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Abstract

On k-broadcasting in Graphs

Bin Shao, Ph.D.

Concordia University, 2006

Broadcasting is a fundamental information dissemination problem, wherein a mes-
sage is sent from one vertex, the originator, to all other vertices in a graph. In
k-broadcasting, an informed vertex can sends the message to at most k£ uninformed
neighbors in each time unit. This thesis presents several algorithms to perform effi-
cient k-broadcasting. The algorithm KBT generates the optimal k-broadcast scheme
in trees, while the algorithm KBC finds the k-broadcast center of a given tree. This
thesis presents an efficient heuristic for k-broadcasting. The heuristic has a low time
complexity and generates fast k-broadcast schemes in many network topologies.

A k-broadcast graph G is a graph on n vertices where the k-broadcast time of
G is [logk+1n]. Bi(n) stands for the minimum possible number of edges in a k-
broadcast graph on n vertices. A k-broadcast graph on n vertices with Bi(n) edges
is a minimum k-broadcast graph, which is denoted by k-mbg. This thesis presents

several new k-mbg’s and an improved lower bound on Bg(n).

iii



Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr. Hovhannes Haru-
tyunyan, for his insightful advice and invaluable encouragement, which have helped
me through my studies at Concordia.

I would also thank Mr. Guotai Chen and Mr. Edward Marashlian, who have
worked in the simulation of the algorithms presented in this thesis. Mr. Guotai Chen
provided all the test results of the Tree Based Algorithm for Gossip, and Mr. Edward
Marashlian provided the test results of the Tree Based Algorithm on the generalized
chordal rings, the double fixed step graphs and the triple fixed step graphs.

Finally, I would like to express my gratitude to Ms. Kimberley Hamilton for
her excellent editing and proofreading work, which have contributed to dramatically

improve the expression of this thesis.

v



Contents

List of Figures
List of Tables

1 Introduction
1.1 Problem Statement . . . . . . . . . .. .. .. ... .
1.2 Contributions . . . . . . . . . e

1.3 Commonly Used Topologies . . . ... ... .. .. .. ... .....

2 Optimal k-broadcasting in Trees
2.1 k-broadcasting for a Given Originator . . . . . . . .. ... ... ...
2.2 k-broadcast Center in Trees . . . . . . . .. . ... ... ... ...
2.2.1 Theorems on k-broadcast Center . . . . ... ... ... ...

2.2.2  An Algorithm to Determine the k-broadcast Center . . . . . .

3 An Efficient Heuristic for k-Broadcasting in Networks

3.1 Previous Heuristics . . . . . . . . . . . e

3.2 The Tree Based Algorithm (TBA) . . . . ... .. ... .. ......



3.2.1 TBA and its Complexity . . . . .. ... ... ... ... ...
3.2.2 Theoretical Results . . . . . . . ... ... ... 0.
3.2.3 Experimental Results . . . . . ... ... ... ... ......

3.3 Derived Heuristic for Gossip . . . . . . ... ... ... ... ...

4 Minimum k-Broadcast Graphs
4.1 PreviousResults . . ... ... .. .. oo
42 New 1-mbg’s. . . . . . . . e

4.3 A New 2-mbg on 10 Vertices . . . . . . . . . . ... .. ...,

5 On the k-broadcast Function
5.1 Previous Lower Boundson Bi(n) . . . ... .. ... .. ... ....
5.2 Improved Lower Bound on Bg(n) . . .. .. . ... ... ... ....

5.3 A Note on the Monotonicity of the k-broadcast Function . . . . . ..
6 Conclusions and Future Work
Bibliography
A The 1-Broadcast Scheme of 1-mbg on 1023 Vertices

B The 1-Broadcast Scheme of 1-mbg on 4095 Vertices

vi

100

103

114

122



List of Figures

10

11

12

13

14

15

16

Complete graphs for n=4 andn=6 ... ... . ... ... ... ... 8
The path graph forn=6 . . . . . ... ... .. ... ... .. ... 9
Cycle graphs forn=4 andn=6 . . . . . ... . ... ... ... . ... 9
A 2 x 6 2-grid graph on 12 vertices . . . . . . . . ... 10
A 3 x 4 2-torus graph on 12 vertices. . . . . . . . . ... ... ... 11
Hypercube graphs . . . . . . . . . . .. . o 12
The CCCs graphs . . . . . . . . . oo 13
The BFygraphs . . . . . . . . . . oo oo 14
The UB(2,3) graph . . . . . . . ... . 14
The SE3 graphs . . . . . .« o o v i it o 15
Thestar graph Sy . . . . . . .« i 16
The optimal k-broadcasting . . . . . ... ... ... . 20
The performance of the algorithm KBT . . . . . ... ......... 25
Figure for the proof of lemma 4 . . . ... .. ... . ... ...... 27
Figure for the proof of lemma & . . . .. . ... ... ... ... .. 28
T3: Only vertex u € BCo(T§) . . . . . o oo oo i e 29

vii



17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Figure for the proof of theorem4 . . .. .. ... ... ... ... .. 29

The performance of algorithm KBC for 2-broadcast center . . . . . . 31
A case with only one vertex in 2-broadcast center . . . . .. ... .. 34
The illustration of the proof of lemma 6 . .. ... ... ... . ... 35
The illustration of the proof of lemma 7 . . . . .. ... .. .. ... 36
Vertex w and its labeled neighbors . . . . . ... ... .. ... ... 37
The definitions in Round-Heuristic . . . . ... ... .. ... ... .. 41
Definitions in TBA . . . . . . . . ... . 45
The performance of TBA . . . . . . . .. ... ... .. ... ..... 51
The performance of the refinement . . . . ... ... .. ... .... 52
Definitions in the grid graph. . . .. ... ..... .. ... ... .. 54
1-broadcasting in Torus(m, n). . . . . . . .. .. .. .. ... 58
The weights in Torus(m, n) in 2-broadcasting . . . . . . .. . . ... 62
The first step of 2-broadcasting in the torus graph . . . . . .. .. .. 63
Two possibilities when Zy and Z) are the same vertex . . . . . . . .. 64
Three possibilities when Z, and Z] are not the same vertex . . . . . . 64
the k-broadcasting in Torusgraph . . . . . ... .. ... ... .... 65
The construction of 1-mbg on 15 vertices . . . . . . . ... ... ... 83
Vertex 0in R(1023) . . . . . . . . . . . . 85
Vertex 930 in R(1023) . . . .. . . . ... oo 86
Vertex 0 in R(4095) . . . . . . . . . . 88
Vertex 3780 in R(4095) . . . . . . . . . ... 88



39

40

41

42

The 2-mbg on 10 vertices in [58] . . . . . ... ... ... ... .... 90

A new 2-mbg and its 2-broadcast schemes . . . . . .. .. ... ... 90
The originator u and its informed neighbors after round 1. . . . . . . 94
The graph that consists of vertices with a degree of at least D(n) . . 95

ix



List of Tables

10

11

12

13

14

15

16

Test results of 1-broadcastingin G . . . . . . . . . . oL L 57
Test results in CCCyand BFy . . . . . . . . .. .. .. ... ..... 66
Test resultsin Sy . . . . . . . .. 67
Test results in Hy, UB(2,d)and SE4 . . . . . ... ... ... .... 67
Test results in GCR,, . . . . . . . . . . 68
Test resultsin Gapand Gsp . . . . . .. ... .. ... 68
Test Results in Tiers Model: 1105 vertices . . . . ... .. ... ... 69
Test Results in Tiers Model: 2210 vertices . . . . . . . ... .. ... 70
Test Results in GT-ITM Pure Random Model . . . . . .. ... ... 71
Test Results in TS Model: 600 vertices . . . . . ... ... ... ... 71
Test Results in TS Model: 1056 vertices . . . . .. ... ... .... 71
Gossip times in UB(2,d), BFy, SEgand CCCy . . . . . . .. .. .. 75
Gossip times in Tiers . . . . . . . . . . e 76
Gossip times in GTITM-TS . . . . . . .. . .. .. .. ...... 76
Gossip times in GTITM-Random . . . . . . . . . . ... . ... ... 77
Bi(n)’'sand References . . . . . .. ... ... .. 81



17 Bg(n)’s and References

x1



Chapter 1

Introduction

The subject of information dissemination problems has a steadily growing body of
literature, which is surveyed by [25], [44] and [48]. The k-broadcasting and the gossip-
ing are two fundamental information dissemination problems. This thesis addresses

how to efficiently perform k-broadcasting and gossiping in arbitrary networks.

1.1 Problem Statement

In ancient China, the beacon-tower system played a vital role in military communica-
tion. When the enemy approached a beacon tower on the border, the soldiers in the
tower sent a signal by fires during the night or by smoke signals during the day. Upon
seeing these signals, soldiers in other beacon towers also set a fire or smoke signal.
Thus, in several hours, the alarm could spread hundreds or even thousands of kilo-

meters from the border. Nowadays, computer networks, from local area networks to



the Internet, have become essential to many aspects of modern society. For example,
we can reach a friend in several minutes by sending an e-mail on the Internet. Also,
with the help of a camera, we can talk with families face to face via the computer,
no matter how far away they are.

The main purpose of these networks, whether the beacon-tower system or the
Internet, is to share and spread information. Communication efficiency becomes par-
ticularly important when a computer network supports a distributed file or database
system, where large amounts of information need to be disseminated among the com-
puters in the network. There are many problems that could not be solved by a single
processor in an acceptable amount of time. One solution is to divide the problem
into subproblems that can be performed simultaneously in a parallel system. A sin-
gle processor handles one of these subproblems. The results of certain subproblems
must be transferred among these processors for further computing [67].

The performance of the information dissemination often determines the efficiency
of a whole network or a parallel system. There are two approaches to reduce the delay
of information dissemination: one is to reduce the amount of data being transferred,
while the other is to minimize the delay of information spreading [75]. The first
goal can be achieved by data compression or by reducing redundant information.
This thesis tries to minimize the delay of information spreading by designing efficient
algorithms and network topologies.

The study of information dissemination can be traced back to the following prob-

lem: “There are n ladies, and each one of them knows an item of scandal that is



not known to any of the others. They communicate by telephone, and whenever two
ladies make a call, they pass on to each other, as much scandal as they know at the
time. How many calls are needed before all ladies know all the scandal?” [29]. This
problem is the origin of the Gossip Problem, which is also the source of dozens of
papers on the information dissemination problems in networks.

Most of the research discusses the gossip problem and/or the broadcast problem
and their variants. Broadcasting is a process in which a single message is sent from
one member of a network, the originator, to all other members, while in gossiping
every member in a network has a message to send to all other members. A call refers
to the action of messages being exchanged among a vertex and one or several of its
neighbors. Both broadcasting and gossiping are performed by a series of calls over
the communication lines of a network or egdes in a graph. A round refers to the set
of parallel calls in the same time unit.

The communication modes precisely describe the different laws used to model real
communications.

Given two neighbor vertices p and ¢ in a graph, under one-way mode, only one
message can travel between p and ¢, either from p to ¢ or from ¢ to p. Under two-way
mode, two messages can use the link at the same time in opposite directions [48].

Depending on where the communication bottleneck occurs, communications in
networks could be classified into three types [24]:

(1) If, during communication, a processor can only use one of its links, we call this

situation processor-bound because processors cannot quickly relay messages and will



hamper the efficiency of the network. This pattern is also called 1-port or whispering.

(2) On the contrary, when a processor can use all of its links at the same time,
communications are said to be link-bound, because it is now the number of links that
limits communications. This pattern is also called n-ports or shouting.

(3) Between these two extremes, we have the case of DMA-bound, where a pro-
cessor can only use k links at the same time.

The communication time T of sending a message between two adjacent vertices
depends on the length L of the message [24]. Thus, T is often modeled as T' = §+ L,
where (3 stands for the start-up time and 7 stands for the transmission time of a data
of unit length [24]. In the constant model, we shall make the assumption that the
time of communication between two vertices in a network is equal to one time unit,
such that T' =1 [24].

In this thesis, the broadcast problem is discussed under two-way mode and con-
stant model with a DMA-bound constraint. The broadcast problem with a DMA-
bound constraint is also called the k-broadcast problem, wherein each call involves
a caller who sends the message to as many as k of its neighbors. The gossip prob-
lem is discussed under two-way mode and constant model with a processor-bound
constraint. More precisely, in both k-broadcasting and gossiping, each vertex can
participate in only one call per round and each call requires one round. However, in
k-broadcasting a vertex can communicate with as many as k of its neighbors, while
in gossiping a vertex can only communicate with one of its neighbors.

Normally, a network can be modeled as a graph G = (V, E), where the vertex-set



V represents the set of nodes and the edge-set E represents the set of communication
links in a network. For the purpose of message dissemination, it is natural to assume
that the network is represented by a connected graph. Two verticesu € V andv € V
are adjacent if there is an edge e € E, such that e = (u,v). We may also say vertex
u or v is a neighbor of the other vertex. The degree of a vertex refers to the number
of neighbors of this vertex. The degree of a graph G is the maximum degree among
all vertices in this graph. We use A to denote the degree of a graph. The distance
between a vertex u and a vertex v, which is denoted by dist(u,v), is the length of
the shortest path between u and v. The diameter of a graph G, denoted by D is the
maximal distance between any pair of vertices in the graph G.

An algorithm for a communication problem (such as gossiping or broadcasting)
generates a communication scheme, which is a sequence of communication rounds.
We use the number of rounds to measure the broadcast time and gossip time. The k-
broadcast time bg(u, G), or simply bg(u), is the minimum k-broadcast time of graph
G originated at vertex u. The k-broadcast time of graph G is defined as follows:
bi(G) = maz{be(u,G) | u € V}. g(G) stands for the gossip time of graph G. A k-
broadcast scheme or k-broadcast schedule is a series of calls that perform k-broadcast.
A k-broadcast scheme that finishes the k-broadcasting in bg(u, G) is called an optimal
k-broadcast scheme for the originator v in G.

This thesis focuses on how to improve the efficiency of information dissemination in
networks. This goal can be achieved either by using efficient algorithms and heuristics

or efficient network topologies. More specifically, an efficient topology should have



less communication links, and it can efficiently perform information dissemination

problems.

1.2 Contributions

This thesis addresses the efficient k-broadcasting in tree and arbitrary networks. Ex-
cept where otherwise stated, all the results in Chapter 2, 3, 4 and 5 are original. The
list below presents the main contributions of this thesis.

1. A linear algorithm for optimal k-broadcasting for a given originator in trees
(Chapter 2)

2. A linear algorithm for determining the k-broadcast center of a given tree
(Chapter 2)

3. Theorems on the structure of k-broadcast center in a tree (Chapter 2)

4. An efficient algorithm, named TBA, for k-broadcasting in arbitrary graphs
(Chapter 3)

5. The proof that any 1-broadcast scheme from a corner vertex of the grid graph
generates optimal broadcast time (Chapter 3)

6. An algorithm for gossip derived from TBA (Chapter 3)

7. A minimum 1-broadcast graph on 1023 vertices, a minimum 1-broadcast graph
on 4095 vertices, and a new minimum 2-broadcast graph on 10 vertices (Chapter 4)

8. An improved lower bound on Bg(n) (chapter 5)

9. A theorem on the monotonicity of the k-broadcast function By(n) (chapter 5)



1.3 Commonly Used Topologies

This section presents commonly used network topologies, their k-broadcast times and
their gossip times. Most of the results presented in this section were surveyed in [24],
[44], [48] and [60]. All the figures in this section were presented in [24], [48] and [60].
Most of the previous results on k-broadcast time have been for k=1.

e Arbitrary graphs: It is well known that, for any graph on n vertices, [logan] <
b1(G) < n—1 [24]. Because any vertex holding a message could only send it to one
of its adjacent vertices, the number of informed vertices could at most be doubled in
each round. Thus, at least [logan] rounds are needed for finishing 1-broadcasting.
On the other hand, in 1-broadcasting, at least one vertex must be informed in each
round. A situation in which no new vertex is informed means that the broadcasting
has been completed. Therefore, 1-broadcasting takes at most n — 1 rounds. For any
graph of maximum degree A and diameter D, the formula D < b(G) < AD holds,
since it is possible to broadcast in any shortest path spanning tree of G of height D

and maximum degree A in at most AD rounds [25]. In [24], the following lemma is

proved.

Lemma 1. In any graph of diameter D, if three different vertices u, vy and vy, with

both vy and vy at a distance D from u, exist, then by(G) > D + 1.

We can derive k-broadcast time of an arbitrary graph based on these results of
1-broadcast time. For any graph on n vertices, [logrr1n] < be(G) < n — 1. Given a

graph G with degree A, by(G) = D whenk > A. Whenk = A—1, D < b,(G) < D+1,



Figure 1: Complete graphs for n=4 and n==6

because after the first round, each informed vertex has at most A —1 = k uninformed
neighbors. Generally speaking, when £ < A, D < b(G) < D - [%]

Some bounds on the gossip time are given in [24]: [logan]| < b1(G) < ¢(G) <
2b:(G) — 1 < 2n — 3. The inequality b1(G) < g(G) comes from the fact that a gossip
scheme can be used as a 1-broadcast scheme. The inequality ¢g(G) < 26;(G) — 1
comes from the fact that gossip can be performed in two phases by first collecting all
messages in one vertex by accumulation, and then broadcasting the full information
to all vertices.

o The complete graph K,: Any vertex in a complete graph is linked to all other
vertices (see Figure 1) [24]. Each vertex has a degree of n — 1, while the diam-
eter is one and the number of edges is n(n — 1)/2 [24]. It is easy to see that
bi(Ky) = [logk+1n], because any informed vertex can send the message to any of its
k uninformed neighbors in each round [24]. The following results are shown in [52]:
if n is even, g(K,) = [logon], and if n is odd, g(K,) = [logan] + 1.

o The path graph P,: The path of length n, denoted by P,, is the graph whose

vertices are all labeled by integers from 1 to n, and whose edges connect the vertex



Figure 2: The path graph for n=6

Figure 3: Cycle graphs for n=4 and n=6

labeled by integer ¢ (1 < ¢ < n) with the vertex labeled by ¢ + 1 [48]. P, has n
vertices, a diameter of n — 1 and a maximum degree of 2 (see Figure 2) [48]. Wheﬁ |
the originator w is at either end of P, bx(u, P,) is at the maximum. In such a case
bi(u, Py) = bg(Py) =n—1.

o The cycle graph Cx: Each vertex is linked to only two neighbors, thus the degree
is two (see Figure 3) [24]. In the cycle graph C,, the k-broadcast time is [}] when

k =1[24]. When k > 2, the k-broadcast time in C, is | ], which is the diameter of

N3

the graph. For the gossip problem in a cycle graph: if n is even, ¢(C,) = % = D; if
nisodd, g(Cp) = %% + 2 =D + 2 [21].
e The d-grid graph: GDy = P, ,00-.-0F,0-.-0F,,, for 1 < i < d, where P,

is a path on n; vertices [24]. A 2-grid is shown in Figure 4. The following result is

shown in [19].



Figure 4: A 2 x 6 2-grid graph on 12 vertices

d
b(P,0---0P,0---0OP,) =) ni—d=D (1)
i=1

A 2-grid with m columns and n rows is denoted by G,,. The worst case of the
k-broadcast in the grid graph is that the originator is on a corner of the graph. The
1-broadcast time of a grid graph G, is m +n — 2 [19]. When k > 2, in each round
an informed vertex has at most 2 uninformed neighbors when the originator is on a
corner. Therefore, the k-broadcast time is the diameter of the graph, which is still
m + n — 2. The following results on gossip time are proven in [64]: if 7 is odd, then
g(R0O-.-OR0OPORO. .- 0OF;) = D + 1, otherwise, g(F,,0---0OF,,) = D.

o The d-Torus graph: Ty = Cp,0---0C,,0- - - OC,,, for 1 <4 < d, where Cp, is
a cycle on p; vertices [24]. A 2-Torus is shown in Figure 5. The optimal 1-broadcast
time of the two-dimensional torus graph, denoted by Torus(m,n), is [%] 4+ [5] when
m or n is even; and it is [%] + [§] — 1 when both m and n are odd [19]. For 1-
broadcast on multidimensional torus, D < b (Ty = C,,0 - - - 0C,,) < D + max(0, s
- 1), where s is the number of odd dimensions in Cp,, O - - - OC,, [24].

When k > 2, we can achieve the optimal k-broadcast time in 2-Torus by the

10



Figure 5: A 3 x 4 2-torus graph on 12 vertices

following scheme: first, an informed vertex sends the message to its uninformed col-
umn neighbors (if it has such neighbors). Then, after all vertices on the column at
which the originator is located are informed, each informed vertex sends the mes-
sage to uninformed row neighbors (if it has such neighb(_nfs). This scheme gives
bi(Torus(m,n)) = 2]+ |3] = D.

For gossip, D < g(Tu) < D + 24 [21].

e Hypercube graph Hy The d-dimensional hypercube has n = 2? vertices and
d2%! edges. Each vertex corresponds to an d-bit binary string, and two vertices
are linked with an edge if and only if their binary strings differ by precisely one
bit [24]. As a consequence, each vertex is adjacent to d other vertices, one for each
bit position [24]. Any d-dimensional hypercube could be derived from two (d —
1)-dimensional hypercube graphs [60]. Figure 6 presents the construction of a 4-
dimensional hypercube (b) from two 3-dimensional hypercubes (a). Dashed edges
form a match between the two 3-dimensional cubes. The diameter of Hy is d. 1-

broadcasting in Hy; can be done in d rounds by using the following scheme: at step

11
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Figure 6: Hypercube graphs

i, each informed vertex sends the message in dimension 7 (1 <4 < d) [24]. Gossiping
in Hy can also be done in d rounds, and the gossip scheme is the same [24].

o Cube connected cycles CCCy : The CCCy (see Figure 7) is a modification of Hy,
where the d-dimensional CCCy is constructed from the d-dimensional hypercube by
replacing each vertex of the hypercube with a cycle of d vertices [24]. When d > 3,
the diameter of the CCCy is 2d + |d/2] — 2 [66]. A straightforward algorithm gives
a 1-broadcast time of [3¢] — 1 [63]. This algorithm first relays the message to the
hypercube neighbor, then to the right neighbor on the ring, then to the left one.

(1) If d is even, then [32] — 1 = D + 1. Therefore

D <b(CCC <D+1 (2)

12



Figure 7. The CCC}; graphs

with the exception of d = 4, where Lemma 1 applies, and therefore
b1(CCCy) =D +1 (3)
(2) I disodd: [¥]—-1=D+ 2 Lemma 1 still applies, and therefore
D+1<t(CCCy) £D+2 (4)

The upper and lower bounds on g(CCCy) are presented in [46] and [48] respec-
tively: [3] — 1< g(CCCy) < 5[4].

e The butterfly graph BF;: The d-dimensional butterfly BF; has d2¢ vertices (see
Figure 8) [24]. Each vertex is labeled with a pair of numbers (I,z). [ represents
the level (0 <1 <d-—1),and z = g - - z4-1 is & d-bit binary string called the
position-within-level [24]. Two vertices (lp, Zo) and (l1, 1) in BFy are linked by an
edge if and only if l; = lp + 1 mod d and either zq = z; or z¢ and z; differ by the [gth

bit [60]. BF,; has degree four and diameter |3d/2] [24].

13
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000 010 111

Figure 9: The UB(2,3) graph

The following result is presented in [51]:
1.7417d < by(BFy) < 2d — 1 (5)

The upper and lower bounds on g(BFj) are presented in [46] and [48] respectively:
1.7417d < g(BFy) < 5[4].

e The de Bruijn graph UB(d, D): The de Bruijn digraph B(d, D) with indegree
and outdegree d and diameter D, is the digraph whose N = dP vertices are denoted
by the words of length D on an alphabet of d letters [24]. There is a direct edge

14
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from each vertex (zoxy - - - Zp-1) to (x; -+ - xp_17), where v could be any letter
in the alphabet [24]. The de Bruijn graph UB(d, D) is obtained by removing the
edge orientation in B(d, D) [24]. For UB(2, D) (see Figure 9), the following result is
proved in [51]: 1.3171D < b, (UB(2, D)). The following upper bound is shown in [8]:
b(UB(2,D) < 3D+ 1)

For gossip, 1.3171D < g(UB(2, D)) < 3D + 2 [48].

o The shuffle-exchange graph S E4: The d-dimensional shuffle-exchange graph has
n = 2¢ vertices (see Figure 10) [24]. Each vertex corresponds to a unique d-bit binary
number, and two vertices u and v are linked by an edge, if either v and v differ in
precisely the last bit, or u is a left or right cyclic shift of v [60]. The 1-broadcasting
time for SEy is 2d — 1 [47], which is equal to the diameter of SEj,.

The bounds on gossip time in SE; is: 2d — 1 < g(SEy) < 4d — 3 [47).

e The star graph S,: An n-Star Graph has N = n! vertices, where these vertices
are represented by all the permutations on n symbols [24]. Each vertex is linked to

vertices generated by a set of generators g, which consists of n — 1 transpositions

{92, 93, 94, -, gn } where g1 is the transposition that switches the ¢th element with the
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1320

Figure 11: The star graph S
first, and leaves the remaining elements in their original positions (see Figure 11) [24].

In [1], it is proved that the diameter of the star graph is |3(n — 1)/2]. The following

results are shown in [9]:

[logaNT < b1(Ss) < [loga N + [Tn/4] + [logan] (6)
[log2N] < g(Sn) < [logeN + 2n (7)

o The generalized chordal rings GC R, (a, b, c): The 1-broadcasting in the generalized
chordal rings is discussed in [11]. Let n be an even positive integer, and a, b, ¢, three
distinct odd positive integers smaller than n. The generalized chordal ring (GCR)
GCR,(a, b, c) has the vertex set V = V, U V;, where Vp = {0,2,4,---,n — 2} and

Vi ={1,3,5,---,n — 1}. Each vertex i € V; is adjacent to the vertices ¢ + a, 7 + b,
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i + ¢ € Vi (vertex addition is always modulo n). Equivalently, each vertex j € V] is
adjacent to the vertices j —a, 7 — b, 7 — ¢ € V;. Every generalized chordal ring of
diameter D admits a 1-broadcast (from any starting vertex) that informs all vertices
in time at most D + 2 [11]. In other words, the 1-broadcast of a generalized chordal
ring with diameter D could be D, D+1 or D+2.

The maximum number of vertices in a generalized chordal ring of diameter D is
equal to (3D? +1)/2 when D is odd, and is at most 3D%/2 and at least 3D?/2 — D
when D is even [80]. The generalized chordal rings with the greatest number of
vertices is optimal. For the optimal generalized chordal rings, the 1-broadcast time
is D+ 1 when D is even, and is D + 2 when D is odd [11]. GCR, (1, -1, 3D) on
3D? + 1/2 vertices has diameter D [69]. Therefore these graphs are optimal [11].
GCR,(1, -1, 3D+1) on 3D?/2 — D vertices has diameter D [69]. There graphs are
generally believed to be optimal, although the upper bound on the number of vertices
cannot be attained [69)].

e The optimal double fized step graphs Gop and triple fized step Graphs Gsp:
The 1-broadcast times of Gy p and G5 p are presented in [61]1 For a positive integer
n and a set of positive, pairwise distinct integers {sy, s2, - - -, S}, the multiple fized
step graph G(n,s1,8s,- -+ -, sk) (also called a distributed loop graph) is a graph on
vertices {0,1,- - -,n — 1} such that for any vertex u there is an edge between u and
vertex u + s; (mod n) for 1 < ¢ < k. In general, the problem of determining the
diameter of multiple fixed step graphs is difficult. However, more is known for the

cases kK = 2 and k = 3 which have been called double fized step and triple fixed step
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graphs [17] [81]. Any double fixed step graph of diameter D has at most 2D*+2D+1
vertices, while the graph G(2D?+2D +1, D, D + 1) is of diameter D [80]. The graph
G(2D*+2D+1,D,D+1) is called an optimal double fized step graph and is denoted
by G2.p in [61]. The graph G(3D*+3D+1,D,D+1,2D+1) has been shown to have
diameter D and it shares many properties the optimal double fixed step graphs [81].
So, this graph is denoted by Gsp in [61]. It is proved that b;(G2p) = D + 2 and

bl(G;;,D) =D+3 [61]
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Chapter 2

Optimal k-broadcasting in Trees

This chapter presents two linear algorithms on optimal k-broadcasting in trees. Algo-
rithm KBT determines b (u, T') for the originator u in a given tree T, while algorithm
KBC locates the k-broadcast center for a given tree. One by-product of algorithm

KBT is the optimal k-broadcast scheme for the originator u.

2.1 k-broadcasting for a Given Originator

This section presents an algdrithm called KBT, k-broadcast time, which is a lin-
ear algorithm to generate bi(u,T) and the optimal k-broadcast scheme for a given
originator u in a tree 7.

The problem of k-broadcasting in trees is discussed in [33], [55], [56], [71] and [76].
Given an informed vertex v and its p uninformed neighbors vy, va, - -+, v,, T(v;)

(1 < i < p) stands for the subtree that is rooted at v; and does not contain the
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originator v. Assume the p uninformed children are labeled such that b;(vy,T(v;)) >
bi(ve, T(v2)) = - -+ > by(vp, T(vp, v)), then the optimal sequence of 1-broadcast calls
is such that v initially calls vy, then vy, then vs, etc.

Similarly, given the originator u and its p neighbors ¢;, ¢z, *++, ¢p, where bg(c;, T(c;)) >
bi(cit1, T(cit1)) (1 <14 < p), the optimal k-broadcast scheme for vertex u will be send-
ing the message to ¢, cg, - - -, ¢ at round 1, to ckyy, Ckyo, - - -, Cox at round 2, in
general t0 Ci_1)k+1, Cli~1)k+2, * - » Cik at round i, for 1 < i < [2] (see Figure 12). By
using this k-broadcast scheme, after ¢; (1 < 4 < p) is informed, all vertices in T(c;)

can be informed in maz{by(ci-1ys41, T(cli-1y5+1)) + 1} (1 <4 < [£]) rounds.

u
e
wl d
l 2 ! ! ' C([BNcnk+
CC...Ck Ck+1 Ck+ "'Cz'”qi—l)kﬂ C(i-—l)k+2'” Ci ) eee ® '"Cp
TC TCy) TCh) TCxid T(Gesd) T(Co) T(Ciotyerd) TG T(Cit) e (l'_p*l_l)k+1)T(C]Z)
k

Figure 12: The optimal k-broadcasting

The algorithm KBT first performs BFS (breadth first search) from the originator
u, during which all vertices are labeled with their distance to vertex u and all vertices
are pushed into a stack in the order that they are visited. If dist(p, u) = dist(q,u)+1
and vertex p is a neighbor of vertex ¢, then p is a child of ¢ and ¢ is the parent of p.

After the BFS, KBT inductively calculates the weights of all vertices in T'. Let w(v)
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represent the weight of vertex v. If v has no children, then w(v) = 0. Otherwise,
assume v has p children ¢;, ¢, - - -, ¢, and these children are ordered such that
w(c;) > w(cjp), for 1 < j < p, then w(v) = maz{w(cu-1yrs1) + 14}, for 1 <4 < [2].
We will see that for each vertex v in T, w(v) = bg(v,T(v)), and so w(u) = bg(u,T)
where u is the originator. Given p integers, the procedure OrderWeight calculates
maz{ci—1k1 + 1} (1 <7 < [E]) in O(p) time, where ¢; > ¢;y1 (1 <4 < p). In KBT,
given a vertex v and the weights of its p children, the procedure OrderWeight is used
to calculate the weight of v in O(p) time.

Algorithm KBT

Input: tree T, originator u, k

Output: b(u,T)

1. Stack Verter « @;

2. For each vertex v in T, v.childrenset « {;
3. Perform BFS from u;

3.1. During BFS, push all the vertices into Verter in the order that they are
visited;

3.2. During BFS, for each vertex v, v.dist = the distance between u and v;
4. While Verter is not empty;

4.1. v = Vertex.pop();

4.2. if v.childrenset = @, then v.weight = 0;
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4.3. else v.weight = Procedure Order Weight(weights of all children of v, k);

4.4. For any neighbor w of v,

4.5. if v.dist = w.dist + 1, then w.childrenset « v.
5 Output u.weight; //the originator u is the last vertex in Stack Vertez.

Procedure OrderWeight
Input: p integers, k.
Output: Assume the p integers ¢, co, - - -, ¢, are ordered such that ¢; > ¢; >

- > ¢y, output maxlgig%]{cu_l)kﬁ +1i}.
1 Let MAX = mazi<i<p{c;};
2 Create [2] buckets. These buckets are numbered from 0 to [£] —1;
3 For each integer ¢, if c= MAX —4 (0 < < [£]), then put c into bucket 7

4 Let the number of integers in the ith bucket be NUM(i) (0 < i < [%]),

SUM(5) = 35 NUM(5) (0 <4 < [2]);
5 Qutput ma:coSK[.z_]{[ngM@] + MAX — i},

The following discussions confirm the validity of the procedure OrderWeight and

the algorithm KBT.

Lemma 2. maxOSK[%]{[f"—U—f—(Q] + MAX —i} = maz <icrer{ce-1)k+1 + 1}
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Proof. Since cioirr 2 Cu—vitz 2 - 2 Cmpprk then cuope + [EER] >

i—1)k+2 i—1)k+k
( ]2+'|2 "( lk):—{-

C(i—l)k+2+[ 2 Cli-1)k+kT ]. Subsequently, maﬂ?lgig[g]{c(i—l)kﬂ"*

i} = mazi<icp{es + [£1}-
For an integer c; in the ith buckets (1 <4 < [Z] and 1 < j < p), ¢; + I-%] S

ci+ fSUi/I(i)] = fSUI,:I(i)] +MAX —i. Thus, [&JZI@] + MAX —i equals the maximal

cj+[1] for all vertices in the ith bucket. Therefore, maTo<i<f21{ fSUTW] +MAX —1}

= mazi<igpic + [¢1} O
Lemma 3. For each vertez v in T, w(v) = bg(v, T(v)).

Proof. When v is a leaf, T(v) is a single vertex tree, and w(v) = bi(v,T(v)) = 0. If
all the p children of vertex v, denoted by zi, xa, - - -, z,, are leaves, then w(z;) =
w(z) = -+« = w(zy) = 0. Therefore, w(v) = mazici<rp{w(@i-ner1) + i} = (]
= bi(v,T(v)). In general, assume that for any child ¢ of v, w(c) = bg(c,T(c)). Let
c1, C2, * -, Cp stand for the children of v, where w(c;) > w(cipa) (1 < j < p).
These p children can be divided into [%] groups, where vertices cu_1jk+1, Cli—1)k+2,

-+, ¢ig (1 £ 4 < [E]) belong to the ith group. In the optimal k-broadcasting in
T'(v), during the ith round after v is informed, vertex v sends the message to the
vertices in the ith group. Therefore, the time needed to inform all the vertices in
T(C(i—l)k+l)) T(C(i—l)k+2)a R T(Cilc) is bk(c(i—l)k+l; T(C(i—l)k-H)) +i= w(c(i—l)k+1) +i)
(1 <4 < [E]). Thus, the time needed to inform all the descendants of v is: bx(v, T'(v))
= maz<i< g {0k (Ca-vrer, T(ca-1i+1)) + 1} = mazicigrp{w(cines) + i} = w(v).

Consequently, for any vertex v in T, w(v) = bg(v, T(v)). O
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Based upon Lemma 3, we have the following theorem:

Theorem 1. For the originator u in tree T', w(u) = bg(u,T), where w(u) represents

the weight of u assigned by KBT.

The k-broadcast scheme for the originator u is defined as follows: if a vertex v is
informed at time ¢, it sends the message to vertices c(i_1)k+1, Cli—1)k+2, * * *, Cix during
the round ¢ +4, 1 <14 < [2], where w(c;) > w(cy) > - - > w(c,) for all children ¢,

C2, -+ +, ¢p of v. This leads us to the following theorem:

Theorem 2. The algorithm KBT generates an optimal k-broadcast scheme for a

given originator u in a given tree T'.

The time complexity of BFS is O(|E|), where E is the set of edges in T. The
time complexity of BFS in T is O(|E|) = O(|V|), where V is the set of vertices in
T. By using the OrderWeight procedure, the time needed to calculate the weight
of a vertex with degree d is O(d). Let the degree of the ith vertex in T be d;, for
1 <7 < |V|. Then, the time needed to calculate the weights of all the vertices is
lell O(d;). Since ELZII d; = 2|E|, the complexity of calculating weight is O(|E|) =
O(|V|). Therefore, the total time complexity of the algorithm KBT is O(|V]).

Figure 13 illustrates the performance of algorithm KBT for 2-broadcasting in a
tree. Figure 13 (a) presents the original tree, wherein vertex u is the originator.
Figure 13 (b) presents the tree with labels on all the vertices, where the label of a
vertex is its distance from the originator. In Figure 13 (c), the number assigned to

a vertex is the weight of the vertex in KBT. We can see that by(u,T) = w(u) = 4.
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(c) (d)

Figure 13: The performance of the algorithm KBT

Figure 13 (d) presents the 2-broadcast scheme generated by KBT, which is an optimal

2-broadcast scheme.

2.2 k-broadcast Center in Trees

BCy(G) stands for the k-broadcast center of G = (V, E), which is defined as the
set of vertices that have minimum k-broadcast time: BCy(G) = {u | b(u) =
min{bx(v,G), v € V}, u € V}. This section proves that the BCy(T) of an arbi-
trary tree T' is a star graph. It also proves that the k-broadcast time of any vertex v

in a tree T' is the sum of the shortest distance from v to a vertex in BCy(T') and the
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k-broadcast time of T'. The algorithm in [76] determines the 1-broadcast center in a

tree. This section derives an algorithm to calculate the k-broadcast center in a tree.

2.2.1 Theorems on k-broadcast Center

Lemma 4. In any tree T, BC(T) is a connected subgraph of T'.

Proof. Assume that the BCy(T) of tree T is not a connected graph. Then, there
must exist two vertices v and v, so that both of them belong to BCy(T'), and every
vertex on the path between them does not belong to BCy(T). Assume that vertex
a is the neighbor of vertex v on the path. Thus, a ¢ BCy(T'). Figure 14 illustrates
such a situation. Let dist(u,v) = d and bg(u,T) = bi(v,T) = t. t, denotes the
k-broadcast time of tree T, (see Figure 14) originated at v, and ¢, denotes the k-
broadcast time of tree T, (see Figure 14) originated at a. When considering the
k-broadcasting originated at u, all vertices in T, must be informed through v. Thus,
bi(u, T) > dist(u,v) + be(v,Ty). Since b(u,T) = t, bp(v,T,) = t, and dist(u,v) = d,
then ¢, < ¢t — d. Similarly, since b(v,T) = ¢ and dist(v,a) = 1, then ¢, < ¢t — 1. Then
there is a k-broadcast scheme from originator a so that b(a,T) = ¢. In this scheme,
vertex a sends the message to v first, and then finishes the k-broadcasting in 7, in
t —1 time units. Meanwhile, vertex v can finish the k-broadcasting in 7, in ¢t — d time
units. This contradicts the assumption that a ¢ BCi(T). Therefore, in any tree T,

BCy(T) is a connected subgraph of T O

Lemma 5. The diameter of BCx(T') is less than or equal to 2.
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Figure 14: Figure for the proof of lemma 4

Proof. Assume there is a BCy(T) with a diameter greater than 2. There is a path
with a length of three and all the four vertices on the path belong to BCy(T). In
Figure 15, vertices a, b, ¢ and d belong to BCy(T"). Let by(a, T) = bk (b, T) = bi(c,T) =
be(d,T) = t. t. denotes the k-broadcast time of T, (see Figure 15) originated at ¢, and
t, denotes the k-broadcast time of Ty (see Figure 15) originated at b. Because vertex
d belongs to BC,(T) and dist(b,d) = 2, then ¢, <t — 2. Because vertex a belongs to
BC(T) and dist(a,c) = 2, then t, < ¢t — 2. Then, there is a k-broadcast scheme for
vertex ¢ so that the k-broadcast time of ¢ in T is less than ¢. In this scheme, vertex
c first sends the message to vertex b, then vertex c finishes the k-broadcast in T in
t — 2 time units. Meanwhile, vertex b finishes the k-broadcast in 7} in ¢ — 2 time
units. Thus, bx(c,T) < t — 1. This directly contradicts bx(c,T) = t. Therefore, the

diameter of BCy(T) is less than or equal to 2. O

From Lemma 4 and Lemma 5, we can derive the following theorem:

Theorem 3. The BC(T) of an arbitrary tree T is a star.
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Figure 15: Figure for the proof of lemma 5

In 1-broadcasting, there are at least two vertices in BC1(T) in any tree T. How-
ever, in k-broadcast (k > 2), BCi(T) can be a single vertex. Considering the 2-
broadcasting in the tree shown in Figure 16, only vertex u belongs to BCy(T'). The
2-broadcast time of u is 3, and the 2-broadcast time of any other vertex in the tree
is at least 4. In fact, the tree in Figure 16 is a 3-nomial tree of dimension 3. The
b-nomial tree T{"™ of dimension m has 6™ vertices. TY is a single vertex. For m > 1,
the tree T;™ is obtained from b copies of T;" ™' by connecting the roots of b — 1 copies
of T;*™! to the root u of the remaining copy of T;*~!. This vertex u is the root of
Ty*. When considering the k-broadcasting from the root of T}, a (k + 1)-nomial
tree on (k+ 1)™ vertices, clearly, the root of T}, can k-broadcast to (k+-1)™ vertices
(including itself) in m time units. Moreover, the root is the only vertex that belongs

to BCk(Tﬂl)

Theorem 4. Given a vertex v that does not belong to BCy(T), and the shortest

distance from v to a vertex u in BCy(T) is dist(u,v), bp(v,T) = bg(u, T) + dist(u, v).

Proof. In Figure 17, vertex u belongs to BCy(T'), but vertex v and = do not. Vertex
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Figure 17: Figure for the proof of theorem 4

z is a neighbor of vertex %, and z is on the shortest path between u and v. Any

vertex on this path does not belong to BCy(T), except for vertex u.

Clearly, when vertex v is the originator, it can first send the message to vertex

u, then v can finish the k-broadcasting in tree T in br(u, T') time units. Therefore,

be(v, T) < by(u, T) + dist(u,v).
Now we must prove that be(v,T) > b(u, T) + dist(u,v). Let be(u, To,) = ¢,

and by(z,T,) = tz, where T, and T, are subtrees of T that are rooted at = and u

respectively (see Figure 17). Assume be(v,T) < by(u, T) + dist(u,v). Let br(v,T) =
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b(u,T) + dist(u,v) — p where p > 1, then ¢, < bg(u,T) — p. Since u belongs to
BCy(T) and dist(xz,u) = 1, then ¢, < bg(u,T) — 1. Thus, there is a k-broadcast
scheme for vertex z that completes the k-broadcasting in by (u,T’) time units. In this
scheme, vertex z first sends the message to u. Next, the k-broadcast in T;, and T,
can be completed in bx(u,T) — p time units and bc(u,T) — 1 time units respectively.
So z € BC,(T). This is a contradiction. Therefore, bx(v,T) > bi(u,T) + dist(u,v).

Then, we can draw the conclusion that bg(v,T) = by (u, T) + dist(u,v). O

2.2.2 An Algorithm to Determine the k-broadcast Center

The algorithm KBC (k-broadcast center) determines the k-broadcast center of a given
tree T'. One of its by-products is the k-broadcast time of each vertex in T. Let T’
stand for the subtree of T' obtained by removing all the leaves of T. For a vertex
u € T, u.label refers to the label of vertex u. The algorithm KBC first labels all
leaves of 7" with 0. Then, it labels each leaf of 7" as follows: given a leaf u of 7" and
its p labeled neighbors from T ¢;, ¢, - -, ¢, Where ¢;.label > c;.label > --- > ¢,.label,
then u.label = maz{cs_1ykt1.label + i}, for 1 < i < [£]. Given a vertex u and its
unsorted p labeled neighbors, the algorithm KBC use the Orderweight procedure,
presented in Section 2.1, to calculate u.label in O(p) time. After this, KBC removes
a leaf of 7" with the minimal label. Let such a leaf be v, and s be the neighbor of v in
T'. If s is now a leaf of 7", then KBC labels s. The algorithm KBC keeps removing
the leaf of 7" with the minimal label until there is only one vertex in 7”. Let the

last vertex be w, and ci, ¢, - - -, ¢, are its p labeled neighbors. Then the algorithm
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p=4
MAX =2
NUM(@©) =3 NUM()=1 4

SUM(0)=3 SUM(I)=4 bucket 0 bucket |

SUM(0) SUM(D)
R +MAX -0=4 k +MAX - 1=3

SUM(0) % k=1
So, vertices w, ¢y, ¢4 and c3belong 10 2-broadcast center.
The 2-broadcast time is 4.

(f)

(e)

Figure 18: The performance of algorithm KBC for 2-broadcast center

KBC creates [£] buckets, which are numbered from 0 to [2] — 1. Let MAX = max
{ ci.label }, for 1 < ¢ < p. For each labeled neighbor ¢ of w, if c.label = MAX —i
(0 < i< [%]), then put c into bucket 7. Let the number of elements in the ith bucket
be NUM(i) (0 <4 < [£]). The number of elements in the buckets 0, 1, 2, ..., i~ 1
and i is denoted by SUM(3). Thus, SUM(i) = Yt NUM(j) (0 < i < [2]). Then
w.label = mazx{ [g_g_%{(_l_)] + MAX —i}, for 0 < i < [E]. Let z be the minimal integer

between 0 and [2] 1, such that [ZX¥ @] 4 MAX — 2 = maz{[Z4) + MAX —i},
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for 0 <@ < [B]. If SUM(z) mod k = 1, then vertex w and all vertices in buckets
0,1,-- -,z belong to BC(T). Otherwise when SUM(z) mod k # 1, only vertex w
belongs to BCk(T). The label of w is the k-broadcast time of w in tree T, and by
Theorem 4, we can then calculate the k-broadcast time of each vertex in T
Algorithm KBC
Input: tree T', k (k > 2).

Output: BC,(T') and b (T).
1. TV« T,
2. For each leaf c of T'

2.1. clabel = 0;
22. T T —¢

3. For each leaf u of T", w.label = maz{c(_1)k41-label + i}, for 1 < i < [2], where
ci, ¢, ++, ¢ stand for the p labeled vertices adjacent to v and ¢;, ¢, - - -,

¢, are ordered such that ¢;.label > cp.label > - -+ > ¢,.label; // Calculated by

Procedure OrderWeight
4. While(|V(T")| = 2) (V(T") stands for the set of vertices in T")

4.1. Given v € V(T") such that v.label = min{u.label|lu € V(T)};
42. T «— T —v;

4.3. Let s be the vertex adjacent to v in 7”. If s is now a leaf of 7", then
s.label = maz{cu-1)rs1.label + i}, for 1 < ¢ < [2], where c1, ¢, - - -,
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stand for the p labeled vertices adjacent to s, and ¢y, ¢, -+, ¢, are ordered

such that cj.label > cy.label > - -+ > cp.label; // Calculated by Procedure

OrderWeight

5 Let w be the only vertex in 7", and ¢y, ca, - - -, ¢, are its p labeled neighbors,

MAX = max { ¢;.label }, for 1 <i < p;
6 Create [2] buckets, which are numbered from 0 to [£] — 1,

7 For each labeled neighbor c of w, if c.label = MAX —i (0 < i < [%]), then put

¢ into bucket 4;

8 Let the number of elements in the ith bucket be NUM (i) (0 < ¢ < [2]). The

number of elements in the first ith buckets is denoted by SUM(3). SUM (i) =

> NUM(3) (0 < i < [3]);
9 w.label = maz{[ELLA] + MAX — 4}, for 0 <4 < [];

10 Let = be the minimal integer between 0 and [£] — 1, such that [il_l_kl\{(z_)] +
MAX —z = mam{f%] + MAX — i}, for 0 < i < [2]. If SUM(x) mod
k = 1, then vertex w and all vertices in the buckets 0, 1, - - -, z belong to

BCy(T). Otherwise, only vertex w belongs to BCy(T).

Figure 18 illustrates the performance of KBC algorithm in determining the 2-
broadcast center of a given tree. In Figure 18 (a), all vertices with black backgrounds
are leaves of tree T', while all vertices with white backgrounds belong to 77. In
Figure 18 (b), all leaves of T" are labeled with 0. Then, in Figure 18 (c), one of the
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leaves of T" with minimal label is removed from 77, and its neighbor in 7" is labeled.
In Figure 18 (d), again, one of the leaves of 7" with minimal label is removed from
T'. However, its neighbor in T” is not labeled since this neighbor is not a leaf of 7".
This process continues until 77 contains only one vertex. Let this single vertex in
T’ be w and its four labeled neighbors be ci, cg, c3 and ¢4, Where c;.label > cy.label
> cz.label > cq.label. Then, MAX = c¢;.label = 2. Let p = 4 stand for the number
of labeled neighbors of w. Then, the algorithm KBC creates [#] = 2 buckets, and
puts c;, ¢z and ¢z in bucket 0 and ¢4 in bucket 1. Since [W] + MAX -0 =
mam{f&gﬂ] +MAX —i} =4 (0 <i< [2]) and SUM(0) mod 2 = 1, then vertices

w, ¢, ¢y and cg belong to BCy(T') and by(T) = 4.

p=3

k=2

MAX =2 Cy
NUM@©®)=2 NUMD)=1 LI ©

SUM@0)=2 SUM(1)=3 bucket0 bucket 1

SUM(0) SUM(D)
" +MAX -0=3 " +MAX -1=3

SUM@©) % k=0
So, only vertex w belongs to 2—broadcast center.
The 2-broadcast time is 3.

(b)

(a)

Figure 19: A case with only one vertex in 2-broadcast center

Figure 19 illustrates an example where only one vertex belongs to 2-broadcast
center. After applying KBC on the tree in Figure 19 (a), w is the last vertex in

T'. Vertex w has three labeled neighbors ¢;, ¢ and c3, where c¢j.label > cy.label >
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cs.label. Then, the algorithm creates [2] = 2 buckets, and puts ¢; and c; in bucket
0 and c3 in bucket 1. Since fSUTM(O)] +MAX -0 = max{f&%@] +MAX —i} =3
(0 < i< [B]) and SUM(0) mod 2 = 0, then only vertex w belongs to BCy(T') and
bo(T') = 3.

The following discussion justifies the validity of the KBC algorithm. If a vertex s
is labeled in step 4.3., and its label is calculated based on the labels of vertices ¢1, ¢a,
-+, Cp, then we say s is the parent of ci, ¢y, -+ -, ¢, and ¢, 2, - - -, ¢, are the children
of s. A child of vertex u is its descendant. Any child of the descendants of u is also a
descendant of u. The descendant tree of u, which is denoted by T, is the tree rooted

at u and composed by u and all its descendants. Clearly, u.label = bi{u,T,).

>—o<T]

Figure 20: The illustration of the proof of lemma 6

Ts

Lemma 6. The last vertezx w in T" is in BCy(T).

Proof. First, we need to prove that after removing a vertex from 7” in step 4.3., T”
still includes some vertices in BCy(T'). Let v be the removed vertex in step 4.3.
and s be the vertex adjacent to v in 7", it suffices to show that bi(v,T) > bi(s, T).
If V(T') = {s,v} before step 4.3., then by the algorithm v.label < s.label. So,
be(v, T,) < bi(s,T5), be(v,T) > 1+ bi(s,Ts) and b(s,T) < 1+ bg(s,Ts). Therefore,

35



be(v, T) > bi(s,T). If there is another leaf z in 7" before step 4.3., then by the
algorithm z.label > v.label. So, by(z,T,) > bp(v,T,). Let the tree T — T, be T} and
T is rooted at s (see Figure 20). Since Ty is a subtree of Ty, by(v, Ty) < bi(z, Ty) <
bi(s,Ts). So, bx(v,T) > 1+bx(s,T;) and be(s, T) < 1+bg(s,T). Therefore, by (v, T) >
bi(s,T). Thus, for any vertex z removed from T in KBC, bg(z,T) > bx(w,T), and

w e BCk(T). O

Tw

Figure 21: The illustration of the proof of lemma 7

Lemma 7. Let w be the last vertex in T', then a vertex in BCy(T) could only be

either w or a vertex adjacent to w.

Proof. Let vertex u be a neighbor of vertex w and vertex v be a descendant of u
(see Figure 21). By the algorithm, bx(w, Tyy) > b(w, Ty) > bk(v, Ty,). So, bi(v,T) >
b(w, Ty) + dist(v,w) > b(w, T, + 2 > b(w, Ty,) + 1 > bp(w, T). So, if dist(v,w) > 2,
then v ¢ BCy. This statement and Theorem 3 conclude that only w or its neighbors

could belong to BC(T). O

The last question is which neighbor of w is in BCy(T')? Figure 22 shows vertex
v and its p labeled neighbors where ci.label > cy.label > - - - > cp.label. Thus,
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Figure 22: Vertex w and its labeled neighbors

be(w,T) = w.label = maz{cu-1)rs1.label + i}, for 1 < i < [2]. For any labeled
neighbors ¢; (1 < g < p) of w, if bp(c,, T) = bp(w,T), then ¢; € BC(T). T — T,

stands for the subtree of T' obtained by removing T¢, from T

Lemma 8. Let w be the last vertex in T' and ¢; (1 < g < p) is a neighbor of w,

cg € BC(T) if and only if be(w,T) > be(w, T — T, ).

Proof. By KBC, by(cq, Ts,) < bp(w,T — Th,), then by(cy, T) = 1+ by(w, T — Ty,) >
be(w, T —Tc,). Thus, bp(w,T) > bp(w, T — Tp,) = be(w,T) > bp(w, T - T,) + 1 =
bi(w,T) > br(cg, T). Since w € BCK(T), bi(w,T) < bx(cy, T). Thus, bp(w,T) =
bi(cq, T) = cg € BCy(T'). On the other hand, ¢; € BCy(T) = bi(w,T) = bi(c,, T) =

1+bk(w,T—ch) > bk('w,T—ch). O

Let j be the minimal integer between 0 and [%] 1, such that c(;_1)r41.label +j =
maz{ci-1rs1.label + 1}, for 1 <4 < [2]. The k vertices c(j—1yk+1, CGi—1)k+2, -~ * Cjk

have black backgrounds in Figure 22. For any z > (j — Dk + 1, bg(w, T ~ T,,) =
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cj—1)k41.-label + j = bp(w,T). So, all vertices ¢, where z > (j — 1)k + 1 are not in
BCy(T). Now let us examine the vertices ¢, where z < (j—1)k+1. If c;j_1)k41.label =
c(i-1yk+2-label, then be(w, T —T¢,) = cj-1)kt2.label+j = cj_1)rt1.label+j = by(w, T).
If cj_1yk+1.label > c(i_qykro-label, then for any vertex ¢, where x < (j — 1)k + 1,
be(w, T —T,) = maz{cy-1)k+2-label + j, cj_ak+a-label + 5 — 1, } < c(j_1ypy1.label + 5
= by(w,T). By Lemma 8, ¢; € BCy(T'). Therefore, if c(j_1)k41.label > c(j_1)p42.label,
vertex ¢; € BCk(T) where x < (j — 1)k + 1. In step 10 of algorithm KBC, when
SUM(z) mod k = 1, vertices ci, ¢, *  +, ¢(j—1)k+1 are in buckets 0, 1, - - -, = and
vertex c(j_1)k+1 is in bucket z + 1. Thus, c(_1yk41.label > c(j_1yk42-label. Therefore,
all vertices in buckets 0, 1, - - -, z belong to BCy(T). This leads us to the following

theorem:
Theorem 5. Given a tree T and k, the algorithm KBC generates BCy(T).

By Theorem 4 and Theorem 5, it is easy to calculate by (u, T') for any given vertex
v in a tree 7'

Assigning labels to vertices dominates the time complexity of algorithm KBC.
Given a vertex u and its unsorted p labeled neighbors, the OrderWeight procedure
calculates u.label in O(p). Let the degree of the ith vertex in T = (V, E) be d;, for
1 < ¢ < |V|. Then, the time needed to calculate the labels of all the vertices is
Zl‘;'l O(d;). Since Eg'l d; = 2|E|, the complexity of calculating labels is O(|E|) =

O(|V]). Therefore, the time complexity of KBC algorithm is O(|V).
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Chapter 3

An Efficient Heuristic for

k-Broadcasting in Networks

The problem of finding an optimal broadcast scheme or determining the broad-
cast time of an arbitrary network is NP-complete [76]. This chapter introduces a
new heuristic for k-broadcasting, which is called Tree Based Algorithm (TBA). This
heuristic generates optimal time k-broadcast schemes in rings, trees and in grid graphs
when the originator is a corner vertex. In a two-dimensional torus graph T, it gives
an upper bound b,(73) + 3 for k = 1 and by(T3) + 1 for k = 2. When k > 3, it
also generates optimal k-broadcast time in the torus graph. Presently, the heuristic
from [3] is the best heuristic for 1-broadcasting in practice. With a few exceptions,
TBA generates the same 1-broadcast scheme as the heuristic from [3] on several com-
monly used interconnection networks, such as the de Bruijn, the Shuffle Frchange,

the Butterfly graphs and the Cube-Connected Cycle. However, TBA outperforms the
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heuristic in [3] on three graph models from a network simulator ns-2. In a given
graph G = (V, E), the time complexity of one round of TBA is O(|E|), while the
complexity of one round without the process of matching of the algorithm from [3] is

O([V[?- |E)).

3.1 Previous Heuristics

Most of the previous heuristics for k-broadcasting have been for £ = 1 [3], [16],
[22], [25], [54], [72], [75]. Some of these algorithms give theoretical upper bounds on
the 1-broadcast time. Given G = (V, F) and the originator u, the heuristic in [54]
returns 1-broadcast protocol whose performance is at most b1 (u, G’)+O(\/m ) rounds.
Theoretically, the best upper bound is presented in [16]. The approximation algorithrh .
in [16] generates a broadcast protocol with O(%)bl(G) rounds. This thesis
concentrates on heuristics that perform well in practice. The heuristic in [3], which
is called the Round_Heuristic, is the best existing heuristic for 1-broadcasting in
practice. In fact, the Round_Heuristic is designed for the gossip problem, where
each vertex has a message that it needs to send to all other vertices. Each gossip
scheme also provides a 1-broadcast scheme for each vertex in a graph. Thus, the
1-broadcasting scheme is only a by-product of the Round_Heuristic.

In each round of 1-broadcasting, the Round_Heuristic gives a weight to each edge

in the given graph. Then, a maximum weighted matching is calculated based on

the weights of the edges. The matched edges are active in the current round, which
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Dispersion Region DR(p,t)

Figure 23: The definitions in Round-Heuristic

means that messages are passed through these matched edges in this round.

Two approaches are used in the Round_Heuristic to set the weights. One is the
Potential Approach, wherein the weight of an edge (v, w) is set to equal its potential,
defined as the number of messages known by either v or w, but not by both of them.
In broadcasting, the weight could only be 0 or 1. Although this approach is simple,
requires little storage and is very fast, its performance is worse than the second
approach: the Breadth-First-Search (BFS) approach.

Several definitions are needed to introduce the BFS approach. The dispersion
region DR(p, t) of a message p refers to the set of vertices that know p at the beginning

of round t (this is a connected subgraph). For a vertex v, dist,(p,t) denotes the
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shortest distance in the graph from v to a vertex w € DR(p,t). The set of border-
crossing edges bce(p, t) is defined as bee(p,t) = {(v,w) € E |v € DR(p,t) and w ¢
DR(p,t)}. For avertex v ¢ DR(p,t), bce,(p, t) consists of all edges in bee(p, t) that lie
on a shortest path from DR(p, t) to v. Figure 23 [3] illustrates these definitions. In this
figure, the edges of bee(p, t) are drawn in bold. dist,(p,t) = 3 and bee,(p, t) = {e1, ea}.
When considering an edge e € bee(p,t), how useful is e for the rapid dissemination
of p? Message p should be routed on the shortest paths from DR(p,t) to all other
vertices. The more shortest paths that e lies on, the likelier it is that the dissemination
of the message would be faster. Also, the larger dist,(p,t) is, the more priority
should be given to forwarding p towards v. These criteria motivate the use of two
parameters Dist_Exp and Num_Fzxp in calculating the weight_. In round ¢, every

vertex v ¢ DR(p,t) attributes the weight to every edge e € bee,(p,t) as follows:

' diStv (p, t)Dist-Emp
ht t) = 8
werg (U,P, ) l bcev(p, t) |Num_Ezp ( )

In [3], a modified BFS algorithm is used to calculate the weight. Because it is a
BFS algorithm, the vertices are considered in an order of increasing dist,(p,t). For
vertices v with dist,(p,t) = 1, bee,(p, t) consists of all adjacent edges that connect v
to a vertex in DR(p,t). For larger dist,(p,t), the algorithm computes the union of
the sets bcey, (p, t), for all vertices w; adjacent to v with dist,, (p,t) = dist,,(p,t) — 1.
Thus, the calculation of bee,(p, t) can easily be incorporated into the BFS search. For
a vertex v, bce,(p, t) is the union of a maximum of |V sets with a maximum of |E|
elements each. This computation takes O(|V| - |E|) time. The bce,(p,t) is computed
for all uninformed vertices. Consequently, calculating the weights takes O(|V|? - |E|)
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in total. Calculating a maximum weighted matching is viewed as an external routine
in [3]. Therefore, no specific. algorithm for matching is introduced. The total time
complexity without matching of the Round_Heuristic is O(R - |V|? - |E]), in which R
represents the number of rounds of 1-broadcasting.

There are no theoretical bounds on the performance of Round_Heuristic. However,
most of the test results presented in [3] for the CCC} graph, the Shuffle Ezchange
graph, the Butterfly graph and the DeBruijn graphs are equal to the optimal 1-
broadcast times. The performance of Round_Heuristic heavily depends on the choice
of the values of the two parameters. Dist_Ezp is the parameter of particular impor-
tance. It determines the influence of the distance between vertices and dispersion

regions. The values in the range from 0.25 to 60 are used.

3.2 The Tree Based Algorithm (TBA)

This section presents the new heuristic for k-broadcasting in arbitrary graphs. The
heuristic always generates the optimal k-broadcast time in an arbitrary tree originated

at any vertex. Thus, it is called the Tree Based Algorithm (TBA).

3.2.1 TBA and its Complexity

In order to formally present TBA, we first give several definitions.

Definition 1. bright border: The bright border bb(t) is composed of those informed

vertices that have uninformed neighbors at round t.
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Let D(v,t) stand for the shortest distance from uninformed vertex v to bb(¢t) at

round ¢.

Definition 2. child and parent: Given an uninformed vertex u and its uninformed

neighbor v, if D(u,t) = D(v,t) + 1, then u is a child of v, and v is the parent of u.

Definition 3. descendant: a child of vertex u is its descendant. Any of the children

of a descendant of u is also a descendant of u.

Fig. 24 illustrates these definitions. In this example, vertex a is the originator.
After three rounds, vertices in the shadowed area are still uninformed. The informed
vertices with shadowed backgrounds belong to bb(4). The distance between bb(4) and
the uninformed vertices with black backgrounds is one. The distance between bb(4)
and the uninformed vertices n, o and p is two. The distance between bb(4) and the
uninformed vertex ¢ is three. So, vertices o and p are children of vertex j, and vertex ¢
is a child of vertices 0 and p. We can also say that vertices o, p and ¢ are descendants
of vertex j.

The basic idea of TBA is to find a matching between the set of informed and
uninformed vertices in each round, and then distribute the message between them.
To achieve this, in each round, we first perform a modified BFS (breadth first search)
from bb(t) towards uninformed vertices. During this process, we label any uninformed
vertex v with D(v,t). Thus, the parents and children relationship among the unin-
formed vertices can be defined by these distances.

The weight of a vertex in TBA is based on the strategy of the optimal k-broadcasting
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Uninformed vertices--------

Originator --------f----

A vene)s in bb(4)

Figure 24: Definitions in TBA

in trees. Let w(u,t) stand‘ for the weight of vertex u in round ¢. If u has no children,
then w(u,t) = 0. If u has p children vy, vy, ..., v, and w(vy,t) > w(ve,t) > - -+ >
w(vp, t), then w(u,t) = maz{w(ci-1ks1,t) + i} (1 < i < [2]). After that, we find a
matching between the set of informed and uninformed vertices, wherein each informed
vertex has up to k uninformed mates. We use a heuristic with time complexity O(|E|)
to find the matching. The heuristic tries to bring the number of pairs of vertices to a
maximum,; given this, it tries to maximize the weights of matched vertices. Finally,
every matched informed vertex sends the message to its mates.

In TBA, procedures Calculate_weight and Calculate_match determine weights of

all uninformed vertices and the matching in each round respectively. Given the

weights of all &£ children of a vertex v, procedure Weight returns the weight of v
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in time O(k). This procedure is similar to the procedure OrderWeight in Chapter 2
except that it is intended for both integers and fractional numbers. In the refinement
of TBA, the weights could be fractional numbers. The procedure Calculate_weight
starts with assigning weights to the vertices that have no children. Then it assigns
weights to all uninformed vertices recursively by calling the procedure Weight. Pro-
cedure Weight takes O(d) time to calculate the weight of a vertex with degree d.
Thus, the time needed to calculate the weights of all the vertices is )", O(d;). Since
S di = 2|E|, the time complexity of the procedure Calculate_weight is O(|E|). The
procedure Calculate_match approximately computes a maximum weighted matching.
All the vertices in bb(¢) are saved in a group of linked lists. The operations used in the
procedure Calculate.match are similar to build(), deletemin() and decreasekey() in
a priority queue. Generally, these operations take O(|V'|log|V| + | E|) time. However,
the priorities are bounded by the maximum degree. We use a linked list for each prior-
ity class, where each class has the same number of uninformed vertices. This reduces
the time complexity to O(|V| + |E|) = O(]|E}). Therefore, in each round, the time
complexity of TBA is O(|E|) in total. The pseudocode of the heuristic is presented
below. The refinement of TBA is also mentioned in the procedure Calculate_weight
and Weight. The refinement will be introduced later in detail.
Heuristic TBA (Tree Based Algorithm)
Input: graph G = (V, E) and originator u.

Output: broadcast scheme and b(u, G).

1. round = 0; /* set broadcast time 0 */
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2. bb(round) « all informed vertices with uninformed neighbors; /* in round 0,

only the originator is on the bright border * /

3. Remote «— 0; /* stack used to calculate the weight of each uninformed vertex
¥/
4. Uninformed « |V| - 1; /* number of uninformed vertices */

5. While Uninformed != 0

5.1. round ++;

5.2. Perform variant BF'S from bb(round) to uninformed vertices, and mark any

uninformed vertex v with D(v, round);

5.3. During the process of variant BFS, push vertices in bb(round) and all

uninformed vertices into stack Remote;
5.4. Procedure Calculate_weight;
5.5. Procedure Calculate_match;
5.6. bb(round) « 0,

5.7. bb(round) « all informed vertices with uninformed neighbors;
Procedure Calculate weight
1. While Remote is not empty

1.1. v = Remote.pop();

1.2. if v.childrenset = 0;
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1.3. then v.weight = 0;
1.8. /* Refinement version */ then v.weight = 1;
1.4. else v.weight = Procedure Weight(v. childrenset);
1.5. For all uninformed neighbors w of v;
1.5.1 if D(w,round) = D(v,round) — 1,
1.5.2 then w.childrenset « v;
Procedure Weight

Input: v.childrenset

Output: the weight of vertex v

0. /* Only in refinement version */ for w € v.childrenset w.weight = w,

where q is the number of parents of w and p is a parameter. /* for each vertex

w, this calculation only be performed once in each round although w could have

more than one parent.*/

1. Create [£] Bucket, where p =| v.childrenset | */

2. MAX(v) = maz{w.weight | w € v.childrenset};

3. for w € v.childrenset
3.1. if MAX(v) — i > wweight > MAX(v) —i—1,0 <i < [F];
3.2. then Bucket[i] «— w;

4. for 0 <1 < [E]
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4.1. SUM(i) = Y!_, | Bucket(d) |;

]

4.2. MIN (i) = min{w.weight | w € Bucket(i)};
5. return maz{[%/[g—)] + MIN(i) |0 <7< [E]}
Procedure Calculate_match

1. list matchldegree]; /* create degree lists. degree stands for the maximum

degree of all vertices in G = (V, E) */
2. for all vertices w in bb(round)

2.1. netghbor = the number of uninformed neighbors of w;
2.2. matchlneighbor-1}.add(w);
3. for 0 < i < degree — 1

3.1. matchl|i].setcurr();/* set the current pointer in each list point to the first

element */

4. While not all current points in lists of match[degree| are NULL; and let the

first list where current is not NULL be matchl[i]

4.1. w = match[i].getnext())!l= NULL /* get the current element, and assign
it to w; current points to the next element. */

42 Lletz =k

4.3. While z # 0
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4.3.1. v = one of the uninformed neighbors of w with maximum weights;

4.3.2. Output the broadcast scheme: w sends the message to vertex v in
the current round;
4.3.3. mark v informed and Uninformed = Uninformed - 1 ;
4.3.4. for all neighbors p of vertex v such that p belongs to a list matchj|
4.3.4.1 if j=0 then remove p from match[j];
4.3.4.2 if j > 0 then move p from match[j] to match[j-1}; /* if p
was located before the current pointer in match[j], then p is also
located before the current pointer in match[j-1]; and if p was lo-
cated behind the current pointer in match[j], then p is also located

behind the current pointer in match[j-1] */

435. z=x2—-1;

Refinement

~In TBA, a vertex could be a descendant of multiple vertices. Thus, the effect of
this vertex on the process of broadcasting is overestimated. Figure 25 shows such an
example. The graph in Figure 25(a) is the original graph. Vertex a is the originator.
The graph in Figure 25(c) illustrates the 1-broadcast scheme generated by TBA. The
weights of each uninformed vertex in round 2 are presented in Figure 25(b). The
vertices with shadowed backgrounds are informed vertices. In the second round, the
weights of vertices f and c are equal to 1 because vertex g is a child of both f and c.

However, vertex g receives the message either from f or from ¢, but not from both.
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(a) (b) ©

Figure 25: The performance of TBA

Therefore the effect of vertex g is overestimated. In this example, vertex e and vertex
f have the same weight. As a result vertex b could send the message to vertex f
in the second round, although sending to vertex e would be a better choice. This
motivates the following refinement: the weight of a child is divided by the number
of its parents. In k-broadcasting, if a vertex u has no children, then w(u,t) = 1.
If u has z children v, vy, ..., vz, where w(vy,t) > w(vy,t) > -+ - > w(vg,t), then
w(u,t) = mam{ﬂcﬁ—_—%————““t)f + 14,1 <4 < [£]}. Here ¢ stands for the number of
parents of ¢;, and p stands for a parameter. For the parameter p, we used integers
from 1 to 6. Note that the time complexity of the refinement is the same as that of
the original heuristic.

The graph in Figure 26(a) presents the weights of each uninformed vertex in round
2 by using the refinement. The graph in Figure 26(b) shows the broadcast scheme

generated by the refinement. This is the optimal broadcast scheme from originator

a.
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Figure 26: The performance of the refinement
3.2.2 Theoretical Results

It is easy to see that TBA generates the optimal k-broadcast scheme on several simple
topologies, such as cycle and tree. An m xn grid graph G, , is the Cartesian product
of path graphs on m and n vertices, while the m X n torus graph Torus(m,n) is the
Cartesian product of cycle graphs on m and n vertices. In grid and torus graphs,
the vertical paths or cycles are columns, and the horizontal paths or cycles are rows.
The columns are numbered from 0 to n — 1, while the rows are numbered from 0
to m — 1. A vertex on the intersection of row 7 and column j is denoted by (3, j).
This section will prove that TBA generates an optimal 1-broadcast scheme on the
grid graph when the originator is a corner vertex. More importantly, this section will
prove that a 1—br0adcast scheme in a grid graph is an optimal 1-broadcast scheme
if the originator is a corner vertex and a vertex is not idle unless this vertex has no
uninformed neighbors. In torus graphs, the upper bound of the 1-broadcast time

generated by TBA is [] + [Z] + 2 < by(Torus(m,n)) + 3, while the upper bound
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of the 2-broadcast time generated by TBA is | 2] + | 3| + 1 = by(Torus(m,n)) + 1.
When k£ > 3, TBA generates an optimal time k-broadcast scheme in Torus(m,n).
In this section, bx(A(u, G)) stands for the k-broadcast time of graph G generated by
TBA when the originator is vertex u, and by(A(G)) stands for the k-broadcast time

of graph G generated by TBA.

The Grid Graph

The following results are presented in [19]: let v be a vertex in Gp, n, then by (v, Gy p) =
m+n — 2 when v is a corner vertex. When v is a side vertex, then b;(v, Gy, ) = the
maximum distance from v to a corner vertex plus 1 if there are two corner vertices at
the maximum distance, and b;(v, G, ) = the maximum distance from v to a corner
vertex if there is one corner vertex at the maximum distance. If v is an interior vertex
at position (i, j), then b;(v, Gy, ) = the maximum distance from v to a corner vertex
plus 1if 1 = 2L or j = 22 plus 2 if ¢ = =L and j = 252, and by (v, Gpn) = the
maximum distance from v to a corner vertex otherwise.

Given the originator v and a 1-broadcast scheme S in a graph G, b;(S(u,G))
stands for the 1-broadcast time of u in graph G by using the 1-broadcast scheme
S. This section will prove that for a 1-broadcast scheme S where a vertex is not
idle unless it has no uninformed neighbors, b;(S((0,0),Gmux)) = 6:1((0,0),Grnr) =
m+n—2.

To present the theorem, we need the following definitions:
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(1) border: A path of the minimal length which contains all the informed ver-
tices that have uninformed neighbors, and all the vertices on this path are informed
vertices.

(2) outside neighbors of vertex (3,7): (¢+1,7) and (¢,j + 1).

(3) convex border: A border is convex if there are no two vertices (¢, j) and (p, q)

on the border such that ¢+ > p and j > q.

0 1 2 3 4 5 0 ! 2 3 4 5
0 0
1 1
A
V4
2 2
3 3
o P /
A B
4 S 4 Sy
Q
s/
5 0 OO O o) 5 OO O o)
(a) (b)

Figure 27: Definitions in the grid graph.

Fig. 27 illustrates the above definitions. The vertices with black backgrounds are
informed vertices, and the vertices with white backgrounds are uninformed vertices.
The vertices connected by bold edges compose the border. Vertices P and () are the
outside neighbors of vertex O. The border in Fig. 27(a) is convex, while the border
in Fig. 27(b) is not convex, since vertices A = (2,2) and B = (3,4) are on the border

and 2 < 3, 2 < 4. First, we will prove some auxiliary lemmas.
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Lemma 9. Given a vertez (i,5) on a convezr border, any other vertex (p,q), where

0<p<iand0<Lq<j, is informed.

Proof. Assume that there exist uninformed vertices (p,q), where 0 < p < ¢ and
0 < g < j. Consider any such vertex (z,y) that has the shortest distance from (0, 0).
This means that both (z —1,y) and (z,y — 1) are informed. Then both (z,y —1) and
(z — 1,y) are on the convex border. If z < ¢ and y < j, then this is a contradiction,
since z <iand y—1<j. If z <4andy < j, then this is also a contradiction, since

r—1<iandy<j. O

Lemma 10. The border is convex after each round of a 1-broadcast scheme originated
at vertez (0,0) if vertices are active in this scheme as long as they have uninformed

neighbors.

Proof. We will prove this lemma by induction on the number of rounds. At the
beginning, (0,0) is the only informed vertex. In the first round, (0, 0) informs either
(0,1) or (1,0), which generates a convex border.

Assume that after round ¢, the border generated by any 1-broadcast scheme S is
convex. We should prove that the border will be convex after round ¢ + 1. Assume
that the border is not convex after round ¢ + 1. Then, there exist vertices (4, j) and
(p, q) on the border, where i < p and j < ¢. It is easy to see that (p, ¢) was not on the
border after round ¢, since either (4, j) or one of (i — 1,7) and (4,7 — 1) were on the
convex border after round ¢. Thus, vertex (p,q) received the message at time ¢ + 1

either from (p —1,¢) or (p,g — 1). So, at least one of (p — 1,¢) and (p,g — 1) was on

3%)



the convex border after round ¢. Consider the case that (p — 1,¢) was on the convex
border after round ¢t. By Lemma 9, after round ¢, vertex (i,j) was informed (since
i <p-—1and j < q) and it had at most one uninformed neighbor, (¢ + 1,7). So,
after round ¢+ 1, (¢+1, 5) is informed, and (7, j) cannot be on the border since it has
no uninformed neighbors. This contradicts the assumption of the lemma. Similarly,
we can get a contradiction for the case that (p,¢ — 1) was on the convex border after

round t. 0
Theorem 6. b;(S((0,0),Gmn)) =m+n—2.

Proof. From Lemma 9, any vertex on a convex border can only send the message to
its outside neighbors. From Lemma 9 and Lemma 10, the longest distance between
the vertices on the border and the originator increases by 1 at each round. The vertex
(m —1,n — 1) is informed in round m + n — 2 since it is the only vertex in the grid
that has distance m 4+ n — 2 from (0,0). From Lemma 9, after vertex (m —1,n — 1)

is informed, then the broadcasting is complete. Thus, b;(S((0,0),Gmp)) =m +n —

2. O

When k£ > 2 and the originator is on a corner, an informed vertex has at most 2
uninformed neighbors in each round. Therefore, the k-broadcast time is the diameter

of the grid graph, which is m +n — 2. So, we have:
Theorem 7. b;(S((0,0),Gmpn)) =m+n—2.

The above theorem states that the k-broadcast time of any k-broadcast scheme
from originator (0,0) is equal to the diameter of the grid. The k-broadcast time of
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G20,30 C"V50,30 G15,25 G20,25
0 R 0 R 0 R 0 R
00 43 | 00 78 | 0,0 38 | 00 43
32 43 | 96 63 | 35 30 | 32 38
53 40 | 127 59 | 68 24 | 58 30
95 34 |12,14 52 | 7,10 22 | 84 31
10,7 32 |1520 54 | 7,12 21 |1i012 23
11,9 31 |1525 59 | 915 24 |1510 29
10,15 25 |20,25 54 |11,16 27 |15,16 3l
15,10 34 | 25,15 40 |12,20 32 |18,20 38
1520 35 |30,18 48 |1222 34 |1824 42
1028 47 |4528 73 | 14,22 36 | 1224 36

Table 1: Test results of 1-broadcasting in G, ,

TBA follows directly.
Corollary 1. bx(A((0,0),Gppn)) =m+n—2.

It is natural to state that b(A((z,y), Gmn)) < m+n—2 for any originator (z,y),
since the worst case of k-broadcasting in grid graphs happens when the originator is
on a corner. All the test results of TBA confirm the above statement (see Table 1). In
this table, the originator is listed in the columns labeled O, and the 1-broadcast times
are listed in the column labeled R. Moreover, TBA always generates the theoretical
minimum 1-broadcast time (see [19]) from all originators. However I am unable to

prove the above statement mathematically.

The Torus Graph

TBA generates an almost optimal time k-broadcast scheme for the torus. The opti-

mal 1-broadcast time of Torus(m,n) is [%] + [5] — 1 when both m and n are odd,
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Figure 28: 1-broadcasting in Torus(m, n)

and is [2] +[%] otherwise [24]. When k > 2, we can achieve the optimal k-broadcast
time in T'orus(m,n) by using the following scheme: first, any inférﬁed vertex sends
the message to its uninformed column neighbors (if it has such neighbors). After all
vertices in the originator’s column are informed, each informed vertex sends the mes-
sage to its uninformed row neighbors (if it has such neighbors). This scheme clearly
gives by(Torus(m,n)) = | 2] + | 5], which is the diameter of Torus(m,n). In this
section, we will show that b (A(Torus(m,n))) < [2]+[5]42 < bi(Torus(m,n))+3,
bo(A(Torus(m,n))) < | Z]+15]+1 = by(Torus(m,n))+1 and by (A(Torus(m,n))) <
| 2]+ [5] + 1= b(Torus(m,n)) when k > 3.

Let us first look at the case that k = 1. Without loss of generality, assume that
in round one of 1-broadcasting the originator sends the message to a neighbor on the

same column. Fig. 28 illustrates T'orus(m,n) after the first round. Fig. 28(b) shows
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the distance between vertices in the torus and the originator vertex O. The vertices
with solid background are informed vertices, and vertex M is the uninformed vertex
that has the longest distance from vertex O. In 1-broadcasting, each vertex in the
area defined by thick line has two children except vertices in row 0 or in column 0.
The vertices in the column indicated by the arrow have three children except vertex
Zy (which has two children). The two children of (7, ) are (¢ — 1,7) and (5 — 1,4).
Vertex (0, 7) has one child (0,7 — 1) for j > 0. Vertex (¢,0) has one child (¢ — 1,0)
for i > 0. Vertex (0,0) does not have any children because it has the longest distance
from vertex O. The weight of a vertex N = (i, j) is denoted by w(N) or w(i, ).
Before proving the main theorem of 1-broadcasting, we first present some auxiliary

lemmas.
Lemma 11. In the area defined by thick lines, w(i,j) =i + j +min{i,j}.

Proof. Lemma 11 can be proved by induction. The statement is correct for vertex
(0,0) since w(0,0) = 0+ 0 + min{0,0} = 0. For all the vertices that are on row
0, assume that w(0,7) = 04 j + min{0,7} = 7, then w(0,5 + 1) = w(0,j) + 1 =
j4+1=0+(j+1)+min{0,j + 1}. For the vertices that are on column 0, the proof
is similar. Assume that the statement is correct for all descendants of (i,5) (1 # 0
and j # 0). Vertex (¢, 7) has two children (: — 1,7) and (4,5 — 1). If ¢ > j, then
min{i—1,7} = jand min{i,j—1} = j—1. So,w(i—1,j) =i—1+j+min{i— 1,5}
=4i+2j—1and w(,j—1) =i+j—1+min{i,j — 1} =i+ 2j — 2. Then,
w(t,j) =w(i—1,j)+1 =i4+2j = i+j+min{i,j}. Ifi < j, thenmin{i—1,j} =i—1
and min{i,j —1} =4 So, w(i,j—1) =2i+j—1and w(i —1,5) = 2i+j — 2. Then,

59



w(i,j) = w(i,j — 1) +1=2i+j =14+ j+min{i,j}. Ifi=j, then w(i,j—1) =

i4+2—2=w(i—1,7). So, w(i,j) =w(i—1,7)+2=i+2j =i+j+min{i,j}. O
Lemma 12. w(Zp) > w(Vy) = w(Up).

Proof. Let Zy = (0,p). By Lemma 11, w(X) = p — 1. | Similarly, w(Y) = p — 1.
Since X and Y are two children of Zy, then w(Zp) = p + 1. By Lemma 11, w(Vp) =
w(p—1,1) =p + min{p—1,1}. w(Zo)—w(Vo) = 1 —min{p~1,1}. Whenp—12> 1,
then w(Zy) — w(Vy) = 0, and when p — 1 < 1, then w(Z,) — w(Vo) > 0. Therefore,

w(Zo) > w(Vp). The proof of w(Vp) = w(lUp) is simple. O
Lemma 13. w(Z;) > w(V;) = w(U;), fori=1,2,--- k.

Proof. TBA assigns the same weights.tovvertices V; and U;. So, w(V;) = w(U,), for
i=1,2- -k |

By Lemma 12, w(Zy) > w(Vp) = w(Up). Z; has three children: Z,, V4, and
Us. By the definition of the weight, w(Z;) > w(Vo) + 3. Let V5 = (p,q), then
w(Zy) > w(Vo) +3 = p+ g+ min{p,q} + 3. wV1) =wlpg+1)=p+qg+1+
min{p,q + 1}. w(Z;) — w(Vi) > min{p,q} + 2 — min{p,q¢ + 1}. When p < g,
w(Z1) —w(Vi) > 2. When p > ¢, w(Z;) —w(Vi) > lf So, w(Zy) > w(Vy) = w(Uy).
Assuming w(Z;) > w(V;) = w(U;) and V; = (p,q), we have w(Z;y1) > w(V;) +3 =
p+q+ min{p,q} + 3. w(Vis1) = wlp,¢+1) = p+ g+ 1+ min{p,g+1}. So,
w(Ziv1) — w(Vig1) = min{p,q} +2 — min{p,q+ 1} > 0. Thus, w(Zi;1) > w(Viy1) =

w(Uiz1). Therefore, w(Z;) > w(V;) = w(l;), for 1 <7 <k, O

Theorem 8. by(A(Torus(m, n))) <[]+ [§F] +2.
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Proof. By Lemma 13, w(Z;) > w(V;) = w(U;), for 1 < ¢ < k. Thus, vertex Z;
receives the message before vertices V; and U; for any ¢ = k,k — 1,- - -, 1. Since
Zy is the furthest vertex from the originator on the same column, then Z; receives
the message at round [%] — 1. After this, it is possible that Z; sends to V or
Up first, because w(Zp) > w(Vp) = w(Up). In the worst case, Z; first sends to
Vo, then Uy, and finally to Z,. This takes 3 rounds. After this, vertices Zy, Zj,
-+ - Zy and all the other vertices on the same column are informed. It takes at
most [%] rounds more to finish the 1-broadcasting using horizontal edges. Thus,

bi(A(Torus(m,n))) < [2] - 143+ [2] = [2] + [3] +2. O
Theorem 9. by(A(Torus(m, n))) < [Z] + [5] + 1= bo((Torus(m, n)) + 1.

Proof. : In Figure 29, vertex O has three uninformed vertices, and M is the furthest
uninformed vertex from vertex O in the torus graph. The numbers represent the
weight of the vertices by using the new algorithm in 2-broadcasting. w(u) denotes
the weight of a vertex u. From Figure 29 and because of the symmetry, we can
see that w(Zp) = w(Vy) = w(l,). From the definition of weight, we know that
w(Zy) = w(Zo) + 2 and w(Vi) = w(Vp) + 1. Therefore, w(Z;) > w(Vy) = w(Uh).
Similarly, we can see that w(Z;) > w(V;) = w(U;) when i > 1.

Figure 30 (a) and (b) illustrate the two possibilities after the first round of 2-
broadcasting in Torus(m,n). Because w(Z;) > w(V;) = w(U;) when ¢ > 1, vertex
O will inform vertex Z; in the second round, and vertex Z; will inform vertex Z;_;
in the third round. This continues until vertex Z; is informed. Note that w(Z]) >
w(Z!_;) > w(V/_,), so the same scheme is processed on the side of vertex O’. In the
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Figure 29: The weights in Torus(m, n) in 2-broadcasting

case illustrated by Figure 30 (a), it takes [%] — 1 rounds until vertex Z; is informed,
while in the case of Figure 30 (b), it takes |%| — 1 rounds. So, it takes at most
[2] —1 < | %] rounds until vertex Z; is informed.

Depending on whether m is odd or even and which case illustrated in Figure 30
happens, Zy and Z| could either be the same vertex or not. When they are the same
vertices, there are two possibilities in the two rounds after vertex Z; is informed (see
Figure 31). When, Z; and Z] are not the same vertex, there are three possibilities in
the two rounds after vertex Z; is informed (see Figure 32). During the matching, TBA
first gives mates to the vertex with fewer uninformed neighbors. In Figure 32 (c), at
the beginning of the second round after Z; is informed, vertex Z; has more uninformed
neighbors than Z] has. So, vertex Z] is matched before vertex Z,. Therefore, vertex
Z1 sends the message to vertex Zj in the second round after Z; is informed, although

Z4 is also an uninformed neighbor of vertex Z,. Thus, in two rounds after Z; is
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Figure 30: The first step of 2-broadcasting in the torus graph

informed, the vertices on all the three columns shown in both Figure 31 and Figure 32
are informed. After this, it takes || — 1 rounds to inform other columns. Therefore,
the total rounds needed to finish 2-broadcasting in Torus(m,n) by using the new
algorithm is at most |3} +2+ |%| — 1= %] + |§] + 1 rounds, which is one round

more than the optimal 2-broadcast time. O

Theorem 10. When k > 3, bp(A(Torus(m, n))) < | 2] + (2] = be((Torus(m, n)).

Proof. : Figure 33 illustrates the first round of k-broadcasting (k > 3) in a torus
graph. Assuming that u; and v; are on the same column, both uy and vy will be
informed in the second round because both u; and v; have only 3 uninformed neigh-
bors. Therefore, the vertices on this column will be informed in |%| rounds, and
then other vertices will be informed in [§ | rounds. This scheme is the same as the
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Figure 32: Three possibilities when Z; and Z| are not the same vertex

optimal k-broadcasting scheme in Torus(m, n). O

3.2.3 Experimental Results

This section presents the test results of TBA for 1-broadcasting in several commonly

used topologies and three graph models.
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Figure 33: the k-broadcasting in Torus graph

Test Results in Commonly Used Topologies

In this section and the following tables, Sy, BFy, Hy, SE4, UB(2,d) and CCCy ab-
breviate the Star graph, Butterfly graph, HyperCube graph, Shuffle Exchange graph,
deBruijn graph and Cube-Connected Cycle of dimension d respectively. GCR,, G2 p
and G p stand for the generalized Chordal rings, the optimal double fixed step graph
and the triple fixed step graph G(3D? + 3D + 1,D,D + 1,2D + 1) with diame-
ter D. Low and Up stand for the best known theoretical lower and upper bounds,
respectively. 7B stands for the minimum test result of TBA. Opt is the optimal
broadcast time of a graph. These bounds and optimal broadcast times are presented
in [9], [11], [14], [24], [51], [61] and [63]. As in [3], TBA was tested on UB(2,d), SEg,
BF; and CCCy. TBA was tested for d < 20 in UB(2,d) and SE,4, and for d < 16
in BF 4 and CCCy, while in [3], the authors have values for d < 14. All the results

for d < 14 are the same as in [3], except for 4 cases: in 2 cases TBA gives a better
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CCCd BFd

Low Up TB Low Up TB
6 7 6 5 5 5
9 9 9 7 7 7
11 12 11 8 9 9

13 14 13 10 11 10
16 17 16 11 13 12
18 19 18 13 15 14
21 22 21 15 17 16
23 24 23 16 19 18~
11} 26 27 26 18 21 19
121 28 29 28 19 23 21"
13| 31 32 31 21 25 23
147 33 34 33 23 27 257
15 36 37 36 24 29 27
16 | 38 39 39 26 31 29

=] ©|oo| | o] | | |

Table 2: Test results in CCCy and BF},

result (denoted by *) and in 2 cases the results from [3] are better (denoted by 7).
In all the four cases the difference is one round. In fact, TBA generates new upper
bounds on 1-broadcast time for CCCy when d = 15, for BF; when 15 < d < 16,
and for UB(2,d) and SE; when 15 < d < 20. In addition, TBA was tested on Hy
and Sy graph, providing again new upper bounds for S;. TBA generates optimal
1-broadcast time in GCR,(1, -1, 3D), GCR,(1, -1, 3D+1) and Gj3 p, but it spends
one round more than the optimal broadcast scheme for 1-broadcasting in Gy p when

D is greater than 20.
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Sd

d{Low Up TB|d|Low Up TB

31 3 3 3 |7 13 16 14

47 5 6 5 |8} 16 21 16

51 7 9 8 9] 19 22 20

61 9 13 1

Table 3: Test results in Sy

H, UB(2,d) SE,
d |{Opt TB |[Low Up TB|Opt TB
5 5 5 7 9 6* 9 9
6 6 6 8 11 8 11 11
7 7 7 10 12 9 13 13
8 8 9 11 14 11 | 15 15
9 9 10 12 15 12 | 17 17
10| 10 11 14 17 14| 19 19
11] 11 12 5 18 15| 21 21
12| 12 13 16 20 17 | 23 24
13 13 14 18 21 18 | 25 26
14] 14 15 19 23 20| 27 28
15] 15 16 20 24 21 ) 29 30
16 | 16 17 22 26 23 | 31 32
171 17 18 23 27 25 | 33 34
18| 18 19 24 29 26 | 35 36
191 19 20 26 30 28 | 37 38
201 20 21 27 32 29 | 39 40

Table 4: Test results in Hyq, UB(2,d) and SEq
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GCR, (1,-1,3D) | GCR,(1,-1, 3D+1)
D Opt TB D Opt TB
11 13 13 10 11 11
15 17 17 12 13 13
17 19 19 16 17 17
29 31 31 18 19 19
30 41 a1 20 21 21
49 51 51 0 41 A1
50 61 61 50 51 51
69 71 71 60 61 61
79 81 81 80 sl 81
89 o1 91 90 ol 91
99 101 101 100 101 101

Table 5: Test results in GCR,,

GZ,D GB,D

D Opt TB | D Opt TB
10 12 12 10 13 13
20 22 22 | 20 23 23
30 32 33 | 30 33 33
0 42 43 | 40 43 43
50 52 53 | 50 53 53
60 62 63 | 60 63 63
0 72 73 0 73 73
80 82 83 | 80 83 83
90 92 93 | 90 93 93
100 102 103 |100 103 103

Table 6: Test results in Gy p and G5 p
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Tiers: 1105 vertices
Edges | RH TB | Edges | RH TB
1106 24 24 1324 23 21
1110 24 23 1326 23 21
1214 22 21 1331 20 20
1216 22 21 1447 22 21
1220 22 21 1449 21 20

Table 7: Test Results in Tiers Model: 1105 vertices

Test Results in Three Graph Models

The ns-2 is a widely used simulator for networking research, which creates topologies
by using several models. In order to compare TBA with the algorithm from [3], three
different network design models from ns-2 are considered: GT-ITM Pure Random [82],
GT-ITM Transit-Stub (TS) [82] and Tiers [15].

The Tiers model is designed to generate test networks for routing algorithms.
The model produces graphs corresponding to the data communication networks such
as IP network and ATM network [15]. GT-ITM Transit-Stub is a well-known model
for the Internet. The Internet can be viewed as a set of routing domains. A domain
is a group of hosts on the Internet. We can consider a domain to be an independent
network, where all vertices in a domain share routing information. Just like the real
Internet, interconnected domains compose the graphs generated by GT-ITM Transit-
Stub [82]. GT-ITM PureRandom is a standard random graph model. Considering
each pair of vertices, an edge is added between them with probability p. Many
models are variations of this model. 'This model is often used in studying networking

problems, although it does not correspond to real networks [82].
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Tiers: 2210 vertices
Edges | RH TB | Edges | RH TB
2209 28 27 | 3028 31 29
2234 26 25 | 3209 30 29
2409 32 31 3225 26 24
2427 25 24 | 3409 32 32
2609 33 32 | 3428 27 26
2628 26 26 | 3609 30 29
2809 29 29 | 3627 | 30 29
2833 27 27 | 3809 28 28
3009 32 31 | 4207 27 26

Table 8: Test Results in Tiers Model; 2210 vertices

The tables in this section represent some of the test results of TBA and the
algorithm from {3] in the above three models. The results of the algorithm from [3]
and TBA are presented in column RH and TB, respectively. In total, TBA was tested
on about 200 different graphs generated by the three models for 155 < |V| < 4400.
In only one case (shown by * in Table 10), TBA gave a 1-broadcast time that was
one more than the 1-broadcast time obtained by using the algorithm from [3]. In all
other cases, TBA generated either the same 1-broadcast times as in [3] or better. In
the Pure Random model we got a 12% improvement. In the Transit-Stub model TBA
gave better 1-broadcast times in more than 40% of the cases. TBA worked better

under the Tiers model, as it gave smaller 1-broadcast times in about 60% of the cases.
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Pure Random

Vertices | Edges RH TB | Vertices | Edges RH TB
200 346 10 10 500 1725 10 10
200 475 9 8 500 1830 10 9
200 595 8 8 750 2099 11 11
300 684 10 10 750 2236 11 10
300 756 10 9

Table 9: Test Results in GT-ITM Pure Random Model

TS: 600 vertices
Edges | RH TB | Edges | RH TB
1169 14 13 1222 15 14
1190 14 14 1231 14 13
1200 16 15 1232 14 13
1206 14 14 | 1247 13 14
1219 15 14 1280 14 13

Table 10; Test Results in T'S Model: 600 vertices

TS: 1056 vertices
Edges | RH TB | Edges | RH TB
2115 17 16 | 2176 17 16
2121 17 17 | 2177 8 17
2134 17 16 | 2185 16 16
2142 16 15 | 2187 16 15
2147 16 15 | 2204 16 15
2149 16 15 | 2219 17 16
2151 15 15 | 2220 15 15
2167 17 16 2230 16 15
2169 17 17 2255 15 14

Table 11: Test Results in TS Model: 1056 vertices
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3.3 Derived Heuristic for Gossip

Given an arbitrary graph G and an integer p, the problem that whether there exist
a gossip scheme in G with a gossip time less or equal to p is NP-complete [12].
Several heuristics for gossiping have been presented in [3] and [25]. Among them,
the algorithm in [3] is the best existing heuristic in practice.

This section presents a heuristic for gossip in arbitrary graphs. This heuristic is
derived from TBA, so we call it the Tree Based Algorithm for Gossip, or TBAG. The
input of TBAG is a graph G = (V, E) and its output is a gossip scheme for graph
G. In each round t of TBAG, a message s has an informed area (vertices holding
s), an uninformed area (vertices not holding s), a bright border (vertices are holding
s and having uninformed neighbors) and a dark border (a set of vertices are not
holding s and have informed neighbors). For a message s, TBAG performs a variant
of BFS from the bright border towards the uninformed border and labels each visited
vertex u with the shortest distance from u to the bright border of s. Then, TBAG
calculates the weights of all uninformed vertices of the message s by the Procedure
Calculate_Weight in TBA. Given an edge (u, v), the weight of (u, v) of message s is
the weight of v if u is in the bright border of s, and v is in the dark border of s, and
is zero otherwise. In total, the final weight of an edge is the sum of its weights of all
the |V| messages. Then, TBAG finds the Maximum-Weighted Matching for graph G
based on the weights of all edges. Finally, messages are exchanged between the two

vertices in each matched vertex pair. In the simulation of TBAG, the matching is
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performed by the program written by Ed Rothberg, who implemented H. Gabow’s
N-cubed weighted matching algorithms [26].

The pseudocode of TBAG is presented below.

Heuristic TBAG (Tree Based Algorithm for Gossip)

Input: graph G = (V, E), a vertex u in G is holding message u.

Output: gossip scheme and gossip time ¢ of G.

1. t = 0 and w(u,v) = 0 for any edge (u,v) € E, where w(u,v) stands for the

weight of any edge (u, v);

2. For i = 1 to |V|, Uninformedfi] «— |V| - 1; /* number of uninformed vertices

of all messages */

3. While exist ¢ such that Uninformedfi/ '= 0

3.1, t++;
3.2.. For each message s of the |V| messages
3.2.1. bb(t,s) « all informed vertices of message s with uninformed neigh-
bors, where bb(t, s) stands for the set of vertices on the bright border
of message s in round t.
3.2.2. Remote — 0; /* stack used to calculate the weight of each unin-
formed vertex */
3.2.3. Perform variant BFS from bb(t, s) to uninformed vertices of message
s, and label any uninformed vertex v with D(v,s,t), where D(v, s, t)
stands for the shortest distance from vertex v to bb(t, s);
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3.2.4. During the process of variant BFS, push vertices in bb(¢, s) and all
uninformed vertices into stack Remote;

3.2.5. Calculate w(u,s,t) for each vertex u in stack Remote by using
Procedure Calculate_weight (defined in Section 3.2), where w(u, s, t)
stands for the weight of vertex u of message s in round t;

3.2.6. For any vertex u in bb(t, s), if (u, v) is an edge in G and v is unin-
formed of message s, then w(u,v) = w(u,v) + w(v, s,t).

3.3 Calculate the Maximum-Weighted Matching;

3.4 Messages are exchanged between the two vertices in any matched vertex
pair. When message ¢ is sent to a vertex, Uninformed[i] = Uninformed/i]

- L

The tables in this section represent some of the test results of TBAG and the

algorithm from [3]. In these tables, |V| and | E| denote the number of vertices and the

number of edges in the tested graphs respectively. The results of the algorithm from [3]

and TBA are presented in column RH and TB, respectively. Generally speaking,

TBAG performs worse than the Roung_Heuristic in several commonly used topologies,

such as UB(2,d), BFy, SE; and CCCjy, but TBAG performs better in the graphs

generated by three network design models: Tiers, GI' — ITM TS and GT — ITM

Random. The most significant advantage of TBAG is its low time complexity. The

time complexity of TBAG is O(|V||E|) in each round without matching, while the

time complexity of Round_Heuristic [3] is O(|V'|3| E|) in each round without matching.
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UB(2,d) BF; SE, CCCy
d/RH T™B (RH TB |RH TB |RH TB
3| 4 4 ) ) ) d 7 8
41 6 6 7 7 7 7 9 9
5 8 8 10 10 10 10 13 13
6 | 10 10 12 13 12 13 14 15
7| 12 12 15 16 15 16 19 20
8| 14 14 17 18 17 18 19 22
9 16 17 20 21 20 21
10| 18 19 23 25

Table 12: Gossip times in UB(2,d), BFy, SE; and CCCy
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VITIE|[TB RH
20 | 27 | 11 13
0 [ 51 | 25 27
50 | 53 | 24 26
57 | 80 | 24 26
160 | 164 | 36 39
180 [ 190 | 41 44
235 | 239 | 38 45
360 | 373 | 47 51
490 | 495 | 55 53
610 | 618 | 65 63
770 | 863 | 64 66

Table 13: Gossip times in Tiers

|V|=100 IV |=200

[E[[TB RH||E[|TB RH
187 | 20 24 | 368 | 25 37
177 | 19 22 | 335] 29 30
168 | 21 23 |357| 25 35
166 | 21 26 | 355 | 25 33
185 | 19 27 |361] 20 31
176 | 17 26 | 340 | 26 31
179 | 20 27 | 345| 26 33
191 | 17 24 | 354 | 26 40
189 | 22 25 | 353 | 27 38
192 | 22 30 | 357 | 26 33

Table 14: Gossip times in GTITM-TS
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[V|=100 IV|=300 |V|=400

[E[[TB RH| |E| |[TB RH| |[E| |TB RH
148 [ 16 21 | 926 | 13 14 | 779 | 19 23
145 | 16 19 | 943 | 14 14 | 866 | 17 21
158 | 14 16 |1125| 12 13 | 902 | 16 17
177 | 16 19 | 1267 | 12 12 |1319| 13 14
187 | 1315 | 1350 | 12 12 |1405| 13 14
204 | 13 15 | 1475 | 11 11 |1645| 12 13
211 | 12 13 | 1569 | 11 11 |2049 | 12 12
213 | 12 15 | 1698 | 11 11 | 2380 | 12 12
205 | 12 13 | 1788 | 11 11 | 2488 | 11 11
235 | 12 13 | 1989 | 11 11 | 2881 | 11 12

Table 15: Gossip times in GTITM-Random
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Chapter 4

Minimum k-Broadcast Graphs

Previous chapters presented efficient k-broadcasting in a given graph. This chapter
will focus on how to construct efficient graphs or network topologies that have small
k-broadcast time. A k;broadcast graph G is a graph on n vertices where by(G) =
[logryin]. Evidently, a complete graph K, is a k-broadcast graph, since by(K,) =
[logr+1n]. However, K, is not minimal in terms of the number of edges. We can
remove edges from K, and obtain a graph with k-broadcast time [loggi1n]. Bi(n)
stands for the minimum possible number of edges in a k-broadcast graph on n vertices.
A k-broadcast graph on n vertices with Bi(n) edges is a minimum k-broadcast graph
or k-mbg. This chapter first presents previous results on k-mbg’s and then presents

several new k-mbg’s.
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4.1 Previous Results

Up until now, no general method exists to determine By(n) for an arbitrary value
of n. Moreover, the previous studies have suggested that the k-mbg’s are extremely
difficult to construct. When n is small, k-mbg’s can be found by exhaustive case
analysis. This technique is no longer effective when n is large, due to a rapid increase
of the number of possible graphs [20]. In most cases, the previous k-mbg’s are found
by first defining a lower bound [ on Bi(n) and then looking for a k-broadcast graph
on n vertices with [ edges.

Most of the previous work in this area has been for £ = 1. The result B;(27) =
p-2°~! was shown in [20]. In order to inform 2P vertices in p rounds, each vertex in
a 1-mbg on 2P vertices must have degree at least p . Thus, such a 1-mbg must have
at least (p- 27) = p- 27~ edges, so, B;(2F) > p- 2¥~!. Then, we need to construct
1-broadcast graphs with 27 vertices and p - 2°~! edges. In the construction presented
in [20], we first take two copies of a minimum 1-broadcast graphs on 2P~! vertices and
then add an edge between any two corresponding vertices of the two graphs. This
process eventually reduces to the graph on one vertex. In fact, the results of such a
construction are hypercubes (see the introduction on hypercube in Chapter 1). The
recursive circulant graphs [70] and the Knédel graphs [52] for n = 27 are also 1-mbg’s
on 2P vertices.

By(2? — 2) = (p — 1)(2°~! — 1) was presented in [13] and [50]. Any vertex in
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a 1-mbg on 2P — 2 vertices must have degree at least p — 1. Otherwise, when 1-
broadcasting is originated by a vertex u with degree less than p — 1, u could inform
at most 2P°1 + 2P 2 ... 4+ 22 41 = 2 — 3 < 2P — 2 vertices in p rounds. Thus,
Bi(2r -2) > (1—1)_(_2217__—1_—12' Then, it suffices to construct 1-broadcast graphs on 2F — 2
vertices and (”—_1)—(—22]0—_1—'1—) edges. The modified Knddel graphs are 1-broadcast graphs
on 2P — 2 vertices and (”_—1)(22’)—_—1—'—9 edges [50]. Let H, stand for the modified Knddel
graph on 27 — 2 vertices, and these vertices in H, are denoted by wvg, vi, - - -, Vor_3.
An edge exists between vertex v; and v; iff i + j = (2" — 1) mod (27 — 2), where
1 <r < p-—1. In order to inform H, in p rounds, an informed vertex v; sends the
message to vertex v; in round r, where i+j = (2" —1) mod (2? - 2),for 1 <r <p-—-1
and i+ j =1 mod (2° —2) for r = p.

Aside from the cases that n = 27 and n = 27 — 2, the result of By(n)’s is only
known for some small values of n. Table 16 summarizes the previously known values
of By(n).

For k > 1, Bi((k + 1)P) = 2kp(k + 1)? (k > 1) was presented in [28] and [58]. A
p-‘dimensional k-hypercube graph is a k-mbg on (k + 1)? vertices, where each vertex
corresponds to a p-bit string on k + 1 alphabets and two vertices are linked with an
edge iff their strings differ by precisely one bit. In a p-dimensional k-hypercube graph,
the k-broadcasting can be performed in p = [logk1n] rounds by using the following
écheme: in round ¢, each informed vertex sends the message to its k£ neighbors that
differ in the 7th bit. Two more general results are presented in [58]. For n < k + 1,

Bi(n) = %n(n — 1) and a minimum k-broadcast graph is the complete graph on n
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n  Bi(n) Ref n Bi(n) Ref.
1 0 20 20 26 65
2 1 20 21 28 65
3 2 20 22 31 65
4 4 20 26 42 74
5 5 20 27 14 71
6 6 |20 58 18 71
7 8 50 79 52 [74]
§ 12 20 | 30 60 7]
9 10 [20] | 31 65 7]
10 12 [20 32 80 [20]
11 13 20 58 121 74
12 15 20 59 124 74
13 18 20 60 130 74
14 21 20 61 136 74
15 24 20 62 155 13] [50
16 32 20 63 162 30] [57
17 22 68 127 389 79
18 23 [[9| 2 T 20
19 2 [ 27-2 -1 -1 [13 50

Table 16: B;(n)’s and References
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n | Bo(n) Bs(n) By(n) | n | Ba(n) Bs(n) Bg(n)
1| 0[58 0O[58] 01[58] | 9 |18(58

21 1158 1 {58 1 (58] | 10| 12 [58] 15 [34
31358 3[58 3[58] |11 |13 (58] 18 (34

41 358 6158 658 |12 |15 58

55 58] 4[58 10 [58] | 24 | 48 [34] |
6| 758 7158 5 58] |50 175 [34]
7110 58] 958 9 58

§[12 53] 11 [58] 11 [58]

Table 17: Bi(n)’s and References

vertices [58]. By(k+2) = k+ 1 and a minimum k-broadcast graph on k+2 vertices is
the star with k 4+ 1 edges around a central vertex [58]. Minimum k-broadcast graphs
for all n in the range k + 3 < n < 2k + 3 were presented in [53].

Except these general results, values of Bi(n) for some particular values of k¥ and

n were presented in [58] and [34]. Table 17 summarizes these results.

4.2 New 1-mbg’s

This section addresses mbg’s on 2P — 1 vertices, where p+1 is a prime number. When

p+ 1 is a prime number, p + 1 devides 2?7 — 1 (Fermat’s little theorem). The lower

bound on By (2P = 1) is f:rll) [57]. For any vertex u in a 1-mbg’s on 2?7 — 1 vertices,

d(u) > p— 1, where d(u) stands for the degree of vertex u. Moreover, for a vertex u
where d(u) = p— 1, there must exist a neighbor v of w such that d(v) > p [7] [30] [57].
The 1-mbg’s on 27 — 1 vertices for p = 4 and p = 6 have two types of vertices: vertices

of degree p and p — 1. The number of vertices of degree p is 2 +_11 and the number of
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SRS

Step 1 Step2
Step 3 Step 4

Figure 34: The construction of 1-mbg on 15 vertices

vertices of degree p— 1 is %. All the vertices of degree p — 1 form a Hamiltonian

cycle, or a ring, of length p—(i{il—). All the vertices of degree p are connected to the

vertices on the ring alternatively. This means that these 1-mbg’s can be composed
by the combination of a ring on 9%%:13 vertices and 2—:5% copies of star graphs. All
leaves of these star graphs are on the ring. Since p + 1 devides 2P — 1, a vertex with
degree p, which is the center of a star, has p neighbors of degree p — 1; while a vertex
with degree p — 1 has exactly one neighbor of degree p. Up until now, each vertex
on the ring has three incident edges. Therefore, chords are added to allow them to

have degree p — 1, when p > 4. Figure 34 illustrates the construction of a 1-mbg on

15 vertices. This 1-mbg includes a ring on 12 vertices and 3 stars on 4 vertices.
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Following these observations, we can define the ring-star graph, which are candi-
dates for k-mbg’s on 2P — 1 vertices, where p + 1 is a prime number and p > 4. Let
R(n) stand for a ring-star graph on n vertices, and the vertices in R(n) are numbered
by 0, 1, - -+, 2P — 2. Vertices 0, 1, - - -, ﬂf%l — 1 are ring vertices since they are
located on a ring. All other vertices are switch vertices. There are two types of edges
in R(n). The edges among the ring vertices are chords, and the edges between switch

vertices and ring vertices are called switch edges. For each ring vertex v, its incident

chords are {(v, (v & 2%) mod E (2,, 1)),O < ¢ < B2}, For each switch vertex v, its

incident switch edges are {(v,v mod p@p 1) +1 2p —),0<i<p—1}

The number of edges in R(2P — 1) is & ;Eﬁ:;)l )| which is equal to the lower bound
on By(2° —1). Thus, if b;(R(2P — 1)) = [log2(2P —1)] = p, then R(2P — 1) is a 1-mbg.
Because of the symmetry of the ring-star graph R(2F — 1), it suffices to show the
1-broadcast scheme of vertex 0 or vertex p—(f%l—). R(15) and R(63) are 1-mbg’s on 15
vertices [20] and 63 vertices [57]. This section will show that R(1023) and R(4095)

are also 1-mbg’s. However, it is important to mention that systematic description of

the 1-broadcast schemes for all ring-star graphs have still not been found.

1-mbg on 1023 vertices

Among the 1023 vertices in R(2'® — 1), vertices 0,1, ..., 929 (1093 — 12 = 930
vertices in total) have degrees 9, and vertices 930, 931, ..., 1022 (122 = 93 vertices in
total) have degrees 10. The chords of R(2'° — 1) are: {(v, (v + 1) mod 930), (v, (v +

4) mod 930), (v, (v+ 16) mod 930), (v, (v+64) mod 930), (v, (v —1) mod 930), (v, (v —
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Figure 35: Vertex 0 in R(1023)

4) mod 930), (v, (v — 16) mod 930), (v, (v — 64) mod 930)}, where 0 < v < 929}.
The switch edges of R(2!° — 1) are: {(v,v mod 930 + 93:)}, where 0 < 7 < 9 and
930 < v < 1022.

A vertex v where 0 < v < 929 has nine incident edges: (v, (v+1) mod 930), (v, (v+
4) mod 930), (v, (v+ 16) mod 930), (v, (v+64) mod 930), (v, (v — 1) mod 930), (v, (v —
4) mod 930), (v, (v — 16) mod 930), (v, (v — 64) mod 930) and (v,v mod 93 + 930).

A vertex v where 930 < v < 1022 has ten incident edges: (v, v — 930), (v,
v —930+93), (v, v —930+ 93 x 2), (v, v — 930 + 93 x 3), (v, v — 930 + 93 x 4), (v,
v —930+93 x 5), (v, v—930+ 93 x 6), (v, v —930+93 x 7), (v, v — 930 + 93 x 8)
and (v, v — 930 + 93 x 9).

It would be difficult to present here the whole R(1023), due to its large number
of vertices and edges. So, Figure 35 and Figure 36 only illustrate vertex 0, vertex 930
and their incident edges. In these figures, solid lines represent edges and dashed lines
stand for paths between two vertices in the ring.

By(1023) = By(2!° — 1) > 2981 — 4650 [57]. Since there are 930 vertices
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Figure 36: Vertex 930 in R(1023)

with degrees 9 and 93 vertices with degrees 10 in R(2!° — 1), the number of edges in
R(2'9—1) is also 4650 in total. Appendix A presents the 1-broadcast scheme of vertex
0, which generates (0, R(1023)) = [log2(1023)] = 10. This 1-broadcast scheme is
found by performing the heuristic in [3], the Round_Heuristic, on R(1023). Since 0,
1, -+ -, 929 are symmetric, it suffices to show the 1-broadcast scheme of vertex 0 or
vertex 930, where in the first round, vertex 0 sends the message to vertex 930 or vice

versa. Thus, we have the following theorem:

Theorem 11. B;(1023) = 4650.
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1-mbg on 4095 vertices

Among the 4095 vertices in R(2'2 — 1), vertices 0,1, ..., 3779 (4095 — 9% = 3780 ver-
tices in total) have degrees 11, and vertices 3780, 3781, ..., 4094 3%2—5- = 315 vertices
in total) have degrees 12. The chords of R(2'? —1) are: {(v, (v+1) mod 3780), (v, (v+
4)mod3780), (v, (v+16)mod3780), (v, (v+64)mod3780), (v, (v+256)mod3780), (v, (v—
1) mod3780), (v, (v—4)mod 3780), (v, (v—16) mod 3780), (v, (v—64) mod 3780), (v, (v—
256) mod 3780), where 0 < v < 3779. The switch edges of R(2!? — 1) are:
{(v,v mod 3780 + 315¢)}, where 0 < ¢ < 11 and 3780 < v < 4094.

A vertex v where 0 < n < 3779 has eleven incident edges: (v, (v+1)mod3780), (v, (v+
4)mod3780), (v, (v+16)mod3780), (v, (v+64)mod3780), (v, (v+256)mod3780), (v, (v—
1)mod3780), (v, (v—4)mod 3780), (v, (v—16) mod3780), (v, (v—64) mod 3780), (v, (v—
256) mod 3780), and (v,v mod 315 + 3780).

A vertex v where 3780 < n < 4094 has twelve incident edges: (v, v — 3780), (v,
v—3780+315), (v, v—3780+315x%2), (v, v—3780+4315 % 3), (v, v—3780+315x4), (v,
v—3780+315x5), (v, v—3780+315%6), (v, v—3780+315%7), (v, v—3780+315x8),
(v, v — 3780 + 315 x 9), (v, v — 3780 + 315 x 10) and (v, v — 3780 + 315 x 11).

Figure 37 and Figure 38 illustrate vertex 0 and vertex 3780 in R(4095) and their
incident edges. In these figures, solid lines represent edges, and dashed lines stand
for paths between two vertices in the ring.

B1(4095) = By(2'2 — 1) > 2220 = 22680 [57]. Since there are 3780 vertices
with degrees 11 and 315 vertices with degrees 12 in R(2'? — 1), the number of edges

in R(2'? — 1) is also 22680 in total. Appendix B presents the 1-broadcast scheme
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Figure 37: Vertex 0 in R(4095)

Figure 38: Vertex 3780 in R(4095)
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of vertex 0, which generates b;(0, R(4095)) = [log»(4095)] = 12. This 1-broadcast
scheme is found by performing the hueristic in [3], the Round_Heuristic, on R(4095).
Since 0, 1, - - -, 3779 are symmetric, it suffices to show the 1-broadcast scheme of
vertex 0 or vertex 3780, where in the first round, vertex 0 and vertex 3780 exchange

the message. Thus, we have the following theorem:

Theorem 12. B;(4095) = 22680.

4.3 A New 2-mbg on 10 Vertices

This section presents a new 2-mbg on 10 vertices. Since By(10) = 12 [58], it therefore
suffices to present a graph G on 10 vertices and 12 edges, such that by(G) = [log310] =
3. Such a graph and the 2-broadcast schemes of all distinct vertices are illustrated in
Figure 40, where the originators are presented with black backgrounds. The arrows
in Figure 40 demonstrate the direction in which the messages are sent, while the
numbers beside the arrows indicate the rounds in which the messages are sent. This
2-mbg on ten vertices, wherein no vertices have degree 4, is obviously not isomorphic

to the one presented in [58], wherein two vertices have degree 4 (see Figure 39).

89



Figure 39: The 2-mbg on 10 vertices in [58]

Figure 40: A new 2-mbg and its 2-broadcast schemes
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Chapter 5

On the k-broadcast Function

Previous studies suggest that k-mbg’s are very difficult to find. Therefore, many
papers present sparse k-broadcast graphs with a small number of edges, which provide
upper bounds on Bi(n) [10] [18] [28] [35] [34] [59]. On the other hand, several papers
provide lower bounds on By (n) [28] [53] [34]. When a lower bound and an upper bound
match at a particular value, we get a new k-mbg. This chapter presents an improved
lower bound on By (n). Since By((k+1)?) = Lkp(k+1)? (k > 1) was presented in [28]
and [58], in this chapter, only the case that n # (k + 1)” will be discussed. This

chapter also presents a small result on the monotonicity of the k-broadcast function.

5.1 Previous Lower Bounds on By(n)

Consider the (k+1)-ary representation of an integer n—1: n—1 = (Vm—1Ym—2---70)k-+1,

where 0 < v, < kfori =0,1,...,m — 1 and ~v,,_; # 0. Let p be the index of the
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leftmost digit which is not equal to k. Then, n—1 = k(k+1)™"! + .- + k(k+1)7*!
+ Yk + 1P + ppo1(k+ 1P + .- + 4. Givennand k, 8 = 0if p = 0 or
if 9 =7 = ... = Y1 = 0. Otherwise, § = v, + 1. Thus, £00...0 (p digits) >
Yo Yp—1.--70- The authors of [28] and [53] state that By(n) > % (m —p—1). This lower

bound has been improved in [34].

Lemma 14. [34] In order to inform at least n vertices in [log,, n| rounds, a vertex

must send the message to at least k(m—p—1)+ 0 neighbors during the k-broadcasting.

This follows that the degree of each vertex in a k-mbg is at least k(m —p—1) + 3,

which provides the best lower bound on Bi(n) in the present: By(n) > 2E(m —p —

5.2 Improved Lower Bound on By(n)

Most of the previous lower bounds on Bj(n) are obtained by examining the minimum
possible degree of the originator in a k-mbg. For example, the best lower bound on
the degree of a vertex in a k-mbg is k(m —p—1)+ 83, where m, p, and 3 are described
as in Section 5.1. However, studies on the degrees of a given originator, and that of
all its neighbors, will improve the lower bound in [34]. Let Ly(n) stand for the (k+1)-
ary representation of the integer n. Given Lg(n), D(n) stands for k(m — p — 1) + 8.
In the first round, the originator v in a k-mbg can send the message to up to k

of its neighbors. Figure 41 illustrates the originator v and its informed neighbors
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after round 1. After this, u and its z (1 < z < k) informed neighbors will continue
to perform the k-broadcasting independently. Thus, vertex u, or at least one of its
neighbors, must inform a minimum of [ 2] vertices in [logr+1n] —1 = [logr1 [ ]]
rounds, As illustrated in Figure 41, vertex v is a neighbor of vertex u, and T'(v) is a
tree on vertex v and all the vertices that are informed through vertex v after round
1. T'(u) is a tree composed by u and all the vertices that are informed through vertex
u after round 1. Assume there are at least [ ] vertices in tree T'(v). Then, we can
apply Lemma 14 on vertex v and all [27] vertices. The later discussion will show
that, in most of the cases, vertex v has to inform at least D(n) neighbors after round
1. Since there is an edge between vertex u and vertex v, d(v) > D(n) + 1, where d(v)
is the degree of vertex v. In the case that T'(u) consists of at least [f7] vertices,
again, we apply Lemma 14 on vertex u and [;37] vertices. In most of the caées,
vertex u must send the message to its D(n) distinct neighbors after round 1. Thus,
d(u) > D(n)+ 1, since vertex u has sent the message to at least one of its neighbors in
round 1. Therefore, in most of the cases, a vertex u or one of its neighbors must have
a degree of at least D(n)+1 in a k-mbg on n vertices. Before formally presenting the

main theorem, several auxiliary lemmas need to be proved.

Lemma 15. Given (Ym—1Ym—2..-70)k+1 5 the (k+1)-ary representation of the integer

n — 1, the (k + 1)-ary representation of the integer {71 — 1 48 (Ym—1Ym—2.--71)k+1-

Proof. When vp < k, n = (Vm-1¥m-2 - 71(%0 + 1))ks1- Since (v + 1) >0, [¢Z5] =
(Ym=1Ym—2** T )ks1 + 1. Therefore, [ﬁﬂ ~ 1= (Ym-1Ym—2"" 7)k+1. When y =k,
let 7, be the rightmost digit which is not equal to k. Then, n = (Ym_1Ym—2...( +
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; informed vertices
! in round 1

...................................................

Figure 41: The originator v and its informed neighbors after round 1

1)0---0)r41 (p O’s after v, +1). Thus, [571 = (Ym-1Ym-2---(Yp+1)0 - 041 (p—1
0’s after 7 +1). Then, [;25] =1 = (Ym-1Ym—2-- Yok - - - k)1 (p — 1 k’s after ,) =

('7m—l’7m—2'--71)k+1- O

Lemma 16. For any vertex u in a k-mbg on n vertices, where n is not a power
of k + 1, the vertex u itself or one of its neighbors must have a degree of at least
k(m—p—1)+8+1 except in three cases: (1)n—1=kk---kv, (2)n—1=k---kyivy

where v9 # 0, and (8) n—1=k--- kv, 0---0yy where v # 0.

Proof. Consider a vertex v in a k-mbg on n vertices, where n — 1 is not equal to any
of the above three exceptions. By Lemma 14, the degree of vertex u is at least k(m —
p—1)+0. Vertex u can send the message to at most & vertices in the first round, after
which there are at most k-1 informed vertices. Thus, there exists vertex v that needs
to inform [5] neighbors after the first round, i.e., in [logk1n] — 1 = [logks1 [ 54 ]1]
rounds. By Lemma 15, the length of Ly([335] — 1) is m — 1, and p — 1 is the index
of the leftmost digit which is not equal to k. Except for the three cases mentioned in
this lemma, it is easy to see that the value of 3 for Ly([ 55 1—1) = (Ym—1Ym—2--71)k11
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is equal to the value of 3 for Lg(n — 1) = (Ym-1Ym-2---71%)k+1. LThus, by Lemma 14,
v must send the message to at least k(m—1)—(p—1)-1)+F=k(m—p—1)+p
distinct neighbors after round 1. Since one of the incident edges of v has been used

inround 1, d(v) > k(m—p—1)+ 3+ 1. O

By Lemma 16, in a k-mbg on n vertices, each vertex with degree D(n) must have
a neighbor with degree at least D(n)+1 except the three previously mentioned cases.
The next question is how many edges are there in such a graph? Let us first discuss
the case that the degree of each vertex is either D(n) or D(n)+1. In order to minimize
the number of vertices with degree D(n) -+ 1, a graph should consist of a set of stars,
where each star includes D(n)+2 vertices, and the leaves of those stars are connected
later in a way that the degrees of these leaves in the final graph are D{(n). Thus, the

minimum possible number of vertices with degree D(n)+1is 5375, and the minimum

D(n)(n~ o) T orges (P w(D(n)+1)2
2

possible number of edges in such a graph is = S (B)Ta)

The following theorem shows that such a graph has a minimum possible number of

edges for a graph whose all vertices have degrees greater than or equal to D(n).

<— x vertices with degree greater than D(n)

<—  atleast n—x edges
(O | =— n—x vertices with degree D(n)

Figure 42: The graph that consists of vertices with a degree of at least D(n)
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Theorem 13. Given D(n) = k(m —p — 1) + 8, Bi(n) > % except three

cases: (1) m—1 =kk- - -kvy, (2)n—1=Fk- - kyny where v # 0, and (3)

n—1=k- - kvy,0---0vy where vy # 0.

Proof. The discussion in this proof is based on the assumption that n — 1 is not one
of the three exceptions. Assume that there are x vertices with degrees greater than

or equal to D(n) + 1 in a k-mbg on n vertices.

(n—z)D(n)+z(D(n)+1) _ nD(n)+z nD(n)+ oy
Bi(n) > mp = rPis 2

When z > 5 > 5 =

OrE
n(D(n)+1)?
2(D(m)+2) -

When & < 5575, there are n — z vertices with degree D(n), and each of the
n — x vertices has at least one neighbor with degree greater than D(n). Thus, we can
consider the k-mbg a graph on two disjointed sets of vertices: the set of vertices with
degree D(n) and the set of vertices with degree greater than D(n). There must be

at least n — = edges between the two sets of vertices (see Figure 42). Therefore, in

total, there are at least n — z incident edges of the x vertices with degree greater than

n— —-z)YD{(n —z)(D 1 .
D(n). Thus, By(n) > ! ”H(Z o) — (o z)(2(")+ ) Since z < gz Br(n) 2

(=a)(D(m)+1) ~ (= BEE) P+ n(Dm)+1)? ]
2 = 2 T 2(D(n)+2) °

This new lower bound improves on the lower bound in [34] by '2—(1"3’(?7)4?2—) whenever

the (k+1)-ary representation of n — 1 is not one of the three exceptions.
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5.3 A Note on the Monotonicity of the k-broadcast

Function

It is a long-standing conjecture that By(n) is non-decreasing for n in the range (k +
)™ 1+ 1< n < (k+1)™ Theorems 14, 15 and 16 are presented in [32] to prove the
monotonicity of B(n) in the range (k+1)™"'+1 < n < (k+1)™ ' +(k+1)"3—1. The
t-relaxed k-broadcasting refers to the k-broadcasting on n vertices in [loggyin] + ¢
rounds for some ¢t > 1. Bi(n) is the minimum number of edges in any t¢-relaxed

k-broadcast graph on n vertices.
Theorem 14. [32] If n < (k+ 1)™ ! + (k4 1)™3, then Bi(n) < 2n.

Theorem 15. [32] If for alln, a < n < b—1, where [logir1a] = [logk+1b], Bi(n) <

2n, then Bi(n) < Bi(n + 1) where t > 0.

Theorem 16. [32] For any k > 1 and (k+1)™'+1 <n < (k+1)™ '+ (k+1)™3-1,

By(n) < Bi(n+1).
Based on these theorems from [32], we have the following theorem.

Theorem 17. Given k > 1 and (k+1)™ ' + (k+1)™3 <n < (k+1)™, Bi(n) >

Be((k+1)™ '+ (k+1)™3 - 1).

Proof. Assume there exists an integer n such that Bg(n) < Bp((k + 1)™ ! + (k +
1)m3 —~1) and (k+ 1)™ '+ (k+ 1) < n < (k+ 1)™. By Theorem 14, By((k +
™4+ (k+1)m3 - 1) < 2((k+ 1)™ ' + (k+ 1)™3 — 1). Then, Bi(n) < Bp((k +
Dt (k+ D)™ 1) < 2((k+ D)™+ (k+1)™3 - 1) < 2n.
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Let G be a minimum k-broadcast graph on n vertices and By(n) edges. Based on
the idea presented in the proof of Theorem 15, we can construct a k-broadcast graph
G = (V',E") on n — 1 vertices and at most By(n) edges as follows.

Since Bi(n) < 2n, there is a vertex u € G such that the degree of u is 3 or less.

When the degree of u is 1, remove the vertex u and its incident edge. The resulting
graph G’ is a k-broadcast graph on n — 1 vertices and Bg(n) — 1 edges.

When the degree of u is 2, let neighbors of u be v and w. By removing the vertex
u with its incident edges and adding the edge (v, w), if it was not already in G, we
obtain a k-broadcast graph G’ on n — 1 vertices and at most Bx(n) — 1 edges. The
k-broadcast scheme in G’ is presented in the proof of Theorem 15 in [32]: “Here, the
k-broadcast scheme for any originator in G’ is easily obtained from the corresponding
scheme in G as f§llows. Without loss of generality, in the scheme for G vertex u
is informed by v at time 7. This call can be deleted in the scheme for G'. If u
subsequently calls w at some time 7 + z in the scheme for G, replace this call with a
call from v to w at time 7. ”

When the degree of u is 3, let the neighbors of u be v, vy and v3. Remove the
vertex u and its incident edges and add the edges (vq,v2), (v1,vs) and (vq, v3) if they
were not already in G. The obtained graph G’ is a k-broadcast graph on n—1 vertices
and at most Bg(n) edges. Again, the k-broadcast scheme in G’ is presented in the
proof of Theorem 15 in [32]: “To k-broadcast from any originator w of G’ consider a
minimum time k-broadcast scheme S from w in graph G. Without loss of generality,

suppose that in S vertex u receives the message from v; at time 7 and the it calls
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vertices v, and v at times 7 + = and 7 + y, respectively where z < y. (The simpler
situation in which u calls fewer of its neighbors is easily handled.) To k-broadcast
from vertex w in graph G’ we use the scheme S with the following changes: at time
7 vertex v; calls vertex vy (in place of u) and at time 7 + z vertex v, calls vertex vs.”

Thus, we can always construct a k-broadcast graph G’ = (V’/, E') on n—1 vertices
and at most Bg(n) edges. Consequently, By(n — 1) < |E'| < Bg(n). Then, by
the assumption Bg(n) < Bi((k + 1)™ ! + (k+ 1)™3 — 1), Bx(n — 1) < Bi(n) <
Be((k+1)™ 4+ (k+1)m 3 -1) <2((k+1)™ '+ (k+1)"3 - 1) <2(n — 1) when
n—12>(k+1)™1+ (k+1)™3— 1. Similarly, we can construct a k-broadcast
graph on n — 2 vertices and at most Bg(n — 1) edges. Thus, Bx(n — 2) < Bg(n — 1).
Eventually, we get Bg(n —p) < Bx(n —p+ 1) < -+ < Bg(n — 1) < Bg(n) where
n—p= '(k—i— 1™ 14 (k+1)™=3~1. However, By((k+1)" '+ (k+1)™3—1) < Bi(n)
contradicts the assumption that Bg(n) < Bi((k+1)™"'+ (k+1)™2 —1). Therefore,

Bi(n) > Br((k+1)™ '+ (k+1)"3—1) for (k+1)™ 1+ (k+1)"3 <n < (k+1)™ O
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Chapter 6

Conclusions and Future Work

This thesis presents linear algorithms that determine the k-broadcast time and the
k-broadcast center in a tree. However, there is no polynomial algorithms (unless
P = NP) to determine k-broadcast time or optimal k-broadcast schemes in arbitrary
graphs, since these problems are NP-complete. More than twenty years have passed
since the first heuristic for 1-broadcasting was presented in [75]. Today, the design of
efficient heuristics for k-broadcasting is still puzzling many researchers, and I believe
it will continue to do so in the near future.

The TBA, which is the heuristic for k-broadcasting in this thesis, is the most
efficient heuristic in practice. The most important advantage of TBA is its small time
complexity, which is O(|E|) in one round on a graph G = (V, E). The TBA heuristic
outperforms previous heuristics on graphs from three graph generators. Moreover,
TBA generates almost optimal k-broadcast schemes in grid and torus graphs. One

by-product of these theoretical results is a general statement on 1-broadcasting in
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grid graphs: any 1-broadcast scheme generates optimal 1-broadcast time in a grid
graph when the originator is (0, 0). I have used a heuristic to calculate the matching
in TBA. Therefore, the performance of TBA may be improved by using the maximum
weighted matching process. However, this will obviously increase its time complexity.

There is no general upper bound on the performance of TBA in arbitrary graphs,
which means that TBA cannot guarantee an effective performance unless it is tested
on a particular topology. This problem could be worse when TBA is working on a
dynamically changing network topology. Actually, the following phenomenon gen-
erally exists: the authors who presented an efficient heuristic in practice normally
could not provide general bounds for the heuristic, such as the heuristic in [3] and
the heuristic in this thesis; while heuristics with general upper bounds can be de-
feated easily in practice. The solution to this dilemma may lie in the combination of
two or more heuristics. Some heuristics with general bounds, such as the heuristics
presented in [16] and [54], include pure random processes, which might be one of
the reasons for their relatively poor performance in practice. Therefore, we can use
TBA to substitute for random processes in these heuristics, which will improve their
performance in practice without changing the general bounds.

This thesis presents several new k-mbg’s for some particular values. More impor-
tantly, it defines the ring-star graphs, which are candidates for k-mbg’s on 27 — 1
vertices, where p+ 1 is a prime number. Hypercubes and the modified Knddel graphs
are two major families of k-mbg’s. The ring-star graphs could possibly be the third,

if its systematic k-broadcast scheme can be found. However, I am still unaware of

101



how to find such a scheme, nor can I guarantee its existence.

The studies on the upper and lower bounds on Bi(n) play important roles in
looking for new k-mbg’s. This thesis improves the lower bound by considering the
minimum possible degree not only of the originator, but also of its neighbors. Since
we have studied the originator and its neighbors, perhaps we may continue to study
the neighbors of its neighbors, until all vertices in a graph are exhausted. However,
the further we go from the originator, the more conditions exist, which dramatically

increases the complexity of the analysis.
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Appendix A

The 1-Broadcast Scheme of 1-mbg

on 1023 Vertices

The 1-broadcast rscheme of 1-mbg on 1023 vertices that originated at vertex 0 is
presented below.

Round 1: 0 — 930;

Round 2: 0 — 64; 930 — 465;

Round 3: 0 — 866; 64 — 994; 465 — 401; 930 — 744,

Round 4: 0 — 929; 64 — 128; 401 — 337; 465 — 529; 744 — 680; 866 — 802;
930 — 279; 994 — 250;

Round 5: 0 — 1; 64 — 65; 128 — 965; 250 — 234; 279 — 295; 337 — 988; 401
— 397; 465 — 466; 529 — 593; 680 — 616; 744 — T60; 802 — 786; 866 — 862; 929
— 925; 930 — 558; 994 — 622;

Round 6: 0 — 4; 1 — 5; 64 — 68; 65 — 69; 128 — 192; 234 — 238; 250 — 254,
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279 — 280; 295 — 359; 337 — 336; 397 — 396; 401 — 400; 465 — 464; 466 — 470;
529 — 525; 558 — 559; 593 — 657; 616 — 552; 622 — 638; 680 — 679; 744 — T48;
760 — 824; 786 — 972; 802 — 801; 862 — 955; 866 — 882; 925 — 1018; 929 — 928;
930 — 651; 965 — 500; 988 — 151; 994 — 157,

Round 7: 0 — 914; 1 — 915; 4 — 8; 5 — 919; 64 — 60; 65 — 66; 68 — 84; 69
— 999; 128 — 124; 151 — 167; 157 — 161; 192 — 208; 234 — 233; 238 — 242; 250
— 266; 254 — 258; 279 — 263; 280 — 281; 295 — 294, 336 — 335; 337 — 353; 359
— 423; 396 — 412; 397 — 393; 400 — 958; 401 — 405; 464 — 448; 465 — 449; 466
— 450; 470 — 454; 500 — 501; 525 — 521; 529 — 513; 552 — 536; 558 — 562; 559
— 543; 593 — 594; 616 — 612; 622 — 606; 638 — 702; 651 — 667; 657 — 673; 679
— 678; 680 — 664; 744 — 728; 748 — 747; 760 — 761; 786 — 787; 801 — 797; 802
— 866; 824 — 840; 862 — 846; 866 — 850; 882 — 975; 925 — 11; 928 — 1021; 929
— 15; 930 — 837; 955 — 118; 965 — 35; 972 — 42; 988 — 709; 994 — 901; 1018 —
181;

Round 8: 0 — 16; 1 — 17,4 — 20; 5 — 871; 8 — 874; 11 — 941; 15 — 79; 35
— 34; 42 — 26; 60 — 56; 64 — 63; 656 — 995; 66 — 996; 68 — 132; 69 — 73; 84 —
100; 118 — 114; 124 — 108; 128 — 127; 151 — 155; 157 — 158; 161 — 97; 167 —
163; 181 — 245; 192 — 176; 208 — 204; 233 — 232; 234 — 235; 238 — 302; 242 —
241; 250 — 251; 254 — 253; 258 — 194; 263 — 199; 266 — 202; 279 — 283; 280 —
284; 281 — 345; 294 — 293; 295 — 291, 335 — 351; 336 — 320; 337 — 338; 353 —
369; 359 — 375; 393 — 377; 396 — 380; 397 — 381; 400 — 384; 401 — 402, 405 —

063; 412 — 411; 423 — 427; 448 — 447; 449 — 433; 450 — 451; 454 — 455; 464 —
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468; 465 — 481; 466 — 467; 470 — 474; 500 — 499; 501 — 565; 513 — 577; 521 —
585; 525 — 524; 529 — 533; 536 — 1001; 543 — 479; 552 — 568; 558 — 554; 559 —
575; 562 — 566; 593 — 592; 594 — 595; 606 — 602; 612 — 984; 616 — 632; 622 —
621; 638 — 639; 651 — 647; 657 — 641; 664 — 648; 667 — 671; 673 — 689; 678 —
694; 679 — 695; 680 — 681; 702 — 703; 709 — T08; 728 — 712; 744 — 740; 747 —
751; 748 — 752; 760 — 789; 761 — T62; 786 — 770; 787 — 783; 797 — 983; 801 —
800; 802 — 738; 806 — 810; 824 — 888; 837 — 853; 840 — 844; 846 — 830; 850 —
849; 862 — 863; 866 — 867; 882 — 883; 901 — 900; 914 — 898; 915 — 916; 919 —
923; 925 — 921; 928 — 864; 929 — 1022; 930 — 372; 955 — 304; 958 — 307; 965 —
779; 972 — 507; 975 — 138; 988 — 895; 994 — 715; 999 — 720; 1018 — 367; 1021
— 91;

Round 9: 0 — 926; 1 — 2; 4 — 918; 5 — 6; 8 — 24; 11 — 877; 15 — 31; 16 —
32; 17 — 13; 20 — 886; 26 — 22; 34 — 38; 35 — 39; 42 — 41; 56 — 40; 60 — 76, 63
— 47, 64 — 48; 65 — 61; 66 — 82; 68 — 52; 69 — 70; 73 — 89; 79 — 78; 84 — 85;
91 — 87; 97 — 101; 100 — 96; 108 — 109; 114 — 110; 118 — 102; 124 — 125; 127
— 111; 128 — 129; 132 — 136; 138 — 74; 151 — 150; 155 — 139; 157 — 153; 158 —
94; 161 — 145; 163 — 1000; 167 — 103; 176 — 175; 181 — 165; 192 — 196; 194 —
210; 199 — 183; 202 — 201; 204 — 205; 208 — 209; 232 — 248; 233 — 977; 234 —
170; 235 — 979; 238 — 222; 241 — 225; 242 — 226; 245 — 261; 250 — 314; 251 —
187; 253 — 189; 254 — 190; 258 — 322; 263 — 327; 266 — 330; 279 — 275; 280 —
276; 281 — 217; 283 — 287; 284 — 220; 291 — 227; 293 — 309; 294 — 310; 295 —

311; 302 — 953; 304 — 288; 307 — 323; 320 — 971; 335 — 271; 336 — 340; 337 —
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273; 338 — 342; 345 — 346; 351 — 350; 353 — 289; 359 — 360; 367 — 366; 369 —
365; 372 — 356; 375 — 374; 377 — 378; 380 — 364; 381 — 382; 384 — 388; 393 —
394; 396 — 954; 397 — 398; 400 — 416; 401 — 385; 402 — 418; 405 — 421, 411 —
395; 412 — 408; 423 — 424; 427 — 428; 433 — 429; 447 — 1005; 448 — 1006; 449
- 445; 450 — 446; 451 — 387; 454 — 390; 455 — 456; 464 — 480; 465 — 461; 466
— 462; 467 — 403; 468 — 484; 470 — 486; 474 — 473; 479 — 478, 481 — 477; 499
— 515; 500 — 496; 501 — 485; 507 — 506; 513 — 509; 521 — 522; 524 — 508; 525
— 526; 529 — 545; 533 — 549; 536 — 535; 543 — 527; 552 — 488; 554 — 550; 558
— 494; 559 — 560; 562 — 546; 565 — 629; 566 — 582; 568 — 572; 575 — 579; 577
— 573; 585 — 957; 592 — 608; 593 — 597; 594 — 590; 595 — 599; 602 — 666; 606
— 610; 612 — 613; 616 — 620; 621 — 605; 622 — 626; 632 — 636; 638 — 634; 639
— 1011; 641 — 1013; 647 — 643; 648 — 644; 651 — 587; 657 — 653; 664 — 660;
667 — 668; 671 — 670; 673 — 669; 678 — 614, 679 — 615; 680 — 684; 681 — 665;
689 — 968; 694 — 710; 695 — 691; 702 — 701; 703 — 707; 708 — 692; 709 — 725;
712 — 713; 715 — 714; 720 — 721; 728 — 729; 738 — 734; 740 — 741; 744 — 745;
747 — 811; 748 — 812; 751 — 750; 752 — T768; 759 — 823; 760 — T64; 761 — 757,
762 — 778; 770 — 774; 779 — 795; 783 — 969; 786 — 790; 787 — 723; 797 — 733,
800 — 796; 801 — 817; 802 — 818; 806 — 822; 810 — 794; 824 — 820; 830 — 829;
837 — 821; 840 — 839; 844 — 860; 846 — 842; 849 — 833; 850 — 854; 853 — 869;
862 — 858; 863 — 859; 864 — 880; 866 — 959; 867 — 868; 871 — 875; 874 — 873,
882 — 881; 883 — 819; 888 — 889; 895 — 29; 898 — 897; 900 — 896; 901 — 885;

914 — 910; 915 — 49; 916 — 852; 919 — 903; 921 — 55; 923 — 907; 925 — 909;
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928 — 14; 929 — 3; 930 — 93; 941 — 197; 955 — 211; 958 — 493; 963 — 312; 965
— 221; 972 — 414; 975 — 45; 983 — 425; 984 — 426; 988 — 430; 994 — 436; 995
— 809; 996 — 624; 999 — 627; 1001 — 71; 1018 — 832; 1021 — 184; 1022 — 185;
Round 10: 1 — 927, 2 — 18;3 — 67; 4 — 934; 5 — 935; 6 — 920; 8 — 72; 11
— 75; 13 — 12; 14 — 944; 15 — 945; 16 — 946; 17 — 21; 20 — 19; 22 — 86; 24 —
88; 26 — 25; 29 — 28; 31 — 95; 32 — 36; 34 — 30; 35 — 99; 38 — 904; 39 — 905;
40 — 906; 41 — 105; 42 — 58; 45 — 911, 47 — 51; 48 — 978; 49 — 33; 52 — 982,
55 — 119; 56 — 986; 60 — 990; 61 — 57; 63 — 993; 64 — 80; 65 — 81; 66 — 130;
68 — 998; 69 — 133; 70 — 54; 71 — 135; 73 — 1003; 74 — 10; 76 — 77; 78 — 1008;
79 — 143; 82 — 1012; 84 — 1014; 85 — 149; 87 — 83; 89 — 1019; 91 — 107; 93 —
92; 94 — 90; 96 — 160; 97 — 98; 100 — 937; 101 — 117; 102 — 106; 103 — 104; 108
— 44: 109 — 173; 110 — 46; 111 — 112; 114 — 115; 118 — 122; 124 — 123; 125 —
141; 127 — 131; 128 — 144; 129 — 113; 132 — 148; 136 — 120; 138 — 142; 139 —
976; 145 — 146; 150 — 987; 151 — 152; 153 — 137; 155 — 171; 157 — 156; 158 —
162; 161 — 177; 163 — 164; 165 — 1002; 167 — 166; 170 — 154; 175 — 191; 176 —
172; 181 — 182; 183 — 179; 184 — 180; 185 — 169; 187 — 203; 189 — 188; 190 —
174; 192 — 936; 194 — 938; 196 — 260; 197 — 198; 199 — 200; 201 — 265; 202 —
218; 204 — 140; 205 — 949; 208 — 952; 209 — 193; 210 — 214, 211 — 195; 217 —
213; 220 — 236; 221 — 237; 222 — 206; 225 — 229; 226 — 970; 227 — 243; 232 —
168; 233 — 297; 234 — 230; 235 — 219; 238 — 239; 241 — 257; 242 — 178; 245 —
989; 248 — 244; 250 — 249; 251 — 252; 253 — 997, 254 — 270; 258 — 262; 261 —

325; 263 — 264; 266 — 1010; 271 — 207; 273 — 269; 275 — 259; 276 — 212; 279 —

118



978; 280 — 216; 281 — 282; 283 — 347; 284 — 268; 287 — 223; 288 — 224; 289 —
985; 291 — 290; 293 — 277; 294 — 358; 295 — 299; 302 — 298; 304 — 240; 307 —
303; 309 — 305; 310 — 246; 311 — 247; 312 — 296; 314 — 315; 320 — 324; 322 —
306; 323 — 974; 327 — 331; 330 — 326; 335 — 319; 336 — 272; 337 — 321; 338 —
974; 340 — 344; 342 — 406; 345 — 349; 346 — 410; 350 — 286; 351 — 355; 353 —
354; 356 — 292; 359 — 363; 360 — 376; 364 — 300; 365 — 301; 366 — 362; 367 —
383; 369 — 373; 372 — 308; 374 — 438; 375 — 439; 377 — 313; 378 — 379; 380 —
316; 381 — 317; 382 — 040; 384 — 368; 385 — 389; 387 — 371; 388 — 404; 390 —
391; 393 — 320; 394 — 458; 395 — 459; 396 — 332; 397 — 333; 398 — 334; 400 —
399; 401 — 417; 402 — 386; 403 — 339; 405 — 341; 408 — 409; 411 — 475; 412 —
348; 414 — 415; 416 — 352; 418 — 422; 421 — 357; 423 — 487; 424 — 440; 425 —
361; 426 — 490; 427 — 985; 428 — 432; 429 — 413; 430 — 431; 433 — 434; 436 —
437, 445 — 441; 446 — 442; 447 — 511; 448 — 452; 449 — 453; 450 — 514; 451 —
435; 454 — 518; 455 — 519; 456 — 392; 461 — 457; 462 — 463: 464 — 460; 465 —
469; 466 — 530; 467 — 471; 468 — 532; 470 — 534; 473 — 537, 474 — 939; 477 —
042; 478 — 482; 479 — 483; 480 — 476; 481 — 497; 484 — 420; 485 — 489; 486 —
502; 488 — 504; 493 — 492; 494 — 498; 496 — 961; 499 — 964; 500 — 516; 501 —
966; 506 — 570; 507 — 491; 508 — 444; 509 — 505; 513 — 512; 515 — 531; 521 —
520; 522 — 538; 524 — 540; 525 — 541; 526 — 510; 527 — 591: 529 — 528: 533 —
517; 535 — 539; 536 — 472; 543 — 607; 545 — 544; 546 — 547; 549 — 553; 550 —
551; 552 — 556; 554 — 555; 558 — 574; 559 — 495: 560 — 564; 562 — 578; 565 —

581; 566 — 567; 568 — 584; 572 — 588; 573 — 569; 575 — 576; 577 — 561; 579 —
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580; 582 — 586; 585 — 649; 587 — 571; 590 — 962; 592 — 596; 593 — 589; 594 —
658; 595 — 967; 597 — 661; 599 — 603; 602 — 618; 605 — 604; 606 — 542; 608 —
672; 610 — 674; 612 — 628; 613 — 677; 614 — 598; 615 — 611; 616 — 617; 620 —
619; 621 — 557; 622 — 686; 624 — 623; 626 — 690; 627 — 563; 629 — 633; 632 —
631; 634 — 698; 636 — 700; 638 — 642; 639 — 655; 641 — 637; 643 — 659; 644 —
640; 647 — 711; 648 — 652; 651 — 635; 6563 — T17; 657 — 656; 660 — 724; 664 —
600; 665 — 601; 666 — 730; 667 — 731; 668 — 947; 669 — 685; 670 — 654; 671 —
950; 673 — 609; 678 — 742; 679 — 663; 680 — 676; 681 — 682; 684 — 683; 689 —
625; 691 — 755; 692 — 693; 694 — 630; 695 — 699; 701 — 765; 702 — 766; 703 —
687; 707 — 771; 708 — T72; 709 — 645; 710 — 706; 712 — 776, 713 — 777, 714 —
718; 715 — 719; 720 — 784; 721 — 705; 723 — 739; 725 — 1004; 728 — 792; 729 —
793; 733 — T749; 734 — 735; 738 — 1017; 740 — 804; 741 — 1020; 744 — 743; 745
— 931; 747 — 933; 748 — 732; 750 — 814; 751 — 815; 752 — 688; 757 — 943; 759
— 775; 760 — 696; 761 — 697; 762 — 948; 764 — 828; 768 — 767; 770 — 956; 774
— T73; 778 — 782; 779 — 763; 783 — 847; 786 — 722; 787 — 973; 790 — 791; 794
— 980; 795 — 981; 796 — 780; 797 — 781, 800 — 736; 801 — 737; 802 — 803; 806
— 992; 809 — 813; 810 — 746; 811 — 827, 812 — 876; 817 — 733; 818 — 754; 819
— 835; 820 — 756; 821 — 825; 822 — 758; 823 — 1009; 824 — 808; 829 — 1015;
830 — 1016; 832 — 831; 833 — 769; 837 — 841; 839 — 932; 840 — 856; 842 — 826;
844 — 908; 846 — 845; 849 — 785; 850 — 834, 852 — 788; 853 — 789; 854 — 838;
858 — 951; 859 — 855; 860 — 924; 862 — T98; 863 — 799; 864 — 848; 866 — 870;

867 — 960; 868 — 872; 869 — 805; 871 — 807; 873 — 7; 874 — 890; 875 — 891; 877
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— 861; 880 — 816; 881 — 865; 882 — 878; 883 — 879; 885 — 884, 886 — 887; 888
— 892; 889 — 23; 895 — 899; 896 — 912; 897 — 893; 898 — 991; 900 — 836; 901
— 917; 903 — 37; 907 — 843; 909 — 43; 910 — 894; 914 — 1007; 915 — 851; 916
— 50; 918 — 902; 919 — 53; 921 — 857; 923 — 9; 925 — 59; 926 — 922; 928 — 62;
929 — 913; 930 — 186; 941 — 662; 953 — 116; 954 — 675; 955 — 583; 957 — 27;
958 — 121; 959 — 215; 963 — 126; 965 — 407; 968 — 503; 969 — 318; 971 — 134,
972 — 228; 975 — 231; 977 — 419; 979 — 328; 983 — 704; 984 — 147, 988 — 523;
994 — 343; 995 — 716; 996 — 159; 999 — 255; 1000 — 256; 1001 — 443; 1005 —

726; 1006 — 727; 1011 — 267; 1013 — 548; 1018 — 646; 1021 — 370; 1022 — 650;
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Appendix B

The 1-Broadcast Scheme of 1-mbg

on 4095 Vertices

The 1-broadcast scheme of 1-mbg on 4095 vertices that originated at 0 is presented
below.

Round 1: 0 — 3780;

Round 2: 0 — 16; 3780 — 1890;

Round 3: 0 — 3764; 16 — 3796; 1890 — 1874; 3780 — 1260,

Round 4: 0 — 3524; 16 — 272; 1260 — 1244; 1874 — 4079; 1890 — 2146; 3764
— 3508; 3780 — 2835; 3796 — 2536;

Round 5: 0 — 64; 16 — 80; 272 — 528; 1244 — 1228; 1260 — 1004; 1874 —
1858; 1890 — 1634; 2146 — 2402; 2536 — 2552; 2835 — 2831; 3508 — 3252; 3524
— 3268; 3764 — 240; 3780 — 630; 3796 — 646, 4079 — 614;

Round 6: 0 — 3716; 16 — 15; 64 — 128; 80 — 3860; 240 — 4020; 272 — 4052,
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528 — 3993; 614 — 870; 630 — 634; 646 — 710; 1004 — 1068; 1228 — 1484; 1244
— 1180; 1260 — 1516; 1634 — 1378; 1858 — 1794; 1874 — 1810; 1890 — 1954; 2146
— 2082; 2402 — 3977; 2536 — 2537; 2552 — 2296; 2831 — 2827; 2835 — 2839; 3252
— 3882; 3268 — 3898, 3508 — 3507; 3524 — 3523; 3764 — 3700; 3780 — 3150; 3796
— 3166; 4079 — 2189;

Round 7: 0 — 1; 15 — 14; 16 — 17; 64 — 65; 80 — 84; 128 — 3908; 240 —
239; 272 — 273; 528 — 532; 614 — 615; 630 — 631; 634 — 633; 646 — 647; 710 —
714; 870 — 866; 1004 — 1000; 1068 — 1069; 1180 — 1176; 1228 — 1227; 1244 —
1240; 1260 — 1264; 1378 — 1374; 1484 — 1483; 1516 — 1517; 1634 — 1630; 1794 —
3999; 1810 — 1746; 1858 — 1857; 1874 — 1875; 1890 — 1894; 1954 — 1955; 2082 —
2081; 2146 — 2147; 2189 — 2188; 2296 — 3871; 2402 — 2406; 2536 — 2540; 2537 —
2538; 2552 — 2616; 2827 — 2763; 2831 — 2832; 2835 — 2834; 2839 — 2838; 3150 —
3149; 3166 — 3165; 32562 — 3253; 3268 — 3269; 3507 — 3822; 3508 — 3504; 3523
— 3838; 3524 — 3520; 3700 — 3696; 3716 — 3715; 3764 — 3765; 3780 — 945; 3796
— 3481; 3860 — 1655; 3882 — 417, 3898 — 2953; 3977 — 2717; 3993 — 3363; 4020
— 3390; 4052 — 2477; 4079 — 1559;

Round 8: 0 — 4; 1 — 257; 14 — 3794; 15 — 19; 16 — 12; 17 — 13; 64 — 68;
65 — 66; 80 — 76; 84 — 88; 128 — 132; 239 — 238; 240 — 244; 272 — 268; 273 —
269; 417 — 413; 528 — 524; 532 — 3997; 614 — 358; 615 — 611; 630 — 566; 631 —
627, 633 — 569; 634 — 638; 646 — 582; 647 — 643; 710 — 706; 714 — T18; 866 —
867; 870 — 869; 945 — 946; 1000 — 996; 1004 — 1020; 1068 — 1072; 1069 — 1070;

1176 — 1172; 1180 — 1179; 1227 — 1231; 1228 — 1229; 1240 — 1236; 1244 — 1248;
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1260 — 1259; 1264 — 1268; 1374 — 3894; 1378 — 1379; 1483 — 1739; 1484 — 1480;
1516 — 1520; 1517 — 1513; 1559 — 1560; 1630 — 1626; 1634 — 1633; 1655 — 1656;
1746 — 1745; 1794 — 1790; 1810 — 1809; 1857 — 1861; 1858 — 1854; 1874 — 1870;
1875 — 1876; 1890 — 1889; 1894 — 1898; 1954 — 1958; 1955 — 1951, 2081 — 2080;
2082 — 2078; 2146 — 2150; 2147 — 2143; 2188 — 2187; 2189 — 2185; 2296 — 2297,
2402 — 2398; 2406 — 3981; 2477 — 2481; 2536 — 2532; 2537 — 2533; 2538 — 3798,
2540 — 2544; 2552 — 2548; 2616 — 2612; 2717 — 2721; 2763 — 2747; 2827 — 3083;
2831 — 2575; 2832 — 4092; 2834 — 2770; 2835 — 2771; 2838 — 3094; 2839 — 2903;
2953 — 2949; 3149 — 3148; 3150 — 3146; 3165 — 3164; 3166 — 3162; 3252 — 2996;
3253 — 2997; 3268 — 3272; 3269 — 3285; 3363 — 3367; 3390 — 3386; 3481 — 3482;
3504 — 3819; 3507 — 3511; 3508 — 3512; 3520 — 3516; 3523 — 3527; 3524 — 3528,
3696 — 3692; 3700 — 3704; 3715 — 4030; 3716 — 3720; 3764 — 3768; 3765 — 3766;
3780 — 315; 3796 — 1591; 3822 — 3192; 3838 — 2263; 3860 — 1025; 3871 — 1351,
3882 — 2307; 3898 — 118; 3908 — 2963; 3977 — 3662; 3993 — 3048; 3999 — 3054;
4020 — 3705; 4052 — 1217; 4079 — 299;'

Round 9: 0 — 3776; 1 — 3717; 4 — 5; 12 — 3728; 13 — 29; 14 — 30; 15 — 31;
16 — 3732; 17 — 33; 19 — 3735; 64 — 320; 65 — 61; 66 — 70; 68 — 3848; 76 —
3600; 80 — 3604; 84 — 100; 88 — 89; 118 — 182; 128 — 384; 132 — 3912; 238 —
494; 239 — 495; 240 — 496; 244 — 245; 257 — 513; 268 — 204; 269 — 525; 272 —
288; 273 — 289; 299 — 363; 315 — 251; 358 —>'362; 413 — 409; 417 — 481; 524 —
780; 528 — 592; 532 — 468; 566 — 502; 569 — 825; 582 — 838; 611 — 607; 614 —

678; 615 — 679; 627 — 691; 630 — 629; 631 — 695; 633 — 889; 634 — 698; 638 —
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894; 643 — 899; 646 — 645; 647 — 663; 706 — 770; 710 — 726; 714 — 730; 718 —
782; 866 — 862; 867 — 803; 869 — 1125; 870 — 1126; 945 — 881; 946 — 1202; 996
— 740; 1000 — 744; 1004 — 748; 1020 — 956; 1025 — 1029; 1068 — 812; 1069 —
1065; 1070 — 3905; 1072 — 1088; 1172 — 1428; 1176 — 1112; 1179 — 923; 1180 —
1116; 1217 — 1153; 1227 — 1211; 1228 — 972; 1229 — 1165; 1231 — 1167; 1236 —
1237; 1240 — 1304; 1244 — 1308; 1248 — 1249; 1259 — 1258; 1260 — 1261; 1264 —
1328; 1268 — 1269; 1351 — 1347; 1374 — 1390; 1378 — 1394; 1379 — 1443; 1480 —
1476; 1483 — 1467; 1484 — 1548; 1513 — 1449; 1516 — 1772; 1517 — 1773; 1520 —
1456; 1559 — 1815; 1560 — 1816; 1591 — 1527; 1626 — 1370; 1630 — 1646; 1633 —
1632; 1634 — 1570; 1655 — 1399; 1656 — 1660; 1739 — 3944, 1745 — 3950; 1746 —
3951; 1790 — 3995; 1794 — 1778; 1809 — 2065; 1810 — 2066; 1854 — 4059; 1857 —
1856; 1858 — 2114; 1861 — 2117; 1870 — 1866; 1874 — 1938; 1875 — 1939; 1876 —
2132; 1889 — 1885; 1890 — 1891; 1894 — 1830; 1898 — 1897; 1951 — 1967; 1954 —
1970; 1955 — 1971; 1958 — 1974; 2078 — 2074; 2080 — 2096; 2081 — 2085; 2082 —
3972; 2143 — 2399; 2146 — 2210; 2147 — 2163; 2150 — 2166; 2185 — 2181, 2187 —
4077; 2188 — 2172; 2189 — 2253; 2263 — 2262; 2296 — 2040; 2297 — 2298; 2307 —
2371; 2398 — 2414, 2402 — 2386; 2406 — 2390; 2477 — 2493, 2481 — 2497, 2532 —
2468; 2533 — 2277; 2536 — 2472; 2537 — 2601; 2538 — 2602; 2540 — 2604; 2544 —
2608; 2548 — 3808; 2552 — 2556; 2575 — 2574; 2612 — 2628; 2616 — 2620; 2717 —
2701; 2721 — 2720; 2747 — 2683; 2763 — 2699; 2770 — 2766, 2771 — 2707, 2827 —
4087, 2831 — 2847; 2832 — 3088; 2834 — 2850; 2835 — 2836, 2838 — 2582; 2839 —

2840; 2903 — 2647; 2949 — 2693; 2953 — 2889; 2963 — 2947; 2996 — 2992; 2997 —
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3942; 3048 — 2984; 3054 — 3310; 3083 — 3339; 3094 — 3350; 3146 — 3142; 3148 —
3152; 3149 — 3153; 3150 — 3214; 3162 — 3178; 3164 — 3228; 3165 — 3101; 3166 —
3182; 3192 — 3191, 3252 — 3236; 3253 — 3249; 3268 — 3204; 3269 — 3333; 3272 —
3276; 3285 — 3349; 3363 — 3362; 3367 — 3303; 3386 — 3322; 3390 — 3326; 3481 —
3417; 3482 — 3546; 3504 — 3488; 3507 — 3506; 3508 — 3492; 3511 — 3255; 3512 —
3827; 3516 — 3580; 3520 — 3456; 3523 — 3522; 3524 — 3460; 3527 — 3531; 3528
— 3532; 3662 — 3663; 3692 — 168; 3696 — 3632; 3700 — 3684; 3704 — 180; 3705
— 3689; 3715 — 3711; 3716 — 3652; 3720 — 3724; 3764 — 48; 3765 — 49; 3766 —
3750; 3768 — 52; 3780 — 1575; 3794 — 1274; 3796 — 2221; 3798 — 1593; 3819 —
2244; 3822 — 2877; 3838 — 1948; 3860 — 1340; 3871 — 2926; 3882 — 2622; 3894
— 2634; 3898 — 2008; 3908 — 3278; 3977 — 1142; 3981 — 1461; 3993 — 843; 3997
— 2107; 3999 — 219; 4020 — 3075; 4030 — 880; 4052 — 1847, 4079 — 2504; 4092
— 2517,

Round 10: 0 — 3779; 1 — 3777; 4 — 260; 5 — 6; 12 — 3792; 13 — 3793; 14 —
78; 15 — 79; 16 — 3540; 17 — 81; 19 — 3799; 29 — 3553; 30 — 94; 31 — 95; 33 —
37; 48 — 44; 49 — 113; 52 — 56; 61 — 125; 64 — 63; 65 — 129; 66 — 130; 68 —
324; 70 — 3850; 76 — 140; 80 — 144; 84 — 83; 88 — 344; 89 — 3613; 100 — 3880;
118 — 119; 128 — 127; 132 — 131; 168 — 232; 180 — 179; 182 — 198; 204 — 460;
219 — 218; 238 — 174; 239 — 175; 240 — 236; 244 — 228; 245 — 249; 251 — 247;
257 — 258; 268 — 264; 269 — 205; 272 — 271; 273 — 274; 288 — 292; 289 — 4069;
299 — 295; 315 — 319; 320 — 576; 358 — 294, 362 — 366; 363 — 364; 384 — 380;

409 — 3874; 413 — 412; 417 — 418; 468 — 467; 481 — 482; 494 — 3959; 495 —
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751; 496 — 432; 502 — 503; 513 — 449; 524 — 520; 525 — 3990; 528 — 784; 532 —
536; 566 — 562; 569 — 553; 582 — 586; 592 — 656; 607 — 606; 611 — 355; 614 —
550; 615 — 616; 627 — 371; 629 — 625; 630 — 626; 631 — 375; 633 — 377; 634 —
635; 638 — 382; 643 — 387; 645 — 661; 646 — 390; 647 — 391; 663 — 407; 678 —
934; 679 — 423; 691 — 435; 695 — 759; 698 — 442; 706 — 450; 710 — 711; 714 —
458; 718 — 462; 726 — 982; 730 — 734; 740 — 3890; 744 — 488; 748 — 684; 770 —
771; 780 — 776; 782 — 1038; 803 — 799; 812 — 556; 825 — 841; 838 — 839; 843 —
1099; 862 — 926, 866 — 850; 867 — 4017; 869 — 853; 870 — 874; 880 — 879; 881 —
817; 889 — 905; 894 — 910; 899 — 963; 923 — 922; 945 — 689; 946 — 1010; 956 —
700; 972 — 968; 996 — 995; 1000 — 999; 1004 — 1005; 1020 — 1019; 1025 — 1041,
1029 — 1033; 1065 — 1049; 1068 — 3903; 1069 — 1053; 1070 — 1086; 1072 — 1076;
1088 — 3923; 1112 — 856; 1116 — 860; 1125 — 1381; 1126 — 1110; 1142 — 1078,
1153 — 1409; 1165 — 1421; 1167 — 4002; 1172 — 4007; 1176 — 4011; 1179 — 1178;
1180 — 924; 1202 — 1218; 1211 — 1147; 1217 — 1281; 1227 — 1223; 1228 — 4063,
1229 — 1293; 1231 — 1295; 1236 — 1235; 1237 — 1238; 1240 — 1239; 1244 — 1245,
1248 — 1247; 1249 — 1250; 1258 — 1002; 1259 — 1263; 1260 — 1196; 1261 — 1197;
1264 — 1280; 1268 — 1204; 1269 — 1285; 1274 — 1290; 1304 — 1300; 1308 — 1312;
1328 — 1584; 1340 — 1341; 1347 — 1343; 1351 — 1350; 1370 — 1354; 1374 — 1358;
1378 — 1362; 1379 — 1380; 1390 — 1406; 1394 — 1398; 1399 — 1143; 1428 — 1684;
1443 — 1507; 1449 — 3969; 1456 — 1712; 1461 — 1717; 1467 — 1471; 1476 — 1732;
1480 — 1481; 1483 — 1482; 1484 — 1485; 1513 — 1769; 1516 — 1580; 1517 — 1501;

1520 — 1519; 1527 — 1531; 1548 — 1612; 1559 — 1558; 1560 — 1561; 1570 — 1569;
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1575 — 1579; 1591 — 1595; 1593 — 1609; 1626 — 1690; 1630 — 1566; 1632 — 1616;
1633 — 1649; 1634 — 1635; 1646 — 1662; 1655 — 1671; 1656 — 1672; 1660 — 1664;
1739 — 1995; 1745 — 1729; 1746 — 1490; 1772 — 1771; 1773 — 2029; 1778 — 1777;
1790 — 1726; 1794 — 1538; 1809 — 4014; 1810 — 1554; 1815 — 2071, 1816 — 1800;
1830 — 1766; 1847 — 1863; 1854 — 1835; 1856 — 4061; 1857 — 1601; 1858 — 1862;
1861 — 1605; 1866 — 1930; 1870 — 1614; 1874 — 1618; 1875 — 1871; 1876 — 1860;
1885 — 1884; 1889 — 1905; 1890 — 1906; 1891 — 1827; 1894 — 1910; 1897 — 1896;
1898 — 1899; 1938 — 1682; 1939 — 1935; 1948 — 1964; 1951 — 2015; 1954 — 1950;
1955 — 2019; 1958 — 1702; 1967 — 1983; 1970 — 1969, 1971 — 1987; 1974 — 1978,
2008 — 2009; 2040 — 2041; 2065 — 2049; 2066 — 2067; 2074 — 2010; 2078 — 2014;
2080 — 3970; 2081 — 2097; 2082 — 2338; 2085 — 2021; 2096 — 3986; 2107 — 2043;
2114 — 2178; 2117 — 2053; 2132 — 2136; 2143 — 2139; 2146 — 2145; 2147 — 2151;
2150 — 4040; 2163 — 2419; 2166 — 2422; 2172 — 4062; 2181 — 1925; 2185 — 2441,
2187 — 2251; 2188 — 2192; 2189 — 2190; 2210 — 2274; 2221 — 2222; 2244 — 2240;
2253 — 2254; 2262 — 2246; 2263 — 2279; 2277 — 2293; 2296 — 2295; 2297 — 2361,
2298 — 3873; 2307 — 2303; 2371 — 2435; 2386 — 2385; 2390 — 2374; 2398 — 2462;
2399 — 2395; 2402 — 2658; 2406 — 2662; 2414 — 2430; 2468 — 2452; 2472 — 2408;
2477 — 2733; 2481 — 2482; 2493 — 2489; 2497 — 2496; 2504 — 2503; 2517 — 2521;
2532 — 2531; 2533 — 2789; 2536 — 2535; 2537 — 2793; 2538 — 2794; 2540 — 2524;
2544 — 2288; 2548 — 2547; 2552 — 2551; 2556 — 3816; 2574 — 2573; 2575 — 2511;
2582 — 2566; 2601 — 2665; 2602 — 3862; 2604 — 2348; 2608 — 2609; 2612 — 2613;

2616 — 2615; 2620 — 2364; 2622 — 2626; 2628 — 2624; 2634 — 2378; 2647 — 2663;
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2683 — 2939; 2693 — 2694; 2699 — 2443; 2701 — 2637; 2707 — 2723; 2717 — 2713;
2720 — 2976; 2721 — 2977, 2747 — 2746; 2763 — 2779; 2766 — 2762; 2770 — 3026;
9771 — 2787; 2827 — 2811; 2831 — 2815; 2832 — 2576; 2834 — 2818; 2835 — 2851;
2836 — 2852; 2838 — 2822; 2839 — 2855; 2840 — 3096; 2847 — 3103; 2850 — 2866;
9877 — 2813; 2889 — 2825; 2903 — 2967; 2926 — 2930; 2947 — 2943: 2949 — 2933;
2953 — 3017; 2963 — 2979; 2984 — 2983; 2992 — 2991; 2996 — 3941; 2997 — 2998;
3048 — 3049; 3054 — 3058; 3075 — 3059; 3083 — 3067; 3088 — 3104; 3094 — 3030;
3101 — 3037; 3142 — 3126; 3146 — 3082; 3148 — 3132; 3149 — 3085; 3150 — 3151;
3152 — 3136; 3153 — 3137; 3162 — 3226; 3164 — 2908; 3165 — 3421; 3166 — 3167,
3178 — 3179; 3182 — 3183; 3191 — 3127; 3192 — 3128; 3204 — 3200; 3214 — 3215;
3228 — 3292; 3236 — 3172; 3249 — 3879; 3252 — 3188; 3253 — 3883; 3255 — 3885;
3268 — 3267; 3269 — 3013; 3272 . 3336; 3276 — 3906; 3278 — 3279; 3285 — 3301;
3303 — 3047; 3310 — 3309; 3322 — 3066; 3326 — 3325: 3333 — 3329; 3339 — 3355,
3349 — 3979; 3350 — 3606; 3362 — 3361; 3363 — 3379; 3367 — 3371; 3386 — 3382;
3390 — 3389; 3417 — 3673; 3456 — 3457; 3460 — 3396; 3481 — 3485; 3482 — 3738;
3488 — 3487; 3492 — 3428; 3504 — 3505; 3506 — 3570; 3507 — 3503; 3508 — 3444;
3511 — 3575; 3512 — 3576; 3516 — 3517; 3520 — 3835; 3522 — 3266; 3523 — 3539;
3524 — 3525; 3527 — 3591; 3528 — 3544; 3531 — 3547; 3532 — 3847; 3546 — 3610;
3580 — 3564; 3600 — 3915; 3604 — 3603; 3632 — 3376; 3652 — 3653; 3662 — 138;
3663 — 3667; 3684 — 3683; 3689 — 3693; 3692 — 3691; 3696 — 3697; 3700 — 3701;
3704 — 3640; 3705 — 3709; 3711 — 3455; 3715 — 3714; 3716 — 3712; 3717 — 3718;

3720 — 3719; 3724 — 3740; 3728 — 4043; 3732 — 3668; 3735 — 3671; 3750 — 4065;
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3764 — 3763; 3765 — 3761; 3766 — 4081; 3768 — 3752; 3776 — 3775; 3780 — 3465;
3794 — 2219; 3796 — 331; 3798 — 2853; 3808 — 658; 3819 — 669; 3822 — 1302;
3827 — 2252; 3838 — 688; 3848 — 3218; 3860 — 395; 3871 — 1981; 3882 — 1047,
3894 — 429; 3898 — 433; 3905 — 1700; 3908 — 2333; 3912 — 447, 3942 — 1737,
3944 — 794; 3950 — 1430; 3951 — 2376; 3972 — 2397; 3977 — 2087; 3981 — 3666;
3993 — 3678; 3995 — 215; 3997 — 217; 3999 — 534; 4020 — 2760; 4030 — 3400;
4052 — 3107; 4059 — 279; 4077 — 297; 4079 — 929; 4087 — 1567; 4092 — 312;
Round 11: 0 — 256;1 — 2;4 — 8,5 — 9; 6 — 3530; 12 — 28; 13 — 3537; 14
— 10; 15 — 11; 16 — 20; 17 — 21; 19 — 35; 29 — 25; 30 — 26; 31 — 27; 33 — 97;
37 — 3561; 44 — 3824; 48 — 3572; 49 — 3573; 52 — 308; 56 — 3836; 61 — 317; 63
— 59; 64 — 3844; 65 — 321; 66 — 3846; 68 — 69; 70 — 71; 76 — 92; 78 — 3858;
79 — 75; 80 — 96; 81V~+ 337; 83 — 87; 84 — 85; 88 — 3612; 89 — 73; 94 — 98;
95 — 91; 100 — 101; 113 — 3893; 118 — 54; 119 — 3643; 125 — 109; 127 — 3907,
128 — 112; 129 — 133; 130 — 146; 131 — 147; 132 — 136; 138 — 137; 140 — 3920;
144 — 160; 168 — 152; 174 — 158; 175 — 171; 179 — 163; 180 — 184; 182 — 166;
198 — 262; 204 — 3984; 205 — 3985; 215 — 214; 217 — 473; 218 — 282; 219 —
475; 228 — 212; 232 — 216; 236 — 220; 238 — 254; 239 — 223; 240 — 224; 244 —
500; 245 — 309; 247 — 3771; 249 — 265; 251 — 250; 257 — 193; 258 — 4038; 260
— 259; 264 — 4044; 268 — 267; 269 — 270; 271 — 207; 272 — 208; 273 — 277; 274
— 338; 279 — 535; 288 — 352; 289 — 225; 292 — 548; 294 — 230; 295 — 39; 297
— 41; 299 — 43; 312 — 568; 315 — 314; 319 — 318; 320 — 304; 324 — 325; 331 —

330; 344 — 345; 355 — 339; 358 — 342; 362 — 106; 363 — 107; 364 — 3829; 366 —
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302; 371 — 372; 375 — 376; 377 — 121; 380 — 444, 382 — 398; 384 — 640; 387 —
3852; 390 — 406; 391 — 392; 395 — 399; 407 — 151; 409 — 410; 412 — 156; 413 —
157; 417 — 401; 418 — 162; 423 — 427; 429 — 425; 432 — 416; 433 — 437; 435 —
3900; 442 — 186; 447 — 703; 449 — 453; 450 — 451; 458 — 457; 460 — 456; 462 —
3927; 467 — 483; 468 — 452; 481 — 737; 482 — 226; 488 — 489; 494 — 490; 495 —
491; 496 — 560; 502 — 501; 503 — 519; 513 — 517; 520 — 584; 524 — 523; 525 —
541; 528 — 527; 532 — 788; 534 — 538; 536 — 540; 550 — 554; 553 — 55T, 556 —
572; 562 — 306; 566 — 565; 569 — 573; 576 — 580; 582 — 581; 586 — 522; 592 —
593; 606 — 602; 607 — 603; 611 — 595; 614 — 613; 615 — 599; 616 — 617, 625 —
609; 626 — 622; 627 — 563; 629 — 628; 630 — 886; 631 — 887; 633 — 697; 634 —
570; 635 — 571; 638 — 574; 643 — 579; 645 — 644; 646 — 650; 647 — 648; 656 —
652; 658 —> 914; 661 — 405; 663 — 664; 669 — 653; 678 — 682; 679 — 680; 684 —
685; 688 — 704; 689 — 693; 691 — 692; 695 — 951; 698 — 954; 700 — 701; 706 —
702; 710 — 709; 711 — 455; 714 — 713; 718 — 717; 726 — 470; 730 — 731; 734 —
750; 740 — 741; 744 — 745; 748 — 747, 751 — 3901; 759 — 758; 770 — 754; 771 —
515; 776 — 772; 780 — 3930; 782 — 766; 784 — 768; 794 — 795; 799 — 543; 803 —
807; 812 — 811; 817 — 833; 825 — 761; 838 — 774; 839 — 823; 841 — 585; 843 —
779; 850 — 851; 853 — 789; 856 — 855; 860 — 604; 862 — 1118; 866 — 802; 867 —
1123; 869 — 805; 870 — 806; 874 — 810; 879 — 943; 880 — 884, 881 — 877; 889 —
- 1145; 894 — 895; 899 — 900; 905 — 901; 910 — 4060; 922 — 921; 923 — 939; 924
— 908; 926 — 990; 929 — 1185; 934 — 1190; 945 — 949; 946 — 942; 956 — 892;

963 — 959; 968 — 712; 972 — 976; 982 — 978; 995 — 994; 996 — 932; 999 — 935;
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1000 — 936; 1002 — 746; 1004 — 1008; 1005 — 749; 1010 — 1074; 1019 — 1023;
1020 — 1016; 1025 — 769; 1029 — 965; 1033 — 1017; 1038 — 1042; 1041 — 977;
1047 — 1031; 1049 — 985; 1053 — 797; 1065 — 1321; 1068 — 1067; 1069 — 1133;
1070 — 814; 1072 — 1136; 1076 — 1075; 1078 — 1062; 1086 — 1090; 1088 — 1104;
1099 — 1103; 1110 — 3945; 1112 — 1096; 1116 — 1120; 1125 — 1121; 1126 — 1127;
1142 — 1141; 1143 — 1139; 1147 — 1131; 1153 — 1157; 1165 — 1101; 1167 — 1423,
1172 — 916; 1176 — 1175; 1178 — 4013; 1179 — 1435; 1180 — 1436; 1196 — 1192;
1197 — 1193; 1202 — 1186; 1204 — 948; 1211 — 1210; 1217 — 1213; 1218 — 1214;
1223 — 1207; 1227 — 971; 1228 — 1164; 1229 — 1225; 1231 — 975; 1235 — 4070;
1236 — 980; 1237 — 1493; 1238 — 1174; 1239 — 1255; 1240 — 1496; 1244 — 988;
1245 — 1241; 1247 — 1183; 1248 — 1504; 1249 — 1505; 1250 — 1314; 1258 — 1322;
1259 — 1323; 1260 — 1256; 1261 — 1262; 1263 — 1199; 1264 — 1200; 1268 — 1524;
1269 — 1333; 1274 — 1270; 1280 — 1216; 1281 — 3801; 1285 — 3805; 1290 — 1546;
1293 — 1297; 1295 — 1551; 1300 — 1556; 1302 — 1046; 1304 — 1320; 1308 — 1307;
1312 — 1056; 1328 — 1329; 1340 — 1336; 1341 — 1337; 1343 — 1087; 1347 — 1091;
1350 — 3870; 1351 — 1352; 1354 — 1418; 1358 — 1102; 1362 — 1361; 1370 — 1371;
1374 — 1373; 1378 — 1442; 1379 — 1375; 1380 — 1396; 1381 — 1317; 1390 — 1391;
1394 — 1330; 1398 — 1402; 1399 — 1400; 1406 — 3926; 1409 — 1413; 1421 — 1425;
1428 — 1412; 1430 — 1429; 1443 — 1187; 1449 — 1433; 1456 — 1440; 1461 — 1465;
1467 — 1451; 1471 — 3991; 1476 — 1540; 1480 — 1464; 1481 — 1417; 1482 — 1478;
1483 — 1419; 1484 — 1488; 1485 — 1469; 1490 — 1426; 1501 — 1437; 1507 — 1508;

1513 — 1509; 1516 — 1512; 1517 — 1533; 1519 — 1518; 1520 — 1776; 1527 — 1271,
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1531 — 1530; 1538 — 1522; 1548 — 1804; 1554 — 1555; 1558 — 1542; 1559 — 1623;
1560 — 1624; 1561 — 1817; 1566 — 1310; 1.567 — 1823; 1569 — 1573; 1570 — 1586;
1575 — 1319; 1579 — 1578; 1580 — 1581; 1584 — 1840; 1591 — 1590; 1593 — 1849;
1595 — 1339; 1601 — 3806; 1605 — 1621; 1609 — 3814; 1612 — 1676; 1614 — 1550;
1616 — 1552; 1618 — 1619; 1626 — 1627; 1630 — 1629; 1632 — 1696; 1633 — 1697,
1634 — 1638; 1635 — 1651; 1646 — 1647; 1649 — 1585; 1655 — 1719; 1656 — 1652;
1660 — 1724; 1662 — 1658; 1664 — 1408; 1671 — 1670; 1672 — 1928; 1682 — 3887,
1684 — 3889; 1690 — 1691; 1700 — 1704; 1702 — 1718; 1712 — 3917; 1717 — 1781,
1726 — 1730; 1729 — 1733; 1732 — 1796; 1737 — 1738; 1739 — 1743; 1745 — 1744,
1746 — 1747; 1766 — 1750; 1769 — 1705; 1771 — 1755; 1772 — 1756; 1773 — 1837,
1777 — 1761; 1778 — 1779; 1790 — 1786; 1794 — 1795; 1800 — 1784; 1809 — 1805;
1810 — 1806; 1815 — 1751; 1816 — 1820; 1827 — 1828; 1830 — 1829; 1847 — 1848;
1854 — 1838; 1855 — 1839; 1856 — 1852; 1857 — 1853; 1858 — 1602; 1860 — 1844;
1861 — 1845; 1862 — 1798; 1863 — 2119; 1866 — 1802; 1870 — 1869; 1871 — 1807;
1874 — 1878; 1875 — 1879; 1876 — 1877; 1884 — 1883; 1885 — 1821; 1889 — 1888;
1890 — 1886; 1891 — 1892; 1894 — 1893; 1896 — 2152; 1897 — 1641, 1898 — 1834;
1899 — 1915; 1905 — 1904; 1906 — 1842; 1910 — 1654; 1925 — 1941; 1930 — 1674;
1935 — 1679; 1938 — 1937; 1939 — 1943; 1948 — 1692; 1950 — 1694; 1951 — 1695;
1954 — 1953; 1955 — 1956; 1958 — 1942; 1964 — 1900; 1967 — 3857; 1969 — 1973,
1970 — 1714; 1971 — 1715; 1974 — 2038; 1978 — 1722; 1981 — 1917; 1983 — 1727;
1987 — 1731; 1995 — 1991, 2008 — 1752; 2009 — 3899; 2010 — 2026; 2014 — 1758;

2015 — 1759; 2019 — 2035; 2021 — 2020; 2029 — 3919; 2040 — 2036; 2041 — 3931;
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9043 — 2027; 2049 — 2048; 2053 — 2309; 2065 — 2321; 2066 — 2062; 2067 — 2063;
92071 — 2055; 2074 — 1818; 2078 — 2094; 2080 — 1824; 2081 — 2017; 2082 — 2098,
2085 — 2341; 2087 — 2088; 2096 — 2095; 2097 — 2093; 2107 — 2106; 2114 — 4004;
2117 — 2133; 2132 — 2068; 2136 — 2137; 2139 — 4029; 2143 — 2159; 2145 — 2129;
92146 — 4036; 2147 — 2148; 2150 — 2134; 2151 — 2155; 2163 — 2099; 2166 — 2102;
9172 — 2156; 2178 — 2242; 2181 — 2177; 2185 — 2201; 2187 — 2183; 2188 — 2124;
2189 — 1933; 2190 — 2126; 2192 — 2208; 2210 — 2209; 2219 — 2475; 2221 — 2157,
9922 — 2286; 2240 — 1984; 2244 — 2228; 2246 — 1990; 2251 — 2235; 2252 — 2316;
2953 — 2257; 2254 — 1998; 2262 — 2198; 2263 — 2199; 2274 — 2200; 2277 — 2213;
9279 — 2215; 2288 — 2352; 2293 — 2220; 2295 — 2231; 2206 — 2232; 2297 — 2301;
9298 — 2234; 2303 — 2367; 2307 — 2306; 2333 — 2329; 2338 — 2339; 2348 — 2347;
92361 — 3936; 2364 — 2363; 2371 — 2355; 2374 — 3949; 2376 — 2120; 2378 — 2122;
2385 — 2449; 2386 — 2450; 2390 — 3965; 2395 — 2331; 2397 — 2393; 2398 — 3973;
2399 — 2335; 2402 — 2401; 2406 — 2470; 2408 — 2412; 2414 — 2350; 2419 — 2675;
92422 — 2421; 2430 — 4005; 2435 — 2431; 2441 — 2425; 2443 — 2444; 2452 — 2388,
2462 — 2458; 2468 — 2212; 2472 — 2216; 2477 — 2478; 2481 — 2417; 2482 — 2738;
2489 — 2485; 2493 — 2429; 2496 — 2752; 2497 — 2433; 2503 — 2759; 2504 — 2568;
9511 — 2495; 2517 — 2513; 2521 — 2265; 2524 — 2460; 2531 — 2530; 2532 — 2596;
2533 — 2529; 2535 — 2471; 2536 — 2280; 2537 — 2281; 2538 — 2474; 2540 — 2796;
9544 — 2800; 2547 — 2543; 2548 — 2804; 2551 — 2550; 2552 — 2808; 2556 — 2300;
2566 — 2565; 2573 — 3833; 2574 — 2318; 2575 — 2639; 2576 — 2320; 2582 — 2581;

2601 — 2345; 2602 — 2346; 2604 — 2668; 2608 — 2607; 2609 — 2593; 2612 — 2676,
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2613 — 2357; 2615 — 2359; 2616 — 2680; 2620 — 2636; 2622 — 2558; 2624 — 2688;
2626 — 3886; 2628 — 2644; 2634 — 2650; 2637 — 2621; 2647 — 2631; 2658 — 2659;
2662 — 2918; 2663 — 2664; 2665 — 2921; 2683 — 2667, 2693 — 2689; 2694 — 3954;
2699 — 2700; 2701 — 2685; 2707 — 2703; 2713 — 2714, 2717 — 2718; 2720 — 2656;
2721 — 2657; 2723 — 2724; 2733 — 2732; 2746 — 2730; 2747 — 2748; 2760 — 2696;
2762 — 4022; 2763 — 4023; 2766 — 2782; 2770 — 2514, 2771 — 2755; 2779 — 3035;
2787 — 2786; 2789 — 2785; 2793 — 2777, 2794 — 4054; 2811 — 2807; 2813 — 4073;
2815 — 2816; 2818 — 2754; 2822 — 2806; 2825 — 2569; 2827 — 2891, 2831 — 2895;
2832 — 2768; 2834 — 2898; 2835 — 2579; 2836 — 2900; 2838 — 2842; 2839 — 2583,
2840 — 2584; 2847 — 2591; 2850 — 2846; 2851 — 2595; 2852 — 2916; 2853 — 3109;
2855 — 2859; 2866 — 2862; 2877 — 2861; 2889 — 2888; 2903 — 2887; 2908 — 2924,
2926 — 2925; 2930 — 2674; 2933 — 2917; 2939 — 2940; 2943 — 2687, 2947 — 2883,
2949 — 2965; 2953 — 2952; 2963 — 2964; 2967 — 2971; 2976 — 2960; 2977 — 2913;
2979 — 2975; 2983 — 2987; 2984 — 2920; 2991 — 2735; 2992 — 3008; 2996 — 2740;
2997 — 2741, 2998 — 2982; 3013 — 3009; 3017 — 3016; 3026 — 3010; 3030 — 3286;
3037 — 3038; 3047 — 3031; 3048 — 3044; 3049 — 3113; 3054 — 2990; 3058 — 3042;
3059 — 3060; 3066 — 3002; 3067 — 3003; 3075 — 3076; 3082 — 3018; 3083 — 4028;
3085 — 3341; 3088 — 3024; 3094 — 3093; 3096 — 3097; 3101 — 2845; 3103 — 3039;
3104 — 3100; 3107 — 3091; 3126 — 3125; 3127 — 3143; 3128 — 3129; 3132 — 3068;
3136 — 2880; 3137 — 3121; 3142 — 3206; 3146 — 3402; 3148 — 2892; 3149 — 3213;
3150 — 2894; 3151 — 3155; 3152 — 3408; 3153 — 2897; 3162 — 2906; 3164 — 3160;

3165 — 2909; 3166 — 3170; 3167 — 2911; 3172 — 3173; 3178 — 3174; 3179 — 2923;
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3182 — 3438; 3183 — 2927; 3188 — 3818; 3191 — 3207; 3192 — 2936; 3200 — 2944,
3204 — 2948; 3214 — 3470; 3215 — 3211; 3218 — 3234; 3226 — 3242; 3228 — 3224,
3236 — 3866; 3249 — 3185; 3252 — 3316; 32563 — 3257; 3255 — 3259; 3266 — 3896;
3267 — 3011; 3268 — 3012; 3269 — 3270; 3272 — 3902; 3276 — 3020; 3278 — 3274;
3279 — 3023; 3285 — 3221; 3292 — 3296, 3301 — 3302; 3303 — 3287; 3309 — 3939;
3310 — 3566; 3322 — 3258; 3325 — 3261; 3326 — 3327; 3329 — 3328; 3333 — 3077;
3336 — 3966; 3339 — 3403; 3349 — 3365; 3350 — 3414; 3355 — 3419; 3361 — 3617,
3362 — 3426; 3363 — 3359; 3367 — 3623; 3371 — 3115; 3376 — 3312; 3379 — 4009;
3382 — 3446; 3386 — 3450; 3389 — 3373; 3390 — 3394; 3396 — 4026; 3400 — 3399;
3417 — 3353; 3421 — 3420; 3428 — 3429; 3444 — 3445; 3455 — 3391; 3456 — 3452,
3457 — 3473; 3460 — 3476; 3465 — 3209; 3481 — 3497; 3482 — 3498; 3485 — 3469;
3487 — 3551; 3488 — 3424; 3492 — 3493; 3503 — 3499; 3504 — 3500; 3505 — 3441;
3506 — 3442; 3507 — 3251; 3508 — 3823; 3511 — 3495; 3512 — 3513; 3516 — 3260;
3517 — 3518; 3520 — 3584; 3522 — 3458; 3523 — 3587; 3524 — 3839, 3525 — 3526;
3527 — 3463; 3528 — 3843; 3531 — 3467; 3532 — 3468; 3539 — 3475; 3540 — 3284,
3544 — 3480; 3546 — 3550; 3547 — 3611, 3553 — 3557; 3564 — 3308; 3570 — 3634;
3575 — 51; 3576 — 3577; 3580 — 3324; 3591 — 3335; 3600 —> 3601; 3603 — 3599;
3604 — 3605; 3606 — 3622; 3610 — 86; 3613 — 3614; 3632 — 3631; 3640 — 3624,;
3652 — 3648; 3653 — 3637; 3662 — 3598; 3663 — 3659; 3666 — 3665; 3667 — 3411;
3668 — 3412; 3671 — 3415; 3673 — 149; 3678 — 154; 3683 — 3679; 3684 — 3620;
3689 — 3625; 3691 — 3755; 3692 — 3436; 3693 — 3694; 3696 — 172; 3697 — 3681,

3700 — 4015; 3701 — 3685; 3704 — 3703; 3705 — 3641; 3709 — 185; 3711 — 187;
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3712 — 188; 3714 — 3730; 3715 — 3459; 3716 — 192; 3717 — 4032; 3718 — 3462;
3719 — 3723; 3720 — 4035; 3724 — 3660; 3728 — 3727; 3732 — 3733; 3735 — 4050;
3738 — 3742; 3740 — 24; 3750 — 3494; 3752 — 4067; 3761 — 3757; 3763 — 3759;
3764 — 3748; 3765 — 3749; 3766 — 3770; 3768 — 4083; 3775 — 3774; 3776 — 252;
3777 — 3773; 3779 — 3; 3780 — 2205; 3792 — 957; 3793 — 1273; 3794 — 329; 3796
— 961; 3798 — 1908; 3799 — 964; 3808 — 1288; 3816 — 666; 3819 — 2874; 3822
— 42; 3827 — 3197; 3835 — 2260; 3838 — 58; 3847 — 2587; 3848 — 1643; 3850 —
2905; 3860 — 3230; 3862 — 2287; 3871 — 721; 3873 — 3558; 3874 — 724; 3879 —
1044; 3880 — 415; 3882 — 732; 3883 — 2308; 3885 — 420; 3890 — 2000; 3894 —
1059; 3898 — 1693; 3903 — 2328; 3905 — 2645; 3906 — 756; 3908 — 1388; 3912 —
1707; 3915 — 2340; 3923 — 773; 3941 — 3626; 3942 — 1107; 3944 — 3629; 3950 —
3005; 3951 — 3006; 3959 — 2069; 3969 — 1764; 3970 — 1135; 3972 — 3027; 3977
— 3032; 3979 — 2404; 3981 — 831; 3986 — 836; 3990 — 2415; 3993 — 213; 3995 —
2420; 3997 — 847; 3999 — 2109; 4002 — 537; 4007 — 2432; 4011 — 3381; 4014 —
234; 4017 — 1182; 4020 — 555; 4030 — 2455; 4040 — 1205; 4043 — 1208; 4052 —
902; 4059 — 2799; 4061 — 2801; 4062 — 597; 4063 — 283; 4065 — 2175; 4069 —
3754; 4077 — 3762; 4079 — 3134; 4081 — 2506; 4087 — 937; 4092 — 1572;

Round 12: 1 — 3781; 2 — 3778; 3 — 3783; 4 — 3784; 5 — 3769; 6 — 3722; 8
— 3788; 9 — 3789; 10 — 3726; 11 — 3535; 12 — 3536; 13 — 3729; 14 — 18; 15 —
3731; 16 — 32; 17 — 3797; 19 — 3543; 20 — 3800; 21 — 3545; 24 — 3804; 25 —
3741; 26 — 90; 27 — 3807; 28 — 284; 29 — 285; 30 — 3746; 31 — 3555; 33 — 34;

35 — 3751; 37 — 3817; 39 — 3563; 41 — 40; 42 — 3758; 43 — 3567; 44 — 300; 48
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— 3828; 49 — 305; 51 — 3831; 52 — 3832; 54 — 3578; 56 — 55; 58 — 122; 59 —
123; 61 — 3841; 63 — 62; 64 — 60; 65 — 3589; 66 — 322; 68 — 67; 69 — 53; 70 —
3594; 71 — 3851; 73 — 77; 75 — 74; 76 — 72; 78 — 3602; 79 — 3859; 80 — 336; 81
— 145; 83 — 82; 84 — 3608; 85 — 341; 86 — 102; 87 — 103; 88 — 3868; 89 — 153;
91 — 347; 92 — 3616; 94 — 3618; 95 — 3619; 96 — 3876; 97 — 3621, 98 — 114, 100
— 104; 101 — 3881; 106 — 3630; 107 — 111; 109 — 365; 112 — 368; 113 — 369,
118 — 3642; 119 — 115; 121 — 3645; 125 — 3649; 127 — 126; 128 — 124; 129 —
385; 130 — 3654; 131 — 3655; 132 — 388; 133 — 3657; 136 — 120; 137 — 3661; 138
— 142; 140 — 3664; 144 — 400; 146 — 3670; 147 — 148; 149 — 3929; 151 — 3675;
152 — 408; 154 — 150; 156 — 155; 157 — 141; 158 — 3682; 160 — 164; 162 — 178;
163 — 3687; 166 — 3690; 168 — 3948; 171 — 3695; 172 — 428; 174 — 430; 175 —
3699; 179 — 183; 180 — 3960; 182 — 3962; 184 — 248; 185 — 201; 186 — 202; 187
— 3967; 188 — 189; 192 — 448; 193 — 197; 198 — 134; 204 — 203; 205 — 221; 207
— 3987; 208 — 464; 212 — 3992; 213 — 3737; 214 — 210; 215 — 3739; 216 — 280;
217 — 233; 218 — 3998; 219 — 3743; 220 — 4000; 223 — 3747; 224 — 480; 225 —
229; 226 — 222; 228 — 227; 230 — 4010; 232 — 3756; 234 — 298; 236 — 237; 238
— 4018; 239 — 243; 240 — 176; 244 — 4024; 245 — 4025; 247 — 4027; 249 — 313,
250 — 266; 251 — 507; 252 — 508; 254 — 4034; 256 — 512; 257 — 4037; 258 —
242: 259 — 323; 260 — 261; 262 — 4042; 264 — 328; 265 — 4045; 267 — 263; 268
— 332; 269 — 4049; 270 — 286; 271 — 4051; 272 — 276; 273 — 4053; 274 — 275;
277 — 281; 279 — 278; 282 — 346; 283 — 539; 288 — 287; 289 — 545; 292 — 291,

294 — 290; 295 — 551; 297 — 296, 299 — 303; 302 — 301; 304 — 4084; 306 — 307,
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308 — 4088; 309 — 293; 312 — 311; 314 — 310; 315 — 379; 317 — 316; 318 — 334;
319 — 383; 320 — 3785; 321 — 3786; 324 — 340; 325 — 3790; 329 — 333; 330 —
3795; 331 — 335; 337 — 3802; 338 — 354; 339 — 403; 342 — 326; 344 — 360; 345
— 361; 352 — 351; 355 — 3820; 358 — 357; 362 — 426; 363 — 367; 364 — 348; 366
— 350; 371 — 370; 372 — 3837; 375 — 359; 376 — 632; 377 — 393; 380 — 636; 382
— 381; 384 — 3849; 387 — 386; 390 — 389; 391 — 327; 392 — 396; 395 — 394; 398
— 654; 399 — 463; 401 — 397; 405 — 404; 406 — 402; 407 — 411; 409 — 665; 410
— 3875; 412 — 3877; 413 — 349; 415 — 671; 416 — 672; 417 — 673; 418 — 419;
420 — 356; 423 — 3888; 425 — 681; 427 — 683; 429 — 493; 432 — 436; 433 — 434;
435 — 499; 437 — 421, 442 — 438; 444 — 443, 447 — 511; 449 — 705; 450 — 194;
451 — 707, 452 — 708; 453 — 3918; 455 — 454; 456 — 440; 457 — 3922; 458 —
474; 460 — 3925; 462 — 466; 467 — 531; 468 — 3933; 470 — 469; 473 — 3938; 475
— 476; 481 — 465; 482 — 498; 483 — 739; 488 — 472; 489 — 485; 490 — 3955; 491
— 487; 494 — 510; 495 — 479; 496 — 497; 500 — 484; 501 — 757; 502 — 486; 503
— 504; 513 — 514; 515 — 3980; 517 — 3982; 519 — 518, 520 — 521; 522 — 778,
523 — 459; 524 — 3989; 525 — 529; 527 — 591; 528 — 544; 532 — 516; 534 — 530;
535 — 791; 536 — 600; 537 — 793; 538 — 542; 540 — 796; 541 — 477; 543 — 4008;
548 — 547; 550 — 546; 553 — 809; 554 — 618; 555 — 619; 556 — 552; 557 — 621;
560 — 559; 562 — 818; 563 — 819; 565 — 549; 566 — 822; 568 — 564; 569 — 505;
570 — 506; 571 — 575; 572 — 828; 573 — 509; 574 — 590; 576 — 832; 579 — 583;
580 — 596; 581 — 577; 582 — 578; 584 — 840; 585 — 589; 586 — 842; 592 — 588;

593 — 849; 595 — 594; 597 — 533; 599 — 598; 602 — 601; 603 — 667; 604 — 668;
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606 — 4071; 607 — 863; 609 — 353; 611 — 675; 613 — 4078; 614 — 610; 615 —
4080; 616 — 620; 617 — 873; 622 — 623; 625 — 561; 626 — 690; 627 — 883; 628 —
612; 629 — 373; 630 — 694; 631 — 567; 633 — 649; 634 — 378; 635 — 639; 638 —
637; 640 — 624; 643 — 659; 644 — 660; 645 — 641; 646 — 662; 647 — 651; 648 —
904; 650 — 906; 652 — 716; 653 — 909; 656 — 655; 658 — 722; 661 — 3811, 663 —
3813; 664 — 920; 666 — 670; 669 — 605; 678 — 674; 679 — 743; 680 — 424; 682 —
938; 684 — 3834; 685 — 941; 688 — 687; 689 — 753; 691 — 755; 692 — 676; 693
— 677, 695 — 439; 697 — 441; 698 — 699; 700 — 764; 701 — 445; 702 — 446; 703
— 719; 704 — 720; 706 — 962; 709 — 725; 710 — 966; 711 — 727; 712 — 696; 713
— 969; 714 — 715; 717 — 781; 718 — 974, 721 — 657; 724 — 728; 726 — 790; 730
— 729; 731 — 987; 732 — 733; 734 — 478; 737 — 738; 740 — 736; 741 — 997; 744
— 760; 745 — 1001; 746 — 762; 747 — 1003; 748 — 492; 749 ’——r 765; 750 — 1006;
751 — 735; 754 — 3904; 756 — 1012; 758 — 1014; 759 — 1015; 761 — 3911, 766 —
767, 768 — T752; 769 — 785; 770 — 834; 771 — 1027; 772 — 1028; 773 — 837; 774
— T75; 776 — 1032; 779 — 1035; 780 — 1036; 782 — 846; 784 — T783; 788 — 787,
789 — 1045; 794 — 1050; 795 — 859; 797 — 3947; 799 — 1085; 802 — 786; 803 —
804; 805 — 821; 806 — 742; 807 — 3957; 810 — 826; 811 — 827; 812 — 808; 814 —
798; 817 — 1073; 823 — 824; 825 — 3975; 831 — 830; 833 — 829; 836 — 1092; 838
— 3988; 839 — 1095; 841 — 845; 843 — 907; 847 — 911; 850 — 1106; 851 — 835;
853 — 1109; 855 — 1111; 856 - 857; 860 — 844; 862 — 4012; 8§66 — 4016; 867 —
871; 869 — 865; 870 — 854; 874 — 1130; 877 — 893; 879 — 815; 880 — 896; 881 —

885; 884 — 820; 886 — 950; 887 — 903; 889 — 888; 892 — 1148; 894 — 1150; 895
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— 891; 899 — 898; 900 — 1156; 901 — 917; 902 — 918; 905 — 4055; 908 — 4058;
910 — 1166; 914 — 915; 916 — 852; 921 — 925; 922 — 858; 923 — 919; 924 — 928;
926 — 927; 929 — 913; 932 — 868; 934 — 998; 935 — 1191; 936 — 872; 937 — 933;
939 — 1195; 942 — 878; 943 — 1007; 945 — 1201; 946 — 882; 948 — 947; 949 —
1013; 951 — 967; 954 — 890; 956 — 952; 957 — 1021; 959 — 958; 961 — 897; 963
— 1219; 964 — 960; 965 — 1221; 968 — 1224; 971 — 970; 972 — 973; 975 — 991;
976 — 1040; 977 — 3812; 978 — 1234; 980 — 3815; 982 — 983; 985 — 981; 988 —
1052; 990 — 3825; 994 — 993; 995 — 979; 996 — 1060; 999 — 1063; 1000 — 1064;
1002 — 986; 1004 — 940; 1005 — 1009; 1008 — 992; 1010 — 1011; 1016 — 1272,
1017 — 953; 1019 — 763; 1020 — 1084; 1023 — 1039; 1025 — 1089; 1029 — 1093;
1031 — 1287; 1033 — 1034; 1038 — 1294; 1041 — 1037; 1042 — 1026; 1044 — 1108;
1046 — 1030; 1047 — 1048; 1049 — 1305; 1053 — 1117; 1056 — 1057; 1059 — 1043;
1062 — 1318; 1065 — 1129; 1067 — 1083; 1068 — 1132; 1069 — 813; 1070 — 1066;
1072 — 816; 1074 — 1138; 1075 — 1079; 1076 — 1332; 1078 — 3913; 1086 — 1082;
1087 — 1071; 1088 — 1344, 1090 — 1154; 1091 — 1155; 1096 — 1080; 1099 — 1163;
1101 — 1097; 1102 — 1098; 1103 — 1359; 1104 — 848; 1107 — 1363; 1110 — 1366;
1112 — 1113; 1116 — 1115; 1118 — 1114; 1120 — 1376; 1121 — 3956; 1123 — 3958;
1125 — 1189; 1126 — 3961; 1127 — 1128; 1131 — 875; 1133 — 1389; 1135 — 1134;
1136 — 1137; 1139 — 3974; 1141 — 3976; 1142 — 1146; 1143 — 1159; 1145 — 1401;
1147 — 1403; 1153 — 1152; 1157 — 1161; 1164 — 1100; 1165 — 1169; 1167 — 1168;
1172 — 1171; 1174 — 1173; 1175 — 1431; 1176 — 1160; 1178 — 1162; 1179 — 1243;

1180 — 1184; 1182 — 1246; 1183 — 1119; 1185 — 1441; 1186 — 930; 1187 — 1203;
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1190 — 1446; 1192 — 1448; 1193 — 1257; 1196 — 1452; 1197 — 1198; 1199 — 1455;
1200 — 944; 1202 — 1206; 1204 — 1188; 1205 — 1209; 1207 — 1463; 1208 — 1144;
1210 — 1466; 1211 — 955; 1213 — 1277; 1214 — 1470; 1216 — 1472; 1217 — 1233;
1218 — 1282; 1223 — 1479; 1225 — 1226; 1227 — 1291; 1228 — 1212; 1229 — 1230;
1231 — 1215; 1235 — 1491; 1236 — 1220; 1237 — 1253; 1238 — 1222; 1239 — 1303;
1240 — 984; 1241 — 1497; 1244 — 1500; 1245 — 989; 1247 — 1503; 1248 — 1232,
1249 — 1313; 1250 — 1254; 1255 — 1511; 1256 — 1252; 1258 — 1242; 1259 — 1275;
1260 — 1324; 1261 — 1325; 1262 — 1266; 1263 — 1279; 1264 — 1265; 1268 — 1284;
1269 — 1525; 1270 — 1526; 1271 — 1267; 1273 — 1529; 1274 — 1018; 1280 — 1024;
1281 — 1537; 1285 — 1541; 1288 — 1289; 1290 — 1306; 1293 — 1549; 1295 — 1299;
1297 — 1301; 1300 — 1316; 1302 — 1286; 1304 — 1368; 1307 — 1051; 1308 — 1564;
1310 — 1054; 1312 — 1568; 1314 — 1058; 1317 — 1061; 1319 — 1383; 13720 — 1384,
1321 — 1577; 1322 — 1386; 1323 — 1327; 1328 — 1392; 1329 — 1393, 1330 — 1331;
1333 — 1397; 1336 — 1592; 1337 — 1081; 1339 — 1355; 1340 — 1356; 1341 — 1085;
1343 — 3863; 1347 — 1283; 1350 — 1094; 1351 — 1607; 1352 — 1608; 1354 — 1610;
1358 — 1422; 1361 — 1105; 1362 — 1346; 1370 — 1434; 1371 — 1367; 1373 — 1369;
1374 — 1438; 1375 — 1439; 1378 — 1122; 1379 — 1315; 1380 — 1124; 1381 — 1382;
1388 — 1644; 1390 — 1326; 1391 — 1407; 1394 — 1410; 1396 — 1140; 1398 — 1462;
1399 — 1415; 1400 — 1404; 1402 — 1338; 1406 — 1405; 1408 — 3928; 1409 — 1473;
1412 — 1348; 1413 — 1669; 1417 — 1673; 1418 — 1414; 1419 — 1675; 1421 — 1357;
1423 — 3943; 1425 — 1681; 1426 — 1427; 1428 — 1364; 1429 — 1685; 1430 — 1494;

1433 — 1177; 1435 — 1499; 1436 — 1372; 1437 — 1181; 1440 — 1444; 1442 — 1698,
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1443 — 3963; 1449 — 1450; 1451 — 1447; 1456 — 1460; 1461 — 1445; 1464 — 1720;
1465 — 1721; 1467 — 1723; 1469 — 1725; 1471 — 1475; 1476 — 1477; 1478 — 1474;
1480 — 1736; 1481 — 1545; 1482 — 1498; 1483 — 1547; 1484 — 1468; 1485 — 1741;
1488 — 1424; 1490 — 1486; 1493 — 1749; 1496 — 1432; 1501 — 1565; 1504 — 1760;
1505 — 1489; 1507 — 1251; 1508 — 1492; 1509 — 1765; 1512 — 1528; 1513 — 1514;
1516 — 1532; 1517 — 1453; 1518 — 1454; 1519 — 1535; 1520 — 1536; 1522 — 1523,
1524 — 1780; 1527 — 4047; 1530 — 1594; 1531 — 1787; 1533 — 1789; 1538 — 1539;
1540 — 1604; 1542 — 1543; 1546 — 1562; 1548 — 1292; 1550 — 1534; 1551 — 1615;
1552 — 1553: 1554 — 1298; 1555 — 1811; 1556 — 1812; 1558 — 1574; 1559 — 1495;
1560 — 1544; 1561 — 1625; 1566 — 1502; 1567 — 1311; 1569 — 4089; 1570 — 1506;
1572 — 1588; 1573 — 1557; 1575 — 1576; 1578 — 1642; 1579 — 1563; 1580 — 1596;
1581 — 1645; 1584 — 1600; 1585 — 1521; 1586 — 1587; 1590 — 1334; 1591 — 1335;
1593 — 1657; 1595 — 1851; 1601 — 1345; 1602 — 1666; 1605 — 1349; 1609 — 1353;
1612 — 1868; 1614 — 1598; 1616 — 1360; 1618 — 1617; 1619 — 1603; 1621 — 1365;
1623 — 1687; 1624 — 1880; 1626 — 1882; 1627 — 1611; 1629 — 1613; 1630 — 1631;
1632 — 1628; 1633 — 1377; 1634 — 1650; 1635 — 3840; 1638 — 1639; 1641 — 1640;
1643 — 1387; 1646 — 1902; 1647 — 1648; 1649 — 3854; 1651 — 1395; 1652 — 1668;
1654 — 1653; 1655 — 1911; 1656 — 1912; 1658 — 1914; 1660 — 1661; 1662 — 1918:;
1664 — 1665; 1670 — 1926; 1671 — 1927; 1672 — 1416; 1674 — 1678; 1676 — 1420;
1679 — 1663; 1682 — 1683; 1684 — 1940; 1690 — 1946; 1691 — 1947; 1692 — 1708;
1693 — 1689; 1694 — 1710; 1695 — 1711; 1696 — 1680; 1697 — 1713; 1700 — 1716;

1702 — 1703; 1704 — 1960; 1705 — 3910; 1707 — 1963; 1712 — 1968; 1714 — 1458;
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1715 — 1459; 1717 — 1701; 1718 — 1782; 1719 — 3924; 1722 — 1706; 1724 — 1980;
1726 — 1982; 1727 — 1791; 1729 — 1985; 1730 — 1734; 1731 — 1667; 1732 — 1988;
1733 — 1989; 1737 — 1801; 1738 — 1994, 1739 — 1735; 1743 — 1487; 1744 — 1728;
1745 — 2001; 1746 — 2002; 1747 — 3952, 1750 — 2006; 1751 — 2007; 1752 — 1688;
1755 — 2011; 1756 — 2012; 1758 — 1762; 1759 — 3964, 1761 — 1757; 1764 — 1748;
1766 — 2022; 1769 — 1833; 1771 — 1770; 1772 — 2028; 1773 — 1709; 1776 — 1775;
1777 — 2033; 1778 — 2034, 1779 — 1763; 1781 — 2037; 1784 — 1788; 1786 — 2042;
1790 — 1774; 1794 — 1793; 1795 — 1859; 1796 — 4001; 1798 — 2054; 1800 — 2056;
1802 — 2058; 1804 — 2060; 1805 — 2061; 1806 — 1742; 1807 — 1803; 1809 — 1825;
1810 — 1814; 1815 — 1799; 1816 — 2072; 1817 — 1753; 1818 — 1754, 1820 — 2076;
1821 — 2077; 1823 — 1819; 1824 — 1808; 1827 — 1571; 1828 — 2084; 1829 — 1813;
1830 — 1831; 1834 — 4039; 1837 — 1841; 1838 —> 1582; 1839 — 1583; 1840 — 1836;
1842 — 1843; 1844 — 2100; 1845 — 1909; 1847 — 1783; 1848 — 2104; 1849 — 1913;
1852 — 2108; 1853 — 1597; 1854 — 2110; 1855 — 1599; 1856 — 2112; 1857 — 2113;
1858 — 1922; 1860 — 2116; 1861 — 1797; 1862 — 1606; 1863 — 1864; 1866 — 1850;
1869 — 1865; 1870 — 1934; 1871 — 4076; 1874 — 2130; 1875 — 2131, 1876 — 1620;
1877 — 1881; 1878 — 1622; 1879 — 2135; 1883 — 1867; 1884 — 2140; 1885 — 1901;
1886 — 1822; 1888 — 1872; 1889 — 1873; 1890 — 1826; 1891 — 1887, 1892 — 1636;
1893 — 1637; 1894 — 1895; 1896 — 1832; 1897 — 1961; 1898 — 1962, 1899 — 1835;
1900 — 1916; 1904 — 2160; 1905 — 2161; 1906 — 2162; 1908 — 2164; 1910 — 1846;
1915 — 1659; 1917 — 1921; 1925 — 1924; 1928 — 1992; 1930 — 2186; 1933 — 1929,

1935 — 1936; 1937 — 2193; 1938 — 2194; 1939 — 1923; 1941 — 2197; 1942 — 1686;
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1043 — 1944; 1948 — 2204; 1950 — 2206; 1951 — 2207; 1953 — 1949; 1954 — 2018;
1955 — 1699; 1956 — 1972; 1958 — 2214; 1964 — 2220; 1967 — 1966; 1969 — 1965
1970 — 2226; 1971 — 2227; 1973 — 1977; 1974 — 3864; 1978 — 1979; 1981 — 2237;
1983 — 2239; 1984 — 1920; 1987 — 2243; 1990 — 1986; 1991 — 2247; 1995 — 1931;
1998 — 1997; 2000 — 1999; 2008 — 2264; 2009 — 1993; 2010 — 2266; 2014 — 2270;
2015 — 2271; 2017 — 2273; 2019 — 2003; 2020 — 2024; 2021 — 2005; 2026 — 2282;
2027 — 2091; 2029 — 2025; 2035 — 2291; 2036 — 2052; 2038 — 2294; 2040 — 1976;
2041 — 2045; 2043 — 2299; 2048 — 2044; 2049 — 2305; 2053 — 2057; 2055 — 2311;
2062 — 2046; 2063 — 2047; 2065 — 2064; 2066 — 2322; 2067 — 2051; 2068 — 2324;
2069 — 2070; 2071 — 2327; 2074 — 2330; 2078 — 2334; 2080 — 2079; 2081 — 3971;
2082 — 2086; 2085 — 2089; 2087 — 2343; 2088 — 2344; 2093 — 2349; 2094 — 2158;
92095 — 2351; 2096 — 2032; 2097 — 2553; 2098 — 2354; 2099 — 2083; 2102 — 2358;
2106 — 2362; 2107 — 2123; 2109 — 2173; 2114 — 2050; 2117 — 2373; 2119 — 2103;
2120 — 2184; 2122 — 2121; 2124 — 2380; 2126 — 2382; 2129 — 2128; 2132 — 2196;
2133 — 2389; 2134 — 2138; 2136 — 2392; 2137 — 2153; 2139 — 2203; 2143 — 2127;
92145 — 2141; 2146 — 2142; 2147 — 2403; 2148 — 2144; 2150 — 2149; 2151 — 2167,
2152 — 2168; 2155 — 2171; 2156 — 2092; 2157 — 2413; 2159 — 1903; 2163 — 1907;
92166 — 4056; 2172 — 2428; 2175 — 1919; 2177 — 2241; 2178 — 2182; 2181 — 2437;
2183 — 2439; 2185 — 2169; 2187 — 2191; 2188 — 1932; 2189 — 2125; 2190 — 2446;
2192 — 2448; 2198 — 2454; 2199 — 2195; 2201 — 2457; 2205 — 2461; 2208 — 1952;
92209 — 2225; 2210 — 2466; 2212 — 2211; 2213 — 1957; 2215 — 1959; 2216 — 2200;

2219 — 2223; 2221 — 2285; 2222 — 2238, 2228 — 2224, 2229 — 2165; 2231 — 1975;
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92232 — 2248; 2234 — 2250; 2235 — 2491; 2240 — 2304; 2242 — 2498; 2244 — 2180;
9246 — 2230; 2251 — 2315; 2252 — 2508; 2253 — 2500; 2254 — 2255; 2257 — 2256;
2260 — 2004; 2262 — 2518; 2263 — 2250; 2265 — 2249; 2274 — 2278; 2277 — 2261;
92279 — 2023; 2280 — 2284; 2281 — 2217; 2286 — 3861; 2287 — 2031; 2288 — 2272;
2290 — 2289; 2293 — 2549; 2295 — 2039; 2296 — 2360; 2297 — 2233; 2208 — 2554;
2300 — 2236; 2301 — 2557; 2303 — 2302; 2306 — 2310; 2307 — 2563; 2308 — 2564;
2309 — 2245; 2316 — 2317; 2318 — 2314; 2320 — 3895; 2321 — 2577; 2328 — 2312;
2329 — 2073; 2331 — 2267; 2333 — 2589; 2335 — 2319; 2338 — 2594; 2339 — 2275;
2340 — 2356; 2341 — 2337; 2345 — 2400; 2346 — 2090; 2347 — 2283; 2348 — 2332;
2350 — 2366; 2352 — 2336; 2355 — 2611; 2357 — 2101; 2359 — 3934; 2361 — 2617;
2363 — 2619; 2364 — 2368; 2367 — 2111; 2371 — 2115; 2374 — 2118; 2376 — 2375:
2378 — 2377; 2385 — 238-1; 2386 — 2387; 2388 — 2372; 2390 — 2646; 2393 — 2649;
2395 — 2411; 2397 — 2653; 2398 — 2654; 2399 — 2400; 2401 — 2465; 2402 — 2418;
2404 — 2660; 2406 — 2405; 2408 — 2424; 2412 — 2396; 2414 — 2670; 2415 — 2416;
92417 — 2673; 2419 — 2423; 2420 — 2436; 2421 — 3996; 2422 — 2678; 2425 — 2426;
2429 — 2365; 2430 — 2174; 2431 — 2427; 2432 — 2176; 2433 — 2369; 2435 — 2179;
2441 — 2697; 2443 — 2459; 2444 — 2440; 2449 — 2705; 2450 — 2706; 2452 — 2456;
2455 — 2711; 2458 — 2394; 2460 — 2716; 2462 — 2526; 2468 — 2467; 2470 — 2486;
2471 — 2487; 2472 — 2728; 2474 — 2410; 2475 — 2731; 2477 — 2473; 2478 — 2734;
2481 — 2737; 2482 — 4057; 2485 — 2501; 2489 — 2745; 2493 — 2749; 2495 — 2494;
2496 — 2480; 2497 — 2561; 2503 — 2499; 2504 — 2500; 2506 — 2505; 2511 — 2507;

2513 — 2769; 2514 — 2510; 2517 — 2516; 2521 — 2525; 2524 — 2523; 2529 — 2528;
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2530 — 2534; 2531 — 2515; 2532 — 2276; 2533 — 2469; 2535 — 2791; 2536 — 2792;
2537 — 2541; 2538 — 2522; 2540 — 2476; 2543 — 3803; 2544 — 2545; 2547 — 2483;
2548 — 2292; 2550 — 2614; 2551 — 2555; 2552 — 2553; 2556 — 2572; 2558 — 2542;
2565 — 2821; 2566 — 2570; 2568 — 2824; 2569 — 2313; 2573 — 2829; 2574 — 2830;
2575 — 2571, 2576 — 2640; 2579 — 2643; 2581 — 2597; 2582 — 3842; 2583 — 2519;
2584 — 2585; 2587 — 2651; 2591 — 2527; 2593 — 2849; 2595 — 2599; 2596 — 2592;
2601 — 2857; 2602 — 2858; 2604 — 2860; 2607 — 3867; 2608 — 2864; 2609 — 2865;
2612 — 2868; 2613 — 2869; 2615 — 2871; 2616 — 2872; 2620 — 2684, 2621 — 2605;
2622 — 2618; 2624 — 2560, 2626 — 2370; 2628 — 2884; 2631 — 3891; 2634 — 2698;
2636 — 2635; 2637 — 2893; 2639 — 2383; 2644 — 2580; 2645 — 2901; 2647 — 2391,
2650 — 2666; 2656 — 2652; 2657 — 2641; 2658 — 2642; 2659 — 2915; 2662 — 2661;
2663 — 2407;72664 — 2648; 2665 — 2729; 2667 — 2603; 2668 — 2669; 2674 — 2690;
2675 — 3935; 2676 — 2677; 2680 — 2744; 2683 — 2682; 2685 — 2686; 2687 — 2623;
2688 — 2672; 2689 — 2945; 2693 — 2757; 2694 — 2438; 2696 — 2712; 2699 — 2695;
2700 — 2704, 2701 — 2765; 2703 — 2702; 2707 — 2451, 2713 — 2969, 2714 — 2710,
2717 — 2973, 2718 — 3978; 2720 — 2464; 2721 — 2722, 2723 — 2727, 2724 — 2725;
2730 — 2986; 2732 — 2988; 2733 — 2797; 2735 — 2671; 2738 — 2994, 2740 — 2484,
2741 — 2805; 2746 — 2490; 2747 — 2743; 2748 — 2764; 2752 — 2736; 2754 — 2758,
2755 — 2751; 2759 — 4019; 2760 — 2761; 2762 — 2778; 2763 — 3019; 2766 — 3022;
2768 — 2784; 2770 — 2774; 2771 — 2767; 2777 — 3033; 2779 — 2715; 2782 — 2798;
2785 — 3041, 2786 — 2802; 2787 — 2803; 2789 — 2773; 2793 — 2809; 2794 — 2790;

2796 — 3052; 2799 — 2863; 2800 — 3056; 2801 — 3057; 2804 — 4064; 2806 — 2870;

147



2807 — 3063; 2808 — 3064; 2811 — 2875; 2813 — 3069; 2815 — 2814; 2816 — 2817,
2818 — 3074, 2822 — 4082; 2825 — 3081; 2827 — 2826; 2831 — 4091; 2832 — 2833;
2834 — 4094, 2835 — 2899; 2836 — 3092; 2838 — 2837; 2839 — 3095; 2840 — 2844,
2842 — 3787, 2845 — 2781; 2846 — 3791; 2847 — 2843; 2850 — 3106; 2851 — 2867;
2852 — 2788; 2853 — 2854; 2855 — 3111; 2859 — 2795; 2861 — 3117; 2862 — 3118;
2866 — 3122; 2874 — 3130; 2877 — 2878; 2880 — 2881; 2883 — 2627; 2887 — 2886;
2888 — 2632; 2889 — 2633; 2891 — 2907; 2892 — 2828; 2894 — 2638; 2895 — 2879;
2897 — 2961; 2898 — 2882; 2900 — 2904; 2903 — 2902; 2905 — 3161; 2906 — 2922;
2908 — 3853; 2909 — 2910; 2911 — 2655; 2913 — 3169; 2916 — 2912; 2917 — 2981;
2918 — 2934; 2920 — 3865; 2921 — 3177; 2923 — 2919; 2924 — 3869; 2925 — 3181,
2926 — 20942; 2927 — 2931; 2930 — 3186; 2933 — 3878; 2936 — 3000; 2939 — 3884;
2940 — 2876; 2943 — 3199; 2944 — 2928; 2947 — 2691; 2948 — 2692; 2949 — 2885;
2952 — 2956; 2953 — 2937; 2960 — 3216; 2963 — 2959; 2964 — 2708; 2965 — 2966;
2967 — 3223; 2971 — 3227, 2975 — 2719; 2976 — 3921, 2977 — 3233; 2979 — 3235;
2982 — 2726; 2983 — 3239; 2984 — 3240; 2987 — 3932; 2990 — 3246; 2991 — 3007;
2992 — 3937; 2996 — 2932, 2997 — 2993, 2998 — 3254; 3002 — 3001; 3003 — 3004;
3005 — 2989; 3006 — 2750; 3008 — 3953; 3009 — 3265; 3010 — 2946; 3011 — 3015;
3012 — 2756; 3013 — 3029; 3016 — 3080; 3017 — 3273; 3018 — 3014; 3020 — 3084;
3023 — 3968; 3024 — 3028; 3026 — 3282; 3027 — 3043; 3030 — 3046; 3031 — 2775;
3032 — 3288; 3035 — 3291; 3037 — 3293; 3038 — 3294; 3039 — 3055; 3042 — 3298,;
3044 — 3300; 3047 — 3051; 3048 — 3304; 3049 — 3994; 3054 — 3050; 3058 — 4003;

3059 — 3315; 3060 — 3061; 3066 — 3065; 3067 — 3131; 3068 — 2812; 3075 — 3071,
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3076 — 2820; 3077 — 3073; 3082 — 3338; 3083 — 3099; 3085 — 3086; 3088 — 4033;
3091 — 3090; 3093 — 3089; 3094 — 3158; 3096 — 3352; 3097 — 2841; 3100 — 3116;
3101 — 4046; 3103 — 4048; 3104 — 2848, 3107 — 3123; 3109 — 3110; 3113 — 3112;
3115 — 3119; 3121 — 4066; 3125 — 3141, 3126 — 3190; 3127 — 4072; 3128 — 3384;
3129 — 4074, 3132 — 3388; 3134 — 3138, 3136 — 3135; 3137 — 3393; 3142 — 3078,
3143 — 3139; 3146 — 2890; 3148 — 4093; 3149 — 3405; 3150 — 3154, 3151 — 3087,
3152 — 2896; 31563 — 3409; 3155 — 3171; 3160 — 3144; 3162 — 3098; 3164 — 3180;
3165 — 3229; 3166 — 3102; 3167 — 3163; 3170 — 2914, 3172 — 3108; 3173 — 3157,
3174 — 3430; 3178 — 3434, 3179 — 3435; 3182 — 3198; 3183 — 3439; 3185 — 3201;
3188 — 3187; 3191 — 3821; 3192 — 3176; 3197 — 2941; 3200 — 3830; 3204 — 3140;
3206 — 2950; 3207 — 2951; 3209 — 3145; 3211 — 2955; 3213 — 3277; 3214 — 2958;
3215 — 3845; 3218 — 3474; 3221 — 3477; 3224 — 2968; 3226 — 3856; 3228 — 2972;
3230 — 2974; 3234 — 3490; 3236 — 2980; 3242 — 3306; 3249 — 3313; 3251 — 2995;
3252 — 3256; 3253 — 3189; 3255 — 3319; 3257 — 3321, 3258 — 3514; 3259 — 3195;
3260 — 3196; 3261 — 3245; 3266 — 3330; 3267 — 3897, 3268 — 3332; 3269 — 3205;
3270 — 3334; 3272 — 3208; 3274 — 3210; 3276 — 3280; 3278 — 3534; 3279 — 3909;
3284 — 3914; 3285 — 3281; 3286 — 3916; 3287 — 3351; 3292 — 3548; 3296 — 3552;
3301 — 3045; 3302 — 3238; 3303 — 3559; 3308 — 3307; 3309 — 3053; 3310 — 3940;
3312 — 3311; 3316 — 3946; 3322 — 3318; 3324 — 3340, 3325 — 3’581; 3326 — 3582,
3327 — 3583; 3328 — 3072; 3329 — 3585; 3333 — 3337; 3335 — 3079; 3336 — 3592;
3339 — 3323; 3341 — 3597; 3349 — 3413; 3350 — 3346; 3353 — 3983; 3355 — 3354,

3359 — 3423; 3361 — 3360; 3362 — 3378; 3363 — 3299; 3365 — 3364, 3367 — 3368,
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3371 — 3627; 3373 — 3437; 3376 — 4006; 3379 — 3635; 3381 — 3385; 3382 — 3638;
3386 — 3387; 3389 — 3133; 3390 — 3646; 3391 — 4021; 3394 — 3650, 3396 — 3395;
3399 — 3383; 3400 — 3656; 3402 — 3658; 3403 — 3147; 3408 — 3407, 3411 — 4041,
3412 — 3156; 3414 — 3478; 3415 — 3159; 3417 — 3401; 3419 — 3483; 3420 — 3676;
3421 — 3677; 3424 — 3168; 3426 — 3427; 3428 — 3432; 3429 — 3433; 3436 — 3372;
3438 — 4068; 3441 — 3377; 3442 — 3698; 3444 — 3380; 3445 — 4075; 3446 — 3702;
3450 — 3706; 3452 — 3451; 3455 — 4085; 3456 — 4086; 3457 — 3713; 3458 — 3202;
3459 — 3203; 3460 — 3464; 3462 — 3398; 3463 — 3479; 3465 — 3721; 3467 — 3782;
3468 — 3212; 3469 — 3533; 3470 — 3454; 3473 — 3489; 3475 — 3219; 3476 — 3220;
3480 — 3416; 3481 — 3225; 3482 — 3418; 3485 — 3549; 3487 — 3231; 3488 — 3232;
3492 — 3491; 3493 — 3237; 3494 — 3809; 3495 — 3810; 3497 — 3753; 3498 — 3562;
3499 — 3243; 3500 — 3244; 3503 — 3247, 3504 — 3248; 3505 — 3569; 3506 — 3250;
3507 — 3443; 3508 — 3509; 3511 — 3826; 3512 — 3496; 3513 — 3449; 3516 — 3515;
3517 — 3453; 3518 — 3262; 3520 — 3264; 3522 — 3586; 3523 — 3519; 3524 — 3588;
3525 — 3521; 3526 — 3510; 3527 — 3271; 3528 — 3529; 3530 — 3466; 3531 — 3275;
3532 — 3596; 3537 — 3538; 3539 — 3283; 3540 — 3855; 3544 — 3560; 3546 — 3290;
3547 — 23; 3550 — 3554; 3551 — 3295; 3553 — 3297; 3557 — 3872; 3558 — 3574;
3561 — 3305; 3564 — 3565; 3566 — 3502; 3570 — 3314, 3572 — 3571; 3573 — 3317,
3575 — 3639; 3576 — 3320; 3577 — 3892; 3580 — 3644; 3584 — 3568; 3587 — 3331,
3591 — 3590; 3598 — 3342; 3599 — 3343; 3600 — 3344, 3601 — 3345; 3603 — 3347,
3604 — 3348; 3605 — 3541; 3606 — 3542; 3610 — 3674; 3611 — 3595; 3612 — 3356;

3613 — 3357; 3614 — 3358; 3617 — 93; 3620 — 3556; 3622 — 3366; 3623 — 99; 3624
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— 3688; 3625 — 3369; 3626 — 3370; 3629 — 105; 3631 — 3375; 3632 — 108; 3634
— 110; 3637 — 3633; 3640 — 116; 3641 — 117; 3643 — 3707; 3648 — 3392; 3652
— 3651; 3653 — 3397; 3659 — 135; 3660 — 3404; 3662 — 3406; 3663 — 139; 3665
— 3669; 3666 — 3410; 3667 — 143; 3668 — 3672; 3671 — 3607; 3673 — 3609; 3678
— 3422; 3679 — 3615; 3681 — 3425; 3683 — 159; 3684 — 3680; 3685 — 161; 3689
— 165; 3691 — 167; 3692 — 3628; 3693 — 169; 3694 — 170; 3696 — 3440; 3697 —
173; 3700 — 3636; 3701 — 177; 3703 — 3447; 3704 — 3448; 3705 — 181; 3709 —
3725; 3711 — 3647; 3712 — 3708; 3714 — 190; 3715 — 191; 3716 — 4031; 3717 —
3461; 3718 — 3734; 3719 — 195: 3720 — 196; 3723 — 199; 3724 — 200; 3727 —
3471; 3728 — 3472; 3730 — 206; 3732 — 3736: 3733 — 209; 3735 — 211; 3738 —
22; 3740 — 3484; 3742 — 3486; 3748 — 3744; 3749 — 3745: 3750 — 3686; 3752 —
36; 3754 — 38; 3755 — 231; 3757 — 3501; 3759 — 235; 3761 — 45; 3762 — 46; 3763
— 47; 3764 — 3760; 3765 — 241; 3766 — 50; 3768 — 3767; 3770 — 246; 3771 —
7: 3773 — 57, 3774 — 3710; 3775 — 4090; 3776 — 3772; 3777 — 253; 3779 — 255;
3780 — 2520; 3792 — 642; 3793 — 2218; 3794 — 1589; 3796 — 1276; 3798 — 1278;
3799 — 2539; 3801 — 2856; 3805 — 3175; 3806 — 2546; 3808 — 343; 3814 — 3184;
3816 — 1296; 3818 — 2873; 3819 — 2559; 3822 — 2562; 3823 — 3193; 3824 — 3194;
3827 — 2567; 3829 — 1309; 3833 — 2258; 3835 — 1945; 3836 — 686; 3838 — 2578;
3839 — 374; 3843 — 2268; 3844 — 2269; 3846 — 2586; 3847 — 3217; 3848 — 2588;
3850 — 2590; 3852 — 3222; 3857 — 1022; 3858 — 2598; 3860 — 2600; 3862 — 1342;
3866 — 2606; 3870 — 2610; 3871 — 3241; 3873 — 723; 3874 — 2929; 3879 — 414;

3880 — 2935; 3882 — 1677; 3883 — 2938; 3885 — 2625; 3886 — 1996; 3887 — 422;
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3889 — 2629; 3890 — 2630; 3893 — 3263; 3894 — 3579; 3896 — 431; 3898 — 2323;
3899 — 2054; 3900 — 2325; 3901 — 2326; 3902 — 2957; 3903 — 2013; 3905 — 1385;
3906 — 2016; 3907 — 2962; 3908 — 3593; 3912 — 1077; 3915 — 2970; 3917 — 2342;
3919 — 3289; 3920 — 2030; 3923 — 2978; 3926 — 461; 3927 — 777; 3930 — 2985;
3931 — 1411; 3936 — 471; 3939 — 2679; 3941 — 2681; 3942 — 792; 3944 — 2999;
3945 — 1740; 3949 — 2059; 3950 — 800; 3951 — 801; 3954 — 2379; 3959 — 2384;
3965 — 2075; 3966 — 3021; 3969 — 2709; 3970 — 3025; 3972 — 1767; 3973 — 1768;
3977 — 1457; 3979 — 3034; 3981 — 3036; 3984 — 1149; 3985 — 3040; 3986 — 1151;
3990 — 1785; 3991 — 526; 3993 — 1158; 3995 — 2105; 3997 — 1792; 3999 — 2739;
4002 — 2742; 4004 — 3374; 4005 — 1170; 4007 — 3062; 4009 — 2434; 4011 — 861;
4013 — 2753; 4014 — 864; 4015 — 3070; 4017 — 2442; 4020 — 2445; 4022 — 2447,
4023 — 558; 4026 — 876; 4028 — 2453; 4029 — 1194; 4030 — 1510; 4032 — 2772;
4035 — 1515; 4036 — 2776; 4038 — 2463; 4040 — 2780; 4043 — 2783; 4044 — 2154;
4050 — 3105; 4052 — 587; 4054 — 2479; 4059 — 3114; 4060 — 2170; 4061 — 3431,
4062 — 912; 4063 — 2488; 4065 — 3120; 4067 — 2492; 4069 — 3124; 4070 — 2810;
4073 — 608; 4077 — 2502; 4079 — 2819; 4081 — 931; 4083 — 2823; 4087 — 2512;

4092 — 2202,
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