INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UM! directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48108-1346 USA
800-521-0600

UMI

NOTE TO USERS

This reproduction is the best copy available

UMI

University Course Registration and Management System — A Distributed
Application Using Microsoft Distributed Component Object Model

Qiang Zhang

A Major Report
IN
The Department
OF
Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

August 1999
© Qiang Zhang, 1999

vl

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your the Votre retérence
Our file Notre refdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propnéte du

copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimeés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-43671-3

Canada

Abstract

University Course Registration and Management System — A Distributed
Application Using Microsoft Distributed Component Object Model

Qiang Zhang

A University Course Registration and Management System (UCRMS) has been
designed and implemented using Microsoft Visual C++ and Microsoft Distributed
Component Object Model (DCOM). The UCRMS is a real time, three-tier (presentation-
tier, application-tier, and data-tier), distributed application capable of running on number
of PCs according to the configuration. It provides a convenient graphic user interface for
both students and university administrators. It allows students to make a self-registration
for their selected courses. It also allows university administrators to manage the student
and course data, such as adding a student, adding a course, deleting a student, deleting a
course. To support data efficiency, the data-tier has full control over database access. To
support network efficiency, the application-tier provides data storage for frequently used
data. To support user efficiency, the presentation-tier provides students with online
course descriptions, allowing a easy course selection. To support online data
modification, a callback mechanism is implemented for the application-tier server that
broadcasts update information to all its clients as needed. An in-depth descriptions of
DCOM, a basic technology used in the implementation of the UCRMS, is also provided
with this report.

iii

Acknowledgements

[would like to take this opportunity to express my sincere thanks to my
supervisor, Professor L. Tao, for his continuous support throughout my studies at
Concordia University. Without his extraordinary guidance, this work would not have
been done.

My thanks are also due to all the professors and staffs in the department of
computer science, especially Halina Monkiewicz, for their excellent supports during the
entire studies of my Master’s degree. I would like to extend special thanks to my friend,
Dr. Jun Song, for his help in getting the right knowledge for my project.

I am deeply indebted to my patient wife for her unwavering support and
understanding while | was doing my project and writing my major report, [owe my
lovely daughter many park plays. My deep love goes to my wife and my daughter. It is to
them that I dedicate this report.

Finally, to my dearest parents, I express my cordial thanks for their continuous

encouragement while I was pursuing my studies.

iv

Table of Contents

LIST OF FIGURES VI
1 INTRODUCTION 1
I.1 THE REASON FORTHE UCRMS ... reeervtvcenissesterctenecssersnsreneesnnnnns 1
1.2 THE NEEDS FOR COMPONENT SOFTWAREccuituuieeiceirincieenterecraireircesnrensesssssrnsansones 2
1.3 THE DISTRIBUTED APPLICATION MODEL FORTHEUCRMSc.orrie 5

2 DCOM FUNCTIONALITY 8
2.1 OBJECT ACTIVATIONrieiiriitteireueeirsererenssmseesncressnesenssrnssessmsserarsssomesmmsssossosnsssssesnse 9
2.2 MARSHALING AND UNMARSHALING......ccootttiirurrmnennnnrenneirnreetnesnnssssnssesnassesasecs 11
2.3 OBJECT CONNECTION CONTROLcceeiieeeerieeenueneeereceneencnsrcssernensennsessessasssessssssnnnes 12
2.4 CONNECTION POINTS ... eeeeieeeeeeceecereeeeeer e eeaeeseensrneseonnesesasesassssssnsnnnnsnns 13
2.5 DCOM THREADING MODELS.......cccccosrtereunirrineenereentnresineniriesrnessesssssssessasessnses 14
2.5.1 Single-Threaded Apartments (STA)oooeeeeevoimeieiieeiieeecceccieceeeenans 14
2.5.2 Multithreaded Apartment (MTA)ouemeoiimieiianiceeiieciccreaneneenees 14

2.6 SECURITY ISSUES. .. iittiitttecceeeereeeeeererereseesseeesssssensemsrsrmssssessssmmnssssemnsssnesansanassssasoss 15
2.6.1 ACCESS SCCUFILY........uneeeeeeeeeeeeeeteeeeeeeeeeeeeeereeseeaeeeeeermsesnnnsssasesssnnasennssnannasenens 15
2.6.2 LAUNCR SECUTILY...............caueeaaneeeeeeeeeeceeeeeeeeeeeeeeeeeeeeeeenesaeaeae s e e esannannnnaeas 15
2.6.3 AUIRERUICALION...................oveeneeeeeeeneeereeneeeeemeeeeeeeaneeeee s etaeaeeseesesasecaaaeaes 16
2.6.4 Impersonation levels.................ccoocoevoumeeeeeeeiceniiiiicriineicrieeeneeeeiinnanneaeees 16

3 SYSTEM REQUIREMENTS 17
3.1 HARDWARE REQUIREMENTSoioitiiercecieeenerreenremnsensnscamsssasersmnsnsssennnssosasosssasssnanens I8
3.2 SOFTWARE REQUIREMENTcicvutiniieicttncecnniaemnrreseesusesenmsnsremenmnnsaramcesssrssssernsssnnnns 18
3.3 GRAPHIC USER INTERFACE REQUIREMENTS......ccceveeiiieiieiirieeiecneereeeeesnnnneennensesseees 18
3.3.1 1ogin WiRAOW...............oooceeeeeieeeeeeeeeee et ee et e e e sannnaee 19
3.3.2 Student Course Registration Window...................ccccouuieireninacrcceeriresricsnnnnes 19
3.3.3 Course Add and Drop Window...................coueeeoemmeomnoueeeeeeieeeeeeeeeeeeeeeneen 20
3.3.4 Course and Student Administration Window........................ocveeeeemeeoececeeeenne. 21

4 SYSTEM DESIGN

5§ SYSTEM IMPLEMENTATION

6

3.3.5 Administrators Management Window.......................cccooeveemrioeenninneneneeannces 22

3.4 MIDDLE-TIER/SERVER REQUIREMENTiiiireueereeeecnsnencsessemensessessesmsrssnnsasnnsnnes

3.5 DATA-TIERREQUIREMENTiviimiiiiiiiniiiitetitereenrteerneeiernetttasmnnnnienneoessessostssoease

4.1 USERDESCRIPTION. ...t iiiccittieirteterieesienaeessrnaanetniasnsnsesencmnressonsssasssossesasssnnns

4.2 DESIGN CONSIDERATIONoeneeiieiieeieneeesseaneressosessssrmssensssnssssssssasmsasassasenssonssenssase

4.2.1
4.2.2
4.23

Presentation-tier — Graphic User Interface.........................oooeeereivenneennnne
Middle-tier — Application Servicesooeoueeeueccicueinnirieeeeieeenenn.

Data-tier — DatABASE ACCESSoeeeeaaeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeressaeeasaareeaas

4.3 TASK ANALYSIS oeeeieicenueieireneeeeniiiietensiisesenstseresnssssssasssssnsenssessessssnnnsssesesssansassssse

4.4 SYSTEM ARCHITECTURE.....ccuveeuiiiriieneiiiiirtettiierinaseieneesesmnsssssesssimssssnssssnsssranssossosee

4.5 SYSTEM DESIGN — OBJECT MODEL.......ccccceieiirrmuiiiiinirmmnniieiiireieeeiesesessassassssssenes

4.6 SYSTEM DESIGN — DYNAMIC MODELccuuumimimientireintieiiieeeeeentenanseeesaeeesenenes

4.7 DATA FLOW...eieeieeeeirieeriueeeeeeseserssesnssersesssssasssssssessssssssssssssansarsessnssnnrmescnsemssssnans

5.1 SYSTEM CHARACTERISTICS ..cuueeeieernreereenseessseesserammsssessessensssssassssessnssnsesssasnssasssnsans

5.2 IMPLEMENTATION DETAILS......ccttuiiiiriemcetinimnieineereneieesennassaiiereeansesesseasasnssaes

5.2.1
5.2.2
5.2.3
5.2.4
525
5.2.6
5.2.7

INSTALLATION AND EXECUTION

GUI module —the Graphic User Interface.......................ccccvverevreeennnnnnn.
GuiBase Moditle.....................ooueeeeouoooieiiiieiiiiiiiiiiiiiiiciecrren s naees
DataControler Module......................cooouemimiioniiriiiiiiiicriecinccteneteeenaenneneeneens
SecurityMgr module....................ccocccoooceuiinnimiiiiiiieeeee e
SpecMgrmodulecoeiviiviiuiiiiiiniiiteeeeee e
DataAccess Module...................ooooueneiiiovooiiiiiiiiaiiiiiiiiiiicieceeee e
Project Settingsc.....ccoooueeiiimeiiiiiniiieienciceectte et

6.1 THE DISTRIBUTION OF GUIBASE.DLL (DYNAMIC LINKED LIBRARY)cecvereeuennc.

6.2 THE SYSTEM ENVIRONMENT VARIABLE SETTINGS....ccccitmiiiiiiiicccrernnnneenseeienens

6.3 SERVER SIDE CONFIGURATIONccctttmuiiiiiimunuiiemetiieseieranssessireerseesnssessasasnesssessnnes

6.4 CLIENT SIDE CONFIGURATION.......ccitmmuuenrictmianicenmmirsersemmmnssssssisesenmssansessnnsssossens

V1

50

50
50

51
2

-

58
61
63
65
66

68

6.4.1 Registration for the Proxy..............cueceeeimeoeesiieenciiiconncnisstnnee e 72
6.4.2 Registration for Remote Servers oo eeeooireciiciniiiniiiineenieeee 73

6.5 SETTINGS FOR DATABASE.....cccitieeeieeiraeceitrirssierssstsosessremnasnsestsmesnasssmesesssivesssanens 75
6.5.1 Setting Database User ACCOUNLoocmiuereroiniiicniiitiiiiccneee 76
6.5.2 Setting Database COnnection..................cccoeeureeeeenmioncenneenecmiieiiicninees 76
6.5.3 Creating Database Tablesiiineiioniiiinnecaiiiciicnes 77
6.5.4 Inserting Values into Database Tablesocoeveiiiiiinncncnecncnnnne 77

6.6 USINGTHEUCRMSeoeeeeeeetrecceninmertecesamss e n s e s e e seese s sesnaeenae 78
6.6.1 Login Window...............cccommimmmmmmieeiiniieeieeietee e 79
6.6.2 Course Registration Window...................cooememiieemmnniiinieiccncecee 80
6.6.3 Course Add and Drop Window....................c.oommmiiimmeiiirniiiiceciane 83
6.6.4 Student and Course Management Window...................cccovnieriiiicniiiiannnn. 84
6.6.5 Administrator Management Windowoocomreeinnoiiniceiiiiniiennne. 86

7 SYSTEM-TESTING AND BUG-FIXING 88
8 CONCLUSIONS 89
REFERENCES 92
APPENDIX A —IDL FILES 93
APPENDIX B — SERVER REGISTRATION FILES 101
APPENDIX C — CONFIGURATION AND HELP FILES 105
APPENDIX D — DATABASE FILES 108

VI

List of Figures

FIGURE 1: STRUCTURE FOR THREE-TIER APPLICATIONocomrriinienecenecnecneeaenene 7
FIGURE 2: DCOM ARCHITECTUREcccoooiiiititninerrneeenissienesenesrnsenssssssesessssesesssnnnnees 10
FIGURE 3: REGISTRATION TASK ANALYSIS DIAGRAMcuouviiiiuninnrneeeneresennnnannnnnas 29
FIGURE 4: COURSE ADD AND DROP TASK ANALYSIS DIAGRAMoooremeereninnnnnnnnenes 30
FIGURE 5: STUDENT AND COURSE MANAGEMENT TASK ANALYSIS DIAGRAM 30
FIGURE 6: ADMINISTRATOR MANAGEMENT TASK ANALYSIS DIAGRAMcc.ccceeee. 31
FIGURE 7: SYSTEM ARCHITECTURE FORTHE UCRMS ... 32
FIGURE 8: CLASS DIAGRAM FOR GUI MODULE............ccooiiiiiiriiniinnrnnneansesennensneneees 35
FIGURE 9: CLASS DIAGRAM FOR GUIBASE MODULEc...oconiinianrninannnenirenreneennes 36
FIGURE 10: CLASS DIAGRAM FOR DATACONTROLER MODULEocennineeninnnennnee 37
FIGURE 11: CLASS DIAGRAM FOR SECURITYMGRMODULEcccoieiierncnancinaaee 38
FIGURE 12: CLASS DIAGRAM FOR SPECMGR MODULE ... 39
FIGURE 13: CLASS DIAGRAM FOR DATAACCESS MODULEcoomimmmmnrnennainnrannne 40
FIGURE 14: USE CASE - SEQUENCE DIAGRAM: LOAD APPLICATIONcccccnnnnneeneee. 43
FIGURE 15: USE CASE - SEQUENCE DIAGRAM: EXIT APPLICATION.........ccevvrrrmrrnnennen. 44
FIGURE 16: USE CASE - SEQUENCE DIAGRAM: USERLOGINccovrrrrrmiiiininneae. 45
FIGURE 17: USE CASE - SEQUENCE DIAGRAM: STUDENT REGISTER COURSES 46
FIGURE 18: USE CASE - SEQUENCE DIAGRAM: ADD A STUDENTcccecevvremeacacnnnnnnnns 47
FIGURE 19: DATA FLOW AND SEQUENCE DIAGRAMcooimimiiniiacuecaraneesnnacsneennsnnennns 49
FIGURE 20: LOGIN WINDOWoociiiertieeetrteteseeeensessseesestesseensessessssssssessnessessasnesans 80
FIGURE 21: COURSE REGISTRATION WINDOWoouoiiiiiinirrenireseeeseraessasnesnescsessens 81
FIGURE 22: REGISTRATION CONFIRMATION WINDOWccocceuiiuimrrrrmranrencniennansenens 82
FIGURE 23: COURSE DESCRIPTION WINDOWccuiiiiiiniiininniiinnicesnesesnsnessssssesannnne 82
FIGURE 24: COURSE ADD AND DROP WINDOWccciieiomininnenieriecsirsssrssssnseneesssussenes 83
FIGURE 25: STUDENT AND COURSE MANAGEMENT WINDOWccccoviemmmmmarnnrennnnnennne 85
FIGURE 26: WINDOW FOR ADDING A NEW COURSEuiivenririrarennnnenasareennsaenene 86
FIGURE 27: ADMINISTRATOR MANAGEMENT WINDOWccovvimmiiirnrrnnreranenreninnnaeans 87
FIGURE 28: WINDOW FOR ADDING A NEW ADMINISTRATORcccveerumeeenmiirnniruesnnceens 87

1 Introduction

This report depicts designing and implementing a University Course Registration
and Management System (UCRMS). UCRMS is designed to facilitate the student course
registration process. It provides a convenient way for course administrators to manage the
courses and students data stored in the database. It also provides a feasible method for
implementing a reliable, resource saving, distributed application in Windows

environment, which is the main goal and key contribution of this report.

1.1 The reason for the UCRMS

In many universities, course registration is a time consuming process for both
students and course administrators. To make course registration, a student needs to select
courses first and then submit a registration form to the course administrators who finally
enter the student registration data into the database. It is understandable that the
workloads for administrators are enormous since they need to enter the registration data
for all the students. The student, on the other hand, may need to repeat the registration
process if the space for the selected course is already full. This further increases the
workload for course administrators. To reduce the workload imposed on both students
and course administrators, we need a course registration and management system.

The UCRMS mentioned above is designed to simplify the course registration
process. By using the UCRMS, students are capable of making self-registration for their
selected courses. To support self-registration, UCRMS allows course administrators to
manage courses and students data in the database, such as adding and deleting a course,

adding and deleting a student, so that the student can make their course registration. This

self-registration system provides the students with direct access to the course registration,
greatly reduces the workload imposed on the course administrators. To speed up the
course registration process, the UCRMS also provides students with online course
descriptions, allowing students to make their course selection effectively. Once the

courses are registered into the system, these courses are guaranteed for the student.

1.2 The needs for component software

The UCRMS is designed to run in a personal computer (PC) on Windows
environment. The primary reason for using a PC and Windows operating system is their
popularity and accessibility to the students with different computer background. The
main constraint for using a PC in the UCRMS is its limited system resource, especially its
very limited physical memory. This may cause problems in using PC to run the UCRMS
since student and course data in the university could well exceed the memory capacity of
a PC. More than 120 MBs memory might be needed for solely storing the student data in
a university with 50000 students. Therefore memory management becomes very critical
in the UCRMS.

To show the important roles played by the memory resource in the UCRMS, we
examine two models, respectively called Model-1 and Model-2. Model-1 implements the
UCRMS to run on a single computer. The data to be processed can be retrieved from
remote database via network connection. These data could be either stored in the local
memory for the next usage after retrieved from the database, or they are not stored but
retrieved from the remote database each time a data is needed. In the first case, the

number of network transmissions can be significantly reduced. But since all the data is

loaded into a single PC, the physical memory of a PC may not be able to hold all these
data. As a result, the UCRMS may not work correctly in such a heavy loaded condition.
At the very least, the performance of the UCRMS might be greatly downgraded. In the
second case, the system resource is saved by not loading the data into the local memory,
but at the cost of possible system response-time delay caused by heavy data transmission
on the network and the frequent access to the remote database.

Model-2 intends to remove the drawbacks caused by the insufficient system
resource and network delay. To reduce the data transmission delay on the network and
thus reduce the number of access to the remote database, the data needs to be loaded into
local memory. To reduce the PC system resource usage so that the UCRMS could be
executed correctly at any time, the UCRMS itself needs to be cut into several pieces with
different pieces to run on different computers. In such a distributed environment, the data
can be loaded and distributed into local memory of different computers by different
pieces of the UCRMS. These different pieces work together to complete their common
task, that is to help students register their courses and to help administrators manage
student and course data. Each of these software pieces is the component of the UCRMS,
which could be implemented by using the so-called component software technology.
Until now two parallel technologies are available for the component software. One of the
technologies — the Distributed Component Object Model (DCOM) [1, 2] is developed
by the Microsoft Cooperation to support communication among objects on different
computers. The other one — the Common Object Request Broker Architecture (CORBA)
[3, 4] is developed by the Object Management Group (OMG) to support the invocations

of operations on objects located anywhere on a network.

Both DCOM and CORBA support the following common features in the

development of server components:

e Multiple programming languages. All the main programming language can be used
for the component implementation.

e Location transparency. Client can invoke server object without the details of server
location.

e Strong security. Different levels of security checks are performed for server object
invocation and access.

e Multithreaded server. Concurrent multiple-client accesses to the server object are

supported.

In addition to the above common features, several key differences between DCOM and

CORBA can be summarized as below:

e High-quality development tools are available for building DCOM components. On
the contrary, no development tools are provided for building CORBA components.

e DCOM has large selection of commercially available ActiveX components for use.
CORBA does not have such support, causing longer development cycle on average.

e CORBA supports broad operating system. DCOM only support Windows NT 4.0,
Windows 95/98, Sun Solaris 2.5, and Digital UNIX.

e CORBA supports implementation inheritance, one interface can inherit another’s
components. DCOM only supports interface inheritance, the derived interface does

not inherit the components available under the original implementation.

In the case of UCRMS where PC and Windows system are used, it is more natural
to use DCOM rather than CORBA since more developing supports are available for

DCOM in Windows environmernt.

1.3 The Distributed Application Model for the UCRMS

A typical application that interacts with a user, such as UCRMS, usually consists
of three elements: presentation, application logic, and data. Presentation focuses on
interacting with the user. Application logic performs calculations and determines the flow
of the application execution. Data elements manage information that must persist across
sessions or be shared between users.

Two-tier, or standard client/server applications, as described in Model-! in section
1.2, group presentation and application logic components on the client computer and
access a shared data source using a network connection. The advantage of such a
configuration is that the data is centralized. This centralization benefits an organization
by sharing data, providing consistency in accessed data, and reducing duplication and
maintenance. But there are also numbers of limitations for the two-tier applications, such
as poor scalability, poor maintainability, poor reusability, and poor network performance.

In three-tier architectures, presentation, application logic, and data elements are
conceptually separated. Presentation components manage user interaction and request
application services by calling middle-tier (application-tier) components. Application
components perform business logic and make requests to databases. Application design
becomes more flexible because clients can call server-based components as needed to

complete a request, and components can call other components to improve code reuse.

Three-tier applications implemented using multiple servers across a network are referred

to as distributed applications.

Three-tier architectures are often called server-centric, because they uniquely
enable application components to run on middle-tier servers, independent of both the
presentation interface and database implementation. The independence of application
logic from presentation and data offers many benefits:

e Multi-language support. Application components can be developed using general
programming languages.

e Centralized components. Components can be centralized for easy development,
maintenance, and deployment.

e [oad balancing. Application components can be spread across multiple servers,
allowing for better scalability.

e Efficient data access. The problems for database connection are minimized since the
database now sees only the application component, and not all of its clients. Also
database connections and drivers are not required on the client.

e Improved security. Middle-tier application components can be secured centrally using
a common infrastructure. Access can be granted or denied on a component-by-
component basis, simplifying administration.

e Simplified access to external resources. Access to external resources, such as
mainframe applications and other databases, is simplified; a gateway server becomes
another component that is used by the application.

The structure of three-tier application is shown in Figure 1. The adjacent tiers are

connected through the network.

Presentation
Presentation Client
Network
Application
Logic Application Middle
Logic Tier
Server
Network
Data and
Resources Data

Figure 1: Structure for Three-tier Application

The UCRMS fits well into three-tier distributed application. The students and
course administrators interact with the system through the graphic user interface provided
by the presentation tier. The application services are provided to the presentation-tier
component by the middle-tier component. In the UCRMS, the middle tier should also
provide the essential data storage to reduce the network traffic. The data-tier component
manages the access to the database, as for example adding a course into database. All
these software components should be configured and distributed into several computers
so that the collection of system resources is sufficient to guarantee the correct execution
of the UCRMS.

The reason for the UCRMS to use distributed three-tier application is not only the
resource sharing, but also the benefits gained from distributing the components into

different computers. There are enhanced efficiency, scalability, and reliability of the

system by partitioning and distributing a complex application into presentation,

application logic, and data sections.

e Scalable: As the number of users or workload increases, the application does not
degrade significantly.

e Reliable: Reliable applications do not siop users from doing their jobs due to a
hardware or software failure. Reliable applications also have a high level of
confidence from their users of the correctness of their operation and availability.

e Efficient: Efficient applications do their work quickly and are effective at helping the

user reaching their goal.

2 DCOM Functionality

In this chapter, we present an in-depth description of the Microsoft Distributed
Component Object Model (DCOM). This component technology will be used in the
implementation of application-tier and data-tier of the UCRMS.

DCOM is a specification and set of services that allow software developer to
create modular, object-oriented, customizable, upgradable, and distributed applications
using a number of language [5]. It supports communication among objects on different
computers, whether on a local area network (LAN), a wide area network (WAN), or even
the Internet. In DCOM architecture, applications are built from packaged binary
components with well-defined interfaces [1, 5]. It allows flexible update of existing
applications, provides a higher-degree of application customization, encourages large-
scale software reuse, and provides a natural migration path to distributed applications.

The Component Object Model (COM) [6] is an approach to achieving component

software architecture. COM specifies a way for creating components and for building
applications from components. Specifically, it provides a binary standard that
components and their clients must follow to ensure dynamic interoperability. DCOM is
the distributed extension of COM. It is an application-level protocol for object-oriented
remote procedure call. With DCOM technology, an application can be configured and
distributed at any locations. Because DCOM is an extension of COM, one can take
advantage of the existing COM-based components and knowledge to quickly build a new
distributed application.

DCOM is currently an active research field, especially in the area of reliability
and security [7, 8]. The new version of DCOM, to be packaged with Windows NT 5.0,
will provide improved supports in reliability, security, and easy developing. In the
following we present the key aspects of DCOM for the current version, packaged with

Windows NT 4.0.

2.1 Object Activation

One of the important features of DCOM is a mechanism for establishing
connections to components and creating new instances of components either locally or
remotely. In the COM/DCOM world, object classes are named with globally unique
identifiers (GUIDs), which are called Class IDs. These Class IDs are nothing more than
fairly large integers (128 bits) that provide a collision free, decentralized namespace for
object classes. The COM libraries provide CoCreatelnstanceEx, CoGetlnstanceFromFile
for remote object creation, which in turn calls Querylnterface implemented in the server

component.

In order to be able to create a remote object, the COM libraries need to know the
network name of the server. Once the server name and the Class Identifier (CLSID) are
known, the service control manager (SCM) on the client machine connects to the SCM
on the server machine and requests creation of this object. As shown in Figure 2, the
DCOM protocol is layered on top of the OSF DCE RPC specification [9]. Next to the
DCE RPC is the Security Provider offering security checks for the method calls between

client and object. Proxy and stub are responsible for marshalling and unmarshalling for

any method calls, their details will be given in the following section.

Security | op ppe| | SeSUnY | beE RpC
Provider Provider
Protocol Protocol
CoCreatelnstanceEx / CoCreatelnstanceEx
SCM SCM
Network

Figure 2: DCOM Architecture

Two fundamental mechanisms allow clients to indicate the remote server name
when an object is created:
e As a fixed configuration in the system registry.

e As an explicit parameter to CoCreatelnstanceEx, CoGetinstanceFromFile.

10

The first mechanism is extremely useful for maintaining location transparency. By
making the remote server name part of the server configuration information registered on
the client machine, clients do not have to worry about maintaining or obtaining the server
location. If the server name changes, the registry is changed and the application continues
to work without further action.

Some applications require explicit run-time control over the server to be
connected. For this kind of application, COM allows the remote server name to be
explicitly specified as a parameter to CoCreatelnstanceEx, CoGetinstanceFromFile. The
developer of the client code is in complete control of the server name being used by

COM for remote activation.

2.2 Marshaling and Unmarshaling

When a client wants to call an object in another address space, the parameters to
the method call must be passed from the client's process to the object's process. The client
places the parameters on the stack. For remote invocations, the caller and the object don't
share the same stack. Some COM libraries need to read all parameters from the stack and
write them to a memory buffer so they can be transmitted over a network. The process of
reading parameters from the stack into a memory buffer is called "marshaling." The
counterpart to marshaling is the process of reading the flattened parameter data and
recreating a stack that looks exactly like the original stack set up by the caller. This
process is called unmarshaling. Once the stack is recreated, the object can be called. As
the call returns, any return values and output parameters need to be marshaled from the

object's stack, sent back to the client, and unmarshaled into the client's stack.

11

COM provides sophisticated mechanisms for marshaling and unmarshaling
method parameters that build on the remote procedure call (RPC) infrastructure defined
as part of the distributed computing environment (DCE) standard. In order for COM to be
able to marshal and unmarshal parameters correctly, it needs to know the exact method
signature, including all data types. This information is provided using an interface
definition language (IDL), which is also built on top of the DCE RPC [9] standard IDL.
IDL files are compiled using a special IDL compiler — MIDL compiler, which is part of
the Win32 SDK. The IDL compiler generates C source files that contain the code for
performing the marshaling and unmarshaling for the interface described in the IDL file.
The client-side code is called the "proxy," while the code running on the object side is
called the "stub.” The MIDL generated proxies and stubs are COM objects that are loaded
by the COM libraries when needed. By looking up the Interface Id (IID) from the system

registry, COM can find the proxy/stub combination for a particular interface.

2.3 Object Connection Control

An object's lifetime is controlled by a mechanism called reference counting,
which uses the AddRef and Release methods of interface /Unkrnnown. Every COM/DCOM
interface must inherit from interface /Unknown; every COM/DCOM component must
implement AddRef and Release. AddRef and Release are called quite often, and sending
every call to a remote object would introduce a serious network performance penalty.
Hence, DCOM optimizes AddRef and Release calls for remote objects. To do so, remote
reference counting is conducted per interface rather than per connection, allowing for

greater network efficiency.

12

Remote reference counting would be entirely adequate if clients niever terminated
abnormally, but in fact they do. To make system robust in the face of clients terminating
abnormally when they hold remote references, a Pinging mechanism is used for detecting
any client abnormal termination. At every elapse of predefined ping period time, the
server object sends a ping signal to the connected client. If the ping period elapses
without receiving a ping on that server object, all the remote references to interfaces

associated with that server object are considered "expired"” and can be garbage collected.

2.4 Connection Points

Many real-world distributed applications require bidirectional communication
between two objects. An object may need to notify a client of a certain event or objects
might want to push data back as it becomes available.

Connection points standardize passing an interface pointer to an object. With
connection points, the object that implements the interface for registering the "callback"
(IConnectionPoint) is required to be a separate object from the actual object. Multiple
clients register themselves with the same connection point, and the connection point
sends notifications to all the clients. However, since the server must synchronously call
each client in turn, dealing with fragile network links, slow clients, and network time-outs
require additional design. One approach is to use multiple threads to notify several clients
simultaneously. If a client does not respond within a reasonable time, the object spawns

an additional thread to notify the next client.

13

2.5 DCOM Threading Models

To support multi-clients accessing the server objects concurrently, multi-

threading models are required for the DCOM architecture.

2.5.1 Single-Threaded Apartments (STA)

In a single-threaded apartment, each object lives in a thread. Each thread must
initialize COM using either Colnitialize or ColnitializeEx.

The basic concurrency unit in an STA is the individual thread that initializes
COM. If two objects, for example A and B, live in the same apartment, and A is
processing a call, no other client can make a call, to either A or B, until A completes its
service. As a result, instance data that is exclusive to an object need not be protected,
because only one thread can ever enter this instance of the object. But this may delay the

server response and thus downgrade the system performance.

2.5.2 Maltithreaded Apartment (MTA)

A multithreaded apartment is an easier model compared to STA. Incoming RPC
calls directly use the thread assigned by the RPC run time. The object does not live in any
specific thread. Clients from any thread can directly call any object inside the MTA.
However, MTA requires extreme caution on the shared the data. Multiple threads can call
an object method at the same time. Therefore the object must provide synchronized
access to any instance using synchronization primitives such as critical section and
semaphores.

Although complex to implement, MTA objects offer the possibility of higher

performance and better scalability than STA objects since the generic synchronization

14

that COM performs on STA is relatively expensive [1, 2]. A good design technique is to
isolate the critical areas of an application into separate objects and move the critical
objects into MTAs to achieve high overall performance and scalability. Before using

MTA, a thread must initialize COM by calling ColnitializeEx.

2.6 Security Issues
One of the most difficult issues in the design of distributed application is that of
security. DCOM provides an extensibie and customizable security framework for the

developers.

2.6.1 Access security

The most obvious security requirement on distributed applications is the need to
protect objects against unauthorized access. Only authorized users are supposed to be
able to connect to an object. Current implementations of DCOM provide declarative
access control on a per-process level. Existing components can be securely integrated

into a distributed application by simply configuring their security policy as appropriate.

2.6.2 Launch security

Another related requirement on a distributed infrastructure is to maintain control
of object creation. Since all COM objects on a machine are potentially accessible via
DCOM, it is critical to prevent unauthorized users from creating instances of these
objects. For this purpose, the COM libraries perform special security validations on

object activation. If a new instance of an object is to be created, COM validates that the

15

caller has sufficient privileges to perform this operation. The privilege information is

configured in the registry, external to the object.

2.6.3 Authentication

The above mechanisms for access and launch permission checks require some
mechanism for determining the security identity of the client. This client authentication is
performed by one of the security providers, which retums unique session tokens that are
used for ongoing authentication once the initial connection has been established. The
initial authentication often requires multiple round trips between caller and object.

DCOM uses the access token to speed up security checks on calls. To avoid the
additional overhead of passing the access token on each and every call, DCOM by default
only requires authentication when the initial connection between two machines is
established. It then caches the access token on the server side and uses it automatically
whenever it detects a call from the same client. For many applications this level of
authentication is a good compromise between performance and security. However, some
applications may reyuire additional authentication on every call, as for example passing
in credit card information or other sensitive information, the object might require calls to

be individually authenticated.

2.6.4 Impersonation levels

A more subtle implication of security in distributed applications is the issue of
protecting callers from malicious objects. Since DCOM allows objects to impersonate
callers, objects can actually perform operations they do not have sufficient privileges to

perform alone. To prevent malicious objects from using the caller's credentials, the caller

16

can indicate what it wants to allow objects to do with the security token it obtains. The

following options are currently defined:

e Anonymous: the object is not allowed to obtain the identity of the caller. This is the
safest setting for the client but the least powerful for the object.

e Identify: the object can detect the security identity of the caller, but can not
impersonate the caller. This call is still safe for the client since the object will not be
able to perform operations using the security credentials of the caller.

e Impersonate: the object can impersonate and perform local operations, but it can not
call other objects on behalf of the caller. This mode is potentially unsecure for the
caller, since it allows the object to use the client's security credential to perform
arbitrary operations.

These options are defined as part of the Windows NT security infrastructure. Again,

DCOM allows these settings to be both programmatically controlled and externally

configured.

3 System Requirements

In the area of software engineering, the development of software is based on the
software requirements. These requirements must be fully satisfied by the system
implementation. After the implementation is completed, the system must be validated
against the requirements. Any invalid implementation must be corrected and validated

again. In this chapter, the requirements for the UCRMS are presented.

17

3.1 Hardware requirements

A personal computer with color screen is required for displaying the visual
interface, mouse and keyboard are required for user input, and Internet connection facility
is required for connecting to the remote servers and for transferring the data between the
different software components. At least one power PC is needed for install the server
component. More PCs might be needed for running different server components in a

distributed environment.

3.2 Software requirement

UCRMS is a distributed, real-time application designed to be used in Windows
environment. Since Windows 95/98 has a weak security feature, Windows NT is
recommended. To guarantee the real-time and distributed feature of UCRMS, the
implementation is performed using Visual C++, MFC, and distributed component object
models (DCOM). Before using UCRMS, MFC library and DCOM should be properly
installed. Moreover, an ActiveX Flex gridline control is integrated into the system to give
a clear presentation of student and course data. Therefore the gridline control must be

also installed and registered into the Windows operation system.

3.3 Graphic User Interface requirements

UCRMS consists of five main windows as its user interface: the login window,
the student registration window, the course add and drop window, the course and student
management window, and the super user window. The specifications for these windows

are not intended to cover all the possible user requirements.

18

3.3.1 login window
Upon the execution of UCRMS program, a login window is displayed to the user.

e User is prompted to enter user ID and password, and select login type into the
corresponding fields, as shown in Figure 20.

e The system starts processing user login information when user clicks on “Enter”
button with a mouse.

e An invalid login information brings up a message box informing the user that system
failed to login him onto the system. Upon the acknowledgement of the system
message, the system clears the password fields.

e A successful login brings up either student registration window, or course add and
drop window, or course and student management window, or administrator
management window, depending on the identification of the user being logged onto
the system.

e Clicking on “Quit” button will terminate the UCRMS application.

3.3.2 Student Course Registration Window

Upon a successful login as a student (login type: student), a course registration
window appears (see Figure 21).
e On upper portion of the window locates 2 pre-select course list that lists the total
courses available for selection by the student. On lower portion of the window locates
a pre-register course list that lists the courses to be registered by the student.
e Student can select one course at a time by clicking on the course presented in either of

the course lists. The selected course becomes highlighted.

19

Student can put the selected course into pre-registered list by clicking “Select” button.
Once a course is selected from the pre-select list and “Select” button is clicked, it
appears in the pre-register list. At the same time, it is removed from pre-select list to
avoid duplicate selection on the same course.

The course in the pre-register list can be removed by selecting it first and then
clicking the “Remove” button. Once a course is removed from pre-register list, it re-
appears in the pre-select list for possible re-selection.

Student can register the courses in the pre-register list by clicking *“Register” button.
A dialog box appears that displays the courses to be registered and asks the student to
confirm the registration. Student can confirm the registration by clicking “OK”
button, and consequently the courses are registered into database. Student can cancel
the registration by clicking “Cancel’ button and system goes back to the course
registration window.

System goes back to login window when “Quit” button is clicked.

3.3.3 Course Add and Drop Window

If a student has already made course registration when he logs onto the system, a

Course Add and Drop window appears (see Figure 24).

Student can perform course add operation by clicking on the “Add” button. A
message box will appear asking the confirmation from the student.

Student can perform course drop operation by clicking on the “Drop” button. A
message box will appear asking the confirmation.

The system goes to login window when “Quit” button is clicked.

20

3.3.4 Course and Student Administration Window

Upon a successful login as an administrator (login type: administrator), a student

and course management window appears (see Figure 25)

On the upper portion of the window locates a course list where the courses can be
added or removed from the database.

Administrator can select one course at a time by clicking on the course displayed in
the course list. The selected course becomes highlighted.

The selected course can be removed from the list by clicking “Remove’ button.
The administrator can add a new course by clicking “Add” button. A dialog box
appears prompting the administrator to enter the course information.

Adding a course can be committed by clicking “OK” button. The added course
appears in the course list immediately after the commit. Adding a course can be
cancelled by clicking “Cancel” button.

On the lower portion of the window locates a student list where the student can be
added or removed from the database.

Administrator can select one student at a time by clicking on the student displayed in
the student list. The selected student becomes highlighted.

The selected student can be removed from the list by clicking “Remove” button.
The administrator can add a new student by clicking “Add” button. A dialog box
appears prompting the administrator to enter the student information.

Adding a student can be committed by clicking “OK” button. The added student
appears in the student lisi immediately after the commit. Adding a student can be

cancelled by clicking “Cancel” button.

21

e The system goes back to login window when “Quit” button is clicked.

3.3.5 Administrators Management Window

Upon a successful login as a super user (login type: administrator), an

administrator management window appears (see Figure 27)

e An administrator list is displayed on the window. The administrator in the list can be
selected when clicked on it. When selected, it becomes highlighted.

e A new administrator can be added by clicking on “Add” button. An administrator-add
dialog box appears, prompting the super user to enter the required administrator
information. Adding an administrator can be committed by clicking on “OK” button.
The added administrator appears in the administrator list immediately after the
commit. Adding an administrator can be cancelled by clicking “Cancel” button.

e Clicking on “Remove” button removes the selected administrator from the list.

e System goes back to login window when *“Quit” button is clicked.

3.4 Middle-tier/Server Requirement

To support three-tier distributed application, the UCRMS consists of several
server components configured to run on different computers. These components form the
application-tier of the UCRMS. They should have the following features to fulfil the
performance requirements.
e The data services are obtained by calling data-tier component only.
e The data managed by each middle-tier server is to be stored into its corresponding

local memory after retrieved from the data-tier for the first time. The whole system

22

data should be distributed into these different server computers to avoid all the data
being loaded into a single computer.

e The number of middle-tier servers should be configurable based on the amount of
data and the capacity of server computers.

e To ensure the data consistency, the servers responsible for the dynamically
changeable data should be able to call back to the presentation-tier to dynamically
update the data being loaded into different user’s computers but changed by one of
the users. If callback mechanism is not implemented, the other mechanism should be

in place to guarantee the run-time update.

3.5 Data-tier requirement

In some of the universities, the databases may be built in the UNIX environment,
and in other universities they may be built in Windows NT environment. Therefore to
support the database location transparency in the application-tier, a database server is
needed in the data-tier. It’s the data-tier server that directly accesses either local database
or remote database whether it is on UNIX or on Windows NT. Such a configuration

allows the middle-tier servers completely independent of database operations.

4 System Design

System design is an essential step in developing a reliable, secure, and user-
friendly application. A full analysis of users and the system environment is critical for a

successful system design.

4.1 User Description

e The UCRMS is to be used by the students in universities to select and register their
courses at the beginning of each semester. It is also to be used by the administrators
to manage the courses and student data stored in the database on the basis of frequent
usage.

e Low computer literacy is required for students to use the system; low to moderate
computer literacy is required for administrators to use the system.

e Heavy usage is expected for students during registration time that starts at the

beginning of each semester.

4.2 Design Consideration

The UCRMS intends to be designed as a three-tier distributed application. The
whole system design includes the design of presentation-tier — the Graphic User
Interface, the design of application-tier — the application services, and the design of

data-tier — the database access.

4.2.1 Presentation-tier — Graphic User Interface

Based on the user description, following points are considered in the design of
graphic user interface:
e UCRMS is a distributed multi-user application; data are transferred between the
server site and client (user) site through the Network. The workload on the
communication channel and the data server is expected very heavy at the beginning

of each semester. In order to improve the performance, the connection and data

24

transfers between client and server is performed only once for all selected courses
rather than once per selected course.

The UCRMS is to be used mainly by students in universities to register their courses.
It is also to be used by the administrators to manage students and courses data stored
in the database. The common student registration procedure is considered as a
metaphor for the UCRMS.

Different kind of students may have different level of knowledge in using computer.
Thus for students the UCRMS is designed to be error-protected. No student input can
cause system error or incorrect database update. To do so, we need to reduce
keyboard input as far as possible since keyboard input is a potential source of error.
Here the only keyboard input required for students are login process and changing
password process, which are fully controlled by the system. All the other interactions
between students and the UCRMS are mouse-oriented, which prevents the system
data from any incorrect input.

The UCRMS requires moderate keyboard input for administrators. To minimize the
possible input error, a dialog box is popped up for confirmation before each database
update is finalized, allowing the administrators to modify or abort the incorrect
update.

UCRMS is designed to teach the user about the system incrementally. An informative
message box is popped up for each invalid or incorrect user action, which informs the
user of possible cause and how to correct it.

UCRMS is designed to be consistent. As described above in the User Interface

Requirement, two course lists, pre-select course list and pre-register course list, are

25

displayed in the Course Registration Window. Before registration, courses to be
selected are all displayed in pre-select list. The courses that are selected into pre-
register list will disappear from the pre-select list. The courses that are removed from
pre-register list will re-appear in the pre-select list. This ensures the consistency that

the course to be selected is always the course not selected yet.

4.2.2 Middle-tier — Application Services

Based on the middle-tier/servers requirements, the following points are

considered as a guideline for designing the middle-tier servers. As mentioned in the

introduction of this report, the middle-tier components/servers are going to be

implemented using DCOM, therefore DCOM is considered as parts of our consideration

in design issues.

The number of servers should be configurable according to the maximum workload
each server can handle.

Multiple users should be allowed to connect to the servers and be provided with
application services. To support maximum performance of the servers, the concurrent
accesses to the servers should be allowed; to avoid the possible errors caused by the
race conditions, each critical operations should be protected by either the critical
sections or semaphores.

A user is allowed to modify the data shared by the other users through the middle-tier
servers. To keep the data consistency, a mechanism should be provided to make the
servers capable of calling back to all the connected user processes to update the data
changed by that particular user. To support update, these servers should keep an

update list containing all the actively connected user objects.

26

The middle-tier servers should be able to detect the abnormal termination of client
processes in order to delete that client from servers’ update list as soon as possible.
Otherwise, a memory leak might occur when the servers try to update the data by
calling the faulty client object. The “ping” mechanism provided by the DCOM is able
to detect the abnormal termination of the client processes. But in the case of the
UCRMS, that detection of abnormal termination may arrive too late to avoid the
system failure since active update may happen at any time after user process
terminates abnormally. One of the solutions could be to apply “try” and “catch” pair
to all the client update operations.

The middle-tier servers should control the number of requests to the data-tier for
reducing the workload imposed on the database. Thus the frequently requested data
should be kept in the memory of server computers once retrieved from the database.
To keep the data consistency, the servers should update ail the data copies stored in
the server computers as well as the copies stored in the client objects. Critical section
should be used in these active data update.

Consider the following situation: the server is trying to update the client while that
client calls Release() of the server and then quits by destroying itself. To avoid calling
client object that already destroyed, we should use critical section to protect these
concurrent operations.

To make best use of the data loaded from data server through the network, and thus
reduce the data transmissions over the network, some servers should be implemented
as persistent DCOM server so that the loaded data is always there to serve the user

requests.

27

4.2.3 Data-tier — Database Access

From the requirements for data-tier, the following points need to be considered in
the design of data-tier component.
e To reduce workload for database, the number of database access must be minimized.
e A set of services is to be presented to the middle-tier servers. All the database queries
and operations should be operated through public interface of the server, and be
encapsulated into data server to avoid invalid access to the database by the outside

world.

4.3 Task Analysis

There are four distinguish tasks involved in UCRMS: registration task, course add
and drop task, student and course management task, and administrator management task.
Each of these tasks corresponds to one specific type of user action, that is: a student
performs registration; a student adds or drops courses; an administrator manages student
and course data; and a super user manages administrator data.

The detailed descriptions of these tasks and their hierarchical task analysis

diagram (HTA) are respectively given as below:

e Registration Task: The task starts from login session. After successful login, the
student can perform course registration task that includes view course description,
select courses, and register for the selected courses. The task ends when registration is

done or user explicitly quits. The HTA diagram is shown in Figure 3.

28

Get help .
Quit —:.
O Starting task Ending task

i

Wait for login

Enter login info

No Login Succeed?

Wait for action

[

Register View Remove Get Select Quit
Course Course Course Help Course

Figure 3: Registration task analysis diagram

Course Add and Drop task: the task starts from login session. After successful
login, the student is presented with a course add and drop window if registered
course(s) already exist in the database for that particular student. Then student can
perform course add and drop task that includes adding and deleting a course to and
from his registered course list. The task ends when user explicitly quits from the
course add and drop window. The HTA diagram is shown in Figure 4.

Student and Course Management Task: The task starts from login session. After a
successful login, the administrator can perform students and courses management
task that includes adding and removing course from existing course list, adding and
removing student from existing student list. The task ends when administrator quits

from the management window. The HTA diagram is shown in Figure S.

29

Get help .
G . Quit ——-.
Starting task Ending task

Wait for login
Enter login info
No .
Login Succeed?
Wait for action
Add Remove Get .
Course Course Help Quit

Figure 4: Course Add and Drop task analysis diagram

Get help]
O it | @
Starting task f Ending task

System:
Wait for login

Enter login info

Sysicm:
Wait for action
Add Remove Add Remove Change Get Quit
a course a course a student a student password Help

Figure S: Student and Course Management task analysis diagram

30

e Administrator Management Task: The task starts from login session. After
successful login, the super-user can perform the administrator management task that
includes adding and removing an administrator from the existing administrator list,
modifying administrator’s record. The task ends when the super user explicitly quits

from the management window. The HTA diagram is shown in Figure 6.

G 1
O e i | @
Starting task T Ending task

System:
Wait for action

Enter login info

System:
Wait for action

: . } :
Add an Remove an Modify Get Quit
administrator administrator administrator Help

Figure 6: Administrator Management task analysis diagram

4.4 System Architecture

The UCRMS architecture design is shown is Figure 7. The whole system consists
of six basic modules, the GUI module, the GuiBase module, the DataControler module,
the SecurityMgr module, the SpecMgr module, and finally the DaraAccess module.

User interacts with the system via GUI module. The GUI module provides the
users with convenient graphic user interface. The user can either get the infomation from

the system or enter the information into the system through the graphic user interface.

31

Data _ Database DataAccess
G
(ORACLE) (DCOM)
o IDataAccessSvr
Application — _ ,
———— SpecificationMgr DataControler SecurityMgr
(DCOM) (DCOM) (DCOM)
mu ISpecSvr [DataServer ISecuritySvr
v.ama._.uaoi
DataStorage
|VAW IModel
SpecConnect View Model — DataConnect [¢— DataDrive
Graphics [—® MVControl —¥{ SecurityConnect
GUlIBase
(DLL)
GuI GUI MFC
(EXE)

Figure 7: System Architecture for the UCRMS

32

A GuiBase module is built on top of GUI module to support the processing of
information requested by the users through the graphic user interface provided by the
GUI module. The GuiBase module interacts with the outside world via Graphics class
that exports the necessary functions for use by GUI module. The View class is
responsible for getting the required information for displaying the graphic user interface,
while the Model class is responsible for managing and processing the user data. The
MVControl class is responsible for creating and deleting the Model and View objects as
needed. At initialization stage, GuiBase module creates the proper Model and View
objects. It then establishes the connections between GuiBase and the middle-tier servers
— SpecificationMgr, DataControler, and SecruityMgr via SpecConnect, DataConnect,
and SecurityConnect classes. At any given time there may be several user processes
connected with middle-tier servers. To support active update of the data presented in the
GUI module, GuiBase module also provides a public interface, /Model, to be
implemented in the DataDrive class by using DCOM technology. Once an active update
is required, the related servers in the middle-tier will call the update functions in the
GuiBase through its public interface /Model. Then the GuiBase module transfers the
update information to the GUI module where users get the update information.

As mentioned above, three middle-tier servers, the SpecificationMgr, the
DataControler, the SecurityMgr, are to be implemented using DCOM technology. One of
the great benefits gained by using DCOM is its capability of dynamic invocation and
termination of the servers. The server is launched when there is an active request to the
server. The server automatically shut down when released by the user process. Thus the

system resource is consumed only when there is an active connection to the server. Since

33

a PC has a very limited system resource, this mechanism will greatly improve PC
performance.

The basic functionality of these middle-tier servers is to provide necessary
application services to the GuiBase module so that the course registration and
management tasks could be completed. These application services are exposed by the
public interfaces — IDataServer, [SecuritySvr, and [SpecSvr. In addition to the
application services, middle-tier servers should also keep a copy of the essential data
frequently requested by the user. After the data is retrieved from the database for the first
time, the essential data is loaded into the memory of the server computer. When the
second user requests the same data as the first user does, the related middle-tier server
simply get the data from its data storage and immediately returns it to the user via
GuiBase module. Therefore database access is avoided for any subsequent data requests,
and the workload for database is thus greatly reduced. The data services are provided by
the DataAccess server through the public interface /DataAccessSvr. DataAccess server is
also implemented by DCOM technology. It directly accesses the database through its
inner class that encapsulates all the database operations and queries. The only way for the

outside world to access the database is using the methods provided in /DataAccessSvr.

4.5 System Design — Object Model

The diagrams displayed in Figures 8, 9, 10, 11, 12, 13 present the modules and
their classes in details.
e The class diagram for GUI module is presented in Figure 8. When system is started,

CCourseRegDlg graphic object will be created. Upon the run-time situation, it creates

34

CStudentAddDlg

CStudentAddDig()
SetDeptNumber()
GetStudentinfo()

v

CNewPinDig

CNewPinDIg()[<
IsValidPin()

N

CRegDlIg

CRegDig()
LinkToRegistration(

<
)

\Y4

CRegCommitDlg

CRegCommitDig()
SetCommitinfo()

CAdmCorAddDlg CAdmMgrDlg
CAdmCorAddDig() CAdmMgrDlig()
GetCourseinfo() GetAdminitorinfo()
SetDeptNumber() SetLink()

A A
CAdminDlg CSuperAdmDig
CAdminDlg() CSuperAdmDig()
LinkToAdministration() LinkToAdministration()
7
CCourseRegDlg CGraphics
CCourseRegDIg() | [=>) (from GuiBase)
ResetlLoginField()
A Y
Reglnfo CRegViewDlg !
corNo : CString '
> corTerm : CString CRegViewDig()

i
SetStudentReglnfo(?
j

Figure 8: Class Diagram for GUI Module

35

IDataServer
(from DataControlet)

7__J

CUiModel

CComObjectRootEx CDataConnect
(from DataAccess)
IModet \ ~CDutaConnect()
G)
UpdateCourselnfo(CloseConnect()
UpdateStudentinfo{) ConnectDataControler()
L DelcteStudent DisConnectDataControler
CDataDrive DeleteCourseirat InitConnCS()
DeleteConnCS()
CDataDrive() /7 I ge‘dfoutscu_st(())
arabrive) \/ GetManagerList()
Gabvr) - SetStudentRegCourse()
CloseDvr() GB::CDataStorage GetStudentRegList()
g:lcthrs(C)S() DelStudentRegCourse()
UpdateCourselnfo(GetDataStorage() SetStudentinfo()
UpdateStudentinfo{) DestroyDataStorage() DelStudent()
oo tamptou GetNumManager() SetCourselnfo()
DeleteStudentDal GetNumCourse() GetCourseProfName()
¢ m‘P GetNumStudent() DelCourse()
| GetCourseList() SetManagerinfo()
camn e,
H tudentList() oursein
CGraphics GetManagerLisi() UpdateStudentinfo()

. GetStudentData() DeleteStudentData()
CGraphics() IsCourseDataLoaded() DeletcCourseData()
~CGraphics() IsStudentDatalLoaded(

InitApplication() IsManagerDataLoaded()
ExitApplication() SetCourseData()
GetCourselnfo() SetStudentData()
lSUSCfPCﬂ.I'uﬂOd() SetManagerData()
GetYearList() GetCourseld() _
GetDeptList() GetCourseReglnfo() CUiView
Foa Sirry FindStudent()
tudentiList SetStudentinfo() CreateView()
e o GetMaxCourseld() AttachToModel()
GetStudentData() SetCourselnfo() GetYearList()
LoadCourseData() DelCourse() | Get List()
LoadStudentData() SetManagerinfo() L) a0
LoadManagerData() DelManager() LoadStudentData()
GetCourseld() LoadManagerData()
SctStudentRegCourse() GetCourseList()
GetStudentRegList() GetStudentList()
GetStudentReglnfo() GetStudentList()
DeiStudentRegCourse(GetManagerLisi()
SetStudentinfo() GetStudentData()
FindStudent() GerCourseld()
DelStudent() > SetStudentRegCourse(
GetMaxCourseld() - - - GetStudentRegList()
SetCourselnfo() GetStudentReglnfod)
GetCourseProfName() DelStudentRegCourseq)
DeCoune) [iSecuritySve | SetStudentInfo)
ChangePassword() - FindS 0
SetManagerinfo() (from SecuntyMgr) DelSt w‘“d‘m"(')
DelManager() GetMaxCourseld()
RefreshSpecData() SetCourselnfo()
i GetCourscProfName()
DelCourse()
SctManagerinfo()
i DelManager()
CSccurityConnect RefreshSpecData()
V GetConnect()
CMVControl CloseConnect()
ConnectSecuritySvr()
GetMVControl() Di_sConnectSecumySvrt)
DestroyM VControl() > InitConnCS()
CreateModel View() DeleteConnCS()
DeleteModelView() LoadUschqsslnfo()
IsUserPermitted() IsUserPermitted()
ChangePassword() ChangePassword()

Figure 9: Class Diagram for GuiBase Module

CreateModel()
DestroyModel()
RemoveAttachView()
LoadCourseData()
LoadStudentData()
LoadManagerData()
GetCourselList()
GetStudentList()
GetStudentList()
GetManagerList()
GetStudentData()
GetCourseld{)
SetStudentRegCourse()
GetStudentRegList()
GetStudentReginfo()
DelStudentRegCourse(
SetStudentinfo()
FindStudent()
DelStudent()
GetMaxCourseld()
SetCourselnfo()
GetCourseProfName()
DelCourse()
SetManagerinfo()
DelManager() ’

CSpecConnect

GetConnect()
CloseConnect()
ConnectSpecSvr()
DisConnectSpecSvr(
InitConnCS()
DeleteConnCS()
GetYearList()
GetDeptList()
RefreshSpecData()

1 =4

ISpecSvr
(from SpecMgr,

IConnectionPointContainerimpl| | CComObjectRootEx CComCoClass
(from DataAccess) (from DataAccess)
CDataServer IDataServer
CRassel, Getumcousel
a tCourseList
DC::.CDataAccessConnect SetConnection() GetStﬁt!ehtList(())
DelManager() GetNumStudent()
CDataAccessConnect() SetManagerinfo() GetNumManager()
~CDataAccessConnect() DeiCourse() GetManagerList()
GetConnect() GetCourseProfName() SetRegCourse()
CloseConnect() SetCourselnfo() GetNumRegCourse()
ConnectDataAccessSvr() DelStudent() GetStudentRegList()
DisConnectDataAccessSvr() SetStudentinfo() DelRegCourse()
InitConnCS() DelRegCourse() > SetStudentinfo()
DeleteConnCS() GetStudentRegList() DelStudent()
GetNumCourse() GetNumRegCourse() SetCourselnfo()
GetNumStudent() 2 SetRegCourse() GetCourseProfName()
GetNumManager() GetManagerList() DelCourse()
GetCourselL.ist() GetNumManager() SetManagerinfo()
GetStudentList() GetStudentList() DelManager()
GetManagerList() GetNumStudent() SetConnection()
SetRegCourse() GetCoursel.ist() Removelnterface()
GetNumRegCourse() GetNumCourse()
GetStudentRegList()
DeiRegCourse()
SetStudentinfo()
DelStudent()
getcc:;ourselgfo(& 0] N
etCourseProfName { ..
DelCourse() DC:.CDataStorage
SetManagerinfo()
DelManager() GetDataStorage()
\/ DestroyDataStorage()
GetNumCourse()
IModel GetNumStudent()
(from GuiBase) GetNumManager()
GetCourseList()
GetStudentList()
’ GetManagerList()
V IsCourseDatal oaded()
IsStudentDatal.oaded()
IDataAccessSvr - - IsManagerDataLoaded()
(from DataAccess) IConnectionPointimpl

Figure 10: Class Diagram for DataControler Module

37

CComObjectRootEx
(from DataAccess)

CComCoClass
(from DataAccess)

CSecuritySvr

CSecuritySvr()
~CSecuritySvr()
ChangePassword()
GetUserPermission(]
LoadUserPassiInfo()
UpdateStudentData(
SetTimerinterval()

|4

SM:CDataAccessConnect

CDataAccessConnect()
~CDataAccessConnect()
GetConnect()
CloseConnect()
ConnectDataAccessSvr()
DisConnectDataAccessSvr()
initConnCS()
DeleteConnCS()
GetNumStudent()
GetStudentPassinfo()
GetNumSuperUser()
GetSuperUserPassinfo()
GetNumManager()
GetManagerPassinfo()
ChangePassword()

ISecuritySvr

LoadUserPassinfo()
GetUserPermission(]
ChangePassword()
UpdateStudentData()

~

SM::CDataStorage

CDataStorage()
~CDataStorage()
IsPassinfolLoaded()
SetStudentPassinfo()
SetSuperUserPassinfo()
SetManagerPassinfo()
IsStudentPermit()
IsAdministorPermit()
ChangePassword()
SetTimerinterval()

Figure 11: Class Diagram for SecurityMgr Module

38

CComObjectRootEx<CComMuitiThreadModel>

CSpecSvr

CSpecSvr()
~CSpecSvr()
GetDeptList()
GetNumDept()

8et§earbist()0\£> ISpecSvr
etNumYear
Refresh() GetDeptList() |

V

SP::CDataStorage

GetDataStorage()
DestroyDataStorage()
SetSpecData()
GetNumYear()
GetNumDept()
GetYearList()
GetDeptList()

CComCoClass<CSpecSvr>

GetNumYear()
GetYearList() !
GetNumDeptd

i
|

CSpec

CSpec()

~CSpec()
LoadData()
LoadDataFromFile(
MakeALine()
SetKeySpecList()

|

Figure 12: Class Diagram for SpecMgr Module

39

CCourseRec

m_COURSEID : CString
m_COURSENO : CString
m_TITLE : CString
m_TERM : CString
m_SECTION : CString
m_DAYS : CString
m_STARTTIME : CString
m_ENDTIME : CString
ROOQM : CString
m TYPE : CString
DEPTNO CStnng

CCourseRec()
~CCourseRec()

CManagerRec

m_MANAGERID : CStrin Cg
tring

m_MANAGERNAME :
m_DEPTNO : CString
m_PASSWARD : CStnng

CM erR
anagered)

CStudentRec

m_STID : CStrin
m_STNAME : CString
m_STTYPE : CString
m_DEPTNO : CString
m_PASSWARD : CStnng

|
K

CStudentRec()
~CStudentRec()

CTaughtbyRec

m_COURSEID : CString

m_TEACHERID : CStringl- -

CTaughtbyR
-c%‘;?,ghéys‘é‘&
ecbyCourseld()

CRegtoRec !

|
m_STID : CString
m COURSEID CStnng(-

CRegtoRec()
~ CRegtoRec()

CSuperUserRec IDataAccessSvr
m_SUPERUSERID : CStri
m_SUPERE SO Gomumsuient)
m
= SoumManager
CSupertserRec() assin
~CSuperUserR GetSuperUserPasslnfo(
ecl) nau asslnfo()
/:\ GetStudentLJ)
! geglanaged.lst()
- e
CDataConnection GetNumRe&Course()
GetStud eglist()
CDataConnechon8 DelR rse()
CDataConnection SetStudentDatainfo()
GetDatabase(DelStudent()
GetNumStudent() SetCourseDatalnfo()
GetNumSuperUser() GetCourseProfName()
GetNumManager() DeiCourse()
GetNumCourse(ChangePassword()
GetStudentPassinfo() SetManagerinfo()
GetSuperUserPassinfo() DeiManager()
GetManagerPassinfo()
GetCourseList(
Getsmdeng.ils t)()
GetMa S
- SetReg nag
GetNumRe&
GetStuden engst()
DelRegCou \
SetStudentlnf)
DeiStudent()
SeCourssoel |
urseProfNam
DelCourse()) CDataAccessSvr *
Changeroon” I |
etManagerin CDataAccessS :
DelManager() -CDataAccasg\g() !
DelManager() i
SetManagerinfo() !
ChangePassword()
DelCourse(
GetCourseProfName()
SetCourseDatalnfo()
DeiStudent()
SetStudentDatalnfo()
DelRegCourse()
Y GetStudentRegList()
CTeacherRec gegum&egC:(t)nse()
e urs
m_TEACHERID : CString _ GetManagerList()
m_TEACHERNAME : CString GetStudentList()
m_DEPTNO : CString GetCourseLlst(S
GelNumCou
CTeacherRec() tMana err:ae(sllnf
~CTeacherRec() pe(%JserPassl nfo(
GetRecbyTeacherld() GetStudentPasslnfo()
GetNumMana Igjzf()
GetNumSuperUser()
GetNumStudent()
CComCoClass
/
CComObjectRootEx

-~

<r

Figure 13: Class Diagram for DataAccess Module

40

the other graphic objects. It also initiates the other parts of the system by calling into
GuiBase Module through the exported class CGraphics.

The class diagram for GuiBase module is presented in Figure 9. Inside GuiBase
module, only CGraphics class is exported to the outside world and thus can be
accessed by the GUI module. At the initial stage, all the related objects are properly
created. When a function call is made from GUI module to a function defined in the
exported class CGraphics of GuiBase module, the CGraphics calls into other objects
of GuiBase to get the services requested by the GUI module. These other objects may
further request the middle-tier services by calling the public functions defined in
IDataServer, ISecuritySvr, and ISpecSvr. These public interfaces are respectively
implemented in DataControler module, SecurityMgr module, and SpecMgr module.
The class diagram for DataControler module is presented in Figure 10. When a data
request is received from GuiBase module, it will first search its data storage in
CdataStorage class. If necessary it will call the public functions defined in
IDataAccessSvr, which is implemented in DataAccess module. It then returns the
requested data to GuiBase module. In some case, the DataControler module needs to
call back to the GuiBase module through the public functions defined in /Mode!
interface.

The class diagram for SecurityMgr module is presented in Figure 1 1. When a
password information is requested from GuiBase module, it will first search its data
storage in CDataStorage. If data not found, it will call the public functions defined in

IDataAccessSvr to get the password information and return them to GuiBase module.

41

The class diagram for SpecMgr module is presented in Figure 12. When a request for
configuration and help information is received, it will search its data storage in
CDataStorage. If necessary it will load the requested data from files and retumn the
data to GuiBase module.

The class diagram for DataAccess module is presented in Figure 13. When data
request is received from either DataControler or SecuritvMgr, it will get the data

records from the database and return them to the caller.

4.6 System Design — Dynamic Model

We present sequence diagrams for the major use case scenarios. These are

respectively displayed in Figures 14, 15, 16, 17, 18.

The use case sequence diagram for loading an application is presented in Figure 14.
The use case starts from a call to InitApplication() which in turn creates Model and
View objects. Then it establishes the connections with middle-tier servers by calling
CoCreatelnstanceEx().

The use case sequence diagram for exiting an application is presented in Figure 15.
The use case starts from a call to Exit() which in turn deletes Mode! and View objects.
It then disconnects middle-tier servers from GuiBase by calling Release().

The use case sequence diagram for user login is presented in Figure 16. The use case
starts from user entering password information. Step by step, it goes into SecurityMgr
to check the user permission by calling IsUserPermitted(), and create the user

window if permission is obtained.

42

Window GuiBasc GuiBase | | GuiBase GuiBase DataControler GuiBasc SpecManager GuiBase SecurcManager
User :CourscRegDig| | :MVControler | {:UiModel| | :UiView | |:DataConnect] |:ServiceModule] |:SpecConnect| | :ExeModule | |:SccurityCoanect| | :ExcModule
I T T T 1 T T | T T
T o o “
— I . . |
{ |,
\ | 2: Oﬁz<ﬁ0:—-6__ | | | i | | \ |
| [y (| | L | | | |
| | | | | | 3: ConnectSecurityShr | { | I
{	+ t t + + -+ >							
{]						14: CoCreatelnstanceEx		
(({ S		
		{						
]			§: LoadUserPassinfol]				
		} { } I } } >						
! ! ! ! ! ! ! ! ! ! 6: LoadUserPassinfo _								
			(= - S
{							{ 1	
]]			
_		L “	L “					
17: CreateModelView	“ “ “ “ “ “ “							
p—								
	18: CreateMudd							
	—_ ((
_	_ L " L	"						
_ _ _ “c” C c::f.-var..ﬂc:.é.f {		1						
		.l						
		t t)						
((}10: CoCreatelnstancefx	I i				
_ _ “ L	A L “							
“ “				U AtAdvise			i	
I I I I I >	I							
(12:CreateView						{	
		} >l						
_ _ _ _ _ ! 13:C c::ec.macn?_mq_ _ _ _ _								
						~		
_ "	L	L C “						
_ 4: CoCreateInstanceE:								
_			_		s oCreate 33:?/* _			
o		o 1o “						
5. - !								
_ I	15: AttachT¢ Z.x_p_/r_ _ I _							
	([

icat

: Load Appl

iagram

Use Case - Sequence Di

Figure 14

43

Window GuiBase GuiBase || GuiBase | | GuiBasc GuiBase DataControler GuiBase SpecManager] | GuiBasce | | SecManager
User «CourscRegDlg| | :Graphics :MVControl| | :UiView | |:UiModel] |:DataConnect| |:ServiceModule| |:SpecConnect] | :ExeModule | |:SecConnect] | :ExeModule
1 1 I 1 | R | | | I | |
| | | | | | (! | (| |
| | | | { | | | | (| {
| o | }] | ! | |] | |
| 1:Exit | | | | | | | | | ! |
—> | | | { (| { | { |
| | | | { | (] | { | |
“ “Nu ExitApplication “ “ “ “ “ “ “ “ “ “
| EE—— [[_ _ | [[[_
| “ “ . L “ | | “ “ “
_ _ 3: DeleteModel Vi _ _ _ _ _ _ — .
!		i			!				
]						
]		!		{					
“	b			“ “ “					
	{]] !					
(!			S: DisConnectSpecSvr		{				
o “ iy s DYV B B									
6: Release									
			! 1		L	{			
I] I]]				
1							!		
]								
o “ S W N T S N B B									
_	_	7 Dstroyodd,_j _ _ _ _ _ _							
				“1					{
				{	! {				
]		
				8 DikConnectDataCohtroler					
(]	t {	!			{				
L		o g			L				
_ _ _ _ _		% Release	_ _						
]		1		EE—]]			
]]	!]		
] “ L e									
): DisC uri									
		_ A	{ 10 U_aﬂc::J_m?:ani 1	R _					
]]]	
“ “ “ “ n “ “ “ _ “ [11: Releasel									
i] [1						m		
!]]	1]] I !]							

mon

: Exit Applicat

iagram

Use Case - Sequence Di

Figure 15

Window GuiBase GuiBase GuiBasc SccuntyManager SecunityManager Window
User :CourscRegDlg :Graphics ‘MVControl :SecurityConnect :SecuritySvr :DataStorage :UserWindow
| T T T T | T T
			!			
{ 1: OnEnterPass						
2 _ _ _ _ _ _						
{			(
{	{					
i			(! !			
{	2: IsUscrPermitted	{ (({				
	>]		
]				t	
{		{ (
“ !	3: 1sUserPermitted] ! “ ! !					
)]			
[4: IsUscrPermitted			
		f—_——				
((
“ “ “ “ “ 5 Oicmﬁ__ga.ﬁmc:/“ “ “						
({		1			
				}		
(i			(
	!		! 6: lsUserPermitted			
((>		
(i 1]]					
	!	{				
	1] i		
			{			
		!				
I Permitted	l		7: DoModall			
" t + 1 + t t >						
{ {						
		[]				
]]]	
						l

gin

: User Lo

iagram

Use Case - Sequence Di

Figure 16

45

Window GuiBase GuiBase GuiBase GuiBase DataControler DataAccess DataAccess GuiBase
User :RegDlg :Graphics :UiView :UiModel] {:DataConnect :DataServer | |:DataAccessSvr| | :DataConncection | { :DataStorage
	T 1] T I 1							
(
1: OnRegister	{			((
I “ “	“ " “ L							
2: GetCourseld								
_ _ ..._a..,w_ [_ [[[_ _								
! “	3: GetCourseld	! " " “ “						
{ [y i ((
(4: GetCourseld					
	(2							
{	!	o			(
			15: GetCoursel.ist					
			>					
				16: GetCourscList				
_ _ | | _ R _ | _
“ “ “ “ “ “ " 7: GetCourscList “ “ “
N
m m m m m m m \“? GetCourscList “ “
> l
" “ “ “ m _r | 9: SetCourseData | | |
1 H 1 4
| ¢ { $ 4 >l
“ " " “ _r L_ ” 10: GetCourseld b_ ” /“
| | |] | | | | | “|
| | | | | | | | | |
(| | | (| | i | {
(| | | | | | | | |
“ "__ SctStudentRypCourse “ “ “ n " " “
“ “ __ 2: mam.—aﬁ:xc* ourse “ “ “ " “ “
| | > | | | |
| | | |13: SctStudentRegCourse | | | “ “
I [_ p— I _ _ _ |
| | | | ourse | | | |
| | | | | i | “ L
5 . | |
“ “ _ “ “ __. : mﬁxawnccae_ | | |
| i “ I i | [16: SetRegCourse “ “ “
| _ | [| | m e _ |
“ " _ " _ “ | 117: SetRegCoursd |
| — |
| | | | | | | | | |

: Student Register Courses

iagram

Use Case - Sequence Di

Figure 17

46

Window GuiBasc GuiBase | | GuiBase | | GuiBase GuiBase DataControler DataAccess DataAccess GuiBase GuiBasc
User :AdminDig| |:StudentAddDig] | :Graphics| | :UiView | |:UiModel] |:DataConnect] | :DataServer | }:DataAccessSvr) 1 :DataConnection | | :DataStorage | | :DataDrive

I T 1 1 1 1 |) T 1 | 1
ol L 1L b b
1: OnAdd

L M | | | | t | | | | |
12: GetStudent			_ _ _	I _				
prm——								
	3: Find				!	{		
! } > &: Find								
	((I	{ { i						
L		A s				“ “		
[I I		6: GetStudent	[I I I I					
				[= 7 GetStudent				
{						AR B		
							8 GetStudent_	
						E—		
(9: GetStudent §
							—_	
						b 10: SetStudentData ((
				L 1 1 1 i > 1				
! _ ! _ ! _ _ _ 1 E:._m::_ﬁ_._ ! ! !								
_ _ _ _ _ f T T T T) _
e e e

12: SctStud¢ntinfo

Lo ﬁ, > | “ “ " “ “ " "
i | | 113: SetStudentidfo i i | | | | |
| | | | {14: SctStudenyinfo | | ((| (
(| | | — | { | | (|
!			115: SctStudendinfo		!		
				—_l		(
	{			P	!		
{ i !							
i						17: UpdateStudentinfo {	
L “ “ “ “		m : .					
_ ! ! ! ! _ ” ! 184UpdateStudentint ! _							
n “ “ “ “ “ " “ _c”“caaemaag._:& /“ “							
“ “ “ “ “ “ “ “ 20: ma.msaﬁ___:*c “ \“ “							
						2	
							—_3

: Add a Student

iagram

Use Case - Sequence Di

Figure 18

47

e The use case sequence diagram for student registering courses is presented in Figure
17. The use case starts from user entering register command. The student registration
data is transferred to the data-tier server through middle-tier DataControler server.
Finally the data is set into database by the data-tier server.

e The use case sequence diagram for adding a student by the administrator is presented
in Figure 18. The use case starts from user adding a new student. The student data is
retrieved from input. These data are checked with the existing data by calling
FindStudent() to avoid adding redundant data into database. The data is then sent to
the data-tier server through middle-tier DataControler server and finally set into
database. To maintain consisiency, an update of the student data is made from

DataControler server to all the connected clients by calling UpdateStudentinfo().

4.7 Data Flow

Figure 19 describes how the data is retrieved and stored between the three tiers in
the distributed system. When the application is started, the login information is loaded
from the data server via middle-tier SecuritvMgr server and the login window is
presented to the user. After the user types in the login information, the system compares
the entered information with loaded login information. A successful match will bring the
user to the next window depending on the user type. If user is a student, the system will
load the student and related course information from the data server via middle-tier server
DataControler and presented to the student with registration window in which the loaded
student and related course information are displayed. Upon student’s request, the

registration data will be stored into database via middle-tier DataControler server and

48

O

1. Start application

S. End aprlication

2.2. Load login info

4.2.4. Load and store!
admunistrator info

3.1. Student

Registration
Window

student info

.2 Administrator

i Course and student
| management Window

3.3. Super user

]7 Administrator |
y management Window !

/

¥

info

4.2.3. Load and
store course
and student

:

4.3. Load spec.
Data

\ {
\ |

[Sccun'ly Managcri h

Data Controller

] { Specification Manager !

2.1. Load login info

4.1. Load and store data

4.3.1. Load spec.
data from
tile

!

1

1 F

Data Server ———+]

Database |

Specification File

Figure 19: Data flow and sequence diagram

data-tier DataAccess server. If user is an administrator, the system will load the total
students and total courses information from database and presents to the administrator
with student and course management window in which the loaded information is
displayed. Any information relating to the adding and removing of student and course
data will be stored into database through DataControler and DataAccess servers. If user
is a super user, the system will lcad administrator information from the database and
presents to the super user with administrator management window in which the loaded

administrator information is displayed. Any information relating to the adding and

removing of administrator data will be stored into database.

49

5 System Implementation

The system implementation directly determines the reliability and usability of the
UCRMS. An efficient implementation of graphic user interface is the key to the effective
use of the system, especially for commercial software since the graphic user interface
provides the only way for the interaction between the system and its users. To achieve a
reasonable system performance, the server components must be implemented carefully.
An analysis of the system features is also needed for a complete implementation of the

system.

5.1 System Characteristics

As mentioned earlier, UCRMS is designed to be a real-time, multi-user supported,
distributed system. Thus it is advantageous to use C++, Visual C++, distributed
component object models (DCOM) to implement the whole system. In some cases,
multithread technology should be used to improve the system response time. To maintain
the system performance as number of the user increases, the UCRAMS must support

system scalability and load balancing.

5.2 Implementation Details

In this section, we respectively explain and examine the implementation of GUJ
module, GuiBase module, DataControler module, SecurityMgr module, SpecMgr
module, and DataAccess module in details. Corresponding to six modules, Six different

projects are constructed by using Microsoft Visual C++.

5.2.1 GUI module — the Graphic User Interface

Based on the user descriptions and task analysis, we choose dialog-based
interactive style for the interactions between the user and the system. The advantages of
this choice are their simplicity. These on-screen controls provide contextual information
for the user, allowing them to make a related set of choices, choose from a set of options
that may change depending on the context, and acknowledge a piece of information
before proceeding. To support a clear presentation of the courses and the students data, an
Active X component called Microsott Gridline Control is used in the construction of the
graphic user interface. The Active X component can be either directly loaded into dialog
panel at the design time, or it can be created at run time according to the situation. For the
UCRMS, since the number of columns needed to present the data in gridline control is
known beforehand, therefore siinply loading the Gridline control at design time is all we
need. To reduce the data transmission over the network, only login information is loaded
into the system from the database at the starting of the UCRMS.

One of the functionality implemenied in GUI module is to help SecurityMgr
module and SpecMgr module to achieve online data-update (details will be given when
discussing the implementations of these modules). For this purpose, we implement a
timer mechanism as shown below:

void CCourseRegDlg::OnTimer(UINT nIDEvent)

{
RefreshSpec(); //Send refresh signal for update Specification Manager
RefreshSecurity(); //Send refresh signal for update Security Manager
CDialog::OnTimer(nIDEvent);

t
1

After a predefined time irterval, the client will launch a refresh signal. Upon receiving

the refresh signal, the SecurityMgr and SpecMgr will update their data storage. The

implementation of GUI module is completed according to the class definitions given in

Figure 8.

5.2.2 GuiBase Module

The GuiBase module is the essential part of the user process. It is built as a
Dynamic Link Library, and will be loaded by the GUI process once the UCRMS
application is launched by the user. It serves as the base module for the GUI module. It
provides all the necessary operations for the GUI module to complete the user tasks. It is
responsible for establishing the connections with the middle-tier servers. To get the best
system performance GuiBase also keeps the essential data of the UCRMS in its local
memory.

One of the classes, CCourseRegDlg, defined in GUI module is inherited from
class CGraphics in GuiBase module. Thus every protected or public methods in
CGraphics class are parts of members in CCourseRegDlg class. At the initial stage of the
UCRMS, CCourseRegDig is creaied by the system, which in turn calls /nitApplication()
defined in CGraphics. The primary task of /nitApplication() is to create the model and
view through Model-View Controller, it then establishes the connections with three
middle-tier servers — the DaraControler, the SecurityMgr, and the SpecMgr by calling
CoCreatelnstanceEx() 1o create the remote server object. CoCreatelnstanceEx() will
return status information in HRESULT type. This status information tells us whether or
not the remote server object is created successfully. We can use the following code to test

its status:

HRESULT hr = CoCreatelnstanceEx(...):
if (SUCCEEDED(hr)) {
// continue

)
f

(2]
~

else {
// error handling and terminate program

}

Although in most of the cases, CoCreatelnstanceEx() and some other functions return
zero for signaling success, it is not safe to simply test if it is zero since there are some
other cases in which successful operations return nonzero. In all cases, we should use
macro SUCCEEDED or FAILED to test the operation status.

For ordinary middle-tier servers, such as SecurityMgr and SpecMgr, only a set of
application services are provided and no call-back is necessary since the data managed by
these servers are not shared by the other users, or they are shared but can be easily
updated by other mechanism. The only exception in the UCRMS is the DataControler
server that manages the dynamically changeable data and needs a callback mechanism to
update the data stored in the user computers for maintaining the data consistency. To
support middle-tier DataControler server to call back to the user module — the GuiBase
module, we need to implement a DataDrive class in GuiBase module. DataDrive class
must inherited from CComObjectRootEx 10 become a DCOM component that receives
the callbacks from DataControler server.

Currently there is no direct support from Microsoft “ATL COM AppWizare’ for
setting up the callback interrace. Therefore some deep knowledge about the DCOM and
its working mechanism is required for a successful implementation of callback interface.
Here we try to explain in details about the implementation process.

We begin the implementation of the callback mechanism with DataControler
module, which will be discussed next. When a project for a DCOM server is built for the
first time, “ATL COM App'‘Wizard™” will generate an IDL (interface definition language)

file (see Appendix A). All the public operations supported by the server should be

W
w

defined in the IDL file. The interface and its supported public operations can be added
into server project through studio tools provided by the Microsoft Visual Studio. All
these public operations are generated by the AppWizard as pure virtual functions and
must be implemented by its CoClass [2]. To make call back available, DataControler
module should know the public interface supported by GuiBase module. The most
convenient way to do that is to add the interface definition into the IDL file of
DataControler module, and implerment thzse pure virtual functions on the side of user
module, i.e. in the class DaraDrive of GuiBase module. Thus the GuiBase module can
receive the calls made from the DataContiroler module. But the interface definition for
the callback should be adaed manually without the help of Visual Studio tools. If Visual
Studio tools are used for adding pubiic interface in DataControler module, the tools will
regard the newly added interface as one of DataControler interfaces rather than CuiBase
supported interface. As a result, implementation code is generated on the server side
rather than on the client side. The consequence is the failure for establishing a mechanism
that allows GuiBase moduie to receive the call from DataControler module. The
following codes are added into IDL file ot Da:aControler manually:

l

object.,
uuid(63B3BF.A0-7BE2-1!d2-819B-000000000000).

helpstring("IModel Interface"),
pointer_default(unique)

]

interface IModel : iD zatch

{
[helpstring("method Urd: teCourselnfo”)]
HRESULT UpdateCourselnfo({in] Courselnfo* courseinfo);
[helpstring(“method UpdateStudentInfo™)}
HRESULT UpdateStudentinfo([in] StudentInfo* studentinfo);
[helpstring(“method DeleteStudentData")]
HRESULT DeleteStudentData({in] ULONG studentld);
[helpstring("method DeleteCourseData")]
HRESULT DeleteCourseData({in] ULONG courseld);

54

[helpstring("method SetCourseSpaceFull”)]
HRESULT SetCourseSpaceFull ([in] ULONG courseld);

1.
IR

In the language of COM/DCOM, the class DataDrive that implements the pure virtual
functions defined in the IDL of DataControler is called CoClass of that defined interface.
To become a DCOM component, the class DataDrive must inherit from
CComObjectRootEx<CComMultiThreadModel> that are responsible for handling the
implementation of the /Unknown methods and threads handling methods. The class
DataDrive must also inherit fom /Cispatchimpl<IModel, &IID [Model,
&LIBID DATACONTROLERLib> that involves interface /Model defined in IDL of
DataControler. The purpose of this inheritance is to make the class DataDrive become an
automation server that facilitates the callback. This inheritance also allows the DataDrive
to implement the pure virtual functions defined in /Mode! of DataControler server.

The next thing to do is to ada a COM map in the head file of the class DataDrive:

BEGIN_COM_MAP(CDataCelerDriver)
COM_INTERFACE_ENTRY (IUiModel)
COM_INTERFACE_ENTRY(IDispatch®

END_COM_MAP()

This macro-wrapped structure keeps track of the interfaces exposed by DaraDrive class.
Each interface exposed by Quervinterface() must have an entry in the COM map. The
primary functionality of COM map is to tell the interface where the implementation code
is located. Therefore when a client calls the methods in the interface, it will be able to
map to its implementation by the COM map.

To implement the pure virtual functions defined in the IDL of DataControler

server, we must use a star.dard macro to redefine them in the head file of DataDrive

class:

STDMETHOD(UpdateCourselnfo)(/*{in]*/ Courselnfo* courselnfo);
STDMETHOD(UpdateStudentInfo)(/*[in]*/ StudentInfo* studentinfo);
STDMETHOD(DeleteCourseData)(/*[in]*/ ULONG courseid);
STDMETHOD(DeleteStudentData)(/*[in]*/ ULONG studentld);
STDMETHOD(SetCourseSpaceFu!l)(/*{in]*; ULONG courseld);

We must do the implementation in the implementation file of DataDrive class:

STDMETHODIMP CDataDrive::UpdateCourselnfo(Courselnfo* courselnfo)

{
CDataConnect::GetConnect()->UpdateCourselnfo(courselnfo):

reurn S_OK;

]
)

STDMETHODIMP CDataDrive::UpdateStudentInfo(StudentInfo* studentinfo)

{
CDataConnect::GetConnect()->UpdateStudentinfo(studentinfo);

return S_OK;
y

STDMETHODIMP CDataDrive:: DeieteStudentData(ULONG studentld)

s
4

CDataConnect::GeitConnect()->DeleteStudentData(studentld);

return S_OK;

!
f

STDMETHODIMP CDataDrive::DeleteCourseData(ULONG courseld)
{

CDataConnect::GetConnect()->DeleteCourseData(courseld):

return S_OK;
H
STDMETHODIMP CDatadrive::SetCourseSpaceFull(ULONG courseld)
{

CDataConnect::GetConnect()->SetCourseSpaceFull(courseld):

return S_OK;

t
]

Here STDMETHOD and STDMETHODIMP are standard macros from Microsoft ATL

that allows the software developer to implement the user defined COM/DCOM interface.
One tricky situaiion might aitiv e that iavolves DataDrive calling Release() of

DataControler and DataControler calling Update() of DataDrive in GuiBase. Suppose

DataControler is trying to call UpdateStudent() to one of the client, and that client

decides to quit. So the client calls Release() of DataControler, and then destroys itself.
That will leave DataControler calling an object that already destroyed. To tackle this
problem, DataControles must block the Release() of a particular client when making
UpdateStudent() for that client. This problem will be discussed further when discussing
the implementation details of DaraControler module.

As we will see in the impiementation of SpecMgr server and SecurityMgr server,
no callback mechanism:s are provided for these servers. To do the online update for
specification data and secarity data, a timer mechanism is implemented in the GUI
module, which finally cails Refres/iSpec() in the class SpecConnect and RefreshSecurity()
in the class SecurityConnect of the GuiBase module:

void CSpecConnect::RefreshSpec()
f
HRESULT hr=0:
if (m_pSpecSvr '= NULL) {
hr = m_pSpecSvr->Refresh();
if (FAILED(nr)) ;
TCHAR errBuf[128]:
sprintfierrBufl "RereshSpec failed with error code %x". hr);
A fxMessageBox(errBuf):
return;

1
)

void CSecurityConnect::RefreshSecurnity()

!
i

HRESULT hr=0:
if (m_pSecuritySvr '= NULL) {
hr = m_pSecuntySvr->Refresh():
if (FAILED¢hr)) !
TCHAR errBuf[128];
sprintf(errBuf. "RefreshSecurity failed with error code %x". hr);
A fxMessageBox(errBuf);
return;

}

The implementation o1 Gu/2ase module is completed according to the detailed class

diagram presented in Figure &.

57

5.2.3 DataControler Module

DataControler server is one of the middle-tier servers and is the essential
component of the UCRMS. It provides most of the application services required to
complete the user tasks. All the dynamically changeable data is managed by the
DataControler server and the amount of these data well exceeds 2/3 of the total data
managed by middle-tier servers. In addition, DataControler server provides more
application services than the other middle-tier server does. As a result, DataControler
might need to run in a more powerful PC in which all the system sources are reserved for
that server.

When implementing DCOM server, one must decide which type of server is most
appropriate. One type of server, the ordinary DCOM server, always unloads itself when
no more client connecting 1o it. The other type of server is the so-called NT service, a
persistent server that exists even when there is no more clients connecting to it. The
advantage of ordinary DCOM server is its automatic release of system resource. This
characteristic is crucial tor an ordinary PC where system resource is limited. The benefit
of the NT service server is evident in reducing the number of network data transmission.
Assume only one client is currently connected with a DCOM server of NT service type,
and assume that the required data is already loaded into DCOM server. After finishing
the user task, the client calls Release() of the server and quits. Although there is no more
client connection to the server, the server does not unload itself and the data managed by
the server still exists. When a ciient makes a new connection to the server, the loaded
data can be reused. Consequently new network data transmissions are avoided by using

persistent DCOM server. If ordinary DCOM server is used, all the data kept in the

DCOM server will be destroyed when server unload itself in case of no more client
connection. At that momen: whei: a client makes a new connection, the server must
reload the data through the network transmissions.

By taking into account the amount of data managed by the DataControler server,
we implement DataControler server as NT services to avoid the overloading to the
network. To allow the Da:aControler server to call back to the client, the client must
send the interface pointer o itself to the connected server by calling
RegisterinterfaceToList() on uie server side. After finishing the user tasks, the client must
delete the interface pointer registered on the server side to avoid server updating the
destroyed object. The DataControler server implements Removelnterface() to serve this
purpose.

Another implemeéntation deiail deserve to be discussed is the possible memory
leak caused by concurrent vperations of server updating client and client releasing server,
just as mentioned in the previous section. To solve this problem, the client calls
Removelnterface() of DataControler server before calling UnAdvise() of DataControler
server at the time of quit. We use critical section to lock the operations of server updating
client and client releasing server. Speciiically. if the server is updating the client, the
operation of client releasing server is blocked; on the other hand, if the client is releasing
the server, the operations ot server getting pointer to the client object and updating client
are blocked. When client finishes the call of releasing the server, the server should
already have removed the client from its client list, and the subsequent update will only

update the client still existing in the client list. Thus the possible updating of destroyed

59

client object is avoided. To protect the client from releasing server while active update is

in effect, we use critical section as shown in the following codes:

STDMETHODIMP CDataControler::Removelnterface(IModel *pIModel)
{
POSITION pos = m_interfaceList. GetHeadPosition();
while (pos != NULL) ¢
POSITION oldPos = pos:
[Model* pIListModel = m_interfaceList. GetNext(pos);
If (pIListModel == pIModel) {
Zn-erCriticalSec:ion(&m_clientISect);
m_interfaceList. RemoveAt(oldPos);
LeaveCriticalSaction(&m_clientiSect);
return S_OK;
§
]

s
return S_FAILED:

To protect the server from updating client while active release is in effect, the same

critical section is used in DaraConiroler server for updating the client data:

EnterCriticalSection(&m_clientISect):
POSITION pos = m_interfaceList. GetHeadPosition():
HRESULT hr=0;
while (pos '= NULL) ¢
IModel* pIModel = m_interfaceList. GetNext(pos);
hr = pIMcdel->UpdateCourselnfo(pCourselnfo);
if (FAILED(hr)) {
ckar € -Buf128)
memset(errBPuf. “0'. 128):
sprintf{errBuf. "tndateCourselnfo failed with error code %x", hr);
AfxMessageBox(errBuf):
LeaveCriticalSection(&m_clientISect);
return hr;

}

H
LeaveCriticalSection(&m_clientSect);

To detect the possible abnormal termination of client process, we apply “try” and
“caich” pair to all the c'ient update cperaticns in order to catch the potential system error.

The implementation of DataControler module is performed based on the class definitions

presented in Figure 10.

60

5§.2.4 SecurityMgr module

SecurityMgr is a middle-tier server responsible for checking user login, setting
user info, and changing user password when requested. Upon receiving the client request
for password information, SecuriryMgr will look at its local memory whether or not the
password information is already loaded from the data server. In case the password
information is not loaded, 1t will loads the password information from data server, sets
the password information inio its iocal memory, and then return password information to
the client. SecurityMg1 only manages a small amount of data— the password
information, so it is implemented as ordinary DCOM server. When no more active client
is connected to SecurinyMgr, it wili unload itself to release the system resource. Although
the next client request will cause a new data transmission. the workload imposed to the
network will not be too heavy since the amount of data transmitted over the network is
not too big. Less than one Megabyics data are needed to transfer over the network.

SecurityMgr is an ordinary DCOM server. [t supports automatic release of system
resource, but it does not support the client caliback. The reason is that SecurityMgr server
does not have knowledge about when to make active update. All the data modification is
managed and set into the database by the DataControler server, so only the DataControler
server knows when to make active update. Without knowing when to make active update,
how does SecurityMgr handle the update ot the password information modified by the
administrators? The easiest way to do, without wasting too much system resource, is to
implement a Refresh() function that is called by the connected clients at their timer event
handler. Inside Refres/() function we can implement an operation to empty the password

information that is kept in the iocal imemory ot SecurityMgr server. Thus the next client

61

request for the password information will cause SecurityMgr to reload the password
information from data server since the loaded password information stored in the
SecurityMgr is already emptied by the Refresh() operation. As a result, the updated
password information will be loaded into local memory of SecurityMgr. This timer
mechanism is implemented on the client side in GUIl module as mentioned in the
implementation of G/ module. The predefined time interval for the timer event is
obtained from the Spec.vgr server that reads the data from the configuration file. The
predefined time interval should be determined according to the system requirements. If a
new student account needs to be zctivated six hours aiter an administrator set up the
account for that student. Then the timer should be set with the predefined time interval
equal to six hours. The timer event actually calls Refresh() ot SecurityMgr as shown

below:

void CDataStorage::Refresh(U:NT nIDLvent)
{
POSITION pos = m__:tudentPzssList.GetHeadPosition():
while (pos '= NULL) ¢
delete m_studentPassList. GetNext(pos):
1
s
m_studentPassList.RemoveAll():
pos = m_superUserP issList. GetacadPositien(
while (pos '= NULL) !
delete m_superUserPassLint.GetNext(pos):

m_superUserPassList. RemoveAll();
pos = m_managerPassList. GetHeadPosition();
while (pos != NULL) {

delete m_inznagerPas: List. GetNexay(pos):

1
]
m_managerPassList. RemoveAll();

m_timerld = SetTimer(m_key. m_timernterval, NULL);

]
i

The complete implementation of the SecuritvAigr module is conducted according to the

class definitions given in Figure 1.

5.2.5 SpecMgr module

SpecMgr is a middle-tier DCOM server responsible for the configuration and
specification of the system. It also provides the capability of online help for the UCRMS,
such as course descriptions. It is independent of data-tier data server and thus
independent of database, giving it the flexibility to be configured to run at any computers
without the client side configuration for the data server. Thus it can be run either on a
single computer withou. wuic prescace ol any other UCRMS components, or on a
computer with the presence of otner UCRMS components. SpecMgr is also an ordinary
DCOM server, capable of unloading itself when not used by any client. The data needs to
be reloaded from files when new request arrives. The client side configuration and server
side configuration will be discussed in the next chapter.

In principle, SpecMyr works with the tile system. It will load the “configuration”
and “help” data into its local mermiory trom tiles. These data are loaded only once for a
lifecycle of SpecMgr. To allow the university administrators to edit the files easily, only a
simple rule is set to govera the format of the file contents. Part of the “‘configuration” file

“Data.cfg” is shown beiow {see Appendix C):

YEAR : 1998-199¢;
YEAR : 1999-20C0;
DEPT : 0, (Chemical Zngineerinz:;

DEPT 1, (Civil Zngineering::;
DEPT 2, (Computer Science;;
DEPT : 3, (Electzcni:- Znglnes=rirg,;
DEPT : 4, (Mechanical Ergineering;;

TM_STEP : 21600;
Part of the “help” file “Heln.cfg” 's shown below (see Appendix C):

COR_NUM : (ELEC62S):

COR _DES : COMPe28, (COM? 628 - Computer Systems Design
| Prerequisite: COMP =47,

|

63

iMigration from Von Neumanr t©o parallel processing
larchitectures: fine grained &nd coarse grained
|concurrency, multi-threaded computers, massively
|parallel computers, fundamenzai prociems in hardware
larchitecture, and memory consistency. Embedding of
lalgorithms on sharec-memory &nc message-passing
larchitectures. Parellel programming supports: a

Iparallel program mccel, =mpedding ci parallel
|programs on multicrccessors anc distributed systems.
| Key concepts in cistripbuzsd systems.);

To guarantee that the data stored in the files is loaded only once for the life cycle of
SpecMgr server, we first test whether or not data is loaded. We load the data from files
only if the data is not loaded. By doing so, we can reduce the number of access to the file
system, and thus improve the system performance. In addition, the test for data loading
and the subsequent loading of data from files must be protected by the critical section to
avoid unnecessary file loading caused by two clients sending the requests at the same
time and both pass the tests.

For simplicity, SpecMgr itself has no support for run-time updating its data loaded
from files. Usually the conriguration and specification file is the essential part of the
UCRMS, so these files must be ready oetore UCRMS can be used. Therefore it’s natural
that no online support is given ior ilic modification of these files. But usually the course
administrators should be allowed to modity the “help” files dedicated for the course
descriptions. The working mechanism of SpecMgr makes these modifications impossible
to be loaded into its memory by SpecMgr itself to reflect these new changes. The reason
is simple: SpecMgr server works with tiles and file modification is unable to send signals
to the SpecMgr to inforin the data update. To support online update of “help” files, we
use timer mechanism to perfoirm the runiime update. This timer mechanism is invoked
and controlled by the clicnt process. Al ezch elapse of timer event, client calls Refresh()

of SpecMgr, which then reioads the “heip” information from the file:

STDMETHODIMP CSpecSvr::Refresh()

{
LoadData();

reurn S_OK;

}
1

SpecMgr server works with files, and these files may be located either on a local drive or
on a network drive. Any changes concerning the file location should not require the re-
compilation of one or more components of the UCRMS. For this purpose, we use the
environment variable setting and GerEnvironmentVariable() function to ensure the file

location transparency, the codes are shown below:

LPTSTR fileName = NULL.:
DWORD len = GetEnvironmentVariable(_T("SPEC_CFG"), NULL. 0):
if (len > 0) {
fileName = new TCHAR[len ~ 1];
GetEnvironmentVariable(_T("SPEC_CFG™), fileName. len + [):

t
1

At the time of configuration, we can set the system environment variables for these files.
The complete implementation of SpecMgr module is conducted according to the class

definitions presented in Figure 12.

5.2.6 DataAccess Module

DataAccess is a data-tier server responsible to offer the data services for the
middle-tier servers. To guarantee the safe operation of database access from outside of
the data server, the database operations and queries should be encapsulated in the data
server. To do so, we implement Data.4ccess server to expose a set of data services and
functions. Database is accessed by the outside world through the public interface and is
operated only inside thesc exposed data services. Thus if these services and functions are

carefully coded, the safc database operations are then guaranteed.

As discussed in the previous sections, middle-tier servers are implemented to
minimize the data base access by keeping the data into their local memory. For this
reason, DataAccess does not maintain a memory to keep the data retrieved from database.
Once database service is requested, it opens database and makes corresponding database
operation. It immediately closes the database after finishing the database services to
reduce the possibility ot database errors.

Here we want to iurtier meation the imiplementations of DataControler server
and SecurityMgr server since they are closely related with DataAccess server. As
described above, the number of database access is very limited, we can then implement
the DataControler server and Secuiitviigr server to set up the connection to DataAccess
server just before calling its data services, and release the connection immediately after
getting the data services. Thus the numnber ot active database connections is very limited
at any given time. The impiementaiion is performed based on the class definitions

presented in Figure 13.

5.2.7 Project Settings
To complete their common tasks, dependency relations must present between
these modules. In order to successfully compile and build these modules, we need to
make appropriate settings for these different projects.
e DataAccess is built as a data-tier server component, only providing the data services
to the other modules. So it does not depend on any other modules. As a result, no

specific settings are r:eeced to build this module.

66

SpecMgr module is built as a middle-tier server component. But since it only works
with files locating either on the local drive or on the network drive, it does not depend
on the other modules. No specitic settings are necessary.

DataControler module is built as a middle-tier server component, an NT service. It
not only provides the application services to the client, but also requires the data
services from the data-tier server when needed. Thus we need to do some settings for
DataControler moduie. Firsi of al, we must include a head file named “dataaccess.h”
that tells the compiler the complcte Gefinition of data-tier services available for the
DataControler modu.c. To allow the compiler to find the specified include file, we
need to add a corresponding path 10 the project path-include list, which can be done
by using sub-menu “options...” of main mmenu “Tools”. Moreover we must add a file
named “DataAccess_i.c” ini the projeci. which allows the compiler knows all the
interface definitions. This tile .aa be adaed by using a sub-menu “Add to project”
from main menu “Project”.

SecurityMgr module is built as a midale-tier server component. It has the similar
functionality as DataControler component. Therefore same settings need to be
performed for SecuritvMgr modcule.

GuiBase module is buiit as a presentation-tier DLL component, responsible for
initializing the application, establishing the connections to the middle-tier servers,
requiring the needed appiication services from middle-tier servers, and providing the
corresponding data to the graphic user intertace. Therefore GuiBase module depends
on DataControler module, SecurinyMgr module, and SpecMgr module. To

successfully compile in¢ GuiBase project, it must include the head files

67

“DataControler.h™, “SecurityMgr.h”, and “SpecMgr.h”, respectively from
DataControler project, SecuritvMgr project, and SpecMgr project, and their
corresponding paths must be added into the path-include list of GuiBase project. To
allow the compiler tc know the interface definitions of all middle-tier servers used in
the GuiBase module, the files “DataControler_i.c”, “*SecurityMgr i.c”. and
“SpecMgr _i.c”” must addea inito the Guisase project.

e GUI module is built s a presentation-tier EXE component, responsible for starting
the UCRMS application and providing the graphic user interface to the users. It will
load “GuiBase.dll” into its workspace and requires application services from the
middle-tier servers iirough e {unctions implemented in the GuiBase module. Thus
GUI module depends on Guisase module. All the functions accessible to the GUI
module are exported from the class CGragphiics of GuiBase module. Thus the head file
*“Graphics.h™ needs to be included .ii the GUT project. The corresponding path must
also added into the pa:h-include Iist of the GUI project. To successfully compile the
project, the compiler alsc aeeds 1o kinow the external functions provided in the
GuiBase. For this purpose we need w add “GuiBase.lib” into lib-include list of the
GUI project, which can oe done by adding “GuiBase.lib™ into the edit field marked

“object/library modules™ in the “"iink™ page of project settings.

6 Installation and Execution

After the implementation of the UCRMS is completed, we need to distribute and
configure the different components of the UCRMS into their designated computers so

that they can work together in a distributed environment.

€8

6.1 The Distribution of GuiBase.dll (dynamic linked library)

At the starting of the UCRMS, the “GuiBase.dll” generated from GuiBase module
will be loaded into the working space of “CourseReg.exe™ application, which is generated
from GUI module. To allow the “CourseReg.exe™ to find the “GuiBase.dll”,
“GuiBase.d1l” must be set in one of the following locations:

e Windows NT system32 directory.

e The directories specitied in tne path setting of Windows NT system environment.

e The same directory where starting rile “CourseReg.exe” locates.

The easiest way is to set the output files of the GUI project and the GuiBase project to the
same common directory. This can be done by entering a common path name in the edit

field marked “output files™ in the “General™ page of their project settings.

6.2 The System Environment variabie Settings

As described above, SpecMgr server works with files, and these files may be
located anywhere, either on a local drive or on a network drive. To ensure file location
transparency, we need to set the environment variables for these files on the computers
where SpecMgr server is 1o be launched by the user request. We can set these
environment variables by doubie ciicking the system icon on the Control Panel and
choosing Environment page. To be appropriate, these environment variables should be
set as user variables since the JCRMS is a user application. Click on the user variables

field and then type in the required variable and its value as below:

69

Variable -» DATA_CFG
Value — D:\ZQReport\SpecMgr\CFG'Data.cfg

Variable - HELP_CFG
Value — D:\ZQReport\SpecMgr\CFG'\Help.cfg

Here the “Value” field must be filled with the full path of the file to be loaded by the

SpecMgr server at run time.

6.3 Server side configuration

Each DCOM server must be registered into the system registry of the computers
where they are launched upon client’s request. Usually the server project is built by
“ATL COM AppWizard™ to support automatic registration of the server interface and
their classes at the compile time. Theretfore, if the server is built and is going to run on the
same machine, the registration step is not needed for that server. For DataControler
server, we should repeat the server registration process. This is because that only the
ordinary DCOM server can be registered by the automatic registration. On the other
hand, if the server is develuped enu buiit on one computer and is to be executed on
another computer, we also need to Go ihe server registration process on the computer
dedicated for that server. {f a server is implemented as NT service, it can be either
registered as ordinary DCUM server or registered as NT service. Otherwise it can be
registered only as ordinary DCCGM server. To register DataControler as NT service we
type the following comrnand ai cornmand line:

DataControler /Service

To register SecurityMgr as ordinaiy DCOM server, we use the following command:

SecurityMgr /RegServer

The registration for all the other ordinary DCOM servers uses the same process as that of
SecurityMgr server.

For DataControler server, we can remove the server registration from the system registry
by using the following command at command line:

DataControler /UnregServer

All the other servers follow tiie same unregistration process.

When server registration is done. we have to set the server access permission and
launch permission, which can ve performed by using “DCOMCNFG.EXE” provided in
the Windows NT package. When “DCOMCNFG.EXE” is executed, a DCOM server
configuration dialog box appears. First of all, one should make sure that the check box
“Enable Distributed CO!vl on this computer™ on the “*Default Properties’ page of that
dialog box is checked. The other settings on this page should be kept unchanged. A fter
that, go to the “applications™ page ot ihat dialog box, which displays all the DCOM
objects and interfaces being registered in the sysiem. To make a configuration for a
particular server, one should find and select the server to be configured, then click
“properties” button. Anoiaer Giaivog box will appear. To allow particular clients capable
of launching and accessing ihe DCUM server remotely, one should set the related options
from Security page and Ident:.ty page. I'roin “Security’ page, one can give the access
permission to particular users troni remote computers by clicking the corresponding
“Edit..."” button and then add these users onto the AccessPermission list. Similarly one
can give launch permission ¢ particular users trom remote computers by clicking the

corresponding “Edit...” bution and then add these users onto the LaunchPermission list.

71

From “Identity” page, one should select “This user” from three ot the option radio
buttons. By clicking “Browse..." button. One can select a user from user list. The
selected user should have an account on that particular server computer and should be
able to launch the server. One should also type in the password needed for that particular
user to log onto that computer. After the above process is completed, the server is ready

to receive the client requests and provides the reiated services to the client.

6.4 Client side configuration
Client side configuration includes the registration for the Proxy and the

registration for the remote server.

6.4.1 Registration for the Proxy

Proxy is used by the client in the process that performs Marshalling and
Unmashalling for the calls between the client and the server. Before registering the server
Proxy, one should generate Proxy DLL using nmake.exe program provided by the
Microsoft visual studio. When server project is established, a Proxy make file is
generated by the AppWizard. The name of the make file is set by the AppWizard to be
the project name postfix=d with “ps.mk”. In the following we use DataControler server
as an example to explair how 10 generate and register the Proxy DLL.

Among the project fiies of DaiaControler server, one can find a Proxy make file
named as “DataControierps.mk™". This nle shouid be copied io the computer on the client
side to generate a Proxy DLL and then make proper registration. One can enter the
following command at Uic conmand line to generate the Proxy DLL file:

nmake DataControlerps.mk

“nmake.exe” is one of the Microsoft program maintenance utilities that builds
projects based on commands contained in a description file. The output of “nmake.exe”
for Proxy make file is the Proxy DLL file named as “DataControlerps.dll”. This Proxy
DLL can be registered using regsvr32.exe program, provided with Windows NT package.
At the command line, tvpe the following command:
regsvr32 DataControlerps.dil
The result of the registration, cither successful or failed, will be informed to the user. If
one wants to remove the Proxy registration after it successfully registered, one can use
the following command:
regsvr32 /u DataControlerps.dll
Once the Proxy DLL is successfully done, we can go to the next step. The registrations

for all the other server proxies can foilow the same procedure as described above.

6.4.2 Registration for Remote Servers

The servers should be registered on both server computer and client computer. It
is natural to think that server should be registered on the server computer since system
should be able to find the server when a client request arrives. For more or less the same
reason, the same server shculd alsc be registered on the client computer. When a client
needs the services from the server, it wiil ask the service control manager (SCM) to
create the server object for hini. The SCM wil, look at the system registry to find the
location of the server. I1 the server locates remotely, the local SCM will ask the remote
SCM to create the specitied sciver object. Tae client then gets the services from that

server by calling the furcticis supporied by the server.

There are two methods to register the server on the client computer. For the first
one, just follow the same server registration procedure described in the server
configuration. The first method may be not convenient since one must copy the server
component and all related registration files, **.RGS files”, into the client computer.

The second method s more convenient. It requires only the export of the server
registration information. After tiae server is registered in the server computer, one can
search the registry database to rind the corresponding server class and its interface, which
can be done by using “regedit.exe” program pirovided by Windows NT package. The
execution of “regedit.exc¢” program provides the user with menu-supported presentation
of registry database. By using tlic export options from the menu, one can get the
registration information for the server class and its interface, and further save them as
registration files (see Appendix 13). Taese tiles can be copied into somewhere in the
client computer. Simply doucle click on these registration files from Windows NT
explorer, the server will be regisicred into the system registry of client computer.

Both registration mei0ds describea above need further settings. After registration
of server on the client comnpuier, one siould use “DCOMCNFG.EXE” program to reset
the location of the server thai allows the client system manager to launch and access the
server on the dedicated lucation. Execuiion of “DCOMCNFG.EXE” program will bring
up a dialog box to the user. Click:ng on the “properties” button on that dialog box will
bring up another dialog box, trom which one can set the location of the server by using
the “Location” page. Simp.y aeseiect "Run application on this computer’ and select “Run

application on the following corpuier ', and rurther select the dedicated computer into

74

the corresponding edit field by using “Browse...” button. Then the setting for server
location is done.

The registration procedure described here seems complex. As described in the
chapter of DCOM Functionality, there exists another method for running the distriouted
application without the needs to perform the server registration on the client computer.
This method requires the client codes to pass the detailed server location when calling
CoCreatelnstanceEx() to create server object. The advantage of this latter method is its
simplicity and control o er tiie server. Its disadvaniage is evident. Whenever the server
changes its location, the ciieni codes need to be recompiled.

The latter solution, although simpie, is not acceptable for the distributed
application even the existing server never change their locations. The reason is that
sometimes two or more servers oi the same type are needed to release the server
workload caused by increased user requests. 1n tiis case, one should build several
versions of client componeni that pass different server locations to the
CoCreatelnstanceEx(), thus causing management difficulties.

Using server regisiration on client computer can guarantee the server location
transparency. One needs not to know the server location when implementing client codes.
The disadvantage is that a particular client must aiways get services from a particular

server, which somewha: discouirages the automauc server load-balancing.

6.5 Settings for Database

The data managed and accessed by the UCRMS is stored in the Oracle database.

To allow the data-tier server to operate the data stored in the Oracle database, we use

ODBC as connection interfaces from data-tier server to Oracle database. For this purpose,
we need to set a database connection using Microsoft ODBC driver for Oracle. The

settings for database also include the establishment of the database.

6.5.1 Setting Database User Account

A new database user acccunt can be set up using “SQL Plus™ or “Database
Navigator” provided in the Oracle database package. If using “SQL plus”, one must use
system or sys account to have the privilege for setting up a new user account. The easiest
way to set up a new user account is to use “Database Navigator”. Simply launch the
“Database Navigator”, and select “database” presented on the left pane of Navigator, a
list of database items is aisplayed. Seiect “User” trom the list and right-button mouse
click on the selected item, a pop-ap menu appears. One can then add a user account by
entering the user’s name and password into “"New User Properties™ page that is brought

up by select “New” from ihe pop-up menu.

6.5.2 Setting Database Connection

The database connection for the ODBC driver can be established by using the
“ODBC” from Control Panel. Clicking on *ODBC" icon brings up “ODBC Data Source
Administrator’” dialog box. from which one can add a new User DSN. When “Add”
button is clicked, a list 07 ODBC drivers is presented to the user. Select ““Microsoft
ODBC for Oracle” and ciick —Fnish™ button, one is then prompted to enter the Data
Source Name and its Description. finier “Oracle Connection™. After this information is
entered, the database connection is then estabiished. One can also add a new file DSN by

using the similar procedure. From the file D3N page, click ““‘Add™ button and select

“Microsoft ODBC for Oracle” from ODBC driver list, then click *next”. One is prompted
to enter the name of the file data source. Enter the name as ““Oracle Connection”. After
the name is given, click on “rext”, and then “Finish”. one is prompted to enter the user
name, password, and the server name. Upon the completion of entering user and database
server information, one can click “OK™ button to finish the setting. The Oracle database

is then ready to be accessca by the UCRMS data server.

6.5.3 Creating Database Tables

Database tables can be created from either “Database Navigator™. “SQL Plus”, or
database project created by Microsoft Visual Studio. The most convenient way is to run
“SQL Plus” program and use “create” command at the command line of “SQL Plus”.
One can create a file postfixed with .sql and write all the table-create commands into this
file. For our purpose, the rile named “student_course.sql™ is created (see Appendix D).
The format of the comiiands wriiten in this ile are snown below:

create table Student.

stid number {7, nct nu2l’,
stname varchar2 {7,
sttype number (Z.,

deptno numtcer (£,
passward char (4

)

By running the following command at the command line of “*SQL Plus™, the database
tables can be properly created:

start student_course.sql

6.5.4 Inserting Values irto Database Tables

Database values can be easily entered into database by using “insert” command.

Simply create a file posttixed with .sql and write the required “insert” command into this

77

file, then run these commands from “SQL Plus” command line. The file named
“insertvalues.sql” (see Appendix D) is created for this purpose. The command written in
this file follows the format shov/n below:

insert into Teacher wvalaes §,'lixin Tuo',l):;

Running the following command at the command line of “SQL Plus™ will execute all the
commands written in the fle:
start insertvalues.sql

As a result, the values written in the files are properly inserted into the database tables.

6.6 Using the UCRMS

According to the configuration guidelines described above, we have conducted
following settings for the UCRMS to be used in a distributed environment. We used three
Pentium II personal computers to execute the UCRMS. Windows NT work station is
installed for all these three PCs.

On the first PC, we installed Oracle database, with database tables properly
created. We then inserted sufiicient data vaiues inio inese tables. We also established a
new ODBC connection that is calied “Oracle Connection™ and is to be used by
DataAccess server. We installed DataAdccess server and properly register it as ordinary
DCOM server; their regisiration information is exported into registration files:
“DataAccessClass.reg” ar.d "DataAccesslateriace.reg™ (see Appendix B). On the second
PC, we installed DataControter server, SecuritvMgr server, and SpecMgr server.
DataControler server is regisiered as N T service, and the other two servers are registered

as ordinary DCOM server. Witn the help of Dalaccess registration files, we registered

78

DataAccess server on the second PC and reset it to run on the first PC. DataAccess proxy
DLL is also registered by using “nmake.exe” and “regsvr32.exe”. Moreover we made
environment variable settings for SpecMgr server according to the location of the
“configuration” and “help” fiies. The registration information for all these three servers
on the second PC are exported into registration tiles respectively named as:
“DataControlerClass.reg”, “DaiaControlerIntertace.reg”, “SecurityMgrClass.reg”,
“SecurityMgriInterface.reg™. “*SpecMgrClass.reg™ and SpecMgrinterface.reg” (see
Appendix B). On the third P'C, we instalied the starting program for the graphic user
interface. This includes “CourscReg.exe™ and ~GuiBase.dll”. Actually the “GuiBase.dII”
is to be loaded by “CourseReg.exe” 1o its own working space and is the base of the
graphic user interface. Finally, also on the third PC we made a server registration for all
the middle-tier servers and rese: them to run oa the second PC. After the above settings,
the UCRMS is ready to be used from the ciient computer, the third PC. Here we describe

how the user tasks can be completed with the help of graphic user interface.

6.6.1 Login Window

Login window is shown in Figure 20. To login to the system, user needs to enter a
valid user ID and select z corresponding login type from a list of types. There are three
buttons displayed on the login window. Clicking on “Enter” button will cause the system
to process the user’s login information. If login is successful, the user is then presented
with either course registraticr. window. or course add and drop window, or student and
course management window. cr administraior management window, depending on user’s

ge box appears informing users about the

-

login information. For ar iiivaiic logii. a mcssa

login failure. Then syster.: fust.es tie login viclds and waits for a new login session.

79

Clicking on “Help” button will bring up a text box to tip the user about correct login

procedure. Clicking on “Quit™ button will cause UCRMS to terminate.

_

Concoidia University

Course Registration and Management System

SN KT WNTT EIRTIFY YUl

Please enter login © ~

.t (User) Student ID: IT?34557 Enter l

¢ —— e ——e———— - - ———

{User} Student Pin: |"" Help

Lo AS. | Sudind - l Quit

Figure 20: Login Window

6.6.2 Course Registration Window

For a successful STUDENT login. the system presents the course registration
window to the student. As shown in Figure 21 there are one pre-select course list and one
pre-register course list, cicary dispiayed in window’s ActiveX gridline controls. The
student can select the courses frcm pre-relect course list into pre-register course list.
Clicking on course dispiayed or tne pre-select list will select the course. The selected
course will be put into pre-register course list when “Select” button is clicked. The same

course can appear only iii otie course list.

Sy

I A)

Student Course Registration

r Course st to be selected - : - B —

! Course & # Course Title Section | Days & Winter i

i | compS6T GRS R T AR TSR PRt LSS W ’ R

i | compb4l comparat <tudy Lzcnd m-— 1025-2285 peterijohn ;
compb42 compiler design LecidX -— 17.40-20:10 john lee C Summer .
compB46 puter networks and prot Lec XX —~ 17:40-20:10 ling tuo !

STUDENT: ID: 72 2770 Lol T
erselis(tobere;istered -y
Course & # Cowrse Title Term | Section | D Times Professor |e]

=

Register l RemoveJ

| Change 5 3ssword] Course description l Quat]

} y Yy

The courses that are s=lected into pre-register list are going to be stored into
database if the student choose to register these courses. Clicking on “Register” button
will bring up a confirmation dialog bex (zs sh.»n in Figure 22) to the student, showing
the courses to be regisic.cu. —ewders cooeud o colindiin wie tegesitation before the data can
be set into the database. Student can change his password by clicking “Change password”
button, a dialog box appears allowing ine stuaent to type in the new password. Student

can view a particular crivoe dleen- ricpn hu ciieking en “Course description” button. A

1

Commit Registiation '

You have Chosen (L Jsyister (o iNg iu.wvng COUISes,
Chck Com=it to complate registraticn, cich. Cancel to abort.

Course& 8 | Tem -
comnba2 Fall
comp954 Summer

l A

P— J

course description window is presented to the student. As shown in Figure 23, the course

Figure 27: R-gistratiar Coniirmation Window

description window suppor.s fuil index search of a particular course.

Course Descnption

Enter course nummber for c:.2xc! lie deiingran &3 chown bewow:
|CDMPB28 COMP 628 - Computer Systems Design
Course index: Fre.equisite: COMF 546,
COMP221 _:_I 'Mngfation from Von Ne2umann to parallel processing
COMP224 ‘axcr.i:eciures: ine grlaned and coarse grained
COMP325 {concurrency, multi-threaded computers. massively
COMP347 i - craflet comouters. fundamerital problems in hardware
COMP425 | archicectuie. and raemoly Sonsisiency. Embedding of
Egmgggg ¢ P manbam s cn ek ars samane 2-d message-passing
- < empe g
COMPS51] .
COMPSE4 P geedsies simurniccseicrs end distrbuted systems.
COMP624 - LEPTINTERRE I SN o R -2 R
|
COMPS47 :
COMPE51
COMPE77
COMP723
COMP724
rNMP74K i

Ext

Selecting on a course displayed cr the left parc of the window and clicking on “Display”

button, a detailed course descriztion is presented to the student on the right pane of the

Figurc 7 i- ¢ e

window. Student can quit trom registration window by clicking “Quit” button, and the

system goes back to login window waiting for new login session.

6.6.3 Course Add and D~op ‘virdow

If the UCRMS detec:s z v~lid login £ r a student who already has courses
registered, the course add and ¢ -or: window 'viii be presented to the student, as shown in

Figure 24.

Regrstered course hst

Studea Course Ada and Drop

— Course Iist to be added (0 the rezisha'ior - —
Course & #| Coutse Title | Section| Days | Times | Professor | o
compS61 elementary rumsancal Lcctatnr dee 1T7.U0-20:100 peter john Winter
compb41 comparat study Lec Ad m-—- 20:25-2255 peterohn
compb646 e arwd st M L - | ' ' " Summes

@ Fal
|
!

STUDENT: ID: 7123732 Pleme Szan on
— Registered course list - : e
‘ Course & ## e X ‘.oc:bi-u:u: |";c .;- T ‘l.c_mcs I ~rofessor a“
comp554 e € . ‘
compb42 compil = ST oorTq iohn lee

Drop

Fhzpee A2~~wmiagd | Course desnription Quit J

H Gre s Yt) '.-,. -1 R . 3 L
Figuo-o2 oo ovoe 2 00 0ol Yinlaw

On the upper portioa oi tixe window displays the course select list; on the lower
portion displays the registered course iisi. When a course is selected from the course
select list and “Add” buiion s ciiched. a viessige S0X appears asking for the confirmation
for registering the select-:! course into the Cotanase. The user can either commit or abort
the action. When a cours: is selocied irom the registered course list and **Drop” button is
clicked, a message box appcars zsking for the confirmation for removing the selected
course from the courses registeccy in the dawtasce. The user can either commit or abort

the action.

6.6.4 Student and Course Maonagement Window

For a successful ADMMNISTRATOR login. the system will present a student and
course management window to the adminictrator. as shown in Figure 25.
Two course lists are presentcd on the wiido vt ane is the course list and the other is the
student list. The courses displaved on th.e <o:r-e list represents the total courses available
for student registration. Adm:n-strator can ac'd a new course into the course list by
clicking “Add” button. The od = ".strator is promiptea to enter the new course
information into the edi: ..cids o llaicg oo as shown in Figure 26.

Upon the commit of course-ciding ¢ ¢ -odzre (by clicking “OK™ button), the new
added course is stored i« chic ericic dotat s, A administrator can remove a selected
course from the course 1 oy ¢lliking “Keqove” button. The removing of a course
requires the confirmation o the suser user. Onze connrmed, the selected course is
removed from the databasec.

The students dispiayed on inic siduci. Lo copresenis the total student permitted to

use the UCRMS. The admiidst-aior cal also add « nevs student into student list or remove

[\

a student from student list with the same rules governing course add and remove
procedures. Administrator can quit from student and course management window by
clicking “Quit” button and system goes back to login window waiting for new login
session.

IV T |

Student and Course Administration

~ Course fat——— R —
‘ lAcdemc year: [1998-133¢ ! Cepanment: | Computer Science _v_l
€ Winter @ Summer C Fe! @ Grzduate " Undergraduate

I: it .
COMP 641 Compil2r Design Lec oA /- 20282255 ichn lee

COMP 646 Computer Meunors el === 1746 -2070 1akie chen
Remove I 5
= |

~ Student list———- — - S

Department: !Build"l:‘; N - -_ . Tz atuate '
{ Student (D) T e - Passivord -
| 6354728 john ken 0000 _ :
i 6365438 mei heen 0000 :
' 7262781 keem lirce 0000 Add I ;
E v| _Remove
L S

Hiale J Quat J

Figure 25 <t ci>rt 2~ Course \lznagemeat Window

Diaslog

Input the following course ~fxm .zt

Course Number: [COMP 724
Couse Tile: [Paralle! System
Cowurse Section: |Lec AA

Professor ID: |Lixin Tao

Course D= - - ‘_'I
Location: - 6. T T
Course Time: Starc g :.._ £od :__5- }'-_3

[ok]| Concel]‘

Figure 26: Window tor Adding a New Course

6.6.5 Administrator ‘Ma»~c-ment Window

For a successful SUPER USER login. the system presents an administrator
management window to the super user, as shown in Figure 27.

An administrator list is displayed on the window. A new administrator can be
added into the list by ¢i c*i 2~ i “"wton. Falog box appears that prompts the super
user to enter the required nfo ~nat:o~ 3hout thz administrator to be added (see Figure 28).
An administrator can be selected. Thic selected adminisirator car: be removed by clicking
“Remove” button. A covfirmation incssage box appears asking for the confirmation from
the super user. If confinned. the reote dataoase will be updated. Otherwise no action
will be taken and the sy-i... 2. .- . .x w i auwiitisizatcr management window. Super
user can quit from admiiisticior mdndgenend window oy clicking “Quit” button and
system goes back to login wiiidow wailing 1or new 16gin session.

Q7
o

h

Administiator Management Page

Admimstration Management Page

User ID User Narne Department Password
11111 .. g, PR A% 3L K

22222 Jean Badlah tlechomc Englneenng 5678

eca | Herove | '[Hﬂlp _J Quit l

Figure 27: Admiaistrator Management Window

Enter Adminicaic teisnsion Balown

Admmistrator 10 ; "4333
Mawwes Lo et

Passwnr 1
]

Depaitment- (RRETRENN— wl

'L 2 Jl —ancel

Figure 28: N\ muos wr .Agaug 1 nevy Aammstrator

c=

7 System-Testing and Bug-Fixing
A usability testing has ceen conlucted tur UCRMS. The purpose of the testing is
to find the following poirts:

e [s there anything that contusc; the user?

e [s there any task thz. ... not be centp.eted by the system?

e [s there any bug in the system”

Several problems have been tound trom the above system testing. Some of the
problems and their correctionis :7e r Grninaric 20 Zo.ows

e It’s not clear for the first time user that courses in the pre-select list should be first
selected into pre-register ust in order 1or these seiected courses to be finally registered
into system. We have added short help-tips on top of each course lists to correct this
problem.

e When users quit the working winuow. tie 10gin information is not removed from the
login window, leaving ihe possidiiiiv uf nduchorized access to the users’ account.
This problem has v<en corr=ct2d by ciearing ihe lugin password field immediately
after the user quiis the working windcow.

e From student and course management window. the courses with two lectures per
week cannot be added into sysiem since the choices are given only for one lecture per
week. This problerr: :.a. oeon iiaed by accayg the choices for setting two lectures per

week.

&e

8 Conclusions

A University Coursz Registration anii Management System (UCRMS) is

developed on Windows NT by using Microsoft Visual Studio. UCRMS is a three-tier,

distributed application capable o° running on number of different computers according to

the configuration. It is designed and implemented to be a user-centered course

registration system that is easy :0 use ar.d easy tc learn for students and administrators.

The primary goal has becn acnies ed. wiiich can be described below:

UCRMS is easy to iearn. The reason that users are capable of learning to use the
system easily is that the system is designed w de simple for all the users. Another
reason is that users can icarn the registradion procedure incrementally, each invalid
operation will pop up a micssage io tell wnaw e users should do.

UCRMS is error-protecied. This is true especially for students to register their
courses. Students are allowd 0 do every possible operation without harm to the
system since the only source o1 error is au the time of login and changing password in
which system pertorms tuil coniroi.

UCRMS is secure. ne security for server component is set on the component basis
with different security ievels including launch permission, access permission, and
Windows NT permiissiorn.

UCRMS is efficient. Students can selr-register their courses without the help of
course administrators. The on-line course descriptions can help students make their

course selections easily and quickliy.

UCRMS is modifiable. Moz parts of the user interface can be easily modified to suit
the different user requirerments. such as text box and radio box. The extended services
can be easily added into the public interfzce of the server components.

UCRMS is scalable. As the number of user increases, the system can be reconfigured
to use more middle-tier server components to maintain the application performance.
UCRMS is efficient. Th= :mnler-entauon is done using object-oriented C++ language
capable of generacrz etiicient appiicatic i program.

UCRMS is reliabie. Two or imore middle-tier servers can be used to improve the
system reliability. The ranure ot one server will not stop the whole system from
functioning.

UCRMS supports indepenaent service upaate. [f more services and functionality are
added to a server component in the UCKMS. the other components need not
necessarily be recompilea.

UCRMS supports online data update. The dynamic changeable data can be updated
without shutting down the server.

UCRMS supports erficient data access. Prooiems of database connection limitation
are minimized since oaiy data-tier server is connected with the database.

UCRMS supports component reuse. The UCRMS, for example, can be re-built into
Web-based application with the modification of only GU7 module. All the other

components can be reused.

From the experience of desiwii alid irnprementaaon of UCRMS, we are convinced that the

three-tier distributed application is n:ore efiicient, more reliable, and more scalable than

the conventional two-tier application. The Mhicrosott Visual Studio is able to offer the

90

developers with excellent developing environment for implementing three-tier distributed

applications.

Because of the time ::onstraint. some of the teatures in the UCRMS need to be
enhanced and improved in tae tuiure version of the UCRMS:

e Database operations 1s not as reliable as it should be. If something goes wrong in the
middle of database opecation. souiie fauity aatabase state may appear. The solution to
this problem might be to add = new layer between data-tier server and the database.
This new layer can be iripiciented using Microsoft Transaction Server (MTS)
capable of providing a transaciion guaraniee nat either the transaction is committed
or nothing is done.

e DataAccess server is the oniy data-tier server tnat manages active data transaction. In
order to use MTS actively in uatubase operations, it’s more efficient to implement
DataAccess server as a DLi. coinponent rather than EXE component. Then MTS is
able to manage DaiuAcceys component Cirectiy and provides it with surrogate and
transaction services at the same time.

e The future version of UCRMS shouid be able to provide more eftective online help
and course descriptions. Thesce supports are cruciat for the students to select their
courses and finally imake course regisivation quickiy.

e A new functionality thar zliows the course administrator to customize the number of
courses permitted tor each student should e added in the future version of UCRMS.

e Currently UCRMS only supports single course sclection. In the future version, the
system should be abie to support multiple course selections to speed up the course

registration process.

As the Internet usage becomes more and more popular, the Web-based UCRMS
should be developed in the future. As mentioned above, only GUI module needs to be
rebuilt. For this purpose, we need to build a Web-based graphic user interface by
using Microsoft Active Szrer Page (ASP). Moreover a COM component must be
implemented to serve as a biidge between the ASP and the GuiBase module. The
Web-based GUT aina tac i.ew vuiut COM componceri iogether torm the entire GUI
module. Under such a contigaiation, clicit request 1s sent to GuiBase component
through COM conipunent. and GuiBasce coinponent tusther calls the other middle-tier
servers, returning any infvnuat.on requestad by the ciient. Needless to say,

COM/DCOM plays a signiticani roie 1a the deveioprnent of distributed application.

References

[1] D. Rogerson, Inside COM, Microsoft Press. 1996.

2] R. Grimes, Professional DCOM Programming. Wrox Press. 1997.

[3] J.Siegel, CORBA Fundamentals ard Programming, Jhon Wiley & Sons, 1996

[4] M. Henning and S. Vinoski. Advanced CORBA Programming with C++, Addison-

Wesley Pub Co., 1999

[5] DCOM Technical Overview, atip: ‘www. r.icrosoft.cem/windows.common/pdcwp.htm

[6] N. Brown and C. Kindcl, Oisriouted Component Object Modei Protocol,

http://www.miccrosof..conynlacc ndraft-brewn-dcora-+1-spec-01.1xt

22

[7] Y.M. Wang, Y. Huang. and W.K. Fuchs Progressive Retry for Software Error
Recovery in Distributed Systems. [EEE Fault-Tolecrance Computing Symp., pp. 138,
1993

[8] K.P. Birman, Building Secure znd Reliable Network Applications, Manning
Publications CO., 1996

[9] OSF DCE RPC Spec.ficeticn, hap: www.ost. otz mail/dee/ fiee_dce.htm

Appendix A — IDL fiics

// DataControler.idl : IDL source o1 Daalentroler.dll
1

// This file will be processed by the MIDL 100l 10
// produce the type library (Da'aControler.tib) and marshalling code.

import "oaidl.id}";
import "ocidl.idl";

typedef struct _Courselnfo |
ULONG coursela:
BSTR courseNo:
BSTR courseTitle:
ULONG courseTerm:
BSTR courseSecc:
BSTR courseDays:
BSTR startTime:
BSTR endTime:
BSTR courseRoom:
ULONG courseT gz
ULONG deptNum:
BSTR profName:

{ Courselnfo;

typedef struct _Swdentlnio !
ULONG studentld:
BSTR studentName:
ULONG studentType:
ULONG deptNum;
BSTR studentPass;

! StudentInfo;

typedef struct _Managerinfo |
ULONG managerld:
BSTR managerName:
ULONG deptNum:
BSTR managerPass:

O
(V]

! Managerinfo;

typedef struct _StudentReg info |
ULONG studenta:
ULONG courseld:

{ StudentRegInfo;

(

object,
uuid(63B3BFAQ-7BE2-11d2-8 19B-000000000000).

helpstring{"IModel Interface”).
pointer_dztault(unique)

interface IMode: : [Dispatch

{
{helpsting("method UpdateCourseinto”}]
HRESULT UpdateCourselnfo([in] Courselnfo* courselnfo).
[helpstring("method UpdateStudeniinto”)]
HRESULT UpdateStudentInfo({in] Studentinfo* studentinfo):
[helpstring('method DeleteStudentData”)]
HRESULT DeleteSwdentData({in; ULONG studentld):
[helpstring("method DeleteCourseData")]
HRESUL T DeietcCourseData([in] ULONG courseld):

object,
uuic(08 2ECZFF-7BDE-1 1 D2-819b-{100c00000000),

helpstring: '[DataScner Interiace™).
pointer_de fault{unique;

interface IDataServer : [Unknown

{

[helpstrinz('method GetNumCourse")]

HRESULT GetNumCourse([out] ULONG* pNumCourse):

[helpstring('method GetCourseList”)]

HRESULT GetCou-eList([in] ULONG numCourse. [out. size_is(numCourse)]
Courselnfo* pvecCourseinio):

[helpstring(“method GetNumStudent”}]

HRESUL " JetvumSwderi({out] ULONG* pNumStudent):

‘helpstring(’ method GetStudentList”)]

HRESULT GerStudentList([in} UL.ONG rumStudent. [out, size_is(numStudent)]
StudentInfo* pvecStudentnto):
{helpstring("method GetNumManager”)]
HRESULT GetNumManager([out] ULONG* pNumManager):
[helpstrinz("mewod Gevlanagerlist”}]
HRESU L GerManagerLisy[in] ULONG numManager, [out, size_is(numManager)]
ManagerInfo* pvecManagc: Inioj:

[helpstri-gf " re 2o Seud:gCourse)]

HRESULT SetRegCourse([in] ULONG numRegCourse, [in, size_is(numRegCourse)]
StudentReglnfo* pvecReglourse .

thelpstring('metmnod GeNeraRegCourse™)]

HRESUL T GetNumRegCourse([in] ULONG stuld, {out] ULONG* numRegCourse);

9%

[helpstring("mcthod GetStudentRegList")]

HRESULT GetStudentRegList({in] ULONG stuld, [in] ULONG numRegCourse, [out,
size_is(numRegCourse)] StudentReginfo* pvecReglr.fo);

[helpstring("method DelRegCourse™)]

HRESU'.T DelRegCourse{[in] ULONG numRegCourse, [in. size_is(numRegCourse)]
StudentRegInfo* pvecReginfoi

[helpstring(“method SetStudentinfo™}]

HRESUL T SetSwdentinroi[in] Srudeatinfo* pStudentInfo):

[helpstring("methcc DelStudent”)]

HRESUL™ DelSwcertu[in] ULONG swld):

[helpstring{"methoc SetCourseinto”)

HRESULT SetCourselnto([in} Courseinto* pCourselnfo. ULONG teacherld);

Thelpsmiig "mewou GelourseProlivame™)]

HRESULT GeilCourseProliName([in] ULONG profld. [out] BSTR* profName);

[helpstring{"wncthod L elCourse™;]

HRESULT DeiCourser[iny ULONG corld):

[helpstriag(" metiiod SetManagerlniv™)]

HRESULT SetManagerlnfo([in| ManagerInfo* pManagerlnfo):

[helpstriic "meoc Del Vianager™)]

HRESU - Deimanagert[in] LLONG merid):

[nelpsiain” ne sicw Setlonnection”)]

HRESU L™ St caectival[in] iMadel™ pIModel):

{heipsrui "mic no welcaselntertace ™|

HRESULT Kelewselnterfaceinf ivMese!s piModel):

[
uuid(082EC2F3-"13Di:-1 1 D2-5 19B-000000uU06000).
version(1.0),
helpstring("Data’.’. a0) 7 vpe Licrarv)

]

library DATACONTROL LU o

{

importlibi "stdole3C .ty
importlib(“"stdoie2.:!b"j:

(
uuid(082EC20! -7BD#-11D2-819B-000000000000).
helpstring(” _!DztaSe~verEvents Intertrce™)
]
dispinterface _[DirzSorve-Events
{
propertics:
methods.
i
[
uuid(082EC30C-"BDE-11D2-819E-000000000000),
helpstringt "DataServer Class™)
]
coclass DataServe-
{
(default] iatec e IDaaServer:
[defauit. source . Gisproterface _IDataserverEvents:
Y

// SecurityMgr.idl : IDL scurcz fr SecuneyMgr.dil
1/

// This file will be processed by the MIDL tocl to
// produce the type library (SecuritvMegr.ilb) and marshalling code.

import “oaidlLidl";
import "ocidl.id!":

[

object.

uuid(8 0206, F-L Ti-1 LU 2-81BZ -:00000000000),
helpstringt "iSecuritvSv: Interface™).
pointer_default(unique)

interface [SecurnitvSvr . . Cakaown
{
[id(1). helpstn2("method UpdateStudentData")]
HRESULT UpdateStedentDatar);
(id(2). helpstrinz("method LoadUserPassinfo™)]
HRESUL . LoadUserPassInfo():
[helpstring("me 2o: GellserPermission”)]
HRESCUL Ger i serPermission’ [ini BSTR bld. {in] BSTR bPass. [in] ULONG logType,
[out] ULONG?* pUser{ypc):
(helpstricg("meu.od ChangePzsswocd”)y HRESULT ChangePassword({in] ULONG
userType, [in] ULONG usalc. Lz 3STR nev-Pass):
[helpstringt "method Refresh™V] HRESULT Refresh():

[
3

uuid(8D2F4613-D77E -1 152-4.83-0000006C0000),
version(1.0).
helpstring("Secur:tvM

4

T 0 Type Library”)

]
library SECURITYMGR -

{

importlib("sidole32 tlo” .

importlib("stdole2.1ib" ;.

[
uuid(ED7E915C-D762-11D2-8.B5-000000000000),
helpstring! S 2curitySvr Class™)

]

coclass Security'Svr

{

[default] intertzce [SecuritySvr:

}

0

/! SpecMgr.idl : IDL source tor Spe:Mgr .4l
//

96

// This file will be processed >v the MIDL tool to
// produce the type library (Sp.:-Mgr.ilb) and marshalling code.

import "oaidLidl";
import "ocidl.idl";

typedef struct _Yearlnto ,
BSTR year;
! Yearinfo;

typedef struct _Deptinfo !
ULONG deptNum:
BSTR deptiName.

! Deptlnfo;

typedef struct _CorNumlinfo |
BSTR corNum:
¢ CorNumlinfo;

[

object.
wuid(AFSCECEF-C778-11D2-81B3-000000000000).
helpsuring("[SpecSvr interface™).
pointer_defaultturique)

interface ISpecSvr : [Unknown

s
t

[helpstnng("method GetDeptList™)]

HRESULT CetDeptListu{in] ULONG numDept. [out. size_is(numDept)] DeptInfo*
pvecDeptinfo);

[id(1). helpstrirz("methoad GetNumYear™))

HRESULT GerNumYear([out] ULONG* numYear):

[id(2). helpstrinz("method GetYearList")]

HRESUL ! Gedicalisiging ULOMNG numYear, [out, size_is(numYear)] YearInfo*
pvecYearlnfo);

{1d(3}, heiostiingi "inciiod GetNumDept™))

HRESULT aixumDepi([ov! ULONG* pNumbDept):

[helpstnng(‘'mediod Retresh")] HRESULT Refresh():

[helpstring("method GetTimerStep”)]

HRESULT GedimerSiep(fout] ULONG* timerStep):

[helpstring(Mmethice GetNumOeptNum™);

HRESULT GetNumCorNum([cut] ULONG* numCorNum):

[helpstruia("reliow UelCorNumbast')]

HRESU L, SelorNumnbistyinj ULONG numCorNum, [out, size_is(numCorNum)]
CorNumlInfo* pvecCorNuiilnic..

[helpstring!"methou GetDescription”)] ARESULT GetDescription([in] BSTR corNum,
[out] BSTR* description);

12

[
uuid(AFS6ECF3-077B-11D2-3185-00U6GG0G00000).
version(1.0),
helpstring("SpecMar Lo 1 ype Library ')

]

library SPECMGRL.ib

97

—_

importlib("stdole32 th"
importlib("stdoicZ.1ib "

l
uuid(95FD24512-D76F- " 1 D2-81B5-000000000000).

helpstring("SpecSvr Cless™)

coclass SpecSvr

{
[default] interface [SpecSvr:

.
[

/! DataAccess.idl : IDL source for DataAccess.dll
174

// This file will be processed by tie MIDL tool to
// produce the type library (Datasccess.tb) and marshalling code.

import "oaidl.idI":
import "ocidl.idl";

typedef struct _EntryPassin‘o
BSTR userld:
BSTR userPass:

} EntryPassInfo;

typedef struct _CourseDatalnfo !
ULONG courseld.
BSTR courseNo;
BSTR courseTitle:;
ULONG courseTerm:
BSTR courseSec:
BSTR courseDays:
BSTR startTime:
BSTR endTime:
BSTR courseRoom:
ULONG courseType:
ULONG deptNum:
BSTR profName:

{ CourseDatalnfo:

typedef struct _StudentDaialnfo |
ULONG swudeistld:
BSTR studentName:
ULONG studentT vpe:
ULONG deptNur:
BSTR studentPuss:

! StudentDatalnfo;

typedef struct _Manageriaalafo ;
ULONG manage."'Jd:
BSTR managerName:
ULONG deptNum:;

98

BSTR managerPass:
} ManagerDatalnfo:

typedef struct _StudentRegDatalnfo
ULONG studentld:
ULONG coursel::

! StudentRegDatalnfo;

[
object.
uuid(947EA 1 DO-C094-1 1 D2-81 CF-C00000000000).
helpsuring. "[DataAccessSvr Interface™).
pointer_default(unique)

]

interface [DataAccesssvr : [Unknown

{

{id(1), aelpstring("method UpdateStudentData™))

HRESULT UpdateStudentData():

[id(2). helpstring("method GetNumStudent")]

HRESUL. 7 GertNumStudent([out] ULONG* pNumStudent):

[id(3). helpstring("method GetNumSuperUser”))

HRESULT GetNumSuperUser([oui] ULONG?* pNumSuperUser);

[id(4). nelpstring("method GetNumManager”)|

HRESU LT JethvumManagen {out] ULONG* pNumManager):

Ad(3), helpstring("meihod GetSudentPassInfo™)]

HRESULT GetStudentPassInfot[in] ULONG numStudent. [out. size_is(numStudent)]
EntryPassInfo* pvecPassinto);

[id(6). helpstring("method GetSuperUserPassinfo")]

HRESULT GetSuperUserPassintfo({inj ULONG numSuperUser. [out,
size_is(numSuperUser)j EutrvPassinto! pyvecPassinfoj:

[ia(7). ne: psonn " mcwed GerManagerfassinto”))

HRESUC o7 Ge Maragerrassinfo([in] ULONG numManager, [out, size_is(numManager)]
EntryPassinfo* pvecPassinto).

thelpstring("method GeasumCourse™ 1]

HRESU! 7 GetNemCourse({out] UL ONG* pNumCourse);

thelpstrizg"memod GewCousselist' }

HRESUL! GetCourseLisi({in}] ULCNG numCourse. [out, size_is(numCourse)]
CourseDatalnfo* pvecCours inio}:

[helpstring"method GetStudentList™)]

HRESU T GetStegen List([in] ULONG numStudent. [out, size_is(numStudent)]
StudentDatalnfo* pvecSwudcnunio):

{helpstring("nethod GeeManagerList™)]

HRESU .7 Levanezer_ist(fin) ULONG numManager. [out. size_is(numManager)]
ManagerDatalnfo* pvec.linagerinton

[helpeteingt "merhod SetRegCourse™}]

HRESUL T Setieglourse{in] CLOMG numRegCourse, [in. size_is(numRegCourse)]
StudentRegDatalnto® p.cccesD:tunts):

Jheipsing 2 "memoa GouNumRegCourse”)]

ARESULY GeuwlumikegCourse[in} UILONG swld. [out] ULONG* numRegCourse);

[helpsmingi "ethod GetStudentRegList™))

HRESUL 1 GeiStuden-RegList([in] ULONG stuld, {in] ULONG numRegCourse, [out,
size_is(numRegCourse}] L tu.den'RegDatalnfo* pveckegDaralnfo);

[helpstring ¢ mictrod DelRegCourse™)]

HRESU L DeiRegloursaling JLONG numRegCourse, [in. size_is(numRegCourse)]
StudentRegDatalnfo* pveuice :17: il

99

teacherld);

newPass);

[helpstii 1y "nicu o setStudentDatainto”)]

HRESU ¢ SersudentDatalnfo([in] StudentDatalnfo* pStudentDatalnfo);
[helpstmmcr Tnerhoc Te Student™)]

HRESU L 7 De'uceryling ULON T suld):

[helpstringt method SetCourseDaralrfo”)]

HRESUL "~ SetourseDatainfo({in’ CourseDatalnfo* pCeurseDatalnfo, [in] ULONG

[helpstring "methoc. GerCourseProtName")]

HRESUL" CGerCourseProfName([in] ULONG profld. [out] BSTR* profName);
{helpsuring(incethod DelCourse™)]

HRESULT Del curset[in] ULONG corld):

[helpstriag { meinod ChangePassword")]

HRESU. | Cinzelasswoordd () CLONG userType. {in] ULONG userld, [in] BSTR

[neizston e e Jeihvianagerinto™)]
akes o o ot anareciao(in] MacagerDatalnfo* pManagerDatalnfo);
Jlesicn o ool ethianager’”yy

hKESUL ™ Uelviatazer, Jur ULONG mygrld);

uuid(947EA [C+-C 594 -1 1:52-32 CF-06u0096G00000),
version(1.0).
helpstring("Datas. -~ & - e Libtrary ")

]
library DATAACCESSLib

4
t

unportllb('stdote 3zt o
importlib{"sii5led. b

(

]

auid(947 £ A 1D -C094. 1 1 D2-81CF-000000000000).
helpstring: "Data AczessSavr Class”™)

coclass DataAccessSyr

§
t

1

[defaultt interiaze IataAcc 2888y

106

Appendix B — Server Registration Files

<##**23% DataAccessClass reg ¥*+¥eres

REGEDIT4

[HKEY_CLASSES_ROOT CILSID"/947EAID1-C094-11D2-8 ICF-000000000000; |
@="DataAccessSvr Class"

"AppID"="{947EA 1 C5-CUv4-11D2-31 (T -000000000000} "

[HKEY_CLASSES ROOT CT {IDVITEAIDI-CNO4-11N2-8 1CF-000000000000 ! \LocalServer32]
@="D\\ZQReport\ DATAALC~! : Dedug LATAAC~L.EXE"

[HKEY_CLASSES_ROOT CLSID {94 EAID1-C094-11D2-8 1CF-000000000000} \ProgID]
@="DataAccess.DataAccessdS o "

[HKEY_CLASSES_ROOT CLSID ;547CAID1-C094-11D2-81CF-000000000000; Programmable]

[HKEY_CLASSES_xOOT Cudicr#47CA 10 1-CUY4-1102-8§ 1CF-000000000000; TypeLib]
@="{947TEA 1C4-C034-i I D2-81CF-(,060000000000: ~

fHKEY_CLASSES_ROOT CLSID"{947EAID!1-C094-11D2-81CF-
000000000000 \VersionInesy o faPr -2’
@="DataAccess.DataAccesssvr”

<FEEEEESE End of[_‘l]c L L ELE L S S

<**¥#**%¥ DataAccesslnteriice.reg ¥rexssss

REGEDIT4

[HKEY_CLASSES_KROGT inerface 18476 11D0-CNA4-11D2-81CF-000000000000; |
@="IDataAccessSvr"

[HKEY_CLASSES_ROG« ..wiices o HE A DO-T0¢ud - 1 42-8 1CF-C00000000000! \NumMethods]
@="26"

[HKEY_CLASSES_ROOT Intzrface {547EA1D0-C094-1 1 D2-8 1 CF-000000000000; \ProxyStubClsid]
@="100020424-0000-0000-C())-000000000046; "

[HKEY_CLASSES_ROCT interiaze |947EA1D0-C094-11D2-81CF-000000000000; \ProxyStubClsid32]
@="{947EA 1D0-C094-1 1 D2-81CF-000000000000} "

[HKEY_CLASSES_ROO™ 'rrarface '027EA 1D0.C04-1 1D2-81CF-000000000000} \ TypeLib]
@="{947EA 1C4-C094-1 1 D2-81 CF-(00000000000; '

!'versionl'=" l .0"

<EXEEEXRK End of File EEZ L E S0N

<***3%x% DataControlerClass.reg *¥¥¥=x¥>

REGEDIT4

[HKEY_CLASSES _ROOT.CLS:D: {822 300-7BDE-1 1D2-819B-000000000000]
@="DataServer Class"

"AppID"="{082EC2F+-73LE- 1 (Z-~ v 1-0000udousion

[HKEY_CLASSES_ROOT CLSID'{982EC300-7BDE-11D2-819B-000000000000! \LocalServer32]
@="D:\ZQReport DATACT -1 Do, DATACO EXE”

[HKEY_CLASSES _ROOT'CLSIDV{082EC300-7BDE-11D2-819B-000000000000; \ProgID]
@="DataControler.DataSeier..”

[HKEY_CLASSES_ROOT CL<ID:{082EC300-7BDE-11D2-8 19B-000000000000}\TypeL.ib]
@="{082EC2F3-7BDE-11D2-819B-030000000000; "

[HKEY_CLASSES _ROQT CISTD . {122EC300-"BDF-11D2-819B-
000000000000} \WVersionla leperont’nagtis;
@="DataControler.DataServer"

<EXEEEXE End Of F“c AL 2 SRR TN

<#*#**x3% DataControlerintertace.rag #¥1 # x5+

REGEDIT4

[HKEY_CLASSES_KROOT e tace 32E22FY-"BDE-11D2-819B-000000000000; |
@="IDataServer"

[HKEY_CLASSES ROC . i2iace ,us2=J2FF-7BDE-11D2-819B-000000000000; \NumMethods]
@="2 l "

[HKEY_CLASSES ROOT Iatcrtace {U82EC2FF-7BDE-1 1D2-819B-000000000000} \ProxyStubClsid32]
@="{63B3BFA0-7BE2-11D2-819B-000000200020; "

<kEEEEESE End Of File *¥hEkkAkEEk,

<*#x2x4% SecyrityMerClass.reg ¥ ¥x#5>

REGEDIT4

[HKEY_CLASSES OGS/ /ey i5C-D762-11D2-81B5-000000000000} |
@="SecuritySvr Class"

"AppID"="{8D2F4614-D77:3- 11 [}2-3125-0)0000023)0C

(HKEY_CLASSES _ROCT'CL3 O BN 2915C-15762-1 1D2-81B5-000000000000; \LocalServer32]

@="D:\\ZQReport\SECUR!~1""Debuy . SECURI~1.cXE"

[HKEY_CLASSES_ROOTCLSID'{ED7E915C-D762-11D2-81B5-000000000000; \ProgID]
@="SecurityMgr.SecuritySvr.1"

[HKEY_CLASSES ROOT-CLSID\{ED7E915C-D762-11D2-81B5-000000000000; \Programmable]

[HKEY _CLASSES _ROC = .f.<°1 17 a7 0152.0752-11D2-81B5-000000000000} \TypeL.ib]
@="{8D2F4613- -D77B- llD"-?lB) FOUOOOOOOOOO‘"

[HKEY_CLASSES RCO. CL3ID G EDT7e915C-D702-11D2-81B5-
000000000000 \VersionInde: pen“."‘ 2o D!
@="SecurityMgr.Secuntyb.r'

<EEEEXEX End of Fﬂc EXE R S BN

<**¥%¥3% SecurityMerinterface.reg ** £ #¥+%>

REGEDIT4

[HKEY_CLASSES_ROO% interface | S02F461F-D77B-11D2-81B5-000000000000;]
@="1SecuritySvr"

[HKEY_CLASSES RO inwr.rce | 5.3:F 161F-D77B-11D2-8 1B5-000000000000; \NumMethods]
@="7"

[HKEY_CLASSES_ROOT Inferface’ {8D2F461F-D77B-11D2-81B5-000000000000; \ProxyStubClsid]
@="{00020424-0000-0000-C000-000)005000046; "

[HKEY_CLASSES_ROOT Interface {3D2F461F-D77B-11D2-81B5-000000000000; \ProxyStubClsid32]
@="{8D2F461F-D77B-i 12 ' B30)03002C0000! "

[HKEY_CLASSES_)ROOT uneiiace ;3 02r+6:r-0776-1102-81B5-000000000000 \TypeLib]
@="{8D2F4613- -D77B-1172-3 1 B30, 0CC00000!
"Version"="1.0"

<*ss%%%% End of Fije ¥¥**txs>

<#sxxxex SpecMarClass.ray = %>
REGEDIT4
[HKEY_CLASSES_RO<T - - .. ‘OIibE-275F-11D2-81B5-000000000000]

@="SpecSvr Class"
"AppID"="{AF56ECF4-D773-1:D2-21 35-0006000)35004 "

[HKEY_CLASSES_RQOT-TI.SIT 19IFT24DE-D76F-11D2-81B5-000000000000 \LocalServer32]
@="D:\\ZQReport\SpezMg:+ Debug - SpecMgrexe”

[HKEY_CLASSES_ROGT TLSIDVISFD24DE-D76F-11D2-81B5-000000000000; \ProgID]
@="SpecMgr.SpecSvr.."

[HKEY_CLASSES_ROOTCLSID\{95FD24DE-D75F-11D2-81B35-000000000000; \Programmable]

[HKEY_CLASSES ROOCLSi0 U5 0240E-0701-1102-81B5-060000000000 \TypeLib]
@="{AF56ECF3- -D77B-1:12.81 7\- QUNd0a29I200:

-
(=
3

[HKEY_CLASSES_ROQ™ < 1.8.5 13rD24DE-D76F-11D2-81B5-
000000000000} \VersionIndependentPrrgID]
@="SpecMgr.SpecSvr"

<ssss3%% End of File *¥***%%*>

<ssssss SpecMerinterface.reg ¥*+++++>

REGEDIT4

[HKEY_CLASSES_ROOT Interface ‘95FD24DD-D76F-11D2-81B5-000000000000;]
@="1SpecSvr"

[HKEY_CLASSES_ROC e ace 7 124DD-D76F-11D2-81B5-000000000000} ' NumMethods]
@=|'7ll

[HKEY_CLASSES_ROOT Interface |95FD24DD-C76F-11D2-8 1B5-000000000000; ProxyStubClsid]
@="{00020424-0000-0000-C000-000000000046} "

[HKEY_CLASSES_ROOT Interface |95FD24DD-L76F-11D2-8 1 B5-000000000000; \ProxyStubClsid32]
@="{95FD24DD-D76F-11D2-81B5-100000000000' "

[HKEY_CLASSES_ROOG7 .auzface ;73¢02400-076r-11D2-8185-000000000000; \TypeLib]
@="{95FD24D!-D76F-1 | DZ-2 BS-000000000000' "
"Version"="1.0"

<HkEEEEEE Eﬂd Of F!Ie EE TEE X

Appendix C — Configuration and Help Files

"1 Data.cfg

YEAR : 18586-1959;
YEAR : 1899-2C0C;

DEPT 0, (Cremical

DEPT : 1, {Ciwvil Zn

DEPT : 2, (Ccmputer

DEPT : 3, (El=zzctrcnicz ;
DEPT : 4, (M=chani-:. ;
DEPT : 5, (Enginser.nyj:;

DEPT : 6, (3Building =ZIngin=ssrinz
DEPT : 7, (Physics:;

DEPT : 8, (Matremztics):

DEPT : 9, (Cheris=zr:y ;

TM_STEP :

(o))
O
(@]
O
@)
ol

t1! Help.cftg

COR_NUM : [COM
COR_NUM : (C2V
COR_NUM : (COM
COR_NUM
COR_NUM
COR_NUM
COR_NUM
COR_NUM
COR_NUM
COR_NUM : (CCMP
COR_NUM : (COME
COR_NUM : (COMP
COR_NUM : (CCoM™
COR_NUM : (COM
COR_NUM : (COM
COR_NUM : (COMEB~
COR_NUM : (COMET
COR_NUM : (ELECS

<
ooy oy

L L N ™)

(N e DI I <1 U f DO DO OY WL IO 1Y PO W N M N

SN da o

...”..".
—~ e~
(@] a0
00QQQ
K w R
el
R ¢ S SN S T I 1
~e ~, . ~ -~

~e

1o

SO MY OV O U D s ks

VL VI

N N o
~

b
N

COR_NUM : (ELEC3é&4; ;

COR_NUM : (ELZC624;;

COR_NUM : (ELEC6zZ!;

COR_NUM : (ELEZC647';

COR_NUM : (ELEC&Z1':;

COR_NUM : (ELECET7::

COR_NUM : (ELECTZ3':

COR_NUM : (ELECT24:;

COR_NUM : (ELEC74S::;

COR_NUM : (ELECT7L;:

COR_DES : CCM?222%i, (COMr 221

|Computer caicuiaticn and evaluatlicn.

fFocus on the tre_n.rng oI calcul -iz
COR_DES : CCMPZzZi, TCME LD

|Computer programm.nz =n meTheaclogy.

iFocus on the =rain.ng 2f crogramming skill.);
COR_DES : CCMPZ2S, [ZCMP :I°S

iBasic mathematics and seval-zzticn methcd.

| Focus on the t<rszi noskiill);
COR_DES : COMZZ4

|Computer op=rati

|Focus on the tral)i
COR_DES : COMP425

|Computer Web ces

|Focus on the <rac <
COR_DES : COME<27

IObject orie
| Focus on t!
COR_DES :
{Computer :
|Focus on t: ccLznic . Crocessor.:;
COR_DES :

|Data stru

| Focus on the =

COR_DES : CCNMP3

|Computer graprn._ .
| Focus on the re

COR_DES : COY?LZe

Ingh perform
Focus on the =
COR_DES : CCxZE
lPrerequls*f :

I
[Migration
larchitectures
| concurrency,
iparallel coupu
larchitecture,
lalgorithms on
larchitectur=s
lparallel prc
|programs cn
| Key concepts
COR DES : CKP

’.4
\¢]

106

COR_DES

|Object or

| Focus on
COR_DES
|Computer
| Focus on
COR_DES
|Distribut
fdistribut
COR_DES
|Parallel

icf high p
COR_DES
{Advanced
Iscience.
COR_DES
jElectroic
| Focus ¢<n

COR_DES
|Semi-cond
| Focus on

COR_DES
lHard ware
|Focus on

COR_DES
|A large s
|Focus on

COR_DES
|Computer
| Focus on
COR_DES
fMulti-top
| Focus on

COR_DES
Sofrtware
Focus on
COR_DES
|New front
| Advanced

COR_DES
Computer
| Focus on
COR_DES
jComputer
| Focus on
COR_DES
|Protoccl
|Focus on

.

!
|
|
l

CCMP6E1l, CCMZ eIl

iented dztabpase design anad programming.

the training of Zatacese z=sign skill.);
CCMP677, 'ZCMp 677

multi-meales, inciuaing wWep zand Game.

the broad knowl=zdge in trne computer flield.);
coMe"23, C TZ3

ec
ed

N
"o
~1 1y
N QO

M & ot

by v O

l

Y

e

r

Ut
;
K

Yy o~

2]

e () D
e

0 oL

¥

i,
t
M

(
(¢}
Mo 0 Ww'o

0

)

=7
-~

t
b

pooos

s

C

b
) o

[\

N

r!
tn ¢t
Oy

o om
o1

O

La]

it

) 1y

reon
(U L A1

n

/ot
[o)1

)

W3

N

ier
1z
o~

—_—

-

comma

b

-
[N

comm

Appendix D — Database Files

<***#%3%* File student_course.SQL *F*¥¢*+>

create table 3Sctudenct |
stid umkber |7
stname
sttype
deptno
passward

) :

create tabls Zcurse.
courseid oo
courseno
title
term
section
days
starttime
endtime
room

tType
deptno

)

create table Reg_:zt o
stid numrker T oz
courseid numIss i, Tt

) ;

create table
courseid
teacherid

);

create table Dezt .
deptno
deptname
) :

’
[
O
ct
)]
+
b
[

create table T=zach=ar!

108

teacherid
teachername
deptno

)

’

create table
managerid
managername
deptno
passward

1

create table
superuserid
supername
passward
}

’

<***s%+% File insertvaiues.SQL *

insert into
insert into
insert into
insert intc
insert intoc
insert into
insert intc
insert into
insert into

AA', v___j___
insert into
WW', '-t
insert intc
AA" , l____j____
insert into
computation'
insert into
-—=','20:25"
insert into
—~——','13:15"
insert into
——==1,'17:40
insert into
protocol’', i,
insert into
protocol', 2,

insert into
insert intc
insert into
insert into
insert into
insert into
insert into
insert into

numkear [~ nes
varchar?2 - 2Jd.,
numker (4
Coursediznazer
number 7' -0
sarcharz (2T,
number -

crhar{=.

DU -

Sucerdser
numcer ot onoili,
’
TEXEEES,
Stude.t ta.1ss $334728,
Szud Talues . T2€2782,
Stud Talies! 6363438,
Stuz Falues (7242781,
Stizent valoes 1224728,
Stuocent valoes (4352722,
Studernt values 8354123,
Student values TlLZ3IT78Z,
Course ~wal.=s ., ':zcmp5:E
YLl SL T, eS0T, Th634
Ccurss valuiss ., 'compié
v, LT v, 22 S, 'nela
'zompel
', 'he27
'somEpo63
) :____v , 1
azlues S5, 'comped
Y, 'hIZI, 1,2
Talles .6, 'cemp64d
‘,'né3s',0,20;
Ccurse w=_:225 7, 'zcocmp6d
vL,rtel L, ng3T 0,20
Ccur cmpb4d
‘Lec f17:
Ccucs D64
'lec 17
Recis Tioaes . 1237
Regisz SaLces{ TlLz237
Reglst =2 waz_ues(71237
Regizt_to values{ 72627
Regist t: wveluzes!{ 72627
Regist ©. vé.ues{ 3547
Regist_ =c wvaluwsi /3547
Recis: . vasu:s!{ 43327

o (N = 3w

(B

AR [\

B o Y
RSP o - O -

[$ s INe VI \O I \ V)

~
[DAEN)Y

N

[IS I 63 I a s BNG VI s o]

N

109

~

AY L) =

=N

[6e}

, '500C") ;
,'C000")
,'CCCC");
,3,'0000";;
,2,'0CC0");
,2,3,'0060");
.2, 'G00GC") ;
2,'0C00");
software engneening’',1l, 'Lec
25:
elementary numerical', 2, 'Lec
z,:
scmputer system design', 1, 'Lec
237
Toplcs/scilentific
S, '239:10','R517°,0,2);
Zcmoparet study',2,'Lec ARA', 'm——-
ccmpiler Zdesign', 1, 'Lec U', "m-w-
cempller design',2, 'Lec XX','-t-
cemTuter networks and
'20:1Q0°','h222',0,2);
ccmputer networks and
'2G:10', 'h611',0,2);
Y
i
Li
i
)z
i
Y
)i

insert
insert
insert
insert
insert
insert
insert
insert

inserc

insert
insert
insert
insert
insert

insert
insert
insert
insert
insert
insert

insert
insert
insert
insert
insert

insert
insert

into
into
into
into
into
into
into
intc
into

into
into
into
intc
into

into
intc
into
into
into
into

into
into
into
into
into

Taught =v
Taughi_ i, LS
Taugzhi =v Vasiiss
Taught Tv va-ies
Taugnt Dy violes
Taught Ty va.oies
Taught Dy va_.=su
Taught by 7al.es
Taugnt_ Dy velu=s
Dept vallies'Z,
Dert wa..es ' .,
Pert ve_uss Z,
Cept ~va..eu . 1,
et VAL .es .o, "o
Tea SR~ T
Te = S IR
= - DRN R
T A DU A
Tesac! ralasz il
Teacner rali.es €

~

~

~

W) Oy UL s L) By e
-~

-~

- E R T Y
Oy U la bbb La) IN) =

~

o~

it

Uy

e e aes

e e e v s s

LTI TN XY

C R R

EYSIETY

Do~ D

(VI ST 2% B BN BT

Y

(VRN ST S I U

.
-
~

-
i

Nt s W

~ ~
N,

1, 'man ',C,'00
i, 'man he',l,'C0
z,'zlanz zhang',
2,'3zilang zhang',
3,'nelena',4,'GC

LI B

'L

110

O whhOO
O~ ~ OO0

H
J

18}

~

©
[T}

oo

O o

~
.. e

A]
O

~

