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Abstract

Seyyedmohsen Azizi

Distributed Realization of Differential-Algebraic

Systems Using Decentralized Sliding Mode Control

Differential-algebraic Equation (DAE) systems present numerous difficulties in
distributed simulation and control systems. The main problem is that most existing
methods require an explicit state space model without algebraic constraints. One
approach to address this problem is to reformulate the DAE system into an equivalent
nonlinear control problem, in which the algebraic constraints are replaced by appropriate
sliding manifolds. However, previous approaches based on this method are centralized
leading to a great deal of computation and communication in distributed environments
associated with inversion of the associated input decoupling matrix. In this work, this
problem is addressed through application of decentralized sliding mode control.
Relationships are developed for stability and performance in the presence of the
neglected coupling terms. Inversion of the decoupling matrix is performed on a node
basis. This allows the systematic division of the system into nodes that are more efficient
for distributed computation. The new approach is applied to simulation of deformable

surfaces in a real-time distributed computing environment.
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1 . Introduction

1.1 Motivation

Differential Algebraic Equation (DAE) systems provide a more general description of
dynamical systems than ordinary differential equations (ODEs). However DAE systems
present a number of difficulties in simulation and control. The main problem is that most
methods require an explicit state variable model. One method to address this problem is
to reformulate the DAE system into an equivalent nonlinear control problem, in which
the algebraic constraints are satisfied by sliding manifolds. This approach results in a
state space approximation to the DAE. A robust sliding mode controller can be designed
to achieve a reasonable approximation error. However, when the order of the system is
very large, it is computationally too expensive to control the system on a single computer.
The sliding mode simulation method is inherently centralized due to the input decoupling
Jacobian matrix which must be inverted at each time step. This can cause significant
problems since the matrix inversion problem is difficult to divide onto multiple

Processors.

In this work, the problem mentioned above is investigated, and a method based on

decentralized sliding mode is proposed to apply to the distributed state space realization



of the DAE. After defining the set of boundary algebraic equations, the system is
decoupled into many nodes by breaking along these connective algebraic equations. First,
a separate sliding mode controller is designed for each node on a separate computer.
Next, an extra integrator is applied to each control input of the connective boundary
algebraic equations, and separate sliding mode controllers are designed for them on a
separate computer. Because the internal dynamic of the system is stable, the decentralized
sliding controller makes the whole system stable. This method makes the decentralized
control possible, while eliminating the interconnection between the distributed
computers, which in turn substantially decreases the information flow rate. This approach
is applicable to a variety of problems including power network simulation, virtual reality,

and hardware in the loop simulation.

1.2 Literature Review

Generally, the dynamic systems could be classified into two categories: ordinary
differential equation (ODE) and differential-algebraic equation (DAE) systems. As it
could be understood from the name, a DAE system is a set of differential equations
constrainzd by a set of algebraic equations. The algebraic equations are the result of
modeling simplifications such as steady state approximation of fast dynamics and rigid
body assumptions that result in kinematic constraints. Hence, DAE systems represent a
more general class of dynamic systems and are capable of behaviors that are

fundamentally different from conventional ODE systems.



Simulation of dynamic systems is of interest in different aspects. There are not too many
difficulties involved with simulation of ODE systems. But for DAE systems, the situation
is quite different. Since a DAE system could simply be a piece of cloth, chain, hair or
jelly-type materials, there are some challenging issues involved with the nature of these
types of materials. In all these problems, we are dealing with a kind of stiffness in some
directions. Despite the generality of DAE systems and their simplification of the
modeling process, few methods currently exist for simulation and control of this class of
systems. Since the constraints are mostly nonlinear, they cannot be eliminated easily.

Therefore, the main focus is to look for methods that address the DAE systems directly.

The simulation of DAE systems could be extended to a variety of problems including
power network simulation, virtual reality, and hardware in the loop simulation. In all
these problems, the set of algebraic equations impose some constraints on the set of
differential equations. These constraints are the algebraic models describing the

conservation of parameters such as length and energy.

The traditional methods [39] cannot handle the simulation of a DAE system efficiently,
because the set of equations are stiff and the time step should be chosen small enough.
The alternative approach is to solve the equations by imposing and correcting the
constraints [40]. This method requires further calculations involved with the algorithms
to correct the momentum and energy alterations, which is a direct result of constraint

enforcement [41]. Hence, it is more costly in terms of calculation time.



The proposed approach in [4] has a built-in mechanism to handle the limits on the
constraints, and solve the set of ODEs at the same time. In this method, the DAE system
is considered as a state space system, where the differential equations are the ones
corresponding to the state update equations, and the algebraic equations are simply taken
as the output. The objective of the control problem is to control the output to converge to
zero, so that the algebraic constraints are satisfied. The control method implemented to
design the controller is the sliding mode control. This method is quite efficient in terms of
stability and approximation error. Moreover, this method is accompanied by the singular
perturbation theorems. This combination helps to determine the realization error
convergence. It also helps to select the parameters of the sliding controller in a way that

the error is bounded in a desired range.

In the sliding control and singular perturbation approach, there is a matrix inversion
problem corresponding to the Jacobian matrix. The case for a full matrix with no
sparseness can be used as an upper bound for the matrix inversion time. The dimensions
of this Jacobian matrix increases according to the number of the algebraic constraints.
Therefore, calculating the inverse of the Jacobian matrix becomes so time consuming that

it violates the timing limitations of a real time simulation.

So far, the focus was on the parallel processing methods for a distributed simulation
problem [42,43,44,45,46]. These methods are all based on using some computers and
processors in parallel, and implementing the specific computer programs and algorithms

to share the time consuming computations, like the inversion of the large-dimension



Jacobian matrix, between all the processing units in parallel [47,48,49]. These methods
are considered as centralized, since all the processing units are directly in connection with
each other. The whole simulation system is not robust to any failure that may happen in
the function of one unit. Therefore, all control parameters should be chosen and designed
with the highest stability margin. This makes the controller designing procedure difficult,

and the designed controller leads to a system which is not robust enough.

In order to get rid of the problems involved with the centralized controller, the best
remedy is to replace the centralized control method by the decentralized one [15]. In this
work, we are concerned with the sliding control method for the decentralized case. The
objective is to replace the centralized control method with the decentralized one. Mainly,
this method pertains to the applications in which a large scale system is concerned.
Meanwhile, in the distributed simulation problem, the main timing problem emerges
when the dimensions of the dynamic system become too large. As a result, distributed

sliding controller is the best match to address the timing problems.

A group of decentralized sliding control methods are based on Fuzzy methods
[6,9,12,13,19]. In these methods some fuzzy estimation are used in order to cancel out
some unknown terms related to the uncertainties, disturbances and unmodelled dynamics,

so that the sliding input will guarantee the Lyapunov stability [23,24,26,27,29,34].

In [7,14,35], the decentralized sliding control methods are based on adaptive estimation

of the unknown terms including the uncertainties, modeling errors and disturbances. In



these methods, it is assumed that the unknown terms are approximated or bounded by a
finite summation of power terms. On the other hand, in [36] these terms are approximated
by the Fourier series expansion with finite number of terms, and adaptive laws are

applied to adjust the Fourier coefficients.

Distributed realization of DAE systems, which is presented in this work, is a new
modeling approach that solves the timing problem with Jacobian matrix inversion. It is a
distributed modeling approach that allows the DAE model to be distributed on a
networked computational cluster. The distributed realization method is based on state
space realization of DAE systems and variable structure control. Therefore, the following

subsections explain about these issues in detail.

1.2.1 Differential-Algebraic Equation (DAE) Systems

In this section, nonlinear DAE systems are introduced, and the control method to

simulate the system, while satisfying the algebraic constraints, is formulated.

A Differential Algebraic Equation (DAE) is a nonlinear system expressed as:
x =1(t,x,2) ey

0=g(t,x,z) (2)

where xeR", zeR™, f:RxR"xR™ -5 R", and g:RxR" xR™ - R™. Equations

(1) and (2) are sufficiently differentiable, and a well-defined solution with consistent



initial conditions exists for x and z. The index of a DAE, which is a structural property of

the system, is defined below [11].

Definition 1. The minimum number of times that all or part of the algebraic equations (2)
must be differentiated with respect to time in order to solve for z as a continuous

function of't, x, and z is the index of the DAE system.

Differentiating equation (2) once results in:

3
0_%+ng+6g 3)

—1Z

ot ox Az

If the Jacobian [ dg/ 0z ] is nonsingular, then the index of the system is one, and equation
(3) could be solved for z. If the system index is of higher order (index>1), then the
Jacobian matrix is not invertible and the constraint equations are identically singular with

respect to z. Therefore, a more complex method is applied for high index DAE systems.

1.2.2 State Space Realization of DAE Systems

For the realization purposes, a high index DAE system can be reformulated as an
equivalent nonlinear system, by ignoring the algebraic equations, while considering them
as the outputs to be controlled, in order to converge to zero within a reasonable settling

time. In this case, the nonlinear control theory could be applied to solve the realization

problem.



For the DAE in equations (1) and (2) above, the equivalent nonlinear system is:

x =f(t,x,z)
a “)
w=g(t,x,z)

where v is the virtual input that drives z, which is assumed to be an independent
parameter, and w is an output equal to the violation of the constraint algebraic equations.
The relative degree of this problem is equal to the index of the equivalent DAE, and the
zero dynamics represent the dynamics of the high index DAE. As a result, the state space
realization of a high index DAE system can be interpreted as the combination of the

system (4) and a controller which forces the outputs to zero (figure 1).

0 + C v . j z x =f(t,Xx,7) W .
. w = g(t,X,7)

Figure 1. State space realization of a DAE.

In general, each component w, of the constraint equations may need to be differentiated

a different number of times (r; —1) for some components of z to appear. That is,

0=w,(t,x)
dw,
0=—-"(t,x
at (t.x)
(5)
dri—lwi )
OZ—r:T(t,X,Z) , 1<1<m
dt



For z to be explicitly determined by the constraints (5), the following Jacobian matrix

should be nonsingular.

y, =% (©)
oz
where
drif] . (7)
Q=""i(,xz),l<i<m
dt

According to equation (7), the constraints should be differentiated r, times to determine

z which is equal to the virtual input v.

O:a_ﬂ+a_ﬂf+@i (8)
ot ox

Definition 2. If the Jacobian J, is nonsingular in a region around the DAE, then the

vector index is defined by

e<l on ] ©)

where r. is the number of times each constraint w, must be differentiated for

components of z to appear. The differentiations in (7) will explicitly determine z. For
many types of physical systems, it can be shown that the Jacobian is always nonsingular,

and the index is defined as the largest component of the vector index (9). In the next



subsection an effective nonlinear control approach is developed to apply to the state

space and make an overall equivalent realization of the primary DAE system.
1.2.3 Variable Structure Control

In this subsection, a nonlinear controller is designed to force the state space system (4)
approximately converge to the DAE system {(1),(2)} in the presence of system
uncertainties. The main objectives are to force the outputs in (4) to zero in order to meet
the constraints in (2), to reduce the computational complexities, and to achieve
reasonable approximation errors. For designing the sliding manifolds, the following

theorem is considered:

Theorem 1. For a DAE system with the vector index r, the sliding manifold s can be

constructed with the elements defined as:

d ri—l (10)
S; =(pa+lj w, ,u>0,1I<i<m

where s needs to be differentiated only once to determine z (=v), and Js/0z is non-
singular around the DAE solution. The equation s =0 has an attractive invariant set

composed of the algebraic equations (2).

Proof. See reference [4].

O

10



The equation s =0 consists of m differential equations, each corresponding to a stable

polynomial in the Laplace domain. Therefore, the dynamic system (4) is exponentially

stable, and so the algebraic equations (2) are asymptotically satisfied. The equation s =0

has an invariant set composed of the high index constraints. This implies that once the

algebraic equations (2) are satisfied with some reasonable errors, they will remain within

the same error bounds, and so a solution to the high index DAE is achieved with a

reasonable accuracy.

After designing the sliding manifolds in the section above, the objective is to force them

to zero by a sliding mode controller. The following quadratic Lyapunov function is

considered:

VzlsTs>0
2

The derivative of this function is

£1X=sT$=sT(a+Jsv)

dt

where

Js:@ , :@_*_@f
oz ot 0Ox

Now, the following control law is applied:

J, - v=—a-diag(k)sgn(s)

11

(1D

(12)

(13)

(14)



where @ is an efficiently computational approximation of the term @, x is a gain vector,
and sgn is a component-wise sign function. According to theorem 1, the Jacobian J is
locally nonsingular, and so it can be solved for the required input, explicitly. Replacing
equation (14) in (12) results in:

m 15
d—V=sT(u—&)—ZKi‘si| {15
dt i

The elements of the vector k should be chosen as:

K 2|, ~0;]+y; ., v;>0,1<i<m (16)

so that the following sliding condition for stability is satisfied:

v 1d , &
—_— < - .
a 2dt oo Zy

7

si

and the algebraic equations (2) will be satisfied. That is because s = 0 is an invariant set
of the system and the algebraic equations form an invariant set within s = 0. Therefore,
once s =0 is held and the algebraic equations are satisfied within some reasonable error
bounds, then they will always be satisfied. As a result, the sliding control method helps to
make an exact representation of the DAE. The only problem with the control input (14) is
the discontinuity originated from the sgn function. This is undesirable because a very
small time step is required to discretize the system for simulation and implementation
purposes. Moreover, this discontinuity helps the chattering behavior of the control input,

which should be avoided specifically in real-time control. To overcome the discontinuity

12



problem and smooth the input in a boundary layer region around the sliding surface, the

sign function is replaced by a saturation function (figure 2) [5].

(1 )
sat] —s
€ A

+1 ............ r

v

n |

Figure 2. A saturation function.

Hence, the equations become into the form:

x=£(t,x,2)
Z=V
w=g(t,X,2)

J.v=-a-Ksat(s 'diag(d)s) , O<e<<l (18)

-1
Si:(u%—{—]j W, ,p>0,1£i£m

A

where J_ is a computationally efficient approximation of J_, sat is a component-wise

saturation function, and & is a vector specifying the relative importance of each sliding
surface. In general, the matrix K is not necessarily diagonal. In order to achieve an
approximation with enough accuracy, this boundary layer should be thin enough
accordingly. As a result, the dynamics become singularly perturbed, and the sliding

control method is combined with the singular perturbation approach [2]. The condition

13



for the realization (18) to be a good approximation of the DAE system is stated in

theorem 2.

Theorem 2. If the matrix [J Sj 'K -T7 is diagonally dominant, then the sliding condition

for stability is satisfied, which guarantees the following error bounds

s|<=  0<i<m (19
61'
and
diw. ] (20
W' < 2 i ,0<j<r-1,0<i<m
dt’ | .’

where T' = ‘ diaglo—J,J_'a]

Proof. See reference [4].

O

According to this theorem, there is a choice of € to provide error bounds with enough
accuracy. After the time constant p in the sliding manifolds is chosen, the parameter ¢
can be adjusted to meet the desired constraint tolerances. There is a trade-off between the
control bandwidth and Jacobian computation. If more Jacobian terms are included in a,
then T is reduced and less control gain K is needed to satisfy the criteria in theorem 2.

Furthermore, the error bounds in theorem 2 are theoretically important, because they are

14



used to guarantee the stability of the realization within a specific region around the DAE

solution, where the vector index is well defined.

1.3 The Contribution and Outline of the Thesis

The approach presented so far is a quite efficient method to simulate the mechanical DAE
systems. The most significant problem is when m, the dimension of the algebraic

equations (2), increases considerably. In this case, the dimension of the Jacobian matrix

~

. . . . . -1
J, increases accordingly. So computation of the inverse matrix J becomes too

expensive for a single computer, specifically in the cases in which real time simulation is
required. This expense pertains to the timing restriction of the simulation. The timing
problem involved with the calculation of the inverse matrix is not the same for all the
Jacobian matrices in all the simulation steps. The concern is mainly with the worst case
that may occur occasionally during a simulation. The worst case for the matrix inversion
problem occurs whenever the Jacobian becomes a full matrix with no sparseness. Hence,
the calculation involved with this kind of Jacobian can be used as a bound for the matrix

inversion time.

The method proposed in this work is a modeling approach for DAE systems with large
scale dimensions. This method satisfies the timing requirements of a real-time simulation.

The contribution of this thesis is as follows:

e Remodeling the DAE system and transforming it into the distributed formulation.
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e Applying the decentralized sliding controller method.

Therefore, the main topics in the thesis can be outlined as follows:

¢ Distributed modeling of the DAE

e Applying decentralized sliding controller
e Parameter designing for the controller

e Application to animation

e Comparison with centralized simulation

The proposed distributed modeling approach puts a solution in front, to use a number of
computers instead of a single computer, so that the timing requirements of a real-time
simulation could be met. However, optimization of the simulation and partitioning is not
in the scope of the thesis. This part of the problem is an important open area for further
consideration. This issue could be investigated by engineers according to the type of

application.
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2 . Distributed Realization and Decentralized

Control

In this section, a new approach is proposed to decouple the DAE system into multiple
nodes. Each node can be simulated on a separate computer, while a decentralized
controller is designed on each separate computer to control the corresponding local node.
The method proposed in this chapter is for a fairly general class of DAE systems.
However, it is assumed that the engineer has suitably partitioned the equations into a
number of nodes and identified the boundary constraints between these nodes. This can

be readily accomplished by an engineer with basic knowledge of the model structure.

2.1 Distributed Formulation of the DAE System

In order to reformulate a DAE system into the distributed mode, some expressions should
be defined as the key tool to decouple the system. The key definition is the set of

boundary algebraic equations.
2.1.1 Set of Boundary Algebraic Equations

Assumption 1. The main concern of this work is with the systems that have vector index

with equal elements 1, =1, =--- =71, =T.

m
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The DAE realization of a nonlinear system consisting of n subsystems is considered. The

i-th subsystem (i=1,...,n) is described by the following equations:

n
X, :fi(xl,xz,...,xn)+2hij(x1,xz,...,xn,zj)
j=1

Z,=V, (i=1,...,n) 21)

w, =g.(X,,X,,....X, )

where x, e R™, v. e R™ and w, e R™ are the state, input, and output vectors of the i-
th subsystem, respectively. f,’s, h;’s and g;’s are the vector functions with appropriate

dimensions. Moreover, the dimensions of all the vectors and matrices are well defined.
Considering assumption 1, suppose that this system has a vector index with equal

elements r, =3, i.e.

o 22)

, the matrix J_ in the most general case is:

an Jslz Jsln
Jo=| % T T, det(T)#0
anl anZ ann (23)

where
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(24)

When the dimension of the system (21) increases considerably, it is a significant problem
to calculate the inverse of matrix J_, because it is very time consuming for a single
computer to do all the calculations and meet the timing restrictions of the real-time
simulation. In this case, it is beneficial to decompose the system into some local nodes,
and the J_ matrix of each local node, which has a lower dimension compared with the

overall system, is calculated on a separate computer. In order to decompose the overall

system, the definition 3 and proposition 1 are applied.

Definition 3. The set of boundary algebraic equations is the set of algebraic equations that
by eliminating them, the set of DAE subsystems (21) would be decomposed into multiple
DAE local nodes which are independent from each other. Each local node is the
combination of several subsystems and there are no two local nodes with common

subsystems. Hence, each local node is a new subsystem in a new notation.
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Example 1. The schematic of a set of boundary algebraic equations is shown in figure 3.

Set of Boundary Algebraic Equations

Local Node 1 Local Node 2

Figure 3. The schematic of a set of boundary algebraic equations.

In this figure, x; and w’s are the states and algebraic equations, respectively. The set
of boundary algebraic equations W, ={w,,,w,,,W,;} decomposes the whole system
into the two local nodes X, =[x,, x,, x,] and X, =[x, x,, X, |", with the

. . . T T
corresponding algebraic equations W, =[w,, w, w,]| and W, =[w, w, wyul,

respectively.

2.1.2 Decoupling the DAE System via the Set of Boundary Algebraic

Equations

The following definition introduces some new concepts.
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Definition 4. The definition of boundary algebraic equations, classifies the inputs of the

system into local inputs and boundary inputs. A local input v, is the one which
exclusively emerges in one local node (and no more local nodes), and a boundary input

vy, » corresponding to the boundary algebraic equation w;, is the one which emerges in
more than one local node. If the boundary algebraic equation w; connects k subsystems
S, S,, ..., S, (and no other subsystems), and the boundary input v,; emerges in all the
same k subsystems (and no other subsystems), then the boundary input v is the

corresponding boundary input for the boundary algebraic equation w,. Hence, the

boundary input and boundary algebraic equations could be defined as a boundary

node (v, w,;).

Assumption 2. In this work, the concern is with the problems in which there exist

boundary nodes. It means that there always exists a boundary input v; corresponding to

each boundary algebraic equation w,. This is a basic assumption for solvability.

Proposition 1. Considering assumption 2 for the set of DAE subsystems (21), it is

possible to define the set of boundary algebraic equations W, ={w,,,W,,.....,W,, }

including L. algebraic equations, so that the whole system could be decomposed into

multiple (N) local nodes of the following form:
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L
X, :fi(xi)+hi(xi=zi)+zhij(x’zbj)

J=

Z, =V, (i=1..N) 25)

where x, eR™, v, eR™ and w, e R™ are the state, input, and output vectors of the i-

th local node, respectively. The vector x is defined as x = [xlT X, o Xy ]T. For the

boundary nodes, instead of one integrator, two integrators are applied to the
corresponding boundary input v, to make the parameter z,, :

ij

=v, (G=1..L)
Wy =8 (%) (26)

where v, e R™ and w, €R™ are the input and output vectors of the j-th boundary

node. The set of equations {(25),(26)} is the distributed realization of the DAE system

@1).

Remark 1. Note that according to definition 3, eliminating the terms related to the

L
boundary nodes (v,w), ie. Zhij (X,Z,;), changes the local node (25) into the
j=1

independent DAE local node:
x; =f,(x;)+h;(x;,z,;)

Z,=v, (i=L...N) 27)
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Example 2. To clarify the formulation above, a triple pendulum is considered in figure 4.

Ay
Y3 Y2 Y X R
‘ Local
Boundary Algebraic W, Node 2
Equations *j " @) x,
-------------- g
............................ Wy
........... « 2
W 2
mZ
...... ; X,
............. m3

Local Node 1

Figure 4. The triple pendulum problem and the distributed realization.
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The dynamics equations are:

X, :L[Zl(ﬁxl)_zb(xl —X,)]
m,

¥ :L[ZI(_YI)_Zb(yI -y,)l-g
m

1

X, =L[Zb(X1 —X,) = Z,(x, —X;3)]

\B :L[Zb(YI —¥)—2Z,(¥, —y3)] -8
m

2

X, :_I_[Zz(xz -X3)]
m;

7, =;13—[z2<y2 yl-g (28)
z, =V,
7, =V,
Z,=V,

W =X]2 +Y12 _112
Wb:(XQ_XI)Z +(Y2_YI)2 —112>

w, =(X, _X2)2 +(y; _Y2)2 _13

The outputs of the system are the three lengths of the pendulums, which are desired to
converge to 1, 1, and 1,, respectively. The distributed model of the system includes the

two local nodes:
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%, = ——[7,(-X,) ~ 7, (x, = x,)]

m,

v 1

yi=—Iz,(~y) -z, (y, —¥,)]-8 (29)
m,

Z, =V

and

X, :L[Zb(xl —X3) = 2,(X; —x3)]
m,

§r =z, (v —¥2) = 7a(y, )]~ 2
m

2

oo 1 3
X, = - [Z,(x;, —X3)] (30)

§ = 2,(y, —y )¢
m

3

Z, =V,

w, =(X; _X2)2 +(y; _YQ)z _lg

And the boundary node (including the boundary algebraic equation with an extra
integrator in the corresponding boundary input) is:

Zy, = Vy

sz(xz—x,)2+(y2—y,)2—li G1
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The equations (29) and (30) represent two distributed local nodes of the main system, and
the equation (31) represents the boundary node. Finally, {(29),(30),(31)} represents the

distributed formulation of the triple pendulum system. First, the control laws v, and v,
can be calculated on two separate distributed computers. Next, the control law v, can be
calculated on the central computer as well. Now, calculating the inverse transform of J,,
J,, and J_ on three separate computers (distributed method, figure 5) is considerably

less time consuming than calculating the J, matrix of the overall system on a single

computer (figure 1). To achieve a good performance in the distributed method,

decentralized sliding mode control is applied.

+ v Z w
0 ——O-»{C,, —» I > j S >
A
+ A% z W
0\ O > CbL bL > j‘ o I bL - ' .- bL
4 x =1f(t,x,2)
+ v 7 w =g(t,Xx,z) - w
O~ _>C\ » Cl ] > j ! P 14>
4
+ Vv z W
O\—»(t) > Cy ——> I = AN

Figure 5. Distributed state space realization of a DAE.

26



2.2 Decentralized Sliding Mode Control

In order to control the distributed formulation of the system, decentralized sliding control

approach is applicable. The local node (25) is transformed into the standard state space

realization (32), where x = [x;r X, o Xy ]T .
L
i\:xi:\ :l:t‘l(xi)+hi(xiazi)jl+[0i|.vi N ;hij(xtzbj)
dt| z, 0 I 0 (32)
wi :gi(xi) (1:195N)

And the set of boundary nodes (26), accompanied by the corresponding dynamics

inherited from all local nodes (25), can be reformulated accordingly as:

x, | [ f,&x)+h,(x,,z,)+h,(x,z,))+h, (xz,) | [0 0
Xy fy(x ) +hy X,z ) +h (X,2,))+-hy, (X,2,,) 0 0
z, 0 0
: : I
v v
dlzy | 0 . 0 :b‘ . !
dt z,, z, 0 v 0 v
E bL : N (33)
ZbL ibL 0 0
Zy, 0
: I
2, | | 0 1N 0]
Wy =g, (x)
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T|* T T T |T
where xz[xlT X, - XN], Wb:[wbl Wy o wa] and

gb(x)z[gzl (x) gL(x) - gy (x)]T. Now, these standard state space formulations

(32) and (33) are considered in the following section.

2.2.1 Output Linearization

Consider the local node (32) in the general form:
X =f.(X)+h (X)v. +0 (X

Local NodeP. (1:1’."’N):{X1 (X)) + l(Xl_)v +0.(x)

(34)

where X, =[x, z,]' eR™, v,eR™ and w, eR™ are the state, input and output
vectors of the i-th local node, respectively. Also, f,. , Hi and g, are the vector functions

with appropriate dimensions. 0, is the interconnection vector including the term

L
Zh i(X;,Zy;) . This vector has a well defined dimension. Since we have access to these
j=1

interconnection term (by having access to x, states of other local nodes, and z,, states of

boundary nodes), we are willing to approximately calculate this term.

For the boundary nodes (33) the general form is:

ib = i‘b (Xy) + Eb (Xp)vy, +dy (V)

Setof BoundaryNodes:{ o
w, =8, (X,)

(35)
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N
N, =D N, +2M,).

i=1

The vector d,(v) represents the system uncertainties and external disturbances. It
includes the effect of the local inputs v, (i=1,2,...,N). Since we are concerned with
decentralized control and distributed computation, we are willing to estimate d,(v)

instead of approximately calculating this term. This estimation is done by applying
adaptive updating law to the coefficients of Fourier series expansion. Obviously, the set

of boundary nodes (35) has a similar formulation structure to each of the local nodes P,

in (34).

Remark 2. To avoid further confusion, the notation L represents the Lie derivative

operator for the vector functions f(x) and g(x) as follow:

L 8(0) = Vg(x)-f(x) (36)

Remark 3. To avoid further confusion, the notation L represents Lie derivative operator

for the matrix function h(x) and the vector function g(x) as follow:

L, &(x)=Vg(x)h(x) (37)

29



Proposition 2. Consider the general formulation (38), which is similar to both (34) and

(35) with a minor difference that will be expressed ahead in remarks 4 and 5, respectively

[38].

{ii =fi(ii)+iii ()_(]-_)V,- +0,(X)+d; () (i=12,..,N,b)
W,

=g (X)) (38)

X; € RY, v. e R™ and w, e R™ are the state, input and output vectors of the i-th node,

respectively. Considering assumption 1, suppose that this node has a vector index with

equal elements r, =3 at x,, and R, =M.r, <N.. Set:
Y, =g(X)
(39

Yi, :Lr{lgi (x;)

If R, =M, .1, is strictly less than N,, it is always possible to find N, — R, more

functions 1, ,y),..., Ny, Such that the mapping

[y; y; MNiwrsy niN,]T (40)

has a Jacobean matrix that is nonsingular at x,,. The 1,4 ,;),..., N, are chosen to satisfy

Lin; =0, 1<i<N , Rj+1<j<N, 1)

Now, set
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[Yi]Rixlz[Y?i yHT 5 [ni](N,‘R,)xl:[ni(RlH) TliN,]T (42)

Assuming that the state coordinate transformation (y,,n,)=T,(x;) is performed to the

node P. in (38), the following form can be obtained:

1

Yi =Y, +A0, (y,n)+Ad; (y;,n;.d,)

. (43)
Yio =0;(Y-n) 4B (yi,m)v, +40, (y,m+Ad, (¥;.n;.d)
W, =q;(y;»n;)+AQ,(y,n.d,)
Where
ai(Yia'li)=L2§i oT ' (y;,m;) i=1,..,N
Bi(y":ni):I:JE| I_J;:]gi OTiVI (y;-m;) j=L..
Aeij (y.m) :Le‘ Li_lgl (Xi)OTi_l (y;>m;)
Ady(y;.m;,d) = Ly L8, (%) o T (viomy) )
AQ;(y,n.d;) = [I_Je"li(R,H) +L_dlni(R1+]) LeﬂiN, "‘I_Jd,“mi ]T °Ti_l (yi>n)
T

y=lyl - vil

: T
n=fn - ni
Therefore, the node P, in (43) can be expressed as:
W, =g =Y,
w =y, =y, +48, +Ad, (45)

w.(r') =y, =0, +p,v, +A0, +AD,

where
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AO; =AB[ " +AB ™ +---+AB]) | +AB, (46)

AD; = Adi™" + A7+ + ADY) ) +Ad

Remark 4. Applying proposition 2 to the local node (34) results in AD, =0 and AQ, #0

which contains the interconnection terms (but no boundary input, since r, =1, +1).

Remark 5. Applying proposition 2 to the set of boundary nodes (35) results in A®@, =0
and AD, #0 which is in terms of local inputs and their first derivatives (since

r, =1, —1).

Assumption 3. The zero dynamics 1, =q,(0,m,) is exponentially stable in the domain of

definition.

In order to estimate some of the complicated terms including interconnections,
disturbances and modelling uncertainties, it is possible to use the Fourier series
approximation of those terms [36], and apply some adaptive laws [7,14,35] in order to

adjust the corresponding Fourier coefficients.

2.2.2 Fourier series Expansion

Proposition 3. Consider AD;, the j-th element of the vector AD,, as a function of time

AD;(t). If AD(t) satisfies the Dirichlet conditions (a piecewise regular function that
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has a finite number of finite discontinuities and has a finite number of extrema) [36], then

it can be expanded in a Fourier series within a time interval [0,T] as

o 47
AD () =a, + Z La i cos(% t) +by sin(z—?—t t)) @D
k=1

The approximation is

e 48)
ADy(t)za;, + z (ajk COS(% tj +by, sin(% t)] (
k=1

and the approximation error is

o © 49
e(t) = z (ajk cos(zTﬁt)+bjk sin ( D< Z(ajk|+]b ) (49)

k=n_+1 ng+l

Remark 6. Equation (47) is the Fourier series expansion of a periodic function. Since
AD,; is an aperiodic function, choosing a sufficiently large T makes equation (48) a

proper approximation of the function.

Remark 7. The advantage of equation (48) is the linear parameterization of the function

AD (1) into a basis function vector F(t) and a coefficient vector y; as below:

AD (t) =y, - F(1) (50)

where
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T
\I’bj:[ajo ay bjl oAy a‘jn,;]

F(t):[l COS(EE'[) Sin(@t) cos(znsntj sin(znsntﬂ (31)
T T T T

Therefore, for the whole matrix function AH,, the Fourier series expansion

approximation is:

AD, (1) =¥ -F(t) (52)
where
¥, :l‘l’bl Wy - ‘IleiJ (53)

Later on, adaptive updating laws are applied to estimate the coefficient matrix ¥, above

[7,14,35].

2.2.3 Decentralized Sliding Mode Control

In general, sliding mode control is a robust method to control the systems with
disturbances, uncertainties, and unmodelled dynamics. The simplicity of designing a
sliding controller makes it the best candidate for controlling purposes. In all the designing
procedures, we are concerned with designing the sliding gain k. Suppose that s is the
sliding surface corresponding to the control output. Then §, derivative of the sliding

surface, is as follows:
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S=a+Jv (54)

Therefore, choosing the controller

v =J"(~ksgn(s)) (55)
such that
k > max(a) (56)

stabilizes the closed-loop system. However the term max(a) could probably be a large

number, and so k should be chosen sufficiently large to cancel the effect of o. This large
k makes the dynamic of the closed-loop system stiff. As a result, for simulation of a stiff
dynamic system, it is necessary to choose the simulation step size small enough to make
the equivalent discrete model of the system stable. This small step size is not a favourable
choice, since in most applications there are some timing restrictions involved with either
the real-time simulation constraints or the processor speed of the computer on which the
simulation is being done. In such cases, it is beneficial to estimate the term o by & so
that the gain k is not responsible to cancel the effect of o any more, but only responsible
to cancel the effect of the estimation error o — & .

k > max(o —a) (57)

The choice of estimation is either a neuro-fuzzy network or Fourier series estimation. The
later will be used in the next section. In this case, the estimation may not be a precise and

exact one, but as long as it makes the amplitude of the error signal comparably less than
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the amplitude of the main signal, it is beneficial. It will be shown later (in example 5)

how estimation decreases the order of sliding gain k.

In this chapter, the definition of a set of boundary algebraic equations was introduced.
This concept was used to break the original DAE system and divide it into multiple nodes
that are separate and independent from each other. Decentralized sliding mode control
was applied to the distributed realization of the system. The interconnection and
disturbance terms were approximated by their Fourier series expansion, and the Fourier
coefficients adjusted by the corresponding adaptation laws. In the next chapter the design

of suitable decentralizaed sliding controllers is investigated.
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3 . Designing the Decentralized Sliding

Controllers for the Decoupled DAE

In this section, the decentralized controllers are designed for the local nodes and the
boundary node of the DAE system, separately. Therefore, the overall decentralized
controller will stabilize the overall DAE system. The advantage of adaptive Fourier series
approximation is explained, and a flow chart is presented in order to select the parameters

of the decentralized sliding mode controller.

3.1 The Main Theorem

According to remark 4, proposition 2 reformulates local node (34) into the form (45),
while the term AD, is equal to zero. Moreover, according to remark 5, proposition 2
reformulates the set of boundary nodes (35) into the form (45), while the term A®, is

equal to zero. The following theorem is applied [16,17,20].

Theorem 3. Considering the stability of internal dynamics (assumption 3), in order to
simulate the distributed realization {(25),(26)} in the proposition 1, using the

reformulation {(34),(35)},
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a) First, the decentralized sliding controllers are designed on the distributed
computers to derive the local inputs v, (i=1,...,N) for the N local nodes (34);
b) Next, the decentralized sliding controller is designed on the distributed computers

to derive the boundary inputs v, for the set of L. boundary nodes (35);

And the overall closed-loop distributed system will be stable. From physical

considerations it can be shown that all the states of the distributed model are bounded

near the solution.

Proof.

Considering assumption 1, suppose that the local node (34) has a vector index with equal

elements r,, and the internal dynamics are stable, and consider the sliding manifold:

S -1 . A (58)
S, = ‘ P-irﬂwi(ri_ﬁ

;(( j- 1]

The dynamic characteristic equation of the manifold is:

5 = 59
e "

It has r, —1 negative poles at -1 (u,; >0). Using equations (45) the derivatives of the

1

manifold is:
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- (r -j+D )
ThineJento

(60)
“”j+u, a, +B,v, +A0O,)

I
T -
S}
/—ﬂ\L_...,

J—l

According to remark 4, A@, represents the effect of the interconnections of the i-th local
node. Assuming the term @, is the approximation of the term a; such that

la, —a, < E, , and that there exists an upper bound as | A®, |< B4 , the control law
J-1 % L; -1 I A . 1. (61)
vi=Jg ‘Z . pitwn T —uia, —diag(k, ) sat(s] diag(8, )s, )
=2

j-1

with

Jg =ni"'B, (62)

stabilizes the local node (34) if the following condition is satisfied:

k, > Hirl_lEui "'Hir'_ll?'A@i +7i (63)
where all elements of the vector vy, are positive.

Considering assumption 1, suppose that the boundary node (35) has a vector index with
equal elements r, =r, +1 (because of the extra integrator), and consider the sliding

manifold:
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o1, 1Y | . (64)
=2 ( ; )ub" Wi ”]

A~ 1
The dynamic characteristic equation of the manifold is:

Ty l (65)
Z((rb ]p"b Jp(fb J)) 0
=1 -1

It has r, —1 negative poles at -t (un, > 0). Using equations (45), the derivatives of the
Hp

manifold is

bofr —1
St IZ((? jué“ be “”jw{,"“Wi,'“
=1
oo(fr, —1
:2[( : )“Lb : b H)J"’ ”Lb—l (‘lb +PB, v, + ADb)
P

(66)

1—-1

According to remark 5, AD, represents the effects of the local inputs, as well as their
derivatives, on the set of boundary nodes. Assuming the term a, is the approximation of

the term @, such that |a, —a,|<E,, and that there exists an upper bound as

a >

| AD, [< B, , the control law

(67)

J=2

¥ > 1 A . - .
Ve =dg [_Z((r})_l JHE’ Wyt JH)J_HE;lab _dlag(kb)'sat(sbldlag(ﬁb)sb)J

stabilizes the set of boundary nodes (35) if the following condition is satisfied:
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k, 20 E, +1p By, +7, (68)
where all elements of the vector y, are positive.

The control laws (61) and (67) designed so far will stabilize the distributed realization
{(34),(35)}. Consider the quadratic Lyapunov function:

N 1 69
VtleSiTsinL—sEstO (69
24 2

Using the manifold derivatives (60) and (66), and applying the control inputs (61) and

(67), the derivative of the Lyapunov function is:

N
av, = Zs?éi +8,8,
dt i=1
N (70)
=3 sT i (@, -6, )+ i A®, —diag(k, )sat(s; diag(3,)s,))

=
57 (1o (o, ~6, )+ P AD, —diag(k, )sat(s; diag(3, )s,, )

The upper bounds |@, —a, |<E, , |A® |<B,, ., |G, ~a,|<E, and [AD, |[<B,,

certify that:

dv N . .
dtt <) (pi“"Emi +1i "B, —diag(k, )sat(e;" diag(d, )s; ))
i=l
: (71)
+85; (p{)"_lEA@b +ui "By, —diag(k,)sat(e, diag(3,)s, ))

Now, considering the conditions (63) and (68) results in:
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av, & (72)

S 2o (- diag(y,Jont(e; diag(®,)s,)) + s} [~ diag(y, Jat(e, diag(®, )s,)
i=1

Since all elements of the vectors v, and vy, are positive, it is concluded that

dv
dt

<0 73)

So the stability of the closed-loop distributed realization is guaranteed.

O

Example 3 . As an example, the nonlinear model of the triple pendulum problem in

example 2 is considered. To design a decentralized controller, theorem 3 is applied. The
matrix J, of the two subsystems and the boundary algebraic equations are calculated on

three separate computers:

jsl = _i“ (X12 +Y12)

1

- 1
Jo = ‘2”2 : + J[(Xz _Xl)2 +(Y2 _YI)z]
m, m,

jsz :_zuz‘ L+ : J[(X3_X2)2+(Y3_Y2)2]

m; m,

The typical parameter values used in the simulation are as follow:
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Masses m, =m, =m, =1Kg

Desired lengths I, =1, =1, =Im
Sliding parameters n=0.05, k=50
Simulation step size T =0.001Sec

Boundary layer thickness | & =0.1

Assuming the state vector of the system is

B ) ) ) ) ) ) ) ,
x=[x, y, X, ¥, 7z, X, Y, X, ¥V, Zy, Z, X3 Y3 X3 Y3 Z,]

and starting with the initial state

x=[-1. -01 0 0 0 -22 -02 0 O 0 O -33 -03 0 0 O

the simulation is ran for 6 seconds. The histories of the lengths w,, states z; and inputs

v, of the first subsystem, set of boundary algebraic equations, and the second subsystem

are shown in figures 6, 7 and 8, respectively. They show that the performance of the

controller is fast enough for a real-time distributed simulation.
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Figure 6. Decentralized control (distributed realization): (a) History of the length W (corresponding to

1,), (b) History of Z,, (c) History of V.
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Figure 7. Decentralized control (distributed realization): (a) History of the length W (corresponding to

1), (b) History of z,, (c) History of v, .
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Figure 8. Decentralized control (distributed realization): (a) History of the length W, (corresponding to

P p==m~==r==qf ===

{e}

Time {sec)

1,), (b) History of Z,, (c) History of v, .

It can be seen in figures 6 (a), 7 (a) and 8 (a) that the lengths w,, w, and w, converge

to one perfectly after about 0.2 seconds. This convergence is reasonable compared with

the following centralized control method.
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Applying the centralized sliding control, the nine elements of the square matrix J, are:

2

Jan :_2H (X12 +Y\2)
]

-2
Jar =T ZT“[XI(XI -X,)+y,(y, ‘Y2)]

1

sz :Js3l =0
1 1
Jon :_2H2 '[—"‘—j[(xz _Xl)2 +(Yz —Y1)2]
m, m,
—2H2
Joy =1 = [(x, =X )X,y =X3) (¥, — YUY, —Y3)]
2
1 1
Jas :—2112 ‘L—""’—'][()% _X2)2 +(Y3 _Y2)2]
m, m,

Using the same parameter values and initial state as in decentralized case, the histories of
the lengths w_, states z, and inputs v, of the first subsystem, set of boundary algebraic

equations, and the second subsystem are shown in figures 9, 10 and 11, respectively.
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Figure 9. Centralized control: (a) History of the length W, (corresponding to 1,), (b) History of z,, (c)
History of v,.
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Figure 10. Centralized control: (a) History of the length W (corresponding to lb ), (b) History of Z, , (¢)
History of v, .
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Figure 11. Centralized control: (a) History of the length W, (corresponding to l2 ), (b) History of 7, , (c)

History of v, .

Comparing figures 6, 7 and 8 with 9, 10 and 11, respectively, shows that the performance

of the decentralized sliding control in the distributed realization is quite similar to the

centralized case, which confirms the validity of the analytical work. The only difference

50



is the input v, , which has a larger order (10 times) in the decentralized case than the

centralized one.

3.2 Corollary of the Main Theorem with Adaptation Law

Using some approximation and estimation terms [36], the theorem 3 could be expressed

in a different version as in the following corollary [25, 28, 31, 32, 33].

Corollary 1. Considering the stability of internal dynamics (assumption 3), in order to
simulate the distributed realization {(25),(26)} in the proposition 1, using the

reformulation {(34),(35)},

a) First, the decentralized sliding controllers are designed - based on the
approximation of the terms A®, - on the distributed computers to derive the local
inputs v, (i=1,...,N) for the N local nodes (34);

b) Next, the decentralized sliding controller is designed - based on adaptive Fourier

series estimation of the term AD, - on the distributed computers to derive the

boundary inputs v, for the set of L boundary nodes (35);

And the overall closed-loop distributed system will be stable. From physical
considerations it can be shown that all the states of the distributed model are bounded

near the solution.
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Proof.

Considering assumption 1, suppose that the local node (34) has a vector index with equal

elements r,, and the internal dynamics are stable, and consider the sliding manifold:
-1 L (74)
=3[0 e
le[( i- 1]

The dynamic characteristic equation of the manifold is:

i1

and has r, —1 negative poles at -1 (u, >0) . Using equations (45) the derivatives of

the manifold is:

.
o -1) .
& — iy (Gi—J+D) =1 g (1)
si_z ( 1] P W U W,
= \\J~

T r. —1 . .
= ((1 1] §'_JW§r'_J+1)]+“?—‘ (@, +B,v, +40,)
=\~

(76)

According to remark 4, A®, represents the effect of the interconnections of the i-th local
node. Therefore, it is reasonable to be able to approximate this term. Assume the vector

matrices @, and A(:)l. are the approximations of a; and A®,; such that |a; —a, |<E,

and | A(:)i —AQ, [<E,q . The control law
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_ T - —1 R
= J;](_Z((r; 1]“’ (r J+1)] H-'_]&i _uiri—lA@i
=2 -

(77
_ diag(k, ) sat(c; diag(3,)s,))
with
I =ni"p, (78)
stabilizes the local node (34) if the following condition is satisfied:
k, 2ui'E, ] “E o, TV (79)

where all elements of the vector y, are positive.

Considering assumption 1, suppose that the boundary node (35) has a vector index with
equal elements r, =r, +1 (because of the extra integrator), and consider the sliding

manifold:

5 -1 (80)
=3[

3= J 1

The dynamic characteristic equation of the manifold is:

rzb((rb 1jur‘, Jp(nj J)) 0 (81)
TLi-1
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and has r, —1 negative poles at -1 (n, >0) . Using equations (45), the derivatives of
Ky

the manifold is

e rh r 1 T ¢ -+ T} T
=3l e g
=\ J—1
I 1 I T, —j+ Iy —
:A [(;_1}1&] (bjl))+u;](ab+ﬂbvb+ADb)

(82)

According to remark 5, AD, represents the effects of the local inputs, as well as their

derivatives, on the set of boundary nodes. Therefore, it may be impossible and costly to
find an approximation term for it, according to the decentralized nature of the controller.
Instead, it is reasonable and possible to estimate this term by using the Fourier series (52)

in remark 7. Assume the vector matrix @, is the estimation of @, such that

a, |<E, ,and replace the equality (52) for the term AD, . The control law

_ Ty r. —1 R A
vb=J;;[ 2[(;’ ljui“ 8 “”]—u;b“ab—u::—"rz-F<t>

(83)
—diag(k, )sat(c;'diag(d, )s, ))
where ‘i‘b is the estimation of the real ¥, , with
=178, () 9
and the adaptation law
(85)

A d /- - .
¥, :—(‘I’b -‘I’b)z‘l’b =u° lQIF(‘E)SEQ2
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where Q, and , are the diagonal positive definite adaptation matrices, stabilizes the
set of boundary nodes (35) if the following condition is satisfied:

K, 2t E, +7, (86)
where all elements of the vector y, are positive.

The control laws (77) and (83) designed so far will stabilize the distributed realization

{(34),(35)}. Consider the quadratic Lyapunov function:

N 1 87
V, :%Zs?si +%s{sb +§trace(sz;‘\1'gﬂ;‘l1'b)zo 87
i=l

The last terms represent the adaptive coefficients. Using the manifold derivatives (76)

and (82), and applying the control inputs (77) and (83), the derivative of the Lyapunov

function is:

dvt _ S T, T, Q—lii,Tg—li,
———dt =) 8.8 +8,§ +trace( L,Y QT
i=l

ST o, ()= ,00)+ 1 (40, - 20, )~ diag(k, )sat(s; diag(®)s, )

M-

Sl

1

(88)
17 (0, =, )y (7 7 )P dingle, Jsae(e; ding(3,)5,)
+ trace(ﬂ;‘i’gﬂll‘i’b )

+S

For the last term of the derivative above, the adaptation law (85) is used to simplify as

follow:
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~ ~

trace(s:;‘\l’gszl'\llb):trace(sz;‘\ilgg-‘ (o' Fos! e, )
¥

EF(t)sZQz)

= p"trac sEQZQ;“ﬁF(t)) (89)
=ur""trace(sg‘i’gF(t)>

= s WIF()

=p®! trace(Q;' ¥
e

Since ‘i’b = ‘i’b — ¥, , using the simplification (89) in the derivative (88) results in:

S T i, () - &, () + 1 (48, — A0, ) diag(k, ysat(e; diag(,)s,)
o , e . > (90)
sT{RE™ (@, () — 6y )+ 1 [ BIR(D) - diag(k, Jsat(s; diag(3,)s, )

+u® s WIF(t)

Now, canceling out the two terms related to the Fourier expansion and adaptive

coefficient errors ¥, results in:

=S 08, 0) ™ (40, - 46, )- g, sat(e, diag3,)5,)

i=1

91
+5 (1 (@,0) — 8, () - diag(k, Jsat(z; 'diag 3, )5, )) o

Therefore the wupper bounds |a&; -, |<E, |A(:)i -AQ, |<E, and

|a, —a, |<E,q certify that:

V N
<D s (B, 4l o~ diag(k sat(e; 'diag(3,)))
i=1

(o el : g 92)
Sp (ubb E o, —diag(k, )sat(e, dlag(ﬁb)sb))

Now, considering the conditions (79) and (86) results in:
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d N 93
%it— <>s) (— diag(y, )sat(e; diag(d,)s, ))+ S, (— diag(y, )sat(e; diag(d, )s, )) ©3)
i=1

Since all elements of the vectors y; and 7y, are positive, it is concluded that

v, _, 04

dt

So the stability of the closed-loop distributed realization is guaranteed.

O

Remark 8. Consider the adaptation law (85) as:

\i‘b =" QF(1)s, Q, ©)

The special configuration of the adaptation law including €, and €, is for the
flexibility to choose the arbitrary adaptation coefficient for each term individually. For

the special case in which ¥, =[y, w,]. FO=[f@®) f,@® f,®] and

s, =[5, S, - the adaptation law is:

\I,bll ‘lAszl o, 0 0 f,(t) 0

A A I O 0 . f t [ ] (Dzl

Voo Wem | =H @y 2 (D By Sk 0 ® (96)
Uys W 0 0 o] ;1) 2

It results in
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Vot Vo 03110)21“rb_1f1 (Dsy, mnmzzurb_lfl (D)sy,
A A -1 rp -1
Yo Wem | =1 0p®yt £(Osy 0po,n" 1, (1)sy, (97)

~ ~ -1 r,—1
Yoz Won O;0,0" (08, 0,0,u" T;(t)s,,

It shows that the combinations of O 0, (1i=1,2,3 , j=1,2) creates 6 arbitrary different

coefficients for the 6 updating adaptive laws \f/bﬁ . So there is no restriction on choosing

the different coefficients for different parameters. Moreover, the corresponding term in

the Lyapunov function (87) is:

1 ~ ~ 98
Etrace(ﬂ;‘l’gﬂll‘l’b) %)

For the special case above, this term is:

o, 0 0 Yo W

1 ® 0" [y Y y - ~
L irace l: 21 :\ .[\i;bll \ilbl2 \ijb]3:|' 0 o, 0 Vs Ven (99)
2 0 oy Woa Wen Wez ~ ~

0 0 o, Wiz We

Which shows that this term is a linear quadratic function of all the estimation errors

(=1,2,3,j=1,2).
Remark 9. In most applications, the matrix J_ (related to the set of boundary nodes) is
block-diagonal, and so the inverse of this matrix can be calculated in a distributed

fashion, as well. The following example is more illustrative.
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Example 4. Consider figure 12 which is the application to animation of a deformable

surface.
WbS e s
. ..... E-’
Local Node 1 Local Node 2
_________________________________ o e
Wos W W W
H W 3
[ L ®
Local Node 4 Local Node 3
;3 L em— @

Figure 12. Distributed model of a deformable surface: The deformable surface, which is approximated by
16 particles, is divided into 4 local nodes with 4 particles each.

In this figure, a deformable surface approximated by 16 particles is divided into 4 local

nodes with 4 particles each. The set of boundary nodes includes {(v;, w,;)|i=12,....8}.

The matrix J, for this example is:
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jsbll jsb12 O jsbl4. O O O 0
jst] jsb22 jsb23 O 0 0 0 O
O jsb32 jsb33 jsb34 O O 0 0
ij — jsb41 0 jsb43 jsb44 _0 0 0 0
0 0 0 0 Ju 0 0 0 (100)
O 0 0 0 0 T, O 0
o 0 0 0 0 0 I, 0
0 0 0 0 0 0 0 Tyl

It shows that the matrix J, is block-diagonal. Since it is divided into several blocks, the
inverse of each block can be calculated on a separate computer. Hence, the block-
diagonal structure of J, is helpful for saving the inverse calculation time, specifically in

cases that we are dealing with a large set of boundary nodes which is the result of the

large-scale structure of the DAE system. For the application to animation of a deformable

surface, the maximum dimensions of a block on the block-diagonal structure of J, is

4x 4. This 4x 4 block appears on the diagonal of the matrix in (100). It pertains to the
boundary algebraic equations {w, ,w,,,w,;,w,,} Wwhich are connecting the four

neighboring local nodes on their approaching corners (as in figure 12).

The corresponding matrices J; and J, in (78) and (84) for each local node (34) and the
boundary node (35), are calculated separately. Calculating the inverse transform of J

and J on separate computers (distributed method) is considerably less time consuming

than the inverse of J, matrix of the overall system on a single computer.
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3.2.1 Advantage of the Adaptive Law

Remark 10. The only difference between theorem 3 and corollary 1 is the approximation

of the terms A®, and the adaptive Fourier series estimation of the term AD, . These extra

terms help to decrease the sliding gains k; and k, considerably, since the following

inequalities hold intuitively:

max(\ A, - 7O, |)<< max((A®,]) =  E,, <<B,, (101)
and
maxQ YIF(t)-AD, |)<< max(AD, ) =  E, <<B,, (102)

As a justification, the following example illustrates how inequality (102) holds.

Example 5. In this simulation, the random signal in figure 13 (a) is produced. The
amplitude of the signal is of order 3 (B, =10"). This signal is approximated by the
Fourier series expansion up to the first 5 parameters a,, a,, b,, a, and b, . Figure 13 (b)

shows the error between the main signal in 13 (a) and the adaptive Fourier series

estimation of the main signal. The amplitude of the error signal is of order 2

(Epp, = 10%). It shows that using only 5 adaptive parameters, the amplitude is decreased
by 10 times (E,, =B,, +10). This important result is useful to decrease the order of

the sliding gains k; and k, accordingly.
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Figure 13. (a) A random signal, (b) Error of the estimation of the main signal with adaptive Fourier
series expansion with 5 parameters.

3.3 Parameter Selection for Designing the Controller

In this section, the strategy for selecting the controller parameters is mentioned. All the
designing parameters are listed below. The index i=1,2,...,N where N is number of local

nodes, and the index b refers to the boundary node.
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€. Boundary layer thickness of the i-th local node

€, Boundary layer thickness of the boundary node

1 n>0 Characteristic equation poles of the sliding surface of the i-
5 th local node

b T Characteristic equation poles of the sliding surface of the
Mo boundary node

0. Relative importance vector of the i-th local node

9, Relative importance vector of the boundary node

K, Gain vector of the i-th local node

K, Gain vector of the boundary node

¥, Stability margin of the i-th local node

' Stability margin of the boundary node

Because of the structural similarity between all the nodes (local and boundary nodes), and
to avoid the complexity involved with parameter selection, all the corresponding

parameters are chosen equal regardless of which node they belong to.

8 =8t 1 - 1]
vi=yl 1 1], y>0
kK, =k-[l 1 - 1], k>0

b =1>0 (103)
0, =0>0
g, =¢e>0
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The flow chart in figure 14 is the experimental strategy for selecting the corresponding

parameters.

o, =5l 1 - 1]

vi=y 1 1] y>0
k =kl 1 - 1] ,k>0
Hi=p>0

o; =0>0

g, =e>0

v
S=1
y=10

Initialize k and ® with small
positive values
Initialize 1 with a large value

Initialize € with a large value

pProper convergence

\ 4 v

Adjust € to meet

Increase the rate of k_(o )
v} the desired

constra int tolerance

l

End

Figure 14. The flow chart for selecting the controller parameters.
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. ko . . o .
The ratio — is a fair measurement of the convergence. Initially, the algorithm starts
7

with small values for k and ®, and large value for p, so that the ration -1—@— 1s small
T

enough to start the algorithm. Then, these values are adjusted experimentally so that this
ratio increases gradually. This could be done by playing with the parameter values within
a reasonable rage. Once the stability is guaranteed, it is time to find the proper value for
€, which was initially set to a small value (to represents a fair approximation for the sign
function). It is important that after the time constant p in the sliding manifolds is chosen,

the parameter € can be adjusted to meet the desired constraint tolerances.

In this chapter, decentralized controllers were designed for the local and boundary nodes
in order to stabilize the overall DAE system. The advantage of adaptive Fourier series
approximation was explained, and a flow chart was presented in order to select the
parameters of the decentralized sliding mode controller. In the next chapter the new

approach is applied for realization of deformable surface problems.
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4 . Application to Animation of a Deformable

Surface

In this section, the designing method developed so far is applied to the animation of a
deformable surface. Since the Jacobian matrix has a high dimension, corresponding to the
dimensions of the deformable surface, this is a suitable example to illustrate the

effectiveness of the controllers designed.

4.1 Modeling of a Deformable Surface

In simulation, a deformable surface is modeled as a collection of distributed masses

connected together by rigid or flexible connections (figure 15).

Figure 15. The spring-damper structure of a particle-based model for simulation of a deformable surface.
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The dynamic equation of each particle is:

(er +Fm“ m,—] , 1=1,..,n

(104)

where n is the number of particles, z; is the rigid force between the i-th particle and the

j-th linked particle in the neighborhood (of the i-th particle), and r; is the unit vector

from particle i to particle j, which is at the other end of the j-th rigid link. Em is the

summation of all the internal flexible force vectors, which corresponds to the spring-

damper structure in figure 15. F,, is the summation of all the external forces, e.g.

gravity and wind force. The constraints are:

w.=L -L,, , k=1,..,n, (105)

where n, is the number of links, and L, and L, are the real length and desired length of

the k-th link, respectively. Therefore, the deformable surface is structurally approximate

by a n_ xn, square of particles (i.e. n_ particles on each side of the square). The number
of links (algebraic equations) is equal to 2n_(n_ —1). In case of centralized simulation,
the Jacobian J_ is a [2n (n, —1)]x[2n (n, —1)] matrix, and computing the inverse of
this matrix gets more time consuming as n, increases. In practice when n_ exceeds 8,

the J_ inverse computation timing becomes too long to meet the timing constraints of a
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real time simulation. So the distributed simulation technique proposed so far will take

care of the timing constraints in a real time simulation.

The interpretation of the distributed model is to cut the deformable surface along the set
of boundary algebraic equations, which consists up of the algebraic equations connecting
the local nodes of the deformable surface (figure 16). Because of the structural similarity
between the dynamic equations of different segments of the deformable surface, it is
arbitrary and flexible to choose the set of boundary algebraic equations. Meanwhile the
main factor to determine the choice of boundary algebraic equation is that the number of
particles in each node (segment) is confined to a maximum of 8 x 8 square, similar to the

restriction in the centralized case. It means that the restriction on the dimension of the

Jacobian matrix J_ of the k-th node in the distributed simulation is inherited from the
restriction on the dimension of the Jacobian matrix J in the centralized simulation. To

address this restriction, the boundary algebraic equations are chosen in a way to divide
the whole square structure of the deformable surface into 8 x8 sub-squares, which are
consistent to form the whole square structure, do not have overlap with each other, and
are completely connected by the set of boundary algebraic equations. This explicit kind
of division is shown in figure 12. Each local node of the deformable surface is simulated
on a separate computer, while the calculations involved with the boundary node are done

on a separate computer as well.
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Figure 16. The physical interpretation of the distributed model of a deformable surface.

For the k-th node, the Jacobian matrix is calculated by:

e - 1 1 U .
-2u%7'F, T, (— + —) if i = jand none of the two end particles
m;,  my
has an acceleration constraint
r, T e .
S Qunt iz i if i = jand one of the two end particles
g e (106)
[J « ]i,j = has an acceleration constraint
i:ci »c o . . . .
2ut! . if 1 # jand linksiand jhave one end
My j)
particle in common
0 if 1# jand linksiand jhave noe end
particle in common

where m;, and m,, are the two end particles of the link i, m,  is the end particle of the

link i which does not have an acceleration constraint, and m; is the common end
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particle of the links i and j. r,, is the vector from the end 1 to 2 of link i, and r, and r,

are the vectors from the common end to the other ends of the links i and j, respectively.

The acceleration constraint pertains to the case that one particle is tightly fixed not to

make any movement.

For the local nodes, since the number of particles in each node is confined to a maximum
of n,xn, =8x8 square, the corresponding Jacobian matrix J_ is a 112x112 square
matrix (2n (n,—1)=2x8x7 =112). This is a reasonable dimension for a matrix to be
inversed on a computer while the requirements of a real time simulation are met. For the
boundary node, the dimension of the Jacobian matrix J, is proportional to the structural
scale of the particle-based deformable surface. According to remark 9 and example 3, the
Jacobian matrix J is a block-diagonal matrix, with the maximum dimension 4 x 4 for
each block. So regardless of the total dimension of the matrix J , it is always possible to

break it into block diagonals with appropriate dimensions in order to make the inverse

calculations according to the timing constraints of a real time simulation.

4.2 Simulation Results

For the simulation, the example of a small deformable surface modeled by 8 particles in a
distributed fashion is considered in figure 17. As it can be seen in the figure, the two local

nodes are identified by two distinct squares connected together by the two boundary

algebraic equations.
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Local Node 1 | . Local Node 2

Boundary Algebraic Equations

Figure 17. The 8-particle distributed model of a small deformable surface.

In this figure, the spring-damper forces between the particles are not shown. The spring-

damper structure (figure 15) of the example above is shown in the following figure 18.

Figure 18. The spring-damper structure of the 8-particle distributed model of a smail deformable surface.

In this figure, the thin lines represent the spring-damper force. Like before, the two
distinct squares are the local nodes which are connected by two boundary algebraic

equations. Each local node is simulated on a separate computer, and the inverse

calculation of the corresponding local Jacobian matrix J, is done on that computer. The
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inverse calculation of the Jacobian matrix J, of the set of boundary algebraic equations

is done on a separate computer as well.

The simulation is run in two steps, while the parameter values used in the simulation are

as follows:

Masses m, =m, =m, =0.2Kg
Desired lengths =1 =1 =Im
Sliding parameters n=0.02, k=20
Simulation step size T =0.001Sec

Boundary layer thickness | € =0.1

e First step, the simulation is run for the inconsistent initial condition in figure 19.

This structure is not subject to any external forces as gravity and wind.

Figure 19. The inconsistent initial condition of the 8-particle distributed model of the deformable surface
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Starting with this initial condition and after a finite reaching time, the 8-particle
distributed model of the deformable surface converges to the stable formation shown in

figure 20.

Figure 20. The stable formation, which the 8-particle distributed model converges to after a finite reaching
time.
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e Next step, the simulation is run for the consistent initial condition in figure 21.

This structure is subject to the external forces as gravity and wind.

Figure 21. The consistent initial condition of the 8-particle distributed model of the deformable surface

Starting with this initial condition and after a finite reaching time, the 8-particle
distributed model of the deformable surface takes the consistent formation shown in

figure 22.
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Figure 22. The consistent formation, which the 8-particle distributed model converges to after a finite
reaching time.

So far, the qualitative effectiveness of the distributed method is verified by the simulation
in two steps. In order to investigate the quantitative effectiveness of the method, the
following graphs are presented. All these graphs pertain to simulation in the first step

above.

Considering the reaching phase in the decentralized control (distributed simulation), from
the initial state in figure 19 into the stable state in figure 20, the following 4 figures are
related to one of the local rigid links in the first local node. Figure 23 is the local control

input v, of the local rigid link.
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Figure 23. Decentralized control (distributed realization): the local control input v, of the local rigid link.

The graph in figure 24-(a) shows the local sliding surface s; corresponding to the local

rigid link above.
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Figure 24. Decentralized control (distributed realization): the local sliding surface S, corresponding to the
local rigid link: (a) 0-3 sec, (b) zoom on 2-3 sec.

It shows that it goes to zero in less than 0.5 (sec). Figure 24-(b) shows that the error is
less than 0.003 after 3 seconds. Hence, the local output w, corresponding to the local

rigid link above goes to zero in less than 0.5 (sec) as in figure 25-(a). Figure 25-(b) shows

that the error is less than 0.003 after 3 seconds.
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Figure 25. Decentralized control (distributed realization): the local output W, corresponding to the local
rigid link: (a) 0-3 sec, (b) zoom on 2-3 sec.

As a result, the length 1. of the corresponding local rigid link converges to the desired

length 1(m) in less than 0.5 (sec) as shown in figure 26.
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Figure 26. Decentralized control (distributed realization): the length 1. corresponding to the local rigid
link.

Now, the following 4 figures are related to one of the boundary rigid links in the

boundary node. Figure 27 is the boundary control input v,; of the boundary rigid link.
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Figure 27. Decentralized control (distributed realization): the boundary control input v, of the boundary
rigid link.
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The graph in figure 28-(a) shows the boundary sliding surface s,; corresponding to the

boundary rigid link above.
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Figure 28. Decentralized control (distributed realization): the boundary sliding surface S,; corresponding

to the boundary rigid link: (a) 0-3 sec, (b) zoom on 2-3 sec.
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It shows that it goes to zero in less than 0.5 (sec). Figure 28-(b) shows that the error is
almost zero after 3 seconds. Hence, the boundary output w, corresponding to the

boundary rigid link above goes to zero in less than 0.5 (sec) as in figure 29-(a).
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Figure 29. Decentralized control (distributed realization): the boundary output Wy, corresponding to the

boundary rigid link: (a) 0-3 sec, (b) zoom on 2-3 sec.
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Figure 29-(b) shows that the error is almost zero after 3 seconds. As a result, the length

1

; of the corresponding boundary rigid link converges to the desired length 1(m) in less

than 0.5 (sec) as shown in figure 30.
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Figure 30. Decentralized control (distributed realization): the length lbj corresponding to the boundary
rigid link.
For comparison purposes, the same reaching phase, from the initial state in figure 19 into
the stable state in figure 20, is simulated by the centralized controller. The following 4
figures are related to one of the local rigid links in the first local node. Figure 31 is the

local control input v, of the local rigid link.
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Figure 31. Centralized control: the local control input v, of the local rigid link.

The graph in figure 32-(a) shows the local sliding surface s, corresponding to the local

rigid link above.
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Figure 32. Centralized control: the local sliding surface S, corresponding to the local rigid link: (a) 0-3
sec, (b) zoom on 2-3 sec.

It shows that it goes to zero in less than 0.5 (sec) . Figure 32-(b) shows that the error is
less than 0.001 after 3 seconds. Hence, the local output w, corresponding to the local

rigid link above goes to zero in less than 0.5 (sec) as in figure 33-(a).
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Figure 33. Centralized control: the local output W, corresponding to the local rigid link: (a) 0-3 sec, (b)
zoom on 2-3 sec.

Figure 33-(b) shows that the error is less than 0.001 after 3 seconds. As a result, the
length 1. of the corresponding local rigid link converges to the desired length 1(m) in

less than 0.5 (sec) as shown in figure 34.
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Figure 34. Centralized control: the length 1. corresponding to the local rigid link.

Comparing these four figures with the figures related to the decentralized case, it is
obvious that the performance of the decentralized control in the distributed realization is
quite similar to the centralized case, which confirms the validity of the analytical work.

The only difference is the input v, which has a larger order (10 times) in the

decentralized case than the centralized one.

For the decentralized case, the Jacobian matrices of the two local nodes are shown in

equation (107) below,
Jsi(l,l) Jsi(1,2) Jsi(l,3) O
_ J. T, 0 J.
= _51(2,1) si(2,2) 3 _81(2,4) , i= 1,2 (107)
Jsi(3,1) 0 Jsi(?l,3) Jsi(3,4)
0 Jsi(4,2) Jsi(4,3) Jsi(4,4)

while the Jacobian matrix of the boundary node is shown in equation (108) as well.
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|

(108)

For the centralized case, the Jacobian matrix of the overall system is shown in equation

(109) below.
_Js(u) T
Tsan Jsan
Js(ll) 0

0 Juo
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0 0
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o o O
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Jg73) Jq73) 0
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Comparing the Jacobian matrices above, the effectiveness of the distributed simulation in

calculating the inverse of the Jacobian matrix is clear. Specifically, when we are dealing

with a large scale system with a considerably large dimension Jacobain matrix, the

distributed simulation saves enough time to meet the timing restrictions of a real time

simulation.

The other important point is that for both the centralized and decentralized cases, the

maximum simulation step size is 0.008 (sec). It means that by using the decentralized

control (distributed simulation) instead of centralized one, there is no considerable

stiffness added to the system, which is the main objective of the distributed simulation.
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5 . Conclusions and Future Work

5.1 Conclusions

The sliding control approach is a quite efficient method to simulate the mechanical DAE
systems. The most significant problem is when the dimension of the algebraic equations
increases considerably. In this case, the dimension of the Jacobian matrix increases
accordingly. As a result, computing the inverse of the Jacobian matrix becomes too
expensive for a single computer, specifically when real time simulation is required. The

proposed approach is to use a network of computers instead of a sigle one.

To implement the simulation of dynamic systems on a computer network, a method based
on decentralized sliding mode control was presented in this work. This method divided
the main system into numerous nodes. A sliding mode controller was designed for each
node (including the local nodes and boundary node), individually. The necessary
conditions for stability were developed. The new method was applied to animation of a
deformable surface which demonstrated good performance and stability. The main

contribution of the thesis could be listed as:

e Remodeling the DAE system and transforming it into the distributed formation.

e Applying the decentralized sliding controller method.
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Simulation results confirmed the efficiency and validity of the analytical work. The

advantageous of decentralized (distributed) method could be highlighted as:

e The performance of the decentralized (distributed) method is quite similar to the
centralized one.

¢ In the decentralized (distributed) method, we are dealing with several Jacobian
matrices whose dimensions are considerably less than the dimension of the single
Jacobian matrix in the centralized case. Therefore, the distributed approach fits
better to the timing restrictions of a real time simulation.

e In the decentralized (distributed) method, the maximum simulation step size is not
much different from the one in the centralized case. This shows that the

distributed method does not add much stiffness to the system.

Therefore, the distributed control approach proposed is an effective solution to use a
number of computers instead of a single PC, in order to meet the timing requirements of a

real-time simulation.

5.2 Future Works

In this section, the possible future directions for the approach proposed in this thesis are
stated. These possible directions include implementing the observer-based decentralized
sliding control methods [18,21,22,30,37]. Moreover, better estimation methods based on

adaptive neuro-fuzzy networks can be applied to estimate the unknown nonlinear

89



interconnections, disturbances and unmodelled dynamic uncertainties. Also, the current
flow chart can be replaced by a more efficient and systematic algorithm to design the
sliding control parameters. For the simulation section, a real computer nework can be
implemented with the proper local programs including the necessary algorithms, so that

the real time simulation of a large scale deformable surface can be done on-line.
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