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ABSTRACT

Fault Detection and Isolation of Two Time-Scaled

Singularly Perturbed Systems

Fei Gong

Singular perturbations technique is a means of taking into account neglected high-
frequency and parasitic phenomena into modeling systems by decoupling the
representation into separate slow and fast time-scales. The practical advantages of a
singular perturbation in model order are significant, since the order of every real
dynamical system is higher than that of the model used to represent the system.

This thesis focus is emphasized on the fault diagnosis of two time-scaled
singularly perturbed systems. By decoupling the original full-order system into higher-
order slow and fast subsystem models, our goal is to design a composite diagnoser based
on diagnosers designed for the two subsystems to detect and isolate the faults in the
original full-order system. Based on a power series expansion of the exact slow manifold
associated with the original model around £ =0, higher-order corrections of the
manifold are obtained. Conditions are formulated for which a composite diagnoser can be
designed for the original full-order system. Satisfying the conditions of a geometric
approach, this composite diagnoser is used to diagnose the faults in the original full-order
system. The illustrated methodology is applied to a two time-scale aircraft longitudinal

dynamical model as well as the four degree of freedom gyroscope.
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Chapter 1

Introduction

Modern control systems are becoming more and more complex. In order to
maintain a high level of safety, performance and reliability in controlled processes, it is
important that system errors, component faults and abnormal system operations are
detected promptly and that the source and severity of each malfunction is diagnosed so
that corrective actions can be taken.

The modeling of many systems calls for high-order dynamic equations. The
presence of some parasitic parameters such as small time constants and moments of
inertia are often the source for the increased order and “stiffness” of these systems. The
stiffness, attributed to the simultaneous occurrence of “slow” and “fast” phenomena,
gives rise to time scales. The systems in which the suppression of a small parameter is
responsible for the degeneration of the system order are labeled as singularly perturbed
systems, which are a special representation of the general class of time-scale systems.

In this thesis, we propose new considerations to design residuals for both slow and
fast subsystems and the original system in order to detect and isolate faults in a singularly

perturbed system possessing two separable time scales. The system model and composite



observer designs are investigated in detail, which are very useful not only for the problem

of fault diagnosis but also for that of system control.

1.1 Fault Diagnosis Methodology

A “fault” is to be understood as an unexpected change of system function, although
it may not represent physical failure or breakdown [1]. Such a fault or malfunction
hampers or disturbs the normal operation of an automatic system, thus causing an
unacceptable deterioration of the performance of the system or even leading to dangerous
situations. A fault must be diagnosed as early as possible even it is tolerable at its early
stage, to prevent any serious consequences.

A monitoring system that detects faults and diagnosis their location and
significance in a system is called a “fault diagnosis system”. Such a system normally
consists of the following tasks [1]:

Fault detection: to make a binary decision, either that something has gone wrong or that
everything is fine.

Fault isolation: to determine the location of the fault, e.g., which sensor or actuator has
become faulty.

Fault identification: to estimate the size and type or nature of the fault.

Hence, fault diagnosis is very often considered as fault detection and isolation, and is
abbreviated as FDI.

A wide range of fault diagnosis approaches have been proposed in the literature

which can be broadly divided into model-based techniques (analytical redundancy



approach), knowledge-based methodologies, empirical or signal processing techniques
and artificial intelligence methods [2].

For the model-based approach, quantitative models (differential equations, state
space methods, transfer functions, etc.) are used which generally utilize results from the
field of control theory. The general and conceptual structure of a model-based fault
diagnosis system compromises two main stages of residual generation and decision
making [3]. A residual is fault indicator or an accentuating which reflects the faulty
situation of the monitored system. The core element of model-based fault diagnosis
methods is to generate residual as a fault indicating signal. A residual generator uses
available input and output information of the system and generates a residual vectors,
which should be normally zero or close to zero when no fault is present, but is
distinguishably different from zero when a fault occurs. The residuals are examined for
the likelihood of faults, and a decision rule is then applied to determine if any fault has
occurred. Survey papers by Frank [4], Gertler [5], Isermann [6] and Willsky [7] present
excellent overviews of the model-based fault diagnosis algorithms.

The model-based approach to fault diagnosis can be brought down to a few basic
concepts: the observer-based method, the parity space method, and the parameter
identification method. The basic idea behind the observer or filter-based approaches is to
estimate the states of the system from the measurements by using either Luenberger
observer in a deterministic setting or Kalman filter in a stochastic setting. The output
estimation error is the used as a residual. The flexibility in selecting the observer gain has
been fully exploited in the literature yielding a rich a variety of FDI schemes. Another

common and important model-based technique is parity relation method. The basic idea



of the parity relation approach is to provide a proper check of the parity (consistence) of
the measurements of the monitored system through two types of redundancies: direct
redundancy which makes use of relationships among redundant sensor outputs, or
temporal redundancy which counts on dynamic relationships between outputs and inputs.
The model-based parameter estimation method makes use of the fact that the dynamic
sofa systems are characterized by the physical parameters of the system. It detects the
fault through estimation of the parameters of the mathematical model of the system. If the
estimates of the parameters deviate from the nominal values, it may be declared that a
fault has occurred.

Model-based FDI makes use of mathematical models of the supervised system.
However, a perfectly accurate and complete mathematical model of a physical system is
never available. Hence, there is always a mismatch between actual process and its
mathematical model even when there are no process faults. The effect of modeling
uncertainties is therefore the most crucial point in the model-based FDI concept. To
overcome the difficulties introduced by modeling uncertainty, a model-based FDI has to
be made robust. A number of robust model-based FDI methods have been proposed to
tackle the problem, for example, the unknown input observer [8], high-gain observer [9],
adaptive observer [10], and optimally robust parity relation methods [11,12].

Analytical approach applies to information-rich systems that provide enough sensor
information and can satisfactorily be described by mathematical models. In the case of
information-poor systems where much less system information and only poor models are
available, the knowledge-based approach is selected. To develop knowledge-based

diagnosis systems, knowledge about the process structure, process unit functions and



qualitative models of the process units under various faulty conditions are required. Thus,
expert systems, neural networks [13] and fuzzy logic [14] can be applied. These methods
are attractive as they do not require explicit mathematical models of the plant being
monitored. The neural network training and fuzzy rule development from plant data
actually provide implicit models of the plant being monitored (“data-based models”). In
many practical situations, a combination of both the analytical and knowledge-based

approach may be the most appropriate solution to the FDI problem [15].

1.2 Singular Perturbation Methods in Control Analysis and

Design

Singularly perturbed systems and, more generally, multitime-scale systems, often
occur naturally due to the presence of small “parasitic”’ parameters, typically small time
constants, masses, etc., multiplying time derivative or, in more disguised form, due to the
presence of large feedback gains and weak coupling effects. The main purpose of the
singular perturbation approach to analysis and design is the alleviation of the high
dimensionality and ill-conditioning resulting from the interaction of slow and fast
dynamic modes.

Singular perturbations are a means of taking into account neglected high-frequency
phenomena and considering them in a separate fast time-scale. This is achieved by
treating a change in the dynamic order of a system of differential equations through a
parameter perturbation designed as £ . The practical advantages of such changes in model
order are significant, because the order of every real dynamic system is higher than that

of the model used to represent the system. This time-scale approach is asymptotic, that is,



exact in the limit as the parameter & of the speeds of the slow versus the fast dynamics
tends to zero. When ¢ is small, approximations are obtained from reduced-order models
in separate time scales. Singular perturbation and time-scale techniques were introduced
to control engineering in the late 1960s and have since become common tools for the
modeling, analysis and design for control systems. Fruitful results can be found in survey

papers [16, 17] and book [18].

1.2.1 Order Reduction, Initial Value, and Boundary Value Problems

The standard singular perturbation model is in the explicit state space
representations in which the derivatives of some of the states are multiplied by a small
positive scalar ¢, that is,

= f(x,z¢,1), x(t,)=x",xeR", (1.1)

g=g(x,zz¢,t), z(to)zzo,zeR"’, (1.2)
where f and g are assumed to be sufficiently many times continuously differentiable
functions of their arguments x, z, £, t. The scalar &€ represents all the small parameters
to be neglected. When we set £ =0, the dimension of the state space of (1.1)-(1.2)
reduces from n+m to n because the differential equation (1.2) degenerates into the
algebraic or transcendental equation

0 = g(x,2,0,1) (1.3)
where the bar is used to indicate that the variables belong to a system with £ =0. If and
only if the equation (1.3) has £ > 1 distinct real roots

z=4.(X,1), i=12,...k (1.4)



the model (1.1)-(1.2) is in the space standard form. This assumption ensures that a well-
defined n-dimensional reduced model will correspond to each roots of (1.4). The reduced

model

¥ = f(X,1), X(t,)=x" (1.5)
is called a quasi-steady-state model, because z, whose velocity Z = g/& can be large
when ¢ is small, may rapidly converge to a root of (1.3), which is the quasi-steady-state
form of (1.2). By contrast with the original variable z, starting at ¢, from a prescribed z°,
there may be a large discrepancy between the initial value of the quasi-steady-state z

Z(ty) = P (X(t)s 1) (1.6)
and the prescribed initial condition z°. The approximation

z=2z(t) +O(¢) (1.7)
establishes that during an initial (“boundary layer”) interval [#,,,] the original variable z

approaches z and then, during [#,,7'], remains close to z .

1.2.2 Stability and Stabilizability

For a linear system with a control input u(¢f) € R" and an output y(¢) € R” ; namely,

B il S ) L
| |4y Ap|z] | B z(ty)| | 2°

y=lc ¢ H (1.9)
y4



the system (1.8) is controllable if there exists a control u(2) that transfer x(z), z(¢) from any
bounded initial state x(¢,), z(t,) to any bounded terminal state x(7"), z(T) in a finite
time T —t,. Similarly, the system (1.8)-(1.9) is observable if the initial state x(¢,), z(¢,)
can be determined from the measurement of the input u(#) and the output y(z) over the
period [¢,,7].

A necessary and sufficient condition [18] for the ith eigenvalue A, of the system

(1.8)-(1.9) to be controllable is

rank[ A1

" ndm

—A:Bl=n+m, (1.10)

and that for the ith eigenvalue A, of the system (1.8)-(1.9) to be observable is

ﬂ’i]n+m _A
rank c =n+m. (1.11)

1.2.3 Linear Feedback Control

To construct a state-feedback control for the singularly perturbed linear time-
invariant system (1.8)-(1.9), the system is approximately decomposed into a slow system

model and a fast system model as

x,()=A4,x,(t) + B,u (1), x, (t,)=x", (1.12)

&z ,(t) = Apz (1) + Byu (1), z,(t)=2" —z,(ty), (1.13)
where

As = An - Alz(Azz)_l 4, Bs = Bl _AIZ(AZZ)_] Bz . (1.14)

It is appropriate to consider the following decomposition of the feedback control where



u, =Kyx u,=K,z, (1.15)

are separately designed for the slow and fast systems (1.12) and (1.13). A composite

control for the full-order system (1.8)-(1.9) takes the realizable feedback form [18]:
u=Kyx+K,[z+ 4, (4, x+B,Kx)]|=Kx+K,z, (1.16)
where

K, =, +K,4,B,)K, + K, 4, 4, . (1.17)

1.2.4 Optimal Control

We apply the Hamiltonian condition to the problem of finding a control u(?) that

steers the state x, z of the singularly perturbed system
C X = f(x,z,t,8,u), xeR" ueR’ (1.18)
& =g(x,zt,,u), zeR" (1.19)
from x,,z, att=0to x,,z, at¢=I, thatis
x(0) = x,,2(0) = z,, x(1) = x;, z(1) = z, (1.20)
while minimizing the cost function
J:j;V(x,z,t,g,u)dt. (1.21)

This problem can be simplified by neglecting £ in two different ways. First, an
optimality condition can be formulated for the exact problem and simplified by setting
& =0. The result will be a reduced optimality condition. Second, by neglecting £ in the
system (1.18)-(1.19), the same type of optimality condition can be formulated for the

reduced system.



By using the Lagrangian, a necessary optimality condition for the exact problem
1s given as
N=V+p'(x-f)+q" (£-g), (1.22)
where p and g are the multipliers associated with x and z respectively.
The reduced problem is obtained by setting £ =0 in (1.18), (1.19) and (1.22), and

dropping the requirement that z(0) = z,, z(1) = z,; that is, the reduced problem is defined

as
x, = f(x,,z,,t,0,u), x,(0)=x,, (1.23)
0=g(x,,z,,t,0,u,), x,()=x,, (1.24)
J, = [ V(5,200 )dr (1.25)

The Lagrangian for the reduced problem (1.23)-(1.25) is

N, =V(x,,t,,t,0u)+p, [%, - f(x,,2,,t,0,u,)]

. (1.26)
-4, g(xs,zs,t,(),us)

The more common Hamiltonian form is obtained via the Hamiltonian function
NH=V+pr+ng. (1.27)

Let us apply the Hamiltonian condition to the problem

x=A,x+ A,z+ Bu,” x(0)=x,,x(1) = x, (1.28)
g=A,x+Apz+Bu, z(0)=z,,z(1)=z (1.29)
y=Cx+C,z (1.30)
J:%jo’(yTy+uTRu)dt,R>o (1.31)

Using the Hamiltonian

10



1
N, :EyTy+%uTRu+pT(Anx+Alzz+Blu)

(1.32)

+q" (Ayx+ Ay z + B,u)

one can obtain [18]
u=-R"'(B/ p+Blq), (1.33)
p=—Alp-4,9-C/Cx—C/C,z, (1.34)
& =-A,p—A,q—C,Cx—C,C,z. (1.35)

1.2.5 Nonlinear Systems

Consider a nonlinear autonomous singularly perturbed system

x=f(x,2), xeR" (1.36)
&g =g(x,z), zeR"; | (1.37)

which has an isolated equilibrium at the origin. Stability of the equilibrium of (1.36)-
(1.37) is investigated by examining the stability of the reduced (slow) system

x = f(x,h(x)) (1.38)
where z=h(x) is an isolated root of 0=g(x,z), and the stability of the boundary-layer (fast)
system

9 _ en@)),  n=z-h(x), =

= (1.39)

and in (1.39) x is treated as a fixed value. If x=0 is an asymptotically stable equilibrium

of the reduced system (1.38), 7=01is an asymptotically stable equilibrium of the

boundary-layer system (1.39). Furthermore, if f and g satisfy certain growth conditions,

11



then the origin is an asymptotically stable equilibrium of the singularly perturbed system
(1.36)-(1.37) [18].
For the nonlinear autonomous systems
x=f(x,z,u), xeR" (1.40)
&=g(x,z,u), zeR" (1.41)
where u is a control input, the composite control procedure is to choose u as the sum of
slow and fast controls
u=u, tu, (1.42)
where u, is a feedback function of x,
u, =I(x) (1.43)
and u, is a feedback function of x and z
u, =I,(x,2). . (1.44)
The fast feedback function I', (x,z) is designed to satisfy two crucial requirements.
First, when the feedback control (1.42) is applied to (1.40)-(1.41), the closed-loop system
should remain a standard singularly perturbed system. The second requirement is that
[, (x,z) be “inactive” for z = h(x,u,), i.e.
I (x, h(x, T (x)) = 0. (1.45)
Once I',(x) has been chosen, the boundary layer model of the closed-loop system is

defined as

% =g(x,z,I (x)+ uf) (1.46)

where x is treated as a fixed parameter.

12



Control applications of singular perturbation techniques are divided into three
groups:

The first group comprises the use of singular perturbation is new control problems.
One of these stresses the geometric aspect of two-time-scale systems and provides an
interpretation of the important concept of zero dynamics [19]. Multi-time-scale behavior
is also analyzed in high-gain observers, which are employed for stabilization of nonlinear
systems [20].

The second group encompasses extensions and refinements of earlier theoretical
concepts. More general singularly perturbed optimal control problems have been solved
with a broader definition of the reduced problem based on averaging [21, 22]. Analytical
tools for multi-time-scale analysis have also been advanced.

The third group includes diverse problem-specific applications. For example, to
examine control issues of a robot manipulator modeled witﬁ 1Airv1k structural flexibility, [23]
utilized a two time-scale approach by which asymptotic motion tracking can be
effectively achieved and the force regulation error can be made arbitrarily small. And [24]
adopted the hybrid position/force control for flexible link robot arm. A multi-time scale
fuzzy logic controller is applied whereby using this methodology the control of the force
and the position of the end point are possible while the end effector moves on the

constraint surface.

1.3 Contributions of the Thesis

In this thesis, an observer design method is developed for fault diagnosis for a

singularly perturbed system. The problem of Fault Detection and Isolation (FDI) has been
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treated through many approaches, but these approaches have not been applied to
singularly perturbed systems. Our goal is to design an integrated approach which enables
one to detect and isolate faults in singularly perturbed system.

The contributions of the thesis are listed as follows:
(1) High-order corrections of the slow and fast models of a singularly perturbed system
with inputs are developed by equating terms in like powers of ¢ .
(2) A full-order observer for the original singularly perturbed system is constructed based
on observers designed separately for the slow and fast models.
(3) The composite observer is designed for detecting high-order and isolating actuator
faults in the full-order system.
(4) The performance of the composite observer with that of the observer directly

designed for the original full-order system are compared.

1.4 Outline of the Thesis

In this thesis, to detect and isolate actuator faults in a singularly perturbed system,
based on a composite observer design frame work a geometric model-based approach is
used.

Chapter 2 reviews the literature approaches and techniques for of fault detection
and isolation in automatic processes using analytical and knowledge-based redundancy
and presents some recent results.

Chapter 3 studies model order reduction and considers full-order observer for a

class of singularly perturbed linear systems. The full order model is separated into slow
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and fast subsystems of high-order by equating terms in like powers of &. Conditions are
formulated for which a composite observer approximates the state reconstruction of the
original singularly perturbed system by utilizing a full-order observer. The composite
observer is synthesized from full-order observers that are designed according to slow and
fast for the two high-order subsystem models.

Chapter 4 applies a geometric model-based approach to isolate and detect the
actuator faults in a singularly perturbed system. Based on the results of Chapter 3, a
composite observer is used as a residual generator to diagnose the actuator faults in the
full-order system. The performance of a composite observer and the observer directly
designed for the full-order system are also compared.

Chapter 5 applies the preceding ideas to a two time-scale aircraft longitudinal
dynamics and a four degree of freedom gyroscope. Though both of these systems are two
time-scale, it is shown that the design of composite observer is not always necessafy due
to different observability and diagnosability of the systems. For each system, we compare
the simulation results with different values of & in order to evaluate the influence of &
on the performance of the FDI system.

Chapter 6 concludes with a discussion for the directions for future research.
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Chapter 2
Fault Diagnosis Using Analytical and
Knowledge-based Redundancy: A

Review

This chapter reviews the approaches for fault detection and isolation in automatic
processes using analytical and knowledge-based redundancy, and presents some recent
results. It outlines the principles and the most important model-based techniques for
residual generation using state estimation, parity space and parameter identification with
emphasis upon the latest attempts to achieve robustness. The structural equivalence
between the parity space approach and the observer-based approach is shown as a
nonlinear function. The theory of robust linear observer-based residual generation for
FDI is reviewed from a general point of view. The unknown input observer approach for
robust residual generation in uncertain linear systems is extended to a class of nonlinear

systems. Adaptive observer schemes are also reviewed. Finally, the knowledge-based
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residual generation techniques are outlined to overcome the difficulty associated with the

dependence of FDI on system models.

2.1 Principles of Model-based FDI

Model-based fault diagnosis can be defined as the detection, isolation and
characterization of faults in components of a system from the comparison of the system’s
available measurements, with a prior information represented by the system’s
mathematical model. The model-based approach can basically be described as a two step
process: generation of a residual that reflects the fault on the basis of a system model; and
then evaluation of the residuals with the aid of a decision-maker.

As already introduced in Chapter 1, there are three methods to generate residuals:
the observer-based method, the parity space method, and the parameter identification
method. A parity residual is generated by computing on-line the known part of model
equations. The major drawback of this approach is that the residuals are computed using
time derivatives of measured variables. An observer-based residual is a combination of
the estimation error on the outputs. The closed-loop structure makes there residual more
robust with respect to noise and perturbations than parity ones.

The close relationship between the parity space and the observer-based approach
has widely been developed in the linear case and some equivalence results are available.
Wuennberg and Frank [25] has generally proved that the residual generation in terms of
the parity space approach in the state space form is identical with a dead-beat observer. A

derivation of this issue from a different point of view was given by Patton and Chen [26].
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The comparison to a wider class of nonlinear MISO systems using high gain observers
was recently extended by Christophe and Cocquempot [27].

To show a nonlinear relationship between parity residuals and high gain observer-
based residuals, [27] considers dynamic MISO systems which are described by the

following continuous time affine nonlinear model:

Z:{56=J‘(?C)Jrg(X)u+/’f1(x,u,<0) @1

y = h(x) +k,(x,9)
where ¢ represents the fault vector, f(.) and k,(.) are smooth vector fields, 4(.) and
k,(.) are smooth functions.

System (2.1) is uniformly observable if and only if, the following application

h(x)

L h(x)

x—>z=¥Y(x)= (2.2)

Lf}"‘h(x)
where L & denote the Lie derivative of the scalar function 4, is a diffeomorphism which

transforms system (2.1) into the so-called Observable Canonical Form (OCF):

Z"OCF :

{Z' = Ax +T(2) + G(2u + k(z,u,0) 23)

y=Cz

where k(z,u,0) =0 and

0 1 0 0

0 0 :
A= ¢ r@=

0 0 0 7(2)
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g (z))

o| £

, Cc=[t 0o - 0]
8,(z1552,)
Consider the n successive time derivations of the output y
O = A (x, 7", 5™) 2.4)
The redundancy relations of the parity space method are input/output relations obtained

by eliminating the unknown state x in equation (2.2). Existence conditions of the relations

depend on the rank of the Jacobian matrix A, xu") Moreover, it has been shown that
Ox

for uniformly observable nonlinear systems, there exist as many redundancy relations as
outputs. This redundancy relation, which is generated using symbolic computation

algorithms, can be described as follows

w(y™,u",5")=0. (2.5)
Consider the Taylor expansion of w with respect to ¢

w(F" 7" My =w (37, 7Y —w, (7,7, 5™
with w, (3,2 ,0)=0. In the no fault case (9 =0), w, (3", #"”)=0. When a

()

fault occurs, it becomes different from 0. As a consequence, w, (3", ™") represents

the computational expression of a parity residual p, witch can be used for fault
detection. w, (y™,u""™",0) =0 is the evaluation expression of the residual p, .
The parity residual is

pp — WC (5}—()1), L—l(nvl)) — We (y(n) , L_l("_l) , a(n) ). (2.6)
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Now consider the observer-based approach. Under the hypothesis that ¥ and the
g/'s in eqi]ation (2.3) are global Lipschitz, an asymptotic high gain observer for system
(2.1) is defined by
L e o [PDT .
b= S0 +g@u- [a—ﬂ S2O)CT (h$) - y)

¥ =h(%)

@2.7)

with ¥ defined by equation (2.2) and where the gain matrix S_'(6) is the unique
solution of the algebraic Lyapunov equation:

a5, (0)+A"S_(0)+S ()A-C'C=0 (2.8)
where 4 and C are the canonical form representation of the linearized functions h, and 8

is a positive and sufficiently large design parameter. When there is no fault present, the

estimation error e = y — y converges asymptotically to zero. When a fault occurs, it
becomes different from zero. Consequently, e can be used as a residual for the fault
detection.

It was shown in [27] that the parity residual p, and the high gain observer-based

residual e are linked by a nonlinear differential equation which can be expressed in the

following general form

Py = —Woey (7,0, 6) 2.9)
where

Wopea (7,0, 8,0) o =0 (2.10)

Therefore, the two kinds of residual are linked by a nonlinear function which can be

calculated a priori.
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2.2 Robust Residual Generation in Linear Systems

The model-based FDI techniques have the advantage of making full use of the prior
quantitative information of the process dynamics. But due to modeling difficulties, there
is always a mismatch between the actual process and its mathematical model. Therefore,
to design a robust FDI system in the sense that the FDI function can be insensitive to
unknown inputs such as disturbances, and noise on the working system and model
uncertainties, is a key challenge in model-based FDI approaches. The robust residual
generation problem can be stated as follows [15]: for fault detection, the fault effect on
the residual must be distinguishable from the effect of the unknown inputs; for fault
isolation, the effects of the faults must, in addition, be distinguishable from each other.

To investigate a systematic and straightforward fault estimation scheme for robust
process FDI, Park and Lee [28] developed the basic idea of using a special co-ordinate
transformation in the observer design for a linear system with both faults and unknown
inputs present.

Assume that the system considered can be expressed by:

X =Ax+ Bu+ Dd + Ff

2.11
y=Cx 2.11)

where x is the state vector, u is the input vector, d is the unknown input vector, f'is the

process fault vector, and y is the output vector. Under the assumption that rank(D) =1
and rank(F) = q, one important consideration is to choose a nonsingular matrix:

T=[N D F] NepRr»®*"o (2.12)
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for a co-ordinate transformation of the original full-order system (2.11), where N is an
arbitrary matrix such that 7 is nonsingular. The given system (2.11) can be partitioned

into the following form:

¥ =AX+Bu+Dd+Ff

- (2.13)
y=Cx
where
% i, 4, 4y
x=Tx=T\%,| ,A=T"AT =\ 4,, 4, A4, |,
53 A31 A32 A33
B, 0 0
B=T"'B=|B,|\D=T"'D=|I,|,F=T"F=|0|,. (2.14)
B, 0 I,

In (2.13), the differential equations corresponding to the state subvectors x, and Xx,, are
directly influenced by the unknown input d and the fault £, respectively. Let us choose a
nonsingular matrix U with the assumption that rank(CD) =1 and rank(CF) = q , that is
u=[cb cF Q] Qerrtv (2.15)
where
vl=lu, u, uJ (2.16)
We now obtain

X, = 4%, +§1u +Ey @.17)

y=Cx

where
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Z1 =4, _leUlCN_leUzCN’

E, :leUl +213U27 (2.18)
C, =U,CN,

y=U,y

Under the assumption that the pair (Zl, 51) is observable or detectable, an observer can
be constructed for the unknown input and fault-free system as:

w= (4 ~LC)w+Bu+Ly+E,y. (2.19)
The estimation error dynamics for the state x;, from (2.17) and (2.19) becomes

é: =(4 —LC)e; . (2.20)

The state of the original system (2.10) can be estimated as:

1 w
$=T8=T|Xx, |=T| Uy -UCNw|. (2.20)
X, U,y -U,CNw

From the observer (2.19) and (2.21), the estimate of the unknown input d may be

evaluated according to

~

d=%-[4, 4, 4,F-Bu 2.21)
and the unknown input estimation error is found to be

e, =U,CNe; + (4, = A,U,CN - 4,,U,CN)e, (2.22)
Similarly, an estimate of the fault f'is:

Y

f=§3—[231 A :‘1‘33%_@“ (2.23)

and the fault estimation error is given by

e, =U,CNe; + (4, = A,U,CN — 4,U,CN)e; . (2.24)
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In conclusion, the use of the proposed transformation significantly reduces the order
of the resulting observer. The observer information, the state estimate of the unknown
input and fault-free system, will be used to reconstruct the shape and magnitude of the
fault for the FDI purpose and also to estimate the unknown input. The fault estimates are
the basis of FDI. They will also be used to construct an additional control inputs for fault
tolerant control with which the original control objective can be achieved without

considerable loss of control performance in the face of the actuator faults and failures.

2.3 Adaptive Residual Generation in Linear Systems

One of the major benefits of the unknown input observer-based methodology is that
substantial robustness to model uncertainties can be achieved. But there is some
- weakness in detecting slowly developing faults, especially when large model
uncertainties exist. To overcome this difficulty, adaptive observers may be used. In the
context of FDI, an adaptive observer is a dynamic system that estimates output and
slowly varying parameters at the same time. This means that besides abrupt faults, slowly
developing faults as well as slow parameter variations can be estimated on-line. This will
enhance the robustness of the residual generator.

An approach to identify the faults in actuators and sensors by the use of an adaptive
observer has been presented in [29]. The approach provides the amplitude of faults and
can be used for a system with uncertainty that cannot be decoupled from faults or
residuals. In [30], Zhang proposed a new approach to design of globally exponential

adaptive observers for joint state-parameter estimation in linear time-varying (LTV)
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multiple-input-multiple-output (MIMO) systems, and provided some robustness analysis
of the adaptive observers in the presence of modeling and measurement noises.
For a LTI MIMO system of the form
x(t) = A(t)x(¢) + B(t)u(t) + P(1)6 (2.25a)
y(@)=C(t)x(¢t) (2.25b)
where x(t) € R",u(t) e R',y(t) e R™ are the state, input, and output of the system
respectively, A(t), B(t), C(t) are known time-varying matrices of appropriate dimensions,
6 € R” is an unknown parameter vector assumed to be constant, P(¢)e R" xR” is a

matrix of known signals. Let us rewrite (2.25a) as
x(t) =[4A@)-K@®)CH)x(t)+ B@Out)+ K@)y(t) + Y ()0 (2.26)
with a feedback matrix K(#). Partition x(¢) into x(¢) = x, (£) + x,(f) with
x,@)=[A40)-K@®)C(®)Ix, @)+ B@Out)+ K@) y(t) (2.27)
%, (1) =[A(t) - K(O)C(1)]x, () + W ()0 (2.28)
The observers to estimate x, (¢) and x,(f) are now given by
%) =[A()-K OC(OIx, (1) + B(u(t) + K@) y(1) (2.29)
fcg @) =[A@) - K@)C(@#))x, () + ‘I’(t)é(t) + a(t) (2.30)
According to (2.29) and (2.30), (¢) satisfies

)é(t) =[A(t) - K(t)C())x(t) + B(t)u(t) + K(t)y(t) + ‘I’(t)é(t) + 7(t)é(t) (2.31)

where

o(t) = 700 . (2.32)

25



Under the assumption that there exists a bounded time-varying matrix
K(t)e R" x R™ so the system
n(t) =[4@) - KOO () (2.33)
is exponentially stable, and the assumption that y(¢) € R” x R” is a matrix of signals
generated by the ordinary differential equation (ODE) system
7(@) =[4(@) - KOOIy + ¥ () (2.34)
Let I' e R” x R be any symmetric positive-definite matrix and %(f) € R™ x R" be some
bounded symmetric positive-definite matrix., the ODE system

2(t) = A(DZE(@) + B(Ou(t) + ¥ (H)0()

(2.352)
+[K@)+yOTy" ()CT ()Z(@0)]-[y() - C()Z()]

8(5) =T7" (OCT OEOIY() - CORD) (2.35b)
is a global exponen'tia'lll adaptive observer for system (2.25), i.e., for any initial conditions
x(t,), 2(¢,),0(t,) and VOe R’ , the errors %(f)—x(t) and O(t)—6(t) tend to zero
exponentially fast when ¢t — o [30].

The proposed approach is applicable to MIMO linear time-varying systems. In
addition to its generality, it is conceptually simple and computationally efficient. The
robustness of the proposed adaptive observer and its convergence in the presence of

noises have also been established [30].

2.4 Robust Residual Generation in Nonlinear Systems

In the following, we discuss observer-based methods for nonlinear residual

generation which are employed if the system to be supervised cannot be represented with
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sufficient accuracy by a fixed model. If the nonlinear process under consideration does
not operate at a constant operating point but is subject to transients covering a wide range
of working conditions, a linearization about a single operating point and the subsequent
application of linear observer-based methods can cause false alarms due to model-plant
mismatches. Moreover, using linear models in such cases makes the FDI system useless,
because it provides a wrong fault isolation as soon as the system deviates from the
operating point, owing to the occurrence of a fault. In order to avoid these limitations and
difficulties nonlinear models must be used.

The idea of the linear unknown input fault detection observer which has been
discussed earlier for linear systems can readily be extended to a certain class of nonlinear

systems [15]. This class is descried by

x=Ax+B(y,u)+Ed, +K, [,

, (2.36)
y=Cx+E,d,+K,f,

where d, and d, represent unknown inputs and the terms f, and f, are faults. The
drawback of the extension of the linear FDI theory to nonlinear systems in [15] is the fact
that the class of systems described by models matching (2.36) is rather small.

In [31], the system model is transformed into

X=Ax+Bu+ Ed + f(x,u)
(2.37)
y=Cx
where f(x,u) € R" is a nonlinear function of the states and inputs. In [31], the unknown

inputs observer approach consists of two stages: in the first stage a change of coordinates
is obtained that decouples the nonlinear system into two systems, one is independent of

the unknown inputs, another is a linear combination of the outputs and the states of the
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first subsystem; and in the second stage, a nonlinear observer is designed for the former.

With the matrices given as
T," =ker(E") e R™"P
T,” =ker((CE)") e R™P
the following undisturbed model exists
% = ;b?] +A4,Cry+Bu+T, f(x,u)

x, = é;(y—élfcx)

where

(E)" = (ETE)—I ET

An estimator is designed as

t=Az+ A,Cly+Bu+T,f(X,u)+S(O)CT(H-Cz)

where

ATSO)+SO)A-C"C+650) =0.
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The residual is then generated as

r=Cz—yp (2.45)
This proposed approach generalizes the early results of the unknown input approach to a

class of nonlinear systems.

2.5 Adaptive Residual Generation in Nonlinear Systems

As explained in Section 2.3, adaptive observers can be used in uncertain dynamic
systems. A robust nonlinear fault diagnosis scheme developed in [32] described an
algorithm for a class of nonlinear dynamic systems with modeling uncertainties when not
all states of the system are measurable. The main idea behind this approach is to monitor
the plant for any off-nominal system behavior due to fault utilizing a nonlinear
approximator with adjustable parameters. The online approximator only uses the system
input and output measurements. A nonlinear estimator model and learning algorithm are
described so that the online approximator provides an estimate of the fault.

Consider a single output dynamic system described by the differential equation

x=E(x)+ p(x,u) +n(x,u,t)+ p=T) f(x,u) (2.46a)
y = h(x) (2.46b)
where x € R" is the state of the system, u € R™ is the input of the system, y € R is the
measurable output of the system, T denotes the unknown fault occurrence time. &, p, f, 7
are smooth vector fields and % is a smooth function, with 7 representing the modeling
uncertainty, f characterizing the change in the system due to a failure, and f is a function

representing the time profile of faults. The system
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Xy =5 (xy)+ plxy,u) (2.47a)

Yy =h(xy) (2.47b)
represents the known nominal model dynamics. Based on certain assumption [32],
system (2.46) can be transformed using a known local diffeomorphism z =y (x) into a
new coordinate system as

z=Az+a(y,u)+@(z,u,t) + Bt —T)¢(y,u)," z(0)=z° (2.48a)

y=Cz (2.48b)

where ¢ represents the unknown fault vector field in the new coordinate system given by
¢ = (6 %x) f, and ¢ represents the modeling uncertainties in the new coordinate

system, given by

_ oy ()
¢(z,u,t) - Tﬂ(xauat) lx:y/—l(z) .

Based on system representation (2.48), the nonlinear estimation is chosen as

E=(A-KC)2 +a(y,u)+ Ky +4(,u,0)+Qb,  5(0)=2° (2.49)

A

where K is a design constant vector chosen such that 4, :=4-KC is Hurwitz, ¢

represents an online approximation model and 6 represents the adjustable parameters of

the online approximator. The nx ¢ matrix Q is computed as the solution of the filter
Q=4,Q+Z(y,u,6), Q0)=0 (2.50)

where Z is the gradient of the online approximator with respect to its adjustable

parameter, i.e.

Z:M

2.51
Y (2.51)
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Based on the estimation model (2.49) and the filter (2.50), the following parameter

adaptive law is considered:
6=PQ"C"Dle,l}, 6(0)=6, (2.52)
where I'=T"7 is a positive definite learning rate matrix and e, =y—CzZ is the output

estimation error. The dead-zone operator DJ[-] is defined as

. 0, ’e y‘ <g

He, 1 { y  otherwise (239
In [33], Zhang presents a robust fault diagnosis scheme for abrupt and incipient

faults in nonlinear uncertain dynamics. A detection and approximation estimator is used

for online health monitoring. Once a fault is detected, a bank of isolation estimators are

activated for the purpose of fault isolation. A key design issue of the scheme is the

adaptive residual threshold associated with each isolation estimator. The following N

nonlinear adaptive estimators are used as isolation estimators:

=AY -x)+ f(xu)+¢° (x,u,0%)

7s As AsNT _s As\T _s T (254)
¢ (x,u,0 ):[(91) 8 (X,U),"’,(en) gn(x,u)]
where éis,i =1,....,n,5 =1,....., N, is the estimate of the fault parameter vector in the ith

state variable and H® =diag(4;,---,4)), where — 4] <0 is a constant that represents the

estimator pole locations.
Each isolation estimator corresponds to one of the possible types of nonlinear faults

belonging to the fault class. The adaptation in the isolation estimators arises due to the

unknown parameter vector 6. The adaptive law for updating each éf is derived by

using the Lyapunov synthesis approach, with the projection operator restricting éf to the
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corresponding known set ®; . Specifically, if we let €] =x, — %] be the ith component of

the state estimation error vector of the sth estimatior, then the learning algorithm is

chosen as
6; =P g} (xu) €]}, (2.55)
The fault isolation and decision scheme: if, for each r € {l,..., N}\ {s}, there exist some

finite time ¢" > 7, and some i € {l,...,n} such that |e] (¢"){> 4/ (t"), then the occurrence

of the fault s is deduced. The absolute fault isolation time is defined as

TS

isol

=max{t",r €{l,..,N}\{s}}.

2.6 Knowledge-based Residual Generation in Dynamic

Systems

Design of model-based FDI scheme depends heavily on system model. Generally
speaking, it is rather difficult to design model-based FDI for nonlinear or uncertain
systems. To tackle this problem, knowledge-based methods have been proposed and
studied. Without the need for a complete analytical model, these methods rely on data-
driven and knowledge-based techniques to estimate the system dynamics. Some of the
knowledge-based methods also use certain “models” built by neural networks, fuzzy
systems, or expert systems, for mapping the inputs and outputs of the unknown system.
Residual signals are then generated to detect and locate the faults in a similar fashion as
model-based methods.

Zhao in [34] developed a real-time FDI scheme by integrating the signal processing

technique with neural network design. Wavelet analysis is applied to capture the fault-
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induced transients of the measured signals in real-time and the decomposed signals are
pre-processed to extract details about a fault. A regional self-organizing feature map (R-
SOM) neural network is synthesized to classify the fault types. The system structure is
clearly depicted in the Fig. 2-1, which also demonstrates the design and operation process.
The FDI system can be divided into the offline learning and the online recognition
procedures. The R-SOM neural network is trained offline with the normal conditions and
all pre-assumed faults. In the online recognition process, the neural network matched the

online features to the known patterns in the knowledge base.

Tested faults Faults / noise / disturbance
Inputs , Outputs Inputs Outputs
—pi  System " . ! System [—>
-~  Signal progcessing i
"l (wavelet analysis)  [*
Feature extraction
(statistical analysis)
T
¥ L
RSOM Knowledge RSOM
Training » Baseﬁ »| Classification |— ;
: Fault decision
On-lme process i Off-lme process

Figure 2-1 System Structure of a regional self-organizing scheme [34]
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Figure 2-2 Sliding data window [34]
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Figure 2-3 Two neighbor regions [34]

In order to achieve the online and real-time fault detection, it needs signal analysis

tools that are sensitive to the transient phenomena of the system. For this reason, the
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wavelet analysis method and the sliding window techniques are applied to detect signal

variations including possible fault-induced transients. The wavelet transform is

Wf (u,s) = % [ f(t)‘{’*(t - u)dt (2.56)

s
A sliding data window shown in Fig. 2-2 is used for online and real processing. The data

window contains two overlapped sub-windows of same length /,, labeled as past and

current sub-windows, S, and S, :

S, =fk=1), ftk=1,=1),, flk=1, =1, +1)] (2.57)

while
Se =[fR), flk =)+, f(k =1, +1)]. (2.58)
The self-organizing neural network, a type of Kohonen network [34], has the
capability of learning and adaptation without supervision. Fig. 2-3 shows the two
neighbor reigons around the winning neuron in the 2-D array, i.e., the strong neighbor

region and the weak neighbor region. The weights in the strong neighbor region R, and

the weak neighbor region R are adjusted separately as follows:
wi(t + ) =wi () +nOla, —wi )], i jeR, (2.59)

wy (t +1) = wi () + u(On@Ola, —w; (0], i,jeR, (2.60)
The learning rate 7(¢) is chosen as an exponential function that declines quickly at the

beginning and the slowly converge to zero

H

() =me 7. (2.61)
The R-SOM network has two learning processes: 1) quick rough learning (by the neurons

in the strong neighbor region) to capture the major properties of the input model and 2)
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the slow fine-tuning (by the neurons in the weak neighbor region) to reveal the minor
details of input feature. The exponential rate affects the speed of these two processes.
Most of the design techniques for knowledge-based FDI scheme are application
specific, the effort to design a general knowledge-based FDI scheme has been made in
[34]. A fuzzy-neural network with a general parameter (GP) learning algorithm and
heuristic model structure determination is also proposed in [35] by taking advantage of

fuzzy systems and neural networks.

2.7 Conclusion

To detect and isolate faults in a dynamic system by using analytical model, a
declarative or residual signal must be generated, which is derived from a combination of
real measurements and estimates (generated by the model). The robustness problem can
be tackled by defining independent sensitivities of the residual to uncertainties and faults.
A robust FDI scheme is one whose residual is insensitive to uncertainties whilst sensitive
to faults. The aim of robust design for a FDI scheme is to reduce the effects of
uncertainties on the residual, and (or) to enhance the effects of faults acting on the
residuals. A primary requirement of residuals for successful diagnosis is the robustness
with respect to modeling uncertainty. In this thesis, we will discuss the fault diagnosis for

a class of two time-scaled systems with actuator faults.
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Chapter 3

Model Order Reduction and

Composite Observer

In this chapter, we will develop high-order reduced subsystem models for a

linear two time-scale system governed by

X, = A%, + A x, + B, x, €R” 3.1
&, = Ay x; + Apx, + B,u, X, €R",ueR,e>0 3.2)
y=Cx +Cyx, 3.3)

and discuss how to design a composite observer for the original full-order system
based on the reduced order observers for the subsystems. This chapter also serves as
the preparation for the next chapter, which is about fault diagnosis for the system

(3.1)-(3.3) using a geometric approach based on the system model and observers.

3.1 Preliminaries

The singular perturbation model of a finite-dimensional dynamic system has

been extensively studied in the mathematical literature, and was used in control and
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systems theory. This model is in the explicit state-space representation form in which

the derivative of some of the states are multiplied by a small scalar ¢, that is
X, = f(x,x,,u,t,8) (34
&x, = g(x,,x,,u,t,€) 3.5)
where € >0 and x, x, and u are n, m and » dimensional vectors, respectively.
As functions of time, the solutions x,(z,£), x,(¢,€) of the system (3.4)-(3.5)
consist of a fast boundary layer and a slow quasi-steady-state. The layer is significant

only in x,(¢,&), while x,(¢,&) is predominantly slow since its layer is not larger than
O(¢). In the (n+m)-dimensional state space of x, and x,, an n-dimensional manifold
M, which depends on the scalar parameter £ can be defined by the expression

M, x, =¢(x,u,8). (3.6)

M, is an invariant manifold of (3.4)-(3.5) if when it holds for ¢ =1’

x,(t7,8)=d(x,(£,£),6) = x,(t,&) = p(x,(¢, £),€) Vet (3.7)
An approximation to ¢(x,,u,€) can be obtained by expanding ¢(x,,u,€), f, g in a
power series about £ =0 [18],

P(x,,u, &) = g, (x,,u) + &d (x;,u) +-- (3.8)

The uncorrected slow manifold at & = 0 is defined as

M, x, =¢,(x,,u). 3.9
The deviation of the exact fast variables from this manifold is defined by

xj),=x2—¢0(x,,u). (3.10)

By defining the fast time scale as
T=— (3.11)
the uncorrected slow and fast systems are obtained as [18]
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dx
7; = f(xl7¢0 +x3’7u,0)

! 0
E:g(xp@) +xf,u,0)

The first-order-corrected manifold at £ = 0 is defined as
M, x, =@y (x,u) +&p (x,u).
The deviation of the exact fast variables from this manifold is defined by
xlf =X, — @, (x,,u) —&6,(x,,u).

and the first-order-corrected slow and fast subsystems are obtained as

dx

T;Zf(xl,¢0 +8¢1 +xlf=u’0)
dx} .

; = g(x1,¢0 +g¢1 +xf7u70)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

Higher order corrections, £d,(x,,u),etc. are manifold defined likewise. At the

n-th stage one obtains an O(g") approximation closer to the exact manifold M _ as

compared to uncorrected manifold.

3.2 Uncorrected Slow and Fast Models

In this and next sections, we develop slow and fast models for a class of

singularly perturbed systems. It is shown in these two sections that the derivative of

the inputs plays an important role in high-order slow and fast models. This leads to

reduced order models of the original full-order system which may prove more useful

for control system design than either the full-order model or the uncorrected models.

We consider a linear singularly perturbed system
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X, =A%, + 4,%x, + Bu, x, €R" (3.18)
&x, = A, x, + Apx, + B,u, X, €R",ueR,e>0 (3.19)
y=Cx +C,x, (3.20)
where

Jf(x,x,,u,t,8) = A x, + A,x, + Bu,
g(x,x,,u,t,&) = 4y x, + Ay, x, + Byu .
At £ =0 and setting u =u, +u, with u (¢ =0)=0, we obtain
Ay x, + Ayydy + Byu, =0
=@, =—(4,,)" (4,,x, + B,u,) (3.21)
Therefore, using 77 + ¢, = x, or x; =x, — ¢, we get
X = f(x,9, +x2,u)
= Ay x, + A, (9 +17) + B (u, +u,)
= A% — A, (Ay) " (Ayx, + Byu,) + Bu, + Alzxg +Bu,
=[d,, — A, (Ay) " 4y 1x, +[B, — 4, (Ay) "' By Ju, + A,x} + Bu, (3.22)

which is represented as

% = A’x, + Blu_ + Alzxg +Bu, (3.23)

where
Aso =4, -4, (Azz)_l 4, Bso =B, -4, (Azz)_le >
And for the fast dynamics
-0 _ 0
ex, =g(x, @ +x,,u)
=A,x + Azz(xf; +¢,)+ B, (u, +uf)

0
= A4,,x, +A22xf — A, x, —B,u, + B,u, +Bzuf
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= Ay,x; +Byu, (3.24)
which is re-written as
0
dx ;o

"d7 = A22x; + Bzuf (325)

In order to eliminate x in (3.22), express x} in terms of&x} , use (3.24) and substitute
it into (3.22)
X, — Alzxg -Bu,= A’x, + Blu,
= X, — A, Ay X — (B, — A, A5 By)u, = A)x, + Blu,
= X, — 8A12A2—215c2 - Bfuf = A’x, + Blu, . (3.26)
A new variable is now defined as
x) = x, — ey, A3 %) — B [u dt (3.27)
then
%) = A () + e A} x) + BY [u di) + Blu,, (6 =0,u, =0)
(3.28)
For the output definition of the system, we define slow and fast outputs
according to
yf =Y,= Cle +C,4, =(C, — CZAZ'Z'AZ,)xf - C2A2"2'B2us (3.29)
y;=y=y;
=Cx)+C,(n+¢,)—(C, - C, 45 4,)x? — C, 45, Bu,
=C,n (3.30)
Therefore, the uncorrected slow subsystem is governed by
%) =A%) + Blu, (3.31)

¥ =C%x? +Dlu, (3.32)
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where
-1 —1
Aso = Au *A12A22 Azn Bso = Bl _A12A22 Bz s
C? =C, _CzAz_zlAzn Dso = ‘CzAz_lez-

And the uncorrected fast subsystem is governed by

dxg 0
':i“;' = Azzxf + Bzuf (333)
yj’, = szg. (3.34)

3.3 High-order Slow and Fast Models

In order to obtain models that are closer to the full-order system, for the

singularly perturbed system (3.18)-(3.20), at £> = 0, we obtain higher-order slow and

fast subsystems.

¢l(xl,u)=[a—g) (%ﬂxl,%n%m]
V=t u

Ox, . Ox,

=—A,[ 4, (4%, + A,¢, + Bu))+ B,u,]
= —A5 [ Ay (A, — Ay Ay Ay))x, + Ay (B, ~ A, Ay By Ju, + Byii, ] (3.35)
Therefore, the dynamics associated with x, become
x, = f(x,,8, + £, +x},u)
= A x, + A, (fy + 6 +x,)+ B (u, +u,)

= A4,\x, — A, 435 (A x, + Byu )+ B, + Allef — e, Ay (Ay Alx, + 4y Blu, + Byu) + Byu,
= Ay x, + A,(8, + &6, +xlf)+Bl(us +u,) (3.36)

which 1s re-written as

%, = Ax, + Bju, — &4, A; Bu + A,x, + Bu, (3.37)
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where
As] = Af —&4]2A2_22A21Af, le‘ :Bso ‘“EAlez_zzAle:O'

For the fast variable x, we now obtain

3
Ox

sxlf =g(xl,¢0+£¢1+xlf)—a( f(xl,¢o+x'f)+gﬂzlsJ (3.38)
u

=A,x, + A,,(d, + €8, + xlf) +B,(u, + uf) - g{—Az"z'AZl[AuxI +
A, (g + xlf) +B/(u, +u;l- A;Z'Bzus}
= Bzuf - &4;; (A,L,,Asox1 + AZIBsOuS +B,u )+ Azlef +
EAZ_ZI (A2,Asox, + AZIBSOuS + A21A12x} +Byu, + A2lB1uf)
= (A, +&dy, Ay A,)x, + (B, +84;) 4, B)u,
which is re-written as
8)'clf = Alfx} + le,uf (3.39)
where
Ay = Ay, + Ay, Ay A, B, = B, + €4, A, B, .
Let us now define a new variable as
X =x - &412A2"21x1f - ngslAlez_zlef (3.40)
This implies that its dynamics is governed by
X, =Al(x) + e’ A A, Ay X, ) + Biu, — &4, Ay Bt
= Alx} + Blu, — 4,4, B,u, (?=0) (3.41)
The corrected slow output of the system is now given by

yi=y

£2=0

=Cx! +C,(4, +&4,)
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=[(C, - C2A2—21A21) - 8C2A2"22A21ASO ]x; -

(3.42)
(CzAz_lez +8C2A2_22A213s0)us “SCzAz_zszus

and the corrected fast output of the system is given by
Yi=y=¥,
=Cx, +C,(§, + ¢, + xp)=[(C, - C, Ay, 4,)) - €C, A5 A, A] Ix,
+(C, 45, B, + 6C, 4,; 4, B Yu, + eC, A, B,ui,
=C,x, (3.43)

To summarize, the 1¥-order corrected slow and fast subsystems are governed by

X, = A;x, +Byu, (3.44)

y, =Clx, + Dlu, —eC,A;} B, (3.45)
where

Ay = A —eA, A7 4, 4], B, = B) — a4, 47, 4, B,

Cl=C)—eC 4,74, A°, D! =D° —eC,4;?4,,B,
and

B g Bl (3.46)

dr ff frf

)y =Cpx, G47
where

Ay = 4,, + ed;} A4, Ay, B} = B, + €4, 4,,B,, C,=C,+¢C).

This process can be continued to define even higher order corrections, e.g. up to

o(¢*) we compute £°¢,(x,u) as
¢, = (4 )_1¢1

=—{(4,, )_I ]3(A21x1 + B,ii,)
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= "[(Azz)—1 ]3[A21 (A]l - A12A2_21A21)5C + A21 (BI - Alez_lez )ds + Bziis] (3-48)

At the nth stage, we obtain

g, = A2—2]¢.n—l .

(3.49)

3.4 Composite Observer Based on Uncorrected Models

A composite observer is first designed by J.O’Reilly [36] for the original full-

order system (3.18)-(3.20) based on the observers for the uncorrected slow and fast

models (3.31)-(3.34). This composite observer, which is the application of singular

perturbation methods in control theory and control system design, is used to

reconstruct the states of the original system through observer design in separate time-

scales corresponding to decoupled subsystems.

For the original full-order system (3.18)-(3.20), a full-order observer is given by

£=(4-GC)%+Gy+Bu,

where

where
4,=4,-6C,, A4,=4,-G6C,, 4, =4,-G,C,
The state error vector is defined by

e=x—x

45

(3.50)

(3.51)
[c. ¢l

(3.52)
12122 =4, - G,C,.

(3.53)



which satisfies the dynamical system

é=(4-GC)e (3.54)

[é' ]:[A“ 4 [e‘] (3.55)
géZ A21 Azz €

The original full-order system is separated into uncorrected slow and fast

that is

subsystems. And a full-order observer for the uncorrected slow subsystem (3.31)-
(3.32) is given as
% =(4] = GJCHA! + Gy, +(B! - GD} ), (3.56)

where the state reconstruction error is defined by

el =30 —x? (3.57)
which satisfies
éf = (AS0 —Gfo)ef. C (3.58)

Similarly, a full-order observer for the uncorrected fast subsystem (3.33)-(3.34) is
given by

29(1) = (4y, — GIC,)R0 (1) + GO y% (1) + Byu, (1) (3.59)
where the state reconstruction error is defined by

e? (r)= J%?, (r)— x? (7) (3.60)
and which satisfies

€1(r) = (4, — GC,)eN (). (3.61)

According to [36], when the composite observer (3.50)~(3.51) is applied to the

original system (3.18)-(3.20) with the observer gains selected as

G, = 4,4, G} +G) (I, - C,43G)), (3.62)
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G, =G, (3.63)
this composite observer is uniformly stable for any £e(0,& 1, >0 (with &

selected to guarantee closed-loop stability of the full-order system) if 47 -G?C?

and Aﬁ —G?Cf0 are uniformly stable. Then for any positive ¢ sufficiently small, the

state reconstruction errors satisfy
e =e’ +0(¢) (3.64)

e, =—(4,, - G2C2)"(A21 - G2Cl)e;) +e,(7)+0(g). (3.65)

3.5 Composite Observer Based on First-order Corrected

Models

On the condition that the original full-order system is observable, the
observability of the slow and fast subsystems fnay vary due to different model orders.
If either the slow or fast uncorrected subsystem is not observable, it is necessary to
consider the observability of higher-order models. Therefore, based on the work of
[36], we present the procedures to design a composite observer with the first-order
corrected slow and fast subsystem models.

A full-order observer for the 1¥-order corrected slow subsystem (3.44)-(3.45)
X =Alx! +Blu,
¥, =Cox, + Dy, ~£C, A B,
where

Asl = A;) _&412A2_2A21As0’ Cs] = Cso —{-,‘CZAZ_ZZAZ]A;),

2

le = Bso - &412A;22Aleso’ Dsl = Dso - €C2A2_22A2|Bs0 ‘

is given by
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i =(4) - GIC)Z, + Gy, +(B) - GID))u, ~ £(4,4,:B, -G\C, 4;; B,)ii,  (3.66)
1 =C!2 +Dlu, —eC, 47} B,ui, (3.67)

where G! is the gain matrix for the observer. The state error estimation is defined by

¢ =5 —! (3.68)
that satisfies

¢ = (4, ~G,Cy)e; (3.69)
where

A -GICl =(4) -GiCY - (A4, - G\C,)4;; 4, A (3.70)

Similarly, for the 1¥-order corrected fast subsystem (3.46)-(3.47)

dx!
—df = A}x} + Blu,
T

1 1l
y;y=Cpx,

where
Ay = Ay, +€d;, Ay 4,,, B, =B, +ed,4,B,, C;=C,+eC)],
a full-order observer is given by
()= (4} -G,CHE + Gy, + Blu,, (3.71)

yr(@)=C %}, (3.72)

where G} is the gain matrix for the observer. The state error estimation is defined by

e, (t) =R, (1) —x, (), (3.73)
that satisfies

delf' 1 1~y |

d—'r = (Af - Gfo)ef, (3.74)

where

48



A ~GCy =(A; —G,Cy)+ (A5 Ay Ay, —G,C) Ay Ay). (3.75)

Theorem 3.1
If A —G.C! and AJI, ——GJ',CJ‘f are uniformly stable, the observer (3.50)-(3.51),

(3.66)-(3.67) and (3.71)-(3.72) applied to systems (3.18)-(3.20), (3.44)-(3.45) and
(3.46)~(3.47) respectively, where the observer gains are selected as

G, = 4,4;,G; +G, (I, - C,45,G}), (3.76)

G, =G, (3.77)
will guarantee that for £ €(0,£"],¢" >0 (with & selected to guarantee closed-loop
stability of the full-order system), the estimation error of the original system (3.18)-

(3.20) up to O(&?) satisfies the equations

e, = el +&[M + Hye, (D)] +o(g?), (3.78)
e, =[-Lye, +e, (W AN-L Hye, (1) -LM—-Lie)+ole®),  (3.79)

with the matrices L and H defined in (3.87)-(3.89), and M and N matrices defined in
(3.111)-(3.112).
Proof:

In order to completely separate the slow and fast states of the observer (3.50), a

coordinate transformation is applied as

(L e )% (3.80)
-£2 _LA Im "8LAI:I -)’ef

al_(L, e |E (3.81)
e2 _[A/ Im_gle:l Ef

and
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To transform [¢, ¢,]" into new variables [Es E, ]T, with matrices 7 and H to be
defined subsequently, a complete separation into slow and fast modes is facilitated as:
E| |1 i || A I, eH E,
E N |-i 1, -di| % o) _; 1 _48|E,
- e ¢

a, - glil&!)/],1 ~ A4, (I, - gﬁi)ﬁzz [ 7 o ]{ E }

| i+t La,+2 | i 1 —edR|E,
_ & &
_|UdL.A.e) s, | E (3.82)
| R(L7 8) V(L’Ha 8) Ef
where
U(L,H,e)=, —eLH)A, - HA, — (I, — L) A,, L (3.83)

R(L,e TR LN N Y i (3.84)
11 12

& &

ﬁ(lazz + 51;2112) +£

S(H,&)= (4, - A,L)H - (3.85)

A A A ~ A A A A A A A

V(L,H,e)= A, H + LA, — A,,LH - LA H — eLA ,LH + 2 (3.86)

for any £e(0,6'],6 >0 . The matrices L(g) and H(e) satisfy the following

algebraic equations by completely decoupling £, and £, dynamics by setting

R(L,e)=0= A, — A,,L + LA, — eLA,L =0 (3.87)
S(H,s)=0=>&(A,, — A,L)H — H(A,, +eLA,) + A, =0 (3.88)

By neglecting terms of O(g) in (3.87) and (3.88)
io = ;1;2';121 =(4y -G, Cz)_] (4, -G, () (3.89)

H, = 4,45 =(4,, - G,C,)(4,, - G,C,)™", (3.90)

and the uncorrected model of (3.82) is
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0 ’ PR 0
IZE: } _ [Au - A12A221A21 0 :”:Es }
=0 | T ~ 0
Ef 0 Azz Ef

— (An - GICI) - (AIZ - GICZ )(Azz - Gzcz)_l(An - GZCI) 0 Eso
0 Azz - Gzcz Ejg
(3.91)
Using the identity

I =(4,~-G,C,) " (4, - G,C,)
=(4,, - G,C,) " 4,, - (4,, - G,C,)"'G,C,
=A4,'4,, - 4,'G,C,. (3.92)
We get
4} =, + 4;,G,C,)4; (3.93)
and
(4, - G,C)) - (4, - G,C,)(4,, - G,C,) " (4, - G,C,)
=(4,, - G,C,) - (4,, - G,C)IU,, + 4;.G,C,) 45, 4,, — G,C,) + O(s)
= (4, — A, A7) 4,)) — G,(C, = Co A Ay)) + (4, — G,C) A5G, (C, — C, 450 4,,)
=A° - G’C? + 0(¢) (3.94)
where
G’ =G, — (4, -GC,)A4;)G, =G, — A,4,'G, + G,C,4;G, (3.95)
Also, from (3.95) we get
G(I +C,4;)G,) =G, + 4,45,G, (3.96)
which by invoking the identity
(I +C,451G,)" =(I -C,4;,G,) (3.97)

Equation (3.62) is obtained
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G, =A4,4,G,+G(I, —C,45,G?})

Based on above deviations we get

(4, -GC) (4, —GC,) Ay — G,C,) (4, -G,C) = 4° - GIC? + O(e)  (3.98)

A4, -G,C,=4,, - G?C2 + 0(¢) (3.99)
The above process can be continued by neglecting terms of O(¢?)in (3.87)-(3.88) and

obtain
Ly = 47 4,,(4, - A, 43 4y, (3.100)
I:Il = [(‘:111 - 2112;12‘21;121)1% "I:Ioiofalz]laz_zl . (3.101)

and the 1%-order corrected model of (3.68) becomes

l Aon T I 1

I:Es :|=|:(In _gHoLo)(An _A12A22 IAZI) 0 Es (3 102)
O n Aia A ,

gE/’ 0 Azz + ‘94221A21A12 E}

where

(I, —H L) (A4, — 4,45 4,,)

= (4, ~G,C)~ (4, -G, C,)(4,, - G,C,) " (4,, - G,C,)
—eH Ly (A4, — A, A5 Ay,), (3.103)
Ay, + A5} A, A, = (4,, —G,C,) +&dy) 4, A, . (3.14)
For the original full-order system (3.18)-(3.20), let

G, = A4,4,,G, +G (I, —C,4,,G}), (3.105)

G, = G_} ) (3.106)
and expand E) and E according to

E' =(A° - G!CY—eH [ (A, - 4,4, 4,,), (3.107)

E} =(4,, —G}C2)+&212_212121.;112. (3.108)
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Consequently, for the estimation error system (3.57), using (3.68), (3.71) and (3.81), it

deduced that
e, =E, +eHE, +0(s") =e! +[M + Hye, (r)]+0(£7), (3.109)

e, =—(L, +&L)E, + (I, — L, H,)E, +o(¢”)

=[~Le} +¢; (D]+elN L He, (1)~ LM~ Lie)) +o(&), (3.110)

where
M =HL(4, - 4,45} 4,))—(4,, - G!C,) 4;) 4,,4°, (3.111)
N=Ly4,~G,C:H,~ 4, 4, 4, . (3.112)

3.6 Conclusion

The design of the observer for the original full-order system does suffer from
the higher dimensionality and ill-conditioning resulting form the interaction of slow
and fast dynamic modes. In the two time-scaled approach, this stiffness property is
taken advantage of by decoupling the original full-order system into two subsystems

in separate time scales. This chapter constructs subsystem models of system (3.1)-

(3.3). The approximation procedure starts by calculating ¢,(x), ¢, (x) etc. in (3.8) by

equating terms in like powers of &, which can be continued to any desired power of
¢. The observer design can then proceed for each lower-order subsystem, and the
results combined to yield a composite observer (3.62)-(3.63), (3.76)-(3.77) for the
original full-order system. A main result in this chapter is Theorem 3.1 which
provides sufficient and necessary conditions for the stabilization of the original full-
order system through observer design in two separate time-scales. An important
corollary to this result is the complete observability of the original full-order system

through the separate observability of the subsystems in different time-scales.
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Chapter 4
A Geometric Approach to Fault

Diagnosis

In Chapter 2, we briefly reviewed the model-based approach to fault detection
and isolation (FDI) in dynamic systems. In this chapter, we apply a geometric method
for FDI a linear two time-scale system. Utilizing the high-order corrected slow and
fast subsystem models and the composite observer architectures obtained in Chapter 3,
we are able to detect and isolate actuator faults in the reduced-order subsystems and
the original full-order system, even if the states in lower-order subsystem models are
not observable. Finally, we have included an example which illustrates the

capabilities and characteristics of the proposed techniques developed in section 4.3.

4.1 Preliminaries

Beard [19] and Jones [37] first proposed a systematic procedure for designing a
special observer that accentuates the effect of failure on the prediction error of the

observer. The observer is designed so that, in the absence of component failure,
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modeling errors, and system disturbances, the prediction error dies away, while when
the system suffers a failure the prediction error increases.

Massoumnia [21, 22] reformulated the Beard-Jones detection filter problem
(BJDFP) by a geometric approach, clarified the notions of output separable and
mutually detectable families of subspaces, and showed the failure detection filter
problem has a computationally simple solution when the failure events satisfy some

mild restrictions.

4.2 Failure Modeling and Problem Formulation

A singularly perturbed linear time-invariant (LTI) model can be described as:

k
Xx=Ax+Bu+) Lf,

i=l

4.1)
y=Cx

where

X, 4y A, B,
x=| A=|4, 4, | B=|B,|C=[C, C,]
2 £ £ £

In (4.1), u is the known input and y is the known output. The arbitrary function [ is
the unknown actuator failure modes. When no failure occurs, the function f, is
identically zero. The effect of failure in the ith actuator can be represented by
L, =B,;, where B, is the ith column of B. When the actuator has failed, then
f;(t) =~u,(t) where u,(¢) is the ith component of u(z); and for a bias fault of the

same actuator, f,(¢) is taken as some nonzero constant.

Consider the problem of designing a full-order observer of the form given by the

system (4.1):
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£=(4-GC)%+Gy+Bu (4.2)
Where

G,
G=|G,|

£

Define the state estimation error vector by e = X —x, with the corresponding error

dynamics given by

k
¢=(4-GCe- ) Lf,
i=t
r==Ce

(4.3)

When the ith actuator fails, f, #0, eeV, =< A4~GC|L, >, and r € CV,. The failure

can be identified by finding the projection of » onto each of the independent subspaces

CV, and comparing the magnitude of this projection to a threshold.

4.3 A Geometric Approach to Actuator Fault Detection and

Isolation

4.3.1 A Geometric Formulation and Solution to the BJDFP ‘

The objective of BJDFP is to modify the invariant subspace of 4-GC through
appropriate selection of the observer gain matrix G. A subspace W is (C,A4)-invariant

if there existsamap G:Y — X such that (4-GCO)W W .
Assuming the filter has the structure given in (4.2), BJFDP can be stated in a

geometric language as follows. Given 4,L(i€k) and C, find a compatible and
output separable family of (C,4)-invariant subspaces {W,,i €k} such that L c W,. In

other words, find {,,i € k} such that there exists a G with
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(A-GCW,cW,, ick 4.4)
LcW,ick (4.5)

CW,NQ.CW,)=0, ick (4.6)

J#i
If there exist a family of subspaces {¥,,i € k} and an observer gain G such that

the conditions in (4.4) and (4.5) are satisfied, then the error e(?) due to a nonzero L,

remains inside W,. Also the condition (4.6) requires the subspaces CW, to be

independent so that the innovation due to different actuator failures is confined to
independent subspaces of the output space.

In references [21, 22], a theorem is stated that the BJIDFP has a solution if and
only if

CW' NQ . CW/)=0,ick. 4.7)

i
J#i

When £k, =1 (the scalar case) and (C,4) is observable, it follows that

W*=L®---®A"L (4.8)
where y; is the smallest integer such that CA* L, # 0 (generically ¢ =0) and @
indicates that the “addition” of independent subspaces. Thus, in an appropriate basis
the map W, : W, — X is simply W, =[L,, AL,,---, A" L].
Define

I =A4%L and I =[], -,1,] (4.9)
Assuming {W*,i € k}is output separable (or equivalently Rank Cl=k), one observer
gain G is

G =—AI(Cl)" (4.10)
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4.3.2 Application to Singularly-Perturbed Systems

Considering the observer dynamics
% =(A -GCHE +Gy, + (B, ~G:Du, (i=0])  (41D)

of the slow subsystem model. In this slow model, the diagnoser will be defined as

k
= (4]~ GIChel =Y I .
2.1t @12)

4 = Cle
where L is equal to the jth column of B], f’ is the slow fault in the jth actuator. If

G! satisfies

(A~ GICOW, W, , je<k (4.13)

L,cWw,, (4.14)

CHyN(Q CW,)=0, (4.15)
g#i

the slow actuator faults can be detected and isolated in the slow subsystem.

Similarly, for the observer dynamics
2 (1) =(4; —GLCHR (D) + GLy' () + Bhu (1) (i=0,)) (4.16)
of the fast subsystem model, the diagnoser will be defined as

k
¢y =(4; =GyCy)ey - Z;Lfﬁff}
=

i

i i
rp=Cre;

(4.17)

where L', is equal to the jth column of B}, f is the fast fault in the jth actuator. If

G, satisfies

(4, ~G.CWs W), jek (4.18)
L, cwi, (4.19)
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CiWyn(Q.CiW)=0, (4.20)

e
the fast actuator faults can be detected and isolated in the fast subsystem.
For the original full-order system, the observer (4.2) is given by
£=(4-GC)2+Gy+Bu

with the gain matrix partitioned into

G,
G=|G, (4.21)
g
where
G, = Alez_zlG;r + Gsi (I, - CzAz_zlG}): (i=0,1) (4.22)
G, = G} . @=0,D) (4.23)

If the conditions in (4.4)-(4.6) are satisfied for G, then the error dynamics system (4.3)
k
é=(4-GCe-Y L f,
i=1
r=Ce
is a residual generator for the original full-order system.

We can even relax the conditions (4.4)-(4.6) and require only that the transfer

function from f(s) to r(s) should be nonzero while the transfer function from f,(s)
to r;(s)(i # j) should be zero. But it is not necessarily possible to reconstruct f,(¢)

from 7,(2).

4.4 Simulation Results

In this section, our proposed FDI techniques will be illustrated to a singularly

perturbed system with matrices described by (4.24) [38] and compare the fault
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diagnosis simulation results for various values of the singular perturbation parameter

as € =0.01 and

g=0.5.

The full-order system matrices are given by

The eigenvalues

02 04 0 0 0
0 0 0345 0 1
0 —524 —465 262 |of
0 0 0 —100 0 (424)
10 0 0
0 0 1 o}

of 4 are {-0.2,-0.3921,-46.1079,—100} . Fig. 4-1 shows the state

response of the system with the initial conditions xlo = l,xg = O,x;) =1, and x| =1.
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Figure 4-1 The state responses X, ,X,,X;,%, with x{ =1,x) =0,x) =1,x) =1

4.4.1 Results with £=0.01

We design a detection filter for a full-order system having slow and fast

dynamics in the standard form (3.18)-(3.20) with £ =0.01 , namely

[—02 04 0 0
All|s=0.01 = 0 0 ’ AlZ's:O.Ol = 0345 0 ’

-0.465 0.262
£=0.01 = 0 -1 ?

[0 —0.524
AZ“s:O.Ol = 0 0 4 22

0
Bl £=001 1’ B2

1 0 0 0
Cl £=0.01 = O O ’ C2lg:0_()1 = 1 O d (425)

The uncorrected slow subsystem model is given by the matrices
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N

-02 04 B0 _[o
£=0.01 i 0 —0.3888 7/ £=001 1/

1 0 0
- , D! = | (4.26)
=001 10 —1.1269 e=001 | Q

s

The gain of the slow subsystem dynamics observer given by G? is selected as

_[o0.8 -03s5 427
001 | 0 —1.4298 ‘

0

5

and the observer dynamics is given by (3.56) which is given as

£ = (4 ~G)CHE +Gly) +(B ~GD))u,
This observer gain guarantees to have the poles of AS0 —Gs0 Cf placed at {— 1,—2}. A
fault detection filter is now designed for the slow subsystem (4.26) with the gain

G? oo The residual is generated by the second output of the error system dynamics

in this case.

For the uncorrected fast subsystem model is given by

4;

[—0.465 0.262
£=0.01 0 -1 7

[0
0 _
By £=001 0]’
0

00
C = : (4.28)
£=0.01 1 O

f

Since Bﬁ = [0 O]T , the uncorrected fast subsystem (4.28) is not fault diagnosable, so

it is necessary to consider the first-order corrected fast subsystem model which is

obtained according to

1
S

~0.4611 0.262
0 -1 0

£=0.01
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t

{0.01 13}
B, = ,
£=0.01 0

1 O O
T ‘ (4.29)
£=001 11,0084 0.0022
By choosing
. |0 3.493 4
S 0 7.6043( 30

for the observer (3.59)
%) = (4 ~ GJC,)37 (1) + Gy} () + By, (v)
The poles of A} - G}.C } are placed at {- 2,—3}. A detection filter is designed with the

. 1
ain G .
g Se=0.01

Fig. 4-2 shows the simulation results corresponding to the following scenario:

the actuators u, and u, are supposed.to. provide constant step input equal to
u,=land u, =1 . An actuator fault f; occurs at time ~20s and ends at +=30s [Fig.

4-2(a)] in the slow subsystem and a fault f, occurs at time 7 = 20s and 7 = 25s [Fig.

4-2(d)] in the fast subsystem. Fig. 4-2(b) is the output of the residual generator of the
uncorrected slow model and Fig. 4-2(d) is that of the 1%-order corrected fast
subsystem model. It is clear that the residual generator in each subsystem shows the
occurrence of the actuator fault and identifies its actual value.

Based on the observer gains (4.27) and (4.30) designed for the slow and fast
subsystems, we designed a composite observer for the original full-order system (4.24)

by equations (3.76)-(3.77) and obtain the following observer gain
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0.8 —4.5422

d - 0 -223662 4a1
2001 1 0 3493026 (4.31)
0 7604272

which places the poles of (4-GC) at {~1,-1.99 —21151,-28229}. In order to compare the

simulation results and the performance capabilities, we also designed an observer
directly based on the original full-order system (4.24) as

2.9098 —5.4282
23960  —~11.0242

GOV = =
£=001 1 52,4009 346.3902
—-259.8070 757.5931

(4.32)

which places the poles of (4-G, C)at {-1,-2,-211,-282}.

Fig. 4-3(a) shows the simulations for an actuator fault that has occurred in
the original full-order system (4.24). Fig. 4-3(b) shows the output of the residual
generator designed based on the composite observer, while Fig. 4-3(c) shows the
residual generated based on the observer directly designed for the original full-order
system. By comparing the error between the fault and the residual in Figs. 4-3 (a) and
(b) and that between the fault and the residual in Fig. 4-3(c), Figs. 4-3 (a) and (d)
shows that the detection filter based on the composite slow and fast observer has

better capability in fault diagnosis than the full-order observer.
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(a) The actuator fault occurs in the slow subsystem (d) The actuator fault occurs in the fast subsystem
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(b) The residual with the composite slow and fast subsystem observer gain G
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(c) The residual with the gain G,, for the full-order observer directly designed
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(d) The error comparison
Figure 4-3 The fault in the original system and the residuals with different observers gain
at £ =0.01.

4.4.2 Results with £=0.5:

At & =0.5, the full-order system matrices are given by

~02 04 0 0
Ailos = o o Meleos T 0345 0

>
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A21

0 -0.262
£=0.5 = 0 0 ’ A22

[0 0
B1|5=0.5 = 1 ’ B2L=o,5 = 0 ’

1 0 0 0
C1|5=0.5 = 0 0 ’ C2|5=0.51 = 1 0 - (433)

Clearly, the slow subsystem model is the same as that at £ =0.01, therefore the

_[-0.233 0.131
=050 -05]

observer gain can be selected to be the same as in (4.27), namely
0.8 -0.355
e0s | 0 —1.4298]

for placing the poles of A4’ —G°C? at {— 1,—2}. For £ =0.5, the difference appears in

GO

the fast subsystem model given as

[-0.233 0.131
£=001 0 -05]

0
0
Bf £=0.01 0]’

(00 4.34
=000 (1 OFf (4.34)

Ay

Il

0
f

which is not fault diagnosable. Therefore, the first-order corrected fast subsystem

model is obtained according to

1

-0.0381 0.131 5 _10.2634
SREA Py TR B T §

Te=001 — 0 —05/07
. 0 0

C, = ) (4.35)
7 le=0.01 1.8361 0.2191

where have chosen the observer gain as

| 0 04725

G} = , (4.36)

=05 10 0.4306
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to place the poles of 4}, —G. C’ at {~0.7,-0.8}.
f fr

Considering the same as that scenario described in Figs. 4-2 (a) and (d), Fig. 4-

2(c) is the output of the residual generator of the uncorrected slow subsystem model at

£ =0.5 and Fig. 4-2(f) is that of the 1¥-order corrected fast subsystem model £ =0.5.

It is clear that the residual generators for the subsystems with different values of &
are able to detect the occurrence of the actuator fault and identify its actual value.

For the original full-order observer, based on the observers (4.27) and (4.36)

designed for the slow and fast subsystems, a composite observer gain may now be

selected as

0.8 —4.5422

G| _ 0 —223662 437)
£=03 0 349.3026
0 760.4272

which places the poles of (4-GC) at {~1-1.96 —-3467+24.11}. In order to compare the

capability and performance of the proposed diagnoses with a brute force design, an

observer is directly designed based on the original full-order system (4.24) according

to
0.0036 0
3 0.0061 0.0003
G, _.=10"x (4.38)
=05 —-0.3896 -0.0249

1.1947  0.0604
which places the poles of (4- G, C)at {-1,-1.2,-3,-3}.
Fig. 4-4(a) shows the simulations for an actuator fault that has occurred in the
original full-order system (4.24). Fig. 4-4(b) shows the output of the residual
generator designed based on the composite observer, while Fig. 4-4(c) depicts the

residual generated based on the observer directly designed for the original full-order
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system. By comparing the error between the fault and the residual in Figs. 4-4 (a) and
(b) and that between the fault and the residual in Fig. 4-4(c), Fig. 4-4(d) shows that
the detection designed filter based on the composite observer has better capability in

fault diagnosis as compared to the full-order observer.

4.5 Conclusion

In this chapter, a geometric approach is applied to the fault diagnosis of the
two time-scaled systems. Given that the observability of the slow and fast subsystems
may vary due to the order of accuracy of the models, it is necessary to consider the
observability of the models with different accuracy orders. For the slow and fast
subsystems, the necessary and sufficient conditions (4.4)-(4.6) of the geometric
approach can be used to design the observers which will detect and isolate faults in
the subsystems. However, for the composite observer G for the original full-order
system, it may not be possible to find a subspace W, which satisfies the condition
(4.6).

Consider the numerical example given by (4.24) which is a single-input-two-

output system. The original full-order system was decoupled into uncorrected slow

and fast subsystems. Since B}) = [0 O]T , the uncorrected fast subsystem (4.28) is not
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(a) The actuator fault occurs in the original full-order system
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(d) error comparison
Figure 4-4 The fault in the original full-order system and the residuals for different
observers with gains at £ =0.5.
fault diagnosable. Therefore, we need to investigate the observability of the 1¥-order
fast subsystem. Furthermore, observers for the uncorrected slow subsystem and 1%-
order fast subsystem based on the geometric approach were constructed. A composite
observer is then obtained for the original full-order system.

We compared simulation results of fault diagnosis between the original full-

order system with the composite observer and the observer directly-designed for the
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original full-order system. We concluded that the composite observer has better
capability in fault diagnosis as compared to the full-order observer. Furthermore, as &

increases, the advantage of the composite observer becomes more obvious.

71



Chapter 5
Validation of the Proposed FDI

Schemes to Two Applications

In this chapter, we apply the preceding ideas to a detailed model of the longitudinal
dynamics of an F-8 aircraft [39] and the four degree of freedom (DOF) gyroscope. For
the F-8 aircraft model, it is necessary to design observers for both subsystems and a
composite observer in order to detect and isolate actuator faults in the subsystems and the
original full-order system. However, for the DOF gyroscope, only the slow states are
needed to be estimated for the fault diagnosis purpose since the fast subsystem is neither

observable nor diagnosable.

5.1 Two Time-scale Aircraft Longitudinal Dynamics

5.1.1 System Model

In this section we apply the preceding ideas to a detailed model of the longitudinal

dynamics of an F-8 aircraft [39]. The equations of an airplane are nonlinear equations of
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the longitudinal and lateral states. The linearized equations are approximately decoupled
into separate longitudinal and lateral dynamics.

The aircraft’s longitudinal variables are
x=[V y o q]T,u=§e,
where

V' denotes the horizontal-velocity deviation in feet/second;

y denotes the flight-path angle in radians;

a denotes the angle of attack in radians;

q denotes the pitch rate in radians/second;
o, denotes the elevator deflection in radians.

The physical interpretation for these variables is given in Fig.5-1.

Combined control signals TWO TIME SCALE Notsy
= SYSTEM .
Observations
+ Slow Q 1d
G (e) SLOWFILTER
+ Control
i Signails
n 1
Fast X 2a
Golel FAST FILTER
Control
Signals

Asymptotically optimal two time-scale controller
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Figure 5-1 Two Time-scale Aircraft Longitudinal Dynamics [39]

The LTI state-space system matrices are given by

0.000

0.000

1.000
—6.696%10™

(5.1)

[~1.357x107 -3.220x10' —4.630x10"
. 1.200x107 0.000 1.214
-1.212x107* 0.000 —-1.214
| 5.700x107* 0.000 —.9010
[~ 4.330x10™
B 1.394x107" =[0.0 0.0 0.0 1.0}
~1.394x107" [ 1.0 00 00 0.0/
~1.577x10™

Fig. 5-2 and—Fig. 5-3 show the response to an initial velocity error V' (0) =100/%/s,

an initial flight-path angle y(0) =1rad, and an initial angle of attack a(0) =1rad . The

two time-scale behavior is clearly illustrated here.
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The eigenvalues of A4 are given by {— 0.99411i2.9878i,—0.0075i0.0759i}. The
states and equations for ¥ and y represent the slow dynamics, and the states and

equations for ¢ and ¢ represent the fast dynamics. Therefore, we set
Z

M

Choosing ¢ =0.01, the system (5.1) can be written in the standard form of the

system (3.18)-(3.20) where

_[-0.0136 —32.2000 _[-46.3000 0
"1 0.0001 o 271 12140 0f
L [-01212 0 [—0.0121  0.0100
A, =107 x : A, = :
0.5700 0 | —0.0901 —0.0067
[-0.4330 [~ 0.0014
B] = ’ Bz = 5
- | 0.1394 |- 0.0016
c - [0 0 c - 0 1 5.2)
Yl oof 7o of '
By setting £ = 0, the uncorrected slow subsystem model is given by
. _[-0.0159 -32.2000 . _[0.7503
*leoor | 0.0002 0 [ Teleom 70,1084
6 [0.0002 0 6 0.1084
s = : s = (5.3)
e=001 11.0000 0 5=001 0

The uncorrected fast subsystem model is given by

0.0100
—0.0067 |

0
!

£=0.01

—0.0121
- 0.0901

0

f

5 _[-0.0014
s=001 | —(,0016 |
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0

Y

C = .
£=0.01 0 O

(5.4)

By computing the first order corrected slow and fast subsystem models by setting

£* =0 and taking into account O(¢) , we obtained

i _[-0.0159 -32.2326 p|  _|07510
*le=001 | 10,0002 0.0009 | “lo-o0 1 0.1084 |
| [0.0002 —0.0007 1 0.1084
o , p| = : (5.5)
£=0.01 1.000 0 £=0.01 0
and
y _[-0.0121  0.0100
Moot ~| ~0.0900 —0.0067 |
1 _[-0.0014
Tle=o01 | —0.0016 ]
: [0.0006 1.0009
oo : (5.6)
Sle=oot 13,1561 4.7135

In order to investigate the influence of £ on system (5.2), we compute the

uncorrected and first-order corrected models for system (5.2) at £=0.05. The

uncorrected models are the same as those at £ = 0.01, which implies

0

0 0 0 0 0 0 0

$ =005 S le=0.1” S lg=0.05 S 1g=0.01" S |g=0.05 S lg=0.01’ 5 lg=0.05 s e=o.01;
0 _ 40 0 _ po 0 0
4, £<005 4y =001’ By £=005 By £=0.01" Cy £=0.05 Gy £=001" (.7
For the first-order corrected models, we have
1 _[-0.0161 -32.3630 | _[0.7674
“le=00s | 0.0002  0.0040 [ *le=oos | 0.1103 [
. 0.0002 -0.0038 . [0.1088
! — , D! = , (5.8)
£=0.05 1.000 0 £=005 0
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and

1
f

£=0.05

_[-0.0120 0.0100 . _[~0.0014
1-0.0897 -0.0067 Fle=005 | ~0.0016 |
1

1 (5.9)

_[0.0029 1.0043
=005 [15.7937 23.5727 |

The exact solution, the uncorrected solution and the 1¥-order corrected solution of
the slow states V' and y are shown comparatively in Figure 5-4 and Figure 5-5 at
£ =0.01 and £ = 0.05, respectively. It can be seen that the 1*-order corrected solution

agrees more with the exact in contrast to the case of the uncorrected solution. As

& increases, the advantage of the 1¥-order corrected solution become even further clear.
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(a) The exact solution vs. the uncorrected solution (d) The exact solution vs. the uncorrected solution
of x, of x,
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5.1.2 Composite Observer Design

We continue to design a composite observer for the two time-scale aircraft
longitudinal dynamics. The detailed procedures are shown as below.

For the uncorrected slow model (5.3) we have

0

5

N

-00159 -322000]  ,  _[0.7503
s=001 | 0.0002 o e=001 10,1084 |

N 5

[0.0002 0 ol _|0-1084
s=001 | 1,0000 0 ’ e=001 | ()

where we chose

, [0.0001 0.4041
G = (5.10)

R

0 —-0.0012

which places the poles of (ASO -G)C?) at {-0.22, -0. 2}.
For the uncorrected fast model (5.4) we have

0
r

{—0.0121 0.0100 } e

_[-0.0014
~0.0901 —0.0067 Sle=001 7| ~0.0016 |

£=0.01

0

{0 1 :|
C =
£=0.01 0 0

I

where we chose

. [0.0067 0}
G (5.11)

7 10.0402 0
which places the poles of (A_(,)- - G‘(,’-C?') at {-0.029, -0.03}.
Then by simply following equations (4.14)-(4.15), for the original model (5.1), we

have a composite observer gain matrix given by
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21.4367 0.4042

~0.5527 —0.0012
G= (5.12)
0.6658 0

4.0164 0

and that places the poles of (4—GC) at {— 0.2099 + 0.0008i,~2.8955,—3.0025}.
For comparison, we also design an observer directly for the original full-order

model (5.1) with the gain matrix G, given by

26.865 —2.0048

~0.5974  0.0831
- (5.13)
1.7726  ~0.1193

6.3076 —0.9957
which places the poles of (4-G, C) at {—2.9 +2i,-0.2+ O.Zi} .

To design a closed-loop stable system, a state feedback control of the form
u = —KXx 1s then designed where the feedback gain X is selected as

K =[-0.0013 1.8274 -26.1108 -5.1216] (5.14)
in order to place the poles of the closed loop matrix (4—-BK) at
{~2.6,-3.8,-0.1£0.11i}.

Fig.5-6 and Fig.5-7 show the responses for states /' and g of the closed-loop
system with the composite observer G and the full-order model observer G, . It is clear
that using the same feedback control, the closed-loop system with either G or G, is

stable and the output responses are very close.

&3



(=}
{ i f T T ] <
I I | I | |
1 1 | i 1 |
| 1 | 1 i j
[ 1 1 | 1 |“ o
N U U A |
] | | | | ” 0
1 l l | 1 !
1 1 [ ] | 1
1 { 1 1 [ ]
{ { 1 1 ! i o
T ) U N D
i ! | I i ) o
1 1 i 1 ' |
I i t 1 !
| 1 ' 1 )
1 | | I i |
S W I S RN SR ) VU | ©
| b ! | | i -
! | ] 1 ] [
T | | } | I [
] ! | ! 1 1 I
5 ! ! ! 1 1 )

X ) L I | [o)
© (o} < © N - @] o
=78 =T o]

o
_ 1 T T _ T <
1 i | ! 1 1
1 | | | 1 1
1 1 | | 1 1
] | 1 1 l
L___L___ _||||_|x»1f\tr_||||_||||:0u
1 1 t 1 | -
| 1 ' 1 l
1 1 i 1 l
1 1 t 1 l
1 1 ! 1 [
N _lltt_¢|||_||||_||||_||||m
1 1 ; [ 1 -
1 l ] 1 l
1 l } 1 1
| 1 ) 1 1
\._l I I I 1 | o
L M A
\\_ | | I | i 0
{1 1 l ) 1 1
] | | 1 1
i [ T N i
1 1 | | T
1 L s WY o
n o o3 - 0 N n [s2)
Q o o ¢ o o o)
Q © o Q o © o
O O_ [ 0_ b 0— 1
293/50)

Time(sec)

Time(sec)

14

Figure 5-6 The responses of V' and ¢ for the closed-loop system with the composite
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5.1.3 Actuator Fault Diagnosis and Simulation Results

Consider the uncorrected slow subsystem model (5.3) with the matrices

0
5

0

0.7503
B = ,
e=001 | 0.1084

N

[—0.0159 —32.2000
e=001 | 0.0002 o

0
s

5

_[0.0002 0 po| | 01084
s=001 11,0000 0 > £=001 0

and the uncorrected fast subsystem model (5.4) with the matrices

_[-0.0014
e=001 | ~0.0016 |

0
f

_[-0.0121  0.0100 50
=001 | —0.0901 —0.0067 | 4

0

[O 1}
C = .
e=001 | 0

I

Both the subsystems have a single input and two outputs systems. This implies that the
innovation due to the actuator fault in each system is confined to a subspace of the

system’s output space and it is not necessary to consider the fault isolation problem.

Therefore, we utilize G and Gﬁ to the error dynamics system for each subsystem and

choose the second output of the error system dynamics as the residual.
Fig. 5-8 shows the simulation results corresponding to the following scenario: the

actuators u, and u, are supposed to ideally provide constant unit step input, that is
u, =1 and u, =1 . An actuator fault f, occurs at time =150s and ends at /=200s [as

shown in Fig. 5-8(a)] in the slow subsystem and a fault f, occurs at time 7 = 200s and

7 =250s [as shown in Fig. 5-8(c)] in the fast subsystem. Fig. 5-8(b) depicts the output of

the residual generator corresponding to the uncorrected slow model and Fig. 5-8(d)
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shows that of the uncorrected fast model. It is clear that the residual generator in each
subsystem indicates the occurrence of the actuator fault and identifies its actual value.

For the original system (5.1), there is the composite observer with the gain (5.12)

and the observer directly designed with the gain (5.13). We generate an actuator fault f

which occurs between time =200 and /=250s [as shown in Fig. 5-9(a)]. Fig. 5-9(b) is the

residual of the error system using G and Fig. 5-9(c) is the residual of the error dynamics

system using G, . Fig. 5-9(d) shows the comparison between the two residuals in Fig.5-9
(b) and (c). It shows the residual of the error dynamics system with G, is closer to the

real fault than that with the composite observer gain G.

5.2 The Four Degree of Freedom (DOF) Gyroscope

5.2.1 System Model [40]

Figure 5-10 shows a 4 DOF gyroscope comprised of gimbals (4, B, and C) along

with an axisymmetric disk (D). Dextral sets of orthogonal unit vectors a,,b,,c, and
d.(i=123) are fixed in 4, B, C, and D, respectively. An inertial (or Newtonian)
reference frame is defined as &, in which a dextral set of orthogonal unit vector
N, (i =1,2,3) are fixed. Four angles specify the configuration of the system. The angular

travel of D in C in the direction d, is defined as ¢,. However, the displacement of the
rotor is typically not used explicitly in the dynamics and control study of this system-

rather, the speed of D in C, w,, will generally be considered. The angle g, is defined as
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the angular rotation about a, of 4 relative to N. The configuration shown in Fig. 5-10

reflects ¢, =0 (i=1,23).

For this system, the mass centers of all bodies comprising the system are at the
center of the disk (D) which is also the center of all the gimbal axes. Only rotational

dynamics are considered in the following analysis and the effects of gravity are

neglected.

The central inertia matrices of the bodies comprising the system are given below
Each matrix is given in the coordinate frame attached to the respective body. The

I.,J.,K (x=A4,B,C and D) elements are the scalar moments of inertia about the

i" (i=1,2,3) direction respectively in bodies 4, B, C, and D.

1, 0 0] I, 0 O
=0 J, 0 I*=l0 J, ©
0 0 K, 0 0 K,
(7. 0 0] I, 0 0
=0 J. 0 =0 J, 0 (5.15)
0 0 K| 0 0 K,

The only moments of inertia are considered while products of inertia are set to zero.

This simplification is valid for most dynamic and control modeling purpose.

The rectilinear velocities of the mass centers of all the bodies comprising the
system are zero since all the mass centers are fixed in NV . Only angular velocities are

considered in the present analysis. The angular velocity of 4 in N is given as

Vo' =w,a, (5.16)
Adopting this notation, the quantities are defined as

‘0’ =w,b, (5.17)

o’ =w,c, (5.18)
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‘0’ =0d, (5.19)
The following kinematic differential equations relate the generalized coordinates to

the regular speeds.

q, =0, (5.20)
i, = o, (5.21)
4, =0, (5.22)

Finally, the coordinates of any of the body frames may be transformed to the inertial

frame through the following transformation matrices. These follow from inspection of

Figure 5-10.
[n,] [cosq, —sing, 0] a,
n, |=|sinq, cosq, Ola, (5.23)
ns | | O 0 1| a,
[a,] [ cosq, 0 sing, |[5,
a,|=| 0 1 0 b, (5.24)
la, | |—sing, O cosgq, || b,
] 1 0 0 e
b, |=|0 cosq, -sing, |c, (5.25)
1 b, | |0 cosgq, =cosgq, | c;
c,=d, (5.26)

This simplified expression of equations (5.26) results from the axial symmetry of D
and by recognizing that only angular velocity of the rotor (@, ) — not its position (g, )
—1is needed in the dynamics and control study of this system.

Two inputs are considered for this system. The first is a torque, 7;, applied to D
by C (via the rotor spin motor) which results in the following torques on D and C
T® =Td, (5.27)

T¢ =-Td, (5.28)
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The second input is a torque, 7,, applied to C by B (via a gimbal motor/capstan drive)
which results in the following torques on C and B
T¢ =Ty (5.29)

T? =T, (5.30)

Gimbal Axis 3 [
= [
T3

&

Figure 5-10 The Four Degree of Freedom Gyroscope [40]

l I Gimbal Axis 4

5.2.2 Special Case: All Gimbals Free (Reaction & Gyroscopic
Torques Acting)

In this special case which is depicted in Figure 5-11, the dynamics are simplified

as all gimbals are Free. The operating point is about g, =0,q, =0, =€. Here Q
is the spin speed of the rotor disk (D). The unit vectors ¢, and d, are normal to a, (i.e.

T, and T, are directed horizontally).
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Figure 5-11 All gimbals free configuration (¢, =0,¢, =0)[40]

For the purpose of controls design, the plant dynamic model is represented as

0
C =
[o 0

with the following transfer functions

9,
qs

1

N

Il
S O O O O O 2O
O O O O O O O
S OO O O O O

0 0 0
1 00

(=

y

(e}

g, —43.06
L, s
q, 2650

T, s> +409.2s

q, —470.7

T, s +409.2

0
0
0
0
0
0
0

OO OO O =

—-5.630
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0
1
0
0
0
0
0

S = O QO

72.68

<

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)



The overall system is seventh order. An eigenvalue evaluation of the result in
one rigid-body mode (two poles are at zero), three additional poles at the origin
representing the kinematic differential equations, and two complex poles {+20.2284i}
corresponding to the natural frequency and associated oscillatory mode that couples
gimbals @, and o, .

In order for the diagnose to converge to a unique solution and for there to be no
unobservable or uncontrollable states, the plant model must be represented in its

minimal form, which is specified according to:

4, 001 0 0 0 0

4. 000 0 0 0
xX=|w,l, A=|0 0 0 0 0 |, B'=|-4306 0 |,

», 000 0 7268 0  470.1

o, | 0 0 0 -563 0 L0 0 |

1 000 0
Cie _ (5.36)

0100 0

The eigenvalues of A' are located at {0,0,0,+20.2284i} .The dynamics for the
states ¢,,q, and o, are slow dynamics and these for @, and @, are fast. Using

& =0.05, the model (5.36) may be expressed in a standard singularly perturbed form

q, 0 0 1
X, =lq, |, 4,={0 0 0]},
, 0 00
0 0 0
A, = X B, = 0 0
0 0 —-4306 0O

o, 00 0
O P L=l o of
4
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- 0 3.63 B_’o
27028 o [ 270

1 00 0
C1= , C2=
010 0

5.2.3 Composite Observer Design

235
O b

0 5.37
ol (5.37)

In this section, it is shown that the original full-order model and the uncorrected

slow model are both observable, but the uncorrected fast model is unobservable.

Therefore, in order to design a composite observer for the original model, it is

necessary to consider higher-order fast subsystem models and their observability

properties.

For the original full-order system (5.36),

with the gain matrix as

[0.006 0
0 01220
G, =10°x|0.0050 0 |,
0.0025 7.9078
10.0018  2.5308 |

we may directly design an observer

which places the poles of (4'-G,,C") at {-90,-30,-5,-2,-1}.

At £ =0, the uncorrected slow subsystem is given by the following matrices

0 0 1]
N =0 0 0|, B?
£=0.05 £=0.05
L. O —4
0 — 0 0 DO
Sle=00s |0 1 OF s 1e=0.0s

The resulting observer gain is now obtained as
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(5.38)
0 0
=l 0 ~6.468 |,
| —43.06 0
_[o 0 (5.39)
1o of '




(5.40)

0
s

10,
0

£=0.05

which places the poles of (4] — GC?) at {— 10,—5,—1}. For the slow subsystem, there
is no correction in the higher order models, since 4,, =0 which makes all the -

terms equal to zero. Therefore, we set G. = G .

The uncorrected fast subsystem is now given by

0 3.634 o 0 2351
’ Fle=oos |0 o [

0

fle00s | ~02815 0
foo
Sle=00s — 0 0l (5.41)

Since rank[C2 C,4,, ]T =0, the uncorrected associated fast model (5.41) is not

observable, and therefore no observer can be designed for this system. Thus, for the

fast subsystem, we obtain the first-order corrected model which is easily described as

1

y [ o 3634
=005 |—-02815 O [

’

1

[0 23.51}
B, = )
£=0.05 0 0

1

0 0
¢l = _ (5.42)
=005 | 0.0138 0

and is now clearly observable. Hence we choose the observer gain matrix as

[0 3634
S . (5.43)

1
S

0 99.54

which places the poles of (4} —G,C})at {~2,-3}.
By applying the expression (3.76)-(3.77), a composite observer is now obtained

as
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[0.006 0
0 011
G=10°x|0.005 0 (5.44)
0 7268
0 1.99 |

which locates the poles of (4’-GC") at {— 80.99,-27.15,-5,—-1 .86,—1}.

Using the state feedback gain []] 7"2]T =—Kx, the roots of the pole-placement
design are given by {-2,-3,-4,-30,—90} when

—4.7265 15729 —1.6404 —0.7808 0.9944
= (5.45)

0.1645 -0.1751 0.0543 0.1242 0.0270
The plots in Figure 5-12 correspond to the output responses g, and g, of the
closed-loop system with the composite observer G (solid lines) and the observer G,

(dashed lines) that are directly designed for the original full-order system. These plots

show that the responses obtained by using G and G,, match closely asymptotically

increases (that is, as ¢ approaches to infinity).

Degree

Time(sec)

Figure 5-12 Performance comparison of the output responses (g, , g, ) of the closed-loop

system with the composite observer G (solid lines) and the observer G,, (dashed lines)
directly designed for the original full-order system
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5.2.4 Actuator Fault Diagnosis and Simulation Results

The system (5.36) is a 2-input-2-output system, so it is necessary to consider the

fault separation problem first. Following the procedures outlined in Section 4.3.1, we

have
L=[o 0 -43.06 0 of (5.46)
L=[o o 4701 0 of (5.47)
[0.0004 0 ]
0 -0.0265
[=[4], A’L]1=10°x| 0 0 (5.48)
0 -1.9236
- O O -
Since
~43.1 0
R =rank(Cl) = rank =2, (5.49)
0 —2646.7

the two possible actuator faults in the system (5.36) are seperable.

As already obtained in Section 5.2.3, we have

ol 1

0 2351
B =B| = ,
k £=0.05 0 0

e=005s 1

0

0o0]
o , C
£=0.05 0 O

[ o o
4 =005 |0.0138 0f

so that the uncorrected fast subsystem model is not observable and the 1%-order
corrected fast model is observable but not actuator fault diagnosable. Furthermore,

since in the original full-order system

1 00 0 0] [q
J'= Clx'e - (5.50)
01 00 0] |qg,
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where g, and g, are slow states, we can use the observer for the slow subsystem

&)= (4 - GICHE + Blu, + Gy, (5.51)
e =Cx) (5.52)

to estimator ¢q, ,q, and construct the residual generator as

r=ln nl" =3 -y, (5.53)
For comparison, we also consider the observer designed with the gain matrix
G, for the residual generator. The error dynamics system is described as
é=(4-G,)e—Bf (5.54)
r=_Ce (5.55)
with the transfer function

Jfi_ 43.06
v, sS+6s+5

Ny

7,
and the transfer function

£

h

=0

f 2647
r, 5 +110s> +2400s + 4092

Therefore, the residual generator (5.54)-(5.55) is able to detect and isolate faults in the
original system.

Fig. 5-13 shows the simulation results corresponding to the following scenario:
the actuators are supposed to provide constant step input equal to 7, =1 and 7, =1 .
An actuator fault in the 1* actuator £, occurs at time =200 and ends at /=300s [as

shown in Fig. 5-13(a)]. Fig. 5-13(b) depicts the output of the simple residual generator
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(5.40) based on the slow subsystem observer. Fig. 5-13(c) shows the output of the
residual generator using with the gain G, .

From the behavior of the error between the residual and the real fault as shown
in [Fig. 5-13(d)], it is clear that the residual of the generator using G,, is closer to the

real fault. However, design of an observer for the reduced-order slow subsystem is

easier to accomplish when compared to a full-order observer for the original system.

5.3 Conclusion

The proposed FDI schemes were validated to two applications: a two time-
scaled aircraft longitudinal dynamical models and a four degree of freedom gyroscope
system.

For the two time-scaled aircraft longitudinal dynamics, simulations of the open
loop responses of a detailed model show that the uncorrected model accurately does
model the full-order system when the singular perturbation parameter ¢ is small, but
as £ increases, the higher-order models are needed to approximate the full-order
system. For the fault diagnose purpose, a composite observer is obtained based on the
observers designed for the uncorrected slow and fast subsystem models. Consequently,
the observer design for the high-order system were simplified by designing two
lower-order observers for the slow and fast subsystem models.

For the four degree of freedom gyroscope system, we compared the outputs of

the closed-loop systems with the composite observer G and the observer G,, directly

designed for the original full-order system. Simulation results show that the responses

obtained by using G and G,, match closely asymptotically. Since the fast subsystem

is not fault diagnosable up to the 1*-order model and the outputs of the original full-
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order system are the two slow states g, ,q,, we can therefore use the observer for the

slow subsystem to and construct the residual generator (5.53). The simulation results
show the residual generator (5.53) can diagnose the fault in the full-order system
effectively.

In conclusion, the observer design for a two time-scaled system can be

simplified by investigating the observability of the slow and fast subsystem models.
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(a) The fault occurs in the 1* actuator of the original system
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(d) The error between the real fault and the residual

Figure 5-13 The actuator fault in the original system and the residuals of different

generators
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Chapter 6

Conclusions and Future Work

6.1 Conclusions and Contributions

In this thesis, a composite observer was developed as a residual generator and
applied to a two time-scale aircraft longitudinal dynamics and the four degree of
freedom gyroscopé, both of which are singularly perturbed systems. The original full-
order system is first decoupled into slow and fast subsystem models and the observers
are designed to detect and isolate the actuator faults in the subsystems. An observer is
then decoupled to diagnose the actuator faults in the original system. The performance
and capabilities of the observer and the observer designed directly for the original
full-order system are compared and analyzed.

In Chapter 2, we review approaches for fault detection and isolation in
automatic processes using analytical and knowledge-based redundancy and discuss
some recent new results from the literature. The principles for model-based methods
are outlined, and robust residual generation for both linear and nonlinear systems is
discussed. Furthermore, we also present some knowledge-based redundancy methods

in case the linear model of the system is not precisely given or known.
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In Chapter 3, slow and fast models (3.44)~(3.47) associated with a class of linear
singularly perturbed systems are provided and it is shown that the derivative of the
input plays an important role in the characterization and definition of higher-order
subsystem models. As the singular perturbation parameter £ increases, higher-order
corrected systems are utilized as they agree more closely with the original full-order
system as compared to the uncorrected subsystems. Furthermore, we reviewed
J.O’Reilly’s work [36] for designing a composite observer for the original full-order
model and discussed the necessity to develop this composite observer based on the
observers for the high-order slow and fast subsystem models. A theorem is proved to
determine sufficient conditions for designing the composite observer and expressions
(3.18)-(3.20) which the state estimation errors satisfy.

In Chapter 4, we considered a geometric method [24, 25] that provides the
sufficient and necessary conditions for solving the linear fault detection and isolation
problem. If the subsystem .m(;dels satisfy the sufficient and necessary conditions,
observers can be designed as the residual generators to detect and isolate the actuator
faults in the subsystems. Furthermore, based on the composite observers, residual
generators can be designed to solve the FDI problem in the original system. It is
essential to consider the observability and fault diagnosability of the subsystems and
thus higher-order corrected models are necessary to develop.

Chapter 5 deals with the application of the techniques developed in previous
chapters illustrated to practical singularly perturbed systems. The two time-scale
aircraft longitudinal dynamics is first studied. The uncorrected slow and fast models
are both observable and fault diagnosable, so observers are designed to detect and
isolate the actuator faults in the slow and fast subsystems. An observer is then

designed composed as a residual generator for the original full-order system. Thus, we
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avoid designing a high-order observer by designing two lower-order observers and
obtaining a composite one for the original full-order system. For the four degree of
freedom gyroscope, there is no correction to higher-order slow models. The
uncorrected slow and subsystem is fault diagnosable but the fast subsystem is not
fault diagnosable. The outputs of the original full-order system are the two slow states.
Therefore, we simply used the error between the output of the original system and that
of the observer of the slow subsystem as the fault residual. The FDI procedure was
thus simplified in this case. Therefore, a composite observer is not always needed if
the output of the original full-order system can be estimated by the observer of an
observable subsystem model.

In the thesis, we developed the high-order corrections of the slow and fast
models of a singularly perturbed system with inputs, and constructed a full-order
diagnoser for the original full-order system based on the diagnosers designed
separately for the slow and fast high-order médeis. By investigating the observability
of the subsystem models, we simplified the observer design for a high-order two time-
scaled system. And by using the geometric approach, we detected and isolated

actuator faults in the full-order system and the slow and fast subsystems.

6.2 Future Direction of Research

Singularly perturbed systems often occur naturally due to the presence of small
“parasitic” parameters, typically small time constants, masses etc., multiplying time
derivatives which gives rise to coupled system with slow and fast dynamical modes.
Using the singular perturbation approach, system analysis and design may be carried
out in two separated and decoupled stages, namely one for the slow modes and the

other for the fast. In this way, through system design in two separate time-scales, both
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high dimensionality and stiffness problems are alleviated while retaining an
approximation to the original coupled system’s behavior.

Following the procedures in Chapter 3, we can formulate conditions for which a
composite observer-based controller stabilizes the original full-order system. The
composite observer-based controller will be synthesized from observer-based
controllers for the two separate subsystems in different time-scales and forms the
basis of a dynamical controller design using a full-order observer.

Another interesting topic for future investigation is the FDI problem for more
general singularly-perturbed systems, for example, under what conditions the
composite observer can be used as the residual generator for the original system if
observers for the subsystems satisfy the sufficient and necessary conditions of the
geometric approach.

Thirdly, most real-life singularly perturbed systems demonstrate nonlinear
dynamic behaviors. Observer design and fault diagnosis fof nénlinear two time-scale
systems also need considerable attention when linear models are not sufficiently
accurate. The composite observer method, introduced in Chapter 3 for linear systems,
can be extended to nonlinear autonomous systems. The design is sequential in general,
since the observer design for the fast subsystem depends on that of the slow
subsystem. Like linear systems, the fundamental question of the fault diagnosis of
nonlinear systems is still what additional conditions will guarantee the asymptotic
stability of the original full-order system for a sufficiently small singular perturbation
parameter &£ assuming that the associate slow and fast systems are each

asymptotically stable.
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