Collocation Methods for Linear Parabolic

Partial Differential Equations

Qiang Zheng

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

December 2, 2005

© Qiang Zheng, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14342-8
Our file Notre référence
ISBN: 0-494-14342-8
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Collocation Methods for Linear Parabolic Partial Differential Equations

Qiang Zheng

This thesis presents a new class of collocation methods for the approximate numerical so-
lution of linear parabolic partial differential equations. In the time dimension, the partial
derivative with respect to time is replaced by finite differences, to form the implicit Euler
method. At each time step, a polynomial approximating the exact solution is calculated
for each triangular finite clement created by the Rivara algorithm. Polynomials of adjacent
finite elements have matching values and matching normal derivatives at a set of discrete
points, called “matching points”. The method of nested dissection is used to eliminate all
variables at the interior matching points of the domain. The maximum error of the solution
is of the order of the time step size, which is O(dt), except when dt is sufficiently small.
In that case, the maximum error can be very small, depending on the density of the space
mesh.

An application based on OpenGL and Motif to visualize the solutions is also described in
this thesis. Extensive numerical results, pictures of refined meshes, and 3D representations

of the solutions are given.

iii

Acknowledgments

I would like to express my sincere appreciation to my supervisor professor, Eusebius J.
Doedel, for his guidance, support, papers, and patience, for completing my thesis. Also I
would like to thank Chenghai Zhang, for his valuable advice for graphics and for writing

this thesis, and Rui Chen, for assistance with the final preparation of this thesis.

v

Contents

List of Figures
List of Tables

1 Introduction
1.1 Partial differential equationso oL
1.2 ParabolicPDEs
1.3 Classical numerical methods oo oL
1.4 Collocation methods B

1.5 Organization of thethesis

2 Collocation Methods
2.1 Linear parabolic PDE problems
2.2 The finite difference approach
2.3 The collocation approach L L.

2.4 Local basis construction e

3 The Rivara Algorithm and Triangular Meshes
3.1 The Rivara algorithm L
3.2 A variant of the Rivara algorithm
3.3 Triangular meshes

3.4 Higher dimensional cases,

4 Nested Dissection

viii

xii

12
14

15
15
17
18
19

22

4.1 The procedure

4.2 Local elimination Lo e
4.3 Complexity estimation L Lo oL
Implementation
51 Objectives e
5.2 Datastructure L e
5.2.1 Region description e
5.22 Binarytree e
95.2.3 Input parameters
5.3 Region definition oL
5.3.1 Alocal triangularregiono oL
5.3.2 The original domain of a simple polygon
5.3.3 The original domain of a more complex polygon
5.4 Basis generation L Lo
5.5 Selection of the matching points and the collocation points e e
5.6 Matrix calculationso oL L L
5.7 Nested dissection labeling and calculation,
5.8 Applying the boundary conditions
5.9 Calculation of local polynomials
5.10 Initial conditions and timestep L.
5.11 Deployment e
5.11.1 Flexibledesigno
5.11.2 Code deployment

Numerical Results

6.1 Strategy for choosing the matching points and the collocation points

6.2 A time-independent PDE Lo
6.3 A time-dependent PDE
6.4 A problem with a peak in the solution
6.5 A problem with asharpridge

vi

28
28
29
29
31
33
33
34
34
36
36
39
39
42
46
47
48
48
48
48

6.6 A PDE with unknown exact solution 72

7 Implementation of the Visualization Tool 77
7.1 Objectives e e 7
7.2 Graphicsinterface 77
7.3 Integration of visualization and calculation 79
7.4 OpenGL implementation L. 81
7.5 Animation generation 81
7.6 Datastorage e 84

8 Ideas for Nonlinear PDEs and for the 3D Case 85
8.1 Nonlinear parabolic PDEs 85
82 3D problems e 89

9 Conclusion and Discussion 95
9.1 Conclusion e e 95
9.2 Futuredevelopment 96

Bibliography 99

A Data Structures 106
A1l Vertex structure L. 106
A2 Facestructure 107
A3 Region structureo 109
A4 PDE parameters structure 0 114
A5 Configuration fileo 117

B Useful Functions 120
B.1 Matrix allocation oL L 120

B.1.1 Alloc2D o o 120
B.1.2 AllocMulCol2D 121
B.2 Basis Generation e 122

vii

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4

3.6
3.7

3.8

4.1

4.2

5.1
5.2
5.3
5.4
5.5
5.6

A domain Q with a square recursive subdivision. 9
A domain £ with a triangular recursive subdivision. 9
A finitedomainof Q.. o 10
The refinement of a triangle. o oL 16
Elimination of a hanging point P according to the Rivara algorithm. 17
The refinement of a triangle into four equal parts. 17

A uniform mesh generated by the Rivara algorithm of a unit square Q, d,, = 0.2. 18
Local refinement near two points of a unit square €, d,,, = 0.015, d,, = 0.05. 20
Local refinement near two points of a unit square Q, d,, = 0.0015, d,, = 0.05. 20
Local refinement near the line x = 0.5 of a unit square €, d,,, = 0.015, d,, = 0.05. 21

Local refinement near the circle (z — 0.25)% + (y — 0.625)% = 0.04 of a unit

square €, d, =0.015,d, =0.005. 21
Two adjacent subregions and their union. 23
Nested dissection of a unit square 0., 27
The runtime memory image of a vertex structure. 30
The runtime memory image of a face structure. 30
The runtime memory image of a region structure 32
The structure of a binary tree. L. 33
A local region and its labels. oL 0oL 34
A subdivided local region and its labels., 34

viii

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

A combined region o containing two triangles.
A combined region r4 containing one quadrilateral and one triangle.

The original binary tree of a polygon domain.
A hexagon divided into four triangles.o
A hexagon divided into six triangles. o000
The labels of a hexagon divided into six triangles..
Local refinement near two points of hexagon €, d,, = 0.015, d, = 0.05. . . .
Two sibling elements and their matching points.
A combined local region and its matching points.
Matrix A division of ¢ and the divisionof ry.
Matrix A division of ro. L

Code deployment structure.

Four collocation points in an triangular element.
A unit square 2. L
Solutions of the time-independent PDE, when d,,, = 0.0625, n =4, m=7. .

Solution of the time-dependent problem, when d,,, = 0.125, n = 4, m = 7,

The refined mesh of the smaller domain, when d,, = 0.01, d, = 0.05. The
minimal angle of the elements is smaller.

Solution of problem NEQ2, when dm = 0.01, d, = 0.05, n = 4, m = 7,

X

35
37
37
37
38
38
42
42
44
44
49

53
54
o7

66

68

6.11

6.12

6.14
6.15

6.16

6.17

6.18

6.19

6.20

7.1
7.2

7.3

7.4

8.1
8.2

Solution of problem NEQ2, when dm = 0.01, d, = 0.05, n = 4, m = 7,

=1.00. . . e 69

t=055. . . . e 71

t=1.00. 71
The domain € defined in problem HEA3., 72
Two local regions, which are the children of €}, share two common faces and
the labels of their faces. o oo 74
Solution of problem HEA3, whend,, =025, n =4, m=7,t=045.. ... 74
The locally refined mesh of problem HFEA3 near the points (0.25,0.25),
(0.75,0.25), (0.75,0.75), (0.75,0.75) and near the line # = 0, when d,, =
0.025,d, =0.05. e 75
Solution of problem HFEA3, when d,, = 0.025, d, = 005, n = 4, m = 7,
t=0.01. 75

t=0.50. 76

t=1.00. e e 76

Architecture of the visualization tool. 78
Solution of problem NE@3, when dm = 0.0125,d, = 0015, n =4, m =7,
t=1.00. 82
Solution of problem NE@3, when dm = 0.0125, d, = 0.015, n =4, m =17,
t=1.00, rotated. 82
Solution of problem NFEQ3, when dm = 0.0125, d, = 0015, n =4, m =7,

t = 1.00, rotated and zoomed 83

A bisection of a tetrahedron. 90
Types of marked tetrahedra: P, A, O and M. Each marked edge is indicated

by two short bars, while the refinement edge is indicated by three short bars. 91

8.3 Labeling a divided local tetrahedral region.
8.4 A combined region contains two tetrahedra.
8.5 A combined region of a more complicated polyhedron, where the two subre-

gions share three common faces.

Xl

List of Tables

6.1

6.2

6.3

6.4

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

The coefficients of the selected collocation points
The total number of elements in Q.
Maximum absolute error at the matching points (uniform points, 2D case).
Maximum absolute error at the matching points (Gauss points, 2D case).

Maximum absolute error at the vertices (uniform points, 2D case).
Maximum absolute error at the vertices (Gauss points, 2D case).

Maximum absolute error at the matching points, d; = 0.01 (Gauss points,

2D case).

Maximum relative error at the matching points, d; = 0.01 (Gauss points, 2D

CASE). + v i e e e e e

Maximum absolute error at the matching points, d; = 0.005 (Gauss points,

2D case).

Maximum relative error at the matching points, d; = 0.005 (Gauss points,

2D case).

Maximum absolute error at the matching points, d; = 0.0025 (Gauss points,

2D case).
Maximum relative error at the matching points, d; = 0.0025 (Gauss points,
2D case).
The coeflicients of the newly selected collocation points.

Maximum absolute error at the matching points, d; = le — 6 (Gauss points,

2D case).

xii

56

6.15

6.16

6.17

6.18

Maximum error at the matching points of problem NEQ2, n =4, m = 7,
dy = 0.01, dy, = 0.04, d, = 0.05 (Gauss points, 2D case).
Maximum error at the matching points of problem NEQ2, n =4, m =7,
dy = 0.01, dr, = 0.01, d, = 0.05 (Gauss points, 2D case).
Maximum error at the matching points of problem NEQ2 of a smaller region,
n=4,m=717,d; = 0.01, dy, = 0.01, d, = 0.05 (Gauss points, 2D case). . . .
Maximum error at the matching points of problem NEQ6, n = 4, m =7,

dy = 0.01, d,, = 0.01, d, = 0.05 (Gauss points, 2D case).

x1ii

68

Chapter 1

Introduction

In this chapter, we introduce partial differential equations (PDEs), some classical methods
for PDEs, and the more recent collocation methods. The objectives of this thesis are also

discussed.

1.1 Partial differential equations

Differential equations come from various subjects in science and technology, such as physics,
astronomy, geology, biochemistry, and nuclear technology. Equations which contain deriva-
tives of a function u(t) are called ordinary differential equations (ODEs). Sometimes, the
function u can be a vector, in which case the equations form a system. Equations which
contain partial derivatives of the function u(zy, 2, -+, %n,t) are called partial differential
equations (PDEs). Here, u is a function of z1, 9, - - -, &y, t, which are n+1 independent vari-
ables. In many applications, ¢ denotes the time variable and X = (z1,z9,---,x,)" € RN
denotes the space variables. For the 2D and 3D cases, the notation X = (x,y)* and
X = (z,y,2)*, will be used, respectively. Sometimes, the equations do not involve the
variable ¢, so t is omitted.

Generally, it is very difficult or even impossible to obtain exact solutions of differential
equations, since they are very complicated. Thus people usually try to find methods to
obtain approximate numerical solutions. With the help of modern computer technology,

numerical solutions can often be calculated quickly.

1.2 Parabolic PDEs

PDEs containing partial derivatives higher than the second order are usually very compli-

cated and not as often studied. PDEs are frequently of the form

Til 0%u (ou Ou ou Ou) =0 (1.1)
G — AT, %2, Ty T 1y Uy 5 "y s) = :
5 (¥ dxldfﬁj q ’ ’ sy Lntl, adxlv dl‘z’ ’dxn’ 81n+1)

where, ¢(-) € R. We assume that ¢ = x4 if the equations involve the variable t. ay;

ou Bu du u

may depend on x1,29,: "+, Ty, Tntl, U, B2 Bugr) Bae? Danil We can often assume that

aij = aj;, so that the matrix A = [a;;] is a symmetric matrix. If all eigenvalues of A have
the same sign, then the equations are called elliptic PDEs. If at least one eigenvalue is zero,
then the equations are called parabolic PDEs. If n of the eigenvalues have the same sign,
and the remaining one has opposite sign, then the equations are called hyperbolic PDEs.
Equations in the form of (1.1) can be very complicated. It is difficult to deal with
equations which have many variables. Also, if the coefficients a;; are complicated functions,
then the equations are usually difficult to solve. Many PDEs in real applications contain
fewer variables, or even have constant coefficients, such as Laplace’s equation, Poisson’s

equation, and the heat equation. Typical second order PDEs are:

0%u 0%u 0%u
alé;?"i‘%éj;g‘l"“"i‘ana—ﬁl"q:o’ (1.2)
0u 0%u 0u ou
— —s - — —q— = =0, 1.3

Ngm T e Tt angE TdT (1.3)
&%u 0% 0%u 5%
— tay—5+-tap—s5—q¢g— — =0, 1.4
“ ox? 2 O3 n dz? 17 9 (14)
where, in (1.2), ¢ = q(z1,22, +*,Tn, U, gﬁ, —8%“—2, cee, 0—35;), and in (1.3) and (1.4), ¢ =
q(x1,xa,, Tp, U, T, 597“1, %‘;, e 3‘%—%) The equations (1.2) are elliptic PDEs, the equations

(1.3) are parabolic PDEs; and the equations (1.4) are hyperbolic PDEs. a1,a9,---,a, arc
nonnegative constants. For elliptic PDEs of the form (1.2), at least two of a;,7 = 1,2, n,
cannot be zero. For the other two, (1.3) and (1.4), at least one cannot be zero. The equations

discussed in the present thesis are parabolic PDEs, which are used to describe phenomena

that are time-dependent.

For introducing a new class of collocation methods for parabolic PDEs in this thesis,
we only consider equations which have constant coefficients of value 1. For other constant
coefficients, or for variable coefficients, the algorithm is very similar. Also, the equations
considered in this thesis only contain three variables, (z,y,t), and they are linear. The form
of the PDEs we consider will be given in Chapter 2. A brief discussion of the nonlinear case,

and the case of equations containing four variables, (z,v, 2,t), will be given in Chapter 8.

1.3 Classical numerical methods

The simplest numerical method for PDEs is the finite-difference method, which most books
about numerical methods {1, 2] mention. Finite-difference methods use finite-difference
equations to replace the partial differential equations at certain local grid points, to form
discrete systems to be solved. These methods are especially suitable for equations depending
on time (parabolic PDEs and hyperbolic PDEs). Different finite-differences lead to different
methods. For parabolic PDEs, there are, for example, explicit methods, and implicit meth-
ods, including the Crank-Nicholson method. These methods are often easy to implement,
but the accuracy is typically not very high. Also, it is not easy for these methods to deal
with problems on irregular domains.

The Galerkin method is a classical numerical method which is based on concepts from
functional analysis. It determines piecewise polynomials to approximately solve the differ-
ential equation on the full domain. Using different bases, the method will generate different
polynomials. It is a suitable method for elliptic boundary value PDEs. However, the basis
may be difficult to choose, if the domain is complicated.

The finite-element method is probably the most widely used method at present to solve
engineering problems. Many computation software tools use this method for dealing with
PDEs. For example, MATLAB uses this method in its PDE toolbox [3]. The finite-element
method is normally derived from the Galerkin method. This method allows to deal with
complicated domains. It refines the original domain into a certain mesh, so that it is easier

to choose the basis and to form the piecewise polynomial in each small local region.

Collocation methods are widely used to solve ODE boundary value problems. For PDEs,
they are at present not used very often. The class of collocation methods discussed in this

thesis is new for parabolic PDEs.

1.4 Collocation methods

The new class of collocation methods for parabolic PDEs is derived from the idea used for
elliptic PDEs by Doedel [4, 5].

For the time dimension, we use finite differences to replace the partial differential deriva-
tives with respect to time. For the space dimensions, we refine the original domain, to gen-
erate small regions which are called local elements, and the full domain becomes a mesh. In
each local element, at a given time step, we select matching points and collocation points to
construct a piecewise polynomial, just like the new collocation methods for elliptic PDEs.
Step by step in time, we compute the approximate numerical solutions, given certain initial

conditions and boundary conditions. The main characteristics of the methods are:

1. High order of accuracy can be attained for the space dimensions. This is demonstrated

for solutions of time-independent problems in Chapter 6.

2. The piecewise polynomial solutions need not be globally continuous. We only require

a certain degree of continuity at so-called “matching points”.

3. The linear systems generated during the solution process can be efficiently solved by
the method of nested dissection. Nested dissection is usually the part needing the most
calculations. Therefore, its eflicient implementation is a very important objective.

As mentioned above, we only discuss relatively simple linear equations. In principle, the

methods generalize to other cases, but they need some modifications in the construction of

the polynomials. We will, however, treat some relatively complicated spatial domains.

1.5 Organization of the thesis

In order to explain the algorithm clearly, we focus on the new collocation methods for the

case of linear parabolic PDEs. We also give examples to test the effectiveness of the meth-

ods. For some of these examples, the exact solution is known, which allows us to observe the
accuracy. For a better understanding of the numerical solutions, a visualization tool based
on OpenGL and X11/Motif has been developed to show 3D animations of the solutions.
For the benefit of further study, nonlinear PDEs and PDEs in 3D space are also discussed
briefly.

The thesis is organized as follows. Chapter 1 serves as an introduction. Chapter 2
describes the linear parabolic PDEs to be studied, as well as the idea of the collocation
methods. Chapter 3 describes the Rivara algorithm that generates the meshes. Chapter
4 introduces the nested dissection method that eliminates the unknown variables at the
interior matching points. The boundary conditions are then used to determine the solution
at the matching points on the boundary, and back substitution is used to calculate the
solution at the interior matching points. Chapter 5 describes the details of the implemen-
tation and the structure of the numerical software. Chapter 6 presents some schemes for
selecting the matching points and the collocation points. Five parabolic PDE examples
are used to illustrate solutions obtained by the collocation methods. Extensive numerical
results and pictures are offered. Chapter 7 describes the details of visualizing the solutions,
and discusses ways to do 3D plotting using OpenGL, and to save images as animation files.
Chapter 8 gives some ideas on how to solve nonlinear parabolic PDEs, and PPDEs in 3D
space. An algorithm for bisecting tetrahedral regions and generating 3D meshes is also
presented. Chapter 9 gives conclusions and discusses some topics that need further study.

Appendices show the details of some important data structures and functions.

Chapter 2

Collocation Methods

2.1 Linear parabolic PDE problems

Consider the simple cases of (1.3), where all coefficients a;, i = (1,2,---,n) are equal to 1.

The general second order parabolic PDEs can then be written as

% =Au—q(X,t,u,Vu), XeQcC RN, te [to, t1] C R, (2.1)

where u(X,t) € R, A is Laplace’s operator of u with respect to X, Vu is the gradient of u

with respect to X, ¢(X,t,u,Vu) € R; i.e.,
LE o 0 a*
A=S" 2 (. ... 2
;axf’ v (8:61’8302’ ’8mn) ’

where * denotes transpose, Vu is a vector and A =V - V.

If g(X,t,u, Vu) is of the form
(X, t,u, Vu) = b(X,t)*Vu + (X, thu+ f(X,t), Xe€QC RN, teto,t1] CR, (2.2)
where b(X,t) € RV, ¢(X,t), f(X,t) € R, then Equation (2.1) is called a linear parabolic

PDE. We can rewrite a linear parabolic PDE as

% = Au—b(X,t)*Vu — (X,)u— f(X,t), z€QC RV tefto,th) C R (2.3)

In the 2D case, this becomes

ou Ju ou

i A’LL - bl(%ﬂi)*" - bZ(m-/ yvt)_ - C(Q?, Y, t)u - f(xa Y, t),
(z,y) € Q C R?, t € [to,ta] C R,

where by, by € R. Even simpler cases, in which ¢ does not depend on Vu and u, are of the

form
ou

= = Au— f(z,y,t), (z,9) €QC R% te€ty,t) CR. (2.5)

Most examples given in this thesis are of this type. As for the initial conditions, they take

the form

w(X,to) = ug(X), X e€Qc RN tyeR. (2.6)

If the boundary conditions are of the form
u(X,t) =g(X,t), X €dN,tEeE [ty,t1] CR, (2.7)

where g € R, then they are called Dirichlet boundary conditions. If they are of the form

g—z =g(X,t), X €0Q,t€ ty,t1] C R, (2.8)
or
ou
o +u=g(X,t), X e€oOtecltt] CR, (2.9)

where 77 is the unit exterior normal vector, and g—z is the derivative of u with respect to the

direction of 7, then they are called Neumann boundary conditions.

2.2 The finite difference approach

First, for a certain given small time step, we use a finite difference to replace the partial

derivative with respect to ¢ in (2.3). It approximates the original equation with error of

O(dt) at a certain X.

U — Uk—1

o = Aug — (X, tg) " Vug — (X, tp)ug — f(X, tr), k=1,2,---,n, (2.10)

where dt = t; — tp_1. Here dt is the step size in time, which can be fixed or variable.
Inductively, having already computed ug_1, we wish to solve for ux. We can rewrite (2.10)
in the form of a linear operator:

1 1
Luy = Aug — b(X, t,)*"Vug — (X, tg)ug — EUk = f(X,tx) — -(E'u,k-__l. (2.11)

This is a linear elliptic PDE problem at time %y,

L = fi(X), where fy(X) = F(X, tr) — 1. (2.12)

Now consider the space domain . The domain can in principle be quite general. For
clarity, we will start with some simple cases. More complex domains can be represented
by a combination of several simple ones. Examples will be shown later. Let us assume
that we have a simple N-cube. For the 2D case, this is a square. Since we want to apply
refinement in order to generate smaller regions, we subdivide €2 into two subdomains. This
subdivision is continued recursively until a desired level of refinement is reached. We call
the smallest regions “finite elements”. A binary tree can be used to represent this data
structure. Although the binary tree is not necessary for the discretization, it is useful for
the nested dissection algorithm described in Chapter 4. An example is provided in Figure
2.1.

Although square elements work well if the domain) is itself a square region, they
cannot easily deal with more general domains. For example, they cannot easily deal with a
triangular domain, since the domain contains an angle that is not a right angle. In this case,
it is better to divide 2 into smaller triangular elements. First we subdivide the original
square domain {2 into two triangles, and then we apply recursive subdivision, as shown in

Figure 2.2.

=

Figure 2.1: A domain 2 with a square recursive subdivision.

Figure 2.2: A domain with a triangular recursive subdivision.

In this thesis, we use the Rivara algorithm to generate triangular meshes, as will be discussed
in Section 3.1.

Consider any finite element {2 in 2, for example, the shaded element in Figure 2.1 or
in Figure 2.2. If u(X,tg) is known on 0€; and if §2; is small enough, then the solution
u(X, tg) of the local elliptic problem is defined in €. Also, g—:;, the normal derivative of
u on the boundary 0€};, will be defined along any smooth part of the boundary. For any

finite element §2;, an “ansatz” discretization formula for (2.12) at points z;,i = 1,2, -+, n,

selected on the boundary of the finite element {};, can be written as
n m
U;C = Zaijuf+2ﬂijfk(zj), 1=12,---,n. (2.13)
j=1 j=1

The points x; will be called “matching points”. Above, uf denotes the approximate solution

at point x; and at time step ty, uf ~ u(wi, ty). Similarly, vfc denotes the normal derivative,

vF = Vu(xi, tg)*n:, where 7; is the unit exterior normal to the finite element’s boundary at
z;. The points z;,j = 1,2, ---,m, lying inside {}; or near it, are called “collocation points”.
There are many strategies to select the matching points and the collocation points, and
some strategies may give a much higher accuracy than others. Indices denoting the element

have been suppressed for simplicity of notation. An example is shown in Figure 2.3.

T T
— . zm . -
In T * ® 29 T X3
} }
z] x2 x P

Figure 2.3: A finite domain of £2.

For each finite element of €1, there is a discrete equation corresponding to each z; on
the boundary of the finite element. The coefficients a;; and f;; ar.e determined by requiring
(2.13) to be satisfied exactly for a basic set of equations with known solution. Let ¢, be a
polynomial, and fy = L¢y. Then the equation Luy = fi has the obvious solution uy = ¢.

More precisely, let P, be a polynomial space of dimension n + m, and require that

Vor(x:i) n = i asidr(xi) + iﬁingbk(zj), i=1,2,---,n, Yor € Prym. (2.14)
j=1 j=1
Let wp = (uf, uf, -, ug)", vk = (vf,08, -, ul)™, fo = (fe(=1), fa(22), -, fu(zm))*, and
a2t Qg Bii Pz 0 Bim
g | e oo o o , B_ Ba1 ﬁ.22 o Pom
Qnl Qna ** Qpg Br1 Bn2 o Bum

Then (2.13) can be written as

v, = Auy, + Bfy. (2.15)

10

Suppose ¢;,1 = 1,2,-+-,n + m form a basis of Pyim: Span{¢1, ¢2, -, dntm} = Ppym. If

furthermore we define

$1(z1) ¢1(z2) - di(zn)
o — $2(z1) p2(z2) o Pa(zn) , (2.16)
Pntm (1) Inim(z2) - Pnim(zn)
Loy (z1) Loy(z) -+ Léi(zm)
Lo — L‘PZ'(Zl) L¢2.(Zz) e L¢2.(Zm) , 2.17)
L¢n+M(zl) L¢n+m(22) e L¢n+m(zm)
and
Vi(z1)*'m Voi(z2)n2 -+ Vér(za) m
e V¢2(5f1)*771 V¢2(9‘52)*772 V¢2(-7:'n)*77n ’ (2.18)
v¢n+m(x1)*771 V¢n+m(x2)*772 T V(1571-Hn(517n)*77n
then Equation (2.14) can be written as
(@|Ls) — Ra. (2.19)

B*

For the finite difference approximation to be well defined, the matrix (®|Ls) must be
nonsingular. There are many possible schemes for choosing the matching points x;, the
collocation points zj, and the space P, so that nonsingularity is satisfied.

In addition to (2.15), we also require the boundary conditions to be satisfied. For

example, for Dirichlet boundary conditions, we require that

uf =gz ty), zFed at t=t. (2.20)

11

2.3 The collocation approach

To find the approximate solutions, we associate a polynomial p(X,tx) € Ppim to each

element at time step tx. Here P,,, is an appropriate (n + m)-dimensional polynomial

space, spanned by basis functions ¢;,¢ = 1,2,---,n 4+ m,
n+m
p(X,t) = > ciltr)g:(X), X e (2.21)
i=1

For any two adjacent finite elements, the following conditions are required to be satisfied

at the matching points z; on the common boundary:

- The values of the neighboring polynomials match,

- The normal derivatives of the neighboring polynomials match with (2.22)

values of opposite sign.

Further, cach polynomial must satisfy the collocation equations at the collocation points z;

of the corresponding finite element.

Lp(zj,tx) = fu(z;), 7=1,2,---,m. (2.23)

Also, the boundary conditions must be satisfied. For Dirichlet conditions,

p(:Ei,tk) = g(:ri, tk), :EiC € 00 at t = tg. (2.24)

The finite difference scheme from Section 2.2 and the collocation scheme are equivalent

in the following sense:

Theorem 1 For each finite element Qy, let the matriz (®|Ls) be nonsingular and let the
matrices A and B be defined by (2.19). Suppose there is a solution of the collocation scheme
(2.22), (2.23) and (2.24). Then the values of the local polynomial and its normal derivative
for all finite elements, evaluated at the points x;, will satisfy the finite difference equations
(2.15).

Conversely, suppose there is a solution of the system of finite difference equations (2.15)

12

of all elements, also satisfying the boundary conditions (2.20). Then for each element,
one can uniquely interpolate the finite difference solution at the matching points by a local
polynomial p(X,tx) € Pnim that also satisfies the differential equation at the collocation

points z;. The local polynomials so constructed satisfy the continuity properties in (2.22).

Proof. By (2.21), we have p(X, t;) = 1" ¢;(tx)$i(X). The collocation equation (2.23)
can now be written as 310" ¢;(tx) Loi(2;) = fx(24), or Lick = fx with Lg defined in (2.17),
and where ¢, = (c1(tg), c2(tr), - -, cntm(tk))*, and fi is as in (2.15). Let ux = ®*cx and

v = Rjck, and use (2.19). Then

VL — Auk - Bfk = Rii,ck - A<I>*ck - Bfk

f

[¢(Re — @A")]" — By

[ck(LoB*)]* — Bfk

BLE)C]c — Bfk = B(Lji,ck - f]c) =0.

Conversely, let (ug, vx) be a solution of the finite difference equations (2.15). Define ¢ =

(Cl (tk)» C'Z(tk)v Tty Cn+m(tk)) by

o* U
= , (2.25)

Ly Tk
and let p(X,tx) = S0 ™ ci(te)$i(X). Thus, ¢ satisfies ®*cp = uy and Lici = fr. Hence
p(X, tx) satisfies the collocation equations (2.23). Since (p(x1, tx), p(T2,tk), -, p(Tn, tx))* =
®*cp, = uy, neighboring polynomials are continuous at the points z;. As for Vp(X, tx)*n,

where 1 = (71,72, - -+, 7n), we have

vp(xly tk)*nl

Vp(xo, te)*
(w2t | _ Rbcy, = (BA* + LoB*) cx

Vp(CCn, tk)*nn
= A®*cy + BLjcy

13

= Aup+ Bfi = .

It follows that the value of Vp(X,tg)*n for neighboring polynomials is also continuous at

;.

2.4 Local basis construction

In the system (2.19), the coeflicients a;; and 3;; must be solved for each finite element. For
this purpose, a basis ¢;,i = 1,2,---,n + m must be chosen. Generally, the basis of power
functions is a good choice. For example, this basis is {1, z,y, 22, zy, 4%, - - -} for the 2D case.

When calculating ®, Ls and Re, the values of z; and z; should be chosen as “local
values”, since this will avoid loss of significant digits. For example, in a local triangular
element, we can use the distance between each z; and the center of the element. Also, we
can use LU-decomposition for the matrix (®|Lg), in order to avoid calculating the inverse
matrix, and reduce the amount of calculation, as will be shown in Section 5.6. Furthermore,
from Equation (2.10) we can see that, if the coefficients b, ¢ are time-independent, dt is
constant, and the mesh does not change with time, we only need to calculate (A|B) once

and store it in memory. All examples given in this thesis belong to this case.

14

Chapter 3

The Rivara Algorithm and

Triangular Meshes

As mentioned in Section 2.2, we need to refine the domain 2. Since square elements are
too restrictive, triangular elements will be used. There are many algorithms which use
refinement to generate triangular meshes. The main reason to use triangular meshes is that
it allows adaptive methods, which need less computation. Bank [15, 16, 17] developed a
software system PLTMG for this purpose. For triangular refinement, there are two issues

that we need to consider:
1. The number of triangles generated should be small, whenever possible.

2. The minimal angle in the generated triangles should not be too small, otherwise it

will influence the accuracy of final solutions.

The Rivara algorithm [20, 21, 22, 61], which is used in this thesis, is a method that satisfies

the above requirements.

3.1 The Rivara algorithm

A basic algorithm for applying refinement to a triangular domain is the Rivara algorithm.
If the domain is a polygon, then we can first divide it into several triangles, and then use the

Rivara algorithm to do further refinement. In the Rivara algorithm, a triangular region is

15

always refined by inserting an additional edge from the midpoint of the longest edge to the

opposite corner, as shown in Figure 3.1. The following steps define the Rivara algorithm:

Figure 3.1: The refinement of a triangle.

1. First refine all triangles that need to be refined, based on certain refinement criteria.
For example, refine any triangle whose longest edge is larger than a certain value, or
whose center is near a refinement point. The refinement continues recursively until
the refinement criterion has been met. The division of any triangle should be done
by inserting an additional edge from the midpoint of the longest edge to the opposite

corner.

2. Going back to the full domain, recursively find any triangle which has not been divided,
but has edges that have already been divided. This means that the edges were divided
while dividing neighboring triangles. The midpoints of these edges are called “hanging
points”. In another words, one must find the triangles with hanging points. Then we

refine these triangles based on the longest edge criterion.

3. Repeatedly check for triangles with hanging points, and refine these triangles based

on the longest edge criterion, until no such triangles remain.

The Rivara algorithm [22] has been proven to terminate with a regular mesh in a finite
number of steps. Also, it will not generate bad angles, such as 0 and 7. In fact, if « is the
minimal angle in the original domain, then the minimal angle in the mesh, obtained after
the algorithm terminates, is not less than «/2. This was proved by Rosenberg and Stenger

[24]. Figure 3.2 gives an example of how to deal with a hanging point P. The minimal

16

angle of the mesh on the right will not be less than one half of the minimal angle on the

left.

Figure 3.2: Elimination of a hanging point P according to the Rivara algorithm.

3.2 A variant of the Rivara algorithm

A variant of the Rivara algorithm to obtain a stronger and more uniform refinement, is to
divide first all triangles that need to be refined into four subtriangles [20], as shown in Figure
3.3, and then to use the Rivara algorithm to apply further refinement. Again, this algorithm
will terminate, and the minimal angle generated will not be less than one half of the original
minimal angle. Considering the binary tree representing the mesh structure, the first step
of this algorithm will make building the tree more complex, since more intermediate nodes
need to be added into the tree. Also, these triangles cannot be treated as simple local

triangular regions. This is why in this thesis we use the original Rivara algorithm.

Figure 3.3: The refinement of a triangle into four equal parts.

17

3.3 Triangular meshes

The Rivara algorithm can generate different triangular meshes if the original domain or
the refinement criteria are varied. A very simple criterion is that the longest edge of any
triangular elements should not be larger than a certain value. If there is any local triangular
region that has the longest edge larger than this value, then it needs to be divided. Other-
wise, no division is necessary. Once there is no such local region left, we need to do further
refinement to deal with the hanging points. Such a process will result in a uniform mesh if
the original domain has regular shape, such as a square. This criterion is straightforward
and easy to implement. However, if the solution of a PDE exhibits a peak, or even a sin-
gularity, then it is necessary to generate a mesh of high overall density, which will require
much computation. Therefore, local refinements are needed to deal with sharp peaks and
other rapid local variations of the solution of the PDE.

Figure 3.4 shows a uniform mesh for a unit square, generated with the criterion that
the longest edge of any element must to be shorter than 0.2. Here we use d,, to represent

the upper limit of the longest edge of the element. Figure 3.7 shows local refinement near

Figure 3.4: A uniform mesh generated by the Rivara algorithm of a unit square €, d,,, = 0.2.

18

the points (0.5,0.5) and (0.25,0.625), with d,, = 0.015. Also, any local region, for which
the distance from its center to one of the two refinement points is less than d, = 0.05, may
need refining. Figure 3.6 shows local refinement near the points (0.5,0.5) and (0.25,0.625)
with dp, = 0.0015 and d, = 0.05. Some other examples are shown in Figure 3.7 and Figure
3.8. Here, d, denotes the upper limit of the distance from the center of the local region that

needs to be refined to a reference line.

3.4 Higher dimensional cases

The Rivara algorithm is suitable for 2D space domains. As mentioned above, the minimal
angle obtained will be no less than one half of the original minimal angle. This fact has only
been proved for the 2D case. Spaces of dimension higher than two will pose a problem for
the Rivara algorithm. For example, for 3D spaces, we can divide a tetrahedron similarly by
adding a new surface passing through the midpoint of its longest edge and passing through
the edge opposite to its longest edge, but we do not know whether recusively refining in this
way will generate strange local regions or not. There are many recent papers that discuss
the refinement of 3D space domains. Some discussion of this topic will also be given in

Section 8.2.

19

dp, = 0.015, d, = 0.05.

7

it square ()

ints of a un

Local refinement near two po

Figure 3.5

7
o

dy, = 0.0015, d, = 0.05.

7

it square €

ints of a un

Local refinement near two po

Figure 3.6

20

it square Q, d,, = 0.015, d,, = 0.05.

5of aun

=0

mex

al refinement near the 1

Loc

Figure 3.7

-

o

-

0.04 of a unit square

625)% =

-0

Y

(1

+

)2

25

0

T —

(

ircle

Figure 3.8: Local refinement near the ¢

.0056.

0

T

d

5

Q, dp, = 0.01

21

Chapter 4

Nested Dissection

4.1 The procedure

The nested dissection algorithmm does backward recursive elimination of the unknown wg
and vy at the matching points on common boundaries of adjacent local regions. “Adjacent
regions” means that the two regions result from subdivision of their union region. These
two regions can be a polygon and a triangle generated by subdividing the original polygonal
domain, or two triangles generated by subdividing a triangular region. Thus they can be
represented as the descendant nodes of a common parent node in a recursive binary tree.
“Backward recursion” means that the elimination starts at the leaves and terminates at the
root of the binary tree.

This recursion procedure will result in the elimination of all unknown u; and v at the
interior matching points. What is left is a system in the unknown u; and v only at the
points x; on 95). The boundary conditions are then used to determine the values of u; and
vk at x; on 0f). Thereafter, a recursive backsubstitution will give the values of u; and v
at the matching points on each interior boundary.

For the Dirichlet boundary conditions (2.20), the values of ug and vi at the matching
points on 0§} can be calculated directly. For Neumann boundary conditions, the situation is
a little more complex. We need to combine the final system of equations, after elimination
of the interior unknown ug and wvg, with the boundary condition at each z; on 052, to form

a new system and solve it.

22

O — 200,

1931 4

7 Qz

— O0f1y

Figure 4.1: Two adjacent subregions and their union.

4.2 Local elimination

Consider two adjacent regions, 23 and {29, as shown in Figure 4.1. They can be finite

elements or local regions, represented in the binary tree. In €, the common boundary will

be called 92, and the remaining part will be called 9Q;. In 5, the remaining part will be

called 0€23. The variable uy for region ; in the finite difference equation (2.15) is split into

u,lf with the corresponding z; on 9, and uj, with the corresponding z; on 8Q;. Similarly,

uy, for region) is split into u2! and u2. The variable vy for each region is split similarly.

Let

fek = Bfy.

For region Q1, Equation (2.15) can be written in the form

1 1 12 1
v = Avug+ Avur” + fo

W = Buub+ Budl?+ 52,
while for 029, their form is

23

(4.1)

’U]% = AQUi + Agl’uil + fcgk, (4.4)

vt = Bauj + Baug' + fi, (4.5)

where (fL, f12)* = fo for Qu, (f2, f21)* is similar for Q9. The continuity relations (2.22)
give the equations

12 _ 21 12 21
up© = Uy, U = —Ug - (4.6)

Define

By, = Big + Bas. (4.7)

Then from (4.3), (4.5) and (4.6), it follows that

Biuj + Buaui” + fof = —(Bouk + Barui' + fii)
(Biz+ Ba)w? = —(Buug + Boug + [+ f%)
Bnug® = —(Biug + Baug + [+ f%)
ui = —B!'(Biug+ Bouk + fof + f3)- (4.8)

We substitute this equation into (4.2) and (4.4). Again using (4.6), we obtain

vg = Avuy — ApBrl(Brug + By + fof + &) + faw (4.9)

vi = Agui — An By (Biu + Bouj + fOR + f3) + [(4.10)
We can rewrite the above as

vy = (A1 - ABy B)up + (—AwBy! Bo)ui + [fo — AuBy (fE + f3)),

v = (=AnB;'Bi)ui+ (Ay — A By By)ul + 3 — A B (f2 + f2)).

Define

24

Cii = A1 — A1uB; By, Ciz = —A;B;,! By,

Cn = —AnB'Bi, Ca= Ay — AnB' By,

— 124 21
and let f7} = f.2 + f5, and

1 1 -1
5% = foo— ABy [l

2 = fa-AuB [}

Then the equations (4.9) and (4.10) can be written in the form

U;i = Cuu}c -+ Clgu,% + fj}i, U,% = Cglullc + CQQU% + fcs;? (411)

Equations (4.11) are the discrete equations for the composite region. Thus, for the union
of 17 and €9, after eliminating u,lc2 and v}f on the common boundary, the new equations

are again of the form (2.15).

4.3 Complexity estimation

For nested dissection, for Equations (4.2)-(4.5) and (4.11) we need the following vector and

matrix calculations:

Bm:B12+B21a fg:: c1k2+ c2k}’
B,,D1 = By, BmD2 = B, Bmgk = crz7
Cll — Al — Alng, Clg = —-A12D2, 53 = (}k - Al2gk:

Cop = —Ao1 Dy, Cog = Ag— AnDo, fg;? = fgk — A219k-

c C

25

The matrices in these equations have the following dimensions:

A1 tnp X ng, A12 Ny X Nig, A2 1o X Ny, A21 1 g X N9,
By :my2 X n1, Bja:inig X niz, Ba:nge Xng, B :nip X nig,

Dl 1 N2 X Ny, D2 N9 X Na.

Now we count the number of arithmetic operations, restricting the count to multiplica-
tions and divisions. To perform a LU-decomposition of B, we need —%(n%Q —1)n12 operations.
To compute Dy, we need n2,n; operations. Similarly, Dy needs n?,ns and gj needs n?, op-
erations, while A12D7 needs nlgn% operations. A12Dg, A12gk, A21D1, A1 D9 and Aggy are
similar to A12D2. Given this, the total number of arithmetic operations W of the nested

dissection of a local region is as follows:

1
2 2 2 2 2
W = 5(7112 — 1)”12 + NNy + Nq19M2 -+ Nis + LIPS

+TL127L§ + 2n19ning + niong + nigng

1
= -§n12(n%2 + 3niang + 3ni9ng + 3nqe + 3n? + 3n§

1
+6n1n2 + 3ny + 3ng) — 57‘&12
1

1) X
= g[(nm +nq +n9)% — (n1 + n2)3] — §n12,

or

W m =[(n12 + n1 + n2)® — (n1 + ng)?]. (4.12)

Lol =

Note that when the generated mesh does not change with time, the matrix A in (2.15)
does not change either. In fact, all matrices remain unchanged. Only the vector f/ changes
with time. Thus, we need to calculate the matrices only once and save them in memory.
At each time step, we only need to update f7}}, which costs (niz + n1 + ng)niz arithmetic
operations. For example, if the unit square () is divided into a uniform mesh, and the level of
recursive division is 5, as shown in Figure 4.2, then there will be 32 elements. For example,
suppose cach edge of each element contains three matching points, and the number of time

steps is 100. Based on (4.12), taking account of the costs of updating fJ} at each time step,

the total number of arithmetic operations will approximately be as follows:

26

From a — b, we need
1 . . .
Wioeat % (2 (3% — 2%) 4+ (7 — 6%)] x 3% = 55 x 3.

From a — b — ¢, we globally need
2 . 1
ngobal ~ Z 92k-1 55 % (23——k % 3)3 + E))_(53 _ 43)(22 % 3)3
k=1
= 55 x 5184+ 61 x 576

= 320256.
Therefore, taking into account the updating of f7! at each time step, the total is

2%=1 5 11 x (237% x 3)2

S

Wtotal ~ ngobal +[

o
Il
-

+1 x5 x 22 x 3)%] x (100 — 1)

3
= 320256 4 651024

—~~

= 971280.

Here it takes much more calculations to get the solution at the first time step than at
other time steps. For other cases, where the mesh changes or where the basis changes with

time, the matrices need to be recalculated at each time step.

Figure 4.2: Nested dissection of a unit square €.

27

Chapter 5

Implementation

The numerical solution of linear parabolic PDEs, using collocation methods, is a complex
procedure. This is why the data structures of the domain €2 and the generated meshes should
be designed appropriately, and the Rivara algorithm and the nested dissection method
should be implemented efficiently. Also, various kinds of boundary conditions must be
dealt with. The implementation may also be combined with a visualization tool to give

instant animation of the numerical solutions.

5.1 Objectives

In order to make the implementation flexible, in order to adapt to various PDEs, and to
be easily expanded in further development, there are certain objectives which we need to

consider:
e A suitable way to generate the basis of the power functions in any dimension.

e Appropriate data structures to describe general domains and generated meshes in
any dimension, and to keep intermediate data for later use, for example, matrices and

coeflicients of local polynomials.
e An efficient way to implement the Rivara algorithm.

e An eflicient way to do matrix calculations.

28

e A uniform way to deal with Dirichlet boundary conditions and with Neumann bound-

ary conditions.

e A good implementation of the nested dissection method to deal with different meshes,
for example, the mesh that has neighboring local regions sharing two common faces,

as shown in Section 5.7.
o A runtime structure suitable for both calculation and instant visualization.

We have chosen the Language C/C-++ to implement the calculation code, since this lan-
guage is very flexible, efficient, and widely used on almost any platform. Also, it is very

suitable to describe variable data structures, and it is easily linked to code written in other

languages, such as FORTRAN.

5.2 Data structure

The data structure is the most important part of the implementation code. It should be

flexible for calculation, and easy for further expansion.

5.2.1 Region description

We start from the description of a vertex in any dimension. The details of a vertex structure
in C/C++ are given in Appendix A.l. Figure 5.1 shows the runtime memory image of a

vertex structure: Here is the way to create a vertex structure.

vertex = (VERTEX *)malloc(sizeof (VERTEX) + nDim * sizeof(double));

vertex->coord = (double *)((char *)vertex + sizeof (VERTEX));

The entire structure can be created at one time. This is more efficient than to create the
main structure and the coordinate data area separately. In fact, in the implementation, all
variable structures are created this way, except for some members whose size can not be
determined at their creation time.

Second, we look at the structure of a face. The details of a face structure in C/C++ are

29

index

ecount

ecountc

mcount

minsol

maxsol

solerr

solution
coord
0]

X[I;- 1]

Figure 5.1: The runtime memory image of a vertex structure.

given in Appendix A.2. Figure 5.2 shows the runtime memory image of a face structure.
In this figure, p = nmatp, which denotes the number of matching points on this face.
The member “region” has two pointers, which point to the two regions sharing this face.
When the face is a part of the boundary, one pointer of “region” pointing to the outside
region will be NULL. The member “next” has two pointers, which point to the two subdi-

visions of the face. If there is no further subdivision, these two pointers will be NULL.

index matpts[0] coord
nmatp : : u
matpts matpts[p-1] du
region|0 v
regionH \ | - dv P
next[0] reslon | x[0]
next[1] region I :
comvert x[n-1]
ndim :
vertex 'ﬁ face ‘ coord
normal :| o] face | : mPp-1
v[o]
: vertex J
v[n-1]
nor|0] vertex |
nor|[n-1] vertex |

Figure 5.2: The runtime memory image of a face structure.

30

Third, we look at the structure of a region. The details of a region structure in C/C++
are given in Appendix A.3. Figure 5.3 shows the runtime memory image of a region struc-
ture. In this figure, the sizes of the arrays are determined by the input parameters. Here, we
only use some symbols, such as nm, nc and ns, for clear explanation. The member “bgdata”
points to the structure storing the information for local triangular regions. The member
“egdata” points to the structure storing information for elements. The member “ngdata”
points to the structure storing the information that is necessary for nested dissection. A
region data structure will not have all valid pointers to each of these three structures at the
same time. Therefore, we use dashed arrows to denote them.

Generally, matrices can not be directly allocated in C/C++. They can only be defined
as variables, and the number of columns also need to be known. Since many matrices
are needed during the calculation process, dynamic allocation is very useful in the imple-
mentation. For example, the member “colpts” of “egdata” points to a matrix storing the
coordinates of the collocation points of an element. The number of collocation points will
only be known when the application gets it from a configuration file. Therefore, the dimen-
sion of this matrix will be variable for different input values. For convenience of dynamic
allocation, the function Alloc2D in Appendix B.1.1 will allocate a n1 x n2 matrix. When
accessing an item of the matrix, it is not nccessary to calculate its position, since we can
directly find it through the pointers. Some other matrices, such as (A|B), are allocated to-
gether through the function AllocMulCol2D in Appendix B.1.2, for conveniently calculating
(2.19).

5.2.2 Binary tree

The recursive binary trce mentioned in Section 2.2 is gencrated based on a region structure
as one node, shown in Figure 5.3. In fact, the binary tree is adaptable. It can represent a
very general domain, as long as the domain can be subdivided into two parts. For example,
in the 2D case, the domain can be any polygon. When the binary trec is created, it looks
like the one shown in Figure 5.4.

Here, dashed lines mean that there are several levels of nodes. Each intermediate node must

have two children. It can be a locally divided triangular region, or even a combined region

31

index A0] |- - + longv0 colpts{0]
drawn : | longvl : :
regiontype Alnm-1] |1 longlength olpts[ne-1
nmatp B[] | — center
A : | 1 weight data
B B[nm-1] : - midpoint |- - | colpts H
abdata | ndface | phillu phillu[0]
ani data | xmin || Iphi ‘ :
aci | xmax | phildata Lahﬂlu[ns—l
va = | grad : philri Iphi[0]
fvp [W c[0] | philci :
next|[0] ani[0] |! : | C H—l| |lphi[ns-1]
next(1] : ! c[n-1] | fe T
ndim anifin-1] | wlo] | solvplot
' . | data
vertex | : nvplot
face acil0] |, w(n-1] :
nfaces : |~ mp[0] |, g0i[0]
vertorder acific-1] |1 : | : L~ philri[0]
comface F------ mp[n-1] |1 g0i[i0-1] :
ncommon ; fvp[0] ndf[0] |! philri[ns-1]
nnvert ! : : ! gli[0]
bgdata |-~ H - fvp[nm-1] ndf[n-2] : : L+ philci[0]
egdata - - |t - - - - - - 9 xmin[0] |, glifil-1] :
ngdata | — - I : i philci|ns-1
v([0] i LL,TH——" xmin[n-1] |74 bmlu[0] ol
: H——{ region |' xmax[0] |'||}: : — C[0]
v[n+1] ' ' : "11| ~pmlufim-1] :
o] K| l xmax[n-1] | B Clns-1]
. vertex |/ ! data
oy M @
fInf H) . I : I felo
vord|[0] : @I gn-1] |1||||~ bmri[0] :
: I L - - - - : fe[nc-1]
vordn+1j||| - - - - = - - - ~ = g0l —{||| bmrifim-1]
cf0] ||*——— face | gli sp[0]
: : : nr0ematp bmci|[0] :
cffn] |"—— face | nrlematp : sp[nvp-1]
bmlu bmcilim-1]
bmdata
bmri fe[0]
bmci —’ :
fc fc[im-1]

Figure 5.3: The runtime memory image of a region structure

32

Figure 5.4: The structure of a binary tree.

which is formed by a polygon and a triangle. The first few levels are created manually, the
lower levels are generated through the Rivara algorithm. This will be discussed in Section

9.3.

5.2.3 Input parameters

Parameters that set the number of matching points on each face, the number of collocation
points in each element, time, original domain description, PDE problem module, efc., are
given in a configuration file. The calculation application will first rcad them into a parameter

structure. The details of this structure in C/C++ are given in Appendix A .4.

5.3 Region definition

Since the domain of PDEs can be very general, it is not easy to find a suitable way to
describe a domain of any shape. The present implementation in this thesis can deal with

any polygon in 2D space.

33

5.3.1 A local triangular region

In this thesis, each local region in 2D space must be a triangle. This way, the Rivara
algorithm can be used for further refinement. Therefore, there must be a definition of a local
triangular region that gives the information on vertices, faces and their relations. Figure

5.5 shows a local region and its labels. First, we label the three vertices in anticlockwise

2
1 0
0 1 1
2
Figure 5.5: A local region and its Figure 5.6: A subdivided local re-
labels. gion and its labels.

direction, and we label the opposite face with the same number. Then we subdivide, if
necessary, and we label the new regions as in Figure 5.6. The vertices and faces of a child
region are labeled in the same way as above. The original vertex 2 is still vertex 2 in each
child region. The newly generated midpoint of the longest edge, which is face 2, is vertex
1 in the left child region and vertex 0 in the right child region. The original face 2 now
has two children, face 2 of the left child region, and face 2 of the right child region. The
common face is face 0 in the left child region and face 1 in the right child region. There are
two other cases, namely, where face 0 or face 1 is subdivided. The labeling for these two

cases is the same.

5.3.2 The original domain of a simple polygon

The original domain will not always be a triangle. Often, the domain is a polygon. In such
a case, we divide the polygon into several triangles, and we label the vertices and the faces.
For the sake of simplicity, assume that each local region shares only one common face with
its sibling. Figure 5.7 shows the relation of the first two triangles and their labels .

There is always a way to label the vertices and the faces to let the common face be face

34

1

Figure 5.7: A combined region re containing two triangles.

2 in rg and face 0 in r;. Together rg and 71 form a quadrilateral ro. We continue to relabel
the faces of ro. Then r5 can be combined with the next triangle r3, as shown in Figure 5.8.

We assume ry shares face 2, which is face 1 in r, with r3. If the common face is any face

2 0 1
1 T9 3
3 2 0
2 0 1
1 r3 2
0

Figure 5.8: A combined region r4 containing one quadrilateral and one triangle.

other than 2, then the processing way will be the same. Now r; and r3 form a pentagon
r4. For ro, the labels of the vertices are still given in Figure 5.8. But in fact, they will
not influence the calculation process. On the other hand, the labels of the faces are very
important, since they will determine the order of the matching points later in the nested
dissection process. Note that we always want to label the newly added triangle so that face
0 is the common face, in order to make the process simple. Now, if the pentagon ry is the
full original domain, then the mesh has been completed. If there are still other triangles,
we continue the process until all the triangles have been added and the original domain, a

polygon, has been formed. The corresponding original binary tree will be like that shown

35

in Figure 5.9.

5.3.3 The original domain of a more complex polygon

If we suppose that the original domain is a hexagon, then it is possible to divide it into four
triangles, where each triangle shares one common face with its sibling, as shown in Figure
5.10. However, it is better to divide the domain into six triangles, since this produces better
angles, as Figure 5.11 shows.

For the case of Figure 5.11, we can still create a binary tree, in which each of the first
five triangles shares only one common face with its siblings. However, the last triangle has
two common faces, as Figure 5.12 shows.

The present implementation takes this into account. Figure 5.13 shows an example that
applics local refinement, as seen in Figure 3.7, but this time the domain is a right hexagon
with the length of each edge being 0.5.

In this example, the left border of the hexagon is at x = 0. Each line drawn in the
Figure 5.13 is an approximation, since the width of the domain, 0.5 X /3, is an irrational
number.

For this problem, we can still use the strategy of one common face. For some other
cases, we have to use two common faces. For example, if the original domain contains a
hole, then there is no way to use only one common face. Section 6.6 of the thesis provides

an example that will give information pertaining to this.

5.4 Basis generation

There are ways to generate the basis of power functions in any dimension. In the colloca-
tion method, we need to know the exponents and coefficients of the basis, the first order
derivatives and the second order derivatives. A suitable strategy for this is to use a recursive
function to calculate the exponent of each coordinate and the coefficient of each basis. The

implementation functions are given in Appendix B.2.

36

2 T3

o] [

Figure 5.9: The original binary tree of a polygon domain.

Figure 5.10: A hexagon divided Figure 5.11: A hexagon divided
into four triangles. into six triangles.

37

Figure 5.12: The labels of a hexagon divided into six triangles.

Figure 5.13: Local refinement near two

38

5.5 Selection of the matching points and the collocation points

There are many ways to select the matching points and the collocation points. One way
to select the matching points is to use equal intervals, which gives uniformly spaced points.
Another way is to select Gauss points. Numerical results show that Gauss points for square
element regions can produce higher accuracy than other selection strategies. In the imple-
mentation code, we allow uniform points or Gauss matching points. The selection of the
collocation points in a triangular element presents a problem, since there is no easy known
strategy like that for square elements, which uses the intersections of lines connecting the
pairs of opposite matching points to be the collocation points. We have used various strate-
gies, including random collocation points, to see if the solutions are accurate. In some
cases, inappropriate selection can make the matrix (®|Lg) singular. Therefore, we may
have to select many possible choices of collocation points in order to find stable oncs. The

procedures used in the implementation are presented in Section 6.1.

5.6 Matrix calculations

Since matrix addition, multiplication and transposition is fairly easy, it will not be men-
tioned here. The matrix calculations mentioned are Gauss elimination and matrix inversion.
Matrix inversion can be done through Gauss elimination. Thus we will focus on Gauss elim-
ination.

Gauss elimination is often used in solving systems of linear equations, a topic mentioned
in many books on linear algebra [27]. The common way to perform Gauss elimination is
to apply LU-decomposition first, then solve two systems of equations of triangular form. A
variant of Gauss elimination is Gauss elimination with pivoting, which interchanges rows, or
both, rows and columus, in order to let the pivot in the subsystem at each step be as large

as possible. This avoids loss of accuracy due to large multipliers. For example, consider

1 1 o 1
(0.0000001 1 1 2

39

If we assume that the accuracy of representation is six significant decimal digits, then the
solution is

xp = 1.00000E + 00, z; = 0.00000E + 00.

However, this solution is not correct. If we first interchange row 1 and row. 2, then the pivot

at the top left corner becomes the largest. Solving this system, we get
xo = 1.00000F + 00, 7 = 1.00000F + 00,

which is accurate.

As the above example shows, selecting the largest pivot necessitates the interchange of
rows or columns. Since the intermediate matrices are needed for later use, these interchanges
will make the processing more complicated. A better way is to remember the order of the
changed rows and columns, and not actually to interchange them. In the implementation,
we use a pointer array for rows and a pointer array for columns to keep track of the order
of the interchanged rows and columns. For example, consider solving a linear system of

equations of the form:

W~ [\
— —
_ W
[p—
I

—
—
wo
[S]
8
[\
|
) o0 oo oo

2 21

[\]
8
[

We only treat one column, for simplicity. Using regular LU-decomposition, and storing the
matrix L in the bottom left corner of the original matrix, omitting 1s on the diagonal of L,

it produces

[N)
|
—_
I
()
I
—

B[
N

—
!
—
|
-3
|
N |

The solution is

(zo,z1, T2, 23)" = (1,2,1,1)".

40

Now, using Gauss elimination with pivoting, we apply LU-decomposition again. First, we

set the original order in the arrays. This produces

When interchanges are needed, we only change the order in the corresponding pointer array,
but the actual rows or the columns are not interchanged. After division, we write L and U

separately for the sake of clarity, This produces

0 21 3 0 21 3
1 1010 0o+ 2 1
0 10 0 0 41 1 1
3 R A 00 01
2 11 %0 0 f 0%
Now, we put L and U together to save memory:
0 213
5
1 3 3 5 3
0 41 1 1
1 1 10
3 1z 7 w1
1 7 1 7
2 25 5 5

This time, the order of the calculated x;,7 = (1, - - -, 4) should be in the order of the columns’
pointer array and the order of the equations used should be in the order of the rows’ pointer

array. First, we solve

Lg=f

41

and we get

) 21,
(90,91, 92,93)" = (4,8,1, 3))

Then we solve

Uzr=yg.

Note that the order is the order of the columns’ pointer array, (0,2,1,3). The solution is

then the same as above.

5.7 Nested dissection labeling and calculation

The nested dissection algorithm necessitates many matrix calculations. Also, it necessitates
the repeating merging of two local regions into a larger region. Since the order of the
matching points is very important, the process should be arranged carefully. Starting from
the two elements shown in Figure 5.14, we assume that there are two matching points on
each face, and we allow the number of collocation points to be variable. We merge the two

elements as follows:

0
Figure 5.14: Two sibling elements Figure 5.15: A combined local re-
and their matching points. gion and its matching points.

Here, the collocation points are not indicated, since their number is not important in the
process. First, we label the matching points of each element according to the local order
of its faces. From (4.1), (4.2) and (4.3), we can sec that the order of fy is the same as
the order of v, which is also the order of the matching points. The order of the matching
points on each face starts from the vertex with the smallest global index and ends with the

vertex with the largest global index. This will cause the labels to have a unique order. The

42

labels of the matching points of rg are (0,1,2,3,4,5). Separate the ones of the common

face as l§ and the rest as [j. Thus

I§=1(2,3), Iy=1(0,1,4,5).

Those of r1 are

§{=1(4,5), 17=1(0,1,2,3).

Also we label the matching points of the combined local region ro in Figure 5.15, i.e.,
(0,1,2,3,4,5,6,7). We separate the matching points of r from the ones of r;. We give the
order of ry as gg and the order of r; as g;. We assume that the order of face 0 is from left

to right. Then go and ¢; are

9o = (2,3>4a 5)’ a = (O, 1,6, 7)

Now, according to (4.2), (4.3), (4.4) and (4.5), we divide the matrix A of ry and the
one of r1 into Al, A1o, B1,Bi2, Aa, Aoy, Ba, By1. They are located in matrix A, as shown
in Figure 5.16.

Next, refering to (4.11), we first allocate memory for the matrix A of ro, and determine
the locations of Cy1, C2, C21 and Cas. Their locations are shown in Figure 5.17. Then we
calculate By, according to (4.7). We define

T = A12B,_1

m

T, = Ay B L.

For these equations, we need to obtain the matrix inverse of B,,. However, matrix inversion

will take much calculation. We can rewrite the above equations in the form of

T1Bp, = A1z, 15B,, = Ag. (5.1)

Equations (5.1) are systems of linear equations, but the unknown variables 77 and T, are
on the left side. We can still use LU-decomposition to solve these two equations. We apply

LU-decomposition to the matrix B,,. Then we allocate T} and T and solve the triangular

43

0

T
1
i
i
I | =
< : Q
f
!
i
[
i
o~ ! ™~
< _ Q
|
L
o — ~ o™ <t 0
T T
| . | ~
<t [q | <
| |
| |
||||| m— - - m == -
a _ S _ 9
< I A I <
| |
|||||]
i [

— | - | —
<t | Q | <
| |
l l

Figure 5.16: Matrix A division of 7y and the division of ry.

I !
I | ~ | ~
S $))

[1
IIIII _IIII|||||II_.'II|I..||I.
[1
[!

[i

5 ! = b3
O [Qo I O
[[

[[
[[

[[
||||| mm— - — - - —— === -
8 ! 9 _ N
O | O | O
1 |
[|
[ean] i} © ~

Figure 5.17: Matrix A division of rs.

44

form equations, although they are different from Section 5.6. We assume

By, = LiyUnm, (5.2)

then (5.1) becomes

TleUm = A127 TQLmUm - A21~

For example, T} can be solved from

WL, = G.

Thus,

Cn=4A-1T1By, Ci2=-T1By,

Co1 = 11 By, Cyp = Ay —T1T,Bs.

Also, we calculate f77, to get

Il

sl 1 m
ck fck -1 cks

s2 2 m
ck — fclc—T2 ck-

To calculate Ci1, first calculate T7B; and save the result in the location of Cj;. Then we
subtract it from A; to get C11. The matrices Cia, Ca1, Co9, and the vectors | Cskl and | g,?
are calculated in a similar way.

The LU-decomposition of the matrix B,, must be kept in memory for the later back
substitution. Most other matrices also need to be kept for the next time step, if they do
not change. This will save much calculation time.

We continue with the recursive nested dissection process. Although the number of rows

and columns of the matrix A becomes larger, the process will be the same.

45

5.8 Applying the boundary conditions

After recursive nested dissection, we get a linear system of equations of the form:

vg = Aug + feor-

We assume that there are n;, matching points on the boundary. Then ui and v are both
vectors of ny items. There are 2np variables in total. But there are only n, equations, that
cannot determine all the variables. For this, we now need to use the boundary conditions.

In this thesis, we keep things simple. Since there are various kinds of boundary condi-
tions, including nonlinear boundary conditions, solving such equations will be more difficult.
We only consider the linear cases mentioned in Section 2.1. They are the Dirichlet bound-
ary conditions and the Neumann boundary conditions, as in (2.7), (2.8) and (2.9). The
boundary conditions at ny matching points give n, equations. If we put these ny equations

and the previous n, equations together, we will get a system of the form,

Myug + Mov, + h = 0.

Here My and My are 2ny X n, matrices, and h is a 2n; vector.

Now we can use LU-decomposition to solve this system for all u; and vg on the boundary.
If the boundary conditions are only Dirichlet type, then we only need to solve for ug, and
it is not necessary to solve for vy.

After solving for uy, we can use (4.8) to calculate uy of the matching points on the

common face. We rewrite (4.8) as

Bpuj? = —(Biu} + Boud + f12 + 7).

Note that the order of u,lc is gg, the order of u,2c is g1, the order of fclk2 is {5 and the order of

2 is IS. Here go, g1, I§, I§ refer to the full domain and its two children. Let

12 21
fgcl = Jek + .fck;a

46

so that

Bpui? = —(Byuj + Boul + f7).

Since By, has already been decomposed, as given in (5.2), we can use it directly. Then

LmUmulng = —(Blu%, + Bzu% + fgcl')

Given this, we only need to solve the triangular forms. This will also save much calculation
time. Recursively, using (4.8) to do back substitution, we can solve for all uy at the matching
points on each common face. All the values of ug at the interior matching points have then

been obtained.

5.9 Calculation of local polynomials

If we only want to know the solution value at each matching point, then they have already
been found. However, if we want to know the value at other points, then it is necessary to
calculate the coeflicients of the local polynomial of each element. In this thesis, since we
solve parabolic PDEs, we need to know the value at ecach collocation point also. We can get
these values from the local polynomials. Also, we want to know the values at the vertices
of each element for graphical display of the solutions.

In each element, using (2.25), we can form a linear system, and use LU-dccomposition
to solve it. For the coefficients ¢, since LU-decomposition of ($|Lg) has already been done
when we compute the matrix (A|B), we can reuse it. Let ci-“ = ¢i(tk), i = 1,2,---;n+ m.

We can get the value uj at a certain point z} of the element through

For each vertex of an element, there can be several values, obtained from the different
local polynomials of the elements sharing this vertex. They are kept and used for drawing

pictures. These values may be also useful for future study of mesh adaption strategies.

47

5.10 Initial conditions and time step

We can use the initial conditions (2.6) to get initial u values at the collocation points of the
first time step, and then compute the u values at the matching points of the second time
step based on (2.12). Then we need to know the u values at the collocation points of the
second time step, which must be done by calculating the local polynomial of each element.
Using these u values and (2.12) to update fi, we can then solve for the u valucs at the
matching points of the third time step. We continue to do this until the last time step has
been reached.

If the mesh does not change, then the intermediate matrices need not be recalculated.
But if the mesh changes, each matrix should be recalculated at each time step. At present,
we only consider a static mesh. Adaptive meshes that change in time are a topic for future

study.

5.11 Deployment

5.11.1 Flexible design

Code deployment is important when designing programs. Good deployment can make
programs very flexible. In Section 5.2, we have already solved the problem of how to design
suitable data structures without recompiling the code, when some parameters change, such
as the number of matching points on each element face. A flexible implementation can
do calculations directly without recompiling and linking the source code, when the PDE
changes. Also, the core part of the calculation code can be reused in different environments,
without recompiling and linking. For example, when doing calculations, we only need to
output some solutions to the console. When plotting, we may let the graphics tool directly

access the core part of the calculation and plot pictures concurrently.

5.11.2 Code deployment

In order to accomplish the above, we need to divide the code into several parts and put

these into modules. Figure 5.18 shows the structure of the deployment.

43

r=-=-=-="

tconfiguration!
| parameters ! PDE
! data f functions
configuration
8 PDEs
parameters .
. calculation
reading
. .. command
visualization ,
rogram line
prog program
- Klﬁ/
| pictures !] .]
P solution
! and I I I
.) data
lanimations! | I
L - — . 4 L - — — — 4

Figure 5.18: Code deployment structure.

Here, dashed boxes denote input or output files. Other boxes denote applications or mod-
ules. We can realize “configuration parameters reading”, “PDEs calculation” and “PDE
functions” as modules.

Different operating systems have different kinds of module files. Module files are always
dynamically loaded after the program starts running. For most Unix systems, a module file
is a file with the extension “.so”, called a “shared library”. Linux also uses this style. On
the other hand, for Windows systems, a module file is a file with the extension “.dll” called
a “dynamic-load library”. The modules “configuration parameters reading” and “PDEs
calculation” will always be used, so they can be linked directly. But the module “PDE
functions”, which gives the initial conditions, the boundary conditions, some PDE-specific
functions, efc., will change when the PDE changes. It is better to dynamically load this
module at runtime. The configuration file for a certain PDE will indicate the proper module
to load.

Creating a shared library file on a Linux system is done as follows, assuming that the

GNU gce compiler is used [29, 30, 31]. First, we compile the source files:

49

gcc -shared -fPIC <compile options>

-0 <.o file> <.c file>
Then, we link the object files to create a module file:

gcc -shared -fPIC -o <.so file> <link options>

<list of .o files> -1<list of libraries>
Loading a shared library file on a Linux system at runtime is done as follows [32]:

void *mod;

double (*userf)(...);

dlclose(mod);

The “.s0” files should be put into a library directory that can be found by the Linux systems.
For other Unix systems, Desitter has written an article [34] containing detailed information.
Shah and Xiao supplied another article [35].

Creating a shared library file on the Windows systems is done as follows, assuming that
the Microsoft Visual C/C++ compiler is used [36].

First, we need to give a “.def” file to offer the information of the functions that need to

3

be exported, or to give the declarations in the “.cpp” source file.
__declspec(dllexport) double userf(...);

Then, we compile the source files:
cl <.obj file> <compile options> /c <.c file>

Thereafter, we link the object files to create a module file:

50

link <.obj files> <link options> /DEF <.def file>

<list of libraries> <.dll file>

Loading a dynamic-link library file on the Windows systems at runtime is done as follows

(37):

HMODULE mod;

double (¥userf)(...);

......

FreeLibrary(mod) ;

Also, the “.dll” files should be put into a library directory that can be found by the Windows

systems.

o1

Chapter 6

Numerical Results

We will first consider a simple equation whose solution is time-independent, to observe the
error caused by the mesh, the number of matching points, and the number of collocation

points. Thereafter we will treat some time-dependent cases.

6.1 Strategy for choosing the matching points and the collo-

cation points

In Section 5.5, we have mentioned that inappropriate selection of the matching points and
the collocation points may cause the matrix (®|Lg) to be singular, or some pivot of the
matrix to be very small. For the 2D case, we can select random points in or near an
element as the collocation points. For the matching points we can use uniform points or
Gauss points.

A point in or near a certain triangle can be determined as

Zp = Coxo + €121 + a2, co+cr+ca=1

2
cp,€1,¢2 € R, :Ep,z’o,xl,l'QER R

where x,, is the coordinate of the point and x1, x9, z3 are the coordinates of the three
vertices of the triangle. We can also use polar coordinates to describe random points. For

simplicity, some constraints are introduced.

52

1. Each element in a mesh uses the same number of points and the same pattern of

selection.

2. The number of collocation points for each element is 3n or 3n + 1, where n is an
integer which is greater than or equal to zero. Each group of three points is selected
as given below in equation (6.1). If the number of collocation points is 3n + 1, then

the last point is the center of the element.

T, = c4To+ i1 + cha,
3i+1 ; : : :
po' = cyTo + cyxy + cjx2, 1=1,2,---,n (6.1)
o . ‘ .
:ch' = cjzo + bz + chTa.

For example, for four collocation points, a possible group of positions is shown in Figure

6.1.

B

Figure 6.1: Four collocation points in an triangular element.

Thus, if AD : DB = ¢ : ¢1, then DPy : PoC = ¢y : {(¢c9+¢1). P1 and P; are also determined
in this way, only the order of A, B, C is changed.

Although each element can use a different selection pattern, tests show that this can
make the calculation process non-convergent. Because of this, we select random collocation
points, keeping n triples of the coefficients cg,c1,co. Then we use these coefficients to
determine the collocation points for meshes of different sizes, and we observe the accuracy.
Table 6.1 gives the coefficients of the collocation points selected for the test examples in

Section 6.2:

53

Table 6.1: The coefficients of the selected collocation points

m Cy cy C2
3 0.5739868425643008 0.2130065787178496 0.2130065787178496
4 0.1882744115722712 0.4058627942138644 0.4058627942138644
6 0.6230625503803894 0.1884687248098053 0.1884687248098053
0.2129734373711858 0.3935132813144071 0.3935132813144071
7 0.1433732137751642 0.4283133931124179 0.4283133931124179
0.8207992328427728 0.0896003835786136 0.0896003835786136
9 0.9322935905923572 0.0338532047038214 0.0338532047038214
0.3034683416148034 0.3482658291925983 0.3482658291925983
0.2721280014478266 0.3639359992760867 0.3639359992760867
10 0.0475797644106576 0.4762101177946712 0.4762101177946712
0.7319216349776470 0.1340391825111765 0.1340391825111765
0.8472868394326824 0.0763565802836588 0.0763565802836588
Yy
(1,1)
(0.5,0.5)
[]
0
Figure 6.2: A unit square (2.
6.2 A time-independent PDE
Consider the PDE
Ou x+ 2
rrl Au—2e7Y, (z,y) €QCR
u(z,y,0) = V41, (z,y) e
u(z,y,t) = €Y, (xz,9) € 9Q,

where () is the unit square, with center at (0.5,0.5), as shown in Figure 6.2. The solution

54

Table 6.2: The total number of elements in 2.
dm | 1/2 174 1/8 1/16 1/32 1/64
Te 16 64 256 1024 4096 16384

of this PDE is time-independent, namely,

u(z,y,t) =+ 1, (z,9) € Q.

In this example we use uniform meshes of different sizes. We let d,, denote the upper
limit of the longest edge of the elements, n is the number of matching point on each face,
and m is the number of collocation points in each element. Table 6.2 gives the total number
of elements n., for different d,,,.

The maximum absolute errors at the matching points are given in Table 6.3 and Table
6.4, for different selection strategies for the matching points.

We also use the local polynomial of each element to calculate the solutions at the vertices.
These values are used by the graphics. We can also use these values as a measure of the
accuracy of the local polynomials. Since each vertex may be shared by several elements,
there may be several different values. The error of the solutions at each vertex is taken to
be the maximum of the errors in these values, and the maximum absolute error given in
Table 6.5 and Table 6.6 is the maximum of the errors of the solutions at all vertices.

We can see that if d,,, becomes smaller, then the solutions become more accurate. If
the number of matching points and the number of collocation points increase, i.e., n and
m become larger, then the solution also becomes more accurate. Gauss points appear to
give higher accuracy than uniform points. Most cases follow this pattern, but there are
some exceptions. For example, in Table 6.3, when d,, = 1/64, the error for the case n = 3,
m = 6 is smaller than the error for the case n = 4, m = 7. Since the collocation points
selected here are random points, the solution may not be the most accurate, so the above
phenomenon may at times occur.

Figure 6.3 gives a 3D plot for this PDE. Here we used dpp, = 1/16, n =4, m = 7.

55

Table 6.3: Maximum absolute error at the matching points (uniform points, 2D case).

n=1 n=3 n=3 n=3 n=4 n=4 n=>5 n=4

dm m=1 m=3 m=4 m=>6 m="7 m=9 m=9 m=10
1/2 | 8.27e-02 4.08e-03 4.45¢-04 1.50e-05 1.08e-05 1.70e-06 2.19¢-06 2.39e-06
1/4 | 2.44e-02 6.25e-04 3.59e-05 7.57e-07 3.73e-07 5.25e-08 4.23e-08 1.21e-07
1/8 | 6.64e-03 1.46e-04 2.72e-06 4.37e-08 1.21e-08 2.55e-09 7.62e-10 7.27e-09
1/16 | 1.73¢-03 3.63e-05 1.97¢-07 2.66e-09 3.83e-10 1.48e-10 2.69¢-11 4.50e-10
1/32 | 4.42e-04 9.02¢-06 1.35e-08 1.62e-10 1.10e-10 9.31e-12 3.20e-12 2.82e-11
1/64 | 1.12e-04 2.26e-06 8.97e-10 9.97e-12 4.28e-10

Table 6.4: Maximum absolute error at the matching points (Gauss points, 2D case).

n=1 n=3 n=3 n=3 n=4 n=4 n=5 n=4

dm m=1 m=3 m=4 m=6 m=7 m=9 m=9 m=10
1/2 | 8.27e-02 3.88e-03 4.04e-04 2.62e-05 2.58¢-05 1.19e-06 6.58e-06 1.48e-07
1/4 | 2.44e-02 6.85e-04 3.18e-05 1.19¢-06 1.14e-06 2.18e-08 1.64e-07 3.30e-09
1/8 | 6.63¢-03 1.43¢-04 2.23e-06 6.53¢-08 4.32¢-08 1.01e-09 3.53¢-09 6.09¢-11
1/16 | 1.73e-03 3.39e-05 1.55e-07 3.74e-09 1.48e-09 6.03e-11 6.42e-11 1.09e-12
1/32 | 4.41e-04 8.33e-06 1.07¢-08 2.24e-10 5.07e-11 4.03e-12 2.22e-12 7.46e-14
1/64 | 1.11e-04 2.07e-06 7.14e-10 1.39e-11 5.30e-12

Table 6.5: Maximum absolute error at the vertices

(uniform points, 2D case).

n=1 n=3 n=3 n=3 n=4 n=4 n=» n=4
dm m=1 m=3 m=4 m=6 m=7 m=9 m=9 m=10
1/2 | 5.15e-01 6.53e-03 1.09e-03 6.25e-05 3.27e-05 1.85e-06 3.98¢-06 4.74e-06
1/4 1.49e-01 7.64e-04 7.62¢-05 2.20c-06 1.15e-06 5.32e-08 6.80e-08 1.58¢-07
1/8 | 4.01e-02 1.50e-04 5.05e-06 7.32e-08 3.84e-08 2.55¢-09 1.10e-09 7.89e-09
1/16 | 1.04e-02 3.65e-05 3.25e-07 3.44e-09 1.24e-09 1.48e-10 2.62e-11 4.59-10
1/32 | 2.66e-03 9.03e-06 2.06e-08 1.86e-10 1.70e-10 9.32e-12 3.46e-12 2.83e-11
1/64 | 6.70e-04 2.26e-06 1.30e-09 1.07e-11 4.57¢-10

Table 6.6: Maximum absolute error at the vertices (Gauss points, 2D case).

n=1 n=3 n=3 n=3 n=4 n=4 n=>5 n=4
dm m=1 m=3 m=4 m=6 m=7 m=9 m=9 m=10
1/2 | 5.15e-01 5.30e-03 6.06e-04 4.16¢-05 2.36e-05 8.26e-07 7.01e-06 8.58¢-07
1/4 | 1.49e-01 8.75e-04 4.23e-05 1.47e-06 9.34e-07 1.53e-08 1.61e-07 1.53e-08
1/8 | 4.01e-02 1.45e-04 2.79e-06 6.75e-08 3.29e-08 9.45e-10 3.4%e-09 2.56e-10
1/16 | 1.04e-02 3.40e-05 1.79e-07 3.80e-09 1.09¢-09 5.92¢-11 6.38e-11 4.25e-12
1/32 | 2.65¢-03 8.33e-06 1.22e-08 2.27e-10 3.53e-11 4.0le-12 2.21e-12 1.13e-13
1/64 | 6.70e-04 2.07¢-06 8.17¢-10 1.3%e-11 4.81e-12

o6

Figure 6.3: Solutions of the time-independent PDE, when d,, = 0.0625, n =4, m = 7.
6.3 A time-dependent PDE

Now consider a PDE which whose solution is time-dependent,

@
ot
uw(r,y,0) = V41, (z,9) €,

= Au, (z,y)€QCR*te(0,1],

w(z,y,t) = Y (z,y) € 90, t € [0,1].
where (1 is the same as in Section 6.2. The exact solution is
u(z,y,t) = 2T L1 (a,y) € Q,t€[0,1].

For this PDE, we again use the collocation points selected in the previous section. Since
there can be many time steps, we do not list the solutions at every time step. Instcad we
only give the errors at the first several steps and at the last several steps. Here 2 is the unit
square and the time range is [0, 1]. The time step is d;. We determine the maximum error

at the matching points only. Table 6.7 gives the maximum absolute errors at the matching

o7

Table 6.7: Maximum absolute error at the matching points, d; = 0.01 (Gauss points, 2D

case).
n=1 n=3 n=3 n=3 n=4 n=4 n=4 n=>5
t m=1 m=3 m=4 m=6 m=7 m=7 m=7 m=9
dm 1/2 1/8 1/4 1/8 1/8 1/186 1/32 1/8
0.01 5.23e-01 7.87¢-04 7.84e-04 7.56e-04 7.56e-04 7.56e-04 7.56e-04 7.55e-04
0.02 5.36e-01 1.41e-03 1.38¢-03 1.35¢-03 1.35e-03 1.36e-03 1.36e-03 1.35e-03
0.03 5.47e-01 1.94e-03 1.84e-03 1.87e-03 1.87¢-03 1.87e-03 1.87e-03 1.87e-03
0.04 5.59e-01 2.40e-03 2.30e-03 2.30e-03 2.30e-03 2.32e-03 2.32e-03 2.30e-03
0.05 5.70e-01 2.80e-03 2.71e-03 2.70e-03 2.70e-03 2.70e-03 2.71e-03 2.70e-03
0.96 3.53e+00 2.75e-02 2.62e-02 2.64e-02 2.64e-02 2.65¢-02 2.65¢-02 2.64¢-02
0.97 3.60e+00 2.80e-02 2.67e-02 2.70e-02 2.70e-02 2.70e-02 2.70e-02 2.70e-02
0.98 3.67e+00 2.86e-02 2.73e-02 2.75e-02 2.75e-02 2.76e-02 2.76e-02 2.75e-02
0.99 3.74e+00 2.92e-02 2.78e-02 2.81e-02 2.81e-02 2.81e-02 2.81e-02 2.81e-02
1.00 3.82e+00 2.98e-02 2.84e-02 2.86e-02 2.86e-02 2.87e-02 2.87¢-02 2.86e-02
points.

We see that the maximum absolute error becomes larger with increasing time. This is
caused by the accumulation of the errors of each time step. Also, the second derivative with
respect to time of the exact solution is an exponential function, so the value of the exact
solution becomes very large with increasing time. Therefore it is better to use the maximum
relative error, which is the maximum absolute error at each matching point divided by uy.

Table 6.8 gives the maximum relative errors at the matching points.

Table 6.8: Maximum relative error at the matching points, d; = 0.01 (Gauss points, 2D

case).

n=1 n=3 n=3 n=3 n=4 n=4 n=4 n=»

t m=1 m=3 m=4 m=6 m="7 m="17 m=7 m=9
dm 1/2 1/8 1/4 1/8 1/8 1/16 1/32 1/8
0.01 9.62e-02 1.53e-04 1.49e-04 1.48e-04 1.48¢-04 1.48e-04 1.48e-04 1.48e-04
0.02 9.4%-02 2.93e-04 2.84e-04 2.83e¢-04 2.83e-04 2.83e-04 2.83¢-04 2.83¢-04
0.03 9.45e-02 4.18¢-04 4.06e-04 4.03¢-04 4.03e-04 4.04e-04 4.04e-04 4.03e-04
0.04 9.45e¢-02 5.29e-04 5.14e-04 5.11e-04 5.11e-04 5.11e-04 5.11e-04 5.11e-04
0.05 9.47¢-02 6.24e-04 6.07e-04 6.03e-04 6.03¢-04 6.03e-04 6.03e-04 6.03¢-04
0.96 1.19e-01 1.38¢-03 1.30e-03 1.33e-03 1.33e¢-03 1.33e-03 1.33¢-03 1.33e-03
0.97 1.19e-01 1.38¢-03 1.30e-03 1.33e-03 1.33e-03 1.33¢-03 1.33¢c-03 1.33¢-03
0.98 1.19e-01 1.38e-03 1.31e-03 1.34¢-03 1.34e-03 1.34e-03 1.34e-03 1.34e-03
0.99 1.19e-01 1.39e-03 1.31e-03 1.34e-03 1.34e-03 1.34e-03 1.34e-03 1.34e-03
1.00 1.19¢-01 1.39e-03 1.31e-03 1.34¢c-03 1.34¢-03 1.34c-03 1.34¢-03 1.34¢-03

o8

Next, we half the time, that is d; = 0.005. Then there are a total of 200 time steps.
The maximum absolute errors are listed in Table 6.9, and the maximum relative errors are
listed in Table 6.10. We half the time step again, so the number of time steps will be 400.
The corresponding maximum absolute errors and the maximum relative errors are listed in
Table 6.11 and Table 6.12, respectively.

We see that the accuracy of this problem is much lower than that of the previous time-
independent problem, and the maximum absolute error is about O(dt). Also note that when
we add more matching points and collocation points, or reduce the size of the elements, the
accuracy is not improved. It seems that the maximum absolute error does not change. Each
time, when the time step is reduced by one half, the error will also be reduced to almost
one half. Thus we observe that the error depends on the size of time step. When the part
of the error caused by the space mesh becomes very small, the main part of the error will
be caused by the time step size. Only when the space mesh is very coarse, will the error
be mainly caused by the mesh. This can be seen from Table 6.7 when n = 1, m = 1 and
dm = 1/2. We will also give another example to demonstrate this morc clearly. Figure 6.4
shows a 3D plot of the solution at the 10th step, when ¢t = 0.10, and Figure 6.5 shows the
3D plot of the solution at the last step, when ¢t = 1.00.

Since the main part of the error is caused by the size of the time step, when it is large,
we want to reduce the time step size to a very small quantity, to see what will happen.
This time we use d; = 107%, and a time range [0, 107%]. We select new collocation points to
give more precise solutions. Table 6.13 shows the coeflicients of the new selected collocation
points. The maximum absolute errors of these cases are listed in Table 6.14.

Now we see that the error hardly changes when the space mesh is coarse, and m, n are
small. But when the space mesh becomes denser, the error changes with time. Thus we
see that the main part of the error is now caused by the space mesh and the number of

matching points, as well as the number of collocation points.

59

Table 6.9: Maximum absolute error at the matching points, d; = 0.005 (Gauss points, 2D

case).

=3
=3

n
m
1/8

n=3
m=4
1/4

n=3
m=~6
1/8

n=4
m=7
1/8

n=4
m=7
1/16

n=4
m=7
1/32

n=5

0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000

8.19e-02
8.21e-02
8.33e-02
8.46¢-02
8.58e-02
8.70e-02
8.80e-02
8.90e-02

5.67e-01
5.72e-01
5.78e-01
5.84e-01
5.90e-01
5.96e-01
6.02e-01
6.08e-01

2.40e-04
4.35e-04
6.10e-04
7.64e-04
9.08e-04
1.04e-03
1.16e-03
1.28e-03

1.44e-02
1.45e-02
1.46e-02
1.48e-02
1.49e-02
1.51e-02
1.52e-02
1.54e-02

2.25e-04
4.10e-04
5.74e-04
7.16e-04
8.44e-04
9.66e-04
1.08e-03
1.19e-03

1.34e-02
1.35e-02
1.36e-02
1.38e-02
1.3%e-02
1.41e-02
1.42e-02
1.43e-02

2.19e-04
4.03e-04
5.66e-04
7.13e-04
8.47e-04
9.72e-04
1.09e-03
1.20e-03

1.34e-02
1.35e-02
1.37e-02
1.38¢e-02
1.40e-02
1.41e-02
1.42¢-02
1.44e-02

2.19e-04
4.04e-04
5.66e-04
7.13e-04
8.47e-04
9.72e-04
1.09¢-03
1.20e-03

1.34e-02
1.36e-02
1.37e-02
1.38e-02
1.40e-02
1.41e-02
1.43e-02
1.44e-02

2.19e-04
4.04e-04
5.66e-04
7.13¢-04
8.47e-04
9.72e-04
1.09e-03
1.20e-03

1.34e-02
1.36e-02
1.37e-02
1.38e-02
1.40e-02
1.41e-02
1.43e-02
1.44e-02

2.19e-04
4.04e-04
5.66e-04
7.13¢-04
8.48e-04
9.72e-04
1.09e-03
1.20e-03

1.34¢-02
1.36e-02
1.37¢-02
1.38¢-02
1.40e-02
1.41e-02
1.43e-02
1.44e-02

2.18¢-04
4.02e-04
5.65e-04
7.12e-04
8.47e-04
9.71e-04
1.09¢-03
1.19¢-03

1.34¢-02
1.35e-02
1.37e-02
1.38e-02
1.40e-02
1.41e-02
1.42e-02
1.44e-02

Table 6.10: Maximum relative error at the matching points, d; = 0.005 (Gauss points,

case).

t
dn (3

m=1
1/2

1/8

n=3
m=4
1/4

n=3
m=~6
1/8

n=4
m=7
1/8

n=4
m=7
1/16

n=4
m=7
1/32

n=>5
m=9
1/8

0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000

1.43e-02
1.37¢-02
1.34e-02
1.32e-02
1.33e-02
1.33e-02
1.33e-02
1.33e-02

1.62e-02
1.62e-02
1.62e-02
1.62e-02
1.62e-02
1.62e-02
1.62¢-02
1.63e-02

4.18e-05
8.15¢-05
1.19e-04
1.55e-04
1.89e-04
2.21e-04
2.52e-04
2.80e-04

7.15e-04
7.16e-04
7.16e-04
7.16e-04
7.17e-04
7.17e-04
7.18e-04
7.18e-04

4.12e-05
7.81e-05
1.13e-04
1.45e-04
1.77e-04
2.08e-04
2.37e-04
2.64e-04

6.68e-04
6.69e-04
6.69e-04
6.69e-04
6.70e-04
6.70e-04
6.70e-04
6.71e-04

3.90e-05
7.61e-05
1.12e-04
1.45e-04
1.78e-04
2.08e-04
2.36e-04
2.63e-04

6.69e-04
6.69e-04
6.69e-04
6.70e-04
6.70e-04
6.71e-04
6.71e-04
6.71e-04

3.90e-05
7.60e-05
1.12e-04
1.45e-04
1.78e-04
2.08e-04
2.36e-04
2.63e-04

6.69e-04
6.69¢-04
6.70e-04
6.70e-04
6.70e-04
6.71e-04
6.71e-04
6.71e-04

3.90e-05
7.61e-05
1.12e-04
1.45e-04
1.78e-04
2.08e-04
2.36e-04
2.63e-04

6.69e-04
6.69¢-04
6.70e-04
6.70e-04
6.70e-04
6.71e-04
6.71¢-04
6.71e-04

3.90e-05
7.61¢-05
1.12e-04
1.45e-04
1.78e-04
2.08e-04
2.36e-04
2.63e-04

6.69e-04
6.69¢-04
6.70e-04
6.70e-04
6.70e-04
6.71e-04
6.71e-04
6.71e-04

3.90e-05
7.60¢-05
1.11e-04
1.45e-04
1.78e-04
2.08e-04
2.36e-04
2.63e-04

6.69e-04
6.69¢c-04
6.69e-04
6.70e-04
6.70e-04
6.70e-04
6.71c-04
6.71e-04

60

Table 6.11: Maximum absolute error at the matching points, d; = 0.0025 (Gauss points,

2D case).

t
dm

n=1
m=1
1/2

n=3
m=3
1/8

n=3
m=4
1/4

n=3
m=6
1/8

n=4
m=7
1/8

n=4
m=7
1/186

n=4
m=7
1/32

n=5
m=9
1/8

0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200
0.0225
0.0250
0.0275
0.0300
0.0325
0.0350
0.0375
0.0400
0.0425
0.0450
0.0475
0.0500

0.9525
0.9550
0.9575
0.9600
0.9625
0.9650
0.9675
0.9700
0.9725
0.9750
0.9775
0.9800
0.9825
0.9850
0.9875
0.9900
0.9925
0.9950
0.9975
1.0000

8.23e-02
8.14e-02
8.15e-02
8.20e-02
8.27e-02
8.35e-02
8.42¢-02
8.49¢-02
8.56e-02
8.62e-02
8.68e-02
8.73e-02
8.78e-02
8.83e-02
8.88¢-02
8.93e-02
8.97e-02
9.02¢-02
9.07e-02
9.11e-02

5.54e-01
5.57e-01
5.60e-01
5.62¢e-01
5.65e-01
5.68e-01
5.71e-01
5.74e-01
5.77e-01
5.80e-01
5.82e-01
5.85e-01
5.88e-01
5.91e-01
5.94e-01
5.97¢-01
6.00e-01
6.03e-01
6.06e-01
6.09e-01

7.84e-05
1.37e-04
1.93e-04
2.42e-04
2.91e-04
3.37e-04
3.79e-04
4.19e-04
4.57e-04
4.94e-04
5.31e-04
5.66e-04
5.99e-04
6.31e-04
6.61e-04
6.90e-04
7.19e-04
7.48e-04
7.76e-04
8.03e-04

7.44e-03
7.48e-03
7.52e-03
7.56e-03
7.59e-03
7.63e-03
7.67e-03
7.71e-03
7.75e-03
7.79e-03
7.83e-03
7.86e-03
7.90e-03
7.94e-03
7.98e-03
8.02¢-03
8.06e-03
8.10e-03
8.14e-03
8.19e-03

7.28e-05
1.26e-04
1.75e-04
2.20e-04
2.62e-04
3.02e-04
3.3%-04
3.74e-04
4.06e-04
4.36e-04
4.65e-04
4.93e-04
5.19e-04
5.49e-04
5.79e-04
6.07e-04
6.34e-04
6.61e-04
6.86e-04
7.10e-04

6.54¢-03
6.57e-03
6.61e-03
6.64e-03
6.67e-03
6.71e-03
6.74e-03
6.77e-03
6.81e-03
6.84e-03
6.88e-03
6.91e-03
6.94e-03
6.98e-03
7.01e-03
7.05e-03
7.09e-03
7.12e-03
7.16e-03
7.19e-03

6.18e-05
1.16e-04
1.65e-04
2.10e-04
2.52e-04
2.92e-04
3.30e-04
3.66e-04
4.00e-04
4.33e-04
4.65e-04
4.96e-04
5.25e-04
5.54e-04
5.81e-04
6.08e-04
6.34e-04
6.5%e-04
6.82e-04
7.06e-04

6.55e-03
6.58e-03
6.61e-03
6.65e-03
6.68e-03
6.71e-03
6.75e-03
6.78e-03
6.82e-03
6.85e-03
6.88e-03
6.92e-03
6.95e-03
6.99e-03
7.02e-03
7.06e-03
7.09e-03
7.13e-03
7.17¢-03
7.20e-03

6.17e-05
1.16e-04
1.65e-04
2.10e-04
2.52e-04
2.92e-04
3.30e-04
3.66e-04
4.00e-04
4.34e-04
4.65e-04
4.96e-04
5.26e-04
5.54e-04
5.82e-04
6.08e-04
6.33e-04
6.5%¢-04
6.83e-04
7.06e-04

6.56e-03
6.59¢-03
6.62e-03
6.65e-03
6.69¢-03
6.72e-03
6.76e-03
6.79e-03
6.82e-03
6.86e-03
6.8%¢-03
6.93e-03
6.96e-03
7.00e-03
7.03e-03
7.07e-03
7.10e-03
7.14e-03
7.17¢-03
7.21e-03

6.18e-05
1.16e-04
1.65e-04
2.10e-04
2.52e-04
2.92e-04
3.30e-04
3.66e-04
4.00e-04
4.34e-04
4.65e-04
4.96e-04
5.25e-04
5.54e-04
5.82¢-04
6.08e-04
6.34e-04
6.59¢-04
6.83e-04
7.06e-04

6.56e-03
6.59e-03
6.62e-03
6.65e-03
6.69¢e-03
6.72e-03
6.76e-03
6.79¢-03
6.82e-03
6.86e-03
6.89e-03
6.93e-03
6.96e-03
7.00e-03
7.03e-03
7.07¢-03
7.10e-03
7.14e-03
7.17e-03
7.21e-03

6.18e-05
1.16e-04
1.65e-04
2.10e-04
2.52e-04
2.92e-04
3.30c-04
3.66e-04
4.00e-04
4.34e-04
4.65e-04
4.96e-04
5.26e-04
5.54e-04
0.82¢-04
6.08e-04
6.34e-04
6.59¢-04
6.83e-04
7.06e-04

6.56e-03
6.59¢-03
6.62¢-03
6.65e-03
6.69¢-03
6.72¢-03
6.76e-03
0.79¢-03
6.82e-03
6.86e-03
6.89¢-03
6.93e-03
6.96e-03
7.00e-03
7.03e-03
7.07¢-03
7.10e-03
7.14¢-03
7.17¢-03
7.21e-03

6.09e-05
1.15e-04
1.64e-04
2.09e-04
2.52e-04
2.92e-04
3.2%-04
3.65e-04
4.00e-04
4.33e-04
4.65e-04
4.95e-04
5.25e-04
5.54e-04
0.8le-04
6.08e-04
6.33e-04
6.58e-04
6.82e-04
7.06e-04

6.55e-03
6.58e-03
6.62¢-03
6.65e-03
6.68e-03
6.72e-03
6.75e-03
6.78e-03
6.82e-03
6.85e-03
6.89e-03
6.92e-03
6.96e-03
6.99e-03
7.03e-03
7.06¢-03
7.10e-03
7.13e-03
7.17¢-03
7.20e-03

61

Table 6.12: Maximum relative error at the matching points, d; = 0.0025 (Gauss points, 2D

case).

t
dm

n=1
m=1
1/2

n=3
m=3
1/8

n=3
m=4
1/4

n=3
m=6
1/8

n=4
m=7
1/8

n=4
m=7
1/16

n=4
m=7
1/32

n=>»5
m=9
1/8

0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200
0.0225
0.0250
0.0275
0.0300
0.0325
0.0350
0.0375
0.0400
0.0425
0.0450
0.0475
0.0500

0.9525
0.9550
0.9575
0.9600
0.9625
0.9650
0.9675
0.9700
0.9725
0.9750
0.9775
0.9800
0.9825
0.9850
0.9875
0.9900
0.9925
0.9950
0.9975
1.0000

1.47e-02
1.42e-02
1.39e-02
1.36¢e-02
1.35e-02
1.34e-02
1.33e-02
1.32¢-02
1.32e-02
1.32e-02
1.32e-02
1.32e-02
1.32e-02
1.32e-02
1.32e-02
1.32e-02
1.32e-02
1.32e-02
1.32e-02
1.32e-02

1.5%e-02
1.59e-02
1.59e-02
1.59e-02
1.59¢-02
1.59e-02
1.59e-02
1.59¢-02
1.59e-02
1.59%-02
1.59e-02
1.59e-02
1.59¢-02
1.59%e-02
1.59e-02
1.59¢-02
1.59e-02
1.59e-02
1.59e-02
1.59e-02

1.23e-05
2.30e-05
3.36e-05
4.40e-05
5.44e-05
6.44e-05
7.41e-05
8.35e-05
9.29¢-05
1.02e-04
1.11e-04
1.19¢-04
1.28e-04
1.36e-04
1.44¢-04
1.51e-04
1.58e-04
1.65e-04
1.72¢-04
1.78e-04

3.80e-04
3.80e-04
3.80e-04
3.80e-04
3.80e-04
3.80e-04
3.80e-04
3.80e-04
3.80e-04
3.81e-04
3.81e-04
3.81e-04
3.81e-04
3.81e-04
3.81e-04
3.81e-04
3.81e-04
3.81e-04
3.82¢-04
3.82e-04

1.32¢-05
2.27e-05
3.17e-05
4.11e-05
5.01e-05
5.89%e-05
6.73e-05
7.53e-05
8.32e-05
9.13e-05
9.92e-05
1.07e-04
1.14e-04
1.21e-04
1.28¢-04
1.35e-04
1.41e-04
1.47e-04
1.53e-04
1.59e-04

3.34e-04
3.34e-04
3.34e-04
3.34e-04
3.34e-04
3.34e-04
3.34e-04
3.34¢-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.36e-04
3.36e-04

1.01e-05
1.99¢-05
2.94e-05
3.86¢-05
4.77e-05
9.66e-05
6.53e-05
7.37e-05
8.21e-05
9.01e-05
9.80e-05
1.06e-04
1.13e-04
1.20e-04
1.27¢-04
1.33e-04
1.40e-04
1.46e-04
1.52e-04
1.57e-04

3.34e-04
3.34e-04
3.34e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04

1.01e-05
1.99¢-05
2.94e-05
3.86¢e-05
4.77e-05
5.66e-05
6.53e-05
7.38e-05
8.21e-05
9.01e-05
9.80e-05
1.06e-04
1.13e-04
1.20e-04
1.27¢-04
1.33e-04
1.40e-04
1.46e-04
1.52e-04
1.57e-04

3.34e-04
3.34e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35¢-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04

1.01e-05
1.99e-05
2.94e-05
3.86¢-05
4.77e-05
5.66e-05
6.53¢-05
7.38e-05
8.21e-05
9.01e-05
9.80e-05
1.06e-04
1.13e-04
1.20e-04
1.27¢-04
1.33e-04
1.40e-04
1.46¢-04
1.52e-04
1.57e-04

3.34e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35¢-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04

1.01e-05
1.99¢-05
2.94e-05
3.86e-05
4.77e-05
5.66e-05
6.53¢-05
7.38e-05
8.21e-05
9.01e-05
9.80e-05
1.06e-04
1.13e-04
1.20e-04
1.27e-04
1.33e-04
1.40e-04
1.46e-04
1.52e-04
1.57e-04

3.34e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04

1.01e-05
1.98¢-05
2.93e-05
3.86¢-05
4.77e-05
5.66e-05
6.53e-05
7.37e-05
8.20e-05
9.01e-05
9.79¢-05
1.06e-04
1.13e-04
1.20e-04
1.27¢-04
1.33e-04
1.40e-04
1.46¢-04
1.52e-04
1.57e-04

3.34e-04
3.34e-04
3.34e-04
3.35e-04
3.35e-04
3.35e-04
3.35e-04
3.35¢-04
3.35e-04
3.35e-04
3.35¢-04
3.35e-04
3.35e-04
3.35e-04
3.36e-04
3.36¢-04
3.36e-04
3.36e-04
3.36e-04
3.36e-04

62

Figure 6.4: Solution of the time-dependent problem, when d,, = 0.125, n = 4, m = 7,
t =0.10.

Figure 6.5: Solution of the time-dependent problem, when d,,, = 0.125, n = 4, m = 7,
t = 1.00.

63

Table 6.13: The coefficients of the newly selected collocation points.

m Co

C1

C2

4 0.3233434093759132

0.3825061085552472
0.0304868878007339

0.6059183105326176

0.5420392280380437
0.2985127708094274

0.0707382800914692

0.0754546634067091
0.6710003413898387

Table 6.14: Maximum absolute error at the matching points, d; = 1le — 6 (Gauss points, 2D

case).

t
dm

n=3
m=4
1/2

n=3
m=4
1/4

n=4
m=7
1/8

n=4
m=7
1/16

n=4
m=7
1/32

0.000001
0.000002
0.000003
0.000004
0.000005
0.000006
0.000007
0.000008
0.000009

0.000091
0.000092
0.000093
0.000094
0.000095
0.000096
0.000097
0.000098
0.000099
0.000100

3.41e-04
3.41e-04
3.41e-04
3.41e-04
3.41e-04
3.41e-04
3.41e-04
3.41e-04
3.41e-04

3.37e-04
3.37e-04
3.37e-04
3.37e-04
3.37e-04
3.37e-04
3.37e-04
3.37¢-04
3.37e-04
3.37e-04

2.57e-05
2.56e-05
2.56e-05
2.56e-05
2.56e-05
2.56e-05
2.56e-05
2.55e-05
2.55e-05

2.54e-05
2.54e-05
2.55e-05
2.55e-05
2.55e-05
2.55e-05
2.55e-05
2.55e-05
2.55e-05
2.55e-05

1.73e-06
1.73e-06
1.72e-06
1.72¢-06
1.72e-06
1.72¢-06
1.72e-06
1.72e-06
1.72¢-06

1.98e-06
1.98e-06
1.98e-06
1.98e-06
1.99¢-06
1.99e-06
1.99e-06
1.99¢-06
1.99e-06
2.00e-06

1.12e-07
1.12e-07
1.12e-07
1.12e-07
1.13e-07
1.14e-07
1.15e-07
1.16e-07
1.17e-07

1.40e-07
1.40e-07
1.40e-07
1.40e-07
1.40e-07
1.40e-07
1.41e-07
1.41e-07
1.41e-07
1.41e-07

9.06e-07
8.96e-07
8.86e-07
8.77e-07
8.67e-07
8.58e-07
8.49e-07
8.3%-07
8.30e-07

5.15e-07
5.19e-07
5.22e-07
5.26e-07
5.30e-07
5.33e-07
5.37e-07
5.41e-07
5.44e-07
5.48e-07

3.40e-08
3.22e-08
3.05e-08
2.89e-08
2.75e-08
2.61e-08
2.49e-08
2.37e-08
2.26¢-08

3.26e-08
3.27e-08
3.28¢-08
3.29e-08
3.31e-08
3.32e-08
3.33e-08
3.34e-08
3.36e-08
3.37e-08

9.82¢-10
7.74e-10
6.24e-10
5.65¢-10
5.84e-10
6.0le-10
6.38e-10
6.72e-10
7.03e-10

1.96e-09
1.97e-09
1.99e-09
2.00e-09
2.01e-09
2.03e-09
2.04e-09
2.06¢-09
2.07¢-09
2.09e-09

2.94¢-11
4.72e-11
6.27e-11
7.70e-11
9.07e-11
1.04e-10
1.18e-10
1.31e-10
1.45¢-10

1.30e-09
1.31e-09
1.32¢-09
1.34e-09
1.35¢-09
1.36e-09
1.38e-09
1.39¢-09
1.40e-09
1.42e-09

64

6.4 A problem with a peak in the solution

Now consider a different PDE, namely,

% = Au—a(db?t((z —r)?+ (y —r)?
—4bt — l)e_b((x_r)z'*’(y_r)z), (z,y) € Q C R*te(0,1]
U/(l', y70) = 17 (fE, y) € Qa

w(zyt) = ate RO L1 (2,y) € 00,t € 0,1],
where {2 is as before. We denote this problem as NEQ2. The exact solution is
u(@,y, t) = ate WEHED L1 (29 €t € [0,1]

For example, let @ = 64.0 and b = 10000.0. Then the exact solution has a sharp peak at
(0.5,0.5), the center of Q. This time, if we use a uniform mesh, we need very small elements,
which will cause much calculation time. Because of this, we apply local refinement at the
center, which limits the number of elements. This similar to what we did in Section 3.3.
We choose n = 4, m = 7 and d; = 0.01, and use the coefficients from Table 6.1. First we
set d,, = 0.04, d,, = 0.05 and calculate the solutions. Table 6.15 lists the maximum errors.
The first line gives the maximum absolute errors and the second line gives the maximum

relative errors.

Table 6.15: Maximum error at the matching points of problem NEQ2, n = 4, m = 7,
di = 0.01, dy, = 0.04, d, = 0.05 (Gauss points, 2D case).

t 0.01 0.02 0.03 e 0.98 0.99 1.00
eq | 9.52e-02 1.90e-01 2.84e-01 .- 8.94e4+00 9.04e+00 9.13e+00
er { 6.83e-02 1.35e-01 1.99%-01 ... 3.54e4+00 3.56e4+00 3.58e+00

From Table 6.15, we see that the error is large. When £ = 1.00, the maximum absolute
error is e, = 9.13e 4+ 00. From the exact solution, we know that its maximum value is 64.0
when ¢t = 1.00 and its maximum relative error is too large. Thus the local refinement is still

not sufficient. Figure 6.6 shows the solution at ¢ = 1.00.

65

Figure 6.6: Solution of problem NFEQ2, when dm = 0.04,d, =0.05, n =4, m =7, t = 1.00.

Table 6.16: Maximum error at the matching points of problem NEQ2, n = 4, m = 7,
dy = 0.01, d,, = 0.01, d, = 0.05 (Gauss points, 2D case).

t 0.01 0.02 0.03 e 0.98 0.99 1.00
€q | 242e-04 4.85e-04 7.27e-04 ... 2.38e-02 2.40e-02 2.42e-02
er | 1.63e-04 2.46e-04 2.96e-04 .- 2.44e-03 2.45e-03 2.46e-03

Next, we change dy, = 0.01 and calculate again. Table 6.16 lists the maximum errors.
Figure 6.7 shows the solution at ¢t = 0.50, and Figure 6.8 shows the solution at ¢ = 1.00.
Also, we want to see the case where the minimal angle of the original mesh in the domain
is small and to observe the accuracy. We change the range of one of the coordinates of the
domain to 1/4 of the original size, y € [0.375,0.625]. Figurc 6.9 shows the generated mesh,
using the same parameters as in the previous case. Table 6.17 lists the maximum errors.
We note that the error increases. Figure 6.10 shows the solution at £ = 0.50, and Figure
6.11 shows the solution at ¢t = 1.00 for this case.
For the current PDE, we already know the exact solution. In particular, we know
where the solution has a peak. In real problems, we do not know the exact solution, and

we do not know, for most PDEs, if there is a peak, and where the peak is. Therefore, we

66

Figure 6.7: Solution of problem NEQ2, when dm = 0.01, d. =0.05, n =4, m =7, ¢t = 0.50

Figure 6.8: Solution of problem NEQ2, when dm =0.01,d, =0.05,n=4,m=7,¢t=1.00

67

Figure 6.9: The refined mesh of the smaller domain, when d,, = 0.01, d, = 0.05. The
minimal angle of the elements is smaller.

Table 6.17: Maximum error at the matching points of problem NEQ2 of a smaller region,
n=4m=717,d; =001, dy, = 0.01, d, = 0.05 (Gauss points, 2D case).

t 0.01 0.02 0.03 e 0.98 0.99 1.00
€q | 5.01e-04 1.12e-03 1.70e-03 --- 5.66e-02 5.71e-02 5.77e-02
er | 3.71e-04 5.68¢-04 6.90e-04 --- 1.37¢-02 1.38¢-02 1.39¢-02

can not predetermine the location where local refinement is needed. An adaptive method
to detect the location of peaks and other rapid transitions, and corresponding automatic

local mesh refinement is a topic for future work.

63

Figure 6.10: Solution of problem NFEQ2, when dm = 0.01, d, = 0.05, n = 4,
t = 0.50.

Figure 6.11: Solution of problem NFEQ2, when dm = 0.01, d, = 0.05, n = 4
t = 1.00.

69

6.5 A problem with a sharp ridge

Now consider a more complicated PDE,

ou

pril Au — a(t((csin(dr(z + t)) + h)(4b*(y — r)% — 2b) —

cdm(sin(dm(z + t))dr — cos(dn(z + t))) +
sin(dr(z + t)) + h)e @="° (z,y) e Q c R* t€[0,1]
u(z,y,0) = 10, (z,y)€Q,

u(z,y,t) = at(csin(dn(z+t))+ h) e~ 4 10, (z,y) € 0Q,t € [0,1].
where €2 is as above. We denote this problem as NEQ6. The exact solution is
u(z,y,t) = at (csin(dn(z +t)) + h) e b= 4 10, (z,y) € Q,t € [0,1].

As an example, we set a = 55.0, b = 10000.0, ¢ = 0.2, d = 6.0 and h = 0.85. From the
exact solution, we know that the solution has a sharp ridge at the line y = 0.5. Thercfore,
we apply local refinement, but this time at the line y = 0.5. Now, d, denotes the upper
limit of the distance from the center of any local region to the refinement line. We choose
n=4, m="7and d; = 0.01, set d,, = 0.01 and d, = 0.05 to calculate the solution. The
collocation points are selected according to Table 6.1. Table 6.18 lists the the maximum
errors. Figure 6.12 shows the solution at ¢ = 0.55, and Figure 6.13 shows the solution at
t = 1.00.

Table 6.18: Maximum error at the matching points of problem NEQ6, n = 4, m = 7,
dy = 0.01, dy, = 0.01, d,, = 0.05 (Gauss points, 2D case).

t 0.01 0.02 0.03 o 0.98 0.99 1.00
€q | 1.02e-01 1.45e-01 1.73e-01 --- 4.50e-01 4.48e-01 4.45e-01
e, | 9.67e-03 1.33e-02 1.58e-02 --- 3.65e-02 3.62e-02 3.58e-02

70

Figure 6.12: Solution of problem NFEQ6, when d,, = 0.01, d, = 0.05, n = 4, m =
t = 0.55.

Figure 6.13: Solution of problem NEQ6, when d,, = 0.01, d, = 0.05, n = 4, m = 7,
t = 1.00.

71

6.6 A PDE with unknown exact solution

Consider a heat exchange PDE, namely:
Ju
ot

u(z,y,0) = 0, (z,y)€2~-1[(0,0),(0,1)]

= Au, (r,y)€Qc R%tc(0,1]

u(z,y,t) = 60, (=,y)¢€[(0,0),(0,1)]

% = -10, (z,9) €[(1,0),(1,1)]
G = 0 (@) €[0.0,0L0) (0,11,

[(0.25,0.25), (0.75,0.25)], [(0.75,0.25), (0.75,0.75)],
[(0.25,0.75), (0.75,0.75)], [(0.25,0.25), (0.25, 0.75)],

t € [0,1].

This is a typical real problem. At the beginning, the temperature is zero throughout the do-
main and 60 at z = 0. Heat flows from z = 0 to x = 1. On other boundaries of the domain,
heat cannot flow out since g—z = (. We want to know the distribution of the temperature

in the domain after a certain time. We denote this problem as HFEA3. The domain is

shown in Figure 6.15.

(1,1)

O

Figure 6.14: The domain 2 defined in problem H EA3.

Note that this domain contains a hole in the center. So we need to use the method men-

72

tioned in Subsection 5.3.3 to define the original region. In this case, the situation arises
where two local regions, which are the children of €2, share two common faces, as shown in
Figure 6.15.

First, we use a uniform mesh to calculate the solutions. We use the same collocation
points as in the previous example, and we set n = 4, m = 7 and d,, = 0.25. Figure 6.16
shows the solution at ¢t = 0.45.

Note that there are differences between the solutions at certain points, for example,
(0.25,0.25). This means that the solutions corresponding to local polynomials of neighbour-
ing elements are different. Therefore, we want to apply local refinement at these points.
Also, we find that the heat flow is very fast at the first few time steps, and there is a peak
at z = 0. Thus, we want to apply refinement near the four points, (0.25,0.25), (0.75,0.25),
(0.75,0.75), (0.75,0.75) and near the line z = 1. We let d,, = 0.025, d, = 0.05. Figure 6.17
shows the refined mesh. Since the exact solution is unknown, we only give a 3D plot of
the numerical solution. Figure 6.18 shows the solution at ¢t = 0.01, Figure 6.19 shows the

solution at t = (.50 and Figure 6.20 shows the solution at ¢ = 1.00.

73

11 10 9 8

12 7
1 18 19 |
13 17 20 6
14 16 21 5
0 23 22 !
15
24
1 4 4
0o 1 o2 3

Figure 6.15: Two local regions, which are the children of {2, share two common faces and
the labels of their faces.

Figure 6.16: Solution of problem HFEA3, when d,,, = 0.25, n =4, m =7, t = 0.45.

74

Figure 6.17: The locally refined mesh of problem HEA3 near the points (0.25,0.25),
(0.75,0.25), (0.75,0.75), (0.75,0.75) and near the line z = 0, when d,, = 0.025, d, = 0.05.

Figure 6.18: Solution of problem HFEA3, when d,,, = 0.025, d, = 0.05, n = 4, m = 7,
t = 0.01.

75

Figure 6.19: Solution of problem HFEA3, when d,,, = 0.025, d, = 0.05, n = 4, m = 7,
t = 0.50.

Figure 6.20: Solution of problem HFEA3, when d,,, = 0.025, d, = 005, n =4, m =7,
t = 1.00.

76

Chapter 7

Implementation of the

Visualization Tool

Since typical solutions of a PDE give large amounts of data, one cannot easily interpret
these data and observe the changing solution. A good graphics tool helps us to understand

the results better for further analysis.

7.1 Objectives

There are two main objectives to be realized. One is to visualize the mesh of a certain
domain) generated by the Rivara algorithm, the other is to visualize the solutions. Since
the plots of solutions of PDEs in 2D space will be three-dimensional, there should be
functions for moving, rotating and scaling, which can help us to observe the solution more

precisely.

7.2 Graphics interface

For a visual application, the first consideration is to choose a suitable graphics frame inter-
face. At present, there are many kinds of interfaces offered by different operating systems.
Since the program is primarily designed to run on Linux systems, we have chosen Motif,

which is a widely used X11 graphics library, as the frame of the visualization tool. To draw

77

3D graphics, we have chosen OpenGL as the 3D rendering interface. C/C++ is again the
language used to implement the code. Figure 7.1 shows the architecture of the visualization

tool.

Visualization Tool

Motif
OpenGL Other Libraries
X11
Linux/Unix

Figure 7.1: Architecture of the visualization tool.

To integrate OpenGL and X11/Motif, we need to use “drawing area widgets” of OpenGL
[39]. We should first find the color map of the current X11 display, then create the widget

as follows:

int n;

Widget wGlxArea;

Colormap cMap;

Arg args[10];

XtSetArg(args[n], XtNcolormap, cMap); nt++;
wGlxArea = XtCreateWidget(<name of widget>,

glwMDrawingAreaWidgetClass, <parent widget>, args, n);

Now we can create an OpenGL rendering context and we are ready to render the 3D graphics

[41]. Creating a rendering context is done as follows:

Widget w;
XVisualInfo *visinfo;
Display *dpy;

GLXContext glxcontext;

78

XtVaGetValues(w, GLwNvisualInfo, &visinfo, NULL);

glxcontext = glXCreateContext (XtDisplay(w), visinfo, O, True);

Every time when we need to render the graphics, we set the rendering context in which we

want to draw graphics as the current context:
glXMakeCurrent (dpy, XtWindow(w), glxcontext);

Anything that is drawn in the following steps will be rendered into this context.

7.3 Integration of visualization and calculation

The visualization tool will first load the module “configuration parameters reading”, pre-
sented in Section 5.11, into memory and use it to read in the configuration parameters.

If the user wants the visualization tool to draw the mesh created by the Rivara algo-
rithm, the application will use the module “PDEs calculation” to generate the mesh. It
then recursively searches the binary tree to find the coordinates of the mesh and plots the
mesh into the OpenGL rendering context.

If the user wants the visualization tool to plot the solutions of the PDE, the application
will also use the module “PDEs calculation” to calculate the solutions. The module “PDEs
calculation” will generate the solutions of one time step and put them into a certain block
of memory, then continue to process the next time step, etc., until the end. Once there are
valid solution data in memory, the graphics tool can use them to plot the graphics. If there
are no data, the graphics tool will wait and do nothing, except when the user wants it to
do something, such as moving or rotating the coordinates. Therefore, we need a suitable
multiple processing method to accomplish this task. On Linux systems, we use Posix thread

to do this [32, 33]. Creating a thread is accomplished as follows:

pthread_t *ptid;

pthread_create(ptid, NULL, <function of calculation thread>,

<input parameter>);

79

We use a semaphore to notify the graphics tool that solution data are ready. A semaphore

is created as follows:

sem_t *psem;

sem_init(psem, O, 0);

Generally, if the working process needs to wait for something, it will be hung up and will do
nothing. However, a GUI process can not be hung up. Otherwise, the user can not interact
with the graphics interface. Therefore, the semaphore must not block the OpenGL GUI
thread. The GUI thread will repeat detecting if any solution data are ready. If there are

solution data ready, it performs plotting. Repeating detection is done as follows:

int iret;
iret = sem_trywait(psem);
if(liret){ /* data ready, semaphore is unlocked */

/* get data and do plotting */

}
else{ /* data is not ready or some exception happens */
if(errno != EAGAIN) /* exception happens */

return errcode;

On the other hand, the calculation thread should notify the GUI thread when the solution

data are ready:

sem_post (psem) ;

Now the GUI thread and the calculation thread can exchange information.

80

7.4 OpenGL implementation

Using OpenGL to draw the mesh is easier than the 3D plot of the solutions. The graphics
tool first draws the domain, and then searches the binary tree to find the midpoint of a
certain local region and draws the common face. All these operations are in 2D. Drawing

2D graphics using OpenGL is done as follows:
gluOrtho2D(left, right, bottom, top);

We have already shown pictures of a 2D mesh in Section 3.3.

3D graphics is used to plot the solutions calculated by the module “PDEs calculation”.
If only the solutions at the matching points are used, then it will be difficult to draw the
graphics since the matching points are on the edges of the elements. This is why we also
calculate the solution at the vertices of the elements. This helps us to draw 3D polygons.
We send the solution values at the matching points and at the vertices to the graphics tool,
and let it do the 3D plotting.

One thing that needs to be mentioned here is the rotation of 3D coordinates. For the
current program, the rotation axis does not pass the origin of the coordinate system, so
that it is not possible to directly use the “glRotate” function offered by OpenGL. We first
need to read the OpenGL model matrix. The first three rows of the 4 x 4 model matrix
read are the directions of the current coordinates that have been translated. So we must do
a rotation according to these new coordinates, and then plot the images. Figure 7.2 is an
example to show the effect of a 3D plot, Figure 7.3 is the 3D plot after a certain rotation

and Figure 7.4 is the 3D plot after a certain rotation and a zoom.

7.5 Animation generation

A typical parabolic PDE is time-dependent, i.e., the solution will change with time. This
also means that a single picture cannot show all solutions of the problem. For each time
step, there will be a picture which shows the distribution of the solutions at that time.
Showing one frame after another will give an animation.

The simplest way to generate an animation is to let the visualization tool perform instant

81

Figure 7.2: Solution of problem NFEQ3, when dm = 0.0125, d, = 0.015, n = 4, m = 7,
t =1.00.

Figure 7.3: Solution of problem NEQ3, when dm = 0.0125, d, = 0.015, n = 4, m = 7,
t = 1.00, rotated.

82

Figure 7.4: Solution of problem NEQ3, when dm = 0.0125, d, = 0.015, n = 4, m = 7,
t = 1.00, rotated and zoomed

plotting. This means that the visualization tool will draw a picture of a certain time step
once the solutions are calculated. Whenever we need to observe the solutions graphically
for the same PDE, we need to recompute the problem, since the solutions are lost when the
program exits.

A better way to generate an animation is to save the information of the pictures into
a file. There are two ways of implementing this function. One way is directly saving the
plotted images. The other is saving data that describes the structure of the 3D plots of the
solutions. At present, the solution used by the graphics tool is to save images.

To generate animation files, we first use OpenGL to plot the solutions, which produces
an image in the frame buffer. The next step is to get the image out of the frame buffer
and save it in the memory obtained by the graphics tool. This can be done through the

following function:

GLvoid *pixels;

83

glReadPixels(x, y, width, height, <format>, <type>, *pixels);

The image is now in the memory pointed by parameter “pixels”.

Next, we need to save the image into an animation file, one frame after another. There
are several kinds of formats of animation files that can be used. GIF is the most widely
used animation file, and many programs can play GIF files. GIF supports not more than
256 colors [42, 43]. If the image we get from the color buffer is a true color image, then we
need to do quantification first. This process may lose some color information of the original
image, which is a shortcoming of GIF. When the image data are ready, we need to change
it into the GIF file format and store it into a file. Thus an animation file has been created.

An alternative way to solve the problem of 256 colors of the GIF file format is to use
some type of moving pictures encoding method to convert the images into multimedia files,

for example, AVI files. This is a topic for future work.

7.6 Data storage

We can directly store the solution data into data files for later plotting. The solution data
already contains enough information to regenerate all graphics and animations. At present,
this is what the graphics tool does.

One problem is that the data can only be recognized by our graphics tool, and tools
written by other people do not understand the format of the data. A solution to this is
to change the data into a more commonly used 3D data format and to store the data into
a type of standard graphics data file. At present, many formats of 3D data files already
exist. Many 3D representation programs offer 3D files, i.e., SDMax, Maya, Direct3D, etc..
If we store the solution into these standard 3D files, we can use the 3D plot tools mentioned
above to draw the graphics. Some work has been done in that direction, but further work

is needed.

84

Chapter 8

Ideas for Nonlinear PDEs and for
the 3D Case

8.1 Nonlinear parabolic PDEs

The idea of our collocation methods for nonlinear parabolic PDEs comes from the idea used
for elliptic PDEs by Doedel [4, 5]. Further work for systems of nonlinear elliptic PDEs is
presented in the Ph.D thesis of Sharifi [7]. Here we discuss the calculation procedure, but
not the implementation. |

Consider Equation (2.1), with the initial conditions (2.6) and boundary conditions (2.7),
(2.8) or (2.9). As for the case of linear PDEs, we use finite difference to replace the partial
derivative with respect to t. Then (2.1) is of the form

Ug — Up—1

dt :Auk_q(Xatkaukavuk)a k=1,2,---,n (81)

We rewrite it using a nonlinear operator,

1 1
Nug = Auy — [g(X, tr, uk, Vug) + P Eukq]- (8.2)

85

This is a nonlinear elliptic PDE problem at given time g,
Nug = Aug + fr(X, ug, Vug) = 0, (8.3)

where

1 1
(X, ug, Vug) = —[q(X, tr, ug, Vug) + il "Euk~l]- (8.4)

As in Section 2.2, we recursively subdivide 2 and associate a local polynomial pg(X) € Pyim

to each finite element. The polynomial pg(X) must satisfy the collocation equations
Npk(Zj):O, j=1,2,---,m,

and for any two neighboring finite elements, it is required that the values and normal
derivates of the neighboring local polynomials match at matching points z; on the common

boundary.

The local polynomial is of the form pg(X) = 24" cF¢i(X), where

Span{qbl, ¢27 Ty ¢n+m} - Pn+m~

Therefore, the collocation equations will be of the form

n+m
N (Z Cfcbz-(zj)) =0, j=12,---,m. (8.5)

i=1

By way of the continuity requirements mentioned above, we can associate unique variables

uf and v{“ to each matching point x;, and require that

pr(zi) = auf,
Vor(x) ' = Uf.

Using the notation of Section 2.2, we can write

up — P =0, v — Rpep =0. (8.6)

86

From the equations (8.5) and (8.6), we see that the unknown variables are ¢, € R"*™,
for each element, and the u;, v; associated with the interior matching points z; of the domain
Q. To solve (8.5) and (8.6), we use Newton’s method.

Newton’s method for a system of equations is

J(F(z))0x = —F(zy), xn€ RN,F(z)e RV,
(8.7)
Tpt1 = Tp+ 0.

Here, J is the Jacobi matrix. Applying Newton’s method to (8.5) and (8.6), omitting

iteration indices, we obtain

Lide, = —rk, (8.8)
Sup — D*bc, = —rF, (8.9)
Svg — Rydey, = —rFk, (8.10)
Here,
Lipr(z1)l¢1(21) Llpk(21)lg2(21) -+ Llpk(21)]¢n+m(21)

Ly =

Lipr(z2)]¢1(22) Llpr(22)]¢2(22) -+ Lpk(22)]dnim(22)

Llpr(2m)l¢1(2m) Llpe(2m)]@2(zm) -+ Llpk(2m)]dn+m(zm)

where L is the linearization of N, i.e., L[p(x)]¢(z) is the linearization of N about p(x),

acting on ¢ at z; in detail,

Lip(z)l¢(z) = A¢(z) + D2fi(z, p(x), Vp(z))¢(z) + [D3fr(z, p(x), Vp(z))]" Ve (2),

where D fi, denotes the partial derivative of fi with respect to the second variable, [D3 fi]*

denotes the transpose of the vector of the partial derivatives of fr with respect to the third

87

variable and the variables following the third. Also define

5ck Npi(=1) suk Svf
5ck Npg(zg Suk Suk

deg = .2) TI]C\/' = () ’ dug = ‘2 ’ dug = _2)
Sck Npi(zm) Suk Svk

and

k k
ry = ux — ®*cg, Ty = v — Rpcr.

Equations (8.8) and (8.9) can be written as

o™ Suy, + rk
See=| . (8.11)
L3 —rj“v

We use (8.11) to eliminate dc in (8.10), to obtain

-1

o* ou rk
v, = R} T —rk
k d A v-
£
L3 TN

We define A and B exactly as in the linear case, so

(®|La) = Rs. (8.12)
B*

Following this, the equation for dug can be rewritten as

-1
o* o Sug + 7k .
dvr = (A|B) -

so, finally,
Svp = Aduy — Brk, — % + Ark. (8.13)

This equation has the same form as (2.15), which is for linear problems. The complete

collocation method for nonlinear parabolic PDEs with Newton iteration now consists of the

88

following steps:

1. Use the Rivara algorithm to refine the domain €1, in order to create a mesh, and then

select matching points and collocation points.
2. Use the initial conditions to calculate the initial values of ug at the collocation points.
3. For each finite element, calculate the matrix (A|B), using (8.12).
4. Provide approximations to ug, v and cg.

5. Solve the global set of equations (8.13) for duy and dvg. This can be done through

the nested dissection algorithm described in Chapter 4.
6. For each finite element, calculate dci using (8.11).
7. Update up — uy + dug, vp — v + dvg and ¢ — ¢ + dcg.

8. Repeat step 5, step 6 and step 7 for a certain number of iterations, until uy, v and

¢k are accurate enough.

9. Move to the next time step, and calculate ugi1, vg+1, and cgr1, until the desired find

time is reached.

As mentioned in Section 2.4, if the time step is constant, certain types of linear PDEs, to
which all the examples given in this thesis belong, only require the matrix (4|B) to be
calculated once for each element, since Lg is time-independent. The matrix Lg in (8.8) is
time-dependent, so that the matrix (A|B) needs to be calculated at each time step, and
the LU-decomposition of the matrix (®|Lg) is also required for each finite element at each

time step.

8.2 3D problems

The parabolic PDEs given in previous chapters are for the 2D space-dimension case. Many
real PDEs have higher space-dimensions. Using collocation methods for problems with

higher dimensions is more difficult. Many problems arise naturally in 3D, for example, the

89

heat exchange equation in 3D, which reflects a real physical phenomenon.

First, we want to apply refinement to a domain 2 in 3D. To subdivide a 3D cube into
small cubes is easy. But, as mentioned in Section 2.2, cubic elements are not suitable for
general domains. Thus we need to use tetrahedral elements.

The problem arises of how to subdivide a tetrahedral region into two parts, as the Rivara
algorithm does in 2D via bisection. It has been proven that the Rivara algorithm generates
stable triangular meshes, since the minimal angle of the generated mesh is not less than one
half of the minimal angle of the original triangular domain. However, we do not know if
this is possible in the 3D case. The basic idea of the bisection of a tetrahedron is as shown

in Figure 8.1.

Figure 8.1: A bisection of a tetrahedron.

Many people have studied this problem [44, 45, 46, 47, 48, 49, 50, 51, 52]. Some re-
searchers even used methods of four or eight partitions, which is different from what we
want to use. The bisection method described in [47] is the one most similar to the Rivara
algorithm.

This method first defines the vertices, edges and faces of a tetrahedron 7 as V(r), £(7)
and F(7). For a face ¢ € F(7), £(p) denotes the edges in p. A edge is specified as the
refinement edge of 7, if it will be divided by a face passing its midpoint and the opposite
edge in 7. The two faces intersecting at the refinement edge are called the refinement faces
of 7. The method then selects the refinement edge and a particular edge of each of the two
nonrefinement faces. These three edges are called marked edges of these faces. So the re-
finement edge itself is the marked edge of each of the two refinement faces. Also the method

gives the tetrahedron a flag, which is unset, except when the marked edges are coplanar.

90

In this case, the flag may or may not be set. Thus, this method defines this tetrahedron as
a marked tetrahedron 7.

This method classifies marked tetrahedra into four types, according to the cases that
each marked nonrefinement edge of a marked tetrahedron is either adjacent or opposite to

the refinement edge, as shown in Figure 8.2.

P A

— o i~ - — - 4 - - —

Figure 8.2: Types of marked tetrahedra: P, A, O and M. Each marked edge is indicated
by two short bars, while the refinement edge is indicated by three short bars.

Type P: the marked edges are coplanar. This type tetrahedron is further classified

as type Py or type P, according to whether the flag is set or not.

Type A: the marked edges intersect the refinement edge, but are not coplanar.

Type O: the marked edges of the nonrefinement faces do not intersect the refinement

edge and they are the same edge.

Type M: only one of the the marked edges of the nonrefinement faces intersects the

refinement edge.

When a tetrahedron 7 is divided into two children, 71 and 79, a face of one of the children
is called an inherited face if it is also a face of 7. A face of 7 is called a cut face if it is
divided, and the common face of the children is called a new face. Thus, each child has one
inherited face, two cut faces and one new face.

Next, this method defines the algorithm BisectTet.

Algorithm {71, 72} = BisectTet(r)

1. Bisect 7 by adding a new face passing the midpoint of its refinement edge and the

opposite edge. This defines 71 and 75.

91

2. The inherited face inherits the marked edge from 7, and this marked edge is the

refinement edge of the child.

3. On the cut faces of 71 and 79, mark the edge which is opposite to the new vertex as

marked edge in each cut face.

4. The new face is marked the same way for both 71 and 7. If 7 is type Py, the marked
edge is the edge connecting the new vertex to the new refinement edge. If 7 is type

P,, it is the edge which is opposite to the new vertex.
5. The flag is set in 7 and 79 if and ouly if 7 is type Py.

This algorithm shows that the tetrahedra 71 and 79 generated by BisectTet(7) will be of
the same type, and they can only be type P or type A.

Finally, this method gives a local refinement procedure which is suitable for calculation of
PDE problems in 3D. It gives the concept of “hanging node”, which is similar to the hanging
point that we mentioned in Section 3.1. Also, it defines that a 3D mesh is conforming if no
tetrahedron in it has a hanging node and each face of every tetrahedron in the mesh either
belongs to the boundary or is a face of another tetrahedron in the mesh. A mesh is marked
if each tetrahedron in it is marked. A marked conforming mesh is conformingly-marked if
each face has a unique marked edge. Define a conformingly-marked mesh as 7 and define
S as the set of all the marked tetrahedra that need to be refined. The refinement edge of
each tetrahedron in S can be selected based on some criterion, e.g., the longest edge of each
tetrahedron. Thus the final refinement algorithm Re finel oCon formity is

Algorithm 77 = RefineToConformity(T)

1. Refine all the marked tetrahedra in 7 that need to be refined, which is §, using the

algorithm BisectTet.
2. If any marked tetrahedron in 7 has a hanging node, continue to do BisectTet.

3. Repeat until there is no marked tetrahedron having a hanging node. This gives

conformingly-marked mesh 77,

92

There is a proof in [47] to show that procedure RefineToCon formity will terminate, like
the Rivara algorithm.

As to the implementation of the 3D case, the present data structures are already suitable.
To label the vertices and the faces of each local region, we can use the procedure of the 2D

case. For example, Figure 8.3 shows how to label a divided local tetrahedral region.

Figure 8.3: Labeling a divided local tetrahedral region.

Here, we do not give the labels of the faces, since they will make the picture unclear. The
label of each face of the tetrahedron should be the same as that of the opposite vertex. Next,
we need to select the matching points and the collocation points. This will be different from
the 2D case. The matching points should now be on the faces of the tetrahedra. There will
be various ways to select the matching points. As for the collocation points, we can still

use equations such as

Tp = coTo + €171 + 272+ 373, copt+ci+eratez=1

3
€0, €1,C2,C3 € R? Tp, T, T1, T2, T3 €R)

to select random points as collocation points. Thus we can solve (2.19). Since each vertex
has been assigned a global index, there will be a way to determine a unique order of the
matching points on each face of each local region. Therefore, it is possible to apply the
nested dissection method. The procedure will be the same as that for the 2D case.

For the definition of the domain (2, if it is a polyhedron, we can divide €} into several

tetrahedra. Labeling the vertices and faces, like in Section 5.3, is easy for a simple polyhedral

93

domain, as shown in Figure 8.4, where the two tetrahedra share only one common face.

0

Figure 8.4: A combined region contains two tetrahedra.

Matters will become more difficult when labeling a complicated polyhedral domain, such as

the one shown in Figure 8.5. This is a topic for future study.

Figure 8.5: A combined region of a more complicated polyhedron, where the two subregions
share three common faces.

94

Chapter 9

Conclusion and Discussion

9.1 Conclusion

In this thesis, we have introduced a new class of collocation methods for the approximate
numerical solutions of linear parabolic PDEs. Although the examples solved here are of
the form (2.5) for the 2D case, the method can solve more general linear parabolic PDEs.
The boundary conditions used are Dirichlet boundary conditions and' Neumann boundary
conditions.

The data structures and many functions, such as allocation, basis generation, etc., are
flexible and can be adapted to many problems. This offers a good basis for future work.

At each time step we use a finite difference in time to replace the partial derivative with
respect to £, namely, the implicit Euler method. This produces an elliptic PDE at each
time step. Using the initial conditions and the boundary conditions, we use a collocation
method to solve this elliptic PDE at each time step. At each time step, we use the space mesh
gencrated by the Rivara algorithm. Matching points and collocation points arc sclected to
form a system of finite difference equations for each element. Using nested dissection and
applying the boundary conditions, we form a linear system of equations, whose solution
gives the solution values at the matching points on the boundary. Next, we performn back
substitution to get the solutions at the interior matching points. We can also determine
the coefficients of the local polynomial of each element. Thus we can get the solution at

any point in the domain. This is needed, in particular, to calculate the solution at the next

95

time step, since we need to know the solution at the collocation points at the present time
step.

Solutions of time-independent problems have a higher order of accuracy, because the
errors only depend on the space discretization. The accuracy of the solutions of time-
dependent problems mainly depend on the time step size because the implicit Euler method
used here has the accuracy of O(dt), except when the space mesh is very coarse. Examples
in this thesis illustrate this behavior.

Solutions are typically best understood by their graphical representation. This gives us
a direct image of the distribution of the solutions, and hence a better understanding of the
problem. We can also create animations to show the dynamic changes of the solutions of
parabolic PDEs. Animations can be drawn instantly, or be saved in animation files. The

solutions can also be saved in certain format files for later reconstruction.

9.2 Future development

At present, our collocation methods can solve general linear parabolic PDEs in 2D. For
real problems, things can be much more complicated. We need to extend the method to be
able to solve more general problems.

Selection of the collocation points greatly influence the accuracy of the final solution.
The collocation points given in the implementation of this thesis are random points in or
near the elements. In test calculations, we find that inappropriate ways of selecting the
matching points and the collocations points will cause the matrix (®|Ls) to be singular
or have small pivots. The points given in Chapter 6 have given good results. However,
the solutions are not as accurate as those from square meshes. Determining more suitable
collocation points for triangular meshes is a topic to study.

Most real problems are nonlinear PDEs. Extending the collocation method to nonlinear
PDEs will be very useful. In Section 8.1, we have discussed this extension. What needs to
be done next is to extend the present software to nonlinear PDEs. Since nonlinear PDEs
can be complicated, it is best to start with relatively simple cases.

Extending the software to PDEs in higher space dimensions will also be very useful for

96

real problems. Although square meshes for solving higher dimension PDEs can be directly
implemented, using triangular meshes will be much more challenging. In Section 8.2, we
have discussed some aspects of the 3D case. The first problem is how to refine a 3D domain
into a fine mesh of acceptable tetrahedral elements. We gave some indications and refer-
ences on how to do this, but there is no theory that matches that of the Rivara algorithm
in 2D. The process of solving the collocation equations and using the nested dissection
algorithm in 3D is also a challenge. Although the present data structure is ready for any
dimension, the numerical implementation is not easy and needs future work.

Currently, the original triangular mesh is defined manually. If the domain is compli-
cated, defining a corresponding mesh will be difficult. There should be a method to divide
the given domain into a suitable initial triangular mesh automatically. This would be very
useful for solving real problems.

Adaptive time steps will reduce the cost of the calculations. We need to find practical
ways to deal with this problem. Higher order discretization in time is clearly another way
to further improve efficiency

Better mesh selection will give more accurate solutions. Also, it will take less computa-
tion. An example in Chapter 6 shows a solution of a PDE that has a peak at the center of
the domain. Since we already know the exact solution, this can be predetermined. Thus,
we use local refinement at the center, to obtain an accurate solution. In real problems, we
do not know the solution in advance, so we do not know in advance if a solution is steep at
some place in the domain. One choice is to use a fine uniform mesh, but this will cause much
calculation time. An adaptive mesh can solve this problem by automatically relocating the
mesh to obtain solutions of a specific accuracy, and cost less calculation. The computation
can start with a trial solution on a coarse mesh with a basis of low order. Based on error
estimates, the mesh can then be refined to obtain the desired accuracy. This problem has
been studied by many people [58, 59, 60, 61, 62, 63], but little is known about optimal

choices of the mesh. Common procedures studied include:

e local refinement or coarsening of the mesh,

e relocating or moving the mesh (the method of “moving meshes”),

97

e varying the degrees of the polynomials associated with the elements.

Relocating or moving the mesh is useful for time-dependent problems, such as parabolic
PDEs studied here. This is a topic of future study.

The present application can run on Linux systems, and on most Unix systems with few
changes. The visualization tool is based on X11/Motif and OpenGL. In order to make the
program more flexible, it needs to be ported to other systems. In fact, the present calcu-
lation part can be run under most operating systems. This part of the code has already
been tested on Win32 systems. Since OpenGL is an operating system independent 3D
interface, the graphics code can be easily ported to other platforms. What needs change is
the graphics frame. Most graphics systems differ, especially for X11 and Windows. Even
for X11, there are many different graphics frames, such as Motif, KDE and Gnome. Motif
is the most widely used interface on most Unix systems, although it is not so flexible as
others.

The current visualization tool can draw the mesh, give 3D plots of the numerical so-
lutions, and create animation files. In order to observe the solutions better for further
analysis, there need to be more ways to show the results, such as contours, sections, and
an animation that shows the process of creating the mesh. These functions need further
development.

Parallel processing is a general way to deal with problems that need much calculation
time. At present, there are many ways to carry out parallel calculations, such as on main-
frames with many nodes, clusters, SMP servers, processors having SIMD instructions, and
the multi-core processors, introduced recently. In the implementation of the methods, the
easiest place to implement parallel processing is in the matrix calculations. In fact, part of
a code that does matrix calculations has already been implemented in Intel’s SSE2 codes
[65, 66, 67], and it has been proven that SSE2 code can improve the efficiency of the calcu-
lations, though only slightly, since the matrix calculations is not the main part of the whole

processing. Thercfore, implementing parallel calculation needs further consideration.

98

Bibliography

[1] S.S. Rao. “Applied Numerical Methods for Engineers and Scientists.” Prentice Hall,

Chapter 11, 2002.

[2] Ames, William F. “Numerical Methods for Partial Differential Equations.” Academic

Press, Chapter 2, 1977.
[3] “MATLAB Help.” MATLAB Release 13, The MathWorks, Inc. 2002.

[4] E.J. Doedel. “On the Construction of Discretizations of Elliptic Partial Differential

Equations.” Journal Difference Equations and Applications, Vol. 3, pp.389-416, 1998.

[5] E.J. Doedel and Hamid Sharifi. “Collocation Methods for Continuation Problems in
Nonlinear Elliptic PDEs.” Issue on Continuation Methods in Fluid Mechanics, D.
Henry and A. Bergeon, eds., Notes on Numer. Fluid. Mech., Vol. 74, pp.105-118,
Vieweg, 2000.

[6] E.J. Doedel. “Finite Difference Collocation Methods for Nonlinear Two Point Boundary

Value Problems.” SIAM J. Numer. Anal., Vol. 16, pp.173-185, 1979.

[7] Hamid Sharifi. “Collocation Methods for the Numerical Bifurcation Analysis of Systems

of Nonliniear Partial Differential Equations.” Ph.D thesis, Concordia University, 2005.

[8] C.de Boor and B. Swartz. “Collocation at Gaussian points.” SIAM J. Numer. Anal.,

Vol. 10, pp.582-606, 1973.

[9] U. Ascher and G. Bader. “Stability of Collocation at Gaussian Points.” SIAM J. Numer
Anal., Vol. 23, pp.412-422, 1986.

99

[10]

1)

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

U. Ascher, J. Christiansen, and R.D. Russell. “Collocation Software for Boundary-
Value ODEs. 7 ACM Trans. Math. Software, Vol. 7, pp.209-222, 1981.

U. Ascher, J. Christiansen, and R.D. Russell. “COLSYS: Collocation Software for
Boundary-Value ODEs [D2].” ACM Trans. Math. Software, Vol. 7, pp.223-229, 1981.

C.E. Greenwell-Yanik and G. Fairweather. “Analyses of Spline Collocation Methods for
Parabolic and Hyperbolic Problems in Two Space Variables.” SIAM J. Numer. Anal.,
Vol. 23, pp.282-296, 1986.

P.M. Prenter and R.D.Russell. “Orthogonal Collocation for Elliptic Partial Differential
Equations.” STIAM J. Numer. Anal., Vol. 13, pp.923-939, 1976.

Jim Douglas, Jr. and Todd Dupont. “A Finite Element Collocation Method for Quasi-

linear Parabolic Equations.” Mathematics of Computation, Vol. 27, pp.17-28, 1973.

R.E. Bank. “The Effi cient Implementation of Local Mesh Refinement Algorithms.” Inl.
Babugka, J. Chandra, and J.E. Flaherty, editors, Adaptive Computational Methods for
Partial Differential Equations, pp.74-81, Philadelphia, 1983. STAM.

R.E. Bank. “PLTMG: A Software Package for Solving Elliptic Partial Differential
Equations.Users’ Guide 7.0.” Volume 15 of Frontiers in Applied Mathematics. STAM,
Philadelphia, 1994.

R.E. Bank. A.H. Sherman, and A. Weiser. “Refinement algorithms and data struc-
tures for regular local mesh refinement.” Scientific Computing, pp.3-17, Brussels, 1983,

IMACS/North Holland, Netherland.

R.E. Bank and R. Kent Smith. “A Posteriori Error Estimates Based on Hierarchical

Bases.” SIAM J. Numer. Anal., Vol. 30, pp.921-935, 1993.

R.E. Bank and R. Kent Smith. “Mesh Smoothing Using a Posteriori Error Estimates.”
SIAM J. Numer. Anal., Vol. 34, pp.979-997, 1997.

100

[20] M.G. Larson. “Notes on Triangulations and Refinements” available by HTTP from
http://www.phi.chalmers.se/education/courses/2000/detb-a-kf/Triang.ps, Chalmers

University of Technology, Sweden, May 8, 2001.

[21] M.-C. Rivara. “Mesh Refinement Porcesses Based on The Generalized Bisection of

Simplices.” ACM Transactions on Mathematical Software, Vol. 10, pp.242-264, 1984.

[22] M.-C. Rivara. “Design and Data Structure of Fully Adaptive, Multigrid, Finite-Element

Software.” SIAM Journal on Numerical Analysis, Vol. 21, pp.604-613, 1984.

[23] J.E. Flaherty, “Finite Element Analysis.” Lecture 8, available by HTTP from

http://www.cs.rpi.edu/~flaherje/pdf/fea8.pdf, Rensselaer Polytechnic Institute, 2005.

[24] L.G. Rosenberg and F. Stenger. “A Lower Bound on the Angles of Triangles constructed

by bisecting the longest side.” Mathematics of Computation, Vol. 29, pp.390-395, 1975.

[25] Martin Stynes. “On Faster Convergence of the Bisection Method for Certain Triangles.”

Mathematics of Computation, Vol. 33, No. 146, pp.717-721, 1979.

[26] Martin Stynes. “On Faster Convergence of the Bisection Method for all Triangles.”
Mathematics of Computation, Vol. 35, No. 152, pp.1195-1201, 1980.

[27] Kenneth Hoffman and Ray Kunze. “Linear Algebra.” Prentice-Hall, 1971.

[28] E.J. Doedel. “Elementary Numerical Methods, Lecture Notes.” available by HTTP
from http://cmvl.cs.concordia.ca/courses/comp-361/fall-2005 /notes.pdf, Concordia
University, 2005.

[29] “GCC 4.0.1 Manual.” available by HTTP from http://gcc.gnu.org/onlinedocs/gee-
4.0.1/gec/, GNU, 2005.

[30] Arthur Griffith. “GCC:the Complete Reference.” McGraw-Hill, 2002.

[31] “Using LD, the GNU linker.” available by HTTP from http://www.gnu.org/software
/binutils/manual/1d-2.9.1/1d.html, GNU, 1998.

[32] “Fedora3 Linux Online Help.” available by HTTP from http://fedora.redhat.com, Fe-
dora3 manual, 2004.

101

33]

34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Ulrich Drepper and Ingo Molnar. “The Native POSIX Thread Library for Linux.”
Redhat, Inc. February 2003.

Arnaud Desitter. “Using Static and Shared Libraries Across Platforms.” available by
HTTP from http://fortran-2000.com/ArnaudRecipes/sharedlib.html, 2005

Amal Shah and Hong Xiao.“Using Shared Libraries across Platforms.” available by
HTTP from http://www.cuj.com/documents/s=8065/cuj9805shahxiao/, May 1998.

“Development Tools and Languages/Visual Studio 6.0/Visual C++ Program-
mer’s Guide/Compiling and Linking.” MSDN Library, available by HTTP from

http://msdn.microsoft. com/library, Microsoft, 2005.

“Win32 and COM Development/System Services/DLLs, Processes, and Threads/SDK
Documentation/DLLs, Processes, and Threads/Dynamic-Link Libraries.” MSDN Li-

brary, available by HI'TP from http://msdn.microsoft.com/library, Microsoft, 2005.

Dave Shreiner, Mason Woo, Jackie Neider, Tom Davis. “OpenGL Programming Guide,

Second Edition.” Addison-Wesley, 1997.

M.J. Kilgard. “OpenGL Programming for the X Window System.” Addison-Wesley,
1996.

Mark Segal and Kurt Akeley. “The OpenGL Graphics System: A Specification, Version
1.5.” Silicon Graphics, Inc. 2003.

Paula Womack and Jon Leech. “OpenGL Graphics with the X Window System, Version
1.3.” Silicon Graphics, Inc. 1998.

“GIF(tm), Graphics Interchange Format(tm), A standard defining a mechanism for
the storage and transmission of raster-based graphics information.” CompuSecrve In-
corporated, 1987.

“Graphics Interchange Format(sm), Version 89a.” CompuServe Incorporated, 1989.

102

(44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Angel Plaza, M.A. Padrén and G.F. Carey. “A 3D Refinement/Derefinement Algorithm
for Solving Evolution Problems” Applied Numerical Mathematics, Vol. 32, pp.401-418,
2000.

Ronaldo Marinho Persiano, Joao Luiz Dihl Comba and Valéria Barbalho. “An Adap-
tive Triangulation Refinement Scheme and Construction.” available by HT'TP from
http://graphics.stanford.edu/~comba/papers/adptri93.pdf, Proceedings of the VI Sib-
grapi (Brazilian Symposium on Computer Graphics and Image Processing), Recife,

Brazil, October 1993.

Angel Plaza and G.F. Carey. “About Local Refinement of Tetrahedral Grids
Based on Bisection.” available by HTTP from http://www.andrew.cmu.edu/user
/sowen/abstracts/P1246.html, 5th International Meshing Roundtable, Sandia National
Laboratories, pp.123-136, October 1996.

D.N. Arnold, Arup Mukherjee and Luc Pouly. “Locally Adapted Tetrahedral Meshes
Using Bisection” SIAM J. Sci. Comput. Vol. 22, No. 2, pp.431-448, 2000.

Angel Plaza and M.-C., Rivara. “Mesh Refinement Based on The 8 Tetrahedra
Longest-edge Partition.” available by HT'TP from http://www.andrew.cmu.edu/user
/sowen/abstracts/P1977.html, 2th International Meshing Roundtable, Sandia National
Laboratories, pp.67-78, Sept. 2003.

A.Plaza and G.F. Carey. “Local Refinement of Simplicial Grids Based on the Skeleton.”
Applied Numerical Mathematics, Vol 32, pp.195-218, 2000.

Anwei Liu and Barry Joe. “On the Shape of Tetrahedra from Bisection.” Mathematics
of Computation, Vol. 63, No. 207, pp.141-154, 1994.

Anwei Liu and Barry Joe. “Quality Local Refinement of Tetrahedral Meshes Based
on 8-Subtetrahedron Subdivision.” Mathematics of Computation, Vol. 65, No. 215,

pp.1183-1200, 1996.

103

[52] M.-C. Rivara and Gabriel Iribarren. “The 4-Triangles Longest-side Partition of Tri-
angles and Linear Refinement Algorithms.” Mathematics of Computation, Vol 65, No

216, pp.1485-1502, October 1996.

[63] J.P. Suédrez, A. Plaza and G.F. Carey. “Propagation Path Properties in Iterative
Longest-edge Refinement.” available by HTTP from http://www.andrew.cmu.edu
/user/sowen/abstracts/Su983.html, 12th International Meshing Roundtable, Sandia

National Laboratories, pp.79-90, Sept. 2003.

[54] R.D. Russell and J. Christiansen. “Adaptive Mesh Selection Strategies for Solving
Boundary Value Problems.” STAM J. Numer. Anal., Vol. 15, pp.59-80, 1978.

[65] Kenneth Eriksson and Claes Johnson. “An Adaptive Finite Element Method for Linear

Elliptic Problems.” Mathematics of Computation, Vol. 50, No. 182, pp.361-383, 1988.

[56] Kenneth Eriksson and Claes Johnson. “Adaptive Finite Element Methods for Parabolic
Problems I: A Linear Model Problem.” STAM J. Numer. Anal., Vol. 28, pp.43-77, 1991.

[67) Kenneth Eriksson and Claes Johnson. “Adaptive Finite Element Methods for Parabolic
Problems IV: Nonlinear Problems.” SIAM J. Numer. Anal., Vol. 32, pp. 1729-1749,
1995.

[58] I. Babuska, J. Chandra and J.E. Flaherty, editors. “Adaptive Computational Mcthods

for Partial Differential Equations.” SIAM, Philadelphia, 1983.

[69] I. Babuska, J.E. Flaherty, W.D. Henshaw, J.E. Hopcroft, J.E. Oliger, and T.Tezduyar,
editors. “Modeling, Mesh Generation and Adaptive Numerical Methods for Partial
Differential Equations.” Volume 75 of The IMA Volumes in Mathematics and its Ap-

plications, Springer-Verlag, New York, 1995.

[60] 1. Babuska, O.C. Zienkiewicz, J. Gago and E.R. de A. Oliveira, editors, “Accuracy
Estimates and Adaptive Refinements in Finite Element Computations.” John Wiley

and Sons, Chichester, 1986.

[61] J.E. Flaherty, P.J. Paslow, M.S. Shephard and J.D. Vasilakis, editors, “Adaptive meth-
ods for Partial Differential Equations.” SIAM, Philadelphia, 1989.

104

[62] R. Verfiirth. “A Review of Posteriori Error Estimation and Adaptive Mesh Refinement

Techniques.” Teubner-Wiley, Stuttgart, 1996.

[63] M.W. Bern, J.E. Flaherty and M. Luskin, editors, “Grid Generation and Adaptive
Algorithms.” Volume 113 of The IMA Volumes in Mathematics and its Applications,
New York, 1999, Springer.

[64] W. Dorfler and M. Rumpf. “An Adaptive Strategy for Elliptic Problems Including a
Posteriori Controlled Boundary Approximation.” Mathematics of Computation, Vol.

67, No. 224, pp.1361-1382, 1998.

[65] “IA-32 Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture.”

http://www.intel.com, Intel, Inc. 2004.

[66] “IA-32 Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set

Reference.” http://www.intel.com, Intel, Inc. 2004.

[67] “IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System Program-

ming Guide.” http://www.intel.com, Intel, Inc. 2004.

105

Appendix A

Data Structures

A.1 Vertex structure

typedef struct Vertex{
int index;
int ecount;
int ecountc;
int mcount;
int ndim;
double minsol;
double maxsol;
double solerr;
double solution;
double *coord;

}VERTEX;

Members:
index: The global index of this vertex, starting from zero.
ecount: The number of the elements containing this vertex.
ecountc: The current count of the elements found containing this vertex when going

through the binary tree.

106

mcount:

ndim:

minsol:

maxsol:

solerr:

solution:

coord:

The number of local regions having this vertex as their longest edges’ middle
points. For 2D case, it is two. This mbember is used when releasing a middle
point. Each time when trying to release the vertex, it reduces one. When it
gets to zero, this vertex will be released.

The dimension of the vertex.

The minimal solution solved from the local polynomials of the elements con-
taining this vertex.

The maximal solution solved from the local polynomials of the elements con-
taining this vertex.

The difference between maxsol and minsol.

The average of all the solutions solved from the local polynomials of the ele-
ments containing this vertex.

Pointer to the coordinates of this vertex; the size of this member can be

variable according to different dimension.

A.2 Face structure

typedef struct Face FACE;

struct _Face{

int index;

int nmatp;

MATPOINT **matpts;

REGION *region[2];

FACE *next[2];

VERTEX *comvert;

int ndim;

VERTEX **vertex;

double *normal;

107

Members:

index: The global index of this face, starting from zero.
nmatp: The number of the matching points contained in this face.
matpts: The pointer to the list of the structures of the matching points contained in
this face.
region: The pointers to the structures of the two regions which share this face as the
common face. If this face is a part of the boundary, the pointer pointing to
the outside region will be NULL.
next: The pointers to the structures of the two child faces. If this face is a face of
the element, these two pointers will be NULL.
comvert: Pointer to the structure of the vertex which divides this face. If this face is a
face of the element, the pointer will be NULL.
ndim: The dimension of this face.
vertex: Pointer to the structures of the vertices contained in this face.

normal: Pointer to the structure of the exterior normal vector of this face.

typedef struct MatPoint{
double *coord;
double u, du;
double v, dv;

IMATPOINT;

Members:

coord: Pointer to the coordinates of this matching point.
u: The value of uy at this matching point.
du: The value of duy at this matching point. This variable is used for nonlinear
PDEs.
v: The value of v at this matching point.
dv: The value of dvp at this matching point. This variable is used for nonlinear

PDEs.

108

A.3 Region structure

typedef struct Region REGION;
struct Region{
int index;
int drawn;
REGIONTYPE regiontype;
int nmatf;
double **A, *xB;
double *abdata;
int *ani, =*aci;
int va;
double *fvp;
REGION *next[2];
int ndim;
VERTEX **vertex;
FACE xxface;
int nfaces;
int *vertorder;
int *comface;
int ncommon;
int nnvert;
BASICREGIONDATA xbgdata;
ELEMENTREGIONDATA *egdata;
NESTEDREGIONDATA *ngdata;

};

Members:

index: The global index of this region, starting from zero.

109

drawn:

regiontype:

nmatp:
A:
B:
abdata:

ani:

aci:

va:

fvp:

next:

ndim:
vertex:
face:
nfaces:
vertorder:
comface:
ncomimon:

nnvert:

The indicator to show if this region has been drawn. It is used for plotting
mesh.

The type of this region. If this region is a local triangular region, the type
is BASIC, if this region is a polygonal region, the type is COMBINED.
The number of the matching points contained in this region.

Pointer to the matrix A of this region.

Pointer to the matrix B of this region.

Pointer to the data area of the matrix (A|B) of this region.

Pointer to list of the labels of the matching points in the non common
faces.

Pointer to list of the labels of the matching points in the common faces.
The indicator to show if the matrix A has been calculated. If it has been
calculated, it needs not to be recalculated.

Pointer to the vector f. of this region.

The pointers to the structures of the two child regions. If this region is an
element, these two pointers Wﬂl‘ be NULL.

The dimension of this region.

Pointer to the structures of the vertices contained in this region.

Pointer to the structures of the faces contained in this region.

The number of the faces contained in this region.

Pointer to the list of the order of the vertices contained in this region.
Pointer to the structures of the common faces of this region.

The number of the common faces of this region.

The number of the new vertices used to create this region. In some cases,
when this has more than one common face, no new vertex is needed to

create this region.

110

bgdata: Pointer to the structure of the basic data of this region, if this region is a local
triangular region.

egdata: Pointer to the stucture of the element data of this region, if this region is an
element.

ngdata: Pointer to the structure of the non element data of this region, if this region

is not an element.

typedef struct BasicRegionDataf{
int longv0, longvi;
double longlength;
double *center;
double *weight;
double *midpoint;
int *ndface;
double *xmin, *xmax;
double *grad;

}BASICREGIONDATA;

Members:

longv0: The global index of one of the vertex of the longest edge of this region.
longvl: The global index of the other vertex of the longest edge of this region.
longlength: The length of the longest edge of this region.

center: Pointer to the coordinates of the center of this region.

weight: Pointer to the intermediate coefficients to calculate the coordinates of the
center of this region.

midpoint: Pointer to the coordinates of the point of the longest edge of this region.

ndface: Pointer to the list of global indices of the faces of this region which are

divided.

xmin: Pointer to the intermediate data helping to do local refinement.

111

xmax: Pointer to the intermediate data helping to do local refinement.

grad: Pointer to the intermediate data helping to calculate matrix Rg.

typedef struct NestedRegionData{

int *g0i, *gli;

int nrOematp;

int nrlematp;

double **bmlu;

double *bmdata;

int *bmri, *bmci;

double *fc;

};

Members:

g0i:

gli:

nr0ematp:

nrlematp:

bmlu:
bmdata:
bmri:

bmeci:

fc:

Pointer to the list of the labels of the matching points coming from the left
child of this region.

Pointer to the list of the labels of the matching points coming from the right
child of this region.

The number of the matching points coming from the left child of this region.
The number of the matching points coming from the right child of this
region.

Pointer to the matrix B,, of this region.

Pointer to the data area of the matrix B,, of this region.

Pointer to the list of the labels of the rows of the matrix B, of this region.
Pointer to the list of the labels of the columns of the matrix B, of this
region.

Pointer to the vector f7} of this region.

112

typedef struct ElementRegionDatad

double

double

double

double

**colpts;
*xphillu;
*x1phi;

*phildata;

int *philri, *philci;

double

double

*C;

*fe;

int nvplot;

double *solvplot;
}ELEMENTREGIONDATA;
Members:
colpts: Pointer to the coordinates of the collocation points of this region.
phillu: Pointer to the matrix (®|Lg) of this region.
Iphi: Pointer to the matrix Lg of this region.
phildata: Pointer to the data area of the matrix (®|Lg) of this region.
philri: Pointer to the list of the labels of the rows of the matrix (®|Lg) of this region.
philci: Pointer to the list of the labels of the columns of the matrix (®|Lg) of this
region.
C: Pointer to the vector of coefficients of the local polynomial of this region.
fe: Pointer to the vector fi of this region.
nvplot: The number of the points to plot this region. It is used for plotting 3D
graphics.
solvplot: Pointer to the solutions of the points (x,y,u) to plot this region. It is used

for plotting 3D graphics.

113

A.4 PDE parameters structure

typedef

{

int

int

int

int

int

int

int

int

int

struct _PdeParam

vdata;
ndimen;
nmatch;
ncollo;
nmatel;
nbasfun;
nvert;
nfaces;

nedges;

double meps;

int

mrefcr;

double mrefrad;

int

nverts;

double *rgvcd;

int

int

int

int

int

int

int

int

nrgs;
*rgnct;
*rgrlt;
*rgnnv;
nrevs;
*xrgrev;
ncfvs;

*rgefv;

double titvall[2];

double tstep;

char *pdefmn;

int

colcr;

114

int mtpcr;

void *pdemod;

int cpuid;

USERFUNC userf;
USERINITFUNC useri;
USERBOUNDFUNC userb;
USERGEFUNC gradexact;
USEREXACTFUNC exact;
USERCOLFUNC usercol;
USERPLOTFUNC userplot;
USERENDFUNC userend;
void *plotparam;

int nplot;

void *outparam;

}PDEPARAM;

Members:

vdata:
ndimen:
nmatch:
ncollo:
nmatel:
nbasfun:
nvert:
nfaces:
nedges:
meps:

mrefcr:

The indicator to show if the parameters have been initialized.
The dimension of the space.

The number of matching points per face of a element.

The number of collocation points per element.

The number of matching points per element.

The number of basis functions.

The number of vertices per element.

The number of faces per element.

The number of edges per element.

The upper limit of the longest edge of the elements, d,,.

The indicator to show the criterion of mesh refinement.

115

mrefrad:

nverts:

rgved:

nrgs:

rgncf:

rgrlt:

rgnnv:

nrevs:

rgrev:

ncfvs:

rgefv:

titval:
tstep:

pdefmn:

The upper limit of the distance from the center of any region that needs to
be refined to the reference point or line, d,.

The number of vertices which define the original mesh in the domain.
Pointer to the coordinates of the vertices which define the original mesh in
the domain.

The number of triangular regions in the original mesh. These regions can be
3D or higher.

Pointer to the list of the number of common faces shared by the triangular
regions in the original mesh. These regions can be 3D or higher.

Pointer to the list of indicators of the relation of the triangular regions in the
original mesh. These regions can be 3D or higher.

Pointer to the list of the number of new vertices used to create the triangular
regions in the orginal mesh. These regions can be 3D or higher.

The number of the old vertices used to create triangle regions which do not
need to use new vertices.

Pointer to the global indices of the old vertices used to create triangle regions
which do not need to use new vertices.

The number of the local labels of the vertices to determine the second common
face in triangular regions if these elements have two common faces. At present,
this member is only used for 2D case.

Pointer to the local labels of the vertices to determine the second common face
in triangular regions if these elements have two common faces. At present,
this member is only used for 2D case.

Pointer to the time domain.

The time step size.

The name of the module file which offers the user defined function, the initial
conditions function, the boundary conditions function and the exact solution

function if it is know.

116

coler: The indicator to show the criterion of the collocation points generation.
mtper: The indicator to show the criterion of the matching points generation.
pdemod: Pointer to the address of the module which offers the user defined function,
the initial conditions function, the boundary conditions function, and the
exact solution function if it is know.
cpuid: The indicator to show the CPU type. This is used for calculation with
SSE2 instructions.
userf: Pointer to the user defined function.
useri: Pointer to the initial condition function.
userb: Pointer to the boundary condition function.
gradexact: Pointer to the exact gradient solution function.
exact: Pointer to the exact solution function.
usercol: Pointer to the collocation points generation function.
userplot: Pointer to the plotting function.
userend: Pointer to the exiting function. This is used for terminating the calculation
thread.
plotparam: Pointer to the data of the solutions to do 3D plotting.
nplot: The number of the solutions.

outparam: Pointer to the semaphore.
A.5 Configuration file

The configuration file gives the values of some members of the PDEPARAM structure. In
the configuration, if a line starts with “#”, it is a comment line, otherwise, the value is a

valid parameter. The format of the parameter is
<parameter’s name> = value

The following are the names of the parameters and their meaning.

NDIM NMAT NCOL MEPS
MREF MRRD RVCD RNCF
RRLT RNNV RREV RCFV

117

TINV

MTPC

TSTP PMOD COLC

Parameters:

NDIM:

NMAT:

NCOL:

MEPS:

MREF:

MRRD:

RVCD:

RNCF:

RRLT:

RNNV:

RREV:

RCFV:

TINV:
TSTP:

The dimension of the space.

The number of matching points per face of a element.

The number of collocation points per element.

The upper limit of the longest edge of the elements, d,,.

The indicator to show the criterion of mesh refinement.

The upper limit of the distance from the center of any region that needs to be
refined to the reference point or line, d,.

Pointer to the coordinates of the vertices which define the original mesh in the
domain.

Pointer to the list of the number of common faces shared by the triangular
regions in the original mesh. These regions can be 3D or higher.

Pointer to the list of indicators of the relation of the triangular regions in the
original mesh. These regions can be 3D or higher.

Pointer to the list of the number of new vertices used to create the triangular
regions in the orginal mesh. These regions can be 3D or higher.

Pointer to the global indices of the old vertices used to create triangle regions
which do not need to use new vertices.

Pointer to the local labels of the vertices to determine the second common face
in triangular regions if these elements have two common faces. At present, this
member is only used for 2D case.

Pointer to the time domain.

The time step size.

118~

PMOD: The name of the module file which offers the user defined function, the initial
conditions function, the boundary conditions function and the exact solution
function if it is know.

COLC: The indicator to show the criterion of the collocation points gencration.

MTPC: The indicator to show the criterion of the matching points generation.

119

Appendix B

Useful Functions

B.1 Matrix allocation

B.1.1 Alloc2D

/* Allocate a matrix and return the address.
Input: =nl, rows. n2, columns. usize, the size of each item.
Qutput: dp, pointer to the data area. */
void *Alloc2D(int nl, int n2, int usize, void #**dp)
{
void *pl, **p2;
char *p3;
register int i;
pl = malloc(nl * sizeof(void *) + nl * n2 * usize);

if (p1 == NULL)

return pi;
p2 = (void **)pl;
p3 = (char *)pl + nl * sizeof(void *);

for(i = 0; i < nl; i++)
p2[i] = (void *)(p3 + i * n2 * usize);

*dp = (void *)p3;

120

return pi;

B.1.2 AllocMulCol2D

/* Allocate a matrix divided into parts of same rows and return
the address.

Input: nl, rows. n2, columns. usize, the size of each item.
ncol, the numbers of columns of partial matrices.
nm, the number of partial matrices.

Qutput: mt, pointer to the partial matrices.
dp, pointer to the data area. */

void *AllocMulCol2D(int nl, int n2, int usize, void**xx mt,

int *ncol, int nm, void #xdp)

void *pl, **p2;

char *p3;

register int i, j, offset;

pl = malloc(nm * nl * sizeof(void *) + nl * n2 * usize);
if(p1 == NULL)

return pi;

p2 = (void **)pi;

p3 = (char *)pl + nm * nl * sizeof(void *);
offset = 0;

for(i = 0; i < nm; i++)

{

for(j = 0; j < ni1; j++)

p2[3]1 = (void *)(p3 + (j * n2 + offset) * usize);
mt[i] = p2;
p2 = p2 + ni;

offset = offset + ncoll[il;

121

}
*dp = (void *)p3;

return pil;

B.2 Basis Generation

/* BasePwr, pointer to the exponents of the basis.

DiBasePwr, pointer to the exponents of the first order
partial derivative of the bases.

D2BasePwr, pointer to the exponents of the second order
partial derivative of the bases.

CiBasePwr, pointer to the coefficients of the first order
partial derivative of the bases.

C2BasePwr, pointer to the coefficients of the second order
partial derivative of the bases. */

static int **BasePwr;

static int ***DiBasePwr, **xD2BasePwr;

static double **ClBasePwr, **C2BasePwr;

/* Calculate the exponents and the coefficients of the bases,
the first order partial derivative and the second order partial
derivative.

Input: nbasf, the number of the bases.
nDim, the dimension of the bases */
int CreateBasisND(int nbasf, int nDim)

{

register int i;
int degree;
int *deglnds;

int cbasf;

122

void *dp;
int nbasf, nDim;

BasePwr = NULL;

CiBasePwr = NULL;
C2BasePwr = NULL;
DiBasePwr = NULL;
D2BasePwr = NULL;
cbasf = 0;

BasePwr = (int **)Alloc2D(nbasf, nDim, sizeof(int), &dp);
if (BasePwr == NULL)
return False;
ClBasePwr = (double **)Alloc2D(nbasf, nDim, sizeof(double), &dp);
if (C1BasePwr == NULL)
return False;
C2BasePuwr = (double **)Alloc2D(nbasf, nDim, sizeof (double), &dp);
if (C1BasePwr == NULL)
return False;
DiBasePwr = (int #***)Alloc3D(nbasf, nDim, nDim, sizeof(int), &dp);
if (D1BasePwr == NULL)
return False;
D2BasePwr = (int #***)Alloc3D(nbasf, nDim, nDim, sizeof(int), &dp);
if (D2BasePwr == NULL)
return False;
degInds = (int *)malloc(nDim * sizeof(int));
if (degInds == NULL)
return False;
for(i = 0; i < nDim; i++)
degInds[i] = 0;
degree = 0;

while(1)

123

MakeBasis(degInds, O, nDim, degree, &cbasf, nbasf);

if (cbasf == nbasf)

break;
degree+t+;
}
free(degInds);

return True;
X
/* Intermediate recursive function to calculate the exponents
and the coefficients of the basis and partial derivatives */
static void MakeBasis(int *degInds, int allocatedDim, int nDim,

int allocDeg, int *curBas, int numBas)

register int i, j, k, cur;
int remainDeg, remainDim;

remainDim = nDim - allocatedDim;

for(i = 0; i <

{

allocDeg; i++)

remainDeg = 1i;
degInds[allocatedDim]l = allocDeg - 1i;
if (remainDim == 2 || remainDeg == 0)
{
if (remainDim == 2)
degInds[allocatedDim + 1] = i;
else if(remainDeg == 0)
{

for(j = allocatedDim + 1; j < nDim; j++)

degInds[j] = 0;

124

cur = *curBas;

for(j = 0; j < nDim; j++)

{
BasePwr [cur] [j] = degInds[j];
CiBasePwr[cur] [j1 = degInds([j];
if(degInds[j] == 0 || degInds[j] == 1)
C2BasePwr [cur] [j1 = 0.0;
else
C2BasePur[cur] [j] = degInds[j] *
(degInds[j] - 1);
for(k = 0; k < nDim; k++)
{
if(k == j)
{
DiBasePwr [cur]l [j][k] = degInds([k] - 1;
if (D1BasePwr [cur] [j][k] < 0)
DiBasePwr[cur] [j]1[k] = 0;
D2BasePwr [cur] [j] [k] = degInds([k] - 2;
if (D2BasePwr [cur] [§]1[k] < 0)
D2BasePwr [cur] [j]1[k] = O;
}
else
{
DiBasePwr [cur] [j] [k] = deglInds(k];
D2BasePwr [cur] [j]1[k] = degInds(k];
}
}
}
(xcurBas)++;

125

else
MakeBasis(degInds, allocatedDim + 1, nDim, remainDeg,
curBas, numBas);
if (*curBas == numBas)

break;

126

