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ABSTRACT
Embedded Supervisory Control of Discrete-Event Systems

Yue Yang

In this work we propose to implement supervisory control by embedding control
in the plant Finite State Machine (FSM). Supervisory control is introduced by ex-
tending the plant with boolean variables, guard formulas and updating functions.
Boolean variables are used to encode the supervisor’s states. Event observation is
captured by a set of boolean functions that update the values of boolean variables,
and contro!l is introduced by guarding events with boolean formulas. The resulting
Extended Finite State Machine (EFSM) implements the supervisory control map in
the sense that the languages closed and marked by the EFSM are equal to those of
the supervised system. After studying embedded supervisory control under partial
observation, centralized and decentralized control architectures are analyzed. It is
shown that the coobservability condition remains necessary and sufficient for the ex-
istence of decentralized supervisors. An application of our approach in the synthesis

of communication protocols is presented.
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Chapter 1

Introduction

1.1 RW supervisory control of DES

This work proposes to implement Ramadge and Wonham supervisory control by
embedding a control mechanism in the plant Finite State Machine (FSM). Therefore,
it is appropriate to start with a brief tour of RW supervisory control theory.

Supervisory Control Theory (SCT) proposed by Ramadge and Wonham [RW87],
[WR87] has provided a systematic approach to control a Discrete-Event System
(DES). A DES, called plant, is modeled as an FSM. The behavior of a DES is repre-
sented by a formal language L, where a string of L is a sequence of events executable
by the system. The control task is to restrict the plant behavior by a supervisor such
that it satisfies the specification of some desired behavior.

The alphabet X denotes the set of events over which L is defined. For ¥ we have
the partition ¥ = 2.UX,,, where the disjoint subsets . and ¥, comprise respectively
the controllable and uncontrollable events. The way a supervisor exercises closed-
loop control over the plant is by disabling some of the events in order that the plant
under control may achieve a certain legal behavior. Supervisors that do not prevent
uncontrollable events from happening are called admissible. Thus, the behavior of
the controlled system is a restriction, or a sublanguage, of L.

Since under the closed-loop control of an admissible supervisor all uncontrollable

events that can occur in the plant can also occur in the closed-loop system, there may



not always exist an admissible supervisor for a given plant such that the closed-loop
system satisfies the desired behavior. A question then arises as to how to construct
an admissible supervisor which is minimally restrictive, in the sense defined in the
next paragraph. A general notion of controllability is introduced and it is shown that
a sublanguage K of the specification F can be implemented by some supervisory
control if and only if it is controllable with respect to L.

Formally, the desired closed-loop behavior of the system is represented by some
sublanguage of L. By the result just quoted, the specification cannot be exactly met,
if E is not controllable with respect to L, which informally means that it is possible
to exit E through uncontrollable events defined in L. In such a case, one could
settle for a best approximation, namely, the largest controllable (thus implementable)
sublanguage of E, if it ever exists. It has been proven that the class of controllable
sublanguages of F forms a complete upper subsemilattice of (X*,C) and therefore
the supremal controllable sublanguage of E indeed exists. An effective algorithm for
computation of the supremal controllable sublanguage has been presented when the

languages £ and L are both regular, i.e. they can be generated by FSMs.

1.2 Motivation

In this section we discuss the motivation of this research. We want to show why
EFSM is a good discrete-event model and a powerful tool for supervisory control.

Ramadge and Wonham’s SCT provides a unifying framework for the control
problem of discrete-event systems. Given a plant G and a specification E modeled
as FSM, it is desired to find a supervisor (or a supervisory countrol map) S such
that plant under supervision, denoted by S/G, satisfies the specification. Thus, as
shown in Fig.1.1-a, from a control specialist’s vantage point there is a clear separation
between the plant and the controller (supervisor).

However, in reality, oftentimes the partition of the plant and the controller is
blurred. Rather, the “closed-loop” or “controlled” system is designed at once, which

is later tested against the specification of some desired behavior for compliance.



(a) (b)

Figure 1.1: (a) Traditional supervisory control (b) Embedded supervisory control.

The implementation issues of SCT have not received the attention they deserve.
Although several software tools such as TTCT [TT05] and UMDES [UMO05] have been
developed to automate supervisory control design procedures, their in-out interface
are still unhandy and fallible. For example, when the transition structure is large, it
would be a significant task for users to input the system parameters. This problem
can be largely attributed to the underlying FSM model which does not allow an
effective way to represent the control information that is enforced on the plant by the
controller. A possible way to overcome this problem is to equip the supervisory control
with boolean operations, which would largely facilitate computer implementation as
it is much easier to code variables, update them and use their combination as a
condition than to deal with automata directly. In addition, when a change in the
system model becomes necessary (for example as a result of updates during the system
maintenance), in many cases the underlying transition structure remains unchanged
while only the guard formulas and updating functions need be changed.

In this work we attempt to bridge the gap between SCT and its computer imple-
mentation. While we use supervisory control theory to design a supervisor, we use a
novel approach to implement the supervisor as an embedded part of the system to be
controlled. The result, denoted by G, and shown in Figure.1.1-b, is an economical
way to represent the closed-loop system, and is readily identifiable with traditional
designs to discrete-event control problems. We model (7, as an Extended Finite State

Machine (EFSM). The main advantages of our framework are listed below.

1. Having equal expressive power with regular FSM (we will show this in Chapter



4), the EFSM offers a more compact representation of the closed-loop system.
The controller has been embedded into the system to be controlled. This fea-
ture is commonly used in communication protocols, where control mechanism
needs to be attached to each process since external controllers are costly and

inefficient.

2. Compared with traditional plant-supervisor closed-loop system, the EFSM model
is easier to program. Control information is encoded as formulas defined over
boolean variables, therefore implementation becomes easier to some extent, and

it is flexible to modify the code.

3. EFSM is closer to input /output models, in the sense that a controller “command
is encoded by a guard formula, while a plant “response is encoded by a set of
updating functions. Thus, for example, EFSM models can be readily translated
to PLC implementations, which are used in many industrial applications (where

boolean variables are used to encode supervisor states and events).

1.3 Related work

Holtzmann [HO91] has defined the EFSM model as an augmentation of the tradi-
tional finite state machine model. Variables are introduced to hold abstract objects
(messages). They hold only one value at a time, selected from a finite range of pos-
sible values. Transition rules of an extended finite state machine have two parts: a
condition and an effect. The former is generalized to include boolean expressions
over the values of variables, and the latter (i.e. the actions) is generalized to include
assignments to variables. Expressions are built from variables and constants with the
usual arithmetic and relational operators, while a single assignment can change the
value of only one variable. This work is at the basis of the EFSM model defined in
this thesis.

Previous work with EFSM includes [CK96], [LW02], [HC98] and [CL00]. In the
field of Application Specific Integrated Circuit (ASIC), [CK96] presents the notation



of a formal EFSM model as a 5-tuple, and uses a graph to represent an EFSM. A
method is proposed to automatically transform the high-level description of a circuit
in VHDL or C into an EFSM model that is used to generate functional vectors. [LW02]
uses EFSM models introduced in [HC98] to extract a set of functional constraints,
with which the constrained path classification is able to identify the set of functionally
testable paths inside the ASIC design.

In the area of supervisory control of discrete-event systems, Chen and Lin [CL00]
have presented their work on controller synthesis for Finite State Machines with
Parameters (FSMwP) introduced in [YF00]. FSMwP is an extension of a regular
FSM in which provisions have been made to capture the notions of event disablement
and enforcement. Note that the definition of their FSMwP is similar to the EFSM
described in [CK96]. Nevertheless, the EFSM mechanism in {CK96] was developed for
verification of circuits, while the general discrete-event systems modeled in FSMwP
framework can represent efficiently systems that cannot normally be represented by
regular finite state machines without arbitrarily large state spaces.

One of the objectives of [CL0OO0] is to use parameters to control the system effi-
ciently. The authors have introduced guards that are predicates over parameters. In
FSMwP models, transitions can be guarded by inequations, which largely mitigates
the state explosion problem. In addition, [CL00] has also introduced an external
parameter, called global time t, and presented a set of online safety control synthesis
procedures based on the limited/variable lookahead policies to address the practical
concerns of real-time implementation. However, controller design is complicated by
the iterative nature of their algorithm. In contrast, we offer a simpler and more
understandable approach to design a controller.

A study that motivated us to embark on the current research project is carried
out by Gohari in [PG04]. EFSMs are used to formalize the age-old alternating bit
protocol which is used in reliable transmission of files over half-duplex channels. In his
model transitions are guarded and may result in taking actions. A set X of boolean
variables arc defined. A guard is specified as a boolcan formula over X. A transition

can be taken (enabled) if and only if its guard evaluates to true (1). Thus, guards



can be viewed as a mechanism for controlling DES. We attempt to formalize his ideas
by formally defining notions of guards and updating actions. An exact formulation of
the control problem in the supervisory control framework of Ramadge and Wonham

[RW87] will be sought.

1.4 Organization of the thesis

The rest of this thesis is organized as follows: In Chapter 2 we study the mathematical
preliminaries, and the syntax and semantics of DES are introduced. Chapter 3 briefly
reviews the RW Supervisory Control Theory (SCT). A general model of EFSM is
defined in Chapter 4 and their synchronous product is defined as well. In Chapter 5,
an approach for implementing a supervisory control map by an EFSM is introduced,
and two applications of our approach are presented. In Chapter 6, we show how the
design can be generalized when the observation of plant by the supervisor is partial.

Chapter 7 concludes the thesis.



Chapter 2

Mathematical Preliminaries

2.1 Introduction

In this chapter, mathematical preliminaries of our approach on embedded supervisory
control by extended finite state machines will be reviewed. Since the variables used
in controller are boolean, the concept and basic properties of boolean algebra play
an important role in our framework. The fundamental elements of boolean logic are

discussed Section 2.2. Section 2.3 reviews the basics of language and automata theory.

2.2 Boolean algebras

Let X be a set of variables over B. A literal is a boolean variable or its comple-
ment. A mazterm is the disjunction (or) of a collection of literals. A minterm is
the conjunction (and) of a collection of literals. A boolean formula is an expression
in which boolean variables are combined by recursively applying boolean operations
and (conjunction), or (disjunction), and not (complement). A boolean function is
a function from domain B* to codomain B, where k is the number of variables in
domain. It assigns a new boolean value to a variable based on the current values of
all k£ variables. Thus we can also specify a boolean function by writing out a truth
table, which is a table listing all possible assignments of truth values to the variables

and the resulting output from the function.



Definition 2.2.1 (n-Minterm, bit combination) An n-Minterm is a minterm
consisting of n literals. The corresponding bit combination for each n-Minterm is the

only bit combination for which the minterm evaluates to 1. |

Example 2.1: If z;, 25 and z3 are the boolean variables, the 3-Minterms are:
J—fli‘zfg, [_C_lfgig, Zflfﬁgﬂ_?g, ]_712[,'2133, .leigffg, xlfgfg, SEll'Qi‘g, T1X9X3. The COI"I'GSpOIldiDg bit

combinations are shown in Tab.2.1.

Table 2.1: 3-Minterm and bit combination.

3-Minterm Designation Bit Combination

T1 70Ty m0 000
21723 ml 001
T1T2T3 m2 010
ZT1%223 m3 011
T1Z2T3 m4 100
T1T2T3 mo 101
12273 mb6 110
T1ToZ3 m7 111

o

Any boolean function can be written using literals and boolean operations. There

are two standard forms, called Disjunctive Normal Form (DNF) and Conjunctive

Normal Form (CNF), which are particularly useful. If a boolean expression is a

conjunction of maxterms then it is said to be in conjunctive normal form, and if it is
a disjunction of minterms then it is said to be in disjunctive normal form.

Example 2.2: Let X = {z;,z2}. The boolean expression T1xo+ 717> is in disjunctive

normal form (it is an or of two minterms); the boolean expression (Z; + Z3)(x1 + 23)

is in conjunctive normal form (it is an and of two maxterms). o

Definition 2.2.2 (An n-Minterm set) An n-Minterm set is a set including all

8



n-Minterms, denoted by M,,. 0

Example 2.3: The set of all 2-Minterms is My={2122. T129, 11T2. 7132} o

2.3 Languages and automata

2.3.1 Languages

Let ¥ be a finite set of distinct symbols. We refer to ¥ as an alphabet. Let £* denote
the set of all finitc sequences and ¢ denote the empty sequence (sequence with no

symbols), where ¢ ¢ %.. We then write:
Tri={euxnt

An element of ¥* is a string or word over the alphabet %; € is the empty string.

Let s,t € 2*. The catenation operation between two strings
cat . X¥ X ¥ — ¥
is defined according to
1. cat(e, s) = cat(s,€) = s;
2. cal(s,t) = sl.

Any string in * can be generated by catenating event labels from 3. The length

| s | of astring s € ¥* is defined according to
1. |e]=0,
2. |s|=kifs=0109...00, 0, €5,i=1,2,... k.

Thus | cat(s,t) |=| s |+ |t ], s,t € £*. We conclude this subsection with some

terminology about strings. If tuv = s with ¢, u, v € X*, then

e [ is called a prefix of s,
e v is called a substring of s,

e v is called a suffiz of s.

Observe that both ¢ and s are prefixes, substrings and suffixes of s.

9



2.3.2 Automata

In discrete-event systems, an automaton is a device that is capable of representing a
language that describes the behavior of a system or its specification.

An automaton over the alphabet X is a 5-tuple,

G = (Q7 ZT 57 do, Qm)

where @ is a nonempty set of states, g € Q is the initial state, Q,, € @Q is the
subset of marker states, and § is a partial state transition function § - Q x ¥ — @
0(q, o) = ¢’ means that there is a transition labeled by event ¢ from state g to state

q'. We extend § from @ x ¥ to @ x X*:
J: QG xX*—Q
in the following recursive manner. Let ¢ € (), 0 € ¥ and s € X*,

o 3(g,¢) =g,

>

. (q, J) = 5(q, 0)7
o d(q,s0) = 8(3(q. ), 0).

In the rest of this thesis, we omit the ~ and write ¢ in place of 5. G is characterized
by two subsets of £* called the closed behavior of G, written as L(G), and the marked

behavior of G, written as L,,(G). The closed language is defined as:
L(G) :={s € £* | 6(qo,5) € Q}

and is interpreted to mean the set of all possible event sequences which the plant may

generate. The marked language is defined as:
Ln(G)={se€ X | 6q,s) € Qmn}

and is intended to distinguish the subset of closed behavior that represents completed
tasks.

Note that 0 C L,,(G) C L(G), and always € € L(G) (provided G # EMPTY,
the DES with empty state set). The reachable (state) subset of G is

10



Q- ={g € Q|(3s € £*)(q0. 5) = q};
G is reachable if Q, = Q. The coreachable subset is
Qo ={q € QI(3s € £7)0(q, s) € Qm};

(7 is coreachable if Q.. = (. (G is trim if it is both reachable and coreachable.

2.4 Synchronous product on automata

Let L; € X5, Ly C 35, where in general ¥; N Xy # 0. Let ¥ = X, U, Define a

natural projection

according to
1. P(e)=¢

& 1f0¢21

2. P(o)= :
g lfU € Ei

3. P(so) = Fi(s)Pi(c),s € ", 0 € ¥.

P, is catenative since Py(st) = Pi(s)P;(t). The action of P; on a string s is just
to erase all occurrences of o in s where o ¢ ;. P, is called the natural projection of

¥* onto ;. Let
Pt Pwr(S}) — Pwr(S*)
be the inverse image function of F;, where for K C X,
PTHK):={se | I5(s) € K}

For Ly C %7 and Ly C %3, the synchronous product L || Le € £* is defined

according to

Ly || Ly := Py (L) N Py (L)

11



Thus, s € Ly || Ly if and only if Pi(s) € Ly and Py(s) € L,. If G, =
(Q1,%1,01, 10, @1m) and Gy = (Q2, Ly, 2, gao, Qo) are recognizers for Ly and Lo,

respectively, then the synchronous product of GG; and G5 is the automaton

Gy || Go i= Ac(Qr X Q2, %1 U s, 4, (¢10, g20), Qim X Q2m)

where for (q1,q2) € Q1 X Q2 and o € 3.

( N - -
(01(q1,0),02(q2,0)) if 81(q:. o)} and d2(gq, 0)!
(61(q1,0), a2) if 91(q1,0)! and o ¢ 3
gm0y =1 |
(@1.02(q2, 0)) if 05(g2, o) and o ¢ 33,
\ undefined otherwise.

The automaton G || G2 satisfies the following equations:

L(G1 || G2) = L(G1) || L(G2) (2.1)
Ln(Gr || Go) = Liy(Gh) || Lin(G2) (2.2)

12



Chapter 3

Background Review

3.1 Introduction

This work is built on the the supervisory control framework for discrete-event systems
developed by Ramadge and Wonham [RW87], [WR87], and decentralized supervisory
control presented by Rudie and Wonham [RW92]. Therefore it would be appropriate
to review the basics of RW supervisory control theory and the decentralized super-
visory control theory. We first review Finite State Machines (FSM) by which plants
and supervisors in this work are modeled. Then two principal control architectures,
centralized supervisory control and decentralized supervisory control, are discussed. In
centralized supervisory control the overall plant is supervised by one supervisor, while
in the decentralized case local supervisors are synthesized for local plants to achieve
a global control objective. The partial observation of plant events by a supervisor is

also considered in the former.

3.2 FSM model

The plant to be controlled is modeled by an automaton G = (Q, X, 9, o, Q) where
Q) is a set of states, X is an alphabet of event labels, ¢o € @ is the initial state,
Q. € @ is the set of marker states, and 4 : () x ¥ — @ is a partial transition function

defined at each state in ) for a subset of 3. For the case where @ is finite, G can

13



be represented by a state-transition diagram whose nodes are states and whose edges
are transitions defined by 0. On the transition diagram, the initial state is identified
by an incoming arrow and marker states arc identified by outgoing arrows. The set
3 is the set of all edge labels on the diagram.

The closure K of a language K € Y* is the set of all prefixes of strings in K.
K is closed if K = K, and K is L,,,(G) — closed if K = K N L,,(G). By definition,
L (G) € L(G).

3.3 Supervisory control of DES

3.3.1 Centralized supervisory control

In RW supervisory control theory a plant to be controlled, as a generator of a formal
language, may generate strings that are illegal, or may cause harm to the system oper-
ation. By adjoining a supervisor (controller), it will be possible to force the language
generated by the plant to an acceptable region. The desired performance of such a
controlled generator will be specified by requiring that its generated language must
he contained in some specification languages. It is often possible to meet this speci-
fication in an ‘optimal’. that is, minimally restrictive, fashion. The control problem
will be considered fully solved when a controller that forces the specification to be
met has been shown to exist and to be constructible. The one-plant-one-supervisor
(centralized) ‘architecture’ is sketched below in Fig. 3.1-(a), while Fig. 3.1-(b) shows

when the plant consists of several parallel components.

Controllability and supervision

To impose supervision on the plant, we identify some events as controllable and
some as uncontrollable, thereby partitioning ¥ into the disjoint scts ¥, the set of
controllable events, and ¥, the set of uncontrollable events. A particular subset of
events to be enabled can be selected by specifying a subset of controllable events.

It is convenient to adjoin with this all the uncontrollable events as they are never
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Figure 3.1: The architecture of centralized supervisory control.

disabled. Each such subset of events is a control pattern, and we introduce the set of

all control patterns
F={ve€Puwr(X)|v25.}.

We denote by G the overall plant to be controlled. A supervisor is an agent which
observes a sequence of events as it is generated by G and enables or disables any of
the controllable events at any point in time throughout its evolution. By performing
such a manipulation on controllable events, the supervisor ensures that only a subset
of L(G) is permitted to be generated. Formally, a supervisor is a map ¥V : L(G) — T.
The behavior of the closed-loop system is represented by V/G, to suggest ‘G under
the supervision of V’. The closed behavior of V/G is defined to be the language
L(V/G) C L(G) as follows:

1. e€ L(V/G);
2. If se L(V/G), so € L(G) and o € V(s), then so € L(V/G);
3. No other strings belong to L(V/G).

Clearly L(V/() is nonempty and closed. When the marker states of the con-
trolled system are decided by the plant, i.e., all the states in the supervisor are

marked, the marked behavior of V/G is
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La(V/G) = L(V/G) N Ln(G).

In addition, when correctly designed, a supervisor must guarantee that the closed-loop
system is nonblocking, i.e., that every string generated by the closed-loop system can
be completed to a marker state. This requirement is expressed as follows: a supervisor

V is proper for G if
L.(V/G) = L(V/G)

where the overbar notation denotes prefix closure.
To characterize those languages that qualify as the marked behavior of some
supervisory control V, a language K € L(G) is said to be controllable with respect to

G if
Ko, NLG) C K.

For illustration, K might be viewed as a specification of some “legal behavior”. Con-
trollability requires that if s is legal, ¢ is uncontrollable, and so is physically possible,
then so must be legal as well. In the rest of this thesis, we denote by S the automaton
that implements V.

An optimal (i.e. minimally restrictive) proper supervisor S for G subject to
L,(S/G) C K can be obtained by the TTCT procedure supcon that computes a

trim representation of supervisor S according to S = supcon(G, K).

Observability

So far, we have assumed that a supervisor can observe and record all events generated
by the plant. A more realistic problem of supervisory control is that only a subset
of event labels generated by the plant can actually be observed by the supervisor.
The events visible to S form a subset of observable events, denoted by ¥, of the
alphabet ¥. Note that, S can potentially disable controllable events that are not
obscrvable, namely 3, — ¥, need not be empty. The subset 2, in general need not
have any particular relation to the subset of controllable events 3.. However, in

this chapter, we assume that each event is either controllable or observable, which
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makes our formulation more realistic. All other events in the world—that can neither
be controlled nor observed by the supervisor— are irrelevant and therefore will be
implicitly self-looped in every state of the plant. The sets of uncontrollable and
unobservable events are denoted by ¥, = ¥ — ¥, and ¥, = ¥ — %, respectively. To
represent the fact that a supervisor has only a partial observation of strings in L(G),
P, : £* — ¥}, the natural projection operator defined in Section.2.4, is used. Thus
the effect of P, on a string s is just to erase from s the events that do not belong
to ¥, leaving the order of ¥,-events in s unchanged. A supervisor under partial
observation is a map S, : P,[L(G)] — 2% such that S,[P,(s)] 2 . for any s € L(G).

In their work [FW88], Lin and Wonham defined the observability of a language
K as follows: Let K C L,,(G). The language K is said to be observable with respect
to (L(G), P) if and only if, for all s,s" € ¥* if P,(s) = P,(¢') =

i) (VoeX)so€c KAs' € Kns'oe L(G)= s'c € K,
i) sc KAs' € KN L,(G)= s € K.

In words, observability requires that if two strings look the same to a supervisor,
they must be consistent with respect to one-step continuations in K. The second
condition ensures that the decision as to whether mark a string generated by K
can be unambiguously made on the basis of an observer’s view of a string in L(G).
The observability condition together with the controllability condition is necessary
and sufficient for the existence of a supervisor under partial observation as shown in

following theorem and corollary presented in [FW8§].

Theorem 3.3.1 Let K € L,,(G) be a nonempty language. There exists a non-
blocking supervisor S, such that L,,(5,/G) = K if and only if the following three

conditions are all satisfied.
1. K is controllable with respect to L(G);
2. K is observable with respect to L(G); and
3. Kis L,,(G)-closed. 0
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If we are only interested in the closed behavior, then we have the following

corollary.

Corollary 3.3.1 Let K € L(G) be a nonempty language. There exists a nonblocking
supervisor S, such that L(S,/G) = K if and only if the following three conditions

are all satisfied.
1. K is controllable with respect to L(G);
2. K is observable with respect to L(G); and

3. K is closed. O

3.3.2 Decentralized supervisory control

The control problem modeled in Section. 3.3.1 describe those situations where an
acceptable solution details the actions that a single supervisor must take. However,
in distributed systems where plant components are geographically widely separated,
a centralized supervisor satisfying the global control objectives cannot be designed;
rather we need a decentralized solution, i.e., a set of local supervisors, each is designed
to monitor and control a plant component. A supervisor acting on all controllable
events in the entire event set is called a global supervisor; in contrast, a supervisor
that can only monitor and control subsets of events pertaining to a component is
said to be local. A decentralized solution prescribes the control action that each local
supervisor must take. The architecture is sketched in Fig. 3.2.

In many practical fields, such as communication networks, local specifications
are not suitable for modeling a control problem; rather, specifications are given as a
global requirement. That is, a problem statement describes what goal the network as
a whole must achieve without spelling out what each agent in the network must do
to achieve the global control objective.

Two decentralized control problems, called GP (Global Problem) and GPZT
(Global Problem with Zero Tolerance), are described by Rudie and Wonham in

[RW92], in which a global specification is to be satisfied by a set of local controllers.
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Figure 3.2: The architecture of decentralized supervisory control.

Global Problem (GP) Given a plant GG over an alphabet ¥, a language K such
that 0 # K C L,,(G), a2 minimally adequate language A C K, and sets £.1, Y2, Zo1,
Y2 C X, construct local admissible supervisors S,; and Spe such that 5},1 A Spg is a

proper supervisor for G and
AC L(Su A Sp/G) C K.

Here, for + = 1,2, supervisor S,; can only observe events in X, and can only
control events in ;. S‘pi denotes the supervisor which takes the same control decision
as S, on an event in Y, enables all events in ¥\, makes the same transitions as
S, on ¥, and stays in the same state for events in £\ X,;. S’pi, the global extension
of S,;, can be obtained from S,; by adding ¥\X; selfloops in its every state.

In the special case where A = K, GP reduces to GPZT.

Global Problem with Zero Tolerance (GPZT) Given a plant (7 over an alphabet
¥, alanguage K such that § # K C L,,(G), and sets Z.1, Yo, o1, To2 € X, construct
local admissible supervisors S, and Sy, such that S,; A Sy is a proper supervisor for

G and
Lm(gpl A gpg/G) = K

Notice that the language K need not be prefix-closed. The solvability of GPZT
is related to the coobservability property of the specification language.
For simplicity, we present all decentralized problem with fwo supervisors, and all

results can be generalized to any fixed number of supervisors.
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The key to solving both GP and GPZT is a property called coobservability.
Theorem 4.1 in [RW92] states that there exist supervisors S, and Sy, that solve
GPZT if and only if K is controllable w.r.t. (¢ and coobservable w.r.t. G, P,;, and
P, where P, i = 1,2, stands for the projection from £* to 2},. In the rest of this
work, we assume that the K is always controllable w.r.t. G.

The definition of coobservability in [RW92] is written as the conjuction of several
instances of two relations. Fix an alphabet ¥, a plant GG, and a language K C L,,(G).
The relation nextact is defined as follows:

(Vo € B,5,8 € 5*)(s,0,8) € nextacty if so € KANs€ KNso€ L(G)=so € K.

Informally, for any two strings s and s’ and ¢ € %, (s, 0, s') are related according
to nextact if the supervisor’s decision as to whether disable or enable o after the
occurrence of s’ forces the same decision upon the occurrence of s, provided the plant
permits such an action to be taken.

The relation markact is defined as follows:

(Vs,s' € £*)(s,8') € markactg if s € KAs€ KNL,(G)=s€K.

Informally, for any two strings s and §', (s, 0, s') are related according to markact
if the supervisor’s decision as to whether mark a permissible s is based on whether s’
is marked, provided the plant permits the marking of s.

Now we define the notion of coobservability. A language K is said to be coob-
servable with respect to G, P,y and P,y if
(Vs,8,8" € Z*)Po1(s) = Por(s') A Poa(s) = Pye(s") =

(Vo € LaNXew)(s,0,8) € nextactx V (s,0,s") € nextacty] conjunct 1
AV € o\ Be2)[(s,0,8") € nextacty| conjunct 2
AVo € B\ Za)[(s,0.8") € nextact) conjunct 3
A[(s,s') € markacti V (s, s") € markact k| conjunct 4

In plain English coobservability states that if an event generated by the plant
ieads the system to illegal behavior, then at least one of the two supervisors must have
enough information to disable it. On the other hand, if the event does not lead the
sequence generated so far into illegal behavior, then neither of the supervisors should

disable it. Finally, the decision as to whether or not mark an ambiguous string can
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be determined by at least one of the supervisors.

Theorem 3.3.2 There exist supervisors S,; and Sy, that solve GPZT if and only if
1. K is controllable w.r.t G;

2. K is coobservable w.r.t G, P,, Psa. 0
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Chapter 4

Extended Finite State Machines

4.1 Introduction

This chapter describes a general model for Extended Finite State Machines (EFSMs)
as well as their synchronous product.

An EFSM is an augmentation of a regular finite state machine. A set X of k
boolean variables is defined. A transition is enabled if and only if its guard formula,
which is a predicate defined as a boolean formula over X, is true (1). When a
transition is taken, several updating actions may follow. An updating action is a
boolean function that reassigns a new value to a variable based on the old values of

all variables. Since there are k variables, each transition may trigger up to k actions.

An EFSM generates a closed language and a marked language, in the same way
as a regular FSM does. In addition, we show that they have equal expressive power
on representing languages. The synchronous product of two EFSMs is defined in
this chapter, and a precondition under which the synchronous product exists is also

discussed.
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4.2 EFSM Model

In the following definition, let G denote the set of all boolean formulas over X, and

A denote the set of all boolean functions B* — B.

Definition 4.2.1 (Boolean Extended finite-state machine) A boolean EFSM,

denoted by G, is an eight-tuple
GIZ (Q: 27 67 do, va X7 g, A)
where:

- (Q is a finite sct of states;

Y is an alphabect;

d:@Q x X — @ is a partial transition function: 6(q,¢) = ¢, means that there is a

transition labeled with event o from state g to state ¢’;

go is the initial state;

- Q. € @ is the set of marker states;

X 1is a finite set of k£ boolean variables;

g : X — G is a guard formula;

A:¥ — A* is a k-tuple of updating functions, where k = | X|. O

We make the following remarks about this definition.

e Employing a finite set of boolean variables does not enhance the expressive
power of our models. Rather, it serves our ultimate goal of implementing su-
pervisory control on systems modeled by FSM. For simplicity, we write EFSM
in place of boolean EFSM in the rest of this thesis.

e We assume that all EFSMs in this thesis are non-empty.
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For the sake of convenience, § is extended from domain ¢ x ¥ to domain @ x ¥*

in the following recursive manner:

2. 0(q,s0) :=06(6(q,s),0) for s € * and o € ..

Boolean variable set X={z1,za,...,2} is a set of k boolean variables over
which the guard formulas and updating functions are defined. All variables are

initialized to false (0).

Guard formula g : ¥ — G. For a € X, g, is a boolean formula with which all
transitions labeled with o are guarded. In an EFSM, a transition labeled with
an event is allowed to happen if and only if its guard formula evaluated at the

current values of the boolean variables, returns true.

Updating function A : & — A*. For o € &, A, is a k-tuple
Aa - (a§>zex

where a® : B* — B is a boolean function. When « is taken, it results in
assignments x := a%(v) for all x € X, where v = (vq, 19, ..., vx) are the current
values of all variables in X. Notice that the updating function A, updates
boolean variables with values from domain B* with values from codomain B*.
We can extend the definition of the updating function from A : ¥ — A* to

A ¥* — A* The updating function
As = (a‘f)zEXv se X’

updates the values of boolean variables when the string s is taken, resulting in

assignments x := a¥(v) for all x € X. A, is defined in the following recursive

manner:
1. Av) = (070,...,());
k
2. Ayo = Ay (Ay(v)) foru e ¥ and o € ¥.

24



4.2.1 Languages

In this section we formally define languages as a framework for studying the behavior
of EFSM. A nonempty EFSM generates a closed language and a marked language
over the alphabet 3.

Given an EFSM G, we define the notions of the languages generated and marked
by an EFSM by considering all paths that can be traversed while respecting guard
formulas at all visiting states. To formalize the idea, we need to know in advance the
values of variables after each prefix is generated. To this end, we define a string-values

map.

Definition 4.2.2 (String-values map) Let V : ¥* — B* be a map that assigns
to a string s € * a tuple of boolean values assumed by variables in X at the state

reached by s from the initial state of G,. Thus, V(s) is defined as follows:
V(s) = (v(s, 2))rex
where v : ¥ x X — B is recursively defined as follows: for s € ¥* and z € X |
1. v(e,x) = 0;
2. v(so,x) = aZ(V(s)), o € L. O

According to this definition, v(s, z) is always tracking the value of x € X at the state
0(qo, t) for all prefixes ¢ < s. Therefore, the value of z at the state reached by s
can be precalculated by V(s). Using the notation, we define the closed and marked

languages of an EFSM.

Definition 4.2.3 (Closed and marked languages of an EFSM)
The closed language of an EFSM G.= (Q. %, 0, qo, @m, X, g, 4), denoted by L(G.,), is

defined recursively as follows:
1. e € L(Gy).

2. s€ L(Gy) Nd{(qo, 80)! N gs(V(s)) =1 < so € L(G,).
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The language marked by G, denoted by L,,(G.), is:
Lin(Gz) = {s € L(G,) | 0(qo, 5) € Qm} ]

The language L(G,) contains the event sequences of all directed paths starting
from the initial state that can be traversed along the state transition diagram while
respecting guard formulas at all visiting states; the string corresponding to a path
is the concatenation of the event labels of the constituting transitions in the path.
Therefore, a string s is in L(G,) if and only if it corresponds to an admissible path
in the state transition diagram; equivalently, if and only if at all states in the path
the guard formula evaluates to true for a transition that is a part of the string s.
Obviously, L(G,) is prefix-closed by definition.

The marked language represented by G, L,.(G.), is a subset of L(G,) consisting
only of the strings s for which 6(qo, s) € Qnm, that is, these strings correspond to paths
that lead to one of the marker states in the state transition diagram. Since not all
states need be marked, L,,(G,) need not be prefix-closed in general.

A state ¢ € @ is reachable if g = §(qo, s) for some s € ¥*. G, itself is reachable
if ¢ is reachable for all ¢ € (). A state ¢ € @Q is coreachable if there exists an s € &*
such that 6(g,s) € Qm, and G, is coreachable if ¢ is coreachable for all ¢ € Q. G, is
nonblocking if every reachable state is coreachable, or equivalently L(G,) = Ly (G.).
In other words, any string that can be generated by G, is a prefix of (i.e. can always
be completed to) a marker state of G.

Before showing an example, we introduce the notation used for guards and up-
dating actions in following figures. Each transition in the diagram is equipped with
a guard and updating functions. A right arrow ‘—’ indicates that the formula ¢ on
the left is the guard formula for the event on the right, while ‘/’ indicates that after
the event occurs the function A on the right follows to update variables. When g is
true, we simply write o/A, while if there are no updates we write g — o.

Example 4.1 (Closed and marked languages of an EFSM)

As shown in Fig. 4.1, (7, is equipped with boolean variables, guard formulas and

updating functions. At the initial state gg, all boolean variables are initialized to 0.

G, is not empty, so ¢ € L(G,) as defined. Since the guard formula for event « is
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Figure 4.1: Language represented by an EFSM.

true, a is always enabled regardless of the values of boolean variables. Therefore, by
inspecting the transition diagram, we know that {¢, o, aa, aaa}t C L(G,). At state
q1, X has been updated to {0,1} by a® and aZ2. Then gg(0,1) = 1 implies that
af € L(G,). At state g3, X has been updated to {1,0}. Then gs(1,0) = 0 implies
that aaf ¢ L(G,). No other path is defined in the transition diagram of G, so the

language generated by G, is:
L(G,) = {¢, a,aa, aan, o}

In L(G,), only the string o and aa do not lead the system to a marker state, so

according to the definition of marked language of an EFSM,

Lin(G) = {¢, aaa, af}

4.2.2 Equivalent regular FSM

In this section we establish that EFSMs and regular FSMs have equal expressive
powers. An EFSM and a regular FSM are said to be equivalent if and only if they

generate and mark the same languages.

Definition 4.2.4 (Equivalent regular FSM of an EFSM)
The equivalent regular FSM G, of a given EFSM G,= (Q, £, 9, g0, @m, X, 9,A) is a

five tuple:
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Geg = (R, Z, f.r0, Ryn)
where:
- R=Q x B” is a finite set of states;
- ¥ is the alphabet of events in G;

- [ : R x ¥ — R is the partial transition function. For a state r = (¢,v) € R and
o€ %,

Flr, o) iff 6(q, o) A g(v) =1,

in which case f(r,0) = (¢/,v’), where ¢ = d(q,0) and v = (a%(v)),ex, where

v and v’ are the values of variables at states q and ¢, respectively.

- 10 = (0,0,0,...,0) is the initial state.
——
k
- R,, C R is the set of marker states where: R,, = {(q,v) € R|q € Q.}. 0

We denote by Fq the operation that converts an EFSM to its equivalent regular
FSM, i.e. Eq(G,) = G., For the sake of convenience, f is extended from domain

R x ¥ to domain R x ¥* in the following recursive manner:
1. f(r,e):=m;
2. f(r,sMWA f(f(r,s),0)l = f(r,so) = f(f(r,s),0) for s€ ¥*and o € T.

The following theorem states that an EFSM and its equivalent regular FSM

generate and mark the same languages. First we state and prove a preliminary result.
Lemma 1 For all s € L(G,), f(ro,s) = (6(qo,s). V(s)).
Proof: The proof is by induction on the length of strings.

e Base: length(s') = 0,1.e. ' =c. Then, f(ro,¢) = (0(qo, ), V(¢)) trivially holds
since ry = (q0,0,0,...,0) as defined.
e —

k
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e Inductive step: length(s’) = n > 1. Let s’ = so, where s € £* and 0 € X.

Since s is of length n — 1, it follows from the inductive assumption that:

f(ro,s) = (8(q0, 5), V(s)).

Next, we have

flro,s') = f(ro, s0) A (g0, s0)!

= f(f(ro, ), 0) N 6(go, 50)!

= f((0(q, 5),V(s)),0) A (g0, s0)!

= (0(0(q0, 5),7), As(V(s))) A 0(q0, 50)! (Def. 4.2.4)
= (6(qo. 59),V (50)). u

We now prove our main result which states that EFSMs and FSMs have equal

expressive power.

Theorem 4.2.1 Given an EFSM G,= (Q, X, 9, ¢, Qm, X, g, A), its equivalent reg-
ular FSM G, = (R, 3, f, 70, R.n) generates and marks the same languages as G,
ie.

L(GI) = L(GGQ) (4'1>
L (Gy) = Lin(Geq) (4.2)

Proof: The proof of equation 4.1 is by induction on the length of strings. First, we
will show that for all &' € L(G,), it must be the case that s’ € L(G,,).

e Base: length(s’) = 0, i.e. s = e. Then trivially e € L(G,,) since G, is

nonempty.

e Inductive step: length(s’) = n > 1. Let s’ = so, where s € ¥* and ¢ € X.
Since L(G) is prefix-closed and so € L(G,), it implies by inductive assumption
that:

s € L(Gey).

Furthermore, we know that
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s € L(Geq) = f(ro,9)l.

In addition, by the Definition 4.2.3 it follows that,

so € L(Gy) A f(ro, s)!
= 0(qo, 50)! N go(V(s)) = 1A [ (ro, 5)!
= 6(0(qo, 8), ) A go(V(s)) = LA f(ro, s)!
= f(f(ro,s),0)! (Lemma. 1 and Def. 4.2.4)
= f(ro, s0)!

= s0 =5 € L(Gey)-
Second, we will show that for all s € L(G.,), it must be the case that 5" € L(G,).
e Base: length(s’) =0, i.e. s’ =¢, € € L(G,,) trivially since G, is nonempty.

e Inductive step: length{s’) =n > 1. Let s’ = so, where s € ¥* and o € . Since

L(Gy,) is prefix-closed and so € L(G,,), it implies by the inductive assumption

that:
s € L(Gy).
Next, we have
s € L(Gy) Ns' € L(Gey)
= s € L(G;) A f(ro, s0)!
= s & L(Gx) ( (TO7 )70)')
= s € L(G,) N f((6(q0,5),V(s)),0)! (Lem. 1)
= s € L{G,;) Nd(go. so)! N g (V(s)) =1 (Def. 4.2.4)
=5 =s0€ L(G,) (Def. 4.2.3)

We conclude that L(G,) = L(Ge,).

By Definition 4.2.4, a state r = f(rg,s’) = (¢, v) € R is marked if and only if the
corresponding state g = §(go, §') € @ is marked, so L, (G;) = Ly, (Geq)- |

So far, we have shown that each EFSM can be converted to its equivalent regular

FSM. The following example illustrates the conversion.
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Figure 4.2: Converting an EFSM to its equivalent regular FSM (a).

Example 4.2 (Converting an EFSM to its equivalent regular FSM)
As shown in Fig. 4.2, G is equipped with two boolean variables, guard formulas
and updating functions for events. Based on Definition 4.2.4, we convert G, to its
equivalent regular FSM G.,. First of all, since G, is nonempty, we create a state
ro = (qo, 0,0) as the initial state of G4, shown in Fig. 4.3-1. At state ¢ only event
a is generated in G, with ¢,(0,0) = 1, so a transition labeled with a should be
generated at the state 7o = (go,0,0) in Gep. It leads G4 from 7y to a new state
1 = (0(qo, ), a®(0,0),a%?(0,0)) = (¢1,0.1), shown in Fig. 4.3-2. At state ¢; only
event 3 is generated in G, with g5(0,1) = 1, so a transition labeled with 8 should
be generated at the state r = (q1,0,1) in G.,. It leads G, from 7 to a new
state 12 = (d(q1, 8), a3 (0,1),a5(0,1)) = (go.1,0), shown in Fig. 4.3-3. At state
q2, both « and § are generated in G,. Since go(1,0) = 1 and g5(1,0) = 1, both
transitions labeled with « and 3 should be generated at state ry = (g2, 1,0) in Ge,.
Transition « leads G, from 7y to state (0(ge, ), a%(1,0), a*2(1,0)) = (go,0.0) = ro,
which is the initial state of G.,. Transition 3 leads G., from r; to a new state
r3 = (8(g2. 8), a5 (1,0), a5 (1,0)) = (g2, 1,1), shown in Fig. 4.3-4. At state gz, both
a and [ are generated in G,. However, for z;1 = 1 and x5 = 1, only g,(z1,29) = 1
while gg(z1,z2) evaluates false. So only transition « should be generated at state
r3 = (g2-1,1) in Gy Transition a leads G, to state (6(ge, ), a2t (1.1),a22(1,1)) =
(q0,0,0) = ro, which is the initial state of G4, shown in Fig. 4.3-5.

No other state or transition can possibly be generated in GG¢q. Finally, we mark
all states in G., whose corresponding state components are marked in G,. Thus,

ro = (q0,0,0), 72 = (g2,1,0) and r3 = (g2, 1, 1) should be marked, as shown in Fig.
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4.3-6.
The resulting G, and G, generate and mark the same language, i.e. L(G,) =

L(Gug)s TG = Lon(Geg). o

4.2.3 Synchronous product

In this section we describe a way of combining two EFSMs into their synchronous
product (||). The technique will be used for the specification of control problems in-
volving the coordination or synchronization of several EFSMs together. The commu-
tation between synchronous product operation and the Fq operator will be discussed
at the end of this section.

Note that not any two given EFSMs are compatible to work together. One
undesirable case should be excluded: the updating functions of a common event
change the values of a common variable differently in each machine. We limit the
synchronous product operation on two EFSMs which satisfy a consistency condition,

resulting in their concurrent opreation.

Definition 4.2.5 (Consistency condition) Given two EFSMs
(;ll = (Q’La Ei; 5ia q:0, Qirru X’i7gi7 Al)! 1= 17 27 they are consistent if

VUGElnEQ and Vl‘elex% a“f(,:aga. O

The consistency condition guarantees the synchronous product of EFSMs to work
properly by preventing the above ambiguous and hence undesirable situation. The
consistency condition requires that the updating functions triggered by a common
event in the two machines set a common variable to the same value. In other words,
the component EFSMs will not update a common variable to different values when

they run in parallel.

Definition 4.2.6 (Synchronous product of two EFSMs)
Given two consistent EFSMs

G = (Qi, 24, 04y Gio, Qim, Xiy gy Ai), 1= 1,2, their synchronous product is:

G:cl ” G.’JcQ = (Qa 257 qo-: Qm,X,Q,A)
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Figure 4.3: Converting an EFSM to its equivalent regular FSM (b).

33



where:
- Q=01 x Qs
- X = 21 U 22/

- For q1,¢q2 € Q and 0 € %,

(

(01(qr, 0}, 02(q2, 0));

if 81(q1.0)! A 62(go. 0)!
(01(q1,0), @2);

if 61(q1,0)! No ¢ X
(q1,02(g2,0));

if 02(qo, 0)! N & %4

§({qr, 2),0) =

undefined;

otherwise

qo = ((ho-, (Jzo);

Qm = le X QQm;

X:X1UX2;

For o € X,

Jie A 9205 if o€ Z] N 22
9o =\ G105 ifoeX\ 2,
920’ if o €83\ %y

- A, = (a%)zex, where for 0 € ¥ and z € X,

,

af (=a3); ifx € XiNXoA

gE TNy
afy; ifre X1\ XoNo €,
g = Ve € X1 Ao €51\ 2y
al; ifze Xo\ X1No €%,

\/SIJGXQ/\UEEQ\El

x; otherwise
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We make the following remarks about this definition:

e The consistency conditions can be easily checked by inspecting the updating
functions of common events on common variables before taking the synchronous

product.

e Without considering boolean variables, guard formulas and updating functions,
the synchronous product of EFSMs is identical to the synchronous product of

regular FSMs.

o | X| = |X1]+]|X2|—|X1NXs|, where | X | denotes the number of boolean variables
in set X.

e A transition with a common label in the composed EFSM should be guarded by
both guard formulas in the component EFSMs, i.e. a common event is allowed
to occur in composed EFSM if and only if both of its component guard formulas

are true.

e The updating function of the composed EFSM updates the values of boolean
variables in X . Since A, and Ay, always agree on updating common variables,
we can think of common variables as being updated by either Ay, or A,,, if
o € X1 N, Table. 4.1 summarizes the updating functions of the composed

EFSM for nine possible combinations of x € X and ¢ € .

Table 4.1: Updating functions of the synchronous product of two EFSMs.

( o\z XinXe | Xi\ Xo | Xo\ X,
1 MYy | af, or al, af, as,
X1\ Xy 0Ty ai, x
Yo\ 2 as, x as,
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The following result states that the synchronous product of two FSMs can be
extended by taking the synchronous product of the extended components; in other

words, the operations of ‘extension’ and ‘synchronous product’ commute.

Theorem 4.2.2 Let G; = (Qy, 24, i, qoi, Qim), © = 1,2 be FSMs, and define G :=
Gy || G2 = (@, %, 9, g0, Q). Assume that G is extended to an EFSM G, = (G; X, g, A).
Then

Lm(Gx) = Lm(Gzl “ G:cZ) (44)

where in Gwi = (Gi;X7gi7Ai)7 gi = g|21 and Ai - AIE-;? 1= 1) 2.

Proof: First note that by definition G, || G2 has a transition diagram identical to
(. Next, we show that guard formulas and updating functions of G,y || G2 and
G, are identical by denoting the guard formulas of G, and G, || G2 by ¢ and ¢,
respectively, and updating functions of of G, and G,; || G2 by A and A’| respectively.

For an event o € X, we discuss its guards, g, and ¢/, and its updating functions,
A, and Al in three cases:

For o € 31\Ys, by the definition of synchronous product of G,q || G2, we know
that g/ = g1,. On the other hand, since o € £,\33, g1, = ¢,, which in trun implies
gs = ¢.. By the definition of G, || Guo, for x € X, a* = a¥,. On the other hand,
since o € $1\%y, a® = a¥,, which in turn implies a,* = a2. Since the variable sets of
G, and (G || Gu2 are the same (X ), we conclude that A, = A..

For o € %5\, by a similar argument, it follows that g, = ¢/ and A, = A..

For o € %3 N ¥, by the definition of synchronous product of G, || G2, we know
that g/ = g1 A gas. Since c € ¥1N Yy and g; = ¢

s =12, g1o = gas = g5, which
in turn implies g, = ¢/. By the definition of G;; || Gia2, for z € X, a'f = af, = ad},.
On the other hand, since ¢ € B2 NY), a¥, = a%, = a%, which in turn implies a,* = aZ.
Since the variable sets of G, and G, || G2 are same (X)), we conclude that A, = A/

Finally, a state (g1, g2) in Gy1 || G2 is marked if ¢; € Qy,,, 7 = 1,2, which implies

the state (g1, ¢2) in G is also marked. Since the operation ‘extension’ does not change
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the marker states set Q,, of G, (¢1,¢2) in G, is also marked. Thus, we can assert
that the two EFSMs G, || G2 and G, are identical, and therefore they generate and

mark the same languages as shown in Eq. 4.3 and Eq. 4.4. a

The following theorem shows that the operations ‘synchronous product’ and
‘equivalence regular FSM’ commute given a condition that an updating function of a
private event never changes a common variable’s value. Before proving this, we show

a preliminary result.

Lemma 2 Let G,; and G.2 be two consistent EFSMs and G, = G, || Ggo. If an
updating function of a private event never changes a common variable’s value, i.e. for
r€ XiNXsand a € (Z1\ X)) U(Z2\ £4), af, = af, = z, then for all s € L(G,) and
oE X,

916(Vi(P1(5))) A 925 (Va(Pa(s))) if 0 € TN %y
9.V (s)) =4 g1.(Vi(Pi(s))) if o e %\ T,
G20 (Va(P2(s))) ifoeBy\ 5
where V', V; and V, are the string-values maps of G, G;; and G4, respectively, and

P;, 7 = 1,2, is the natural projection X* — X}

Proof: First, we consider o € X1 \ ¥s. According to Definition 4.2.6, we know that
after s occurs in GG, from the initial state, o € 3; \ X5 is enabled if and only if g1,
evaluates true calculated at the current values of variables in X;. Therefore, we need
to show that for all x € X, the values assigned to = by V(s) and Vi(Pi(s)) are

identical. By induction on the length of s, we show that
,U(va) = UI(P1<S)7‘r) (45)
e Base: length(s) =0, i.e. s =e. This trivially holds true.

e Inductive step: length(s) = n. Let s = {3, where t € 3*. Since both ¢t and P ()

are of length smaller than n, it follows from the inductive assumption that:

v(t,x) = v (Pi(t), z).
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Furthermore, since we are only concerned about x € X, if g € 1NYgAz € X4,

then

v(s,z) =v(tf, x)

av0)
= aj (v(t, y)ye)()

= ajy (U('Z y)yexl) (Def. 4.2.6)
= aig <U1(P 1 (1), y)yeXl) (inductive assumption)

= o, ((A)
— n(P ()8, ) (Def. 4.2.2)
= v (P (t8), r) (e
= u(Pi(s), z)

Otherwise, 8 € (51 \ 52) U (5 \ 54), then

v(s,x) = afa(V(t))

= o(t, z) (. ag =)
= v (Py(t), z) (inductive assumption)
= v (P (tf), z) (-BE)

= v (Pi(s), z)
So, the inductive case holds, and we conclude that
v(s, z) = vi(Pi(s), x)

which implies Vo € £;\%s and s € ¥*, g,(V(s)) = g1, (Vi (P1(s))).

Similarly, we conclude Vo € £,\3; and s € %, g,(V(s)) = gos (Va(P2(s))).

For the case o € ¥; N Yy, we know that after s occurs in G, from the initial
state, o is enabled if and only if both ¢1,, calculated at the current values of X; C X,

and g¢s,, calculated at the current values of Xy C X, evaluate true. Since we have
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proved that for all x € X, the values assigned to z by V(s) and V;(Pi(s)), i = 1,2,

are identical, we can easily ascertain that

9:-(V(s)) = 910(V(8)) A g2 (V (5))
= 91.(Vi(P1(5))) A 920 (Va(Pa(s)))

Theorem 4.2.3 Given two consistent EFSMs G,; = (Qs, %4, 0i, Gio, Qmir Xis 63, Ai),
t=1,2,if for z € X;N Xy and o € (51\E2) U (E:\E1), af, = a}, = z, the equivalent
FSM of their parallel product is equivalent to the parallel product of their equivalent
FSM, that is

L(Eqwﬂ n Gz:z)) - L(Eqm) l Eq(Gﬂ)) (46)
Lo (B4(Gua | Gua) | = Lo Ba(G) | Pa(Cia)) (47)
Proof:
Let
G:L‘ = Gml ” G:L'Z = (Qy E 57 4o, Qm7 X,g, A)7
Geql = EQ(GJI) = (Rh El; f17 T10, le)7
Geq2 = E(I(GzQ) = (327227 f27T207 Rmz),
Geg = Eq(G;) = (R, X, f. 70, Rn)
and

™m

Geg = Geqr || Geg = (R, X, f'm5, Ry,).

We need to prove:

L(Geg) = L(CL,) (43)
Lm(Geq) = Lm(G;q) (4-9)

The proof of equation 4.8 is by induction on the length of strings. First, we show

that for all s € L(G.,), it must be the case that s' € L(GL,).

eq
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e Base: length(s') =0, ie. s =c¢, then trivially € € L(G,) since it is nonempty.

e Inductive step: length(s’) = n > 1. Let ¢ = so, where s € ¥* and 0 € X.

Since s is of length of n — 1, if follows from the inductive assumption that:
s € L(Geq) = s € L(GL,).

If 0 € ¥1 N2, then we can write
s' =50 € L(Geq)

s’ =so € L(Gy) (equivalence)
=5€ L(G)Nd(q.s0)! Ng(V(s)) =1 (Def 4.2.3)
= 5 € L(Geg) N6(qo0, 50NN go(V(s)) =1 (equivalence)
= s e L(G,,) No(q,50)! N gs(V(s)) =1 (inductive assumption)

= 5 € L(Geqr || Geg2) AN 0(q0, 50)! A g1 (Vi(Pr(5))) = g2o(Va(P2(s5))) = 1
(Lemma. 2)
=5 € L(Geqr || Geg2) A 01(qu0, Pi(50))! A b2(g20, Pa(s0))!
A 915(Vi(Pi(3))) = g20(Va(P2(s))) =1
(v Gy = Gy || Gaz and 0 € £, N )

= s C L(Geql ” Geqz) A (51(51((]10, Pl(S)), O’)' AN 52((52(6120, PQ(S)), U)'
A g1o(Vi(Pi(s))) = gao(Va(Pa(s))) = 1 (coeXiNk)

5 € LGt || Gegs) A (61<51(qm, Pu(s)), o) A g1 (A Pa(5))) = 1)
A (52@2((120, Po(s)), 0)! A gzo (Va(P(s))) = 1)

= 8 € L(Geql H Gqu) A fl(fl(Tl(), Pl(S)) O')’ A fQ(fQ(TQQ, PQ(S)) O')' (D€f424)
= 5 € (Gt || Geg2) A f(f (70, 5),0)! (Def. 4.2.6)

= 50 € L(Geql ” Gqu) ( g e 21 M 22)
= so € L(G,)

If 0 € %1\ &y, then we can write
s =s0 € L(Geg)
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— ¢ = so € L(G,) (equivalence)
= s € L(Gy) A b(go, 50) A go (V(s) = 1 (Def. 4.2.3)
= 5 € L(Geg) N 6(qo, so)N A go(V(s)) =1 (equivalence)
= 5 € L(Gup) || I(Gaga) A 6(q0, 50)! A go(V(s) =1 (inductive assumption)
= 5 € LGug) | L(Ge2) A 840, 50)! A g1, (Vi Pi(s)) = 1 (Lemma. 2)
> 5 € LGegt) Il LGugz) Ay (010, Pr(s0))! A g1, (Ve Pi(5))) = 1
(-G = G || Gua)

= 5 € LGug) Il HGuge) A3 1(51(a10, (), ) A 1o (Va(RU(S) = 1

(o Gy= G || Gao and o € 5y \ )
> 5 € LGut) | 1Giae) 1 (8261 10, P9 00 A o151 = 1)
=5 € L(Geq) | L(Geg2) A J1(J1(7120, Pr(5)), 0)! (Def.4.2.4)
= 50 € L(Geq1) || L(Geg2) (ro€e X\ )
= so € L(G,).

Similarly, so € L(Gey) = so € L(G.,) holds true for o € X5\ ¥). So we can

conclude that:
L(Gey) € L(G,).

Second, we show that for all s" € L(G,), it must be the case that s" € L(Ge,).

e Base: lenglh(s’) = 0, ie. s’ = ¢, then trivially s’ € L(G,,) since L(G.,) is

nonempty and prefix-closed.

e Inductive step: length(s’) = n > 1. Let s = so, where s € £* and ¢ € &,

Since s is of length of n — 1, it follows from the inductive assumption that:
s € L(G,) = s € L(Gey)-

If o € 31 N X, then we can write

so € L(G,)
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= 50 € L(Geq1) || L(Geq2)

= 5€ L(Gup) | LUGeg) A Fiilrso, Pr(so)))! A fola(ran. Pa(so))!

= s € L(GL) A filJi(rio, Pu(9)), oA fal fa(rag, Pals)),0)! (o €T1iNE,)
= 5 € LG A (526100 PLS). o)t A so () = 1)

A (56l P(9),0) A eV (05) = ) (Det4.2.4)

= s & L(G;q) A <(51((51((]10, Pl(S)), U)' A 62(52((]20, P2(S)))'>

A (gm(vma(s))) 1 A g (Va(Pals)) = 1)

=5 € L(Gey) N O(qo, 59)! A (gla(Vl(Pl(S))) = g20(Va(Pa(s))) = 1)

(Def. 4.2.6)
= s € L(G.,) A d(qo, s0)! N g,(V(s)) =1 (o€ XN, and Lemma. 2)
=5 € L(Geg) N(qo, s0)! AN gs(V(s)) =1 (inductive assumption)
= s€ L(G,) Nd(qo. so)! AN g (V(s)) =1 (equivalence)
= so € L(Gy) (Def 4.2.3)
= so € L(Gey) (equivalence)
If 0 € 1\ X9, we can write
so € L(G,)
= 50 € L(Geq1) || L(Geg2)
= s € L(G.) A fi(fi(r10, Pa(s0)))! (roeX\ %)
= s € L(G,) A fi(fi(ro, Pi(s)), 0)! (foem)
= s e L(G,,) A <61(61(q10, Pi(5)), o' A g1 (Vi(Pi(s))) = l) (Def.4.2.4)
= s € L(GY,) A d(qo, 50)! A gis(Vi(Pi(s))) = 1 (Def. 4.2.6)
= s € L(G,) No(qo, 50)! N gs(V(s)) =1 (o€ X\ Xy and Lemma. 2)
= 5 € L{Gey) N0(qo, s0)t N go(V(s)) =1 (inductive assumption)
=s€ L(G.) No(go-s0)! A g(V(s)) =1 (equivalence)
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= so € L(G,) (Def 4.2.3)
= s0 € L(Gey) (equivalence)

Similarly, so € L(G,) = so € L(Ge,) holds true for o € %5 \ X3, So we can
conclude that:

L(Gey) € L(Gey)-

Based on the above two sub-conclusions, we have proved equation 4.8.
Finally, we conclude the proof of Theorem 4.2.3 by proving equation 4.9.
s' € L(Geq)

< ¢ e L(G,) (equivalence)
& s e L(G, )N g, s) € Qm (Def.4.2.3)
& s € L(G,) No(qo, s') € Qm (equivalence and Eq.4.8)
& s’ € L(G) AN Pi(s') € L(Geqr)) AN P2(s') € L(Geg2)) Ad(q0,8) € Qmn

&' € L(Ge) A Pi(s') € L(Geqr)) N T2(s') € L(Geg2))

A 01(quo, PL(8')) € Qi A 02(g20, P2(5")) € Qma (Def. 4.2.6)
-~ SI S L(G/ ) A <P1( /) < L( eql) /\ O1(Q107P1(8')) c le)

A (PQ(SI) € L(Geg2)) N 02(ga0, P2(5")) € Qm?)

& e LG, A <f1(r10, Pi(s)) € R1 A fa(rao, Po(s")) € Rmz)

(Def.4.2.4)
o e LG AL o) € R,
&5 € Ln(GY,) n

4.3 Example

In this section, we show how the foregoing model can be used to build up the speci-

fications for a control problem, to be known as a small factory.

Shown in Fig. 4.4, the small factory operates as follows. The machines M; and

M, are connected to each other through a buffer of capacity one. An item is fetched

(a;) and is then processed (f;) by machine M;, ¢ = 1,2. Machine A/, fetches an item
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from an input conveyor belt and processes it. After being processed by M, the item
is placed in the buffer and is later fetched by Ms for further processing. It is desired
that the buffer neither overflows nor underflows.

The formal design procedure is explained in the next chapter; here we present
an intuitive solution. To satisfy the overflow/underflow restriction, we introduce a
boolean variable z which effectively counts the number of items in the buffer. Machine
M, can fetch a new item if the buffer is empty (z = 0), while machine M; can fetch
an item if there is an item already in the buffer (z = 1). When M; places an item
in the buffer (8;), it sets z := 1, and when M, fetches an item from the buffer (as),
it sets x == 0. We call M; and M, extended as M., and M,,, respectively. It is

M1 [¢3] le I — a1
b1 Bi/e =1
M, az Mgo - apfw:=0
Oy Ot o i
B2 B2

Figure 4.4: Machines M, and M,, and extended machines M,; and M.

easy to see that no common event is shared by the two machines, so the synchronous
product of M,, and A/, shown in Fig. 4.5-(a), exists and models the behavior of
the overall controlled system of machines and buffer. The equivalent regular FSM is
shown in Fig. 4.5-(b) as well, from which it can be easily verified that the overflow
and underflow specifications are both met.

We would like to point out that if we embedded our control in the synchronous
product of A, and M, the result, as shown by Theorem 4.2.2, would also satisfy the

control objectives.
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/61/"17 =1

A/f[a-,l | | Af[a:Z .

B2 32

0=/ — 7
0=:%/%0 — &

,@1/@ =1

Figure 4.5: Controlled system.

4.4 Problem definition

In the next chapter we present a novel approach to implement the supervisiory control
by an EFSM, in which the supervisor is embedded in the system to be controlled.

Suppose that we already have a plant G and a supervisor S modeled by regular
FSM. We extend the plant by embedding the control mechanism in it. The result,
denoted by G, is shown in Fig. 1.1-b.

Supervisory control is introduced by extending the plant with boolean variables,
guard formulas and updating functions. Boolean variables are used to encode the
supervisors states. Event observation is captured by a set of boolean functions that
update the values of boolean variables and are triggered by the occurrence of events.
Finally, control is introduced by guarding events with boolean formulas. The result-
ing EFSM implements the supervisory control map in the sense that the languages

generated and marked by the EFSM are equal to those of the supervised system, that

45



18:

L(G,) = L(S/G)
Ln(Ga) = Ln(S/G).

4.5 Conclusion

In this chapter. we have defined EFSM by augmenting the traditional FSM. We have
shown that although EFSMs have equal expressive power as FSMs, they offer far more
economical and realistic representations of physical systems. Languages represented
by an EFSM are defined as well as the synchronous product of two consistent EFSMs.
Two useful properties of the ‘synchronous product’ operation are shown. In addition,
we use ‘small factory’ as an example to show how the EFSM can be used to model the
specification of a control problem, and the main problem to be solved in this thesis

is defined in the end.
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Chapter 5

Embedded Supervisory Control by
EFSM

5.1 Introduction

The objective of supervisory control is to synthesize controllers or supervisors such
that the closed-loop system consisting of plant and controllers meets the specification
of some desired behavior. The concept of supervisory control for regular FSM was
presented by Ramadge and Wonham [RW&7].

In this chapter, we discuss supervisory control implemented by extended finite
state machines, where the supervisor is embedded in the plant. In our design, the
plant and the supervisor are synchronized on the set of events, and the close-loop
(controlled) system is designed in EFSM framework at once. The controller disables
or enables a transition by defining a guard formula that evaluates to false whenever
the transition leads to illegal behavior. We assume that a plant and a supervisor
represented by nonempty deterministic finite automata, denoted by G and S respec-
tively, have been already given, and an EFSM G, is to be designed based on the
information provided by G and S. Also, we will show (&, does enforce the supervision
of 5 on G, in the sense that the languages generated and marked by the EFSM are

equal to those of the supervised system, that is:
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L(G,) = L(S/G)
Lin(G.) = Ln(S/G).

5.2 Supervisory control implemented by EFSM

5.2.1 Design overview

Iﬁ this subsection the idea of supervisory control implemented by EFSM will be
explained. Consider a plant to be controlled G over a set of events 32, modeled by
FSM. We design a boolean formula for each event in 3, called a guard formula. The
formulas are defined over a set of boolean variables. A transition labeled with an
event is enabled if the guard formula associated with that event, calculated at the
current values of variables, evaluates true. The values of variables are updated by
updating functions, which are triggered by the occurrence of events. Notice that each
event has an updating function for each boolean variable.

The supervision is thus enforced by the above control mechanism. Next, we
present our design mathematically. Since in traditional supervisory control the su-
pervisor is the machine that enables or disables controllable events which are to be
generated by the plant, all the variables and formulas are derived from the automaton
of the supervisor. Throughout this work we assume that all supervisors are control-
lable with respect to the plant to be controlled.

Let S = (Y, 3, &, yo, Yin) be the generating automaton of a controllable supervisor.
Three steps are involved in the design of an EFSM (, that implements the supervision

of S on G:
1. Boolean variables design;
2. Guard formulas design;

3. Updating functions design.
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5.2.2 Boolean variables design

In our design, boolean variables are introduced for two ends:
1. Encoding the states of the supervisor S;

2. Combined with binary operations, they form guard formulas and updating func-

tions.

Before initializing the values of boolean variables, we have to decide on the num-
ber of boolean variables, i.e. how many boolean variables are sufficient for encoding

the states of S.

Definition 5.2.1 (Boolean variable set X) X is a boolean variable set contain-
ing k boolean variables, and k, the required number of boolean variables in X for
supervisory control, is equal to the next higher integer of the logarithm of N base 2,

where N is the number of the supervisor’s states:
k = [log, N (5.1)

O
Notice that even when not all the bit combinations are used, still & boolean
variables are necessary when k — 1 < loga N < k. Without loss of generality, all the

boolean variables are initialized to false (0), i.e. X :={0.0,...,0}.
e ——

k
Next, we assign each state y; € Y a label [;, 0 < 1 < 2%, which is a unique bit

combination of k-bit boolean variables. Since all the variables are initialized to 0, the

initial state, yo, is always labeled with ‘00...0’.

k
For convenience we define two injective maps: state-label map | and label-

minterm map m.

Definition 5.2.2 (State-label map) A label-state map [ : Y — B* is an injective

map which assigns to a state its unique label. O
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Definition 5.2.3 (Label-minterm map) A label-minterm map m : B — M, is
a map in which a label is mapped to the k-minterm that is true only at that label.

Thus, for (vy, ve, ... v) € BE m(vy.vg, ..., t) = 2125 . . . 2, Where
) 1 3 ) 3 : ) ) )

5.2.3 Guard formulas design

The guard formula of an event is designed to control the occurrence of that event. It
is formed by boolean variables in X combined with binary operators. If the current
values of variables evaluate the guard formula to true (1), the event is enabled; other-
wise, the event is disabled. Since a controller should never disable an uncontrollable
event, the guard for an uncontrollable event is always true. However, a guard for a
controllable event may evaluate to true or false depending on the current values of
variables.

For a general event «, its guard formula, denoted by g,, is calculated as prescribed

in the following definition.

Definition 5.2.4 (Guard formula) Let L, be the collection of labels of all su-

pervisor states from which « is enabled, i.e.:

Loy ={l(y) | €y, )y €Y}

Then the guard formula for an uncontrollable event is always true; for a control-
lable event g, is the boolean expression in DNF disjoining the minterms whose bit

combinations are in Lgy, that is:
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5.2.4 Updating functions design

The updating functions are used to update the values of variables in X. They are
triggered by the occurrence of events. Since the functions update the values of all
variables, each event triggers k updating functions, each for a variable in X. The
updating functions of event «a, denoted by A,, are calculated as prescribed in the

following definition.

Definition 5.2.5 (Updating functions) Let || z 1|, denote the value of boolean
variable z in state y, and let L4, be the set of all state labels from which x

becomes 1 after the occurrence of a:

Las) = W) | [ v lgyay =Ly €Y }.

Then the updating function activated by « on z is the boolean expression in DNF

disjoining the minterms whose bit combinations are in L 4, 5, that is
al = Z m(l) (5.3)

and

5.2.5 Embedded supervisor design

Before we formally introduce the design of an embedded supervisor, we show two
preliminary results. First we show that the map V introduced in Section 4.2.2 indeed

assigns to a string s the values of the boolean variables reached by s.
Lemma 3 We have: v(s,2) = [| © lg(y0.9)-

Proof: The proof is by the induction on the length of s.
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e Base: |s| =0, i.e. s =¢. By Definition 4.2.2

v(e,z) = 0
= [ 2 lego

So, the base case holds.

e Inductive step: |s| = n. Let s = uo, where u € £* and ¢ € ¥. Since u is of

length n — 1, it follows from the inductive assumption that:

0(1,2) = [1 2 e
Furthermore, by Definition 4.2.2

U(S, l‘) = aﬁ(v(uv Z))ZEX
ag([i z ']£(yo,u))zeX

According to the definition of updating function aZ, we know that

ai([' Z ']é(yo,u))zeX =1l& l({(yo,u)) € LA(Uv .’E)

ie.
v(s,z) =1 & U(&(yo,u)) € La(o, )
& [T Jeqyouo) =1
& [z leges =1
So, v(s, z) = [I T t]¢(ye,s) holds true for the inductive step. ]

Second, we show at a reachable supervisor state the guard formula of a generated

event evaluates to true with the values of variables at that state.

Lemma 4 For s € ¥* and 0 € &, so € L(S) iff s € L(S) and g,(V(s)) = L.

Proof:
so € L(S) < &(yo, s0)!
< &(yo, ) AN(E(Yo, 5)) € Loy (Def. 5.2.4)

& seL(S)Ng ([ ‘]&(yo~,8))zEX =1
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< s€ LS)ANgo(v(s,2))zex =1 (Lem. 3)
& seL(S)Ng(V(s)) =1 [ |
Given the automaton of an admissible supervisor S = (V. 3, &, yo, Yy) over a
plant G = (Q, X, 9, go. @) with . C T, we implement the supervisory control map
by extending G to an EFSM G, = (@, %, 6. g0, @m, X,9,A). The EFSM G, can
be regarded as the closed-loop system satisfying the control objectives. The first
five components of G, are identical to those of G, while X, g and A are derived
from S as described in details in the previous subsections, and summarized below for

convenience.
- X ={x,29,...,21}, where k = [log, |Y1].

- Foro e,
1 , 0 € Bye

ZleL m(l) , 0 € X

Q@
q
Il

g(a)

where

Loy =(y) |y €Y NE(y, o).

- For o € 3, A, = (a%),ex, where a® = ZleLA(a . m(l) and

LA(o,zi) = {l(y) I Yy € Y A [( Ly I]é(‘yyg) = 1}

O

Now, we show that the EFSM G, designed as prescribed above will in effect

implement the supervisory control map enforced by S.

Theorem 5.2.1 For the EFSM G, designed as above we have L(G,) = L(G) N
L(S) = L(S/G). In addition, L,,(Gy) = L, (G) N L,(S) = L,(S/G) if L,(S) is
L (G)-closed.

Proof: If N is 1, each event is always enabled or disabled at the only state of the

supervisor, so no boolean variable is needed. If N is greater than 1, we assign a bit
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combination to every state, resulting in a minimum number of [log, N| variables for
encoding N states.
The proof is by induction on the length of strings.

First, we will show that for all s € L(G,), it must be the case that s’ € L(G) N
L(S).
e Base: length(s') =0, i.e. ' =¢. This trivially holds true since L{G) N L(S) is

nonempty and prefix-closed.

e Inductive step: length(s’) = n > 1. Let s’ = so, where s € ¥* and ¢ € X.

Since s is of length n — 1, it follows from inductive assumption that:
s € L(G;) = s € L(G) N L(S).

Furthermore, we know that:

s’ =s0 € L(G,;)

— s € L(G2) A d(go, s0) A go(V(s)) = 1 (Def. 4.2.3)
= s€ L(G)As e L(S) Ad(go, so) A go(V(s)) = 1

= <s € L(G) A 5(qo,sa)!>/\<s € L(S) A go(V(s)) = 1>

= so € L(G) A so € L(S) (Lemma 4)
= s' =s0 € L() N L(S)

We conclude that:
L(G,) C L(G)N L(S).

Next, we will show that for all s € L(G) N L(S), it must be the case that s’ € L(G,).

e Base: length(s’) = 0, i.e. s = e. This trivially holds true since L(G,) is

nonempty.

o Inductive step: lenglh(s’) = n > 1. Let s = so, where s € £* and 0 € X.

Since s is of length n — 1, it follows that:
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se€ L(G)NL(S) = s € L(G,)

Furthermore, we know that:

s =so € L(G) N L(S)

= s € L(GYN L(S) A so € L(G) A so € L(S)

= s € L(Gy) Nd(qo, so)! As e L(S)Ag(V(s)) =1 (Lemma 4)
= s € L(G) Nd(qo. so)l A g(V(s)) =1

= so € L(G,)

=5 € L(G,)

We conclude that:

L(G)N L(S) C L(G,).
and therefore,

L(G,) = L{G) N L(S).

For the marked language,

Lin(Ge)
= L(Gz) N Lin(G)
= L(S/G) N L, (G)
= L(GYNL(S)N L(G)
= L,(S)N L,(G) (L (S) 18 Ly (G)-closed)
= L,(S/G). a

Notice that if we assume that the supervisor is a nonmarking supervisor, i.e.,
the marker states of the controlled system are decided by the plant only, the condi-
tion requiring L,,(S) being L,,(G)-closed would not be necessary in order to obtain
Lo (Gy) = Ln(S/G) since in this case

Ly (Ge)
= L(G2) N Lim(G)
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= L(S/G) N Lm(G)
= L..(S/G).
The following theorem states a sufficient condition for the controlled system to

be nonblocking.

Theorem 5.2.2 Given nonblocking G and S, if L,,(G) and L,,(S) are nonconflicting

and S is a nonmarking supervisor or L,,(S) is L,,(G)-closed, G, is nonblocking.

Proof:

Lin(Ge)
=L (S/G) (" S is a nonmarking supervisor or L, (S) is L,,(G)-closed)
= Ln(G) N Ln(5)
= L(G) N L,(S5) (nonconflicting)
= L(G) N L(S) (G and S are nonblocking)
= L(5/G)
= [J(()z) .

5.3 Examples

We present three examples to illustrate the procedure of controller design. In the first

example, we simply present a plant and an admissible supervisor.

5.3.1 Example 1

With ¥ = 5, = {«, 8,7}, a plant G and an admissible supervisor S = {Y, 3. £, yo, Vi }

are given in Fig. 5.1.

. H s FORD

Figure 5.1: Example: embedded supervisory control design.
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EL: *

Figure 5.2: Labeled supervisor states.

First, we determine the value of &, the required number of boolean variables
for encoding supervisor states. There are three states in supervisor S, i.e. N = 3.
Therefore, according to equation 5.1 we choose k& = [log,3] = 2, so the set X
contains two boolean variables: X = {z;,z2}. The encoded (labeled) supervisor
states are shown in Figure 5.2. For instance, when the system transitions lead the
supervisor to the state labeled with ‘01’, the current values of z; and z, are 0 and 1,
respectively. Notice that since both the variables are initialized to 0, the initial state
of the supervisor is labeled with ‘00’.

Second, we design the guard formula for each event as a boolean formula over X.

o Guard formula for «, denoted by g,. The set of labels that label states at which

event « 1s enabled in S is:

Loy = W)y, ),y €Y}
= {00} (5.5)

So, the event « is enabled only after the occurrence of those strings which lead
the system to the state labeled with ‘00" in S. According to the equation 5.2,

we have

Ja — Z m(l)

= m(00)
= T,79 (5.6)

e Guard formula for 3, denoted by gsz. We follow the same procedure as that in
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designing g,.

Lypy = {ly)lEy, BLyeY}
= {01} (5.7)

g5 = Y m()
USEPTE

= m(01)

= i'lﬂig (58)

e Guard formula for v, denoted by g,.

Loy = {lW)Ew,MhyeY}
= {01,10} (5.9)

9y = Z m(l)

leLg(y)
= m(01) +m(10)

= I1Z2 + 217>
Finally, we design the updating functions triggered by each event.

e The updating functions triggered by «, denoted by A, is a pair

Ay = (aZ, a%?).

For x,, the set of labels labeling the states from which xz; becomes 1 after the

occurrence of o 1is:

Lazy = U 21 ]lewe) =Ly €Y}
= 0 (5.11)
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According to the equation 5.3, we have

= 0 (5.12)

Note that 0 is a boolean function that always returns the value false for all

values of (z1,x2) in B2

For w4,

Lae) = U 22 ey =Ly €Y}
— {00} (5.13)

So,

= Z1Zy (5.14)
o Agis a pair. We follow the same procedure as that in designing A,.
Ag = (aj', a’)
For x4,

Lagey = W2 Jews =1Ly €Y}
= {01} (5.15)

So,

af o=y m(l)

€L a(3.21)

= m(01)
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For z,,

Lagay = UMW 22 1]esy =1Ly €Y}

=0 (5.17)

So, the occurrence of § never updates the value of x5 to true (1), and hence:

ag =0 (5.18)
e A, is a pair

Ay = (alt. a?)

From Figure 5.2 we see that by taking the transitions labeled with vy the system
always returns to its initial state, which means that v always sets the variables

x1 and zo to false, i.e., Latyz) = Laye,) = 0. So the updating functions of

event -y are:
all =0 (5.19)
al? =0 (5.20)
T1Zy — afx1 =0 |29 1= T17T9

T1xe — [/x1 = T122, %9 1= 0

21 Dxo — /1 :=0,29 :=0

o
.

Figure 5.3: Extended system of Example 1.

The extended system G, is shown in Fig. 5.3, and the equivalent FSM of G,
denoted by Ge,, is shown in Fig. 5.4, from which it can be easily checked that
L(G,) = L(G¢,) = L(S/G) and L,,(G,) = L,,(Gey) = L (S/G). o
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G H@ﬁ@a

Figure 5.4: The equivalent regular FSM of the extended system.

M1 IT—ooa/z:=0
ay, B Bi. Ba @} by
- A
(0@ Y
\_/

Q2 Mo [\QU — az/z =0

G "
fBojz =z

(a) (b)

Figure 5.5: (a) Supervisor for small factory (b) Extended plants.

5.3.2 Example 2: Small factory

We formalize the supervisory control design for the small factory example described
in Section 4.3. An admissible supervisor, shown in Fig. 5.5-a, implements the desired
specification requiring that the buffer neither overflows nor underflows.

We note that one boolean variable is sufficient to encode the states of S. We
denote this variable by z and initialize it to 0. We then label the initial state of S
with ‘0" and the other state with ‘1’

Since 81 and (5 are uncontrollable events, their guards are always true. For the
events og and ap we have Lgya,) = {0} and Ly, = {1}, so the guards are g,, = &
and g,, = .

As for the updating functions, we have La(a,2) = La(asz) = 0, Lag o) = {0}

and L a(g,2) = {1}, so the updating functions are af, = af, =0, o, = T and o}, = z.
Extended (controlled) plants are shown in Fig. 5.5-b.
It is worthwhile to observe that the designs in Fig. 5.5 and Fig. 4.4 are identical:

the updating function z := 0 of a; can be dropped since a; is enabled only when
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z = 0. Also, as is the case with 35, when the value of a variable is not updated by the
occurrence of an event, the updating function can be either left out as in Fig. 4.4, or

set equal to the identity function as in Fig. 5.5. o

5.3.3 Example 3: Alternating bit protocol

Alternating Bit Protocol (ABP) [WC68, KR69] is used for reliable data transmission
over half-duplex channels, and supervisory control in EFSM framework has firstly
been applied to ABP in [PG04]. We formalize the design in this section. As shown in
Fig. 5.6, two processes A and B communicate over a channel ch. Process A fetches
a message and sends it to the channel. Then process B receives the message from
the channel and if it is error-free, accepts it. The control objective states that every

message fetched by A should be accepted by B exactly once.

Channel ch J———>

Fetch Send Receive Accept

Figure 5.6: Two processes A and B communicating over a channel

In this example we first model the plant and will show how it fails to satisfy
the specification of the desired behavior. Then embedded controllers for sender and
receiver are synthesized by introducing boolean variables and designing guard for-
mulas and updating functions so that the system under control satisfies the desired

specification.

Plant and specification

A schematic of the plant is shown in Fig. 5.7, where a transmission error is depicted
by a broken arrow. The system events are defined in Table 5.1. Fig. 5.8 shows

FSM models for sender A, receiver B and channel ch. Finally, the specification ! is

lObserve that since this specification is controllable with respect to the plant, it can serve as
an admissible supervisor to achieve the control objective. For eliminating confusion, we write S in

place of F.
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Table 5.1: System events.

Event Description
df data fetched by A
ds data sent by A
dr data received by B
de data received by B erroneous
da data accepted by B
cs | control (acknowledgement) sent by B
er control received by A
ce control received by A erroneous

formalized in Fig. 5.9, in which states are labeled with the value of the only boolean

variable, explained in Section 5.2.2.

dr ds dr P
cr | 7. F--g-- a
_____ ch &5 B)
ce cs

Figure 5.7: Schematic of the ABP plant.

We make two assumptions:

1. The channel can pass data messages only in one direction (from A to B), while

the control information can flow bidirectionally.

2. Messages or control acknowledgements never get lost in the channel; rather,
they can only get corrupted, which will always be detected by the receiving

process.

Based on these assumptions, we briefly describe each plant component in Fig. 5.8.
The sender A initially sends a data message to the channel, or fetches a new data

message and sends it to the channel. After receiving an acknowledgement from the
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channel, the sender A returns to its initial state. As far as the channel is concerned,
any type of message received by the channel ch from one party (data ds or control cs)
will be sent to the other party (dr or cr, respectively), or it will be delivered corrupted
(de or ce, respectively). After receiving a data message from the channel, the receiver
B nondeterministically sends an acknowledgement to the channel, or accepts the
message and sends an acknowledgement to the channel. Note that for simplicity our
models overapproximate the behavior of the actual system. Our embedded controller,

to be designed later, will remove all unreasonable as well as illegal behavior.

daf cr,ce dr,de dr,de
RS oo S
ds cs ds c da

Sender A Channel ch Receiver B

Figure 5.8: Parallel FSM of the plant. 3 = {df,ds,dr,de,da,cs,cr,ce}.

Y — {df,da} Y —{df,da}
S: af Cy

da

Figure 5.9: Requirement specification.

It is easy to see that the plants in Fig. 5.8 do not satisfy the specification in
Fig. 5.9. For example, the string ‘df;ds;dr;da;cs;ce;ds;dr;da’ is accepted by the plant
but not by the specification. The problem is that the rcceiver B accepts a data
message that has already been accepted. Thus, some form of control is required to
prevent a duplicate copy of a data message from being accepted. The alternating bit
protocol provides a standard solution to achieve the control objective. A description

of the protocol is given by W. C. Lynch in [WC68].
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Formalizing the alternating bit protocol by EFSM

In this subsection we formalize alternating bit protocol in the EFSM framework using
the approach presented in Section 5.2.5. We extend A and B automata so that they
can serve as embedded local supervisors at the sender and receiver sites.

To implement S by extending the FSMs of the plants, we note that one boolean
variable is sufficient to encode the states of S. We denote this variable by z and
initialize it to 0. Then we label the initial state of S with ‘0’ and the other state with
‘1’, as shown in Fig. 5.9.

Since an event in the set ¥ — {df, da} is self-looped at all states of S, the guard
formula for such an event is always true, while its occurrence does not change the
value of x.

For the events df and da we have:

Ly@ry = {0}, Lagre) = 10}

Lg(da) = {1}7 LA(da,z) =0

We conclude that gy = Z, a; = %, gaa = @, and a, = 0>. The extended plant
components are shown in Fig. 5.10. The synchronous product of plant EFSMs is
shown in Fig. 5.11, and its equivalent regular FSM is shown in Fig. 5.12.

Q
T — df Jx = dr,de

T oerce y drde
—da/x:=0
Sender A, Chanel ch Receiver B,

Figure 5.10: Alternating bit protocol in EFSM framework.

In the foregoing design of the protocol, one boolean variable x is introduced and

is initialized to 0. The variable z is set to T and 0 by fetch and accept operations,

2Note that since da is enabled only when z = 1, the updating action of da can also be written as
af, = 7, and hence the name alternating bit protocol: when a message is either fetched or accepted,

the variable x is toggled.
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ce, cr

de, dr
T —dajfz =0

Figure 5.11: Synchronous product of sender, receiver and channel EFSMs.

ce,cr

Figure 5.12: Equivalent FSM of Fig. 5.11.

respectively. Initially, we have x = 0 and therefore df is enabled while da is disabled.
When df is eventually taken, the variable z becomes equal to 1 and as a result the
event da is enabled while df is disabled. When da is finally taken, the variable z
becomes equal to 0 again, and the cycle ‘df; da’ repeats alternately.

The design presented in this section does not reflect the decentralized nature of
alternating bit protocol. The variable z is regarded as a global variable, whose value
is assumed to be instantly available at both processes®. However, this is not the case
in practice as the sender and receiver are usually geographically widely separated.
Thus, the value of variable z needs to be communicated to the second process in

real-time when it is updated in the first process.

31n other words, control decisions are made globally while control actions are taken locally.
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We have seen that the supervisory control of a small factory and ABP are ex-
amples in which control decisions are made globally while control actions are taken
locally: given a global specification, local supervisors with full observation of the plant
are embedded into local plants. In next chapter we discuss the case where the local

supervisors have only a partial view of the plant.

5.4 Conclusion

In this chapter, we have presented a new approach to implement supervisory control
by EFSM as an embedded part of the system to be controlled. The control mechanism
is embedded by extending the plant to be controlied with boolean variables, guard
formulas and updating functions. The resulting EFSM is shown to generate the same
behavior as the system under supervision. Furthermore, we have presented a sufficient
condition under which the controlled system is nonblocking. Examples to illustrate

the design method are presented as well.
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Chapter 6

Embedded Supervisory Control

Under Partial Observation

6.1 Introduction

In this chapter, we apply our method described in the previous chapter to supervisory
control problem under partial observation. Supervisors with partial observation are
synthesized for the plant components, which are represented in the EFSM framework.
Supervisory control problem under partial observation has been studied in [CD88§],
[FW90], [RW92], [SF00] and [GS00].

Controllability and observability of events in G, the controlled system, are inter-
preted as follows: G, owns a set of boolean variables, denoted by X, whose values are
fully known to GG,. The embedded controller guards controllable events with boolean
formulas over X, and updates the values of variables in X after the occurrence of an
observable event.

Both centralized and decentralized issues are discussed in this chapter. In the
former case, we assume that each event is either controllable or observable, which
makes our formulation more realistic (we simply do not care about an event that we
can neither see nor control). For simplicity, we present all decentralized problems for
two supervisors, which can be readily extended to anv finite number of supervisors.

We assume that a local event o € ¥;, i = 1,2, is either controllable or observable by
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the local supervisor 5;, i = 1,2, where ¥; is the alphabet over which the local plant

G, is defined. In addition, S; cannot see events in X\ 3;, where 2 = 3; U X,.

6.2 Centralized embedded control under partial
observation

In this section we implement centralized supervisory control under partial observation
in EFSM framework. We assume that the event set ¥ is partitioned into disjoint sets
3, of observable events and 3., of unobservable events. From the supervisor’s view
of the strings in ¥*, a natural projection F, : ¥* — 32 erases all unobservable events.

Supervisory Control and Observation Problem with Zero Tolerance (SCOPZT) is
defined in [RW92] as follows: Given a plant GG over an alphabet ¥ = ¥, U %, and a
nonempty language K C L,,(G), construct a supervisor S for G, which observes only
events in 33, and controls only events in ¥, such that L,,(S/G) = K.

The SCOPZT is solvable if and only if K is both controllable and observable.

Since the control information in the extended plant is derived from the supervisor,
before the EFSM implementation in what follows we first present the construction of
S.

Construction of S: Let H = (Y, X, £, yo, Yin) be a recognizer for a controllable
and observable specification language K, i.e. L,(H) = K and L{H) = K. Let Y’
be the set of nonempty subsets of Y. Since H is finite, Y’ is guaranteed to be finite.

The supervisor
S=",5¢9,Y,)

is given by:

Vo € 3,y €Y/,

{6(y,s) |se Xy ey, Fuols) =0}
gy o) = if this is nonempty

unde fined otherwise
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Vo e S\ X,y €Y,

Y if 3y € ¥, &(y, o)!

unde fined otherwise

&y, o) =

yo = {€(yo, s) | s € T*, Po(s) = ¢}
Yo ={y eV |ycy,ycYn}

The following result states that the closed and marked behaviors of the supervised

system are equal to K and K, respectively.

Proposition 6.2.1 If a nonempty language K C L,,(G) is controllable and observ-
able, then S constructed as above is a supervisor for G such that L(S/G) = K and
L.(S/G) =K.

Proof: First we show by induction on the length of strings that L(S/G) = K.

e Base: |s| = 0. Since both L(S/G) and K arc nonempty and prefix-closed,
€ € L(S/G) & € € K trivially holds.

e Inductive step: assume for all s € £*, |s| =n (n > 0), that s € L(S/G) & s €
K. First we show that for all 0 € &, so0 € K = so € L(S/G).

soc € K=so0c L(H)As € K Aso € L,(G)

= s0 € L{(H) As € L(S/G) A so € L(G) (inductive assumption)
= so € L(H)As € L(S) Aso € L(G)

= £(y0, 59)! A€, 5)! A 50 € L(G)

CASE l: 0 €%,

= &(yo, s0)! A€o, s) € E(yh. s) Ao € B, A so € L(G)

= &y, 50)! A sa € L(C) (Def. of &(y', o))
= so € L(S) A so € L(G)

= so € L(S/G)

CASE 2 o€ (D —5,)

= (€Yo, 8), o) A &(o, 5) € E'(yp-5) A so € L(G)
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= & (yp, s0)! N\ so € L(G) (Def. of £'(y', 0))
= so € L(S) A so € L(G)
= s0 € L(S/G)

Next we show that for all o € %, so € L(S/G) = so € K.

CASE 1: s € %,

so € L(S/G)

= so0 € L(G)As € L(S/G) A so € L(S)

S 50 € L{(G) A s € L(S/C) A (b ) AE(E G s) o) (Det. of €(y/,0))
=s0€ L(G)As€ L(S/G)NTyeY,ye&(y,s)NE(y, o)

=50 € L(G)As € L(S/G)A3s' € &*, P(s') = P(s),&(v0, ") = y NE(y, 0)!
=s0 € L(GYAs€ KA3s' € % P(s') = P(s) AN &(yp, s'0)!

=s0c L(G)As€ KA3s' €T P(s)=P(s)As'o € K

=>s0€ K (" K is observable)

CASE2 s €¥ -5,
soc € L(S/G) = s € L(S/G) A so € L(G)
= s€ K Aso € L(G)
= 50 € KT, NL(G)

=>s0€K (. K is controllable)

Next we prove that L,,(S/G) = K. First, we show Vs € K, it must be the case
that s € L,,(S/G).
seK=>s€KAs€L,(G)AsEK (K C Lyn(@Q))
=sc L(S/GYNs € L,(G)NE(yo, s) € Y
=s5€ L(S)Ns € L,(G)NE(yp,s) € Vin
=5 € La(G) ANE(yg,5) €V,
=5 € Lp(G)ANs € Ly,(S)
=5 € L,(5/G)
Conversely, if s € L,(S/G),
= s L(S/G)Ns € L,(G)Ns € L,(S)
=s€ L(S/G)Ns € L,(G)NE(y.s) €Yy,
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=sC KNL,(G)AN3s' € T P(s') = P(s) AN&(yo, §') € Vi, (Def. of &(y',0))
=>sc KNL,(G)Ns e K
=>seK (" K is observable)
|
We can employ the design approach presented in Section 5.2.5 to get an EFSM
G, enforcing the supervision S/G if L,,(S) is L,,(G)-closed, or S is a nonmarking
supervisor, in which case L,,(G,) = K.
Example 6.1: The foregoing construction is illustrated by mutual exclusion problem
under partial observation described below. Consider agents Al and A2 as shown in

Fig. 6.1. The state names refer to a single shared resource, so simultaneous occupancy

0 Idle

Ai _ . i=1,2

Request IG ]L - Use
Figure 6.1: Agents subject to mutual exclusion.

of the state pair (2,2) is prohibited. An additional specification requires that resource
usage be ‘fair’ in the sense of ‘first-request-first-use’, implemented by means of a
queue. It is assumed that the events 11 and 21 (transitions from Request to Use)
arc unobservable. To find a solution, we start by constructing A = sync(Al, A2)
and specification ASPFEC, shown in Fig. 6.2. The resulting supervisor ASUPER =
supcon(A, ASPEC) is displayed in Fig. 6.3.

ASUPER is a nonmarking supervisor. With events 11 and 21 unobservable,
application of the construction to ASUPFER yields PASUPER, with state set yp =
{0}; y1 ={1,3}; y2 = {2,6}; y3 = {4,7} and y4 = {5.8}. The five states arc encoded
by three boolean variables z;, z2 and z3, shown in Fig. 6.4.

The guard formula and updating functions for each event are listed in Table 6.1.
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Figure 6.2: Mutual exclusion specification.

The updating function %, o € {10,11,12,20, 21,22} and ¢ = 1,2, 3, is listed in (row
a , column 7) of Table 6.2.

Table 6.1: Guard formulas.

Event Guard formula
11 T1T3
21 (z1 ® 79)73
10,20,12,22 1

It can be verified that the specification is indeed satisfied by the embedded closed-
loop system. As an example, consider the string “10,11,20,21”. It can be generated
in the plant A, but it is illegal since while in use by one process the resource cannot be

accessed by the other until it is released. From Table 6.2, we find that after the string
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PASUPER

Figure 6.4: Constructed supervisor under partial observation.

“10,11,20” occurs, the variables are set to ; = 0, 3 = 1 and z3 = 1. Then, the
guard formula of event 21, (z; @ x3)Z3, evaluates to false. Therefore, the transition

labeled with 21 is disabled by the supervisor after the string “10,11,20”. o

6.3 Decentralized embedded control

In decentralized embedded supervisory control problems, we design a set of local,
embedded supervisors to monitor and control plant components in order to achieve a
global control objective. The main control problem we discuss in this section is related
to GPZT defined in [RW92]. Rudie and Wonham have presented a sufficient and
necessary condition under which GPZT is solvable. Their original idea is to construct
local supervisors .S,; with feedback maps 1;. Each closed-loop system S,,/G works in

parallel to satisfy a global specification. Based on their work, we propose the following
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Table 6.2: Updating functions.

event \ variable T Z9 3
11,21 x T z3

10 FrdaTs | 0 | ZyToTs
12 0 T1T9Z3 0

20 0 F1Fy | TiTola

22 0 0 T1T9%3

control problem: local plant components are geographically widely separated, while a
global specification is given. Assuming the control problem is solvable, we construct
a supervisor for each local plant, and extend the plant by the approach presented in

Section 5.2.5 to get plant components with control mechanism embedded.

6.3.1 Notations and problem definition

Throughout this section the following notations are used: G; denotes a local plant
over %;, and G denotes the overall plant, which is the synchronous product of local
plants. G is defined over ¥ = |JI.; ¥;. Let &, C %; and ¥, C 3; denote the
local controllable and observable event sets for local supervisor S, respectively, such
that X, U X, = X;. We selfloop each event in ¥\ X; at every state in G; to get
G,. The local supervisor Syi, is given by a map S,; : Py[L(G;)] — 2% that satisfics
Spi[Poi(s)] 2 X\ X for all s € L(G;), where P,; : ¥ — ¥, is a natural projection.
S, denotes the supervisor which takes the same control decision as S,; on an event in
Y., enables all events in £\ E.;, makes the same transitions as S,; on X,; and stays
in the same state for events in ¥\ X;. Spi can be obtained from S,; by adding ¥\ ¥,
selfloops in its every state. Gy is the closed-loop system enforcing the supervision of
gpi / G;. Again, we choose two supervisors for simplicity although the results can be
generalized to any fixed number of supervisors.

In this section, the main decentralized control problem we study is called GPZT
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(Global Problem with Zero Tolerance) described by Rudie and Wonham in [RW92],
in which a global specification is satisfied by a set of local controls. Given a plant G
over an alphabet ¥, a language K such that § # K C L,,((), and sets g1, Yoo, Zot,
Y2 C %, construct local admissible supervisors S, and Spe such that gpl A S’pg is a

proper supervisor for G and
L.m(gpl N gpg/G) =K.

Notice that the language K need not be prefix-closed. The solvability of GPZT
is related to the coobservability property of the specification language.

Motivated by [RW92], we solve GPZT with embedded controllers. We refer to
the problem as FGPZT, which is short for Embedded Global Problem with Zero
Tolerance.

EGPZT: Given distributed plants GG; and G2 over an alphabet ¥, a language
0 # K C L,(Gy || G2), and sets .1, Lo, Lo1, Loz € X, construct local embedded

systems (7,; and (5,5 such that

Below, we find the EGPZT solution when K is coobservable.

6.3.2 Coobservable specification and decentralized supervi-

SOors

In [RW92] S,; are constructed as an automaton with a feedback map provided that
K is coobservable, while we present a method to construct S’pi, which facilitates the
implementation of supervisory control map by EFSM.

Construction of Spi: Let M = (Y, %,&, v, Yin) be a recognizer for a controllable
specification language. For i = 1,2, let Y; be the set of nonempty subsets of Y. Since

M is finite, Y; is guaranteed to be finite. The supervisor:

Spi = (}/11 27 51'7 Yoi» }/Tni)
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is given by:
VO‘ E th yi 6 }/;7
{g(y S) l 5 € E*7 Y € Vi POi(S) = J}
&ilyi, o) = if this is nonempty

unde fined otherwise

Vo € (X — X)) N e, ¥ €Yiy

Yi if 3y € y;.&(y, 0)!

unde fined otherwise

gi(ylﬁ U) =

VO’ c E \ Zi, yi < Y;,'a gl(ywo—) = yi’

Yoi = 1&(vo, 5) | s € T*, Pio(s) = ¢}
Vi ={w €Yi| By ew)y eV}

Next, we extend G; to G, to enforce the supervision S’pi on G;. Since S’pi is
constructed over X, like G; the extended machine G,; is defined over ¥. In Rudie’s
GPZT the uncontrolled system is a single plant, while in our EGPZT plant consists
of several parallel components. To prove L,,(Gy; || Gi2) = K, first we show two

preliminary results.

Lemma 5 If G,; and G,3 are defined over the same alphabet, L, (G || Gu) =
Lm(Gwl) ” Lm(GIQ)

Proof: First, we show L(G,1 || Ga2) = L(Gy1) || L(Ga2). The proof is by induction
on the length of strings. First we show that for all s’ € L(G,; || Gi2), it must be the
case that s’ € L{(G,1) || L(Gy2).

e Base: s’ = ¢ trivially holds since G,;, G2 and G, || G2 are nonempty.

e Inductive step: Let s = so € L(G,1 || G.2), where s € £* and 0 € . Then
s € L(Gy1 || Gea) implies s € L(Gy1) || L(Gy2) by the inductive assumption.
Furthermore, since G, and G,o are defined over the same alphabet, o is a

common event.
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s' =50 € L(Gy1 || Gu2) N s € L{Gr1) || L(Gy2)

= 5(qo, s0)! N go(V(s)) = 1A s € L(Gar) || L(Ga2)

= (g0, s0)! N g (V(s)) = 1A s € L(Gr1) N L(Gya) (inductive assumption)

= 6(qo1. 50)! AN d(qo2, ) N go1 (V(s)) = 1A ge(V(s)) = 1As € L(Gp) N L(Gy2)
(Def. 4.2.6)

= [0(q01, SOV N go1(V(s)) = L A s € L(Ga1)) A [0{qoz, 50) A go2(V(s)) = 1A s €

L(Gu2)]

= 50 € L(Gz1) N so € L(Gya)

=5 € L(Gy) N L(Gy2)

= s' € L(Gu1) || L(Ga2)

We conclude that L(Gy1 || Gee) C L(Gr1) || L(Gyee). Next, we show for all

s" € L(Gg) || L(Gge), it must be the case that s’ € L(Gy1 || Gio).

e Base: s’ = ¢ trivially holds since G,1, G2 and G, || Gyo are nonempty.

o Inductive step: Let s’ = so € L(Gy1) || L(Gy2), where s € ¥* and 0 € £. It
follows that s € L(G.1) || L{G.2) which implies by the inductive assumption
s € L{Gy1 || Gy2). Furthermore,
s0 € L(Ga1) || L(Gaz) A's € L(Gur || Ga2)
= 50 € L(G41) N L(Ga2) A s € L(Gay || Ga2)
= [0(qo1, 50)! A g1 (V(5)) = 1A s € L(Gar)] A [6(qoz, s0)! A go2(V(s)) = 1A s €
LG A s € L(Ga1 || Ga2)
= [6(qo1, 50)! A 6(qoz, 50)| A [g51(V (5)) = 1A go2(V(s)) = 1] As € L(Ga || Gaz)
= 6(qo, o)A go(V(s)) = 1 As € L(Ga || Gaz)
= 5" € L(Gu1 || Ga2)

We get L(G.1) || L{Gy2) € L(Gy1 || Ga2). Therefore, we conclude that L(G, ||
Ge2) = L(Gy1) || L{Gy2). Next we show L, (Gey || Ga2) = Lin(Gaa) || Lin(Ga2).
$ € Lin(Gar || Gi2)
& s € L(Gu || Gu2) A (g0, 8) € Qum
& 5 € L(Gp1) N L(Gr2) A 61(Go1s 8) € Qi A 02(qo2.8) € Quna
(Def. 4.2.6)
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&S5 C Lm(Gzl) N Lm(Glg)
N Lm(Gzl) ” Lm(Gmg). [ |
Next, we show the synchronous product of extended plants do enforce the local

supervision on the plant.
Lemma 6 We have: Ly, (Gy || Ga2) = Lin(Sp1 A Spa/G).

Proof: L,,(Gu || Ga2) = Lin(Gu1) || Lin(Ga2) (Lem. 5)

= Lon(Sp/G1) 0 Lin(S2/ Go)

= L (Sp1) N Lin(G1) N Lin(Sp2) N L (G2)

= (L (So) O Ton(By2)] O [Eoma(G) O Lin( )]

= Ln(Sp1 A Spo) N L (G)

= L (Sp1 A Sp2/G). |
A proof for L,,(S, A S,./G) = K is provided in [RW92].

(" S, is a marking supervisor )

We have the following main result.

Theorem 6.3.1 The marked language of overall controlled system is equal to K,

ie.,

Proof:

Lm(G:vl “ G¢2)

= Lyn(Sy1 A Spa/G) (Lem. 6)
=K [ |

We end this subsection by a simple example to show the above scheme works
when the specification language is controllable and coobservable, and it fails when it
is not.

Example 6.2: Plant G; defined over £; = {«,~}, Go defined over Xy = {3, v}
and the recognizer of spccification language M are shown in Fig. 6.5 with ¥, =
{a}, o2 = {8} and £, = Epo = {y}. The overall plant G is the synchronous
product of 1 and Gs, shown in Fig. 6.6 together with Gy and G;. We see that

L. (G) = v+ v oy + vavy 0y + 78y + v* By ay* , while the legal language
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K=L,M)=c¢c+a+ 3+ a8y + 3avy", which is coobservable w.rt. G, P, and
P,3. Therefore, by Theorem 4.1 in [RW92] and Theorem 6.3.1 we can find 5’,,1 and

Sy2 supervising the local plants to ensure that only language K is marked by the

closed-loop system.

Figure 6.5: Decentralized embedded supervisory control with a coobservable specifi-

cation.

Y Y
G: (\'C e =(\' ) +,8 v, B
! Gy (\V a m
—O—0C-
3 e
) v iy
Go (Y

-2
-2

Figure 6.6: Plants G, G, and Gs.

Applying the foregoing constructive procedure yields supervisors Spl and §p2
shown in Fig. 6.7. The supervision of S'pi, i = 1,2, on G, yields the embedded
closed-loop system G;, shown in Fig. 6.8. The overall controlled system, shown in
Fig. 6.9, marks the language L,,(G.1 || Gs2) = €+ o+ 8+ afy* + fay* = K.

However, in the absence of communication a decentralized solution does not
exist when the legal language is not coobservable. For instance, it is not possible to

implement L,,(M') shown in Fig. 6.10 if the machines do not “talk” to each other:
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Figure 6.7: Supervisors gpl and SPQ.
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Figure 6.8: Embedded closed-loop system components G,; and Gs.

neither of the local supervisors can be sure whether to enable or disable the event v in
the right-hand side states because, based on its own observation, it cannot distinguish

between af and Sa. o

6.4 Conclusion

In this chapter we apply the method developed in the previous chapter to supervisory
control problem under partial observation. Construction of supervisors in EFSM
framework in centralized and decentralized cases are discussed. In the former case, we
solve a variant of the SCOPZT presented in [RW92], while we define and investigate
EGPZT in the latter case, which is motivated by GPZT in [RW92]. To illustrate the

main ideas of this chapter an example is presented.

81



T1XT2 — 7Y

G:cl H Ga:Z:

a/acl =T

ajzy =T

@D

ri1xrz — Yy
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Figure 6.10: A specification that is not coobservable.
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Chapter 7

Conclusions and Future Research

7.1 Original contribution

In this thesis we have presented our work on a new approach to implement supervisory
control of DES by EFSM as an embedded part of the system to be controlled. In our
work we assume that supervisory control theory of Ramadge and Wonham [RW87],
[WRS87] has been utilized to design an external admissible supervisor in the form
of an automaton. The main idea is to abstract control information from the given
supervisor and then apply it directly to the plant. The extended system, in EFSM
framework, enforces the supervision in the sense that it generates and marks the same
languages as the closed-loop system. We also explore the construction of supervisors
under partial observation. By implementing the supervisory control with embedded
control mechanism, EFSM offers more economical and realistic representations of
physical systems.

In conclusion, the original contributions of this thesis are:
1. Modeling a closed-loop DES by an EFSM.
2. Designing embedded supervisors by EFSM.

3. Designing supervisors by EFSM under partial observation.
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7.1.1 EFSM modeling

We have built an EFSM G, by augmenting a regular FSM with a finite set of boolean
variables, guard formulas and updating functions. This will later enable us to intro-
duce supervisory control as an embedded part of the original FSM plant. Boolean
variables are used to encode the supervisor’s states. Event observation is captured by
a set of boolean functions that update the values of boolean variables, and control is
introduced by guarding events with boolean formulas. A transition labeled with an
event is allowed to happen if and only if its guard formula returns true (1), and after
its occurrence the values of all variables are accordingly updated.

We have defined the closed and marked languages represented by an EFSM in
Definition 4.2.3. The language L(G,) contains the sequence of labels of all directed
paths from the initial state that can be traversed along the state transition diagram
while respecting guard formulas at all visiting states. The marked language L,,(G,)
is a subset of L(G,) consisting of strings corresponding to paths that lead to a marker
state in the state transition diagram.

We have established that EFSM and regular FSM have equal expressive powers
by defining the equivalent regular FSM of an EFSM. They generate and mark the
same languages. An example showing the conversion is presented.

The synchronous product of two EFSMs is defined in Section 4.2.3. We have
explained that not any two EFSMs can work in parallel and a consistency condition
is formulated in Definition 4.2.5. The consistency condition can easily be checked by
inspecting updating functions of common events on common variables. The synchro-
nous product of two consistent EFSMs is given by Definition 4.2.6. We have shown
two useful properties of synchronous product: that the operations ‘extension’ and
‘synchronous product’ commute; and that the operations ‘synchronous product’ and
‘equivalent FSM’ commute if an updating function of a private event never changes

the value of a common variable.
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7.1.2 Design of embedded supervisor by EFSM

The main contribution of this work is to implement a supervisory control map by
an EFSM. In our design, the plant and the supervisor are synchronized on the set
of events, and the closed-loop (controlled) system is designed in EFSM framework at
once. The controller disables or enables a transition by defining a guard formula that
evaluates to false whenever the transition leads to illegal behavior.

The design consists of three steps. In the first step, we find the required number
of boolean variables in Definition 5.2.1. Even when not all bit combinations are used,
still £ boolean variables are necessary when k—1 < loga N < k, where N is the number
of supervisor’s states. Without loss of generality, all boolean variables are initialized
to false (0). Then we label each state in supervisor’s automaton with a unique bit
combination of k-bit boolean variables, in particular, all bits used in encoding the
initial state are 0.

In the second step, guard formula for an event is given in Definition 5.2.4. Since a
supervisor can never disable an uncontrollable event, the guard formula for an uncon-
trollable event always evaluates to true regardless of the current values of variables.

In the third step, an updating function triggered by the occurrence of an event for
each variable is calculated as prescribed in Definition 5.2.5. The design is completed
by extending the original plant with guard formulas and updating functions for each
transition.

We have shown that the design prescribed above in effect implements the super-
visory control map enforced by the supervisor. The closed language of the resulting
EFSM is equal to that of the closed-loop system, and the marked languages are equal
if L,,,(S)is L,,(G)-closed. We have shown that if the supervisor is nonmarking, which
is often the case, the L,,(G)-closedness condition can be relaxed. Furthermore, we
have presented a sufficient condition under which the controlled system is nonblock-

ing.
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7.1.3 Supervisory control by EFSM under partial observa-
tion

We apply our method to the supervisory control problem under partial observation.
Supervisor construction in EFSM framework for centralized and decentralized cases
are discussed. In the former case we solve a variant of SCOPZT [RW92], while similar
to GPZT [RW92], we introduce and solve EGPZT to design local controllers for plant

components to achieve a global control objective.

7.2 Future research

We envisage extending this work in several directions. In what follows we list some
problems that may be addressed in future. We believe these interesting issues will

lead to more insightful results.

- Currently a guard formula evaluates to true if the boolean variables are equal to
a given set of values. However, in some applications it would be more realistic
to enable a transition when the values of boolean variables satisfy a set of

inequalities.

- Decentralized supervisory control problem with a general specification that is not
necessarily coobservable, where communication between local supervisors may

become necessary.

- It will be desirable to develop a software tool to implement the methods presented

in this work.
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