
1 11 1 www,cs,unc,edu | NULL 1 o 0 | 0000-00-00 00:00:00 | NULL | 01
| 12 | www,cs.toronto. edu/DCS/index. htnl | NULL | 01 0 | 0000-00-00 00:00:00 | NULL | [
i 13 | www.cs.columbia.edu | NULL | 01 0 | p00O0~0D-00 00:00:00 | NULL | 01
1 14 | liinwww,ira,uka.de/biblicgraphy | NULL | (O8] 0 | 0000-00-00 00:00:00 | NULL | 01
{ 15 | duoz.org/Computers/Computer_Science/Publications | NULL | 01 0 | 0000-00-00 00:00:00 | NULL | 01
| 16 | wew,elsevier.com | NULL ! 01 0 | 0000-00-00 00:00:00 | HULL | 01
| 17 | www.computer,ory | NULL | '] 0 { 0000-00-0C 00:D0:00 | NULL | 0
| 18 | wyw.sclencedirect.com | NULL] 0} 0 | 0000-00-00 00:00:00 | NULL | 0
| 19 | wyw.cs.virginia,edu/studpubs | NULL ! 01 0 | DOCO-00-00 00:00:00 | NULL | 0
| 20 | www.cs.kent.ac,uk | NULL | 0t 0 | 0000-00-D0 00:00:00 | NULL | 01
| 21 | citcs.cs.uchicago,edu | NULL i [0 | 0000-00-00 00:00:00 | NULL | [}
[22 | wvw.dutcs.org | NULL | 01 0 | 0000-00-00 00:00:00 | NULL | Q1
1 23 | wow.mcs,vuv.ac.nz/conp/Publications/ | NULL I 04 0 | 0000-00-00 00:00:00 | NULL | 0|
| 24 | reports-archive,adn.cs.cnu.edu/cs.htal | NULL | [0 | 0060-00-00 00:00:00 | NULL | [N
{ 25 | wuw.cs,bu,edu/techreports/ | NULL | 01 0 { 0000-00-00 00:00:00 | NULL | 0
| 26 | cs,anu,edu, au/techreports/ | BULL | 01l 0 | 0000-00-00 00:00:00 | NULL | 01
| 27 | wuw.cs,arizona.edu/research/reports.html | NULL | [} 0 | 0000-00-00 00:00:00) NULL | 01
| 28 | wuw.cs.rpi,edu/research/cr. htul | NULL | 01 0 | 0000-00~00 00:00:00 | NULL | 01
| 29 | wyw.cs.umich.edu | NULL I 0| 0 | 0000-00-00 00:00:00 | NULL | 0
| 30 | www,lib,utk,edu/refs/conputersci | NULL | 0| 0 | 0000~00-00 D0:00:00 | WULL | 01

Table 25 SEED_URL Table of Initial Crawl

Not all the URLs encountered could be downloaded and parsed due to

various HTTP

errors as shown in Table 26. Pages moved temporarily or permanently are the major

types of HTTP errors. The permission denied error mostly occurs due to the access

control of links. The following table illustrates the distributions of HTTP errors, which

occurred in 61,125 invalid URLs and in the total number of URLs encountered in the

initial crawl.

HTTP Errors Number of Percentage 1 Percentage 11
Invalid URLs Invalid URLs Total Visited Pages

Page has no content 795 1.30% 0.23%

Dead link (page moved) | 38,564 63.10% 11.08%

Permission denied 21,759 35.60% 6.25%

Other 7 0.00% 0.00%

Total 61,125 100% 17.56%

Table 26 Distributions for HTTP Errors

&9

The column percentage I represents the percentage of the number of invalid URLs with
one type of HTTP error out of 61,125 invalid URLs. The column percentage II
demonstrates the percentage of the number of invalid URLs with one type of HTTP error

out of the total of 348,173 URLs encountered in the initial crawl,

As discussed in section 3.2, the links extracted from the Web page can be classified as
links in the domain and foreign links. CNDROBOT, as a focused crawler, visits and
parses only the Web pages within the seed site domain. From the 30 sites, 117,875
foreign links were extracted and this accounts for 117,875 / 466,048 * 100% = 25.29% of
the total hyperlinks. Since crawling a Web page takes half a second on average, visiting

and parsing all those foreign links takes approximately 117,875* 0.5 = 58,937 seconds =

16 hours. To test the time that can be saved, we picked www.cs.concordia.ca as a sample
seed and ran the robot on it on June 1 and June 6, 2005 respectively. In the first run, all
the extracted links including the foreign links were visited. The total number of visited
Web pages was 15,045 and it took about 8.5 hours to complete the crawling. In the
second run, we tuned the robot to exclude crawling the foreign links and the crawling
process took about 3 hours and 10 minutes for the total of 9,578 visited Web pages.
From this test result, we can see that a significant amount of time can be saved by

analyzing the crawl boundary and avoiding irrelevant regions of the Web.

5.3 Experiments on File Fetch

After the initial crawling, we downloaded a total of 106,416 documents from the 30 seed
sites. The types of files that CNDROBOT accepted to download are pdf, ps, doc, txt,
html, tex, latex, ppt, xml, and rtf. Almost half of the downloaded documents are in PDF

format as given in Figure 25.

90

O PDF
mPS

® DOC
TXT
BHTML
BTEX

@ LATEX
O PPT

= XML
DORTF

Figure 25 Distributions of Downloaded File Types

5.3.1 Functional Tests

To assess the effectiveness of the file fetcher, we examined the log file after the file
fetching process was complete. First we randomly picked 16 downloaded documents in
the DOWNLOAD_STATUS table and then found their detailed download descriptions in
the log file. We verified the description with the information in the tables that were
updated by the File Fetcher. We also ensured the existence of the documents and that
they had correct file names under the right directories. If a digital signature check was
performed and two files were identical, we verified that the duplicated file was removed
from the system. Below is an example of how we performed the functional test for the

file fetcher.

The document with ID 41047 is in the sample set. Its record in the
DOWNLOAD_ STATUS table was first retrieved and shown as follows.

91

| Ib | prefix url | orig file name | file name | temp location | final location |
ddate | size | file_type | level | pdf flag | ashg flag | filter flag | is_diff format | is_renamed | parentID | num ref by |

| 41047 | http://vwy. cs.und. edu/class/fall2003/cnsc434-0201/Handouta/ | XeroxStar.pdf | XeroxStar0.pdf | /endocl/pdf tup/ | NULL

2003-09-08 | 3382463 | pdf | 5 1] 0 01 21 11 121210 | -1}

Table 277 Document ID# 41047 in DOWNLOAD_STATUS Table

Starting to downloading From URL http://www.cs.umd. edu/cTass/FaT112003/cmscd34-0201/Handouts /Xeroxstar ., por
URL to ba inserted intd table http://www.cs.umd, edu/class/fal12003/cmsc434-0201/Handouts /Xeroxstar. pdf===
======z=z=ze=SELECT ID FROM DOWNLOAD_STATUS WHERE orig_file_name = 'xeroxstar.pdf' amp prefix_url =
'httﬁ://www.cs.umd.edu/c1ass/fa112003/cmsc434—0201/Hand0ut5A'AND size = 3382463

DB_check_is_matched: xeroxstar.pdf This file not yet downloaded

Is not contained in the table

===z=sss=c==ws=5ELECT ID FROM DOWNLOAD_STATUS WHERE orig.file_name LIKE 'Xeroxstar.%' AND prefix_url LIKE
‘http://www, cs.umd, edu/class/Fal12003/cmsc434-0201 /Handouts /%'

DB_check_file_filter: xeroxstar There is no such file name in same page

mmusammme==esSELECT ID FROM DOWNLOAD_STATUS WHERE Tile_name = 'Xeroxstar.pdf' AND temp_location = '/cndocl/pdf_tmp/’
pB_check_file_name: XeroxStar.pdf is already in tableoovviiiiviiiian i,

[trying to change file name to Xeroxstarg, pd

==x==s==a====SELECT ID FROM DOWNLOAD._STATUS WHERE file_name = 'XeroxstarQ.pdf' AND temp_location = ‘/cndocl/pdf_tmp/*
DB_chack_file_nama: Xeroxstar0.pdf There is no duplication of file name

Need to Further check file signature

Sat f1a? tol

retrieving location for id 40000

retrieving temp_location

File in temp_location scndocl/pdf_tmp/

MDS (/cndoc)/pdf _tmp/xeroxstar, pdf) = e03dcadafoeldeB82abcara2afsblddad

D5 (/cndocl/pdf _tmp/Xeroxstar0, pdf) = e03dc4ddfOelde82abcaeazaf8hldB44

outputl e03dc4ddfoeldel2abcaeazafsbldsss

butput? e03dc4ddfoeldeB2abcara2afsbld344

Two files are the same

Database connection established

File Length: 30

http!//www. cs.umd. edu/class/fal12003/cmscd34-0201/Handouts /xeroxstar. pdf:
File Name: XeroxStaro.pd
in the directory of : /Jcndocl/pdf_tmp/Xeroxstaro, pdf
Content Type: ap§1ication/pdf
content Length: 3382463
Last Modified: Mon Sep 08 16:50:20 EDT 2003
expiration: 0
content Encoding: null

(1) Test if the document has been refered before

m====m=====meSELECT ID FROM DOWNLOAD_STATUS WHERE orig_file_name = 'xeroxstar.pdf' AND num_ref_by » 0
DB_check_3is_referred: xeroxstar.pdf This file not reférred yat

(2) start to calculate the num_ref_by ...

===SELECT COUNT(*) FROM DOWNLOAD.STATUS WHERE orig_file_name = 'Xeroxstar,pdf'ss==

2

(3) updating the Document_Ref_ By table

===SELECT ID FROM DOWNLOAD_STATUS WHERE orig.file_name = 'Xeroxstar.pdf' ORDER BY ddate ASC===
=============UPDATE DOWNLOAD_STATUS SET num_ref_by = -1 WHERE ID = 41047

num_ref_by has been updated to -1

KM0000 41047

DB_set_ref_num 2 documentID 40000

|e=====s==n===UPDATE DOWNLOAD_STATUS SET hum_ref_by = 1 WHERE ID = 40000

num_ref_by has been updated to 1

rRemove the file /cndocd/pdf_tmp/hasofer_so,pdf from the system

Figure 26 Sample of File Fetching Log File

The description for fetching this document was found in the log file. By looking through
the description, we first determined that the file ”XeroxStar.pdf” was a new document
downloaded from the file link http://www.cs.umd.edu/class/fall2003/cmsc434-
0201/Handouts/XeroxStar.pdf and that it had no other file formats under the directory of

“Handouts”. To verify the correctness of the first fact, we queried the

DOWNLOAD_STATUS table to ensure that no record with such a prefix url, file name

92

and size were found. This also tested the effectiveness of our download policy, i.e. no
files are downloaded twice from the same link. To verify that the downloaded file has no
other file formats, we executed a query to make sure there was no record with the file
name “XeroxStar”, file types other than “pdf’ and those with the prefix url
http://www.cs.umd.edu/class/fall2003/cmsc434-0201/Handouts/.

The file was treated as new although there was a document with the same file name that
had been downloaded before. The file name was changed from the original file name
“XeroxStar” to “XeroxStar0” and downloaded to the “/cndocl/pdf tmp” directory.
Because it has the same file name and file size as the one downloaded before, document
ID number 40000 as shown in Table 28, the file digital signatures for both files were

checked and their file signatures were matched.

n
o+

| ID | prefix_url
e | size

.
+

| orig file name | file name

+
+

| temp_location | final location | ddat]

+.
T

| file_type | level | pdf_flag | ashy flag | filter_flag | is_diff format | is_renamed | parentID | num_ref by |

-09-08 | 3382463 | pdf

5|

1

01

2| 2]

" +
T

| 40000 | htep://www, cs.und, edu/class/spring2005/cusc434/Handouts/ | XeroxStar,pdf | XeroxStar,pdf | /cndocl/pdf tap/ | NULL | 2003

2| 120691 | 1]

4
T

+
+

:
+

\
-

Table 28 Document ID# 40000 in DOWNLOAD_STATUS Table

To verify that the document with ID 41047 had been deleted, we first found the directory
in which it was stored. Since its filter flag had not been updated, the file with the changed
name “XeroxStarQ.pdf” would be in the directory of “/cndocl/pdf tmp/” if it had not

been deleted. We could not find it and confirmed that this document was deleted.

Since the last modified dates for these two files are the same, the first downloaded
document (ID # 40000) is deemed to be the referee and the document (ID # 41047) is
considered as the referrer. We went to the DOCUMENT_REF_BY table to ensure the

record for both documents was there.

93

nyscl> SELECT * FROM DOCUMENT REF _BY WHERE SID = 40000 AND FID = 41047:

o Fommm Frmmmmm e +
| ID | $ID | FID I
- S Ammmmm e +
| 1878 | 40000 | 41047 |
e ommmmee oo e +

1 row in set (0.02 sec)

Table 29 Record in DOCUMENT_REF_BY Table

The overall test results for 16 sample documents are summarized in Table 30. The
functions of file fetching are proven to be effective and achieve 100 percent accuracy for

these test documents.

Test File Name Tested for Tested Tested Test
Document Document Jfor Jfor Success
ID Redundancy& Changed Digital (Y/N)
File Formats File Signature
Name & & File
Location Removal
308 3dkernel pdbresults.pdf Y Y N/A Y
1219 voting-experts.pdf Y Y N/A Y
3092 icml-1999-unify.ps Y Y Y Y
4192 DL-99-HM.pdf Y Y N/A Y
4523 appoint-w98.txt Y Y N/A Y
6230 midrange.pdf Y Y Y Y
12435 419-sp05-10.2- Y Y N/A Y
transport-v3.pdf
14240 CS414Section2.pdf Y Y N/A Y
24322 sophomoric6x9.pdf Y Y N/A Y
39747 31-3.pdf Y Y N/A Y
41047 XeroxStar.pdf Y Y Y Y
68943 Hirst-NearSynonyms- Y Y Y Y
95.ps
72352 tsd2002bib.pdf Y Y Y Y
88270 TCAD group finalpdf Y Y N/A Y
101482 lec13print.ps Y Y Y Y
102465 search-tutorial.pdf Y Y N/A Y

Table 30 Sample of Test Documents and Testing Results

94

5.3.2 Correlation Analysis

Document Size and Document Quality

Since CINDI library only collects scientific documents such as research papers and
technical reports and the size of those documents must be big enough to contain a certain
amount of information, intuitively we know that there should be a relationship between

the size and amount of information.

To find the relationship, we did an experiment on 52,552 downloaded PDF documents.
We chose the PDF files as our test documents because they are more representative in
terms of volume and diversity of document size. These test documents were processed by
DFS, which has a filtering accuracy of 98% [TZ04], and the filtered information was
updated in the DOWNLOAD STATUS table. We counted the number of documents
accepted and rejected by the filter and calculated the percentage of valid documents over
the total number of downloaded documents for five different document sizes. The results

are summarized in the table below.

Number of

Invalid
B Number of

Valid

<10K <20K <30K <40K <50K

Figure 27 Document Size and Document Quality

We perceive that the number of accepted documents increases as the size of the
documents increases. In addition, the experimental outcome has an implication for us

when designing and implementing the file fetcher, i.e. not downloading a document if its

95

size is less than a certain number of bytes. A further test was made to determine the
number of bytes below which all downloaded documents are invalid. We find out that
there are 829 documents whose sizes are less than 8K bytes and all of them are invalid.
Therefore, we set the 8k as the cut-off point of skip downloading. By doing this, we can

save time not only for file fetching but also for file filtering.

Directory Levels and Number of Documents Found

As discussed in section 3.2 and shown in Table 11, there is a relationship between the
level of directory where documents are located and the quantity of documents found at
that level. For the initial crawl, 97% of the documents found and downloaded have URLs
with directory levels of 2, 3, 4, and 5. No documents are found at URLs with a level
greater than 7. Therefore, further search to deeper levels in a site is not cost effective and

may even prove fruitless.

5.4 Experiments on Statistics Analyzer

After the initial crawl, 43,854 distinct hosts are found in the FOREIGN LINK table.
There are 43,322 seed candidates after crawled sites and existing seeds are removed from
these hosts. A total of 9,125 candidates qualify as new seeds and are inserted into the

NEW_SITES table

To test the effectiveness of seed selection by using the rules with the heuristics of
“keyword in Web page” and “anchor text in Web page”, we took the first 300 entries
from the FOREIGN_LINK table. The first 37 entries of the sample set are given in the
table below.

96

nysql> SELECT * from FOREIGN_LINK WHERE FID < 300:

] FID | url | host_nane | PID |
| 1 | http: //www, unass, edu | wuw.unass.edu 1 1
| 2 | http://uness.edu | unass,edu i 11
t 3 | http://unass.edu/unhone/policies/ | unass,edu | 11
] 4 | http://vww,cra,org/ | www.cra.org { 11
| 5 | htep: //www, factfinder. census. gov | www.factfinder. census, gov { 51
6	htep://ciix,cs.umass, edu/personnel /croft, htnl	ciir.cs.unass.edu	6
7	http://www-psl, acso.unass, edus/cgi-bin/inguiry/grading display.pl	www-psl.acso.umass. edu	6
8	http://vuw.unass.edu/adpissions/	www.urass,edu	6
I 9	http://vww, amherstconnon. con/	www.apherstcoxmon, con I 71	
I 10	http://www.noho.com/	www.noho, con I 71	
1l	http://www.peterpanbus, con/	wew,peterpanbus.con	71
I 12	http://vuww.valleytranspoLter. con	vww.valleytransporter,con { 71	
13	http://www, antrak.con	www.antrak.com	71
14	hutp://manic.cs.unass,edu/	manic,.cs.umass. edu 1 10 1	
15	hrttp://macdb.cs.umass.edu/cal/	macdb,cs,unass, edu	12
{ 16	htep://www. umassaluuni. con/	wuww,unassalumni.con I 15	
1 17	http: //vww-edlab.cs.umass. edu/	www-edlab,cs,umass, edu	17
18	http://wuw.nsn.unass, edu	wow.nsm.unass. edu	18 1
19	http://vww.unass. edu/unhone /visit_campus { wuw,unass.edu	18	
20	http://wuw.unass. edu/vmhone /eventa/index. php	wyw.unass.edu } 18 1	
21	http://calendar. fivecolleges, edu/FiveCol/calendrone. cyi	calendar, fivecolleges,edu	18
22	http://uuw, anherstarea.com	www, awherstarea, com	18
23	http://northanptonuncommon. com	northamptonunconuon, com 1 18	
24	http: //www.valleyvisitor. con/	wow.valleyvisitor.com	18
25	htep: //www.masslive.con/	www.masslive.con	18
26	http://vuv.gazettenet,com/	www,gazettenet. con I 181	
I 27	http://vww~all.cs.unass. edu/	wuw-all.cs.unass.edu i 20	
28	http://vww-anw.cs,unass,edu/	wyw-anw.cs,unass.edu	20
I 29	http://laser.cs,unass, edu/	. laser.cs.umsass.edu	20
{ 30	http://vwy-robotics.cs.unass. edu	www-robotics.cs,unass.edu	20
i 31	http://dis.cs.unass,edu/	. dis.cs.unass. edu	20
{ 32	http://anytime,cs,unass,edu/	anytime,cs.umass.edu	20
33	http://yuw-net.cs.uness.edu/	wow-net,cs,unass, edu	21
I 34	http://ccbit. cs.umass.edu/ccbit	cchit.cs.unass,edu	21
35	http://ccbit.cs.unass, edu/cke	.cchit.cs.unass. edu	21
{ 36	http://ripples,cs.unass,edu I ripples.cs.umass,edu	21]	
37	hrep://wanic.cs.umass.edu/crices	manic.cs.umass, edu	21

There are 184 distinct hosts. We found 19 of them had been already either crawled or
discovered by the sced finder. The Web page contents of the remaining 165 hosts were
compared with 174 domain keywords (see Appendix C) and 3 representative anchor texts

in the RDVT table (see table 13). The initial selection rule can be written in the format

below.

Table 31 Test Samples in FOREIGN_LINK Table

Number of Keywords: - K

Number of Anchor Texts; - A
Accepted: - (K>0AA>0)Y(K>1YA>1)

The statistics analyzer accepted 99 hosts as seeds and rejected 67 hosts. We manually

validated the Web content of the accepted hosts and the results are summarized as

follows.

97

1- Broad topic 2- Irrelevant content 3- Ambiguous topic

Host URL Num of Num of Is a valid
keyword anchor text | seed
match match (reason)

1 www factfinder.census. gov 1 1 No (2)

2 www-edlab.cs.umass.edu 7 0 Yes

3 northamptonuncommon.com 2 0 No (2)

4 laser.cs.umass.edu 3 1 Yes

5 www-robotics.cs.umass.edu 2 0 Yes

6 dis.cs.umass.edu 7 1 Yes

7 ripples.cs.umass.edu 3 3 Yes

8 iesl.cs.umass.edu 5 2 Yes

9 kdl.cs.umass.edu 3 0 Yes

10 signl.cs.umass.edu 4 1 Yes

11 prisms.cs.umass.edu 4 1 Yes

12 www-ccsl.cs.umass.edu 3 0 Yes

13 sysbio.cs.umass.edu 2 0 Yes

14 www apple.com 2 0 No (1)

15 research.microsoft.com 3 2 Yes

16 www,philly.com 5 0 No (2)

17 mas.cs.umass.edu 7 1 Yes

18 Www.oit.umass.edu 3 0 Yes

19 www.analog.cx 3 0 No (3)

20 www.arenasoftware.com 2 0 No (2)

21 winscp.vse.cz 2 0 No (2)

22 www.w3.org 8 1 Yes

23 vip.oit.umass.edu 2 0 No (2)

24 www.ccsf.edu 5 0 No (1)

25 www.cs. wright.edu 3 0 Yes

26 c¢s.conncoll.edu 8 0 Yes

27 www.pvamu.edu 2 0 No (1)

28 www.adobe.com 5 0 Yes

29 www.clarkson.edu 2 0 No (1)

30 www lis.sinica.edu.tw 2 0 Yes

31 homepages.inf.ed.ac.uk 1 2 Yes

32 www.hpl.hp.com 2 2 Yes

33 lass.cs.umass.edu 6 2 Yes

34 www.heaplavers.org 3 0 Yes

35 www.framingham.edu 4 0 No (1)

36 www.extension.harvard.edu 3 0 No (1)

37 www.umb.edu 1 1 No (1)

38 www.wpi.edu 4 0 No (1)

39 www.worcester.edu 3 0 No (1)

40 www.deoss.org 5 0 Yes

41 www.comm.csluiuc edu 3 0 Yes

42 www.pode.org 4 0 Yes

43 www.hipc.org 6 0 Yes

44 www.oracle.com 5 0 Yes

45 cise.nsf.gov 6 1 Yes

46 www.utexas.edu 2 0 No (1)

47 oregonstate.edu 2 0 No (1)

48 www.nsf.gov 4 1 No (1)

98

49 WWW.Dist.gov 3 1 No (2)
50 www.georgetown.edu 2 0 No (1)
51 WWW.acm.org S 1 Yes
52 patterns.projects.cis.ksu.edu 3 1 Yes
53 www.comlab.ox.ac.uk 0 2 Yes
54 www kebe.com 2 0 No (2)
55 computationalcomplexity.org 4 0 Yes
56 boston.com 2 0 No (2)
57 j-bradford-delong.net 2 0 No (2)
58 atrios,blogspot.com 2 0 No (2)
59 headheeb.blogmosis.com 4 0 No (2)
60 fafblog.blogspot.com 4 0 No (2)
61 dailykos.com 3 0 No (2)
62 talkingpointsmemo.com 2 0 No (2)
63 andrewsullivan.com 5 0 No (2)
64 washingtonmonthly.com 4 0 No (2)
65 www.wiley.com 3 0 No (1)
66 www.bcs.rochester.edu 3 0 No (2)
67 www.seas upenn.edu 3 0 Yes
68 suma.cs.umass.edu 3 0 Yes
69 www.research.ibm.com 5 0 Yes
70 wosp.zeesource.net 2 0 Yes
71 msdnaa.oit.umass.edu 4 0 Yes
72 WWW.I1888. 80V 2 0 No (2)
73 www.icra2005.org 2 0 No (3)
74 www.roboticsconference.org 4 0 Yes
75 www.ee virginia.edu 2 0 Yes
76 www.virginia.edu 2 0 No (1)
77 www.sigmobile.org 3 0 Yes
78 mmen05.cse.nd.edu 6 0 Yes
79 www.issnip.org 2 0 Yes
80 www.ece. wisc.edu 1 1 Yes
81 www.leee-infocom.org 2 0 Yes
82 www.icar20085 org 3 0 No (3)
83 WWW-sensorimotor.cs.umass.edu 2 1 Yes
84 www.cornell edu 1 1 No (1)
85 WWWw.siam.org 3 0 No (3)
86 www.eforg 2 0 No (2)
87 www.soe.ucs¢.edu 5 2 Yes
88 www.ntu.edu 4 0 No (1)
89 mallet.cs.umass.edu 7 0 Yes
90 www-ccs.cs.umass.edu 6 0 Yes
91 www.dbai.tuwien.ac.at 3 1 Yes
92 sol.rutgers.edu 3 1 No (3)
93 www.ieee.org 3 0 Yes
94 computer.org 5 0 Yes
95 data.cs.washington.edu 4 0 Yes
96 WWW,asprs.org 3 0 No (3)
97 acmmmO05.comp.nus.edu.sg 4 0 Yes
98 www.nossdav.org 2 0 Yes
99 www.ornl.gov 4 0 No (2)

Table 32 Validations of Accepted Hosts

99

We did not accept a host as a seed if the Web content of the host was too broad, which
means the robot needs to search extensive numbers of irrelevant Web pages before
reaching relevant ones. For example, the home page of a university, e.g. www.wpi.cdu
contains the URLs to Web pages of all the faculties and departments. To reach the Web
pages of the computer science department, the Web pages of all other departments will be
crawled as well. We do not accept this type of host as the seed because crawling over it is
not cost effective. In addition, for the host whose Web content is irrelevant or ambiguous,
¢.g. the Web site for the imaging and geospatial information society at www.asprs.org
might contains some computer science related information, but most of the information is

unrelated and we do not accept it either.

Valid Invalid Total
Broad Irrelevant Ambiguous
Number of Hosts | 55 17 21 6 99
Percentage 55.55% 17.18% 21.21% 6.06% 100%

Table 33 Statistics on 1** Seed Selection Test

5.4.1 Improvement on the Selection Rule

To improve the selection rule, we first examined the first term of the rule, which is (K >0
A A > 0). We found that 25 hosts have at least one for both of the number of keyword
matches and the number of anchor text matches. Of these, two of them were not accepted.
The effective rate is 92% if we use only the first term to evaluate. The second term (K > 1
Y A > 1) has an effective rate of only 32/74 * 100% = 43%. This also implies that using
keywords or anchor texts alone cannot determine the relevance of a Web page. A further
examination was made of the keywords found in the Web pages of rejected hosts. We
found that the most frequent keywords in these pages were “general”, “miscellaneous”,
“languages”, and “learning”. Although these keywords are classified as domain keywords

by Inspec, they are ambiguous and result in faulty judgement as to the relevance of a

100

page. We removed them with some other keywords such as “social issues” and “public

policy issues™ and retested the same sample set. The statistical results for the second test

are given below.

Valid Invalid Total
Broad Irrelevant Ambiguous
Number of Hosts | 54 3 1 0 58
Percentage 93.10% 5.17% 1.73% 0.00% 100%

Table 34 Statistics on 2" Seed Selection Test

The total effective rate has been improved from 55.55% to 93.10%. One valid host

www.ieee-infocom.org was lost due to the keyword removal. Incorrect selections were

significantly reduced from 44.45% to 6.90%. The effective rate is basically satisfactory.

5.5 Experiments on Documents Discoverability

To test the ability of CNDROBOT to discover useful documents, we randomly selected

30 computer science related research papers out of 20,348 accepted documents in our

database. We chose two well-known computer science digital libraries, CiteSeer and

ACM as the benchmarks and manually search each document in them. The test result is

shown in Figure 28.
| Paper Title Author Year Organiza | CiteSeer | ACM
Published | tion
1 Memory Ordering: A Value-Based | Harold W. 2004 Univ. of N Y
Approach & Mikko H. Wisconsin
-Madison
2 Concise Descriptions of Subsets of | Alberto O, 2003 Univ, of N Y
Structured Sets & Ken Q. Toronto
3 Linking Shared Segments W.E. Garrett | 1993 Univ. Y N
et al. Rochester
4 Interfaces for Modular Feature Harry C,, 2002 Brown Y N
Verification Shriram K., Univ.
& Kathi F.
5 Computer-assisted kinematic Elisha S., 1999 Purdue N N
Tolerance Analysis of a Gear Leol., & Univ.,
Selector Mechanism with the Ralf S. Ford
Configuration Space Method werke AG

101

6 Safety in Automated Trust William H. | 2004 George

Negotiation & NingHui Mason
Li Univ.

7 Improvements to Graph Coloring Preston B, 1994 Rice

Register Allocation Keith D. & Univ.
Linda T.

8 System E: Expansion Variables for | Sebastien C, | 2004 Boston
Flexible Typing with Linear and Jeff P. et al. Univ. &
Non-linear Types and Intersection Heriot-
Types Watt

Univ.

9 Generating the Envelope of a Claudia M. 1999 Univ. of

Swept Trivariate Solid & Kenneth California
I

10 | An Implicit Finite Element Method | Gentaro H., | 2001 Univ.
for Elastic Solids in Contact Susan F. et North

al. Carolina

11 | InfoVisExplorer Jaroslav T. 2004 Georgia

& Grant P. Institute
of Tech.

12 | OSGAR: A Scene Graph with Enylton M., | 2004 Naval
Uncertain Transformations Blair M. & Research

Simon J. Lab

13 | Teallach: a Model-Based User Tony G., 1999 Univ.
Interface Development Peter J. et al. Manchest
Environment for Object Databases er

14 | Shape Estimation from Support AmynP,, 2004 Univ. of
and Diameter Functions Peyman M. California

& RichardJ

15 | Applying Metric-Trees to Belief- Joelle P, 2003 Carnegie

Point POMDPs Geoffrey G. Mellon
& Sebastian Univ.
T.

16 | Processor Power Reduction Via Rakesh K., 2003 HP Labs
Single-ISA Heterogeneous Multi- | Keith F. et
Core Architectures al.

17 | Low-Latency Music Software EliB. & 1998 Carnegie
Using Off-The-Shelf Operating Roger B. Mellon
Systems Univ.

18 | Virtual Apphances for Deploying | Constantine | 2003 Stanford
and Maintaining Software S., David Univ.

Brumiey &
Ramesh C.

19 | LP Decoding Corrects a Constant Jon F., Tal 2003 Columbia

Fraction of Errors M. & Rocco Univ.
A.

20 | Data Collection and Language Lori L., 2002 Carnegie
Technologies for Mapudungun Rodolfo V. Mellon

et al. Univ.

21 | WebView Materialization Alexandros | 2000 Univ. of

L. & Nick Maryland
R.

22 | Automatic Code Placement Emin G., 2001 Cornell
Alternatives for Ad-Hoc and Rimon B. et University
Sensor Networks al.

102

23 | From Discourse Structures to Text | Daniel M. 1997 Uniyv. of
Summaries Toronto

24 | The XP Customer Role in Practice: | Angela M., 2004 Victoria
Three Studies Robert B. & Univ. of

James N. Wellingto
n

25 | Cache As Filters: A New Dee A, 1998 Univ. of

Approach to Cache Analysis Sally A. & Virginia
Wulf A.

26 | Workload Characterization in Web | GuangWei 2002 Univ. of

Caching Hierarchies B. & Carey Calgary
W.

27 | Semantics-Based Concurrency Badrinath B. | 1992 Univ. of
Control: Beyond Commutativity & Krithi R. Massachu

setts

28 | A Methodology for Controlling the | Mary J., 1993 Clemson
Size of a Test Suite RajivG. & Univ.

Mary L.

29 | TOSSIM: Accurate and Scalable Philip L., 2003 Intel
Simulation of Entire TinyOS Nelson L. et. Comp. &
Applications al. Univ. of

California

30 | CAFIXD: A Case-Based lain M. & 2004 Worcester
Reasoning Fixture Design Method. | Kevin R. Polytechni
Framework and Indexing ¢ Institute

Mechanisms

The search results show that for these 30 research papers found by CNDROBOT,
CiteSeer has only 16 of them and ACM has only 7. At this stage, we cannot state that
CINDI library with the support of CNDROBOT would be better than the other two in
terms of the size of collection because the crawling process has not completed yet and an
in-depth test has not been made. However, based on the results, we are confident that

CNDROBOT has the ability to discover a large number of desired documents that others

Figure 28 Search results of CiteSeer and ACM Digital Libraries on Selected

have not.

103

Research Papers

Chapter 6

Conclusion and Future Works

6.1 Conclusion

The gigantic size and the dynamic nature of the World Wide Web pose the unprecedented
challenge for Web robots to locate and retrieve Web documents to build digital libraries.
CNDROBOT has been constructed as a focused crawler to effectively discover the
computer scientific documents of type research papers, theses, FAQs, academic papers
and technical reports for CINDI digital library. These documents are mainly disseminated
in institution sites, research organization sites and researcher’s home pages. The goal of
CNDROBOT is to acquire maximum amount of relevant documents while crawling a
relatively small scale of the Web. To achieve this goal, we designed and implemented the
CNDROBOT in five major components: the seed finder locates the trusted and topic-
related sites (seeds) that are likely to contain the computer science literature. It submits to
the Google and AltaVista search engines queries; parses the returned Web pages and
extracts the seed sites from the pages. The Web crawler explores the Web pages in the
seed sites to discover documents and potential new seeds. The file fetcher downloads the
discovered documents to a local storage. The statistics analyzer analyzes previous
crawling data, produces statistical results, discovers new seeds and selects seeds for the
next crawl. The link analyzer provides recommendation for the URL prediction in future

crawling based upon past crawling experiences.
6.2 Contribution of This Thesis

In this thesis, we have described the architecture, approach and implementation of the
CNDROBOT and presented some heuristics and preliminary experiments. The objective
of this thesis project is to crawl the Web and discover and collect potential documents
desired by CINDI library. The design and implementation of CNDROBOT as well as the

integration with DFS subsystem are the main contributions to the overall CINDI system.

104

For the seed finder, multi search engines were used to discover trusted sites for the Web
crawler to start with. For the Web crawler, the Naive crawling algorithm and knowledge
based crawling algorithm were developed. The seeds rescheduling algorithm was applied
by the statistics analyzer to select crawled sites to be revisited. The link analyzer was
built to accumulate knowledge from previous crawling experiences. The file fetcher was
implemented to effectively download the files and gather relevant file information.
Finally, a secure, user-friendly Web application was implemented to allow users to

control the CNDROBOT remotely through the Web.

6.3 Future Work

There are several promising areas for future work with the CNDROBOT. The first is to
decrease the time for Web crawling and file fetching. The average crawling and
downloading time is 15 hours for a site. Currently, the CNDROBOT crawls the sites and
downloads the files sequentially, i.e. only one site and one file is crawled and
downloaded at one time. One option is to reduce the time of Web crawling and file
fetching by running several copies of the Web crawler and file fetcher simultaneously.
For example, several copies of the Web crawler can run on one machine or multiple
machines. However, the synchronization and coordination between these crawlers are
needed so that the same site will not be crawled more than one time. The strategy,
running two copies of file fetcher to download the files, is being implemented and tested.
Another area for future work lies in discovering new sites and new documents. Currently,
we discover new sites from the hosts of foreign links in prior crawling. One possibility is
to explore new sites in downloaded documents since many of them contain hyperlinks to
relevant topics in the context and references section and these hyperlinks might link to

new sites or new documents.

Other areas of research involve improving the accuracy of new seed selection. As shown
in section 5.4, the effective rate of correct selection is 93.10%. Although the result is
basically satisfactory, it is possible to make a further improvement by investigating more

incorrect selections and refining the selection rule.

105

Finally, for the crawling strategy, we adopted the simple breadth-first algorithm. At the
other end crawler algorithm might involve more complex algorithm such as best-first

algorithm. That algorithm can be implemented, tested and compared with current one.

106

References

[ADL] The ACM Digital Library, available at http://portal.acm.org/dl.cfm

[AS92] Andrew S. Tanenbaum. “Modern Operating Systems”. Prentice Hall, New Jersey,
1992.

[AVA] AltaVista Search Engine, available at http://www.altavista.com

Baujard, O., Baujard, V., Aurel, S., Boyer, C., and Appel, R.D. “Trends in Medical

Information Retrieval on the Internet,” Computers in Biology and Medicine, 28, 1998,
pp. 589-601.
[BC94] B.C. Desai, “A System for Seamless Search of Distributed Information Sources”,

May 1994, available at http://www.cs.concordia.ca/~bcdesai/web-publ/w3-paper.html

[CDL] California Digital Library, available at http://www.cdlib.org/

[CITE] Scientific Literature Digital Library, available at http://citeseer.ist.psu.edu/
[DB00] Davison, B. D. “Topical Locality in the Web”, in Proceedings of the 23" Annual

International Conference on Research and Development in Information Retrieval (SIGIR
2000), July 2000, ACM

[DS04] Danny, S, Search Engine Watch, July 2004, available at
http://searchenginewatch.com/searchday/article.php/3376041

[ECT] Excite Search Engine, available at http:/www.excite.com/

[FEIS] “Find and Evaluate Internet Sources”, University of Houston Victoria, available at

http://www.uhv.edw/ac/research/prewrite/findinternet.pdf

[GAPI] Google Web APIs, available at http://www.google.convapis/api_faq.html#gen]

[GB] Google Blog, available at http:.//www.google.com/googleblog/
[GHO0] Gisle, H. “Search Engine Survey An Overview of the Mapmakers of

Cyberspace”, July 2000, available at http://heim.ifi.uio.no/~gisle/overload/engines. html
[GPO1] Gary D. Price, “Specialized Search Engine FAQs: More Questions, Answers and

Issues”, available at http:/www.infotoday.com/searcher/oct02/price.htm
[GP04] Gautam, P., Padmini, S., Filippo, M. “Crawling the Web”, 2004, available at

http://dollar.biz.uiowa.edu/~pant/Papers/crawling.pdf
[HA99] Heydon, A., Najork, M. “Mercator: A Scalable, Extensible Web Crawler”, World
Wide Web, Dec 1999,

107

[IFSK] InfoSeck search engine, available at http://www.infoseck.com

[INSP] Inspec, The Database for Physics, Electronics and Computing, available at
http.//www.ice.org/publish/inspec/
[JC98] Cho, J., Gaucia-Monlina, H., and Page, L. “Efficient Crawling through URL

Ordering”, in Proceedings of the 7" International World Wide Web Conference,
Brisbane, Australia, Apr 1998

[KJ98] Kleinburg, J. “Authoritative Sources in a Hyperlinked Environment”, Proceedings
of the ACM-SIAM Symposium of Discrete Algorithms, 1998.

[KM94] Koster, M. “A Standard for Robot Exclusion”, available at

http://nersp.nerde.ufl.edu/~nemnm/infoseek/norobots.html

[LC] The Library of Congress, available at http://www.loc.gov/about/

[LCS] Lycos Search Engine, available at hitp://www.lycos.com

[LV03] Lyman, P. and Varian, H. R. “How much information” available at
http://www.sims.berkeley.eduw/how-much-info-2003/

[MA99] McCallum, A., Nigam, K., Rennie, J., and Seymore, K. “A Machine Learning

Approach to Building Domain Specific Search Engines,” in Proceedings of the
International Joint Conference on Artificial Intelligence (1IJCAI-99), 1999, pp. 662-667.
[MCO03] Michael, C. “Spidering and Filtering Web Pages for Vertical Search Engines”,
2003, available at http://www.business.hku.hk/~mchau/papers/SpideringAndFiltering. pdf
[MCHCO03] Michael, C and Hsinchun, C. “Personalized and Focused Web Spiders”, 2003,
available at http://citeseer.ist.psu.edu/548327.html

[MH98] Michael, H., Michal, J. et al. “The Shark-Search Algorithm — An Application:
Tailored Web Site Mapping.” In Proceedings of the 7* International World Wide Web
Conference, 1998.

[MK95] Martin, K. April 1995 “Robots in the Web: threat or treat?” available at

http://www.robotstxt.org/wc/threat-or-treat.html

[MNO1] Marc, N and Janet, L. W. “Breadth-First Search Crawling Yields High-Quality
Pages.” In Proceedings of the 10™ International World Wide Web Conference, 2001.
[MSE] “Multiple Search Engines”, available at

http://www.searchengineshowdown.com/multi/

[MYSQL] MySQL Home Page, available at http://www.mysql.com

108

[NAO2] Niran, A. and Arnon, R. “Learnable Crawling: An Efficient Approach to Topic-
specific Web Resource Discovery”, 2002, Available at
http://citeseer.ist.psu.eduw/angkawattanawitO2learnable.html

[NMO01] Najork, M., Heydon, A. “High Performance Web Crawling”, Sep 2001,

available at http://gatekeeper.research.compag.com/pub/DEC/SRC/research-

reports/abstracts/sre-rr-173 html]

[NSDL] National Science Digital Library, available at http://www.nsdl.org

[NLO0O0] Neel, S., Jeonghee, L., Anital, H. “Using MetaData to Enhance a Web
Information Gathering System”, 2000, available at
http://www.research.att.com/conf/webdb2000/PAPERS/1b.ps

[NLO2] Ned, L. F., Lucy, K. “Search Engines HandBook”, published by Jefferson, NC :
Farland & Co., 2002

[OV] Overture’s Home Page, available at http://www.content.overture.com/d/

[PR99] Page Rank “The PageRank Citation Ranking: Bringing Order to the Web”,
available at http://dbpubs.stanford.edu:8090/pub/1999-66

[RMC] Robert M. Colomb. “A Digital Library Needs Many Indexes”, available at

http://www.itee.uq.edu.au/~colomb/Papers/Phronesis.html

[RR92] R. Rivest. “RFC 1321 — The MD5 Message-Digest Algorithm”, April 1992,
available at http://www.fags.org/rfes/rfc1321.html

[SANDBOX] Sandbox MSN, available at http://sandbox.msn.com/

[SB99] Soumen, C., Martin, B., Bryon, D. “Focused crawling: a new approach to topic-

specific Web resource discovery”, in 8™ International WWW Conference May 1999, pp.
545-562.

[SC99] Steve, L., C. Lee, G., Kurt, B. “Digital Libraries and Autonomous Citation
Indexing”, in IEEE Computer, Volume 32, November 6, pp. 67-71, 1999.

[SDL] Stanford Digital Library, available at http://www-diglib.stanford.edu/

[SHBC] S. Haddad, Bipin C. Desai. “ASHG: Automatic Semantic Header Generator”,
available at http://www.cs.concordia.ca/~bcdesai/grads/haddad-thesis.pdf

[SK99] Steve, L., Kurt, B, C. Lee, G. “Indexing and Retrieval of Scientific Literature”,

Eighth International Conference on Information and Knowledge Management, November

2-6, pp. 139-146, 1999.

109

[SLDL] Scientific Literature Digital Library, available at http://citeseer.ist.psu.cdu

[SM99] Soumen, C., Martin, B., Bryon, D. “Distributed Hypertext Resource Discovery
Through Examples”, 1999, available at
http://www.fxpal.com/people/vdberg/pubs/paper_vldb99 P37.pdf

[SSAV] Search Site Alta Vista, available at http:/livinginternet.com/w/wu_sites_alta.htm
[TOP] Top 100 Sites with Details of HTTP Server and Operating System, available at
http:/homepages.tig.com.au/~jmsalvo/top100/top100sites.html

[TZ04] Tong, Z. “A Gleaning Subsystem for CINDI”, Master Thesis, Dept. of Computer

Science, Concordia University, 2004.

[WRD] The Web Robot Database, available at http:/www.robotstxt.org/we/active.html
[WT98] Wes, S. and Tim, M. “Guide to Search Engines”, published by Wiley Computer
Publishing, 1998, pp. 1.

[VG97] Venkat, G., Vijav, R., William, G., Rajesh, K. “Information Retricval on the
World Wide Web”, 1997 available at
http://www.cacs.louisiana.edu/~raghavan/internet97.pdf

[XUEO03] Xue, F.R. “Enhancement of the CINDI System”, Master Thesis, Dept. of

Computer Science, Concordia University, 2003.
[2Z02] Zhan Z. “Porting the Automatic Semantic Header Generator to the Web”, Major
Report, Dept. of Computer Science, Concordia University, 2002.

110

Appendix A

Search Results of AltaVista, MSN and Google Using Phrase: computer science
department (Accessed on July 25, 2005)

Bl Edt Yew Go . fodkmarks ToolsHelp :) 5,0ows shved)

@t @ D B D . o dpatmentigs o tnd go«a

& Hobral . RedPtay

T Sclen Departmentindiana University Computer Sci Dey I B Indiana: University: Computer
Scxence Depamnent IU Home 1UB ..
COMME-LNe. postersmusasm com!mmpmer'g e bl
Mare pages fiom cormme-une, postersrauseur. com

Dickinson College Department m Iatt |em31h 5 & Computer Science
General information. Mathemati Sl . News. -Prof. Ziantz is.on sabbatical for the 2005-2006 academic. year. .

Graduation with-departmenal honors: Lmks Malhemat»cs Computer Science. Degree Requirements .
i dickinson.edu/deparimentximathes
Mare pagas from dickinson edu

Computer $cignce
.. Outcomes Assessment Plan. Department of Computer Sclence. University of llinois at Urbana-Champaign. ... GOALS: The

Cemputer Science Department sesks to provide its B.S .,
ww DIy, Uil gdufa nent/plansfcomputer-seisnce ktmi

Department of Mathamatics and Computer $eience - Home Page
Department News
e Prratho s citadel e

More paces

Otterbiein Coullege Mathematical Stiences Department - Qomputer $cience

Computer Science is the study of problem solving with computers. Computer scientists focus primarily on the science of
programming and controlling computers to store, communicate, and retrieve information. ... Many careers in computer science
involve development of software ...

Fig A: AltaVista Web Page (Results 991 - 1000)

111

Bls Edi: View. Gor Bockwarks Jools - Help

ﬁf@ﬂv@y-w & el

(VKW D di University Cony Scl Ueop IV |UB indiana University' Computer
Sclonce Depanmem 3] Huma B ..
cormmie une. pestergrmuseua "|3n1frm"pul¢:r~srivnr:v,' htraf
Idlgre pages from comme-ung poslersmusaum, com

D!’L‘kmswn Colizye Depanmem 0f M I3
General informati C Scl “News. -Prof. Zianiz is on sabbatical for the 2005-2006 academic year. ...
Graduation with departmenal honors, Lmks h ics, Comp Sci . Degree Req rent

s dickineon, sdu/depanments/mathos
Mare pages from

Gomputer Science
O Plan. Dep of Comy Sci . University of lltinois at Urbana-Champaign ... GOALS: The

Computel Science Deparinent seeks to provide its B.S .

DI edufasapssmentiplanaicomp fence himl

T, DI UG, Briy

Depmtmom Naws
vt vathies. citedel edu
telore pages from mathes: citadel vy

Ctterhelin Co 2 arnati Department - Computer Sclence
Colnpum Sclonce is the s!udy of “problem solving: with nputers; ianti; focus pfimarily on ‘the sclenca of
to store, ; and rameve i i ... Many careers in camputer sclence
|nvolva devalupmen\ of software .. et

Do

VO L S

G- D BN

1.1 Custombeibinks L1} Fres Hotmal. |

Web Results Previus 20 2
Page 24 of 23 918 807 results ining It sctence rley (0.38 saconds)

Compurer Science Departm ent . www nextag.com
US residerts find an online degrese in business, education, nursing, IT, computer

Gemputer Science Department. fupkosnixorg
Earn your K degree at University of Phoenix Onfine.:Request & free, no-risk infopal tocay.

Kennudy Western Univ.: GCompater SCIoOnce . wimw kw.silu
Kwvu, & loader in distance education, offers onfine Computer Science degrees, Study at your own pace, in your own home..,.

s, heakh, web/graphic design snd more...

WP Computer Science Hohiepage

MEN. Gempyiar Scirnes

UPJ Computer Science Department Welcome to the University of Pittsburgh at Johnstown's Computer Depariment

S¢ience Department, one of the leading Computer Scienge Education ... Complete AMD 2200 pius w/40 HD,

8. up.pitt.ady DVD burner and tres shipping- ends...
G7IA3A75.26

The Ohic State lJniveralty Department of Computer $cience 8 Engineering

. OM In the recent NSF ITR competition. Autumn Dates Announced The Department wants everyone to know AlhidaFehnolot Leshusios:
about some special days comlng thls Falll more news... NSF Computing ... ;J":; dogreeUSA, & leading
wuwyy Cg% chip-state wdu educstion fesource for working....

szt o Bl et
By Computer Scignce Department - Courses
. Computer Science Department, Computer Science, Computer, BYU, Research, University BYU Computer Semputer Seicnce Department
scloncl Department BYU CS HBL Library | Route Y BYU'Brigham Young University Feedback | Site ... Achisve your tachnology carser goals
whvw.c5. byu. edu/courses with & college degres. Request...
tech careeredl net

MTU Dspartment of Computer Science Goms ment
npuiey Seienee Devarts
.. Reat Amin's remarks here.) The 51,000 square foot Rekhi Computer Science Hall is the new home of the Study Tor your tachnology degres at
artment of Computer Sclence, in addition to departmental faclitles, it als Inciudes two .. Anthem Solieae Online. Reque:

Fig C: MSN Web Page (Results 231 - 240)

112

ORM=PDREB

Web Regults

Page 25 of 250 resuits ining puter scleice depi ©:23 sesonds) :

- v v ol

Kwu alesder in distance educatlm offers onune Tomputer Soimnce degroes. Study &t your own pace, In your own home....

Repartment

University of Warwick; Computer Scisnee: Home: Computer Scishce
.. University of Warwick. All rights reserved. Disclaimer Privacy General Enquiries Department of

Computer Science University of Warwick Coventry Cv4 7AL United Kingdom Tel. +44 24 7652 3193 Fax. +44 Camplets AMD 2200 plus w40 HD,
24 7657 ... DVD burner and fres shipping- ends. .
vy, e, wrateick, e ub i STAS91 76 76

Math and Computer Science () Seton Hall Aitend a Sehwoot of Tsshuelosy
. to the degrees Bachelor of $cience in Mathematics and Bachelor of in i . The Snfine.

Wo are degreclSA, a leading
edUcation resource for working...

dopanmnm aims to develnp students' analytical skilis'and attitudes necessary for the effective .
s B acyronia nt

scitig. shu.edu &

ETH - Computer $cignce - Department of Computer Selence Goamewter Spisnse Depavimeni
... ETHZurich - Departmant of Computer Sclence Departiment of Computer Science Latest News Achisve your technology career gosls
Industrial Advisary Board established - 30 June 2005 Games: Project .. with a college degree. Recuest...

wi.inf gthz ch Cachasd paos tech career-edi net
partment of Computer Science OUB Somputsr Ssiense Repartnent

Study for your tschnology degree at
‘‘‘‘‘ W. gjggme tg_‘tr]gwﬁgggg_lwnmt__ggvmpuu Sclence web-site Level 0 Module Anthem Cokage Online, Reguest

U s e b ol S R T e

Bl Bt Yew Go Bookirks ook ol i i 6,0 hois seved &)+
-l B) (oot conpamvemcasarses o skt g e . @ o [n
Udustomian tiks: [P sl RealPlayet: [} windows Medhs | L1 Windows e B

Weh Images Groups News Froogle Local more»

Gaﬁgie [computer scienca depanment

Web. : : ; : : Resulis 9014902 of about 67,700:000 for putei science dey 0-35 it
niversitat Leipzi -Fak Itat Ur Mathe ank nddnformealik - | Tenstate this pane | Sponsered Links
Kurzportrait der Einri Angaben zu den i in Lehre uhd Forschung.
v fiiii uni-leipzig def - l:xk Jut o006 - Figd - Sifailar pages Shop SK for Science
Sewving science teachers, habbyists
rdw re-Software- Co- esian - Depaitent of CS12 [Translats thy pase | and homeschoolers.
B t of Comp ience 12. Dapt. of Comp 12 Contact - Naws - v stiencekit com
R - Education - C ions - Staff- Publicati .

wrerl 2 informnatik, uri- erianqen daf - 24K - Jul24, 2005 -

in ordero show you the most ralevant results, we have omitied some enlries very similar o the 902 already displayed.
IFyou like, you can repaat the reh.with the omitled resultsiinctuded,

4 Cooooooooooogle
Result Page: PrévioysB8182838485868788899091

puter science depunment [Search

Search wi(hin resufts | Langudge Tools | Sedrch Tips

3aogle Horme - Advertising Programs - Businegs Solutions - Aboul Google

Fig E: Google Web Page (Results 901 — 902)

113

Search Results of AltaVista, MSN and Google Using Phrase: computer science
publications (Accessed on July 25, 2005)

Ble Edt Yew Go -Bookmarks' Toos Help 50 bows saved. @) 1
Q@ M EJ;&" . ﬁ im? %][}7 http:{jwww.akavista.comjweb (dyBq=computer-+science- i K: 3 n"l} B e l[g]'

Lo} Custoniize Links 1] Fiotmial |

Farnily Filter: off Help

sta found 18,600,500 rasulis

Publications

File type:PDF - Download [FDF Reader

... Publications.” Articles: « Chapter 4: L ... 1999). Lecture Notes in Computer Science, volume 1682. Springer -Verlag, Berlin
Heidelberg , ...

vewe library. su al/digiarctaeddipd 2-0404.1
ture pages from lbrary.uy.nl

iGfpubl. oot

... Other Publications. 1. E.A Heinz. A new selfplay experiment in computer chess ... LCS-TM-608), M.LT. Laboratory. for
Computer Sclence, Massachusstts Institute of Technology, USA, May ...
supertech los mit. edui~heinafmode2d htmd

hore pages from supertech.jcs.mit.edy

Mayur Thakur'sPublications

... Mayur Thakur. LIST OF PUBLICATIONS. THESIS. M. Thakur. Generai Tools for Determining Problem ... of Software Technology
and Theoretical Computer Science (FSTTCS 2004), December 2004 ...

web.umr.eduithakurkpublications

Muare pages from web.umr edu

... Research Report 2000/2002. Publications ... Hypermedia and Adaptive Web Based Systems, May 2002, to appear in
Springer-Verlag Lecturs Notes in Computer Science ...

i doe e ac kN fpubs 2002 htm

Wure pa

Publications of Douglas Stinson
Publications of Douglas Stinson. My publications are organized into the following categories: Books. Papers In Conference w

Done

Fig F: AltaVista Web Page (Results 991 - 1000)

114

Bl Bt gew Go Boekmarks. ' Tols t
G - up - 56 B (P e

1l Gustortiee tinks. 1,3 -Fros Hotmall || Realayer |

27 attaviste

computer science publications
- i

At Vists foaund 19,6 00,808 ronults
Publications
File type:PDF - RBownluad PDF Reader

. Publicatlons. Adicles: « Chapter 4: L ... 1999). Lecture Notes in Computer Sclence, volume 1682. Springer -Verlag, Betlin
Heidelberg , ...
wywoy Dibrary. vy, nifdigiarchieffdipd
More pages iror lisrary. yu.nl

P02 158

bl pf

Slher Publisations

... ‘Other Publlcalluns 1. E.A Heinz. A new self-play experiment in cumpmsl chess ... LCS-TM-B608), M.I.T. Laboratory for
Comp) Science, N Institute of T May ..

supertrch v, mit vdu/’“hwm dedl htenl

it 24y

Mlare pages frarm superiech.l

Y. .

MayurThekuv st OF PUBLICATIONS, THESIS. M. Thakur. General Tools far Determining Prablem ... of Software Technology
and Theoretical Computer Science (FSTTCS 2004), December 2004 ...
winh. e eduf-thakurk/eublications

on 2000/2002. Publications ... Hypermedia and Adaptive Web Based Systems, May 2002, to appsar in
SpnngaeryI g Lecture Notes in Computer Science

sy, GO0 1 ukrrrzﬂmmun 22 e

tors pajye ul

il
Publications of Dauglas Stinsen. My publicatlons are organized into the following categories: Books Papers In Conferance o

- Dane..

Edt - Ylew Go Géokmarks. Took L

mputer+-science-+pubkc "ORM=PDRES

Web Resuilts
Page 24 of 3 408 257 results i p scienice pubilications ©.36 seconds)

Computer Technelogy Degre 3 - vowws Crlléne e el SpEe
Advance your carser at your own pace. Request free no obligatiors info, Start Today. b
Computer Seience . www.co-sdedy

Your success in the tield of computer technologies-and graphic arts starts with California College. Get onthe roadto...

online Computer Science Deyress . www degreeuza.com
£arn a Technology degres online: L.earr about & variety of accrecitad orline schools offering programs in informetion...

Annual Reviews

Earp p Doutes gt Unives sity of

. Blology Ciinical. Psychology-Computer Science Earth and Planetary Sciences ... Sciehces. Annual Reviews Phigenic
publlcntlons are among the most highly ... the 2003 National Medal of Science and National Medal of ... Earna bactislor degrae in IT, business,
) org Dached gy fechnology, criminal Justice,..

. sy phoenixdegreas com
Claude Crépeai publications

. Inthe proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science , 2002, C.
Crepeau D. Gottesman, and A'Smith Multy-party Quantum Computatlons [PIGIp]In proceedlngs of .
wwe 110 Urnontreal. caiverepeau/procesdings . bt

) " o oliegn.net-com
Reiter's Scientific and Professional Bookstore :
.. Service Small Business Training Applications Artificial Intelligence Commuriications Engineering Computer Getmputer Selence Comtsen ¢

Science Database Design & Management Graphics & Desigh Management information Systems Operating Pursue a coimputer degree trom .
Systems ... Westwood Collsge. With the flexivibly ..

Swhat=1PSp1 htmi £ W careercotiegeanl

Ming:

ey, raiters com/index.cgi

vl Gamputer Soisnse

Computer Scisnce - Duke University - News
pister. ople €3 Lah New:

 computer 2oiEnce school

Fig H: MSN Web Page (Results 231 — 240)

115

_Elﬁ fdt. Wew Go ‘Bookmarks. Jeok -Help

@B B RN

Wals Results Pravious 2
Page 25.0f 260 results containing ! scignce publicath ©.33 seconds)

{ - WWWLEG-30 B

Your suecess In the field of computer technologies and graphic.arts starts witn California Coliege, Get on the roadto...
Onling GComputer Sclence Degrees -voww tegresusa oo

Earn a Technology degres oniine. Learn shout a. variety of accredited online schools offering programs in information,..

Computer and thformation Science Papers CiteSeer Publications ...) - . vl
Estoua Rearee ot Yoivsrsity of

CiteSeer: Scientific Literature Digital Library incorporating autonomous citation indexing ... SPONSORS Phaenb

interested in spansoring CiteSeer? Click Here Documents Citations Citations made by indexed . Earn a bachelor degres In IT, business,

technology, criminal jstice, ..
A PROBNLAE ER T C0m

ceseerist psu. eduiMorin=citesearch

ATC-NY: Publications
Samputer Bienes Demens Huliog

.. Wireless Intrugers," Journai of Universat Computer Science, 11(1), January 2009, avallable aniine here ... Tren
about | r&d | products & services | publications | careers | contact 575" rasicents sarn & bacheiors degros
ey gte-nysorp comipublications.tmi oz e 0 D comparer science, ..
vy Crllege-net.com
pr. Rina Dechter gh UCK '
.. Interests Graduate Students Papers Publications:Recent Talks REES My New Book! Constraint Processing Sompyser Seignee Uouyees tnline
Courses Past Courses School of Information and Computer Science University of California, irvine , PUrsu® a sinpusr degres from
92897 Westwood College. Wi the flexibiity...

vy caremrolbrgerd

ot ed/~dechter {ag

Comguten Software in Sciencg and Mathematics {1984)

..general Interest Computer Software In Science and Mathgrﬂ"aggshg«aﬂa) com Euter Softwa

Dirgatory of Gumputes Seignse

nogschoal..,.,

Ble Edt’ Yisw g poskmarks Jook fel

a~olp - &5

google COMP! -sclance-+publ & ng_t 1esam

Free Hotmall |} RealPlayer- [} Media stlndows

Web Irnages Groups- News Locsi more »

Go.lﬁ:}gléﬁ icomputsvsciancepublim(iuns | [Soarch | Stimnasd tearh

Search: &) the web Qpagas fram Canada
R fults 872 - 874 of about 36,100,000 English pages for. I3 i

Web.

GrADS - Publications Working Documents; Annual Reports
Publjcations:. Intelligent Monitoring for Adaptation in.Grid ... Technical Report
02-399, Department of Cemputer Sclence, Rice University, June 2002,

v, hipeersolt. rice. edufgradsip wblicatloivs_reports:hittn - 34k

Some publications:

Some pulilications:. Combining Intruder Theories (CALP (2005), ...: Observational
proofs by rewriting Theoretical Computer-Science, 276 (1-2) (2002) pp. -

weblotia. oria. f-rusifpublications.bim - 18k €, d - Gimilar nages

Lehigh Wriversity - CSE: Publications

Qvercoming misconceptions about coimpiites scietice with multimedia, ACM Conference of
. 8fLehigh Umvarsnly," ECCMA Technical Publication; October, 2003
w3 Iehigh. eduieny ose eipublicattons. dsp - 22k

AESOP : Publication

[Shaw alt publications] - [Only. showing refereed pul:licallons] «. DV de Jager,
W.J Knottenbelt, Aleksandar Trifunovic: Lecture Nutes in Conputer Sclence ..,
azgop. doc.ic. ac. ukipubsfréferesd’ - 28k %

in order lo show you the masi relevant rasulis, we have omitied some entrias very similar to the 875 airaady displaved.
if you like, you can repeal the segrch with the omitled rasulls inclu

4 Coovovuvupooogle
Result Page: Previous:

Fig J: Google Web Page (Results 872 — 875)

116

Appendix B

Source : IBM Official Web Site: http://www.ibm.com/robots.txt

$1d: robots.txt,v 1,19 2004/11/21 16:33:07 krusch Exp $

#

This is a file retrieved by webwalkers a.k.a. spiders that

conform to a defacto standard.

See <URL:http://www.robotstxt.org/wc/exclusion.html#robotstxt>

#

Comments to the webmaster should be posted at
<URL:http://www.ibm.com/contact>

#

Format is:

User-agent: <name of spider>

Disallow: <nothing> | <path>

Flag Date By Reason

$11- 19950130 epc finally understood what the file was for!

$L2= 19960909 epc fixed url since mak moved to Webcrawler...

SL3= 19970811 epc drop /Stretch

$L4= 19991102 krusch fixed User-agent capitalization and contact

info
$L5= 20010327 krusch Updated disallow rules

User-agent: *

Disallow: //

Disallow: /Admin

Disallow: /admin

Disallow: /zx

Disallow: /zz

Disallow: /common
Disallow: /cgi-bin
Disallow: /scripts
Disallow: /Scripts
Disallow: /i/

Disallow: /image

Disallow: /Search
Disallow: /search
Disallow: /link

Disallow: /perl

Disallow: /tmp

Disallow: /account/registration
Disallow: /webmaster
Disallow: /products/finder
Disallow: /products/learn/action

User-agent: Fast corporate crawler
Disallow: //

Disallow: /Admin

Disallow: /admin

Disallow: /zx

Disallow: /zz

Disallow: /common

Disallow: /cgi-bin

Disallow: /scripts

117

Disallow: /Scripts
Disallow: /i/

Disallow: /image

Disallow: /Search
Disallow: /search
Disallow: /link

Disallow: /perl

Disallow: /tmp

Disallow: /webmaster
Disallow: /products/finder
Disallow: /products/learn/action

#

Appendix C
DOMAIN KEYWORDS

| 1] general
| 2] control design style
| 3| control structure performance analysis
| 41 control structure reliability and testing
| 5| microprogram design aids
| 6| microcode applications
| 7| miscellaneous
8 | design styles
9 | performance analysis and design aids
10 | reliability, testing, and fault-tolerance
11 | high-speed arithmetic

12 | semiconductor memorics

l

|

|

|

|

| 13 | data communications devices
| 14 | input/output devices

| 15| interconnections (subsystems)
| 16| design

!

17 | design aids

118

{ 18 | reliability and testing

| 19| types and design styles

| 20 | single data stream architectures

| 21 | multiple data stream architectures
| 22 | other architecture styles

| 23 | parallel architectures

| 24 | network architecture and design

| 25 | network protocols

| 26 | network operations

| 27 | distributed systems

| 28 | local and wide-area networks

| 29 | internetworking

| 30| large and medium (mainframe) computers
| 31| minicomputers

| 32| microcomputers

| 33| vlsi systems

| 34| servers

| 35| applicative (functional) programming
| 36| automatic programming

| 37| concurrent programming

| 38} sequential programming

| 39| object-oriented programming

| 40| logic programming

| 41| visual programming

| 42 | requirements/specifications

| 43| design tools and techniques

| 44 | coding tools and techniques

| 45 | software/program verification

| 46| testing and debugging

| 47 | programming environments

| 48 | distribution, maintenance, and enhancement
| 49 | metrics

| 50 | management

| 51| software architectures

119

| 52 | interoperability

| 53 | reusable software

| 54 | formal definitions and theory

| 55| language classifications

| 56 | language constructs and features

| 57 | processors

| 58] process management

| 59 | storage management

| 60 | file systems management

| 61 | communications management

| 62 |reliability

| 63 | security and protection

| 64 | organization and design

| 65 | performance

| 66 | systems programs and utilities

| 67 | models of computation

| 68| modes of computation

| 69 | complexity measures and classes

| 70 | numerical algorithms and problems

| 71 | nonnumerical algorithms and problems
| 72| tradeoffs between complexity measures
| 73 | specifying and verifying and reasoning
| 74 | semantics of programming languages

| 75 | studies of program constructs

| 76 | mathematical logic

| 77 | grammars and other rewriting systems
| 78 | formal languages

| 79 | interpolation

| 80 | approximation

| 81 | numerical linear algebra

| 82 | quadrature and numerical differentiation
| 83 |roots of nonlinear equations

| 84| optimization

| 85] ordinary differential equations

120

| 86 | partial differential equations

| 87| integral equations

| 88| applications

| 89 | combinatorics

| 90 | graph theory

| 91| systems and information theory
| 92 | user/machine systems

| 93] logical design

| 94 | physical design

| 95| languages

| 96 | systems

| 97 | heterogeneous databases

| 98 | database machines

| 99 | database administration

| 100 | database applications

| 101 | content analysis and indexing

| 102 | information storage

| 103 | information search and retrieval
| 104 | systems and software

| 105 | online information services

| 106 | library automation

| 107 | digital libraries

| 108 | office automation

| 109 | types of systems

| 110 | communications applications

| 111 | multimedia information systems
| 112 | user interfaces

| 113 | group and organization interfaces
| 114 | hypertext/hypermedia

| 115 | sound and music computing

| 116 | expressions and their representation
| 117 | algorithms

| 118 | languages and systems

| 119 | applications and expert systems

121

| 120 } deduction and theorem proving

|

| 121 | knowledge representation formalisms and method |

| 122 | programming languages and software
| 123 | learning

| 124 j natural language processing

| 125 | problem solving, control methods, and search
| 126 | robotics

| 127 | vision and scene understanding

| 128 | hardware architecture

| 129 | graphics systems

| 130 | picture/image generation

| 131 | graphics utilities

| 132 | computational geometry and object modeling
| 133 | methodology and techniques

| 134 | three-dimensional graphics and realism
| 135 | digitization and image capture

| 136 | compression

| 137 | enhancement

| 138 | restoration

| 139 | feature measurement

| 140 | scene analysis

| 141 | image representation

| 142 | models

| 143 | design methodology

| 144 | clustering

| 145 | simulation theory

| 146 | simulation languages

| 147 | model validation and analysis

| 148 | model development

| 149 | simulation output analysis

| 150 | simulation support systems

| 151 | types of simulation

{152 | document and text editing

1 153 | document preparation

122

| 154 | index generation
| 155 | electronic publishing

| 156 | computer uses in education

| 157 | computer and information science education

| 158 | public policy issues

| 159 | social issues

| 160 | organizational impacts

| 161 | electronic commerce

| 162 | hardware/software protection

| 163 | governmental issues

| 164 | project and people management
| 165 | installation management

| 166 | software management

| 167 | system management

| 168 | occupations

| 169 | organizations

| 170 | testing, certification, and licensing
| 171 | professional ethics

| 172 | application packages

| 173 | hardware

| 174 | management/maintenance

123

Appendix D
AltaVista Result Page HTML Source — Abridged

<html><head><title>AltaVista Search: computer science
department</title>
<meta name="description" content="AltaVista provides the most
comprehensive search experience on the Web!">
<meta name="keywords" content="search, searches, search engine,
directory, directories, category, categories, help, multi media, maps,
business finder, yellow pages, white pages, people search, find
people, searching, searchers, advanced search, search help, search
guide, search tips, search tools">
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<LINK REL="SHORTCUT ICON" HREF="/favicon.ico">
<base target="_top">
<STYLE TYPE="text/css"><!--
-=>
</STYLE>
<script language=javascript>
<l=-
//==>
</script></head>

</div><div id="results"><br class=1lb>
<DIV class=xs style="PADDING-BOTTOM: 6px"><A class=1bl href="http:
//www.altavista.com/help/search/types web%231" target= blank
onMouseOver="this.style.color="#2249cc'"
onMouseOut="this.style.color="#999999'">Sponsored Matches
<a
href="http://www.content.overture.com/d/USm/ays/bjump/%$3fo=U5213%26b=5%
26c=8earchEngineWatch" class=ltgy>Become a sponsor
</DIV> <a class="res"
href="http://it.uphoenix.org">Computer Science
Department

Earn your It degree at University of Phoenix Online.
Request a free, no-risk Infopak today.

it.uphoenix.org
 <br
class="smbr"> <a class="res"
href="http://www.kw.edu">Kennedy Western Univ.: Computer
Science

Kwu, a leader in distance education,
offers online Computer Science degrees. Study at your own
pace, in your own home. Register for a free catalog. Must be 23 with 5+
years experience.

www.kw.edu

<br class="smbr"> <a class="res"
href="http://tech.career-edu.net">Computer Science
Department

Achieve your technology career goals
with a college degree. Request free school information and start
training for a better future.

124

tech.career-edu.net

<br class="smbr"> <a class="res"
href="http://www.nextag.com">Computer Science
Department

Find an online degree in business,
education, nursing, IT, computer science, health,
web/graphic design, criminal justice and more from a directory of
accredited universities.

www.nextag.com

<br class="smbr"><br class=1b>
<DIV class=xs><A class=1bl
href="http://www.altavista.com/help/search/types web%231"
onMouseOver="this.style.color="4#224%cc'"
onMouseOut="this.style.color="#999999'">AltaVista found 27,600,000
results
</DIV>

<br class='lb'>IU
Computer Science Department

Welcome to the Indiana University Computer Science

Department website. We are proud to present these ... Award for
faculty in the Computer Science department is
Professor Kent Dybvig ...

www.cs.,indiana.edu
More
pages from cs.indiana.edu

<br class='lb'>Stanford Computer
Science Department
 ... Founded in
1965, the Department of Computer Science is a
center for research ... of artificial intelligence, robotics,
foundations of computer science, scientific computing,
and systems ...
www-cs.stanford.edu

<a class=rgy href='http://www-
cs.stanford.edu'>More pages from www-—

cs.stanford.edu

<br class='lb'><a class='res'
href="http://www.cs.umass.edu/'>UMass Amherst: Department of
Computer Science
Welcome to internet
home of the Department of Computer Science at the
University of Massachusetts Amherst. ... This site is maintained by the
Department of Computer Science. The Department's
Computer Science Research Center on the UMass Amherst
campus is home to over 30 research laboratories ...
www.cs.umass.edu
More pages from
cs.umass.edu

<br class='lb'><a class='res'
href='http://www.cs.man.ac.uk/'>Schocl of Computer
Science
The University of Manchester,
School of Computer Science ... Study Computer
Science. News. Events. People. Contact Computer
Science. Search Computer Science. What's new

The first Computer Science department in the UK
and an internationally ...
www.cs.man.ac.uk

<a class=rgy
href='http://cs.man.ac.uk'>More pages from

cs.man.ac.uk

<br class='lb'><a class='res'
href='http://www.cs.cornell.edu/"'>Department of Computer
Science, Cornell University

125

Computer Science. The Department of
Computer Science offers undergraduate degrees in Arts and
Sciences and Engineering ... Strategic Plan. Women in Computer
Science. Ugrad Program. ACSU ...
www.cs.cornell.edu
More pages from
cs.cornell.edu

<br class='lb'><a class='res'
href="http://www.cs.sunysb.edu/'>Computer Science
Department
 ... Welcome to the
Computer Science Department at Stony Brook
University. Established in 1969, the Computer Science
Department at Stony Brook University i1s ranked consistently
among the ...
www.cs.sunysb.edu
<gpan class=rgy>
<a class=rgy
href='http://cs.sunysb.edu'>More pages from
cs.sunysb.edu

<br class='lb'><a class='res'
href="http://www.cs.tcd.ie/'>Computer Science - Trinity
College Dublin
Trinity College Dublin:

Computer Science Department ... Department
of Computer Science. Home ... Local. Department of
Computer Science ...
<span

class=ngrn>www.cs.tcd.ie
More pages from

cs.ted.ie

<br class='lb'><a class='res'
href="'http://www.cs.ucsb.edu/'>Department of Computer
Science
 ... UNIVERSITY OF CALIFORNIA SANTA
BARBARA COMPUTER SCIENCE. PROGRAMS. COURSES. PEOPLE
February 2005. ECE Department is Inviting Faculty Applicants in
Computer Engineering - August 2004 ...
www.cs.ucsb.edu
More pages from
cs.ucsb.edu

<br class='lb'><a class='res'
href="http://www.csd.uwo.ca/'>UW0 - Computer Science
Department - Welcome
 ... to the University
of Western Ontario, Computer Science department.
Western offers many options to obtain a degree in Computer
Science or in combination with another ...
www.csd.uwo.ca
More pages from
csd.uwo.ca

<br class='lb'><a class='res'
href="http://www.cs.uluc.edu/'>Department of Computer
Science | University of Illinois at Urbana-
Champaign
CS Changes Curriculum to Meet Future IT
Challenges. ... In the coming year, the Computer Science
<p>Department will institute significant curriculum changes to

www.cs.uluc.edu
More pages
from cs.uiuc.edu

<DIV class=xs style="PADDING-BOTTOM:
6px"><A class=1bl href="/web/lsa" target= blank
onMouseOver="this.style.color="4224%cc'"
onMouseOut="this.style.color="#999999'">Sponsored Matches
<a
href="http://www.content.overture.com/d/USm/ays/bjump/%$3fo=05213%26b=5%
26c=SearchEngineWatch" class=1ltgy>Become a sponsor

</DIV>

Attend a School of
Technology Online

126

We are degreeUSA, a leading education resource for
working professionals who want to advance their careers. Find the
college programs you want quickly and easily online.

<gpan class=ngrn>tx.adprofile.net
<br class="smbr">

Computer
Technology Degrees 100% Online

Advance your career at your own pace. Request free no
obligation info. Start Today.

www.college-review.net
<br class="smbr">
Computer
Science Department

Farn your technology degree at Kennedy-Western
University. Request free program information and start training
today.

kwu.college-info.org
<br
class="smbr"></div><table border=0 cellspacing=0 cellpadding=2
width="100%">

<tr><td colspan=3><hr size=1 noshade color="#93B2DD"
align=center></td></tr><tr><td class=s nowrap valign=top>

<img
src="http://bsav.search.yahoo.com/serv?s=3965660036t=1120589590& ylb=A9
ibyK8W18pCmoQAVvAPzHaMX" width="1" height="1" border="0">

</body></html>

<!-- a20.search.dcn.yahoo.com compressed/chunked Tue Jul 5 11:53:10
PDT 2005 ~-->

127

