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ABSTRACT

The bearing capacity of the foundation is a primary concern in the field of foundation
engineering. The self weight of the structure and the applied loads are transferred to the
soil safely and economically. The load at which the shear failure of the soil occurs is
called the ultimate bearing capacity of the foundation.

Quite often, structures are built on or near a slope. This is due to land limitation,
such as for bridges or for architectural purposes. The ultimate bearing capacity of the
foundations for these buildings is significantly affected by the presence of the slope.
Design of foundations under these conditions is complex and the information available in
the literature is limited.

A numerical model was developed to simulate the case of strip foundation near
slope, using the finite element technique together with the program “PLAXIS”. The
parameters believed to govern this behavior were examined individually to determine
their effect on the ultimate bearing capacity of a strip footing. The superposition method
was used in the analyses to calculate the bearing capacity factors, N, N, and N,
independently. The results produced by the present numerical model were compared with
the available experimental data.

An analytical model was also developed for the problem stated to predict the
ultimate bearing capacity of a strip footing. Design theory, design procedure and design

charts are presented for practical use.
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CHAPTER 1

INTRODUCTION

The bearing capacity of the foundations is a primary concern in the field of foundation
engineering. The self weight of the structure and the applied loading such as: dead load,
live load, wind load etc. are to be transferred to the soil safely and economically. The
load at which the shear failure of the soil beneath the foundation occurs is called the
ultimate bearing capacity of the foundation. The magnitude of the ultimate bearing
capacity depends on the mechanical characteristics of the soil and the physical
characteristics of the footing. In practice, a reasonable factor of safety is applied to the
ultimate values to produce the allowable values for these foundations, depending on the
uncertainty of soil behavior and the loading conditions.

Quite often, structures are built on or near a slope. This is due to land limitation or
for architectural purposes. In these cases design requirements stipulate that in additional
for the foundations to transfer the load safely to the underlain soil strata but also the
stability of the slope after incorporating the foundations load must remain intact.
Occasionally engineers are required to determine the location and depth of foundations to
be built on or near slope. In these cases, design of shallow foundations becomes more
complicate in modeling and accordingly in satisfying both safety and economy of these
foundations.

The objective of this thesis is to present a critical review of the available literature
on foundations near or in slope. A numerical model will be developed using Finite

Element technique to simulate the problem stated. Sensitivity analyses will be conducted



to determine the parameters believed to govern this behavior. A superposition method is
developed to calculate the bearing capacity factors, N, Ny, and N,, independently. Design

theory is presented for practicing use.



CHAPTER 2

LITERATURE REVIEW
2.1 GENERAL
The ultimate bearing capacity of a foundation is defined as the maximum load that the
ground can sustain. Under the working load, the foundation will experience vertical
movement in the ground or settlement. When the working load reaches the ultimate
bearing capacity g,, the supporting soil will undergo a sudden shear failure.
Theories for the ultimate bearing capacity of shallow foundations were developed by
employing one of the following four analytical techniques:

1. Slip line methods

2. Limit equilibrium methods

3. Limit analysis methods

4.  Finite element methods.

The slip line method involves the construction of a family of shear or slip lines in
the vicinity of the footing load. These slip lines represent the directions of the maximum
shear stresses. The plastic slip line is bounded by rigid regions. In plane-strain cases, the
normal and shear stresses along the slip line can be determined by solving the two
differential equations of the plastic equilibrium and the one for yield condition.

The limit equilibrium methods were utilized by Terzaghi (1943) and Meyerhof
(1951) to develop theories of bearing capacity of shallow foundations. They can best be
described as approximate approaches to constructing the slip line field. The solution
requires that assumptions be made regarding the shape of the failure surface and the

normal stress distribution along such surface. The stress distribution usually satisfies the



yield condition and the equations of static equilibrium. Using the method of trial and
error, it was possible to find the most critical location of the slip line. While, limit
equilibrium method utilizes the basic philosophy of failure surface assumption, it gives
no consideration to soil kinematics and equilibrium conditions. Nevertheless, the method
has been the widely used owing to its simplicity and reasonably good predictions.

The limit analysis method considers the soil stress-strain relationship in an
idealized manner. This idealization, termed normality or the flow rule, establishes the
limit. theorems on which limit analysis is based. The method offers upper and lower
bound to the true solution of the problem given. The upper bound solution is calculated
from a kinematically admissible velocity field that satisfies the velocity boundary
condition. The lower bound solution is determined from a statically admissible stress
field that satisfies the stress boundary condition, is in equilibrium, which does not
violates the failure condition. If the two solutions coincide, then the methods give the true

solution.

2.2 BEARING CAPACITY THEORY FOR STRIP FOUNDATION ON
HORIZONTAL SURFACE

The bearing capacity of foundations on horizontal surface is calculated using the
superposition method, suggested by Terzaghi (1943), in which the contributions to the
bearing capacity from different soil and loading parameters are summed, as represented

by the following expression:

1
q, =cNC+qu+-inNy 2.1



Where q, is the maximum pressure, which can be sustained by the footing, q is the
overburden or surcharge at the foundation base and N, N, and N, are the bearing capacity
factors represent the contribution of the soil cohesion, surcharge loading, and soil weight
respectively.

Terzaghi (1943) proposed a theory for determination of the ultimate bearing
capacity of shallow rough rigid continuous foundation supported by a homogenous,
isotropic soil. He defined a shallow foundation as a foundation for which the width of the
foundation, B, is equal to or less than it embedded depth. The failure surface in soil at the

ultimate load as assumed by Terzaghi is shown in Figure 2.1.

Figure 2.1. Failure plane of Terzaghi’s Theory for Shallow Foundation

The wedge abc is the elastic zone that is located immediately below the bottom of the
footing. In this region, the resistance against sliding is caused by the weight of the soil.

The angle £ abc and £ bac are assumed to be equal tog° Wedge bcd is the radial shear



zone with ¢d being an arc that is interpolated by a function r, = rie’ %" Wedge bde is
the Rankine passive pressure zone. The soil above the foundation base is replaced by an
equivalent surcharge ¢. The slip lines in this zone intersect the surcharge at 45°-¢%2 with
horizontal.

The ultimate bearing capacity of the foundation can be easily determined by
considering the faces ac and bc of the triangular elastic zone and determine the passive
force on each face required to cause failure. Since the passive force is due to surcharge
(q), cohesion (c), unit weight of the soil (7), and the angle of shear resistance (¢,

superposition method was applying to develop the bearing capacity factors although the
solution is not exact. The bearing capacity factors, N, N, and N,, are given in terms of

angle of shear resistance ¢°as following:

eZ(3ﬂ/—¢/2)can¢

N =
7 2c0s(45+¢/2)

N, =cotg(N, 1) ...(2.2a,b, )

N =1k tan2¢—¥

4 2 14

Meyerhof (1951) presented a theory to predict the bearing capacity of
foundations on horizontal surface, based on limit equilibrium method of analysis. The
failure surface at ultimate load under strip footing as assumed by Meyerhof i1s shown in

Figure 2.2.
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Figure 2.2. (a) Failure plane of Meyerhof’s Theory for Shallow Foundation
(b) Mohr-Columb Envelope

The wedge abc is the elastic zone that is located immediately below the bottom of
the footing. In this region, the resistance against sliding is caused by the weight of the soil.
The angle £ abc and £ bac are assumed to be equal to 45° +¢92 according to active
earth pressure theory. Wedge bcd is the radial shear zone with cd being an arc that is
interpolated by a function r, = r;e® ™", This assumption fits to the practical result that is

obtained from the field. Wedge bde is a mixed shear zone in which the shear varies



between the limits of radial and plane shear depending on the depth and roughness of the
foundation. The plane be is referred to as an equivalent free surface. Unlike Terzaghi’s
theory that the soil above the foundation is assumed to be equal to an equivalent
surcharge, Meyerhof considered the shear stress, s,, along the failure surface. However,
the contribution of s, remains unknown (Figure 2.2) since it depends on the degree of
mobilization of the shear strength of the soil. (#=45°-¢%2 for immobilized and #=0" for
fully mobilized)

| Meyerhof employed Terzaghi’s equation of bearing capacity and derived the

bearing capacity factors as following:

g=cN,+p,N, +—;-yBN, .. (23)

N, ={°°t¢[ (L singhe 7 ‘1]}
(=sin g)sin27 + 9

Where,

v o[ _+sing)e?™’ -1]
? | A —sing)sin(2n + ¢)
... (2.4a, b, ¢)
N, = 4P, sin(452° +¢/2) 1 tan(45° +¢/2)}
i 8 2

0:135°+ﬂ-n—12’-

The term p, in Equation 2.3 is magnitude of normal stress acting on the equivalent

free surface (line be of Figure 2.2). To predict the ultimate bearing capacity the degree of
mobilization of the equivalent-free surface need to be assumed in order to determine the
angle $°, n and the corresponding normal stress p,. The bearing capacity factors can be

calculated from Equation 2.4a thru 2.4c.



Meyerhof (1963) presented a more general form to the bearing capacity theory to take
into consideration the effect of foundation shape, load inclination and the depth of the

foundation as follows:

1
q=cN A A Ay + DN A AR +E;/BN717S/1}4/1M . (2.5)
where
AgssAgs» A, = Shape Factor

Acg>Aga» Ay = Depth Factors
AA /1;«' = Inclined Load Factors

ci*’Vgi?

N,.,N, & N, = for surface foundation condition

Table 2.1. Shape, Depth and Inclination factors given by Meyerhof (1963)

Shape Factors | For ¢%=0° For ¢*>>10°
B
A, =14022 A, =1+028 tan? 457 4 2
L L 2
Ay = Ay =1
v Ay =2, =1+O.1§tan2(45°+§j
Depth Factors | For ¢%=0° For ¢>10°
D D
A, =1+02-L Ay =1+02"Ltan?| 45° +2
B B 2
Ay =4, =1

A=A, =1 01Df 21 45° ¢
wd = }d—+.?tan +E

Inclination ( B o JZ

Factors Aqi =4, =1




2.3 BEARING CAPACITY THEORY FOR STRIP FOUNDATIONS NEAR
SLOPE

Meyerhof (1957) indicated that for a foundation located on or near the slope, the plastic
zone on the side of the slope is relatively smaller than those of similar foundation on
leveled ground and thus the ultimate bearing capacity of the foundation is
correspondingly reduced. He presented a solution (Figure 2.3) for the ultimate bearing
capacity of rough strip foundation on or near slopes that combined with those from

stability analysis to form the equation as following:

Do stope = Ny + % BN, ... (2.6)
Where N, is a coefficient represents the combined effect of the cohesion of the soil and
the overburden pressure and N, is a coefficient represents the combined effect of the
shear resistance of the soil below the foundation and the overburden pressure. The above
equation is applicable to foundations on or near a slope having a distance b from the top

of the slope. Meyerhof provided design charts for the bearing capacity factors, N, and

N}q-

Figure 2.3. Failure plane, Meyerhof’s Theory for shallow foundation near slope (1957).

10



It can be noted that the bearing factors depends on the distance of the foundation from the
top of the slope, b, the angle of slope, a°, the angle of shearing resistance of the soil, ¢°
and the depth/width ratio, D/B, of the foundation. While these factors decrease with
increasing @, they will increase rapidly with the increase of the distance b. Beyond a
distance of 2 to 6 times the foundation width, which depends on o° and D/B ratio, the
bearing capacity becomes independent of the angle of slope and follows the theory of a
foundation on leveled ground. Figure 2.4 shows the bearing capacity factor for slope

having purely cohesive soil and purely cohesionless soil.
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Figure 2.4. Bearing capacity factors for foundation near slope (after Meyerhof, 1957)
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Shields, Bauer, Deschenes and Barsvary (1977) have conducted series of tests
to compute the bearing capacity factor N,, for a footing in cohesionless slope. The tests
were conducted in a large sand box measuring 15m in length, 2m in width and 2.2 meter
in height. A slope of 2 horizontal to 1 vertical was chosen because it was the standard
slope of the approach fills in the Province of Ontario. The slope was made of sand at two
densities, which represent compact (¢*=37°-45°) and dense sand (#%=41°-50°). The angle
of shear resistance of the soil sample was determined by plane-strain test, triaxial test and
direcf shear box. Shield et al reported that the angle ¢°obtained by plane-strain would be
best represent the actual shear strength developed in the footing. However the
experimental work showed that this assumption was valid only for surface footing on
dense sand. For other cases, angle ¢° given by triaxial test or triaxial+10% (suggested by
Meyerhof, 1963, to correct for the plane strain condition) give a reasonable fit between
the theoretical and experimental bearing capacity. Table 2.2 shows the value of ¢°of two
sand samples.

Table 2.2 Values of angle of shear resistance used by Shield et al.

Test Compact Sand Dense Sand
Triaxial 37° 41°
Triaxial +10% 41° 45°
Plane-Strain 45° 48°
Direct Shear Box 45° 50°

In these experiments, footing of 0.3m in width and 2m in length located on the top
of slope was loaded up to failure. The ultimate bearing capacity was recorded and the
bearing capacity factors were calculated according to Meyerhof’s equation (1957).

Shields et al. found that the Meyerhof’s theory (1957) overestimates the magnitude of the

12



bearing capacity. However at shallow depths close to the edge of the slope the theory are

closer to the actual bearing capacity. Shields et al. presented design charts presented in
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Figure 2.5. Bearing capacity factor N, (after Shields et al. 1977)
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Andrews (1986) showed that most of the existing analyses for footings in slope,
assume a non-failing zone of soil immediately beneath the footing, with the elastic zone
being symmetric on either side of the footing. In contrast with the symmetry that is seen
beneath footing on ground level, photographs from physical models on slopes
(Peynircioglu 1948, Giroud and Tran 1971 and Kimura et al 1985) show that the failure
zone are asymmetric. The failure on the side of slope is larger than the zone on the side of
ground level surface. Kimura et al (1985) show that only a single wedge is formed
undefneath the footing, not two smaller wedges as presented in the literature. The
detailed geometry of the wedge is not immediately detected and it has to be determined
by trial and error. Figure 2.6 shows the geometry of the asymmetric non-failure plane
beneath the footing and the typical prediction of the elastic wedge for ¢'=30" and 40°.

Graham, Andrews, and Shields (1987) presented an analytical method of stress
characteristic for determination of the bearing capacity of a footing adjacent to
cohesionless slope, particularly taking into account the stress condition immediately
beneath the footing. This method allows more careful modeling of the boundary and field
condition for the failure mechanism in sand mass. The solution combined the differential
equation for stress transmission in plane-strain with Coulomb-Mohr relationship. The
failure wedge of the soil below the foundation, suggested by Andrew (1986) was adopted.
The shape and stress distribution of the failure plane extended from the failure wedge
were developed as the analysis proceeds (Figure 2.7) and thus assuming the critical
surfaces was not necessary. Graham et al. assumed that the effect of progressive failure
on the bearing capacity of the footing can be neglected. That is at the ultimate load, the

peak strength is mobilized simultaneously along the potential failure plane. It is also
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assumed that the material is isotropic. The predicted values of the bearing capacity

factors with the parameters representing the physical characteristics of the footing are

shown in Figure 2.8

LOGARITHMIC
SPIRALS

Figure 2.7. Geometry of the asymmetric failure mechanism (after Graham et al, 1987)

15



CaN. GEO

T

HCH 1 VOL, 28, 1988

H/B=0C mmeee H/B=0.5 * =0 (GRAHAM AND STUALRT 1971
1000 T ; i
000 ‘ ' Vad ke ! TR B (c)
P T F 45° I -o45° “
po ¢ ~ b - L. .
45°
L n : 40° 4 L 400\ A
‘400 .
i 100 ': ‘_ ;— z5° —_ T 35° *:
=z 5 J e p L N A
 3se T I Yo P 1L 300> i
N ~
\\ \\
L N - - -
30°_ T~ 7 i
10 1 o ! } 1 { ! i |
0 10 20 30 40 O {0 20 30 4C © 10 20 30 40
a (DEG) a (DEG) a (DEG)
Predicted N -values: (a3 D/B= 0; (b) D/B = 0.5. () D/B = 1.0. (H/B = 0.0,0.5)
————— H/B=2.0 * a=0 (GRAMAM AND STUART 1971))
1000
L o te) ]
3
b
S 100 |
z L
=3
ud N -] b d
10 ! i i ] | i | ! |
0 10 2C 30 40 0 10 20 30 40 © 10 20 30 40
a (DEG) a (DEG) a (DEG)

Predicted Nw-values: (@) D/B = 0; (b) D/B = 0.5, {¢) /B

Figure 2.8 Bearing capacity factors (after Graham, et al., 1987)

1.0.(H/B = 1.0, 2.0

Tatsuoka, Huang and Morimoto (1989) claimed that the solution given by
Graham et al. (1987) is mathematically corrected. However in general the behavior of
sand is far different from a perfectly plastic material. Furthermore, the effect of

progressive failure is significant for the case of dense sand - that is the peak load reaches
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before the failure plane is fully developed. Hence, if peak strength is assumed to be
mobilized along the slip line, the bearing capacity may be overestimated. In this case the

assumption made by Graham et al. (1987) may lead to unsafe solution.

Gemperline (1988) proposed an empirical equation for the determination of the
bearing capacity factors for footing at the top of a cohesionless slope based on the result
of 215 centrifuge tests on a prototype slope model. This equation would enable
foundation engineers to determine the bearing capacity factor N,, for footing of different
size and shape located in the region of a slope.

The tests were carried out with two practical slopes of 2 horizontal to 1 vertical
and 1.5 horizontal to 1 vertical, sand with nine different values of shear resistance, and
various &/B (distance from the top of slope to footing width), D/B (embedded depth to
footing width), and B/L ratio (width/length of the footing). Based on 215 tests,
Gemperline proposed an empirical formula for determining the bearing capacity factor

N,, that is used in Meyerhof’s theory as follows:

1
q, ZE}BN” ... 2.7

Where:

N;q = f¢ X f5 X foip*feiL % fD/B,B/L X fﬂ,b/B x fﬁ,b/D,D/B X fﬂ,b/B,B/L .. (2.8)
Where ¢= angle of shear resistance

p= angle of slope
Furthermore

f# - 10(0.115%—2.386) (2-9a)

£, = 100342080 5) ... (2.9b)

foys =1+0.65(D/B) ... (2.9¢)
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fo, =1-027(B/L) .. (2.9d)

forpp =1+039(D/L) .. (2.9)
Fonrs = 08[1—(1—tanﬂ o/l + (b7 B) tan g .. (2.99)
Fosrons =1+0.6(B/L)i—(1—tan BY f2/|2+ (b/ BY tan g} .. (2.9g)
Soornar =14033(D/ B)tan p2/[2+(b/ B tan B ... (2.9h)

Saran, Sud, and Handa (1989) presented analytical solutions to predict the
ultimate bearing capacity of footing adjacent to slope using two different analytical
approaches: limit equilibrium and limit analysis.

In the limit equilibrium approach, footing was assumed to be a shallow strip
footing having rough base and the soil above the base was replaced by an equivalent
uniform surcharge, which implies that the soil above the footing has no shear resistance.
The failure mechanism on the side of slope was assumed and the shear strength of the soil
on the other side was not fully mobilized. The failure region is divided into two zones,
(Figure 2.9). Zone I represents an elastic region and zone II a combination of radial and
passive shear bounded by a logarithmic spiral arc. The shear stress on the flat side is
characterized by mobilization factor m and its shear resistance is expressed
as 7 = m(c+ o tan ¢) . The degree of mobilization is calculated by determining the
equilibrium of the elastic wedge (Zone I) and of the radial and passive shear zone (Zone
III) with different value of m. A common value of m represents the mobilization of the
failure plane on the side of flat ground. Superposition method was used to compute the

bearing capacity factors N,, N, and N,, independently as following:
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Where: the subscript “,,”” represents the passive earth pressure.
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Figure 2.9. Assumed failure mechanism (after Saran et al. 1989)

In the limit analyses approach, the failure mechanism was taken similar to that
adopted in the limit equilibrium analysis and is kinematically admissible with no
geometric changes during plastic flow. The soil mass is assumed to be ideally plastic and
no plastic strain occurs in plane strain condition. Coulomb’s yield criterion is valid. A
constant degree of shear stress mobilization occurs throughout the failure mechanism.
The bearing capacity equation in the limit analysis is obtained by equating the total rate

of energy dissipated to the total rate of work done and is given as following:
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Garnier, Ganepa, Corte and Bakir (1994) proposed an experimental study on
strip foundation near slope to evaluate the coefficient of reduction of bearing capacity
due to slope effect. Three slope models of 3 vertical to 2 horizontal, 2 vertical to 1
horizontal and 3 vertical to 1 horizontal were prepared with cohesionless material having
angle of shear resistance being equal to 40.5°. The width of the strip footing was 0.9
meter and was placed on the ground surface near the slope, so that surface foundation

condition was considered. Loads were applied on the model footing at difference distance
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from the edge of slope. The peak load at the time of failure was measured and the
coefficient of reduction of bearing capacity was calculated as the percentage of the

reference peak load (flat surface model). These results were plotted in Figure 2.10.

d/B = 3'

d/s = 0

1 % ; ]
0.21 Cotgs = 3/2, 2/1, 3/1 ]

d/B=0, 1, 15 23 4w 0.2
Con figurations éfudides

4/ | 5 21,5 1 tge /tgp
0 1 2 3 4 5 & 1 M o 0.2 0.4 0.6 0.8 1 tgs

Figure 2.10. Reduction coefficient ig for bearing capacity factor N,, (after Garnier et al.
1994). Note that the terms fg¢ and tgf3 represent the function of tan(@) and tan(B)
respectively.

For different slope model (3/2, 2/1 and 3/1), it was found that the bearing capacity
of the footing was not practically different from the value of distance/width ratio (b/B)
greater than 6 due to the effect of slope. For the identical distance from the slope, the
coefficient of reduction decreases when the angle of slope increases. Based on the results
of these tests, the coefficient of reduction was found to be always greater than 0.2 even
with a test model having steeper slope (3 vertical to 2 horizontal).

Figure 2.11 shows the coefficient of reduction for three cases of footing location
(6/B=0, 1 and 3). It shows clearly that the effect due to the value of angle of slope is
significant when /B is smaller than 3. It can be also noted that for footing at the edge of

the slope the reduction varies nearly linearly with respected to tan(3).
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An expression for the coefficient of reduction for bearing capacity of foundations

near slope was proposed as follows:

6B

iy =1 forb/B>6 ... (2.12)

i[,=1—[1.8tan,8°—0.9tan2 ,B°Il——b—j for b/B <6

The failure mechanism of the soil under the footing model was observed and
schematically presented in Figure 2.11. Zone I is the elastic triangular wedge developed
underneath the footing base. Zone II is the radial shear zone having arc followed
approximate log-spiral function. Zone III is the mixed shear zone extend from the log-
spiral arc in Zone II. The angle of the slip line to the horizontal in this zone was found to
be zero when the footing was at or closer to the edge of the slope. It increases with the
increase of the distance between the footing and the edge of the slope. It was also
observed that the elastic wedge underneath the footing was slight asymmetric compared
to those of horizonfal surface. As the footing was far away from the edge of slope, this

zone became symmetric.
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Figure 2.11. Schematic failure mechanism (Garnier et al. 1994)
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2.4 DISCUSSIONS

Theories of Meyerhof (1957) and Graham et al (1987), and the experimental work from
Shields et al. (1977), Gemperline (1988) and Garnier et al. (1994) provided the design
chart needed to predict the magnitude of N,,. However these values are only valid for a
limited range of footing location and embedded depth. Method of Gemperline has
provided a mathematical solution, which is valid for different size and different
horizontal and vertical location of the footing. The experimental work of Meyerhof (1957)
and Shield et al. showed that soil with different value of ¢°leads to bearing capacity with
respect to the distance of the footing.

While most of the theories developed for foundations near slope are for
cohesionless material, Meyerhof presented a solution for the case of pure cohesive soil
(#°=0°). Thus for cohesive-frictional material, Equation 2.6 may not be capable to predict
the ultimate bearing capacity of footing on these materials.

The solutions of Saran et al. (1989) are valid only for DyB=0 to 1 and 5/B =0 tol.
For other footing locations and embedded depths, the values of bearing capacity factors
are not accurately predicted.

The purpose of this thesis is to develop a numerical model to simulate the case of
shallow, strip foundation near a slope. The model should be capable to measure the
ultimate bearing capacity of these footing and accordingly the coefficient for bearing
capacity factors N,, N,, and N,. Coefficient of reduction in bearing capacity factors will
be introduced to take into account the effect of slope in the general bearing capacity
theory for shallow foundation. Sensitivities analysis will be conducted on the governing

parameters. Design charts are presented.
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CHAPTER 3

NUMERICAL MODEL

3.1 GENERAL

A numerical model was developed using the Finite Element technique and the computer
program “PLAXIS”. PLAXIS was developed in 1987 in Netherland. This powerful
program covers most of the problem in geotechnical engineering. It is capable to simulate
the geometry of the foundation, as well as the soil and the loading conditions. Solutions
produced by finite element method of analyses are widely acceptable in current industry.
The objective is to evaluate the bearing capacity of a strip footing near the slope;
specifically, to determine the contribution of 4/B (distance from edge of slope to
foundation width) & angle of slope a® on the bearing capacity of these footings.
Accordingly, a strip footing was considered near a slope having a maximum angle of

slope limited to 30° (Meyerhof 1957). The footing was tested at different ratio of 5/B.

3.2 PROBLEM DEFINITION

In common practice, a foundation has a form of a long, rectangular concrete block (strip
footing) standing on or embedded in the ground. The force acting on the footing is
uniform along the footing length. As the result, a two-dimensional finite element model is
sufficient to develop the problem for the case of a continuous footing near the slope. This
model assumes that the angle of slope is uniform across the footing length. The
displacement and strain in the direction of footing length are zero; however the normal

stresses are taken into account.
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By trial and error using the upper and lower limit of soil parameters and footing
location, the effective area extended up to 7 meters in the horizontal direction and 5
meters in the vertical direction. Beyond these distances, the total displacements as well as
effective stresses were nearly unchanged. For conservative reason, the soil cluster of 25m
width by 7m depth with a top of the slope at 10m from the left constituted the model
under investigation.

To perform finite element calculation, the model was divided into finite number
of triangular elements. A 15-node, triangular element was used in the finite element mesh.
They are accurate elements that have produced high quality stress results for problem of
soil collapsing. It provided a fourth order interpolation for displacements and the
numerical integration involves twelve stress points. A denser mesh was generated along
the footing-soil interfaces and the horizontal surface adjacent to the slope because the
deformation of these areas is relatively more critical. The deformation of the soil at
failure can be accurately measured. Figure 3.1 presents a sample of a finite element mesh

of the numerical model defined in computer program.

l
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Figure 3.1. Finite Element Mesh.
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3.2.1 Boundary Condition
In this model, the boundaries for the finite element mesh are shown in Figure 3.2. In this
Figure, the line 0-4 and 3-2 are the “virtual” boundaries of the slope. In reality, the
inclined surface extends infinitely to the left direction and the horizontal surface extends
infinitely to the right direction. It should be mentioned here that these boundaries were
chosen to be far from the zone, where the failure mechanism will take place and the
stresses remained unchanged during loading. To simulate this scenario and limit the size
of thé model in finite element method, these two edges were defined in such a way that
no horizontal movement, u,=0, was allowed (horizontal fixity) and thus the model’s
consistency was satisfied. The same concept was applied on the bottom edge except that
both horizontal and vertical movement, u, and u,, are zero (horizontal and vertical fixity).

In case of the footing having the embedded depth greater than zero, the slope
model becomes inconsistent due to the unstable cluster edges (edges 5-11 and 6-12).
These edges collapse immediately after the loading is applied. In reality, the soil at the
side edges of the block-like footing has no horizontal movement. To simulate this
scenario and satisfy the consistency, horizontal fixity was defined on both edges.

The footing in this model is a rigid rough strip footing had a dimension of 0.5, 1
and 1.5 m width, B. The footing was considered weightless. The following table shows

the properties of the model footing used in the present investigation.

EA 5000000 kN/m
El 8500 kN.m"/m
Equivalent depth, d .143m

Poisson Ratio, v 0.3

Unit weight, w 0 kN/m/m

Table 3.1. Footing Properties
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Figure 3.2. Boundary condition for the numerical model.

3.2.2 Constitutive Laws

The strength characteristic of the soil is modeled using Mohr-Coulomb failure criteria.

This model is widely used in geotechnical engineering, especially in dealing with

foundation problem. The Mohr-Coulomb failure criterion is defined in terms of cohesion

and angle of shearing resistance (¢ and ¢°), together with a material density. These

parameters are well known in engineering practice and it can be easily obtained from the

results of laboratory tests. In addition, the following assumptions are made:

1.

2.

Soil is a elastic-plastic material

Stiffness, E, does not depend significantly on the stress level, which means that it
remains constant throughout testing.

Cohesion, ¢, does not vary with depth.

Soil is homogenous and isotropic.
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The soil parameters with their standard units and the soil properties are listed below.
Note that in this model the soil was introduced as a rigid material thus general shear

failure was expected.

E : Young’s Modulus 13000 kN/m”
1% : Poisson’s ratio 0.3

¢ . Angle of Friction 5° t050°

c : Cohesion 0 and 5 kKN/m’
w  : Angle of Dilantancy 0°

y : Unit weight of model soil 18 kN/m’

Table 3.2. Soil parameters.

-
P
"

Sod with d¥terent value of
c and ¢

Figure 3.3. Geometry of the problem

Figure 3.3 presents the configuration of the problem under investigation and the
corresponding variables that were assigned in the numerical model. a° represents the
angle of slope of the model. The tests were condﬁcted with different value of the angle
a® in order to evaluate the variation of the bearing capacity factors due to slope effect. B
represents the width of the footing and b represents the distance of the footing from the

edge of slope. Note that the distance b was measured, according to Meyerhof’s theory,
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between the top of slope and the footing edge which face to the side of slope. Dy

represents the embedded depth of the footing.

3.3 TEST PROCEDURE
The parameters «°, b/B, Dy, ¢, ¢, and y are the input data of the finite element model. Six
slope models with a° equal to 5°, 10°, 15°, 20°, 25° and 30° were considered. The case of
a° equal to 0° was taken as the case of foundation on surfaced ground. For each slope
model, the footing was placed in different location in horizontal direction. This location
was based on the b/B ratio, which was assigned to be equal to 0, 1, 2, 3, 4 and 6. The
variation of the ultimate bearing capacity with respect to the location of footing in
horizontal direction can be observed. Note that a footing width of one meter were defined
to run all tests with different soil parameters; a width of 0.5 and 1.5 meter were defined to
run the tests with D=0m and selective soil parameters. For every case the embedment
depth of the footing was assigned to be equal to 0, 0.5 and 1.0 in order to evaluate the
bearing capacity factor due to overburden pressure. In this investigation a total of 108
tests were performed. In addition, two designate slope problems with different soil and
footing parameter were defined. The purpose is to verify if the proposed analytical model
satisfies the typical foundation problem. The characteristic of these test models are
tabulated in Table 3.3.

46 sets of test soil (¢=5° to 50°) were entered into each test model. Note that the
slope angle o° remained equal or less than the angle of shearing resistance ¢° of the soil
to maintain the stability of the slope. Figure 3.4 summarizes the value of input parameters

that were assigned in the test model.

30



Angle of Soil

Depth, Dy Slope, a b/B ratio parameter
-One Slope Model
< 00 »  f=a’-50° andior ¢ =0 & 5 kN/m> -One Calcuation
with 51 Soil Model
S 20
JO' (Control) _.(*,""/ < . 3.0
€5 F e 4.0
7 oM10° s 8.0
PO N1
0.0m ( — P
05m| M5
N
1.0m A 30°

Figure 3.4. Input parameters for the determination of bearing capacity factors.

Table 3.3. Cases considered

#1 #2
i o to 50° o to 50°
c [10kN/m? 25 kN/m”
y 18 kKN/m’
Dy 2 0.5
B | 1.5
b/B 0,3,and 6

Superposition method was used to determine the ultimate bearing capacity due to
cohesion, overburden pressure and shear resistance below the footing. For example, to

calculate the ultimate bearing capacity due to shear resistance below the footing, g, ,

the cohesion of soil “c” and the embedment depth of the footing “D/” were assigned a

value of zero. Thus the Equation 2.1 can be simplified as following:

1 1 1
q,=cN, +yDN, +E}/BNY =N, +y(O)N, +5}/BN7 =§}/BN7 =GN (3.1a)
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To determine the ultimate bearing capacity due to cohesion, the unit weight of soil
vy and the embedment depth of the footing “D/” were assigned a value of zero. Thus the

Equation 2.1 can be simplified as following:
1 1
g, =cN_+)yDN, +~2—yBNr =cN.+(0)O)N, +E(O)BN7 =cN,.=q,5 - (3.1b)

Finally, to determining the ultimate bearing capacity due to overburden pressure the

following equation was used:

‘ 1 1
90 =qun, T un, T, =cN, +}DNq +§yBNy =(0)N, +7(Df)Nq +—2—7BNY =Gun, Tun, (3.1¢)
Where g, is the ultimate load and g, N, has been determined previously. The g, v, can

now be determined by subtracting g, N, from ¢,

Two types of loading system can be defined in numerical model: prescribed
displacement and distributed force. Both systems provide similar result. In this
investigation, prescribed displacement was used to apply the load on the footing. As a
result of the prescribed displacement, the corresponding resultant force at the center of
the footing was recorded. The program repeats this step by increasing the vertical
displacement until the soil reached failure. The resultant force at that time was used to
identify the ultimate bearing capacity of the footing.

For each test, the soil parameter (c, ¢ and %), the intermediate prescribed
displacement and the corresponding resultant force were recorded regularly until in the
foundation has reached failure. Figure 3.5 shows displacements vs. resultant force. It can
be noted from this figure that the maximum resultant force or the ultimate bearing
capacity can be found at the first local maximum of the curve. This value was reported

herein as the ultimate load.
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Figure 3.5. Displacement vs. resultant force

3.4 TYPICAL OUTPUT
The size and shapé of failure plane below the foundation can illustrate physically the
influence of the slope angle on the deduced bearing capacity. In order to clearly
demonstrate the differences in the failure plane due to the effect of slope angle o°, /B
ratio, as well as the soil properties (¢°and c), the case of soil with ¢°=30° and 40° with
two different physical characteristics of the foundation are chosen for comparison. The
deduced failure mechanisms are shown in Figures 3.6 through 3.15. Note that no
displacement was found on or near the boundary of the numerical model. This concludes
that no additional stress was generated by this constraint near the boundaries.

It can be noted that if the foundation is located close to the edge of the slope, the
soil below the foundation tends to move toward the slope, since it has less shear

resistance. In Figure 3.6a and 3.6b, the influence area concentrates mainly on the side of
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the slope. The failure slip line follows similar log-spiral shape, but its degree of curvature
is less than that for horizontal surface. According to the failure plane suggested by
Meyerhof, the depth of failure plane in the case of foundation on horizontal surface
extends approximately one time the footing width (1B). In the test model (i.e.: Figure
3.6b) however, the depth the failure plane extends approximately 2B. This is due to the
fact that the soil in the vicinity of the slope is less confined and accordingly, it can move
relatively freely far away and deeply from the footing. This causes the degree of
curvature becoming lower in this situation.

When the foundation is located 2B from the edge of the slope, the ultimate
bearing capacity of the foundation increases as expected. The slope model (Figure 3.8b)
shows that the displacement of the soil occurs slightly on the side of ground surface. The
depth of the failure plane reduces to 1.5B. It illustrates the fact that the degree of
confinement on the side of the slope increases and part of the stress due to the footing
begins being governed by soil on the side of the ground surface.

By locating the footing further away from the edge of slope, the influence of the
slope is vanishing. Figure 3.9b and 3.10b show that no displacement occurs on and pass
through the slope surface. The failure plane becomes symmetric, which illustrates that the
stress is spread on both side of the footing. Also, its depth reduces to approximately 1B,
which is similar to the case of footing on the horizontal surface.

The reduction in ultimate bearing capacity due to inclination can be illustrated by
slope model with a°=10° and a°=30°.

As mentioned in previous section, the curvature of the failure surface becomes

more linear and the slip line extends to the slope surface when the foundation is located
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near the slope. This is found to be more significant when steeper slope presents. In Figure
3.6d, the failure surface follows straight line rather that spiral curve. In Figure 3.6c, in
which ¢%30°, such situation becomes more obvious, as slope will remain stable as long
as a°< ¢°. If the angle ¢° is equal to or less than angle of slope a°, slope sliding occurs on
the slope surface (shallow slope failure) under certain circumstance such as external force
acting on the top of the slope. It can be concluded that for such steep slope, the
foundation fails under shallow slope failure rather than foundation failure.

The increase in the angle of the slope increases the required distance b where the
bearing capacity becomes independent of the slope. Figure 3.9b and 3.9d illustrate the
required distance b with respect to a°. For a® =10°, soil displacement occurs far away
from the slope while there is still some displacements occurring on the slope when a°
=30°.

When the foundation is located at a shallow depth from the ground surface, the
effect of the slope inclination is more significant.

When the footing is built at Dy =0 m (Figure 3.6a), the failure surface extend to
the slope surface at approximately 2.25 times foundation width (2.25B). While when Dy
=1.0 m (Figure 3.11a), such extension increases to approximate 4.5B. For the same slope
model (a°=10°), when the footing is located 4B from the edge of slope b, (Figure 3.9b
and 3.14b) the failure surface extends approximately 2B from the center of the footing
and the point intersecting the ground surface is located 2B from the edge of slope. On the
other hand, when Dy =1.0, the failure surface extends approximately 4B from the edge of

the footing and it just passed the edge of the slope. This implies that, for a given slope
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and distance from the slope, surface foundation may have little or no effect of slope but

foundation with shallow depth of Dy may have relatively higher degree of slope effect.
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CHAPTER 4

RESULT AND ANALYSIS

4.1 RESULT PRODUCED BY THE NUMERICAL MODEL

The testing program on footings near slope deduced from the present numerical model is
summarized in Table 4.1 and typical results are given in Table 4.2. The complete set of
results is given in Appendix A (Table A.1 to A.5). The results of the case of horizontal
surface (a°=0°) are given in Table A.6. The results for the case of footings near slope
having B=0.5 and 1.5m are given in Table A.7 and for the cases of D,>B and D;<B are

given in Table A.8.
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Table 4.1. Summary of the testing program.

Table |Test No.| o |B,m Dy m{D/B] b, m | b/B | % kN/m™ | ¢ kN/m~ 9
1 15 3710 50°
1-2 10° 10° to 50°
3 5 | o 0-6 10-6 1510 30°
Al g0 20" to0 50°
1-5 25° 25° to 50°
6 | 30° 0-8 10-8 30° 1o 50°
2-1 5° 5° to 50°
2-2 10° 10° to 50°
= 0-6 |0-6 5 5
2-3 15 15° to 50
A2 24 30° 1 05 0.5 18 0 30° to 50°
2-5 25° 25° to 50°
26 | 30° 0-8 10-8 30° {0 50°
3] 5° 5% to 50°
3.2 10° 10° to 50°
R = 0 5 P R [ 0-6 10-6 15" 10 50°
) 34 20° 20° to 50°
3.5 25° 25° to 50°
36 | 30° 0-8 10-8 307t 50°
4-1 5° 5°to 50°
4-2 10° 10° to 50°
4-3 15° 0-6 |10-6 15° to 50°
A4 g 100 V| OO 20710 50°
4-5 25° , 25° to 50°
4-6 30° 0-8 {0-8 0 5 30° to 50°
51 | 5 510 50°
52 [ 10 10° t0 50°
5-3 15° 0-6 |0-6 15° to 50°
AS m—sg 20 | ] 20° 10 50°
55 25 25" 10 50°
5-6 30° 0-8 [0-8 30° to 50°
6-1 0 0 0 5
A6 6-2 0° 1 0 0 |- - 18 0 5° to 50°
6-3 1 1 18 0
7-1 5° 5% to 50°, increment by 5°
7-2 1571 0.5 0-12 15° to 50°, increment by 5°
7-3 30° 30° to 50°, increment by 5°
AT 8-1 5° 0 0 |0-6 18 0 5° to 50°, increment by 5°
8-2 15° 1 1.5 0-4 15% to 50°, increment by 5°
8-3 30° 30° to 50°, increment by 5°
9-1 5° 5° to 50°, increment by 5°
9-2 15° 1 2 2 |0-6 [0-6 10 15° to 50°, increment by 5°
AS 9-3 30° 18 30° to 50°, increment by 5°
' 10-1 5° 5 to 50°, increment by 5°
10-2 15 1.5 | 05 | 033|10-6 [0-4 25 15% to 50°, increment by 5°
10-3 30° 30" to 50°, increment by 5°
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Table 4.2. Typical results deduced from the numerical model.

Test o |B Dy |D/Blb  |p/B |V KN/m™ | kN/m® G o kN/m/m
30° 149.0

37° 259.3

6-1 0 5 40° 387.5
45° 695.6

48° 1008.1

010 30° 145.8

37° 516.5

62 | o - - 40° 946.9
45° 2656.9

s . 48° 5176.9

30° 4238

37° 1385.5

6-3 1 1 40° 2499.9
45° 6130.9

48° 10833.4

00 o 307.1

1-4 0| 0 30 3 548.1
60| 6 777.4

00 0 454.0

2-4 05| 05 30 3 18 0 868.4
60 6 1366.3

00| o 685.6

3-4 | 20° 1 1 E 40° 1306.9
60| 6 20204

00 0 215.7

4-4 0| o 3.0, 3 281.9
60 6 5 351.5

0.0 0 361.5

5-4 1 1 3.0, 3 4393
60l 6 507.0
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Table 4.2. Typical results deduced from the numerical model. (Cont’d)

Test  la* 18D, |D/B b |b/B | AN |c kNim® q . kN/m/m
00 0 132.8
-5 0 | o [ a0 4 3726
80 8 511.8
00 0 208.2
2.5 05| 05| 40 4 18 0 6232
80/ 8 873.6
00 0 325.1
35 | 25° 1|1 [ a0 4 37° 981.1
T 1266.0
00 0 136.1
4-5 o | o | 30 3 191.1
606 . 2552
00 0 229.0
5.5 1| 1 [ 30 3 295.0
60 6 341.0
0.0] 0 256.7
-5 o | o [ 40 4 625.5
80| 8 1042.3
00 0 3734
2.5 05| 05| 40 4 18 0 1044.9
80| 8 1800.9
0.0 0 561.3
35 | 25° 1| 1 [ a0 4 a1° 1618.5
I 2565.3
00 0 196.9
4-5 o | o [ 20 2 277.0
60 o 5 360.0
00 0 3402
5.5 1|1 [ 200 2 433.0
60 6 539.2
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Table 4.2. Typical results deduced the numerical model. (Cont’d)

Test | |B D, |D/Blb  |o/B |%kNm |¢ kN/m® q > kN/m/m
00| 0 517.2
1-5 o | o[ 40 4 1126.7
80, 8 18222
00| o0 700.6
2.5 05 | 05 | 40 4 18 0 1655.6
80| 8 2829.9
00| o0 958.2
35 | 25° 1] 40| 4 45° 23448
80 8 4059.1
00 o0 284.9
4-5 o | o[ 20 2 399.4
I S 500.6
00 0 501.2
5-5 11 200 2 627.4
60l 6 770.0
0.0] 0 856.8
1-5 o | o | 40 4 1713.7
80| 8 2681.8
00 o 1159.1
2.5 05| 05| 40 4 18 0 2450.3
80| 8 4014.6
00| 0 1527.7
35 | 25° 1|1 40 4 48° 33235
80| 8 5517.6
00| o 390.4
4-5 o | o [ 20 2 507.4
6o 6 S 643.6
00| o 662.5
5.5 1|1 200 2 82523
60| 6 990.3
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Table 4.2. Typical results deduced from the numerical model. (Cont’d)

Test |o° |B D, |D/Blp  |y/B |%kNm’|c kNm” ¢’ q u» kN/m/m
00| 0 29.7

1-6 o | o [ 40 4 138.2
80| 8 148.7

00 0 66.0

2-6 05 | 05 [ 40 4 0 256.4
E 270.3

00 0 114.7

3-6 1|1 ] 1 40| 4 363.6
80| 8 390.6

| 00 0 79.5
4-6 0 | o | 40 4 138.0
I s 148.3

00 0 136.9

56 | 30° 1|1 a0 4] 18 30° 188.6
80| 8 192.7

00| 0 222

7.3 0.5 T 80.6
60| 12 78.7

O 1 % oo o 0 50.7

8-3 1.5 E 152.6
60| 4 205.8

00 0 623.4

9-3 1] 2| 2 IE 10 1311.6
60 6 1533.5

00 0 568.4

10-3 15| 05 |033] 30 2 25 799.4
60 4 1029.6
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4.2 PARAMETRIC STUDY

From the values of ultimate bearing capacity and the deformation measured during
testing, it can be reported that the two parameters, 5/B ratio and angle of slope o°, are the
most significant parameters affecting the values of the bearing capacity factors. For the
case where the footing is located far away from the edge of the slope, the bearing
capacity factors become independent of these two parameters. Furthermore, different
angles of shear resistance lead to different degree of reduction. Therefore, there is a
coefﬁcient (or a coefficient for each bearing capacity factor) which reduces the value of
that factor for ground surface and is function of function of b, B, o°, ¢ Note that in the
following parametric study, the value of N, cannot be back-calculated directly from the
obtained numerical result since the actual reduced value of N, for footing with embedded
depth greater that zero is arbitrary. The assumption was made such that the Ny for surface
foundation condition had the same degree of reduction as the N, for foundation with

embedded depth greater than zero. The value of N, can be determined by Equation 3.1c.

4.2.1 The Ratio of the Distance from Slope to the Width of Footing /B

According to Meyerhof’s theory (1957) the bearing capacity factors vary with respect to

the b/B ratio and slope angle a°. Further investigation shows that the decrease of each of

these factors does not vary in the same manner. Figure 4.1, 4.2 and 4.3 show the variation

of the bearing capacity factor with respect to b/B for an angle of shear resistance ¢*=30°.
For a small angle of slope o (i.e.: @® = 5°), the bearing capacity factor N, reduces

about 8% and N, reduces up to about 20% when the foundation is at the edge of the slope

(b/B=0). 1t increases parabolically and approaches to the bearing capacity factors for
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horizontal surface with the increase of the distance b (or b/B). Beyond a distance about 2
to 4 times of the footing width, the bearing capacity factors, N, N,, and N,, become
independent of the angle of slope.

For a medium values of the angle « (i.e. 20°), the reduction in the bearing
capacity factors becomes more obvious. The factors N, and N, were reduced for about
60% of the horizontal surface, and about 30% for the factor N,. The factors increase
linearly with the increase of the ration /B when the foundation is relatively closed to the
edge‘ of the slope. Beyond a distance about 2 to 4 times of the footing width, the
increment becomes exponential. When /B is about 4 to 6, the bearing capacity of the
foundation becomes independent of the slope.

It can be concluded that, the trend in the reduction of the bearing capacity factors
due to presence of the slope has the following characteristics:

1. Its variation may have exponential characteristic;
2. Itis a convergent function. The limit of this function approaches to unity when
b/B is approaching to certain value or infinity.
Refer to Figure 4.4, it can be noted that the decrease in the factor N, is relatively low
when the foundation is at the edge of the slope. However it is considerably higher for the
factors N, and N,

Refer to Figure 4.4, when the foundation is rests near the slope, the displacement
of the soil underneath the footing concentrates more on the side of the slope than that on
the side of the flat surface. Furthermore, the log-spiral slip-line and the equivalent free
surface are slightly reduced. However, the overburden pressure and the weight of the

radial and the mixed shear zone are significantly reduced. Since the pressure above the
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free surface controls the values of N, and the shear zones controls the values of N,, the
effect of slope is obvious in these two factors. Meyerhof (1957) indicated that for slopes
with inclination less than 30°, the decrease in the bearing capacity is relatively small in
case of clays (c#0) but can be considerable high in sand and gravel (¢°# 0). This is due
to the fact that the bearing capacity in cohesionless soils decreases approximately

parabolically with the increase in slope angle.

Bearing Capacity Factor N, vs. b/B ratio (¢=30°)

35.00
30.00
25.00 s o a=5"
20.00 4 f/ = a=10"
o L :”/’ —h c=1 5a
15.00 > a=20"
¥ q=25°
10.00 A - a=30"
—a=0" (Control)
5.00 -
000 T T T T T T T
0.0 1.0 2.0 30 40 50 6.0 7.0 8.0

b/B
Figure 4.1. Coefficient of N, vs. b/B ratio (¢ *=30°)
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Bearing Capacity Factor N, vs. b/B ratio (¢=30°)

—a=0" (Control)

0.00 I T T T T T T T
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
b/B
Figure 4.2. Coefficient of N, vs b/B ratio (¢*=30° Dy/B=1)
Bearing Capacity Factor N, vs. b/B ratio ($=30°)
18.00
16.00
14.00
12.00 -~ -+ 0=5'
e =
10.00 - ] = a=10
= —+- =15
8.00 - 0g=20"
6.00 2 » - 0=25°
R ~e-a=30"
4004 —a=0" {Control)
'Y
2.00
0.00 T T T T T T T
0.0 1.0 2.6 3.0 4.0 50 6.0 7.0 8.0

b/B
Figure 4.3. Coefficient of N, vs. b/B ratio (4*=30°)
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Cw

90°-$/2

\ L : )
<l wr(e)/; )

0%-4/2
Figure 4.4 Failure planes of shallow foundation for the cases of horizontal surface (bcde)
and near the edge of slope (acde).

4.2.2 The Angle of Slope a°

Based on the results of this investigation, it can be reported that the bearing capacity
factors decrease with the increase of the inclination angle for a given value of /B ratio. A
sample of variation of bearing capacity factors N, N,, and N, vs. angle of slope with
different /B ratio are shown in Figures 4.5, 4.6, and 4.7.

For footing relatively far from the top of the slope (i.e.: /B > 6), the bearing
capacity factors are nearly unchanged when the slope has the angle no greater than 25°
(for N. and N;) and 20° (for N,). Beyond these values, the bearing capacity factors
decrease slightly and exponentially. If the footing is located further from the slope, the
bearing capacity factors will remain unchanged.

For footing at an intermediate distance from the top of the slope (i.e.: 5/B =2 to 4),
the effect due to slope becomes more obvious. The magnitude of bearing capacity factors
reduce slightly when a°=5°and decreases exponentially with the increase of the angle a°.

A significant decrease was found for the case of N, and N,. By comparing this variation
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with different /B ratio, it can be noted that by decreasing the b/B ratio (footing
approaching to the edge of slope) the rate of change of the reduction the angle a°
becomes more linear and much higher. When the footing is located adjacent to the top of
the slope (b/B=0), it is found that this variation become nearly linear.

The degree of reduction was found to be not significant in the case of N, as

compare to the case of N, and N,. This observation was explained in previous section.

Bearing Capacity Factor N. vs. o’ (¢=30)

35.00

30.00 ——b/B=0
-8 b/B=1
25.00 —&—b/B=2
-« h/B=3

o 20.00 —x- h/B=

Z . ——b/B=
1004 T b/B=0
10.00 - —— b/B=1
) - B{B=2
5.00 - b/B=3

b/B=

0.00 - , : : | | b/B=

0 5 10 15 20 25 30 35

Angle of Slope, a°

Figure 4.5. Coefficient of N, vs. angle of the slope for the case of ¢°=30°
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Bearing Capacity Factor N, vs. a’® (¢=30)

14.00
12.00
10.00 -
——b/B=0
- 8.00 - -#-b/B=1
=z - biB=
6.00 - e b/B=3
4.00 o
' - h/B=
2.00 -
0.00 ; ] . . , .
0 5 10 15 20 25 30 35
Angle of Slope, o’
Figure 4.6. Coefficient of N, vs. angle of the slope for the case of ¢°=30°
Bearing Capacity Factor N, vs. a’ (6=30)
18.00
16.00 +
14.00
12.00
-4—b/B=0
z>_ 10.00 - -@- b/B=1
8.00 - —&—b/B=2
-~ b/B=3
8.00 - b/B=4
4.00 - ~e-b/B=6
2.00 A
0.00 T T T T T T
0 5 10 15 20 25 30 35

Angle of Slope, o’

Figure 4.7. Coefficient of N, vs. angle of the slope for the case of ¢°=30°
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4.2.3 The Angle of Shear Resistance of the Soil ¢°

For a given angle of the slope o°, and a b/B ratio, the reduction of the bearing capacity
factors does not follow the same trend at for different angle of shear resistance ¢° of the
soil. To demonstrate these trends, the relationships were plotted as the relative bearing
capacity factor vs. b/B. The term “relative bearing capacity” was calculated as the ratio

quu(a>0)

° .

@=0 These graphs were plotted in Figures 4.8, 4.9 and 4.10.
9. \a=

When footing is located at the edge of slope (b/B=0), the ratio of ultimate bearing
capacity due to cohesion of the soil (Figure 4.8) decreases to about 0.6 for soil having
lower value of ¢°(i.e.: 25°) and 0.35 for higher value of ¢° (i.e.: 50°). The ratio of
ultimate bearing capacity due to overburden pressure (Figure 4.9) and weight of soil
(Figure 4.10) were found to be much lower: less than 0.4 for lower ¢° and less than 0.2
for higher ¢°. Regardless the value of 5/B, soil having higher angle ¢° always has higher
ratio of ultimate bearing capacity. The required distance from the slope (or 5/B) where
the ultimate bearing capacity becomes independent of slope is about 4 time of the footing
width for soil having lower angle ¢° As the angle ¢° increases, a greater distance is
required. This to confirm the founding of Meyerhof (1957), namely that the bearing
capacity factors becomes the same as that of a foundation on a horizontal ground surface

depends on not only D//B ratio and b/B ratio, but also the angle of shear resistance ¢°
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——¢°=25"
—— =307
—— =357
——§=40°
=457
— =50

0.0C 2.00 4.00 6.00 8.00
b/B

. 0° .
Figure 4.10. 4u(@>0%) vs. b/B ratio (Test No. 1-5)

OO

4.3 ANALYTICAL MODEL FOR THE CASE OF FOOTINGS NEAR SLOPE

The failure mechanism deduced from the results of the numerical model, was idealized
by an elastic triangular wedge with angle of 45°+¢92 to the horizuntal under the footing,
and radial log-spiral shear zone extended from the elastic wedge, and a mixed shear zone
extended from the radial shear zone to the ground surface. When vertical load is applied
on the footing which was built on the top or near the slope, the failure plane starts below
the footing base and extends to both sides of the footing. The extent of the failure plan
depends on the distance from the top of slope and the angle of shear resistance of the soil,
¢°. Consider the case of a footing embedded at depth of Dy near a slope having an angle

a® and distance b from the top of slope (Figure 4.11):
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Siope Foundation ; Surface Foundation
Condition :

Condition

Smax

L

Smax

(b) Mohr-Coulomb Envelope

Figure 4.11. Proposed failure mechanism for foundation near slope and the corresponding
Mohr-Coulomb Envelope.

The failure plane on the side of slope is considered as the actual failure plane at

the ultimate load level. The failure plane on the other side is assumed to intersect the

ground surface. The equivalent-free surface (lineE) for both slope and the horizontal

surface is assumed to be not fully mobilized (m=0 but °#0° for slope condition). When
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the vertical load is applied on the footing, soil on both sides experiences the same shear
stress level; nevertheless, soil on the side of slope fails first. Soil deformation will also
occur on the side of horizontal surface, but it may or may not reach to 100% of its actual
shear strength depending on the distance b and angle of slope a°. Accordingly, the failure

plane on the side of slope is the key element to the reduction factor.

The angle of this equivalent-free surface (lineae') to the horizontal, denote by 3’
can be calculated trigonometrically by trial and error as following.
/ +b —

tangg . %° ... (4.12)
sin(le+ B) sin(180° — )

ae' 3 I B Be®®"? (@.1b)
sin0" +¢)  sin(90" —¢—1) 25in(45° - ?i]sin(90° —¢-1)
2
Combine both equation and become:
i +£= e’™" sin(a + f)cos¢ ... (4.1¢c)
Btana B

2 sin(45° - gj cos(n + ¢)sina

= f=pD,/B,b/B,¢,a)
where € =90"+p (m=0),5<0°
The above equation is dimensionless (with D/B and b/B ratio) and thus it is
universal for various foundation characteristics (b, B and Dy). Since the surface
foundation condition is considered, when the footing located relatively far away from the
top of slope, the angle 8° remains at zero value and the foundation on the infinite

horizontal surface may be considered. Figure 4.12 shows the failure planes deduced from
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the present numerical model (shade) and the one produced based on Equation 4.1c (solid

line).

a=25°

Figure 4.12. Failure planes deduced from the present numerical model (shade) and
Equation 4.1c (solid line)

4.3.1 Reduction Factor for the Coefficient V,
Consider Meyerhof’s bearing capacity factor (1951) N, for foundation on horizontal

surface ground (m=0 and $°=0°), the expression is given as follows:

For m=0 and f°=0°, n=45%$92, 6=90°+ f°=90°

_ (l+sing)e®™?*  (1+sing)e™™
*" (1-sing)sin(2n+¢)  (1-sing)

.. (4.22)

In the case of surface foundation in a slope, the failure plane terminates on the

surface of the slope. In this case, the angle 5° is negative and the factor N, becomes:

For m=0 and B° <0, n=45°¢92, 6=90°+ p°

_ (t+sing)e™™*  (1+sin )00 P Jund
“" (1-sing)sin2n+¢) (1-sing)

.. (4.2b)
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The ratio of Ny, siope to Ny, horizonial, denoted as R, can be expressed as:

Ny Ry
. 2(90°-p°)tan ¢ : mtang 2(90°-f°)tan ¢
N, = (1 + sin ¢)€. - (1 + sin ¢)e < & =N, horizomar X By - (4.26)
oo (1-sing) (1-sing) e™"? ‘
R =2 .. (4.2d)

q

Considering that the bearing capacity factor N, represents the bearing capacity of
the footing contributed by the surcharge, the coefficient R, is only valid for surface
foundation with additional, uniformly distributed surcharge along the slope and the
ground surface. For embedded footings, the overburden pressure is acting like a
surcharge. This surcharge is reduced on the side of slope and continues to decrease with
the decrease of the distance to the slope. In order to account for such loss, the term YDy,
will be adjusted as follows (Figure 4.11):

w

- : = ... (4.3)
length of Equivalent - Free Surface

9, Df

where W =y x D, xlength of Equivalent - Free Surface
In the case of footing built near slope, the total weight of the soil above the
footing is the area of the trapezoid (Figure 4.11). The equivalent surcharge is assumed to

be uniformly distributed along the equivalent free surface (linea_e'). The total weight of

this portion is calculated as following:

(b+b,)D,
—y
2 ... (4.42)

where bq >b

61



R,)/

G+s)0, 1  Tb+b,)
q/-f q
=~ 977 L, N D y=R. D ... (4.4b
? 2 bq7 2b, sV =Ro,Zs¥ ( )

Where b, is the base of the trapeze (line ;i?) .

Using the trigonometrical relationship, the length b, is calculated as following:

b -
e 9 ... (4.52)

sinfe — B) sin(180° —a)
a __ d = Be"™! ... (4.5b)

sin(90° +¢)  sin(90° — ¢ —17) ?_sin( A5 — g)sin(%o g
Combine Equations 4.5a and 4.5b and yield:
b ____e"™*sin(a+ f)coss .. (4.50)
B ¢

25in(45° —5)cos(77 +¢)sina
b . —
Note that when 8°=0° or a°=0° —é becomes equal to the length of line be

b
(Figure 4.11). If % is greater than —Bf’—(Figure 4.13), which imply that the slope has no
effect on the bearing capacity and the foundation is considered as if it is on horizontal
b . b, .
surface. On the other hand if 3 is smaller than ;f (Figure 4.13), the effect of the slope

is incorporated.
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Figure 4.13. Proposed failure mechanisms for foundations near slope for different /B
ratio.

Thus, the weight of the soil, above the footing, on the side of the slope can be

calculated as following:

.. (4.6)

where bq >b

Furthermore, the equivalent surcharge normal to the equivalent free surface (lineag) is:

ad "™ cos(g) @
2 sin(45° - g—)cosw +n)
e (b—q“—) tana 25in(45°—£]cos(¢+77)
W ae _|b, Dy \B cos fix 2 _Dra? . (48a)
5 - Ston }/._
B> B |BB 2 e’ cos(¢) B
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Rp

Af
(—i——] tan o 25in(45° —2]008(¢+77)C°S:3
.Drur _Dy1b, \B B B . 2 y
A B B B 2 Df ) egtan¢ COS(¢) ase (4.8b)
where bq >b
)
D/,eq7 - RD, D/}’ ... (4.8¢)

For footing near the slope, the ultimate bearing capacity due to surcharge can be

estimated as following;:

Reduction of sursharge  Reduction of bearing capacity factor
RSN ——

gy, = R, Dy x RN, = f;/R;Nq ... (49

where R; =R, xR, is the coefficient of reduction due to the surcharge and

the term R p, 1s the coefficient, which accounts the loss of soil mass due to the

present of slope

4.3.2 Reduction Factor for the Coefficient N,
The factor N, of the soil due to the cohesion is characterized by the size of the failure
plane, which depends on the angle 8° for a given ¢° Thus for a footing below or on the
ground surface, the factor N, is equal to (N, -1) cot ¢° Therefore the coefficient of
reduction R, can be calculated as following

RN, =(R,N, ~1)cot¢ ... (4.10a)

(RN, ~1)cotp (R,N,-1)
° N B (Nq _1)

4

... (4.10b)
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4.3.3 Reduction Factor for the Coefficient N,

For the case of foundation on horizontal ground, the factor N, was given by Meyerhof

(1951) as follows:

N =I:4Pp7$in(452°+¢/2)__l_tan(450+£)j| .. (4.11)
7 1B 2 2

Where P, is the passive force acting on the elastic wedge abc (Figure 4.14).

Yu

Slope Foundation
Condition

Figure 4.14. Forces acting on the failing wedge.

Taking the moment of the forces about the center of the trial log spiral line (line ¢d’' of

Figure 4.14) as following:

.. (4.12)

It can be noted that any change in size of the failure plane (or angle £°) will

change the weight of the wedge acdf and accordingly the direction of the passive
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force P

k- Thus the ratio of N, for foundation in slope to N, for horizontal surface can be

expressed as:

[4Ppr,ﬂop€ e 1 tan(45° + QJJ
R N, dope 2 2

}BZ
"N [4P . sin(45°+8/2) | ¢ - G5
7.horizontal Py horizontal . N tan(45° + —)
¥B 2

In this analysis, the center of the log spiral was taken at point “a”. The moment of the
wedge acdfis given as

fuang . Otang . N\~
Wil = f—r-‘ﬁ———rf———xzreo"’“ cos 45°+£+0 do
v 2 3° 2
cosyy xr,e’ ™ siny (2, pom
2 3°

P || e35““¢cos(45°+-"f+b)+————ta§‘¢ &0 sin 45°+£+f9)
9tan® §+1 2 9tan’ ¢ +1 2

+ e39tan¢

ftang
+ r.€ ¢

cosncos f

6

... (4.14)

4 0

cos’ 77sinzcos B

The moment of Rankine passive force (on line df) is given by the following Equation:
P ol =17H2K x-2-H=lr3e3"‘“'¢yK (4.15)
p(RY°R 2 PT 3 3° p Tt

Note that for foundation on horizontal surface, the angle 8° is equal to zero. Thus the
angle 6 is equal 90° and the Rankine’s passive coefficient is tan’(45°+¢%2). Thus for
foundation in slope, the angle £° is less than zero and angle the 0 is therefore equal (90°-
B°). The Rankine’s passive force on line df is considered as the passive earth pressure for
inclined backfill having an inclination of #°. The coefficient K, for the inclined backfill is

taken as:
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cos B+ \/cos2 B—cos? ¢

K_ =cospf
cos - \/cos2 B —cos’ ¢

14

... (4.16)

The passive force P, for both horizontal and slope foundation conditions can be
determined and the coefficient of reduction for ,, denoted as R, can be determined by

Equation 4.12.

4.3.4 General Bearing Capacity Equation for Foundations near Slope
For strip foundation subjected to vertical loading built on horizontal ground surface, the
bearing capacity can be predicted using Equation 2.5. In the case of strip foundation near

slope, the general bearing capacity equation becomes:
1
q,=cN_R.A_,+ 7RD/ D,NRA,+ EyBN,R,/I,d .. (4.17)

Generally there are three scenario of foundation near slope.

1~ Caseof B°<0°

Qu

. .. L
" . .
s x‘f / pRTS e
* - Pl
\ e, Trae”
wl

Figure 4.15. Failure mechanism, case of f° <0°

In this case, the failure plane does not extend above the line a/' therefore it is suggested

that the depth factors should not be included. Equation 4.17 becomes
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q,=cN_R, + ;RDfoN

q

R, +—;—}BN7R, .. (4.18)

b
2 —Case of p°=0° and —1% >

| o

Qu

SSRS

b
Figure 4.16. Failure mechanism, case of f°=0° and —Bf— >

In this case, the failure plane extends above the foundation base and therefore the depth
factors of Meyerhof are applied. The Dy in the depth factors is replaced by D/* and

Equation 4.17 becomes:

1
g, =CcN,RA,+mRy D/ N,R A+ > /BN, R A, ... (4.18b)
Where
For ¢ =0°
D, ~\b —bltanc
Aa,=1+o.2[ ! (“ ) ) ... (4.192)
B
A = A =1 ... (4.19b)
For ¢ > 10°
D,~{b ~-bfanc
/1“,=1+o.2( ! ("B ) )tan(45°+—§] ... (4.19¢)
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D, b, -bt
ﬂqd=/1ﬂ,=1+0.l[ / ("B )ana)tan(45°+§) .. (4.19d)

where bq >b

b

3 —Case of f°=0" and ~)—;— <

b
B

b
Figure 4.17. Failure mechanism, case of £°=0° and 7;— <

In this case, the failure plane extends to the horizontal surface and therefore it is
considered as horizontal surface foundation. The depth factors and the equation for strip

foundation on horizontal surface are used.

4.4 VALIDATION OF THE ANALYTICAL MODEL

To validate the present analytical model, the predicted values of the ultimate bearing
capacity of the footings were first compared with the results given by the numerical
model. The model was then validated with the experimental result of Shields et al. (1977)

and the theoretical values of Meyerhof (1957).
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4.4.1 Comparison between the Analytical and the Numerical Values

The reduction factors (R, Ry, and R,) deduced from the numerical model were compared
with those predicted by the analytical model (Figure 4.18 to 4.22). In this analysis, the
bearing capacity factors, N, N,, and N,, determined from Test No. 6 («°=0°) were used to
back-calculate the reduction factors. The following procedure was followed to back-
calculate the reduction factors.

_ q,(Test No.1)

R, ] ... (4.20)
EyBN}’A'}'d
1
q,(Test No.2 & 3) - EyBNy/lydRy
R, = ... (4.21)
yRDfoNq/lqd
R zqu(TestNo.4&5) L (422)

‘ ¢N A,
The depth factors Ag, Na and My suggested by Meyerhof (1963) were employed and
follow the rule stated in Section 4.3.4. The comparisons of reduction factors are produced

and graphical plotted in Figure 4.18 to 4.22.
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Numerical Model vs. Analytical Model (R, D (/B =0)

1.00
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- ;
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4
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0.20 1 e 1:1 line
0.00 ‘ S :
0.00 0.20 0.40 0.60 0.80 1.00

Analytical Model

Figure 4.18. Comparison of the reduction factor R, deduced from the analytical and
numerical models (Test No. 1).

Numerical Model vs. Analytical Model (R, D /B =0.5)
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Figure 4.19. Comparison of the reduction factor R, deduced from the analytical and
numerical models (Test No. 2).
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Numerical Model vs. Analytical Model (R, D(/B=1)

1.00
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Analytical Model

Figure 4.20. Comparison of the reduction factor R, deduced from the analytical and
numerical models (Test No. 3).

Numerical Model vs. Analytical Model (R, D;/B=0)
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Figure 4.21. Comparison of the reduction factor R,. deduced from the analytical and
numerical model (Test No. 4).
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Numerical Model vs. Analytical Model (R, D/B=1)
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Figure 4.22. Comparison of the reduction factor R, deduced from the analytical and
numerical models (Test No. 5).

It can be noted from these figures that good agreement between the results of
analytical and numerical models for the reduction factor R. was achieved. When
calculating the coefficient of reduction R, from the result of numerical model, the
superposition method cannot be used to calculate the ultimate load due to overburden
pressure only. As the result, the problem became complicated and a larger error was
obtained. However the overall error does not exceed more than 10%. The variation of
reduction factor with respect to /B ratio from the proposed analytical model give very
reasonable fit to the value given by numerical model. Figure 4.23 to 4.27 show sample of

the variation of the reduction factors vs. the b/B ratio for soil having ¢%=30°.
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R Vs. b/8 for ¢$°'=30" & D,/B=0
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Figure 4.23. Reduction Factor R, versus /B ratio for $%=30" (Line=Analytical model;
Point = Value from Numerical Model)
R, Vs. /B for ¢°=30" & D/B=1
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Figure 4.24. Reduction Factor R, versus 4/B ratio for ¢>30° (Line=Analytical model;
Point = Value from Numerical Model)
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R, Vs. /B for ¢°=30" & DJB=0.5
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Figure 4.25. Reduction Factor R, versus b/B ratio for ¢>=30° (Line=Analytical model;
Point = Value from Numerical Model)

R, Vs. /B for 4°=30" & D,/B=1.0
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Figure 4.26. Reduction Factor R, versus b/B ratio for $*30° (Line=Analytical model;
Point = Value from Numerical Model)
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R, Vs. b/B for ¢°=30" & D,/B=0
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Figure 4.27. Reduction Factor R, versus /B ratio for $*=30° (Line=Analytical model;
Point = Value from Numerical Model)

In the above mentioned comparisons the superposition method was use to
determine the reduction factors for the case of a footing having a width of one meter and.
To ensure that the analytical model is capable to predict these values for different
foundation configurations, a series of tests (Test No. 7, 8, 9 & 10) were performed on
embedded footings with different soil parameters.

The validation was performed by comparing the value of ultimate bearing
capacity (in kN/m/m length of the footing) as deduced from the proposed analytical
model. The bearing capacity factors are then calculated as described in Section 4.3.1 to
4.3.3 and the reduction factors and the depth factors were calculated following the

procedures given in Section 4.3.4. Figures 4.28 & 4.29, 4.30 and 4.31.
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Figure 4.28. Comparison of the ultimate bearing capacities deduced from the analytical
and numerical models (Test No. 7).
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Figure 4.29. Comparison of the ultimate bearing capacities deduced from the analytical
and numerical models (Test No. 8).
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Numerical Results kN/m/m
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Figure 4.30. Comparison of the ultimate bearing capacities deduced from the analytical
and numerical models. (Test No. 9).
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Figure 4.31. Comparison of the ultimate bearing capacities deduced from the analytical
and numerical models (Test No. 10)
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From Figures 4.29 & 4.30 and 4.31, the values of ultimate bearing capacity (q,)
given by analytical model agreed fairly well with those given by numerical model. The
values of the ultimate bearing capacity given by the analytical model were in the vicinity
of 90% of the values obtained by numerical model. While for smaller footing (Figure
4.28), the values of ultimate bearing capacity were slightly higher than those estimated
from the analytical model. Although the above results produced about 10 to 35% of error,
the values of percentage error are nearly constant for the same angle of ¢ with different
a° and b/B ratio. This implies that the variation given by analytical model with respect to
these parameters reflects the variation of the g, calculated by the numerical model. In the
literature, theories can be found to claim that the ultimate bearing capacity decreases with
the increase of size of the footing (Debeer 1965, Bauer et al 1981, Gottardi et al 1994).
This is mainly due to the scale effect, as explained below:

1. For larger foundations, the rupture along the slip lines in soil is progressive.
Accordingly, the average shear strength mobilized along the slip line decreases
with the increase of footing width.

2. The existence of zones of weakness in the soil under the foundation.

3. The actual curvature of the Mohr-Coulumb envelope for small scale footing is

different than that for large scale footing.
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4.4.2 Comparison between the Analytical Results and the Experimental Data of

Shields, Bauer, Deschenes and Barsvary (1977)

Shields et al. (1977) had published values for bearing capacity factor N, for a slope of 2

horizontal to 1 vertical («°=26.57°) with compact and dense sand. Since the experimental

values of bearing capacity factor N,, consists of both the effect of surcharge and strength

underneath the footing, it is assumed that the analytical value of N, is the resultant of the

bearihg capacity factor N, and N, and can be calculated according to the following

relationship:

Analytical Model Meyerhof(1957)
A

,

1 1
q, = A R.cN, +yRDfD R, AN, +E;/BR7)WN7 =cN,, +57BN

S g7 qd "

For cohesionless material (c=0),

1 1
q, =yRDfD R, AN, +57/BR717,,N7 =57/BNW

S qd

For Dy/B =0,

D =0

> 1 1
q, = 7RDfo/1dqRqu +5yBR7Ny =EyBN;q,D_f/B=O

1 1
57RyBN7 = E}/BNyq,Df/B=O

or

Analytical Model Shields's Value
N —N——

R}'Ny = N;q,D//B=O
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And for Dy/B >0,

1 1
q, = 7RD, DR A N, +‘2‘?BR7/7~,¢1N, = EYBNN,D,/B”

then

1 1
Ro, DyRydquNy + SR AN, == N

2 Jq.Df /B>0

or

Analyticil Model Shield's Value

2Ry DyR AN, +R AN, =N p po .. (4.26)

q " qd

Comparison of Shield et al's Experimental Value and Analytical Value

of N, For Compact Sand
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Figure 4.32. Comparison of the bearing capacity factor N,;, of Shield et al.’s and the
analytical model for compact sand.
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Comparison of Shield et al's Experimental Value and Analytical Value
of N, For Dense Sand
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Figure 4.33. Comparison of the bearing capacity factor N,, of Shield et al’s and the
analytical model for dense.

From Figure 4.32 and 4.33, it can be noted that Shields’s values of N,, are within
the minimum (lowest ¢ and maximum (largest ¢ value of N, given by the analytical
model. In the case of compact sand the analytical value of N, with ¢%=37° is fairly close
to the values produced by Shields et al. when the footing was rested on the surface or had
an embedded depth of 1. While the value of N,; with $*=41° is close to those of Shields
et al when the footing was rested deeper from the ground (Dy/B > 2) and farther from the
edge of slope. In the case of dense sand, the values of N, with ¢*=48° have better
agreement with the all the values of Shields et al.

Considering that Shield et al. have used the angle of shearing resistance ¢°,

which was determined from the triaxial test results, while the comparison was made for
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the case of plane-strain condition, support a reasonable fit between the theoretical and

experimental bearing capacity values.

4.4.3 Comparison between the Analytical Values and the Results Produced by
Meyerhof’s Theory (1957)

In order to compare the bearing capacity factors derived from the analytical model to that
predicted by Meyerhof’s theory, superimposition of the theoretical values of bearing
capacity factor N,, to generate the value of the factors N,and N,. The comparison is
limited to soil having ¢°= 30° and 40°, as well as foundation parameter Dy/B = 0 and 1,
and a°=30 for ¢°= 30° and a°=20 & 40° for ¢°= 40°. The method of calculating the
value of N,, is the same as stated in Section 4.4.2.

Figure 4.34 & 4.35, shows that the increase in b/B ratio, increases the value of
bearing capacity factors, where good agreement can be noted. Refer to the curves with
¢°=30° (Figure 4.34), the magnitude of N, calculated from analytical model is
approximately equal to theoretical value when b/B equal to zero and b/B equal to infinite
(horizontal surface). However, the variation with respect to b/B is different. Both
analytical model (Figure 4.34 & 4.35) and data from numerical model (Test No. 1-4 & 3-
4 for ¢°=40° and Test No. 1-6 & 3-6 for ¢°=30°) show that the actual distance/width ratio
at which the bearing capacity factor becomes independent of the slope is 4.5B to 6B for
surface (Dy/B = 0) and shallow (D/B = 1) foundation, rather that 2B and 3.5B
respectively. From the results of the numerical model for the case of ¢°=30° and a°=30°
(Figure 3.9c and 3.10c), it shows that the shear stress concentrates on the side of slope
when 5=2B. When b is 4B, the failure plane becomes more symmetric and no noticeable

slope effect is found. For ¢°=40° (Figure 4.35), the difference of variation between the
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theory and the analytical model is more noticeable. When surface foundation (D/B = 0) is
at the edge of the slope (5/B=0), the magnitude of N,, from analytical has approximately
the same value as theoretical one. Beyond the edge of slope, the increase of N,, with
respect to b/B ratio seems to be more linear, rather than exponential. The theory shows
that, at a distance about 4.5B, the bearing capacity factor is independent of slope.
However from both numerical and analytical model, this distance is greater than 6B. By
using the analytical model, this distance was found to be about 8B from the edge of the

slope.

Comparison of Bearing Capacity Factor N, for $=30°
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Figure 4.34. Values of bearing capacity factors N, predicted by the analytical model for
¢=30°
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Comparison of Bearing Capacity Factor N, for ¢=40°
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Figure 4.35. Values of bearing capacity factors N,, predicted by the analytical model for
¢=40°
4.5 DESIGN PROCEDURE
The proposed coefficient of reduction R, R, and R, in Section 4.3 (Equation 4.10b, 4.2d,
& 4.13 respectively) describe mathematically the percentage of the bearing capacity
factors N., N; and N,, in terms of f°, ¢°and a®. These coefficients, called slope factors,
can be used in the existing general bearing capacity equation. It can be represented
graphically thus designers are able to determine the foundations in a simpler way. The
charts also give the comparison of the reduction of bearing capacity factor with different
physical characteristics of the foundation. Thus engineers are able to determine the
feasible location of the foundation, which fit to the requirement.

The following steps summarize the recommended design procedure for

foundation near the slope:
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. Obtain a soil sample at the field and determine the soil parameters: angle of

shear resistance “¢”, the cohesion “c”, and the unit weight of soil “y”. The

angle of shear resistance and the cohesion are determined using triaxial

compression test.

. Determine the parameter of the footing and the adjacent slope.

a. Determine the distance between the edge of slope and the edge of
footing “b”.

b. Determine the angle of slope respected to horizontal, a°

¢. The size of the footing “B” and the depth of embedment, D.

b D
. B AN b (Equation

. Calculate the equivalent distance/width ratio
Btana B

4.1¢)
_ b, .
. Use the value of —Bf’— and the value of a° and ¢° to determine the angle of £°

from Figure 4.36 to 4.41. Note that the value given by these figure are
negative.
. Using the value of f°, determine the slope factors R., R,, and R, using Figure

4.42, 4.43 and 4.44 respectively.

. q - beq . .
. If B° is found to be less than zero, 3 is equal tOF; if §° is equal to zero,
b, by . :
Ef is equal to ?" with °=0° from Figures 4.36 to 4.41.

b . b
. Compare the actual — with—-
B B
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b
a. If %>~B"— (8°=0°), foundation on level ground is considered. The depth

factors are calculated using equations stated in Table 2.1.

b
b. If % < ;f (f°< 0°), foundation near slope is considered. The depth

factors are calculated using Equation 4.19a to d. The coefficient Ry is

calculated using Equation 4.8b

8. Using Equation 4.17 to determine the ultimate bearing capacity.

Angle of Equivalent-Free Surface Vs. Equivalent Ratio of b/B (b o/B)

00 20 40 6.0 g0 ™ 100 120 140 16.0 18.0
50 i I ' n A 1 A 1 J
R\
|
i
+4h
\ b, D, b
4 _ S 42
B Btana B
3"
081
o
[-J
1
<
24
1
o
0° 10° 20° 25° 30° 35° 40° 45° 50°

¢°
Figure 4.36. Angle of equivalent-free surface f° vs. equivalent distance/footing width
ratio (b.¢/B) for angle of slope a®=5"
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Angle of Equivalent-Free Surface Vs. Equivalent Ratio of b/B (b ,,/B)

be/B
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

16.0

18.0

10° 4 N " " " " N "
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2° 1
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0°

0° 10° 20° 25° 30° 35° 40° . 45°

50°

Figure 4.37. Angle of equivalent-free surface §° vs. equivalent distance/footing width

ratio (b.,/B) for angle of slope a® =10°
Angle of Equivalent-Free Surface Vs. Equivalent Ratio of b/B (b ,,/B)
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Figure 4.38. Angle of equivalent-free surface 3° vs. equivalent distance/footing width

ratio (b.,/B) for angle of slope a® =15°
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Angle of Equivalent-Free Surface Vs. Equivalent Ratio of b/B (b ,,/B)

b,/B
0.0 20 4.0 6.0 8.0 ol 10.0 12.0 14.0 16.0 18.0

20° 4 i s " " s s s

0° 10° 20° 25° 30° 35° 40° o° 45° 50°

Figure 4.39. Angle of equivalent-free surface 8° vs. equivalent distance/footing width
ratio (b.,/B) for angle of slope a° =20°

Angle of Equivalent-Free Surface Vs. Equivalent Ratio of b/B (b eg/B)
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Figure 4.40. Angle of equivalent-free surface ° vs. equivalent distance/footing width
ratio (b.,/B) for angle of slope a® =25°
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Angle of Equivalent-Free Surface Vs. Equivalent Ratio of b/B (b ,/B)
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Figure 4.41. Angle of equivalent-free surface ° vs. equivalent distance/footing width
ratio (b.,/B) for angle of slope a° =30°

Slope Factor R, Vs. Angle p
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Figure 4.42. Slope Factor R, vs. Angle of equivalent-free surface (Equation 4.10b)
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Figure 4.43. Slope Factor R, vs. Angle of equivalent-free surface. (Equation 4.2d)
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Figure 4.44. Slope Factor R, vs. Angle of equivalent-free surface. (Equation 4.13)
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4.5.1 Design Example

¢l.5m

v=18kN/m°
¢=5 kN/m
»=35°

==

1.5m

Figure 4.45. Design Example

be
— =22 =414
B

From Figure 4.40, °= 5.95°

So R b, = 0.569 (Equation 4.8b)

From Figures 4.42 to 4.44, with £°=5.95°:

R,~=0.776

R~=0.865

R=0.860

The depth factors (Equations. 4.19a to d)

Aog = Ay = Ay =1

Bearing Capacity Factor for horizontal surface (Meyerhof, 1951):
N=46.12; N=33.3; N,=37.15

Substitute the all the value into Equation 4.17,

c*re’red

4. =N R A, +1D,Ry N,R oy +% yBN, R, A, =1030.023kN / m*

Using numerical model, the ultimate bearing capacity is estimated as:

qu= 1214.17 KN/m? (%error = 18%)
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CHAPTER 5

CONCLUSION
A numerical model was developed using the finite element technique together with the
program “PLAXIS” for the case of foundation near a slope. The model provides a
realistic failure mechanism beneath the footing and a reasonable value of ultimate bearing
capacity of these footing. Analytical model and design procedure are developed and
compared well with the available experimental data. Design charts and an example are

presented for practicing use. The following can be concluded:

1. The bearing capacity of foundation near slope decreases due to the increase of the
slope angle and/or the decrease in the distance between the top of slope and
footing edge.

2. The bearing capacity of foundation near slope increases due to increase of depth
embedment and/or the width of the footing. However the rate of increase is much
lower as compared to the case of foundation on surface ground.

3. For relatively higher angle of shearing resistance ¢¢ the footing requires a longer
distance from the edge of the slope in order not to be affected by the slope.

4. The theory of Meyerhof (1957) overestimates the magnitude of the ultimate
bearing capacity and underestimates the effect of the distance to the top of the
slope. The distance at which the bearing capacity is independent of the slope was
found to be higher than that stated in theory.

5. The proposed analytical model presents dimensionless coefficients which depend

on the soil parameter and the footing/slope geometry. These coefficients
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incorporate the slope contribution, and accordingly they can be employed in the
general bearing capacity equation.

6. The design charts for slope factor will assist designers to determine relative
reduction for each bearing capacity factor and accordingly the bearing capacity
for the given conditions of the foundation. The charts can also be used to
determine the distance of a foundation from a slope to produce a required bearing
capacity, or the location of the foundation where the adjacent slope does not affect

the bearing capacity.

RECOMMENDATIONS
1. The presented analytical model should be extended for the case of three
dimensional cases for the design of square or rectangular foundations.
2. The presented analytical model should be extended for the case of saturated or
submerged soils, slopes subjected to sudden drawdown of the water level in the

river, or soils subjected to steady flow.
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APPENDIX A

TEST RESULTS
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