A NEW CLASS OF TECHNIQUES FOR

WEB PERSONALIZATION

BHUSHAN SHANKAR SURYAVANSHI

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

MARCH 2006

© Bhushan Shankar Suryavanshi, 2006



Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14338-X
Our file  Notre référence
ISBN: 0-494-14338-X
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



ABSTRACT

A NEW CLASS OF TECHNIQUES FOR WEB PERSONALIZATION
BHUSHAN SHANKAR SURYAVANSHI
Web personalization aims to provide content and services tailor-made to the needs of
individual users usually from the knowledge gained through their (previous) interactions
with the site. Typically, an access behavior model of users is learnt from the usage of the
website which is then used to provide personalized recommendations to the current
user(s). Clearly the performance of a recommender system will depend on the underlying
model. Two fundamental challenges in personalization are effectiveness (accuracy) and
efficiency (scalability) of recommender algorithms. In this thesis, we present a new class
of techniques for efficient and effective web personalization. All the techniques are based
on a new algorithm for fast mining of web usage data, called Relational Fuzzy
Subtractive Clustering (RFSC). RFSC is scalable to large datasets, does not require user
biased control parameters, is relatively more immune to noise which is inherent in usage
data, and can capture overlapping user interest areas. Making innovative use of fuzzy
grade of memberships and fuzzy prototypes of the access behavior model learnt through
RFSC, we also propose improvements over cluster based and association rule based
recommender models. Since browsing behavior of users on the web is not static but
changes dynamically over time, we further propose a new maintenance scheme, which
extends RFSC, to efficiently add new web usage data to an existing model in order to
achieve adaptability over non-stationary volatile web environment. We validate our
claims of effectiveness and efficiency through extensive experimentation on synthetic

data as well as large datasets of web logs.

it



Acknowledgments

I express my sincere gratitude and appreciation to my supervisors Dr. Sudhir P. Mudur
and Dr. Nematallaah Shiri. Thanks to Dr. Mudur for an endless supply of insight,
inspiration and for suggesting several of the possible counter-arguments to my own that
are considered in this thesis. Thanks to Dr. Shiri, for having unwavering faith in me, and
whose advice, wit, and keen ability of observation I will remember long after I graduate.
It is through numerous interactions and meetings with my supervisors that I have gained a
solid understanding of how to and how not to research an area. [ further extend a special
thanks to them for giving me opportunities to present papers, which we co-authored, at
international conference/ workshops, which was an experience in itself.

I also wish to thank my colleagues in the database lab for sharing ideas, knowledge and
discussions together. These include Ahmed Alasoud, Mihail Halatchev, Ali Kiani, Aida
Nemalhabib, Ali Taghizadeh, and Anand Thamildurai. [ thank my friends, Pranav
Ambole, Pranati Asgaonkar, Anirban Mazumdar, Sarang Patil, Akshay Kumar, Anil
Kumar V., and Shilpa Shrimal, for being a constant source of support and
encouragement.

[ thank my parents and my sister for their unconditional love, continuous support and for

all their sacrifices; without which I wouldn’t be here.

v



Table of Contents

1

INErOAUCTION . cccvirireiicrreriiseiesineninnnesiseiisiisssesssnesssasssseesssnssssasnesssnsessssnsssansssssnnsssssanese 1
1.1 Data Mining on the Web.......c.ccoiviiiiiiiiriiieni e 3
1.2 Recommender SYStEIMS ......veiiiieriiiriiiiieiiiiciice et 5
1.3 IMOTIVALION . ..eotiiiir ittt st sre s s st ere s bt et sb s sn e sresne s eenssens 8
1.4 CONIIBULIONS....c.uiiiiiiiiiiiiice e sen s 10
1.5 Outling 0f TRESIS....veviiiiieeiiiiiirir ettt e srcssmee e e snren e 14

Background and Related Work.....ccccvvveiveeevnnnnneninnneieieninecemniscmemmes 15
2.1  Collection 0f Web Data .......ccooiiiiiiiiiiiiiiiece e 15
2.2 Data PreproCesSINE......cociiiiiiiriieieirrieiee et ere st sne e e 17
2.3 Pattern DISCOVETY ...uiiiiiiiiiiiiiieies ittt ettt e s e soabnre e s e ssraeeesbreeesesannes 20

2.3.1 Association Rules.......c.ccoiiiiiiiiii 20
2.3.2 CIUSTEIIIE 1ttt ettt et er e ettt e e e e s 22
2.4  Recommendation and Personalization...........cccooveviiiiiiiinincinnnieeie e 24
2.4.1 Memory-based CEF .......ccivviriiiiiiiiincrecccie v 25
2.4.2 Model-based CF.....ocooiiiiiiiiiiiien e s 27

Relational Fuzzy Subtractive Clustering.......coccssuscersrnssnsscensssvessnessusessessansssanses 30
3.1 Relational Data.......ccceveiiniiiciiiienecce s e 32
3.2 Any Relational Clustering Algorithm...........ccccoooiiviiiiiinniniii, 34
3.3 Relational Fuzzy Subtractive Clustering Algorithm........cccocccoviniinninninn. 39
3.4 CIUSEEr ValIdity ..ooveeiioiciiiiie ettt e 43
3.5 Experiments and Results.......ccccoviiniiiiiiiiii 45

3.5.1 DatASEES .uuviieiiiiiii ettt e 45



3.5.2 SIMIlArity MEASUIES ...vccvvrrvririreiirerreiininenineeirresiseesenesssnesssessesssneesnecsenees 46

3.5.3 Usage Profiling through RFSC ..ot 48

3.5.4 Performance Study of ARCA and RFSC.....coccovvvvviiviniiiiennrenccnens 51

3.5.5 Index Of GOOANESS ...ccvviiiiiieriiiiiiiinrr e e 56

3.5.0 DISCUSSION .....iviiiiiriiiesiiieie et eerer e ree e seesreeseresennesnesenreeesmreesesannesenesnneeses 58

4 Recommender Models ....cciininiiiiniinneiineinniiiiiiniicmmeimmeesiemmenes 60
4.1 Clustering Based Recommender Model ..........coocvvriiiiiiiniiniinininicnnnen. 60
4.2 Association Rule Based Recommender Model.........c..oovcevvriiiicnincninncnnnn. 65
4.3 Experiments and RESUIS........ccoooiiiiiiiiiniiiciec e 68
4.3.1 Evaluation MEtriCS ......cooviiiiieiieiiierei et eie e 68

4.3.2 Performance Study of CF Techniques .........cccccovviviniviniiniin 69

4.3.3 DISCUSSION ....eeutiiieiiiiiereie ettt ettt sttt srae s ceneseeenesneareesaeens 81

5 Incremental Relational Fuzzy Subtractive Clustering .........covvevsseersinsssnssnesrnnines 83
5.1 Overview of Cluster Maintenance ...........cccuuoeeriiineeniieriie st neeeseesee e eiee s 84
5.2 Maintenance Scheme for Relational Fuzzy Subtractive Clustering ................... 86
5.3  Experiments and ReSUItS......c..ccooieiiiiiniiiiniiiie e 92
5.3.1 Evaluation MeEtriCs.......ccoiviriiriiinieiiiiir et sre e e snee e 93

5.3.2 Similarity ANalYSiS.....ccoevevriviiininineneiireeeeee e 93

5.3.3 Detection of New Interest Areas.........cccovvvrieerieerieneenienieenrnenneneeneenne 96

5.3.4 Adaptive Usage Profiling for Web Personalization...........cccccocvvvvecnneene 101

5.3.5 DISCUSSION ..cuvtiimiiitiiii et entee sttt e ere e sree s ba e e s aa s sne bt b saae b 103

6 Conclusions and Future WorK.......memiieieiicmmos 105
L2310 0T a1 4 111

vi



List of Figures

Figure 1 Web Personalization ProCess.......c.ccooviiiiiiiniiiiiinniiecinc i 16
Figure 2 Example of a log file from web Server..........c.covoivviininiiiiicinn 17
Figure 3 Synthetic dataset used for verification of index of goodness.......c....ccccccovrvncnnns 57
Figure 4 Example for Illustration of Binning ........cccoceeeviviviiininiiininonn, 65
Figure 5 Recommendation effectiveness, TOPN=5 ... 73
Figure 6 Recommendation effectiveness, TOPN=10 ...........c..cccccovvvivininiininiinn 74
Figure 7 Improvements achieved with two level model-based CF..........ccccocvvvicenincnn 75
Figure 8 Quality comparison of five CF techniques..........cccooccervieniiinniiicnne 76
Figure 9 Comparison of Effectiveness (membership vs. distances) .........ccccocveeevcrrncnne. 77
Figure 10 Comparison of efficiency in terms of online recommendation time................ 78
Figure 11 Comparison of efficiency for five CF techniques .........coccovviniiinninn, 79
Figure 12 Comparison of efficiency (Binning).........cccoeviiiieiiiiinici e 80
Figure 13 Example for impact factor calculation ..., 91
Figure 14 Similarity between incremental RFSC and reclustering ..........ccccocceevieinnnnn 95
Figure 15 Example synthetic dataset with three clusters and NOISE..............ovvvreererernnn. 100
Figure 16 Comparison of recommendation effectiveness ...........cocvvvvivviinciiiniiiins 103

vii



List of Tables

Table 1 Examples of Usage Profiles discovered............ccoovviniinnininniiininin 50
Table 2 Contingency Table for Partitions V and W ..o 51
Table 3 RFSC vs. ARCA similarity COmMpariSOns .......c.ocvereiirinieininieineeocncneennennennes 54
Table 4 Usage Profiles for cluster similarity comparisons.......c...ccccveeeevvininnvnnieennennnn 55
Table 5 Study of Index 0f BOOANESS .....eovvviiiiiiiiiiiii e 57
Table 6 Timings for incremental RESC ... 96
Table 7 New interest areas detected with incremental RFSC...........cccccvivinnnnnnnn 97
Table 8 Example of profile hidden and profile recovered with incremental RFSC ........ 98
Table 9 Explaining discrepancy for hidden profile 5........ccccooiviiiiiiicie 99

viii



Chapter 1

Introduction

The World Wide Web is an ever growing, most frequently visited market place for e-
services and products. The vast variety of products and services on the Internet has both
simplified and complicated shopping online. While ordering has been rendered more
convenient, selection has become more difficult for users by the sheer increase in
choices. Users are often overwhelmed with the amount of information, as it is much more
than what can be easily interpreted and absorbed. Another major problem is
disorientation, as users generally feel lost in this huge information space. Personalized
recommendation can alleviate these problems to a large extent. It can be compared to
having your favorite bookseller pull out a copy of a book he just knows you would really
like. Web personalization aims to provide content and services tailor-made to the needs
of individual users usually from the knowledge gained through their (previous)
interactions with the site, just in the same way a sales person understands the needs of a
customer by interacting with the customer. The goal is to improve the user’s experience
of an e-service. Personalization is a “you-and-me” relationship-building activity, which
includes recognition, understanding, and serving the specific needs of users and
customers. As described by Jeff Bezos, CEO of Amazon.com, “If I have 3 million

customers on the web, I should have 3 million stores on the web” [Schafer et al., 1999].



A distinction is often made between customization and personalization. Intuitively, the
former is a user-driven process while the latter is system-driven. In customization, the
user can configure the layout and structure of the site. The control of the look and/or
content is explicit, and the user is in control and is actively irvolved in the process. In
personalization, on the other hand, the user is seen as passive, or at least somewhat less in
control. It is the website that monitors, analyses, and reacts to user’s behavior
dynamically.
The web personalization process can be divided into four phases [Mobasher et al., 2000;
Nasraoui et al., 2005]. The first three phases are collecting, preprocessing, and analysis of
web data, and the final phase is recommendation. While the first two phases essentially
gather and prepare the web data for further processing, the analysis phase attempts to
obtain (or understand) a model of user behavior, user group characteristics, gnd user
preferences. The results of this analysis are then used by a recommendation eﬁgine to
provide personalized recommendations to the user, say, adding hyperlinks depending on
user preference models to the last web page requested by the user. This process is
discussed in detail in Chapter 2.
The web personalization process relies on one or more of the following types of data
[Srivastava et al. 2000]:

e Content: The real data in the web pages. This can be simple text, images, or

structured data, such as information retrieved from databases.
e Structure: It represents the organization of the content. The content can be either

data entities used within a web page, such as HTML or XML tags, or data entities



used to put a web site together, such as hyperlinks connecting one page to
another.

e Usage data: This represents a web site’s usage, such as visitor’s IP address, time
and date of access, complete path (files or directories) accessed, referrers’
address, and other attributes that can be included in a Web access log.

In our work, we make use of the web usage data of the site and learn usage profiles from

such data. It is these usage profiles that will be made use of in a recommender system.

1.1 Data Mining on the Web

Data mining is a nontrivial process of discovering valid, previously unknown, potentially
useful and ultimately understandable patterns in data. Web mining is the use of data
mining techniques to automatically discover and extract information from web
documents and services. It can be further divided into content 1ni11iﬁg, structure mining,
and usage mining, depending on the type of data being mined. Web usage mining is the
application of data mining techniques to discover usage patterns from web data, in order
to understand and better serve the needs of web-based applications. Below we discuss
different techniques that can be applied to web usage data [Srivastava 2000].

1) Statistical Analysis

Statistical techniques are the most common methods used to extract knowledge about
visitors to a web site. One can perform different kinds of descriptive statistical analysis
(frequency, mean, median, etc.) on variables such as page views, viewing time and length
of a navigational path. Many web traffic analysis tools broduce a periodic report
containing statistical information such as most frequently accessed pages, average view

time of a page or average length of a path through a site, etc. This report may include



limited low-level error analysis such as detecting unauthorized entry points or finding
most common invalid URL. Despite lacking in the depth of analysis, this type of
knowledge can be potentially useful for improving system performance, enhancing
security of the system, facilitating site modification task, and providing support for
marketing decisions.

2) Association Rules

Association rule generation can be used to relate pages in a website that are most often
referenced together in a single server session. In the context of web usage mining,
association rules refer to sets of pages that are frequently accessed together. These pages
may not be directly connected to one another via hyperlinks. For example, association
rule discovery may reveal a correlation between users who visited a page containing
electronic products to those who access a page about .quning equipment. Aside from
applicability in business and marketing applications, the presence or absence of such
rules can help web designers to restructure their web site. Association rules may also
serve as heuristics for prefetching documents in order to reduce user-perceived latency
when loading a page from a remote site.

3) Clustering

Clustering is a technique to group together a set of items having similar characteristics. In
the context of web usage domain, there are two kinds of interesting clusters to be
discovered: usage clusters and page clusters. Clustering of users tends to identify groups
of users exhibiting similar browsing patterns. Such knowledge is especially useful for
inferring user demographics in order to perform market segmentation in E-commerce

applications or to provide personalized web content to the users. On the other hand,



clustering of pages will discover groups of pages with somehow related content. This
information is useful for Internet search engines and web assistance providers. In both
applications, permanent or dynamic HTML pages can be created that suggest related
hyperlinks to the user according to the user's query or past history of information needs.
4) Classification

Classification is the task of mapping a data item into one of several predefined classes. In
the web domain, one is interested in developing a profile of users belonging to a
particular class or category. This requires extraction and selection of features that best
describe the properties of a given class or category. For example, classification on server
logs may lead to the discovery of interesting rules such as: 30% of users who placed an
online order in /Product/Music are in the age group 18-25 and live on the west coast.

5) Sequential Patterns

Sequential pattern discovery attempts to ﬁnd patterns such that presence of a set of items
is followed by another item in a time-ordered set of episodes (pages). This approach can
be used by web marketers to predict future visits, which can then be helpful in placing
advertisements aimed at certain user groups. Other types of temporal analysis that can be
performed on sequential patterns include trend analysis, change point detection, and

similarity analysis.
1.2 Recommender Systems

Social information filtering exploits similarities between the tastes of different users to
recommend (or advise against) items. It relies on the fact that people's tastes are not
randomly distributed: there are general trends and patterns within the taste of a person

and as well as amongst groups of people. Social information filtering automates the



process of “word-of-mouth™ recommendations. A significant difference is that, instead of
having to ask a number of friends about a few items, a social information filtering system
can consider thousands of other people, and consider thousands of different items, all
happening autonomously and automatically. [Shardanand and Maes, 1995].
Examples of such applications include recommending books, CDs, and other products at
Amazon.com [Linden et al., 2003], movies by MovieLens [Konstan et al., 1997], news at
VERSIFI Technologies [Billsus et al., 2002], and music by Ringo [Shardanand and Maes,
1995].
The recommendation problem is to estimate ratings for the items that have not been seen
by a user [Adomavicius and Tuzhilin, 2005]. Intuitively, this estimation is usually based
on the ratings given by this user to other items and on some other information that we
shall describe later. Once we can estimate ratings for the yet unrated items, we can
recommend to the user, items ‘with the highest estimated ratings. There are three basic
approaches used in recommender systems: content-based filtering, rule-based filtering,
and collaborative filtering [Eirinaki and Vazirgiannis 2003, Nasraoui et al., 2005],
described briefly as follows.
¢ Content-based filtering is solely based on individual users’ preferences. It tracks
each user’s behavior and recommends items that are similar to the ones the user
preferred in the past. Such systems exploit the product information, say, attributes
of specific domain items, e.g., author and subject for books, and artist and genre
for music items. They do not require any previous implicit or explicit user rating
or purchase data to make recommendations. The user will be recommended items

similar to the ones the user preferred in the past. Content-based techniques are



limited by the features that are explicitly associated with the objects that they
recommend. Hence in order to have a sufficient set of features, the content must
either be in a form that can be parsed automatically (e.g., text) or the features
should be assigned manually [Adomavicius and Tuzhilin, 2005].

e Inrule-based filtering, the user has to answer some questions, until s/he receives a
customized result. It requires heavy planning and customization by expert, lacks
intelligence, and tends to be static. It also requires a careful selection of the
questionnaire.

» Collaborative filtering (CF) is the most successful and widely used technique in
building recommender systems [Sarwar et al., 2000b]. The goal of CF is to predict
the preferences of a user, referred to as active user, based on the preference of a
group of f‘like-minded” users. The key idea is that the active user will prefer those
items that “like-minded” people prefer or even the ones that dissimilar people do
not prefer. This approach relies on history, a collection of all previous users’
interests, which could be inferred from user’s ratings of the items at a website
(products or web pages). Basically the vast amount of historical information
accumulated is queried based on the current navigational pattern of the active user
to provide him/her a personalized experience. Various CF techniques are
explained in detail in Chapter 2.

The above filtering techniques may also be combined in different ways to overcome the
limitations of individual techniques [Burke, 2002]. In this thesis, we focus on CF

techniques to support personalized recommendations.



1.3 Motivation

[Breese et al., 1998] identified two major classes of CF algorithms: memory-based and
model-based. Memory-based algorithms [Breese et al. 1998, Konstan et al., 1997,
Shardanand and Maes, 1995, Delgado and Ishii, 1999] process the entire recorded dataset
of user preferences to make predictions. These algorithms employ a notion of distance to
find a set of users, known as neighbors, which tend to agree with the active user. The
preferences of neighbors are then combined to produce a prediction or top-N
recommendation for the active user. The preferences could be combined in a linear
fashion or by weighting. Model-based methods on the other hand [Breese et al. 1998,
Hofmann 2003, Ungar and Foster,1998, Sarwar et al., 2000b] use the recorded dataset to
estimate or learn a model offline, which is then used for predictions. Popular web usage
miniﬁg fechniques such as clustering, association rule mining, and sequence pattern
discovery have been used for this purpose [Mobasher, 2004, Nasraoui et al., 2005]. These
techniques extract characteristics (patterns) or usage profiles from the usage history data
through an offline process and employ these patterns to generate recommendations in an
online process. Usage profiles capture different interests and trends among users
accessing the site. These usage profiles can be used for recommendations, path
prediction, perfecting of pages, better structuring of web sites, and in a nutshell,
improving the experience of the user browsing the website for information and/or
services. Usage profile information can also be used by content creators to understand
which material is used more, how long the material is viewed by which types of users,
and in what order they are accessed, etc. The set of profiles reflect the semantics of the

user history database at that point of time.



Two important challenges in CF-based recommender systems are accuracy and
scalability. Memory-based techniques are simple to understand, implement, and use.
While they provide high accuracy recommendations and admit easy addition of new data,
they are computationally expensive as the size of the input dataset increases. These
techniques can be used to search typically up to tens of thousand of potential neighbors in
real-time. Modern e-commerce applications, on the other hand, require searching tens of
millions of potential neighbors [Sarwar, 2000b]. Due to the large online search cost
involved, memory-based CF techniques do not scale up to handle such large data
volumes. However, model-based techniques reduce the online processing cost by making
use of the usage profiles learnt in the offline-modeling process. The improvement in
online processing performance often comes at the cost of reduced accuracy of
recommendations as model-based CF makes use of a general model for the entire
preference dataset rather than the actual data, as is the case in memory-based CF.

The performance of a recommender system will depend on the underlying model, if one
is used. Each popular website is visited by a large number of users with variety of needs
and goals. A critical factor in the choice of a modeling technique is its scalability to large
datasets. For most of the earlier proposed modeling techniques, the time required to
compile the data into a model can be prohibitive for large datasets, thus making model-
based CF techniques also less practical [Pennock et al., 2000]. Moreover, a desired
modeling technique should be immune to noise, which is inherently present in web usage
data. The browsing behavior of users on the web is highly uncertain and fuzzy in nature.
A user may browse the same page for different purposes. Each time the user accesses the

site, he or she may have different browsing goals. Furthermore, the same user in the same



session may have different goals and interests at different times. A modeling technique
should be able to capture such overlapping user interests. It should also be independent of
user specified control parameters, which may bias the modeling process. All the
aforementioned factors make unsupervised classification or clustering more desirable for
learning the access behavior model. Therefore, in our work we focus on clustering of web
usage data for discovery of usage profiles which adequately model user access behavior
on that web site. For comparison purposes, we shall also consider association rule based

models.

1.4 Contributions

The mining community has focused considerably on developing efficient algorithms for
finding patterns. However, it is also very important to research ways in which these
patterns can be applied and used. In addition to our focus on mining knowledge from web
usage data efficiently, we will also consider applying this knowledge for giving the user a
personalized experience.

The contributions of this research are as follows.

1. Relational Fuzzy Subtractive Clustering. We first propose a technique based on
fuzzy clustering for extracting usage profiles from huge web access logs so as to
capture the fuzziness and uncertainty in user behavior into soft classes. We call it
as Relational Fuzzy Subtractive Clustering (RFSC) [Suryavanshi et al. 2005a].
Our technique has the following advantages over traditional fuzzy clustering
algorithms.

o Scalability: 1t scales to large datasets and reduces the concern of

prohibitively large model compilation time.

10



o Parameter Independence: Does not require any user biased control
parameters. This is clearly an advantage since otherwise the clustering
may not manifest the true structure in the data.

o Immunity to noise: RFSC is highly immune to noise, which is inherent in
web data.

o [ Transforms: Does not require expensive 3 spread transformations for
converting the non-Euclidean Relational data into Fuclidean space
[Hathway and Bezdek, 1994].

We also propose a validity index for RFSC, called index of goodness, to measure
the quality of clustering based on the popular Xie-Beni index [Xie and Beni,
1991]. We have conducted a comprehensive comparative study of RFSC and
Fuzzy C-means [Bezdek, 1982] based relational clustering. For this, we have
considered various factors including need of user specified control parameters for
clustering, scalability to larger datasets, immunity to noise which is the inherent
nature of web clickstreams and the ability to incorporate new additional data
points into an existing cluster model. We also measure cluster similarity between
the partitions obtained by the two techniques using the popular Rand coefficient
as well as by comparing their usage profiles. To the best of our knowledge, this is
the first such comprehensive experimental study, providing us with valuable
measures to objectively judge the performance of these techniques. In addition to
throwing up a number of interesting observations, our study also provides a basis

for future research and applications of the proposed concepts and techniques.

11



Fuzzy Hybrid Collaborative Filtering. As discussed earlier, two fundamental
challenges to a CF-based recommender system are accuracy and scalability.
While memory-based methods have a high accuracy, they become prohibitively
expensive to use as the size of the input dataset increases. The model-based
approach has a complementary advantage: while it reduces the online processing
cost, it often comes at the cost of reduced accuracy of recommendations. An
important contribution of this thesis is a Fuzzy Hybrid CF technique [Suryavanshi
et al. 2005b] that approaches the accuracy of memory-based and the scalability of
model-based CF, and hence inheriting the advantages of both. This is achieved by
utilizing in an innovative way, properties of the underlying modeling technique,
namely Relational Fuzzy Subtractive Clustering. We make use of the fuzzy
prototypes and the fuzzy grade of memberships obtained from the RFSC model.
The fuzzy nearest prototype of the active user is used to find a group of like-
minded users within which a memory-based search is conducted. We also extend
our technique to fuzzy K-nearest prototypes (K-NP). Moreover, we also show
how equal depth binning can further increase the scalability of our approach.

Two Level Model-Based Collaborative Filtering. Association rule based
recommender systems often suffer in accuracy due to the sparse nature of web
usage data. Top-level navigational pages (visited more frequently) may
undermine the lower level content pages in the site hierarchy. Using RFSC as the
first level modeling and then mining association rules within individual clusters,
we develop a two level model-based CF technique [Suryavanshi et al., 2005c].

We show how segregation of interest areas could help in giving more relevant and

12



pertinent recommendations to the current user. Our technique achieves better
accuracy than pure association rule based recommendation model.

Incremental Relational Fuzzy Subtractive Clustering. Browsing behavior of
users changes dynamically over time. Web usage modeling is static, mainly due to
the time complexity of model compilation; adding a new data point may require
complete remodeling. Being computationally intensive, remodeling is done
occasionally and the models used normally lag behind the current usage patterns
leading to irrelevant and mistargeted recommendations. Even though
development of maintenance schemes, which adapt these models to non-
stationary volatile web, is very important, it has received less attention so far. We
propose a web usage profile maintenance scheme using an extension of RFSC
called incremental RFSC [Suryavanshi et al. 2005d]. Incremental RFSC can
efficiently add new usage data to an existing model without incurring the expense
associated with frequent remodeling. We validate our scheme by showing close
similarity between complete reclustering and the clustering model obtained after
applying our incremental RFSC technique. Any maintenance scheme based on
incremental update of the profile requires a measure to indicate, to the web
analyst, when accumulated usage data has to be reclustered; otherwise continued
maintenance leads to irrelevant, obsolete model. We introduce a quantitative
measure, called impact factor. When the impact factor exceeds a predefined

threshold, remodeling is recommended.

13



1.5 Outline of Thesis

The rest of this thesis is organized as follows.

In Chapter 2, we present an overview of the web personalization process and the related
work in this domain. In Chapter 3, we present our algorithm, Relational Fuzzy
Subtractive Clustering (RFSC) and provide a comprehensive experimental study
comparing RFSC and Fuzzy C-Means based relational clustering algorithm. In Chapter 4,
we show how RFSC models can be used for personalization. We present techniques
which are improvements over cluster based and association rule based recommender
systems. We conclude this chapter by comparing different collaborative filtering
techniques. Our usage profile maintenance scheme is presented in Chapter 5. At the core
is another new algorithm, called as the incremental RFSC algorithm. We show
correctness of this algorithm, and through experiments, demonstrate its robustness and
efficiency for adaptive usage profiling'. Chapter 6 includes a summary and conclusions

together with some directions for future work.

! These results have been submitted as a chapter in the WebKDD book edited by Nasraoui, Zaiane,
Spiliopoulou, Mobasher, Masand, and Yu.

14



Chapter 2

Background and Related Work

In this chapter, we study the personalization process based on web usage mining. A
general architecture showing the components of this process is depicted in Fig. 1. We use

this as a guide for our exposition of the personalization process in this chapter.

2.1 Collection of Web Data

Data about users browsing the web site can be collected explicitly or implicitly. Explicit
data is collected through active involvement of the user, typically from fill-in forms
(registration) and questionnaires. Such data may contain generic information such as date
of birth and area code, along with some dynamic information, which is likely to change
over time such as favorite television programs or football teams. Explicit data collection
requires users to exert most of the efforts and make the initial investment, and hence
depends much on user’s motivation. On the other hand, users are not directly involved in
implicit data collection. The navigation behavior and preferences of the user can be learnt
typically through analysis of the user accesses and usage of the website. The web server
is an important data source for performing web usage mining because it explicitly records
the browsing behavior of the visitors to the site. The data recorded in server logs reflects

the (possibly concurrent) access of a web site by multiple users. Data collection can also

15



Active User
Session

Pattern Analysis .
Recommendation
Usage Engine
Profiles
Pattern Filtering
L:> Content based filtering
Aggregations Collaborative Filtering
Rule based filtering
Hybrid
Data

Preprocessing ﬁ ﬂ

Adaptive Usage Recommendations
Data Cleaning Profiles
Page Identification

Sessionization Patterns
Data Transformation
Usage Mining Maintenance Scheme
Association Rule Mining
Access Sequential Pattern Incremental Mining
Sessions Mining Techniques
Database Clustering
Statistical Analysis
Remodeling

Figure 1 Web Personalization Process

be done at the client side by using a remote agent (such as Javascripts or Java applets) or
by modifying the source code of an existing browser (such as Mosaic or Mozilla) to
enhance its data collection capabilities. However, these methods require explicit user
cooperation, which is not always possible. Another data source is web proxy server,
which acts as an intermediate level of caching between client browsers and web servers.

This may serve as a good data source for characterizing the browsing behavior of a group

16



of anonymous users sharing a common proxy server. For more details see [Srivastava et

al., 2000].

2.2 Data Preprocessing

Log files produced on the web servers are text files with a row for each HTTP

transaction. Fig. 2 shows a typical log file.

B Arcesslogtut - Notepad 7T elolx|
Fle €dt Fomat Vew.Hep = .. R , v
132,205.46,145 - - [16/3un/2004:20:06:11 -0400] "GET /~camp352 HTTP/L.1" 301 328 :_l
132.205.46.145 - - [16/3un/2004:20:06:11 -0400] "GET /~comp352/ HTTR/L.1" 200 6837
132.205.46.145 - - [16/Jun/2004:20:06:11 -0400] “GET /~comp3$2/images/back.qgif HTTR/L.1" 304 -
132.205.46,145 - - [16/Jun/2004:20:06:11 -0400) “GET /~comp352/images/logocs.gif HTTP/L,1" 304 -
132.205.46,145 - - [16/3un/2004:20:06:11 -0400] "GET /~comp352/images/topbarl.gif HTTP/1.1" 304 -
132.205.46.145 ~ ~ [16/3un/2004:20:06:11 -0400] “GET /~comp352/images/tophar2.gif HTTR/L.1" 304 -
132.205.46.145 - - [16/3un/2004:20:06:11 -0400] “GET /~comp352/images/topbar3.gif Hrre/L.1" 304 -
132.205.46,145 - - [16/3un/2004:20:06:11 -0400] “GET /~comp352/images/tophars.gif HTTP/L.1" 304 -
132.205.46.145 - - [16/3un/2004:20:06:11 -0400] "GET /~camp352/images/logoconc.gif HTTR/1.1" 304 -
132,205.46.145 - - [16/3un/2004:20:06:11 -0400] “GET /~comp352/images/spacerlss.gif HTTR/L.1" 304 -
132,205.46.145 - - {16/un/2004:20:06:11 -0400] "GET /~comp352/images/quick.gif HTTP/L.1" 304 -
132.205.46.145 - - [16/3un/2004:20:06:11 -0400] “GET /~comp352/images/announce. gif HTTP/L.1" 304 -
132.205.46.145 - - [16/3un/2004:20:06:11 -0400] “GET /~comp352/images/contacts.qif HITP/1.1" 304 -
132.205.46.145 - - [16/1un/2004:20:06:11 -0400] "GET /~comp332/images/help.gif HTTR/L.1" 304 -
132.205.46.,145 - - [16/2un/2004:20:06:11 -0400] "GET /~c0mp352/1mages/cup{r1ght.gif KTTP/1.1" 304 -

- fn

65.95.27,100 - - [16/3un/2004:20:06:11 -0400] "GET /~gregb/h0me/paper.ht HTTR/1.1" 200 5360
132.205.46.145 - - [16/3un/2004:20:06:12 ~0400] "GET /~comp352/2004s/index.shtm] HTTR/1.1" 200 17859
64.242.88.10 - - {16/3un/2004:20:06:13 -0400] "GET /cccg HTTR/L.1" 301 324

64.242,88.10 - - [16/7un/2004:20:06:13 -0400] "GET Jcceg/ HTTR/LLL" 200 7051

Figure 2 Example of a log file from web server

Let us consider a typical log entry:

195.162.218.155 - - [27/Jun/2004:00:01:54 -0400] “GET /cccg/ HTTP/1.1” 200 38890

“levents/” “Mozilla/4.0 (compatible; MSIE6.0; Windows NT 5.1;SKY11a)"

The first part of this line, 195.162.218.155, specifies the [P-address of the client who
made the request to the server. This IP-address can be used to identify different visitors of
the site. The second component in this line gives us information on when the request was
made. The third part “GET /cccg/ HTTP/1.1” of this entry is called the request line and

consists of three parts: The GET-part specifies the method used to request the page. If the

17



surfer requests a normal web page, then the method used will always be GET. Other
possibilities are POST, to send values of a form to the server, and HEAD. The second
part of the request line indicates which file was requested. The final part specifies the
protocol used to request the file. The two numbers, 200 and 38890, following the request
line indicate a status code and the size of the returned file, respectively. The status code
200 indicates that the request was successfully completed. Other status codes indicate
various types of errors, from which “error 404: Page not found”, is probably the most
familiar to the reader. The next part of the line designates the referrer. This is the page
that refers to the requested page. From this line, it can thus be concluded that there was a
link from “/events/” to the page “/cccg/”. Finally, the last component of the line specifies

the agent used (browser).

The required high-level tasks in usage data preprocessing include data cleaning, page
identification, user identification, session identification (or sessionization), and the
inference of missing references due to caching. We briefly discuss some of these tasks
below. For a more detailed discussion interested readers are referred to [Cooley, 2000;

Cooley et al., 1999, Mobasher 2004].

Data cleaning results in filtering out log entries that are not required or are irrelevant for
our task. These include entries that: (i) result in any error (indicated by the error code),
(i) use a request method other than “GET”, or (iii) record accesses to image files (.gif,
Jpeg, etc), which are typically embedded in other pages and are only transmitted to the
user’s machine as a by product of the access to a certain web page which has already
been logged. Also references due to spiders and web robots are removed. Sessionization

is the process of segmenting the access log of each user into sessions. Web sites without

18



the benefit of additional authentication information from users and without mechanisms
such as embedded session IDs must rely on heuristic methods for sessionization. The goal
of a sessionization heuristic is reconstruction of the real sessions, where a real session is
the actual sequence of activities performed by one user during a visit to the site.
Generally, sessionization heuristics are time-oriented where either global or local time-
out estimates are applied to distinguish between consecutive sessions.

The preprocessing tasks ultimately result in a set of M pages (URLs), U = {urly, urly, ...
,2urly}, and a set of Ny user sessions, S = {sy, S, ... ,Snu}, Where each s; €8S is a subset of

U. Conceptually, we can view the i™ session s; as a sequence or vector of / pairs

si=((p1, W(p1), (P2, W(p2)), - - -, (P, W(pN)),
where each p; = url; for some j € {1, ... ,M}, and w(p;) is the weight associated with
each p; in session s;. In most web usage mining tasks, we can choose two types of
weights: binary, representing the existence or non-existence of a page in the session; or
duration of time spent on each page in the session by the user.
Whether the sessions are viewed as sequences or as sets (without considering the order of
web page access) depends on the goal of the analysis and the intended applications. For
sequence analysis and the discovery of frequent navigational patterns, one must preserve
the ordering information in the underlying session. On the other hand, for clustering tasks
as well as for collaborative filtering based and association rule discovery, we can
represent each user session as an M-dimensional vector, where dimension values are the
weights of these pages.
In our work, we use time-oriented heuristic and consider binary weights. Hence, each

session is an M-dimensional binary vector such that:

19



sij =1 if the i'" session had the i™ URL clicked
sij = 0, otherwise.
In addition to the aforementioned preprocessing steps leading to sessions, there are also a

variety of data transformation tasks that can be performed on the session data [Mobasher

et al., 2001, 2004].

2.3 Pattern Discovery

We now present specific data mining techniques that are popularly used for mining web
usage data. As noted above and depicted in Fig. 1, after applying the various
preprocessing steps we ultimately get a set of M pages and Ny sessions. Give a set of
sessions, a variety of knowledge discovery and data mining (KDD) [Han and Kamber,
2000] techniques can be applied to obtain actionable patterns. In this thesis, we focus on

association rules and clustering.

2.3.1 Association Rules

Association rule mining, one of the most important and well-researched techniques of
data mining, was first introduced in [Agrawal and Srikant, 1994]. It aims to extract
interesting correlations, frequent patterns, associations or casual structures among sets of
items in the transaction databases or other data repositories. When applied to web usage
sessions, association rules are used to find associations among web pages that frequently
appear together in that set of sessions. A typical result has the form:
A.html, B.html = C.html
which states that if a user has visited page A.html and page B.html, it is very likely that in

the same session the same user has also visited page C.html.

20



More formally, association rule mining problem can be stated as follows. Let I = {I}, I, .
., Iim } be a set of m distinct items, T be a transaction that contains a set of items, that is,
T < I, D be a database that is a set of transactions. Association rules are implications of
the form X = Y, where X,Y < I are sets of items, called itemsets, and X "Y = . The
rule X = Y states that the transactions which contain the items in X are likely to contain
also the items in Y. X is also called the antecedent of the rule while Y is its consequent.
The two basic parameters of Association Rule Mining (ARM) are: support and
confidence.

Support of an association rule is defined as the percentage/fraction of transactions in the
database D that contain X U Y to the total number of transactions in D. Support is
calculated by the following formula:

Support (X =Y) = (number of transactions that contains itemsets X and Y) / total
number of transactions in the database D.

From the definition, we can see that the support of an item is a statistical significance of
an association rule. Suppose the support of an item is 0.1%, it means only 0.1 percent of
the transactions in D contain the item. The analyst need not pay much attention to items
that are not occurring frequently, obviously a high support is desired for more interesting
association rules. Before the mining process, users need to specify the minimum support
as a threshold, which means they are only interested in certain association rules that are
generated from those itemsets whose supports exceed the given threshold.

Confidence of an association rule is defined as the percentage/fraction of the number of

transactions in D that contain X U Y to the total number of transactions that contain X,

21



where if the percentage exceeds the threshold of confidence an interesting association
rule X =Y can be generated.

Confidence (X = Y) = Support (X = Y) / Support (X).

Confidence is a measure of strength of the association rules. Suppose the confidence of
the association rule X = Y is 80%. Then it means that 80% of the transactions that
contain X also contain Y. As was the case for support, minimum confidence is also pre-
defined by the user to ensure interesting rules.

Association rule mining (ARM) is to extract association rules that satisfy the predefined
minimum support and confidence from a given database. The problem is usually
decomposed into two subproblems. One is to find those itemsets whose occurrences
exceed a predefined support threshold in the database. Such itemsets are called frequent
itemsets. The second problem is to generate association rules from frequent itemsets with
the constraints of minimal confidence. Suppose one of the frequent itemsets is Ly, where
Li= {11, I, . . ., I, Ik}. Then association rules with this itemset are generated in the
following way: the first rule is {I, L, . . ., lk.1} = {I}, by checking the confidence this
rule can be determined as interesting or not. Other rules can be found in a similar manner.
In fact the number of such rules is exponential in the number of items considered. Since
the second subproblem is quite straight forward, most of the research is focused on the

first subproblem [Han and Kamber, 2000].

2.3.2 Clustering

Clustering is partitioning data into groups of similar objects. Each group, called a cluster,
consists of objects that are similar between themselves and dissimilar to objects of other

groups. Representing data by fewer clusters necessarily loses certain fine details, but

22



achieves simplification. The goal of clustering is to separate a finite unlabeled data set
into a finite and discrete set of “natural,” hidden data structures. Clustering is a subjective
process in nature, which precludes an absolute judgment as to the relative efficacy of all

clustering techniques [Jain and Dubes, 1988].

There is no universally agreed upon definition of the clustering problem. Here, we give a
simple mathematical description based on the descriptions in [Bezdek 1982]. Consider a
data set X consisting of N data points (also called objects, instances, cases, patterns,
tuples, transactions) where X= {xi, . ., Xj, . . xn}. Often, but not always, each object can
be represented by a set of d measurements; that is, xj = (xj1, Xjp, . ., xjd)T e RP and each
measure X;; is said to be a feature (attribute, dimension, or variable). Clustering attempts
to seek k-partitions of X, C={C,, .. ., Cx} where k <N, such that

C =¢,i=1,..,k

G X
CnNC=¢,ij=1,..,kandi=].

Cluster analysis typically consist of the four basic steps [Xu and Wunsch, 2005] given

below.

1) Feature selection or extraction. Feature selection chooses distinguishing features from
a set of candidates, while feature extraction utilizes some transformations to generate
useful and novel features from the original ones. Both are very crucial to the
effectiveness of clustering applications. Elegant selection of features can greatly decrease

the workload and simplify the subsequent design process.

23



2) Clustering algorithm design or selection. The step is usually combined with the
selection of a corresponding proximity (or distance or dissimilarity) measure and the
construction of a criterion function. Patterns are grouped according to whether they
resemble each other. Obviously, the proximity measure directly affects the formation of
the resulting clusters. Once a proximity measure is chosen, the construction of a
clustering criterion function makes the partition of clusters an optimization problem.
Clustering is ubiquitous, and a wealth of clustering algorithms has been developed to
solve different problems in specific fields. However, there is no clustering algorithm that
can be universally used to solve all problems. Therefore, it is important to carefully
investigate the characteristics of the problem at hand, in order to select or design an
appropriate clustering strategy.

3) Clu;ter validation. Given a data set, each clustering algorithm can always generate a
division, no matter whether the structure exists or not. Moreover, different approaches
usually lead to different clusters; and even for the same algorithm, parameter
identification or the presentation order of input patterns may affect the final results.
Therefore, effective evaluation standards and criteria are important to provide the users
with a degree of confidence for the clustering results derived from the used algorithms.

4) Results interpretation. The ultimate goal of clustering is to provide users with
meaningful insights from the original data, so that they can effectively solve the problems
encountered. Experts in the relevant fields interpret the data partitions. Further analysis,

even experiments, may be required to guarantee the reliability of extracted knowledge.

2.4 Recommendation and Personalization

24



As introduced in Chapter 1, the recommendation problem is to estimate ratings for the
items that have not been seen by a user [Adomavicius and Tuzhilin, 2005]. In web
personalization, recommender engines recommend objects in the form of pages, products,
advertisements, etc., depending on the type and taste of the user. Also as noted earlier,
there are three basic approaches used in recommender systems, namely content-based
filtering, rule-based filtering, and collaborative filtering. Collaborative filtering (CF) is
the most successful and widely used recommender system technology and is also the
approach adopted in our research for web personalization.

More formally, let U denote the set of URLs and M=|U| be the total number of URLs in
U. si,...,Snu are the access sessions in the user database D, and Let s, be the active user
session. Let NA < U be all the URLs not yet accessed by the active user for which we
would like to provide recommendations. A collaborative filter is a function f, defined as
shown below, which takes all past users’ sessions as the input, and produces
recommendation values for pages not yet accessed by the active user [Pennock et al.,
2000]:

Saj =T (51,52, ..., SNu), for all j in NA
[Breese et al., 1998] identified two major classes of collaborative filtering algorithms,

memory-based and model-based. We discuss these approaches briefly below.

24.1 Memory-based CF

Memory-based collaborative filtering typically relies on k-Nearest-Neighbor (kNN)
approach comparing the accesses or activities of target user with the historical records of
other users in order to find the top k users who have similar tastes or interests. The

mapping of a visitor record to its neighborhood could be based on similarity in ratings of

25



items, access to similar content or pages, or purchase of similar items. The identified
neighborhood is then used to recommend items not already accessed or purchased by the
active user. In the context of personalization, memory-based CF involves measuring the
similarity or correlation between the active session s, and each session s; in D. The top k
most similar sessions to s, are considered to be its neighborhood, which is commonly
denoted as NB(s,) [Mobasher, 2004]. A variety of similarity measures can be used to find
the nearest neighbors. In traditional collaborative filtering domains (where feature
weights are item ratings on a discrete scale), the Pearson correlation coefficient is
commonly used [Breese et al., 1998, Sarwar et al., 2000b]. This measure is based on the
deviations of users’ ratings on various items from their mean ratings on all rated items.
However, this measure may not be appropriate when the primary data source is
clickstream data (particularly in the case of binary weights). Instead the cosine
coefficient, commonly used in information retrieval, which measures the cosine of the
angle between two vectors, can be used. The cosine coefficient can be computed by
normalizing the dot product of two vectors with respect to their vector norms. Hence

cosine similarity between sessions s, and s; is:

Zk('sak 'S ) )

b
2 2
DIEOILH

In order to determine which items (not already visited by the user in the active session)

s1m(S,,8;) = cosine,j =

are to be recommended, a recommendation score is computed for each item or page p
based on the neighborhood for the active session. Two factors are used in determining
this recommendation score: the overall similarity of the active session to the

neighborhood as a whole, and the average weight of each item in the neighborhood.

26



First we compute the mean vector (centroid) of NB(s,), i.e., popularity of each item or
page among the neighbors. Popularity of each page in the mean vector is computed by
finding the ratio of the sum of the page weights across sessions to the total number of
sessions in the neighborhood. Let this centroid be denoted as cent(NB(s,)). For each page
p in the neighborhood centroid, we can now obtain a recommendation score as a function
of the similarity of s, to the centroid vector cent(NB(s,)) and the weight of p in
cent(NB(s,)). Hence the recommendation score [Mobasher, 2004] of page p denoted as

rec(s, , p) 1s:

rec(s, , p) = |/ weight(p, NB(s,)) x sim(s, ,cent (NB(s, )))

where weight(p, NB(s, )) is the weight of p in cent(NB(s,)).

If p is in the current active session, then its recommendation value is set to zero. If a fixed
number N of recommendations are desired, then the top N items with the highest
recommendation scores are considered to be part of the recommendation set. Alternately,

we could also recommend only those pages whose recommendation score is above a

threshold.

2.4.2 Model-based CF

In contrast to memory-based methods, model-based algorithms [Billsus and Pazzani,
1998, Chien and George, 1999, Getoor and Sahami, 1999, Breese et al. 1999, Pennock
and Horvitz, 1999], use the historic rating or dataset to learn a model, which is then used
to make rating predictions. Model-based CF algorithms typically depend on the
underlying modeling technique that is used. There are several model-based collaborative
recommendation approaches proposed in the collaborative filtering and recommender

system literature, for details see [Adomavicius and Tuzhilin, 2005]. A statistical model

27



for collaborative filtering was proposed in [Ungar and Foster, 1998], and several different
algorithms for estimating the model parameters were compared, including K-means
clustering and Gibbs sampling. Other collaborative filtering methods include a Bayesian
model [Chien and George, 1999], a probabilistic relational model [Getoor and Sahami,
1999], and a linear regression [Sarwar et al., 2001]. [Shani et al.,, 2002] view the
recommendation process as a sequential decision problem and propose using Markov
decision processes for generating recommendations. A different approach to improving
the performance of existing collaborative filtering algorithms was taken in [Yu et al,,
2002], where the input set of user-specified ratings is carefully selected using several

techniques that exclude noise, redundancy, and exploit the sparsity of the ratings’ data.

In the domain of web personalization, one of the most advanced systems is the
WebPersonalizer, proposed by Mobasher et al. [1999, 2000]. WebPersonalizer provides a
framework for mining web log files to discover knowledge for making recommendations
to current users based on their browsing similarities to previous users. Data mining
techniques such as association rules, sequential pattern discovery, clustering, and
classification are applied, in order to discover interesting usage patterns. [Perkowitz and
Etzioni 1998] were the first to define the notion of adaptive web sites as sites that semi
automatically improve their organization and presentation by learning from visitor access
patterns. The authors propose PageGather, an algorithm that uses a clustering
methodology to discover web pages visited together and to place them in the same group.
In a more recent work [Perkowitz and Etzioni 2000], they move from the statistical
cluster-mining algorithm PageGather to IndexFinder, which fuses statistical and logical

information to synthesize index pages. [Nasraoui et al. 2000, Nasraoui et al. 2002]

28



introduce the notion of uncertainty in web usage mining, discovering clusters of user
session profiles using fuzzy algorithms. In their approach, a user or a page can be
assigned to more than one cluster. They introduce a similarity measure that takes into
account both the individual URLs in a Web session, as well as the structure of the site.

They also present a personalization system that uses these mined profiles to recommend
pages.

[Masseglia et al. 1999a,b] apply data mining techniques such as association rules and
sequential pattern discovery on Web log files and then use them to customize the server
hypertext organization dynamically. The prototype system, WebTool, provides a visual
query language in order to improve the mining process. [Shahabi et al. 2001, 2003]
developed a recommendation system, termed Yoda that is designed to support large-scale
web-based applications requiring highly accurate recommendations in real-time. With
Yoda, they introduce a hybrid approach that combines collaborative filtering and content-
based querying to achieve higher accuracy. It uses clustering for model learning. [Coenen
et al., 2000] propose a framework for self-adaptive Web sites, taking into account the site
structure except for the site usage. The proposed approach is based on the fact that the
methods used in web usage mining produce recommendations including links that don’t
exist in the original site structure, resulting in the violation of the beliefs of the site
designer and the possibility of making the visitor get lost by following conceptual and not
real links. Therefore, they suggest that any strategic adaptations based on the discovery of
frequent item sets, sequences, and clusters should be made offline and the site structure

should be revised.

29



Chapter 3
Relational Fuzzy Subtractive

Clustering

As discussed in Chapter 2, clustering is partitioning of a collection of objects into disjoint
subsets or clusters such that objects in the same cluster have some common properties
that distinguish them from objects in other clusters. A fuzzy clustering is a generalization
of this process, where the clusters are not necessarily subsets of the collection, but instead
they are fuzzy subsets, based on the notion of fuzzy sets introduced by [Zadeh 1965].
That is, each object is assigned a number between 0 and 1 with respect to every cluster,
called as grade of membership. Objects which are similar to each other are identified by
having high memberships in the same cluster, “Hard” clustering algorithms assign each
object to a single cluster that is using the two distinct membership values of 0 and 1. In
many situations, say, web usage data’, this “all or none” or “black or white” membership
restriction is not realistic as very often there may not be sharp boundaries between

clusters and many objects may have characteristics of different classes with varying

% Web log data is inherently soft and fuzzy in nature. The browsing behavior of users on the web is highly
uncertain. A user might browse the same page for different purposes, Each time the user accesses the site,
he/she may have different browsing goals. The same user in the same session may have different sub-goals
and interests. It is therefore inappropriate to capture such overlapping interests of the users in crisp
partitions,

30



degrees. In such situations, it is more natural to assign to each object a set of
memberships, one for each cluster or class. The implication of this is that the class
boundaries are not hard but rather fuzzy. The main advantage of fuzzy clustering over
hard clustering is that it yields more detailed information about the underlying structure
of the data.

Let us formally distinguish between a hard and fuzzy clustering. Consider a data set X
consisting of N data points where X= {xi, . . , Xj, . . Xn} is a subset in feature space RP.
Let C be an integer such that 2< C < N. A hard C-partition of X can be represented by a

(CxN) matrix U = [uj] such that,

1) u, € {0, 1}; 1<i<C; 1Sk <N,
C
2) Y uy =1; 1<k <N,
i=]
N
3) D uy >0; I<i<C.
k=1

A fuzzy C-partition of X is also represented by a (CxN) matrix U= [uj] such that,

1) u, [0, 1]; 1<i<C; 1<k <N,
C
2) > uy =1; 1<k <N,
i=l
N
3) > uy >0; 1<i<C,
k=1

U is called the membership matrix, and ujy is the membership grade of k™ object to i
cluster. The first condition for hard clustering means that each object either belongs to a
cluster or it does not, i.e., uix is either 0 or 1. While for fuzzy clustering it means each

object can belong to a cluster with varying degree of memberships in [0, 1]. We also see

31



that conditions 2 and 3 essentially remain the same for both. Condition 2 can be
interpreted differently. For hard clustering it means that each object belongs to exactly
one cluster while for fuzzy clustering the sum of memberships of an object to different
clusters is 1. Also condition 3 means that no cluster can be empty.

To deal with the fuzziness and uncertainty in web usage data, [Nasouri et al, 2000]
proposed to extract profiles using an unsupervised relational clustering algorithm based
on the competitive agglomeration algorithm. They [Nasraoui et al. 2002] further extend
this approach with fuzzy clustering algorithms such as Relational Fuzzy C-Maximal
Density Estimator (RFC-MDE) and Fuzzy C Medoids algorithm (FCMdd). The basis of
these techniques is the Fuzzy C-means (FCM) [Bezdek, 1982] method of clustering
which allows one piece of data to belong to two or more clusters. We next describe

relational data on which all the aforementioned techniques work.

3.1 Relational Data

The given set of objects to be clustered is often described using either numerical object
data or numerical relational data [Hathway et al., 1996]. Numerical object data is
available in the form of a set of vectors in RP say X= {xi, . ., xj, . . xn} Where x; is feature
vector representing object j and xjk e RP is the k™ feature of x;, and RP is feature space.
Algorithms that generate partitions (hard or fuzzy) of object data are usually called object
clustering algorithms. Relational data refers to the situation where we have only
numerical values representing the degree of similarity or dissimilarity (relation) between
the pair of objects to be clustered. Relational data may be based on actual object data or
can be based on subjective expert knowledge. Algorithms that generate partitions of

relational data are called as relational clustering algorithms. Relational clustering is more

32



general in the sense that it is applicable in situations in which the objects to be clustered
cannot be represented by numerical features. Relational data is typically represented by a
matrix R, where R;j is the dissimilarity between the i™ and the jth object. It holds that
Ri>0, Rj=R;;, and R;i=0. Further, R may be a Euclidean or non-Euclidean matrix. R is
said to be Euclidean if there exist a set of N object data points in some p-space whose
squared Euclidean distances match the values in R. More formally, relation R= [r;] is
Euclidean if there exists a data set X= {xi, . ., X, . . xn} in RP, such that rjj =||x; — x|
where || . || is the Euclidean norm.

Object clustering algorithms are not suitable for clustering access sessions [Nasraoui et
al., 2000]. This is because of the high dimensionality of the feature space (there are
usually thousands of URLs in a typical web site) and the likely correlation between
features. The web sessions are too complex to convert 'to simple numerical features,
particularly because the organization of the web site must be taken into account. In fact,
the URLSs in a site have a hierarchical or tree-like structural composition. Therefore when
defining the relation R for sessions, the similarity or dissimilarity measure between
sessions should take into account both the structure of the site as well as the URLs
involved. Such a relational matrix of access sessions is essentially non-Euclidean in

nature.
B-spread transformations

The aforementioned algorithms based on FCM such as RFC-MDE and FCMdd as well as
Non-Euclidean Relational Fuzzy clustering (NERF) [Hathaway and Bezdek, 1994]
convert non-Euclidean relations into Euclidean using the f3-spread transformations. This

transformation consists of adding a positive number B to all off-diagonal elements of the

33



relational matrix R. It has been shown [Hathaway and Bezdek, 1994] that there exists a
positive number o such that the B spread transformed relation Ry is Euclidean for all $>
Bo, and is non Euclidean for all B < ¢. The value B determines the amount of spreading,
and hence should be chosen as small as possible to avoid unnecessary spreads of data
which may lead to loss of cluster information. On the other hand, exact computation of ¢
involves expensive eigenvalue computations [Corsini et al, 2004]. [Hathaway and
Bezdek, 1994] show that B-spread transformation can be computed dynamically during
the iteration process of FCM. The fn computed is the minimum value, which guarantees
convergence of the computation. However, the performance of algorithms using this
transformation depends on the value of By which could be so large that the structure in
the original relational matrix R might not be mirrored by that in Rgy [Corsini et al.,
2004]. In a recent development, this requirement of a computationally expensive B-
spread transformation has been overcome with the introduction of Any Relational
Clustering algorithm (ARCA) proposed in [Corsini et al. 2004]. ARCA is the most recent
evolution of FCM based algorithms, and is an appropriate candidate from this class of
clustering techniques when carrying out comparative experimental studies of the kind we

have discussed later in this chapter. ARCA is discussed in more detail below.

3.2 Any Relational Clustering Algorithm

ARCA takes the FCM algorithm as starting point. FCM is an iterative algorithm, which
partitions a dataset by minimizing the Euclidean distance between each point belonging
to a cluster and the prototype of the cluster. In FCM, a prototype is a point (possibly not

included in the original dataset), which is representative of the cluster and has a position

34



around the center of the cluster with respect to the neighboring objects. This resulting
cluster is obtained by updating at each iteration, both the membership of each point to a

cluster and the cluster prototypes.

FCM determines a fuzzy partition of the dataset using an alternating optimization scheme

to iteratively minimize appropriate objective functions J,,, defined as follows:

C Ny
JL U VY=>>"u,"d*(x,,v,)

i=l k=1

C
under the constraints, Vi, k, ui € [0,1], and Vk, Zu,.k =1

i=1
where X1, X2, . . . , XNy are the objects to be clustered,
v; is the centroid (prototype) of cluster i,
uik is the membership degree of object xi to the cluster represented }b.yivi,
d(xy, vi) is the Euclidian distance between i centroid (v;) and k™ data point, and
m € [1,0] is a weighting exponent (fuzzifier).

The membership uy and the cluster centers v; is updated at each iteration as follows:

No m
Zk=]uik X . 1

i Ny m ° i 2/(m-1) ?
ket Hik ZC dy
j=
d,

In ARCA, each object is represented by the vector of its relation strengths with other

objects in the dataset, and a prototype (v;) is an object (possibly not included in the
original data set) whose relationship with all the objects in the dataset is representative of

the mutual relationships of a group of similar objects. As in FCM, ARCA partitions the

35



dataset by minimizing the distance between each object (strongly) belonging to a cluster
and the prototype of the cluster. ARCA yields an optimal partition by minimizing the
following objective function:

Ny
1) =Y w5 (x5, v,)

i=1 k=1

C
subject to the conditions, Vi, k, ui € [0,1], and VK, Zuik =1

i=l
with similar notations defined above in the FCM objective function.

Here, 6(xk, vi) is the deviation of the relation between xx and all the other objects, and

between v; and all the other objects, defined as:

O(x,v;) :dNZU(Rkj "'V,'j)z

where Ry; is the relation between objects xx and xj, and vy is the relation between

prototype v; and object Xx;. We now present the ARCA algorithm.
ARCA algorithm

Fix((g and m, where 2 < C < Ny and 1< m< oo, and choose an initial partition U(0) =
].

[uix
For/=0,1,2, ...
1) Determine the prototype vector VO = [vik(’)] as:

N,
“u."R,
-2l
Zj:] u‘]
2) Update U(J) to U(/+1) using the formula
1
(7+1) _

ik 2 /(m-1) ;
[
>, Gur
j=1 o)
O 4

36



3) Compare U(/) and U(/+1) in a convenient matrix norm: if || U(/+1) — U(J)|| <e,
where >0 is a prefixed termination threshold, then stop; otherwise, set /= /+1 and
go to stepl.

Input Parameters and Constraints

With the above background of FCM and ARCA we now discuss the limitations of these
techniques particularly for mining usage data. The success of FCM based algorithms
depends on some “carefully” selected user specified control parameters (cases 1 to 3

below) or on the constraint (case 4), as discussed below.

1. The number of clusters C: This user input parameter is a very critical factor that
determines the quality of the clustering. When the dataset is small, it maybe possible to
estimate C. However, in case the dataset is huge, as is the case with web log records, it is
not known how to estimate C correctly. Thus it is difficult to guarantee that the clustering
results would manifest the true structure in the data. One way to decide on the value of C
is using a validity index, for which one could use popular validity measures such as Xie-
Beni index (S) [Xie and Beni, 1991] and partition coefficient [Bezdek 1982]. The Xie-
Beni index depends on the compactness and the separation of the clusters found. The
index value S tends to monotonically decrease when C approaches Ny (the number of
data objects to be clustered). Hence they suggest to cluster the data from C=2 to Ny/3 and
then select a value C for which the Xie-Beni index is minimum. This procedure could be
impractical when Ny is large as in the case with sessions. For instance, when there are
10,000 sessions to be clustered, the algorithm must be executed for C = 2 to 3333 to
determine an optimal C. Further, web analysts may need to do frequent remodeling to

capture current trends and interests. The total computation time is prohibitively large

37



making these algorithms poorly suited for large usage datasets using standard computing

resources.

2. The fuzzifier m: This parameter controls the extent of membership among fuzzy
clusters in the dataset. In general the larger m is, “fuzzier” is the resulting partition i.e.
membership assignments; conversely as m approaches 1, the clustering becomes hard.
This parameter is also required to be specified for all FCM based techniques. Once again,
for large web usage datasets, it is unclear how to specify a value of m a priori. The web

analyst may have no idea as to “how fuzzy” is the current usage data.

3. Initial partition U(0) (for RFC-MDE, NERF and ARCA) and initial medoids (for
FCMdd): An initial partition or medoid must be specified as the start point for the above
clustering algorithms. Different choices of this initial partition or medoids can lead to

different local extrema of the objective function [Abraham, 2003, Nasraoui et al. 2002].

4. Partition of unity constraint for membership: A major restriction of FCM based
algorithms is that they require the total sum of the memberships of every object to all the

C clusters should be 1,

C
ie., Zuik =1; 1<k <Ny,
i=1

A careful study of this formulation shows that it may cause bias due to noise. Hence, just
to be able to satisfy this constraint, even outliers will get assigned to one or more classes
with some degree of membership. Almost every dataset has some noise and more so the
usage data which is inherently noisy in nature. To overcome this restriction, [Dave 1991]
introduced the concept of noise clustering (NC) algorithm for object data, and suggested

considering an extra cluster in addition to the C clusters specified by the user. This noise

38



cluster is represented by a prototype that has the same distance & from all the feature
vectors. Later on NC was extended to relational data; however selection of & is a complex
issue [Dave and Sen, 2002]. It requires a good knowledge of the data or a good estimate

of it, which could be rather difficult to obtain when the data is large.

3.3 Relational Fuzzy Subtractive Clustering

Algorithm

We now present our new technique for clustering web usage data which we have named
as Relational Fuzzy Subtractive Clustering (RFSC) [Suryavanshi et al., 2005a]. As the
name suggests, RFSC is based on the subtractive clustering algorithm proposed in [Chiu
1994], a technique widely used in fuzzy systems modeling. It is important to mention

here that RFSC overcomes all the above-mentioned shortcomings. .

[Yager and Filev 1992] proposed a simple and effective algorithm, called the mountain
method, for estimating the number and initial location of cluster centers. Their method is
based on gridding the data space and computing a potential value for each grid point
based on its distances to the actual data points; a grid point with many data points nearby
will have a high potential value. The grid point with the highest potential value is chosen
as the first cluster center. The key idea in their method is that once the first cluster center
is chosen, the potential of all grid points is reduced according to their distance from the
cluster center. Grid points near the first cluster center will have greatly reduced potential.
The next cluster center is then placed at the grid point with the highest remaining

potential value. This procedure of acquiring new cluster center and reducing the potential

39



of surrounding grid points repeats until the potential of all grid points falls below a
threshold. Although this method is simple and effective, the computation cost grows
exponentially as the dimension of the problem increases. For example, a clustering
problem with 4 variables and each dimension having a resolution of 10 grid lines would
result in 10* grid points that must be evaluated. [Chiu, 1994] proposed an extension of
mountain method, called subtractive clustering, in which each data point, not a grid point,
is considered as a potential cluster center. The main advantage of this method is that it
eliminates the need to specify a grid resolution, in which tradeoffs between accuracy and
computational complexity must be considered. RFSC uses the same idea of considering
each data object as a potential cluster center. It uses a potential function for relational
data which is derived on the same lines as the one used in [Chiu, 1994]. We describe the

RFSC algorithm in detail below.

The potential P; of any object Xx; is calculated using the function:

Ny —aR}?

Pizz e’ ,whereoc=4/y2
in which R;; is the dissimilarity between objects x; and x;, Ny is the number of objects to
be clustered, and y is essentially the neighborhood calculated from the relational matrix
R. We define the notion of neighborhood-dissimilarity (y;) of each object x; from every
other object as the median of dissimilarity values of x; to all other objects. The
neighborhood-dissimilarity value y for the entire dataset is defined as the median of all
vi’s, for 1 < i < Ny. Further, for RFSC algorithm we impose a restriction of having
normalized dissimilarity values, i.e., the relational matrix R is required to be a

dissimilarity matrix such that 0 <Ry < 1. Therefore, y will always be a value in the range

40



[0, 1]. This is a heuristic that seems to work fine for many datasets which we have used in

Our numerous experiments.

The object with the highest potential (P*) is selected as the first cluster center. Next, the
potential of each object is reduced proportional to the degree of similarity with this
previous cluster center. Thus, there is larger subtraction in potential of objects that are
closer to this cluster center compared to those which are farther away. After this
subtractive step, the object (x;) with the next highest potential (Py) is selected as the next
candidate cluster center. Now to decide whether this candidate cluster center can be
accepted as an actual cluster center or should be rejected, we make use of two threshold
values, called accept ratio (denoted as €) and reject ratio (€) such that 0 <e, €< 1, and
€ < €, If P, > €P*, then x, is selected as the next cluster center, and this is followed by
the subtractive step described above. If Py < €P*, then x; is rejected, and the clustering
algorithm terminates. If the potential P, lies between €P;* and €P,*, then we say that the

potential has fallen in the gray region. In this case, we check if the object provides a good
trade-off between having a sufficient potential and being sufficiently far from existing
cluster centers. If this is the case, then it is selected as the next cluster center. This

process of subtraction and selection continues until Py < € P;*, which is the termination

condition. After finding the cluster centers, say C in number, we can find the membership

of different x; with each cluster c; using the formula:
~aR?. . .
yj=e “,1=[1.C1&j=[1..Ny},
in whichR_ , is the dissimilarity of the i™ cluster center x,, with the j"" session x;. When

Xj =x, , we have R_ ;= 0 and the membership u; = 1. Also in the above process we have

41



C
relaxed the constraint which FCM based algorithms, namely thatZu,.j =1. This

i=l
effectively makes RFSC less sensitive to noise, as no object is forced any more to have a
membership spread in such a way that the sum is 1. Further membership spread of object
having characteristics of two or more classes also may not sum up to one. If we carefully
observe the RFSC membership function, we see that it is Gaussian in nature and
membership is calculated for every cluster using this function. With respect to individual
clusters, the objects along the asymptotes of this Gaussian function are noise for that
cluster. Noise objects with respect to the entire dataset are therefore essentially defined as
objects which lie along the asymptotes of the Gaussian function for all clusters. We also

show this immunity to noise property of RFSC through experimental analysis in section

3.4,

RFSC Algorithm

Given a dissimilarity matrix R for Ny objects, we first compute v as defined above and
use it in the RFSC algorithm described below.
I} Set €(accept ratio) and € (reject ratio);

2} Calculate the potential of each object as follows:
2

Ny e—aRij 2
Pi=Z ,where a =4/ y
j=1

Select x; with the maximum potential as the first cluster center. Set cluster counter
k =1, and let ¢, = ¢; = 1. Here, x,, is the cluster center. Let P * =P* =P;.
3) Revise the potential of each object as follows (subtractive step):
—aR2, .
Pi=P;—P*¥e ™ Vi=1.Ny
Hence the potential of objectx,, , which is the k'™ cluster center, will become zero
and all the objects which are similar (close) to this object will also have a greater
reduction in their potentials because of this subtraction.
Now, select x; with the current maximum potential P, as the candidate for the next
cluster center.
4)  [Accept):
if P> €P* then accept x, as the new cluster center,
increment the cluster counter, k = k+1, set ¢ = t, and go to step 3.

42



[Reject):
else if P; < eP*, then reject x, and terminate.

else (Gray Area)
Let dmin = minimum of the dissimilarity values between x, and all
the previously found cluster centers.
[Accept):
if (dmin/y)+(P¢/P1*) > 1, then accept x; as the new cluster
center, k= k+1, ¢ = t, and go to step 3.
{Reject):
else reject x, as a cluster center and set its potential Py to 0;
Select the object with the next highest potential as the
new candidate cluster center, and go to step 3.
endif
endif
endif

3.4 Cluster Validity

Every clustering technique should have a cluster validity index that gives a measure of
the goodness or quality of the clustering. More formally, a validity functional is a
function which assigns to the output of a clustering algorithm a number indicating how
well has it identified the structure present in the data. Good clustering of the objects
results in least intra-cluster distance and large inter-cluster distance. We define a
goodness index for RFSC based on the popularly used Xie-Beni index [Xei and Beni
1991}. Xie-Beni index is basically the ratio of compactness to the separation of the

clusters defined for FCM based clustering algorithms that works when we have the

C
constraintZu,.j =1, V j =1 to Ny. Since this condition is relaxed in the case of RFSC,

i=1
we have formulated our own validity index for RFSC clusters by suitably adapting the

Xie-Beni formulation. This is described further below.

43



After applying RFSC for clustering the collection of objects {xi, X, . . . , XNy} through R,
we obtain a set of C cluster centers or cluster prototypes W= {Z,Z,,...,Z¢c} and the

membership grade of each object to C clusters is stored in the matrix u (CxNy).

Similar to [Xie and Beni, 1991] we define the notion of fuzzy deviation of an object x; to
cluster c; as, djj = u;; * R, ;; where u;; is the membership of x; to cluster c;, and Rc,. ; is the

cj?

dissimilarity between i cluster center and x;.

For each cluster c;, the fuzzy variation of ¢; is the sum of the squares of fuzzy deviations

2% R%

ij cj?

Ny Ny
of each object. Thus, o;= Zdj = Zu
=l

J=l

The total variation o is the sum of all i, for all i in [1.. C]. The value o essentially
depends on the fuzzy membership grades of different objects to different clusters and the

cluster centers themselves. A better partition should result in smaller G.

NU
The fuzzy cardinality of a cluster c; is defined as, n; = Zuij ;
f=1

For hard partitioning, n; will be equal to the number of objects in c;.

The ratio of fuzzy variation of each cluster c; to fuzzy cardinality of that cluster is called

compactness of that cluster, and is defined as, I, = c; / n;

Total compactness of the clustering normalized over C for RFSC is defined as:

Ny
2% p2
1 C Zu‘/ Rcij
m=1yj=
~ .
C i=1 -

44



The more compact the clusters are, the smaller IT would be.

Separation is defined asmini#kR? ,fori=1to Cand k=1 to C, wherex_ and X, are
CiC i

the i and k™ cluster centers and R, is the dissimilarity between these cluster centers,
iCk

i.e., the minimum of the distances between any pair of cluster centers found.

Index of goodness = Compactness

Separation

During the RFSC clustering based model building process, we search and choose those

values of accept ratio € and reject ratio € for which this index is minimum.

3.5 Experiments and Results

We first describe the usage data that we used in our experiments. We follow this by a
brief description of the similarity measures we used followed by the study of usage
profiles extracted through RFSC. We then present a comprehensive performance study

comparing RFSC and ARCA.

3.5.1 Datasets

Over the course of this thesis, we experimented with a number of synthetic datasets and
two web usage datasets. We used the access logs from the web server of Computer
Science and Software Engineering Department (CSE) at Concordia University during the
period of June 15, 2004 to July 5, 2004 (first dataset) and again during the period of

December 31, 2004 to March 05, 2005 (a much larger dataset). In this thesis, we only

45



present the experimental results for the latter dataset’. We performed data preprocessing
and preparation activities as explained in section 2.2. Log entries for image files and
other such components within a web page were removed. Log records for accesses by
web crawlers and failed requests are also removed from the dataset. After the cleaning
step, we proceed to extract the access sessions. Each distinct URL in the site is assigned a
unique number j ranging from 1 to M, the total number of URLs. The collection of the
user accesses in the k™ session is represented as a binary vector of size M, in which the jth
entry is 1 if the user accessed the jth URL during this session, and is O otherwise.
Sessions were identified from the log records by considering the time heuristic of 45
minutes as the maximum elapsed time between two consecutive accesses from a single IP
address. Root “/”” was filtered out from all sessions as it appeared in more than 80% of the
sessions. We also removed short sessions of length 1 or 2, as they do not carry much
information related to users’ access patterns. After this pre-processing phase, we obtained
64,529 user sessions with 10,424 distinct URLs. Compared to a few hundred or thousand
sessions used for verifying other fuzzy clustering techniques [Nasraoui et al., 2000,
2002], in our work, the numbers of sessions as well as the pages are much larger. The
average length of the sessions was 6.997 pages and sparsity level was 0.999329, defined

as 1- (nonzero entries / total entries).

3.5.2 Similarity Measures

We use the similarity measure proposed in [Nasraoui et al., 2000, Nasraoui et al., 2002]

for construction of relational matrix R. This similarity measure effectively captures the

3 Experimental results from the former dataset have been reported in our published papers [Suryavanshi et.
al.,, 2005a,b,c,d].

46



organization or structure of the web site and is popularly used. Session similarity is
defined based on URL similarity. The syntactic similarity between the i" and j™ URLs is

defined as:

Su(ij) = min [1, P Op,] J

max(l, max(} p; |,| p; ) -1
where p; denotes the path traversed from the root node (the main page in the site) to the

node which corresponds to the i™ URL. The length of path p; is denoted as | p; |-

To determine similarity of any two sessions sk and s;, two measures may be used. The

first measure is cosine, which does not consider the site structure, and is defined as:

M M M
Siy= Zskisli Zsla' Zsu
il P R

The second similarity measure, defined below, incorporates syntactic URL similarity.

M

M M M
Sy = Zzsla'sljSu (i, 7) Zskizslj
' =l =l

i=l j=

The similarity between any pair of sessions s and s; is a value in the range [0, 1] defined

as:
Sk =max (S1x, S2.1)

It follows that the dissimilarity between sessions k and / is Dy = 1 — Sy, which is a non-
Euclidean similarity measure. This means that if FCM based algorithms are to be used for
clustering then they would need to convert this non-Euclidean relation into Euclidean

through the expensive f spread transformations discussed earlier in Section 3.3.

47



3.5.3 Usage Profiling through RFSC

After construction of the relation R we can now apply RFSC algorithm to extract usage
profiles. RESC finds clusters in decreasing order of significance i.e. the cluster which is
obtained first is the most significant or prominent interest area followed by clusters of
lower prominence. We use the index of goodness defined in Section 3.4 to obtain the best
clustering. We obtain clustering for values of € and € ranging from 0.1 to 1 in steps of
0.1, such that € < € and find the cluster index of goodness for each combination. Then
we choose that combination of € and € for which this index is the best. Hence the index
of goodness validates the clusters and is used to obtain the optimal values of € and €.
We also note that even if we do not chose optimal values of € ande, the significant
clusters or prominent interest areas will always be found by RFSC. For our data set, the
optimal values were found at €=0.4 and €=0.1 and number of clusters C=46. To display
these usage profiles we performed defuzzification of the clustering obtained from RFSC.
As a defuzzification step, which is usually required for interpretation of results, each
session is assigned to the cluster to which its degree of membership is the highest. In this
defuzzification process noise sessions which have low membership with all the clusters

are separated and put into an extra cluster, called noise cluster. This noise profile is

shown in the Table 1.

Usage Profile (UP) for the i cluster is an M — tuple UP; = (upiy,..., upim), where M is
total number of URLs and up;; is the sum of all the sessions that belong to cluster i
having the j™ URL clicked divided by the sum of all the sessions in cluster i (cluster

cardinality). Hence up;; indicates the popularity of URL j in cluster i. Table 1 shows the

48



first 10 most prominent usage profiles (out of 46) and the noise profile with their

descriptions. Again order or prominence is automatically determined by RFSC. This

order (which is not found in FCM based algorithms) itself can give the web analyst

important information about the recent trends among users of the website. This can be

stated as an additional advantage of our algorithm. Also in Table 1, within each profile

we show only the first 5 most popular URL’s which give us an intuitive feel for the

interest areas and trends that are captured in these profiles, and the cardinality of each

cluster after defuzzification.

Profile Usage Profile Card. Description
#
/~eavis/comp249/ - 0.764 Profile related to students
/~eavis/comp249/main.html - 0.632 taking comp 249 course
1 /~eavis/comp249/assignments.html - 0.468 3565
/~eavis/comp249/notes.html - 0.328
/~eavis/hobbit/ - 0.316
/programs/ugrad/courses.html - 0.407 Profile related to prospective
/programs/ugrad/cs/cs.html - 0.215 students interested in
2 /prospective_students.html - 0.171 4221 undergrad studies in
/programs/ugrad/cs/curriculum.html - 0.168 computer science department
/programs/ugrad/soen/soen.html - 0.134
/~comp471/main.htm - 0.941 Profile related to students
/~comp471/-0.933 taking comp 471 course
3 /~comp471/General/ASSIGNS.htm - 0.344 2730
/~comp471/General/NOTES htm - 0.313
/~comp471/General/LAB.htm - 0.246
/people/people.html - 0.662 General profile related to
/people/faculty.html - 0.579 faculty, students and staff of
4 /current_students.shtml - 0.500 4963 computer science department
/people/graduates.html - 0.156
/people/staff.html - 0.106
/~comp239/ - 0.559 Profile related to students
/~comp239/2005W/ - 0.552 taking comp 239 and comp
5 /~comp352/ - 0.460 1832 352 courses together in Win

/~comp352/2005w/ - 0.449

2005

49




/~comp352/2005w/Info/out.htmi - 0.110

/programs/grad/courses.html - 0.338
/programs/grad/masters/master.html - 0,222

Profile related to prospective
students interested in

6 /programs/grad/diploma/courses.html - 0.113 3070 | graduate studies in computer
/programs/grad/diploma/diploma.html - 0.092 science department
(/programs/grad/diploma/comp5511.shtml - 0.081
/~comp646/winter05/labs/ - 0.638 Profile related to students
/~comp646/winter05/ - 0.518 taking comp 646 course

7 /current_students.shtml - 0.443 2798
[~comp646/winter05/assignments/ - 0.409
/~comp646/ - 0.349
/~mokhov/comp346/main.shtml - 0.390 Profile related to the tutor of
/~mokhov/comp346/ - 0.373 the comp 346 and soen 321

8 /~mokhov/soen321/grades.shtml - 0.346 2345 | courses
/~mokhov/soen321/main.shtml - 0.318
/~mokhov/soen321/ - 0.315
/~comp218/-0.922 Profile related to students
/~comp218/Comp218/Comp218WebPage/Html Fil taking comp 218 course

9 es/Main.html - 0.819 1711
/~comp218/Comp218/Comp218WebPage/Html Fil
es/assignment.html - 0.319
/~comp218/Comp218/Comp218WebPage/Html Fil
es/SectionS.htm - 0.285
/~comp218/Comp218/Comp218WebPage/Html Fil
es/Slides.htm - 0.238
/~s0en344/05W/home.html - 0.835 Profile related to students
/~soen344/ - 0.781 taking soen 344 course

10 /~s0en344/05W/schedule.html - 0.662 1655
/~s0en344/05W/references.html - 0.301
/~s0en344/05W/assignments/assignments.html -

0.250

/~ni_wang/openglspace/index.htm - 0.031 This is noise  profile

{~ni_wang/openglspace/welcome.html - 0.030 consisting of sessions with
Noise | /db/db/main.html - 0.022 4244 | low membership to all the

/~tktran/welcome.html - 0.019
/~1zhang/ - 0.018

cluster. We see that it’s a mix
of unrelated pages with top
five pages having very low
popularity

Table 1 Examples of Usage Profiles discovered

50




3.5.4 Performance Study of ARCA and RFSC

We now compare ARCA and RFSC in terms of the similarity/dissimilarity in the
resulting models and clustering times. We first present the evaluation metrics used by us
for measuring the similarity between RFSC and ARCA partitions. This is followed by an

analysis of the results of our experiments.
Evaluation Metrics

For similarity analysis, we have used the Rand index. We measure the similarity between
clusters generated by RFSC and those generated by ARCA. Below, we briefly describe
these metrics [Jain and Dubes, 1988]. Let V' = {vi, va,..., v} and W ={wy, ws,..., wc} be
two crisp partitions of #n objects, that is, there are R clusters in partition V, and C clusters
in partition W. We construct a contingency table for the two partitions. Entry ny in Table
2 is the number of objects that are in cluster v; and also in w;. The value n; is the sum of

values in row i, or the number of objects in cluster v;, and n; is the number of objects in

cluster w;.
W] W2 WwWc¢
Vi np np2 nic n,
V2 Nz) 1$b)) e 2c 1y,
VR nRj nRr2 e nrc nR,
n;i no nc

Table 2 Contingency Table for Partitions V and W

Considering each pair of objects x; and x;, there are four types of possibilities to consider,

as described below.

Type 1: x; and x; belong to the same cluster v, of V, and to the same cluster v, of W.

51



Type 2: x; and x; belong to different clusters of V but to the same cluster of W.

Type 3: x; and x; belong to the same cluster of V but to different clusters of W.

Type 4: x; and x; belong to different clusters of V and to different clusters of W.
Suppose the frequencies of these four types are a, b, c, d, respectively. Then we have:

atbt+tc+d= n(n -1

These frequencies can be calculated from the contingency table as follows:

e R
R (e

i

Using these values, we have that:
) n
Rand index = (a + d) / [2}

Rand values are in the range [0, 1]. The maximum value of 1 may not be achievable

when the two partitions have different number of clusters.

Similarity of partitions by Rand index

Ideally we would have liked to compare the similarity in partitioning for the whole
dataset with 64,529 sessions. However, we soon found that ARCA being an iterative
objective function minimization algorithm, it just takes too long for large datasets
(computation times of the order of days and weeks on a single desktop computer). We
then proceeded by taking random samples of the dataset of size 2000, 4000, 6000,..., in

increments of 2000 and applied both algorithms. We wanted to see how far we could go

52



with ARCA within reasonable time frames. ARCA being a FCM based algorithm, there
remains the question of specifying input parameters, number of clusters, fuzzifier m and
initial partitions to be specified (as discussed earlier in section 3.2). Since our immediate
goal is to measure cluster similarity, one choice was to have the same number of clusters
in both ARCA and RFSC. We could then first apply RFSC and simply use the number of
clusters resulting from RFSC for ARCA initialization. For each dataset we experimented
with, we used the index of goodness for RFSC to find the best clustering. Thus, the
number of initial clusters for ARCA was initialized to be C, the number of clusters found
by RFSC. For initial partition U(0) of ARCA, we first defuzzified the RFSC clusters.
Again, defuzzification causes noise sessions which have low membership with all the
clusters to be separated out. We then spread the membership of each of these noise
sessions equally across all the clusters as 1/C for ARCA initialization. Table 3 shows the
similarity comparisons of ARCA and RFSC (ARCA time in hours, and RFSC in
seconds). We see that even for a dataset of size 2000, ARCA took 6 hrs while RFSC
terminates in just above 5 seconds. For a dataset of size 8000 ARCA took over 4 days.
We did not experiment for ARCA with larger sizes, whereas we continued with RFSC.

RFSC took around one and half hour to cluster the entire dataset of 64,529 sessions.

Rand index is a measure defined for crisp clustering. Therefore, to apply this measure, we
first need to defuzzify the clusters where by we add the (C+1)™ cluster as the noise
cluster. While defuzzification separates noise points naturally for RFSC, for ARCA we
set the membership cut off to 0.15 (chosen arbitrarily). That is sessions, whose
memberships to all clusters are less than this value, are put into the noise cluster. We are

now ready to measure the similarity of clusters obtained from RFSC and ARCA.

53



In Table 3, the Rand index values, which are very close to 1, indicate that the partitioning
obtained by RFSC and ARCA are very close. We can also see that for different random

samples of the dataset with different sizes, the Rand index values are almost the same.

Dataset No. Of Time Rand index
size Clusters
©

ARCA RFSC (sec)

(hrs)
2000 48 6.3 5.1 0.926
4000 46 14.2 24.1 0.933
6000 47 40.8 49.0 0.928
8000 48 99.3 92.0 0.931
10000 48 - 138.7 -
12000 - -
64529 46 - | 5564.46 -

Table 3 RFSC vs. ARCA similarity comparisons
Similarity of partitions by interest areas
Though Rand index gives us an idea of the partition similarity, it would be helpful to
actually understand it by looking at the underlying clusters (profiles) itself. We show
clustering results for the dataset of size 2000 in Table 4. We sorted the clusters according
to the cluster cardinality. The top 5 profiles for RFSC and ARCA are shown below in

Table 4. Within each profile we show the first 5 most popular URL’s as in Section 3.5.3.

Prof Usage Profiles (RFSC) Cardi Usage Profiles (ARCA) Cardi

ile# nality nality

1. | /people/people.html 172 /programs/ugrad/courses.html 102
/people/faculty. html /programs/ugrad/cs/comp335.shtml
/current_students.shtml /programs/ugrad/cs/comp248.shtml
/people/graduates.html /programs/ugrad/cs/comp353.shtml
/people/contacts.html /programs/ugrad/cs/comp238.shtml

54



/programs/ugrad/courses.html 163 /programs/grad/courses.html 93
/programs/ugrad/soen/soen.html /programs/grad/masters/master.html
/programs/ugrad/cs/curriculum.html /index.html
/programs/ugrad/cs/comp248.shtml /programs/grad/masters/comp6511.
/programs/ugrad/cs/comp353.shtml shtml

/programs/grad/masters/comp69 1b.

shtml
/~eavis/comp249/ 114 /~comp471/main.htm 87
/~eavis/comp249/main.html /~comp471/
/~eavis/comp249/assignments.html /~comp471/General/ ASSIGNS . htm
/~eavis/hobbit/ /~comp471/General/NOTES.htm
/~eavis/comp444/ /~comp471/General/LLAB.htm
/programs/grad/courses.html 94 /people/people.html 78
/programs/grad/masters/master.html /people/faculty.htm!
/current_students.shtml /people/graduates.html
/programs/grad/masters/comp691b. /people/contacts.html
shtml [~bill/
/programs/grad/masters/comp6511.
shtml
/~comp471/main.htm 88 /~eavis/comp249/ 75
/~comp471/ /~eavis/comp249/main.html
/~comp471/General/ ASSIGNS .htm /~eavis/comp249/assignments.html
/~comp471/General/NOTES.htm /~eavis/hobbit/
/~ha 1/ /~eavis/comp249/notes.html

Table 4 Usage Profiles for cluster similarity comparisons

Comparison of the profiles obtained by both techniques gives us an insight of how these
techniques work. While RFSC tries to look at the relative density of data points, ARCA
gives us more of an aggregate view trying to minimize the objective function and making
sure that C clusters are found. Every cluster found by RFSC has its density relative to the
first cluster i.e. it finds clusters in the order of decreasing significance, cluster which is
obtained first is with the highest potential and the clusters that follow are in decreasing
order of their potentials. RFSC clustering process is such that it tries to maximize the

inter cluster distance (i.e. tries to find new interest areas); a requirement which is very

55



central to clustering. From Table 4 we can see that the top 5 profiles found by both

algorithms are same though not in the same order of cluster cardinality.

o Profile 1 of RFSC is same as profile 4 of ARCA. This profile is related to

different people (faculty, student, staff) that make up the department.

o Profile 2 of RFSC is same as profile 1 of ARCA. This profile captures the user’s

interest in the under grad courses offered by the department.

* Profile 3 maps to profile 5 of ARCA. This profile is related to comp249 offered in

Winter 2005 and the pages for this course are under the domain of the instructor.

o Profile 4 of RFSC is same as profile 2 of ARCA. This profile indicates interest of

user’s in graduate courses offered by the department.

‘e - Profile 5 of RFSC is same as profile 3 of ARCA. This profile is related to
comp471 course offered in Winter 2005. We also see that one of the highly

accessed pages by students taking this course is of the tutor of comp471.

We also saw that the number of profiles (interest areas) repeated in ARCA was much
higher than RFSC. ARCA tries to split a dense cluster into parts so that it can meet the
requirement of C clusters which may cause bias in clustering. This may also be the reason

for higher cardinality of RFSC clusters as compared to their ARCA counterparts.

3.5.5 Index of Goodness

To assess how well our cluster validity index works; we experimented with several
synthetically generated datasets with geometrically specified points in two-dimensions.

One such dataset can be seen in Fig. 3; it contains 400 points.

56



90 & s a

Figure 3 Synthetic dataset used for verification of index of goodness

Relational matrix R was constructed taking the Euclidean distances between these points
and then normalizing them to have dissimilarity between any two points lie in [0,1]. Then
we applied RFSC algorithm for values of €and € ranging from 0.05 to 1 in steps of 0.05,
such that € < € and the cluster index of goodness for each combination was calculated.

For different combinations we found C to be 3, 4 or 6. Some of these values and the

corresponding index is shown in Table 9.

c € Index C
0.10 0.05 0.156539 6
0.20 0.10 0.041940 4
0.35 0.15 0.029624 3
0.80 0.40 0.029624 3

Table 5 Study of Index of goodness

As can be seen from this table, the best value of index occurs for C=3, which is the
correct number of clusters in dataset. We also see that this can occur for more than one

combination of € and €. In any case the index for a particular value of C is always the

same. Hence any of these combinations of € and € can be chosen for the best index

57



value. Choosing €=0.35 and €=0.15, we get the cluster centers at (58.13, 30.47), (30.7,

68.86), (10.7, 10.63).

3.5.6 Discussion

We make a number of important observations from this experimental analysis as

summarized below:

1

2)

3)

4

5)

ARCA being an iterative objective function minimization algorithm takes far
more computation time to build the model as compared to RFSC, which largely
does a single scan of the dataset for model building. This is evident from the
experiment which showed that RFSC could build the model for the entire set of
64,529 sessions in just over an hour and a half, while ARCA took over four days

of computation time even for the much smaller size of 8000 sessions.

ARCA will yield exact cluster centers, while RFSC will only yield one of the
sessions as the cluster center. In our application of mining usage profiles we are

not interested in finding exact cluster centers but rather profiles from the dataset.

ARCA is also very sensitive to user specified input parameters such as the
number of clusters, fuzzifier m and the initial partition U(0). In comparison,

RFSC is more stable and does not require user specified input parameters.

In ARCA, the partition of unity constraint on the membership values introduces
an unnecessary bias for noise to also get classified into one of the C clusters.

Without this constraint, noise gets handled much better in RFSC.

Very importantly, we see that when the number of clusters is the same, both

RFSC and ARCA produce almost the same model. This we have verified using

58



the Rand coefficient, and also by comparing interest areas. This is a powerful
result, as it does enable us to substitute ARCA with the much faster and scalable

RFSC, whenever exact cluster centers are not mandatory.

59



Chapter 4

Recommender Models

In this chapter we discuss clustering based and association rule based recommender
model. We then propose improvements over both. The first is called Fuzzy Hybrid
Collaborative Filtering [Suryavanshi et al., 2005b] and the second Two Level Model-

based Collaborative Filtering [Suryavanshi et al., 2005c].

4.1 Clustering Based Recommender Model

Clustering based recommender systems employ an offline clustering phase to compute a
model before applying collaborative filtering [Ungar and Foster, 1998, Breese et al.,
1998, O'Connor and Herlocker, 1999, Mobasher 2004]. Typically the set of sessions Ny
is partitioned into C classes to extract Usage Profiles (UP) as discussed in Chapter 3.
Usage profiles basically give us an aggregated view of the dataset. URLs with very low
popularity in each usage profile can be pruned out.

Now for the active user session s, for which we would like to provide recommendations,
S, is compared with different usage profiles (up;) in order to find a profile that is most
similar to s, It is assumed that users grouped in that cluster, which are actually
aggregated in that profile, will have similar interest to that of the active user, and hence

the active user may want to see those pages or items that are popular in this profile.

60



Let UP; be a profile with maximum similarity to s,. Note that there could be more than
one such profile, in general, in which case we pick any one of them. For every page j in
NA (set of pages not yet accessed by the active user), recommendation score is calculated
as follows:
rec_score (Sa, Pj) = (Jup,; x sim(s,, ,UF)) Vj eNA

where upy; is the popularity of URL j (not yet accessed by the user) in profile UP,. It
follows that we could consider the top k profiles that are similar and calculate the
recommendation score. If a page is recommended by more than one cluster, then the
recommendation score of the page which is highest is considered. Clearly, such offline
modeling improves scalability over memory-based (introduced in Section 2.4.1) and can
provide on-line recommendation at highly reduced costs. But this often comes at the cost
of reduced accuracy.

Our goal is to devise a CF technique whose accuracy is comparable to that of memory-
based CF approach with scalability comparable to model-based (clustering) approach.
We propose a technique that is a hybrid between mémory—based and model-based CF.
We remark that the term “hybrid” has been used in different senses by different authors.
[Shahabi et al., 2001] proposed a recommender system which employs a hybrid approach
that combines collaborative filtering and content-based querying to achieve better
accuracy. A hybrid method based on Personality Diagnosis (PD) is proposed in [Pennock
et al., 2000]. In this method, the personality type of the active user is determined and used
to compute the probability of the active user requiring new items. [Nakagawa and
Mobasher, 2003] also proposed a hybrid model utili.zing ‘the site structure and the degree

of local hyperlink connectivity. [Burke, 2002] provides a survey on hybrid recommender

61



systems. Our sense of hybrid, as described, is to use both memory-based and model-

based approaches for provision of more accurate recommendations at reasonable cost.
Fuzzy Hybrid CF Technique

We make use of two important properties of the model learnt from the RFSC algorithm,
cluster centers and grade of memberships. RFSC computes clusters whose centers are
actual sessions. If RFSC finds C clusters, then W= {Z,, Z,,..., Z¢} is the set of C
prototypes representing these C clusters. The membership value u; of each session s; to
cluster i is proportional to its distance from or dis'similarity to the cluster center Z;. The
membership values of all the sessions that are clustered are stored in the membership
matrix u (CxNy). For an active session s,, we first find the fuzzy nearest prototype
[Keller et al., 1985], i.e., the cluster p to which the membership up, is maximum. We note
that past like-minded user sessions of s, will have their memberships close to up,. This
simplifies the computation of k-neighbors enormously. For these k-neighbors, we
compute the URL popularity for only those URLs which are in NA. If the number of
desired recommendations is N, then the top-N URLs, sorted in the order of their
popularity, will be presented. The above steps afe incorporated into the following

algorithm.

Algorithm recommend-fuzzy-hybrid-collaborative-filtering:

Input: W — set of prototypes;
u (CxNy) — membership matrix;
S, — active session;

Output: top-N recommended URLs.

Method:
/* STEP 1: find a fuzzy nearest prototype */
begin
fori=1to C

Calculate Dj,, the dissimilarity between s, and the i cluster prototype Zi;

62



endFor
find prototype Z, such that D, 1s minimum;
compute membership of s, to pth cluster using

Upa = e—aD’%a
endBegin
/* STEP 2: find k-nearest neighbors depending on membership */
begin

Set k, a value in {1,...,Ny};
Initialize neighbors = 0;
fori=1to Ny
if (neighbours <k) then
Include s; in the set of k-nearest neighbors;
Increment neighbors by 1;
else
Let s, be the farthest of the k-nearest neighbors
if (J upi — Upa | < | Upm— Upa|) then
Delete s;, from the set of k-nearest neighbors;
Include s;in the set of k-nearest neighbors;
endIf
endIf
endFor
endBegin
/* STEP 3: find the url popularity */
begin
for All url j in NA
Initialize up;= 0;
for All sessions sy in the set of k-nearest neighbors
weight (s, s,) = similarity between s, and sy;
up; = up; + si; * weight (s, Sa);
endFor
endFor
endBegin
return top-N most popular URLs;
endAlgorithm

Fuzzy K- nearest prototype
In step 1 of the above algorithm, instead of finding a fuzzy nearest prototype, we could
find fuzzy K-nearest prototypes [Keller et al., 1985]. Steps 2 and 3 can be carried out for

each cluster in the same way, and at the end the URL popularity scores from each cluster

can be combined. Also if a URL is recommended from more than one cluster, then we

63



consider maximum popularity score from all the contributing clusters. Results from our
experiments show that this approach leads to increased accuracy of recommendation, but
with slight increase in computation time.

Binning

In step 2 above of finding k-nearest neighbors, we use equal-depth binning technique
[Han and Kamber, 2000] to speed up the search of k-neighbors. Our algorithm uses the
membership matrix u, which contains the memberships of each session to different
clusters. Each row can be sorted in descending order of the membership values. The Ny
interval is then divided into b bins, where each bin contains Ny/b elements. We build a
bin index for each row, which has b elements each of which contains a value of
membership at the beginning of each bin. Fig. 4 illustrates an example of this bin index in
which we have 16 sessions and 3 clusters, i.,e., Ny = 16 and C=3. The membership
matrix u is sorted in descending order of the membership grades of the sessions. We have
divided this Ny interval into 4 bins, i.e., b=4, and the number of sessions in each bin is 4.
A bin index is a (v, r) pair, where v is the value of the first element in each binand r is a
pointer to that bin. A bin index is constructed for every cluster, and hence the bin index is
essentially a (C x b) matrix. So for the fuzzy nearest prototype p, we locate the bin which
has elements or sessions whose membership is close to up,. Now within this bin, we find
the k-nearest neighbors with similar memberships. The number b of bins should be
selected optimally depending upon Ny. If b is large, then the number of sessions in each
bin will be small but the bin index can be huge. On the other hand if b is small, then

although searching through the bin index can be faster, searching within each bin may

64



take longer. Depending on b and the number of like-minded users being searched, the

bins around may also need to be probed.

Bin Index
1 0.865 | 0.691 { 0.300 Nu =16
i 0.71 0.324 0.10 b=4
1 0.725 t 0212 | 0.125 Nu/b =4
£ AN
A4 u(C x Ny

1t 0985 | 0965 | 0.953 § 0.865 { 0.848 | 0.810 | 0.725 § 0.691 | 0.523 | 0.414 | 0.340 | 0.300 | 0.288 | 0.270 | 0.19

1108651 081 | 0768 ¢ 0.71 | 0.627 | 0.545 | 0463 § 0324 | 0.156 | 0.113 | 0.113 } 0.10 0.09 008 | 0.07

T T 0783 0.725 | 063 | 0527 | 0349 [ 0212 | 0.184 [ 0.147 | 0.133 | 0.125 | 0.105 | 009 | 0.08
~ -
—

Ny

Figure 4 Example for Illustration of Binning

4.2 Association Rule Based Recommender

Model

Association rule mining has also been used in order to produce a model for
recommendation or personalization systems. As introduced in Section 2.3.1, an
association rule is a statement of the form X = Y, where X and Y are sets (of items, or
web pages in our context). Rule XY indicates that whenever a session s in the dataset
D contains itemset X, then s also contains itemset Y with some certainty, called as
confidence of the rule. In a typical association rule based recommender system [Sarwar et

al., 2000b], first, all association rules are discovered from historic preference (explicit or

65




implicit) database D. Then preferences of the active user s, are matched against the items
in the antecedent (X) of each rule. The items on the right hand side of the matching rules
are sorted according to the confidence values, and the top N ranked items are
recommended. As web usage data is highly sparse, there may be a large number of short
rules due to which there is often no exact match between the preferences of the active
user and antecedent of the rules. To improve the performance of recommender systems,
[Sarwar et al. 2000a] consider dimensionality reduction technique. [Fu et al., 2000]
suggest an alternative by finding rules with best match. The degree of intersection of
rules with active session can be used as a weight to determine the recommendation set.
[Mobasher et al., 2001b] used a sliding window w over the current active session. The
size of this window is iteratively decreased until an exact match with the antecedent of a
rule is found. For this, the maximum size of the window has to be chosen, whiqh is often
chosen arbitrarily as there is no prior knowledge for this. Another problem with this
technique is that it requires repeated search through the rules in case no match is found.

Also, during the learning phase, a problem with using a global minimum support
threshold in association rule mining is that the discovered patterns will not include “rare”
but important items which may not occur frequently in the user purchase transaction or
access sessions data. This is particularly important when dealing with web usage data; it
is often the case that references to deeper content or product-oriented pages occur far less
frequently that those of top level navigation-oriented pages. In addition, during the online
recommendation phase, many rules may not even be relevant to the active user. What is

required is to search through only those rules that are relevant and meaningful to the

66



active user and select the rules that best (may not be exact) match the preferences of the

active user.
Two Level Model Based CF Technique

With this background, we now present the two level model-based CF technique. In the
first level, RFSC algorithm is used to cluster the access sessions. Let W= {Z,,Z,,...,Z¢}
be the set of C prototypes. Next, we defuzzify the clusters by assigning the sessions to a
cluster to which its membership is highest. Defuzzification causes noise to be separated
from the real structure in the data as shown in section 3.5. In the second level, we find
association rules within each cluster. In our work, we restrict this process to generation of
association rules with a single consequent. In general, this method is applicable for
association rules with more than one consequent as well. For an active session s,, our
algorithm first finds the nearest prototype, then matches the s, with the antecedent of each
rule in that cluster to find the match score for each rule. This is weighed with the
confidence of each rule to obtain the recommendation score (rec_score) of the page
which is the consequent of that rule. If the number of desired recommendations is N, then
the top-N URLs, sorted in the order of their popularity, will be presented. This
segregation of interest areas and then mining association rules within each area provides
more pertinent recommendations as shown by our experimental results. Algorithmic

details are as follows.

Algorithm recommend-two-level-model-based-collaborative-filtering;
Input: W, set of prototypes;

Association rules for every cluster;

Sa, active session;
Output: top-N recommended URLs.
Method:
/* STEP 1. find the nearest prototype */

begin

67



fori=1toC
Calculate D;,, the dissimilarity between s, and the i" cluster prototype Zi;
endFor
find prototype Z, such that D, is minimum,;
endBegin
/* STEP 2: find recommendation score for every association rule in cluster p */
begin
for i =1 to NumberOfRules in p
match(s,, 1pi) = cosine (s, Ipi);
T€C_SCOTe(S,, Ipi) = match(s,, Ip) * confidence (rpi);
endFor
endBegin
/* STEP 3: find the url popularity */
begin
Prune every rule whose consequent is not in NA;
If multiple rules recommend the same consequent, choose the rule with highest
recommendation score;
Sort the rules according to their rec_score;
endBegin
return top-N most popular URLs;
endAlgorithm

Furthermore, in step 1, instead of finding the nearest prototype, we can find K-nearest
prototypes. Steps 2 and 3 are then carried out for each cluster, and at the end, the

recommended URLs from each cluster can be combined.

4.3 Experiments and Results

In this section, we first present the evaluation metrics we have used for measuring
recommendation quality, and then proceed with a description of our experiments and the

resulting values for these metrics.

4.3.1 Evaluation Metrics

In a recommendation system, a possible measure for efficiency is the time taken by the
system for producing an online recommendation, and for effectiveness one could use

prediction quality. Given any dataset, we first divide it into two parts: the training set and

68



the test set. For every session in the test set, we hide some pages in this session, called the
Hidden set. Our algorithm then works on the training set and, for every session in the test
set, generates a set of recommendations. Let top-N denote the set of TOPN number of
pages recommended.
Recall and precision are two quantitative measures which have been widely used for
effectiveness [Sarwar et al., 2000b; Breese et al., 1998; Pennock et al., 2000]. Recall is a
global measure that corresponds to the proportion of relevant recommendations that have
been retrieved by the system, i.e., the proportion of items in the hidden set that are
correctly recommended. The value of recall tends to increase as TOPN increases.

Recall = | Hidden N top-N |/ | Hidden |
Precision measures the average quality of an individual recommendation. As TOPN
increases, the precision of each recommendation decreases.

Precision = | Hidden N top-N | / [top-N |
A measure F1 which combines recall and precision with equal weights has also been
suggested and is defined as follows:

F1 = (2 x recall x precision) / (recall + precision).
4.3.2 Performance Study of CF Techniques

In our different experiments reported in this section, we used the same dataset described

earlier in Section 3.5.1. We divided (randomly) the 64,529 sessions in this dataset into

two:
(1) the training set, with 51624 sessions (80%) and

(2) the test set, with 12905 sessions (20%).

69



The average length of a session in the training set was 6.99 and sparsity level was
0.999292, whereas for the test set, the average session length was found to be 7.02 and
sparsity level was 0.998954.
We compare the predictive ability of five different approaches:

1. Memory-based (k- nearest neighbor)

2. Pure clustering (RFSC) based recommendation model (section 4.1)

(U8

Fuzzy hybrid CF technique

4. Pure association rule based recommendation model (section 4.2)

5. Two level model-based technique.
For experimentation, [Breese et al. 1998] proposed two protocols. In the first protocol,
called All-but-1 protocol, one of the pages is randomly selected and withheld from each
session in the test set. TheCE algorithm is then used to predict this page. In the second
protocol, called Given t, they suggest selection of some t number of pages from each
session in the test set and use CF algorithm to predict the rest of the pages. In our
experiments, we used a protocol similar to these, described as follows. We randomly
selected approximately 80% of pages in each session in the test set as seen and tried to
predict the other 20% of pages which were hidden using the above algorithms. Thus, if a
test session is of length 3, we withheld one page, and if the session is of length 100, we
withheld 20 pages to measure the predictive ability of the algorithms used.
We applied RFSC to the training set which consists of 51,624 sessions, and used the
goodness index to obtain a good clustering. In all, 47 clusters were found, (C=47). The
total time taken for this modeling process was slightly above an hour. We found 3366

sessions having low memberships with all the clusters i.e. noise sessions. Fuzzy hybrid

70



CF makes use of the membership matrix u (CxNy), having membership grade of each
session to C clusters, as well as the set of prototypes W= {Z,, ..., Zc}. For two level
model-based CF, we defuzzified the clusters. Now association rules are discovered within
each cluster. We also applied association rule mining to the entire training dataset for
pure association rule based model. A critical factor here is to determine the global
support level for mining association rules. Increasing the support level decreases the
number of rules, and hence we may miss some important rules. On the other hand,
decreasing the support level may lead to identifying a large number of irrelevant rules. In
our experiments, we used different support values. In the results shown here we have
used a support value of 0.01 for pure association rule based model, and used 0.1 for
mining association rules within each RFSC cluster for two level model-based CF.

Effectiveness Comparisons

We will use the following notation in the explanation of experiments and results. We use
k for the number of nearest neighbors being considered, KNP for the number of nearest
prototypes, and TOPN for the number of top N popular pages for recommendation. Fig. 5
and Fig. 6 show the comparison of recommendation quality in terms of recall and
precision (F1 can be inferred from these two) of memory-based, model-based (RFSC
clustering), and the hybrid (Fuzzy 1-Nearest Prototype (1-NP), 2-Nearest Prototype (2-
NP), 3-Nearest Prototype (3-NP), 4-Nearest Prototype (4-NP), 5-Nearest Prototype (5-
NP)). Fig. 5 shows recall and precision values for TOPN=5, while Fig. 6 shows these
values for TOPN=10. This choice of TOPN should be made reasonably and not
arbitrarily. Obviously, lower values of TOPN will lead to lower accuracy whereas higher

values will increase the accuracy of the results. For personalized recommendations, it is

71



desired to show the users a small number of specialized products, items, or links rather
than providing overwhelming choices. Presenting a large number of links or items would
in fact work against the initial goal of personalization itself. As can be seen in Fig. 5 and
Fig. 6, memory-based approach seems to achieve high recall and precision for around
k=100, after which they drop as we consider more number of neighbors. The recall and
precision measures for cluster based recommender model are shown as lines parallel to
the x—axis, since there is no notion of k in the model-based approach. With fuzzy hybrid
CF, the quality keeps increasing as more neighbors are considered. While the results of 1-
NP seem to be better than those of pure model-based, considerable increase in quality is
observed as we consider more nearest prototypes (2-NP, 3-NP, 4-NP, 5-NP in that order).
In fact for both cases, we see that fuzzy hybrid CF almost reaches or is even better than

memory-based approach.

TOPN=5

Recall

—&— Memory-based

0.3 —®— Hybrid KP=1
Hybrid KP=2

0.2 ~3¢~ Hybrid KP=3
—¥— Hybrid KP=4

01 —&— Hybrid KP=5

0 : : —+— Model-based (Clustering)
0 50 100 150 200
k

72



Recall

TOPN=5 —e— Memory-based
—a&— Hybrid KP=1
0.4 Hybrid KP=2
0.35 ~-3¢- Hybrid KP=3
—%— Hybrid KP=4
03 —e— Hybrid KP=5
0.25 —+— Model-based (Clustering)
s
8 02
(4]
g
015
01 } } } t 4 : } } }
0.05
0 T T T T
0 50 100 150 200
k
Figure 5 Recommendation effectiveness, TOPN=5
TOPN=10
0.8

0.4 —— Memory-based —
~l-~ Hybrid KP=1

03 Hybrid KP=2 —

0.2 -3¢ Hybrid KP=3 ]
¥~ Hybrid KP=4

0.1 ~—&— Hybrid KP=5 —
—+— Model-based(Clustering)

0 T . T T
0 50 100 150 200 250

73




TOPN=10

—e— Memory-based

0.3 —&— Hybrid KP=1
Hybrid KP=2

0.25 _
- Hybrid KP=3
02 —%— Hybrid KP=4

—— Hybrid KP=5
0.15 —+— Model-based(Clustering)

Precision

0.05

0 50 100 150 200 250

Figure 6 Recommendation effectiveness, TOPN=10

The goal in two level model based CF is to improve the effectiveness of association rule
based recommender systems for sparse web usage data. Fig. 7 shows the comparison of
recommendation quality of memory-based, model-based (pure association rule model),
and two level model-based CF (1-NP, 2-NP, 3-NP, 4-NP, 5-NP). We show these results
for TOPN =5, 10, 15, 20. As TOPN increases, recall increases, but precision decreases.
There is no notion of k neighbors here. We see that considerable increase in effectiveness
is achieved by two level model-based CF over pure association rule model. In fact for
lower values of TOPN, the effectiveness achieved is comparable to memory-based. This
shows how segregation of interest areas and then mining association rules within each

area can provide more pertinent recommendations.

74



Effectiveness Comparison Memory-based

0.9

W Two level KNP=1

[ Two level KNP=2

g O Two level KNP=3

[+4
B Tw o level KNP=4
Tw o level KNP=5
M Model based

TOPN (Association Rules)
Effectiveness Comparison
0.25

B Memory-based

B Tw o level KNP=1

[ Two level KNP=2

O Two level KNP=3

Precision

B Two level KNP=4
Tw o level KNP=5

W Model based
{Association Rules)

TOPN

Figure 7 Improvements achieved with two level model-based CF

Below, we provide examples of some rules which were found with a high confidence

(above 95%) in different clusters, but were missed when association rule mining

technique was applied on the dataset as a whole.

[/~comp676/], [/~comp676/Winter0S/COMP6761 ASSIGNS.htm],
[/~comp676/Winter0S/index.html] = [/~r_rajago/graphics/COMP471 Tutorials.htm]

75



[/~nacemian/WebPage/HTM-HTML/Main.html], [/~p_chua/rmp/p.htm],
[/~nacemian/encs5821.html]-> [/~p_chua/Destination/MainDestination.htm]

[/CONCEPT/index.html], [/db/db/index.html] = [/research/research.html]

After investigating these patterns we came up with these possible explanations:

e Rule 1: COMP 6761 is an advanced course in computer graphics which was
offered in Winter 2005. Students have been visiting tutorials of the prerequisite of

this course when solving problems in assignments of COMP 6761.

e Rule 2: This is another interesting rule. ENCS 5821 course was taught by a
visiting professor in winter 2005. Students were interested in knowing more about

this visiting professor.

o Rule 3: This rule indicates that users who are interested in research at CSE

department have shown interest in both CONCEPT and database research groups.

Figure 8 shows comparisons of all the five techniques for different TOPN.

Effectiveness comparison

0.35
0.3 Menmory-based ]
o | mFuzzy Hybrid CF
0.25 4 O Two Level Model-based —
1 Pure clustering

0.2 -

m Pure Association rule based [ |

F1

0.15 |8
0.1

0.05 -

TOPN

Figure 8 Quality comparison of five CF techniques

76



We use the F1 measure, and fixed k to 100 and KNP to 3. F1 being the combined
measure, we can see that the net effect of increase in TOPN is decrease in F1. We see that
fuzzy hybrid CF and two level model based CF achieve considerable improvement over
their pure model-based counterparts, while the quality of fuzzy hybrid CF is as good as

memory-based CF.

In our fuzzy hybrid CF, we make use of the membership matrix u(CxNy), which stores
the membership grades of different sessions with respect to different clusters. Instead of
storing the memberships, we now store dissimilarities of sessions with respect to the

cluster centers. Fig. 9 illustrates the results of this comparison (k=100, TOPN=5).

Fuzzy Hybrid CF with fuzzy memberships

m with distances

0.35

0.3

0.25

02 |--|&

F1

0.15

0.1 4

0.05 4

Figure 9 Comparison of Effectiveness (membership vs. distances)

We expected that using the dissimilarity measures instead of membership would give use
effectiveness equal or better than using memberships (as memory based approach relies

purely on distances). Experimentation with different random samples of the dataset

77



showed almost the same results, that is, membership as well as distances achieve the

same cffectiveness.
Efficiency Comparisons

While the aforementioned mentioned techniques achieve higher accuracy, we need to
convince ourselves that this improvement in accuracy comes at reasonable computational
cost and time so that we can make online recommendations on the fly. Fig. 10 compares
the online recommendation time/user on a standard desktop system for memory-based

and fuzzy hybrid CF (1-NP, 2-NP, 3-NP, 4-NP, 5-NP).

—&— Memory Based

—8—1 NP

&2 NP
—©—3NP

140 —¥—4 NP

~—@—5 NP

120 —— PN P

100 . /
80 ‘;;r/(

60

Time Comparisons

40

time {milliseconds/user)

0 50 100 150 200 250

Figure 10 Comparison of efficiency in terms of online recommendation time

The recommendation time for memory-based approach is much higher than our hybrid
approach. On average, time taken for memory-based approach is 30 to 40 times more
than the time taken by the hybrid approach (3-NP considering fair comparison). This will
continue to increase linearly as more and more sessions are added. Also for 1-NP, 2-NP,

3-NP, 4-NP, and 5-NP, the time increases in that order, but at the same time, this small

78



increase in time results in considerable increase in recommendation quality as seen above
in effectiveness comparisons. The average time taken by model-based approach (RFSC)
measured was about 0.187679 milliseconds/user. The time taken by the hybrid approach

is just about S to 7 times more on the average than the model-based approach.

For two level model-based approach, the online recommendation time is considerably
higher, at around 40 milliseconds/user, while it is around 10 milliseconds/user for pure
association rule based recommender model. This could be further improved if we store
the rules in a way to speed-up the search. One such technique is proposed in [Mobasher
2004]. Fig. 11 shows the time comparisons for all the five techniques for different KNP.

We have fixed k=100 for this comparison.

Time Comparison m@Memory-based

100 m Fuzzy Hybrid CF

90 | [B %0 Two level model-based CF

80 12 | N OModel-based (Clustering)

70 Hig
60 |

m Model-based (Association

50 -
40 -

30
20 |-

time(milliseconds/user)

10 H

KNP

Figure 11 Comparison of efficiency for five CF techniques

We observe here that time taken for the improvements namely fuzzy hybrid CF and two
level model-based CF are relatively higher than their pure model-based counterparts.

Pure cluster based recommender model requires the least recommendation time (so small

79



that it is almost invisible in the figure) while memory-based approach requires the
highest.

Binning

We use equal-depth binning technique to further enhance the efficiency of our fuzzy
hybrid CF. Resulting improvements are shown in Fig. 12. The size of the training set is
Nuy=51,624. We choose the number of bins as b=500, i.e. except for the last bin which
gets 227 sessions, all other bins include103 sessions. This is not an arbitrary choice but
operationally motivated, explained as follows. In our experiments the maximum number
of neighbors (k) is 200. We always search in the bin in which sessions with membership
closest to the membership of s, would be found, as well as the bin to its left and the bin to
its right. If the bin in which sessions with membership closest to the membership of s, is
the first bin then we search in that bin as well as the bin to its right and if it is the last bin
then we search also in the bin to its left. Hence the choice of b. We fixed k to 100 and

TOPN to5.

Binning vs No Binning @ Binning

M No Binning

180
160
140
120
100
80
60
40
20

time(milliseconds/user)

Figure 12 Comparison of efficiency (Binning)

80



Recommendation time/user is shown for different values of nearest prototype (KNP).

Binning gives us a performance increase by a factor of 25-35 on an average. Also binning

did not affect the recommendation effectiveness negatively. In fact, even a quality raise

(marginally) can be seen in some cases.

4.3.3 Discussion

Our comparative study of CF techniques yielded the following interesting observations:

L.

Not unexpectedly, memory-based CF technique yields accurate recommendations
but at rather high computation costs. In comparison model-based CF techniques
do indeed take much less time with some loss of accuracy. On the average,
reduction of computation time by a factor of 40 can be achieved, making them

highly suitable for real time recommendation.

Improvements to model-based techniques do result in substantial increase in
recommendation efficiency, with modest increases in computation times. Use of
learned access behavior characteristics improve both cluster based and also
association rule based recommendations. Of these, the fuzzy hybrid CF, which
performs k-nearest neighbor using membership values, yields the best results,

almost the same as the memory-based.

In fuzzy hybrid CF efficiency can be further improved by employing equal depth
binning. Binning gives us a performance increase by a factor of 25-35 on an
average. This is one of the major factors in being able to achieve speed

comparable to pure model-based techniques.

81



4. We also experimented by considering distances of sessions with respect to centers
rather than fuzzy memberships. We observed that the quality for both
memberships as well as distance is almost the same and using distance or

dissimilarity measures does not provide any performance advantages.

To the best of our knowledge, this kind of elaborate experimental study is the first of its
kind and we believe that our overall experimental framework, experimental results and
observations are of interest to the web personalization research community and also to

other disciplines concerned with fuzzy techniques for modeling of large datasets.

82



Chapter 5
Incremental Relational Fuzzy

Subtractive Clustering

In the last two chapters, we explored how web usage models and profiles, which capture
significant interests and trends among users, can be extracted from usage data and used to
improve the user’s experience through personalized recommendations. However, a
popular website is visited frequently by a large number of users with a variety of needs.
The browsing behavior of users of such sites is not fixed or static but changes
dynamically over time. If these profiles or models are fixed and do not adapt to new
interests and usage, this may lead to degradation of the system over time. Irrelevant and
mis-targeted recommendations annoy the users leading to low impact or ineffective
personalization systems. Most existing techniques for modeling web usage are static or
inefficient, mainly due to the fact that the time complexity to compile the data into a
model is in general prohibitive and adding one new data point may require a full
recompilation of the model [Pennock et al., 2000]. If personalized recommendations have
to succeed, it is vital to develop maintenance techniques, which can adapt to changes in

the usage model in non-stationary web environments. We call such profiling that

83



dynamically adapts to new usage data without complete remodeling as Adaptive Web

Usage Profiling [Suryavanshi et al., 2005d]*. This forms the main focus of this chapter.

5.1 Overview of Cluster Maintenance

A clustering algorithm should have the following desirable properties [Rijsbergen, 1979,

Can et al., 1987]:

1) Stability -- produce a clustering which is unlikely to be altered drastically when

new objects are added.

2) Robustness -- small errors in the description of the objects may only lead to small

changes in the clustering.

3) Order insensitivity -- composition of clusters is independent of the order in which

objects are processed.

4) Maintainability -- handle growth efficiently, i.e., maintenance of clusters should

be practical and efficient.

Most existing clustering algorithms are not suitable for maintaining clusters in a dynamic
environment, and often the problem of updating clusters is not solved without a complete
reclustering [Rijsbergen, 1979, Can et al., 1987, Charikar et al., 2004, Tasoulis et al.,
2005]. One reason is that clustering and maintenance techniques are merely based on
heuristics which very often make reclustering of the entire dataset more practical. Also
most clustering algorithms suffer from limitations such as requiring the specification of

correct number of clusters, sensitivity to initialization of clusters, and to noise.

* An extended version of this paper has been submitted as a chapter for WebKDD book edited by Nasraoui,
Zaiane, Spiliopoulou, Mobasher, Masand, and Yu.

84



One of the early works done in dynamic cluster maintenance in information retrieval is
[Can et al., 1987], which proposed a cluster maintenance scheme based on the notion of
cover coefficient. An incremental document clustering algorithm is proposed in [Charikar
et al., 2004], which attempts to maintain small diameter clusters as new points are
inserted in the dataset. The authors also studied the dual clustering problem, where the
clusters are of fixed diameter, and the goal is to minimize the number of clusters. [Ester
et al., 1998] proposed an extension of GDBSCAN algorithm for large updates in a data
warehouse environment. [Tasoulis et al., 2005] introduced an extension of the k-windows
algorithm that can discover clustering rules from a dataset in a dynamic environment. In
web usage mining, [Shahabi et al., 2002] studied dynamic clustering as an approach to
make the cluster model adaptive to short-term changes in users’ behaviors. They argue
that web usage mining systems should compromise between scalability and accuracy to
be applicable to web sites with numerous visitors. They show that while accuracy of
dynamic clustering is low, it helps achieve adaptability. [Nasraoui et al., 2003] were
among the first to propose a framework of mining evolving user profiles through a new
scalable clustering methodology, inspired from the natural immune system, which is

capable of continuously learning and adapting to new incoming patterns.

Our work differs from earlier maintenance schemes in several ways, most notably the

following:

e Many of the aforementioned maintenance schemes are for crisp clustering. Our
maintenance scheme is for RFSC, which is a fuzzy clustering algorithm. There

has been little work reported is this area.

85



» We strongly believe that computation of similarity between the clustering
obtained after application of any maintenance algorithm and complete
reclustering is necessary to validate a maintenance scheme. Unlike in many of the
above, in this work we show the validity of using incremental RFSC by

computing similarity.

e To the web analyst, it is often unknown as to when a complete remodeling is
required. It is also useful to know when the user access patterns have drastically
changed. This would help the analyst to set historic time windows when
remodeling operation is applied. For this we provide a quantitative definition of
an “impact factor.” Thresholding of this factor can indicate as to when complete

remodeling becomes necessary.

5.2 Maintenance Scheme for Relational Fuzzy

Subtractive Clustering

Though the clusters obtained from usage data manifest the interests and trends among the
users accessing the site at the time the clustering operation was applied, the interests and
needs of users change dynamically over time. New logs are continuously created as users
access the website. We thus require a cluster maintenance scheme by which these
changing trends and patterns can be captured without having to frequently apply this
relatively expensive operation of reclustering of large volume of old and new data

together.

86



Cluster maintenance is not a complete alternative to reclustering. By its very definition,
cluster maintenance tries to incorporate newly arrived data into the existing model, while
maintaining the profiles created earlier from the original set of data. This at best can
result in a close approximation to clustering of the complete data, including both old and
new. Clearly, reclustering will always give more accurate results and is required to be
done periodically. Cluster maintenance however enables us to continuously adapt to the
dynamic and changing environment in a much less expensive manner in terms of
computation times and resources, and which also allows subsequent maintenance even
after reclustering. Thus a “balanced” combination of full data clustering and cluster
maintenance is ideally suited for dynamic environments. In this section, we introduce an
extension of the RFSC algorithm, which we refer as the.incremental RFSC algorithm,
used as the main component for our usage profile maintenance scheme. We will also
introduce a measure that helps decide the stage at which a complete reclustering is

required.
Let us recall the results from an initial RFSC clustering:
- We have a dataset of Ny sessions or objects and have C clusters.

- u(CxNy) denotes the membership matrix, which contains the membership values of

each object to each of the C clusters.

As new session data is received, these are updated using incremental RFSC until
reclustering of the complete dataset is required. This sequence of incremental RFSC and

reclustering constitutes the maintenance scheme.

87



Let W= {Z,, Z,,..., Z¢c} be the set of C prototypes representing the C clusters. We also
store the corresponding potentials using which these C prototypes were chosen as the
cluster centers, P= {P;, P,,..., Pc}. These potentials have a natural ordering (i.e.,
descending) as RFSC finds the cluster with the highest potential first, followed by the

next highest potential, and so on.

Let xqew be a new object added to the dataset. Depending on X,ew, we have three possible

situations:

Case 1) Xqew has a high membership value with respect to one of the existing C
clusters, and hence its potential is such that it becomes a core member of that cluster. Or

Xnew has a very low potential in which case it is probably a noise.

Case ii) The potential of x,ey is such that it is not a core member of any of the C
clusters, its potential is lower than all the potentials of these clusters, but is high enough

to become a new cluster center.

Case iii) The potential of x,ey is such that it is better than the potential of an

existing cluster center.

The process of determining the case that is applicable to the new object X,ey and the

actions taken are described in the following steps.

1. First, the stored potentials of all previous cluster prototypes P; are raised by the degree
to which this X,y is close to these previously known cluster prototypes. Hence the
potential of the cluster prototype will increase more if Xqew 1S closer to it (as X,ew makes

that cluster more dense) compared to when Xpey is farther away. The maximum increase

88



in potential is 1, i.e., when Xqew coincides with an existing cluster center. Let these

updated potentials be P';.

2. We check if the potential of X,ew 1S better than the first cluster center, that is whether
Phew > P'1. If true, then Case (iii) holds and the actions taken are described later below. If
not, we then proceed with the subtractive step, i.e., potential of Xew Will be reduced
depending on its similarity with the first cluster center. After this subtractive step, if Pyew
becomes negative, it means that X,y is a core element or very close to the first cluster

center, and hence Case (i) holds. No further comparison or subtraction is required.

3. If the potential does not become negative, then we continue to compare the updated
potential of xpew With the potential of next cluster prototype. Again if the potential of Xpew
is less than this cluster center, we perform the subtractive step as described above. If the
potential of xqew 1s greater than the current cluster center, i.e., Xyew has potential better
than the potential of an existing cluster center, then Case (iii) holds and we continue with
step 4a below; otherwise we proceed with the subtractive step. Also it might so happen
that after comparison with the potentials of all existing C cluster prototypes and going
through the corresponding subtractive steps, Xpew has a potential good enough to become

a new cluster center, which indicates Case (ii) holds and we continue with step 4b.

4a. If Case (iii) holds, we calculate the impact factor for not making X,y as one of the
existing cluster centers. Computation of impact factor is discussed below. If the impact
factor exceeds a threshold value, specified by a web administrator, then a complete

reclustering has to be performed.

4b. If Case (ii) holds, xpew becomes a new cluster centre and the model now has C+1

prototypes. Additionally, the membership of all the existing objects is also calculated

89



with respect to this new cluster and stored in matrix u which will now have one more row

to store the membership values for the newly generated cluster.

5. Irrespective of which case we have, the membership of x,e is calculated with all the

existing clusters.

Impact Factor

Impact factor, denoted Z, is a measure of the degree to which the cluster model is affected

by not making the new incoming object as one of the existing cluster centers, when its
potential is such that using the regular RFSC (for clustering of the complete dataset) it
would have been a cluster centre. Impact factor is calculated only when we have case
(iii). We first explain the notion of impact factor with the help of an example and then
provide a formal definition. Fig. 13(a) shows a clustering of Ny objects obtained from

RFSC. It shows three clusters with their centers marked.

Now suppose a new object X,ew arrives and has to be included in the existing clustering. If
case (iii) becomes true, then xpey has potential better than one of the existing cluster
centers. Two situations can arise. Fig. 13(b) illustrates the first case wherein X,y lies very
close to an existing cluster center. Making x,.w the cluster center of this cluster will not
change much the clustering we have because there already exists a cluster center very
close to Xpew and the membership of X,y Will be very close to 1. Hence the impact of not
making this a cluster center is very low. The other situation is shown in Fig. 13(c),
wherein we see that X,y 18 sufficiently far from any of the existing cluster centers. This
would mean that the impact of not making this object as a cluster center will be much

greater.

90



current cluster centers

Xnew

Figure 13 Example for impact factor calculation

We shall now give a quantitative measure for impact factor. The impact factor I is

initialized to O the first time incremental RFSC algorithm is applied and also every
subsequent time that RESC is used to perform reclustering of the entire dataset. When a
new object Xpew 1S to be included in an existing cluster, if Case (iii) holds, we find the
minimum of the dissimilarity of X, to existing cluster centers and increase the impact
factor. Hence if there is a cluster center near X,ew, then the impact is less, whereas the
impact is more if the cluster centers are far away. When the impact factor reaches a pre-

defined threshold, reclustering of the entire dataset is required.
Our maintenance algorithm with the impact factor considered is presented below.

Algorithm incrementalRFSC
1. Calculate the potential Pyey of the new object X,ew to be inserted.

2. Raise the potentials of all existing cluster prototypes;
Di new = dissimilarity between Xy and i" cluster center

—aD?
PI = Pl + e aD/,new ;
3. dmin = minimum of the dissimilarity values between x,ey and all the

91



previously found cluster centers.
for i=1 to C do

if (Ppew > P;) then
if (Prew> €P)), then //case (ii1)
I+= dmin

else if (P> €P;) then
If (dumin/Y)+(Poew/P)’ = 1, then  //case (iii)

[+= dmin
end if
end if
else
Pnew = Pnew - Pi e—-anz‘,,ew >
If (Prew < 0), then goto step 5;
//case (i) -- no further comparisons required
end if
end for

4, if (Ppew >0) and (Case (iii) is not true))
/Icheck if X..w can become a new cluster center
if (Poew> €P)), then '
If (dmin/y)H(Poew/P1’ = 1, then
//case (ii) is true, Xpew is the new cluster center
C = C+l1; //increment cluster count
Pc= Prew;
Calculate the membership of Ny old objects
with respect to this new cluster;
end if
end if
end if
5. Increment Ny by 1 as a new object is added,
Calculate membership of Xgew With C clusters.

End algorithm;

5.3 Experiments and Results

In this section, again as in previous experimental studies, we first present the evaluation
metrics used by us for measuring the similarity between clustering obtained by applying
Incremental RFSC maintenance algorithm and the one obtained by complete reclustering.
This is followed by an analysis of the results of our experiments and the values obtained

for these metrics.

92



5.3.1 Evaluation Metrics

For similarity metrics, we have used the Rand, Corrected Rand, and Jaccard coefficients.
The Rand coefficient was used for our comparative study of RFSC and ARCA as
discussed earlier in Section 3.5.4. With same notations as introduced in section 3.5.4, we
restate the Rand coefficient (R) formulation for easy reference and present the

formulation of Jaccard (J) and Corrected Rand (CR) coefficients below.
n
R=(a+d)/ (2) and

J=a/(a+b+c).

Rand and Jaccard values are in the range [0, 1]. The maximum value of 1 may not be
achievable when the two clusterings have different number of clusters. [Hubert et al.,
1985] suggested use of “rand index corrected for chance”, called as “corrected” Rand
(CR) coefficient. Correcting a statistic for chance means normalization such that its value
is 0 when the partitions are selected by chance, and is 1 when a perfect match is achieved.

It is defined using the following formula:

20
fz(y) 2 1

5.3.2 Similarity Analysis

D
-M
N

oS
N’

We now evaluate our maintenance algorithm by comparing the partitions obtained with

those obtained by complete reclustering. We use the same dataset and similarity measure

93



described earlier in section 3.5.1 and 3.5.2 respectively. Let Ngy denote the number of
sessions in the initial set of sessions clustered by RFSC, and N denote the number of
new sessions which are to be added to the cluster model of the N4 sessions. Sessions are
strictly ordered by time, i.e., in the order in which they were formed when users accessed
the website. We created 9 experimental case studies by choosing different values of Ngjg
as 30000 (46.49%), 34000 (52.68%), 38000 (58.88%), 42000 (65.08%), 46000 (71.28%),
50000(77.48%), 54000(83.68%), 58000(89.88%) and 62000 (96.08%). For each case, the
number of increment Npew = 64529 - Noa. These (No, Nnew) pairs can also be seen in

Table 6.

For each case, we applied RFSC to cluster the Now sessions and used the index of
goodness defined in Section 3.4 to achieve the best clustering for these N4 sessions. We
then applied our maintenance algorithm in each case to include the new Ny, sessions
into the existing clustering. For validation and comparison purposes, we also performed
reclustering of the entire dataset, i.e., No + Npew = 64529 sessions, using index of
goodness to achieve the best clustering for the entire dataset. We obtained C=46 clusters.
Since Rand, CR, and Jaccard coefficients are defined for crisp clustering, we defuzzified
the clusters obtained by applying the maintenance and reclustering techniques. Noise
sessions, which have low membership with all the prototypes are put into an extra cluster,
called noise cluster, similar to what is done in Section 3.5.4. That is, if a clustering yields
C clusters, we add the (C+1)™ cluster as the noise cluster during the defuzzication step.
After defuzzification, we measure the similarity of clustering obtained from the
incremental RFSC and reclustering operations. The results of these experiments for

measuring similarities are shown in Fig. 14.

94



Similarity Analysis

1.1

1
0.9
0.8
0.7
0.6
0.5 —e— Rand ]
0.4 -~ Corrected Rand ||
0.3 —&— Jaccard —
0.2
0.1

0

20000 30000 40000 50000 60000 70000
Noia

coefficient values

Figure 14 Similarity between incremental RFSC and reclustering

Particularly interesting is the Corrected Rand (CR) coefficient since it has the maximum
value of 1 when the clustering structures (partitions) compared are identical. It has the
value 0 when they are generated by chance (i.e., CR is corrected for chance). The CR
values obtained are 0.883, 0.938, 0.928, 0.925, 0.937, 0.959, 0.931, 0.988 and 0.992,
respectively, for the 9 cases studied in these experiments. These are very high values of
CR (high similarity) noting that the first case had Nyq = 30000, which is even less than
50% of the entire dataset under consideration. We see that increase in N4 or decrease in
the number of newly added sessions Npeyw leads to higher similarity of the clustering
generated. These results indicate that the similarity between the clustering obtained from
incremental RFSC and complete reclustering did not, in a statistical sense, happen by
chance. High values of CR for very small increments (0.992 for case 9 with N g3=62000)
indicate that RFSC is stable when the dataset grows with addition of new objects -- a

desirable clustering property as discussed in Section 5.1.

95



Table 6 shows the computation time for adding these Ny sessions. Although, high
similarity with the cluster model obtained by complete reclustering is a necessary
condition for any maintenance algorithm, this should not come at a prohibitive cost. We
observed that on an average, incremental RFSC takes around 4 seconds to add 100 new
sessions. While the time taken for clustering of the entire dataset of 64529 sessions is
around one and a half hour; adaptation of this cluster model to accommodate 100 new
sessions can be accomplished in just a few seconds. In the absence of such a maintenance
algorithm a complete reclustering would have been required, clearly showing the

importance of our maintenance algorithm.

Noid Niew time (sec)
30000 34529 3219
34000 30529 2965
38000 26529 2675
42000 22529 2358
46000 18529 1999
50000 14529 1625
54000 10529 1210
58000 6529 776
62000 2529 301

Table 6 Timings for incremental RFSC

5.3.3 Detection of New Interest Areas

While the above experiments clearly show that incremental RFSC maintains existing
clusters with varying number of new sessions (Nyew) being added, it does not demonstrate
whether new interest areas will also be detected, if the newly added data has that
characteristic. Indeed, incremental RFSC is very capable of detecting new interest arcas.
For demonstrating this, we consider the following experimental case. Clustering of the
entire dataset of 64529 sessions yields C=46 clusters as discussed above. RFSC detects

clusters according to its order of significance in the dataset i.e., the most prominent

96



cluster (interest area) is found first, followed by the next prominent cluster, and so on.
We defuzzified these clusters and created 7 pairs of (Now, Nnew) partitions of the entire
dataset by hiding clusters 1, 3, 5, 10, 26, 32, and 44, one at a time. These clusters were
chosen at random. Hence in this process we hide the most prominent as well as lower
potential clusters found by RFSC in the entire dataset. For each such partition, we apply
RFSC to Ngyq sessions to get Coiq clusters. The cardinalities of these (Noig, Nrew) partitions
and the values of Cgq4 are shown in Table 7, in which the first column indicates the

hidden cluster /profile.

Hidden Nold Nuew | Coma No. of Impact | Corrected
Cluster new factor, Rand (CR)
clusters | T

60964 3565 47 1 1845.2 0.881

3 61799 2730 45 1 1261.7 0.949
62697 1832 47 0 221.7 0.885 .

10 62184 2345 45 1 1316.0 0.988

26 63745 784 45 1 95.7 0.998

32 64032 497 45 1 72.8 0.997

44 64033 496 45 1 68.8 0.996

Table 7 New interest areas detected with incremental RFSC

Next, we use incremental RFSC to add the hidden N, sessions to the cluster model,
respectively. Table 7 shows the impact factor Z. Considering that Ny is relatively a

small addition compared to Ny4, we note that the values for impact factor is quite high
especially for the more prominent clusters that were hidden like 1,3 and 10. This is

because the new cluster formed is quite prominent (significant new trend or interest

among users) with respect to the existing cluster model and if I keeps increasing at the

same rate, then a complete reclustering of the entire dataset may be required. Noteworthy

is the fact that in each of the above cases, we could recover the cluster that was hidden.

97



Also, high CR values indicate a close similarity between the model obtained from the
maintenance algorithm and the original clustering of 64529 sessions in each case. One
such example is shown below. The left column in Table 8 shows the original profile 3
which was hidden in the second case above and the right shows its detection with
incremental RFSC. The top 10 URLs are shown with their popularity scores in the
profile. This profile is related to comp471 course offered in Winter 2005. We also see

that one of the highly accessed pages by students taking this course is of the tutor of this

course.
Original profile (profile 3) Profile detected with incremental
RFSC
/~comp471/main.htm - 0.941 /~comp471/main.htm - 0.865
/~comp471/-0.932 /~comp471/ - 0.860
/~comp471/General/ASSIGNS.htm - 0.343 /~comp471/General/ASSIGNS.htm - 0.324
/~comp471/General/NOTES .htm - 0.313 /~comp471/General/NOTES .htm - 0.294
/~comp471/General/LAB.htm - 0.245 /~comp471/General/ LAB.htm - 0.243
/~comp471/outline/outline.htm - 0.145 /~ha_l/comp471.html - 0.206
/programs/ugrad/cs/comp471.shtml - 0.131 /~ha I/ -0.180
/~ha_V/comp471.html - 0.130 /~comp471/outline/outline.htm - 0.131
/~comp471/General/PROJECT .htm - 0.125 /programs/ugrad/cs/comp471.shtml - 0.119
/~comp471/slides/ - 0.124 /~comp471/slides/ - 0.116

Table 8 Example of profile hidden and profile recovered with incremental RFSC

We also observed a discrepancy in the near faithful recovery of clusters when we hide
cluster 5. When we add cluster 5, no new cluster is formed. We tried to understand why
this had happened. Profile 5 is related to a student who took comp239: Mathematics for
Computer Science II and comp352: Data Structures and Algorithms together. This profile
is shown in Table 9 (a). Now, in the clustering obtained by applying RFSC to Nyg =
62697 sessions, we saw that profile 13 is related to the -instructor and students of
comp352 while profile 21 is related to the instructor of comp239 course and the students

taking that course. Hence, the sessions that were hidden got split into these two clusters

- 98



and no new cluster was formed. This is also suggested by the low impact factor value i.e.
the impact of not making this a new cluster is very low. Profiles 13 and 21 after the
addition of the Nyew =1832 sessions is shown in Table 9 (b) and (c) respectively. We only

show the top 5 most popular pages.

Profile 5 (hidden)

/current students.shtml - 0.616
/~comp239/ -0.559
/~comp239/2005W/ - 0.552
/~comp352/ - 0.459
/~comp352/2005w/ - 0.449

(a
Profile 13 (after maintenance) Profile 21(after maintenance)

/~comp352/2005w/ - 0.775 /~chvatal/ - 0.738
/~comp352/ - 0.645 /~comp239/2005W/ - 0.706
/~cc/COMP352/index.html - 0.410 /~chvatal/239/ - 0.556
/~cc/COMP352/announcements.html - 0.279 /~comp239/ - 0.303
/current_students.shtml - 0.256 /programs/ugrad/cs/comp239.shtml - 0.115

(b) ' (©)

Table 9 Explaining discrepancy for hidden profile 5.

Another, interesting experimental case is when we hide the first cluster. Procedurally,
RFSC finds subsequent clusters according to their potential with respect to the first
prominent cluster. But, in this case, we are hiding the first cluster itself and then
clustering the remaining sessions to obtain Cg =47 clusters. With addition of Nyew =3565
using our incremental RFSC, we could recover the cluster though we see a high impact
factor. Again, this is because if the entire dataset was clustered, then this interest area
would have been the most prominent one.

For illustrating this visually, we also carried out some experiments using several
synthetically generated datasets consisting of points in two-dimensional Euclidean space.
One such dataset, shown in Fig. 15, contains 400 points. This dataset is generated

randomly and has three prominent clusters among the noises. As we can see, the three

99



clusters are centered approximately at (20,20), (70,50), and (20,80). Intentionally, we
kept the density of the two clusters centered at (70, 50) and (20,80) the same, and
doubled that of the cluster centered at (20,20). Normalized Euclidean distances were
computed to define the dissimilarity matrix R. We then applied the RFSC algorithm and
used validity index to determine the best clustering. We obtained the least value of the
index at C=3. The clusters centers found (in the order of their potentials) were (67.98,

49.25), (21.33, 78.23), and (19.37, 18.43).

100

E J L4
* *
20 : S - v S *
t *
80 . - .
L4
* J S
70 .‘,4 - t 4 ®
e . [ hid *
60 22 + >
P . MIEA .
50 -
. *
* &N .
40 R o M .
.'.00'00 Ll
30 Yo 9% v ¢4 L4
o, - . *
201’ b i AR * Lad
- ¢ 3 ° ¢ o° *
. o e L3 SR » e® L 0
10 4 -
¢ IS
* b g - <
o Mo o> . d

4] 20 40 60 80 100

Figure 15 Example synthetic dataset with three clusters and noise

We then removed 100 points from the cluster centered at (20,80) which was found to be
second most prominent cluster. This left us a dataset of 300 points with two clusters. We
clustered these 300 points, using RFSC and the validity index, and found the best
clustering at C=2. As a next step, we used our incremental RFSC maintenance algorithm
to add the 100 points which were removed. We observed that the maintenance algorithm
adds a new cluster with center at (20.39, 73.33), very close to (21.33, 78.23), which was
found by reclustering of the entire dataset. Also the impact factor / was found to be
1.4374, which is quite low considering the fact that 100 new points were added to a
dataset of 300 points. This also indicates that in most situations where Case (iii) holds,

the candidate center was very close to an existing cluster center.

100



5.3.4 Adaptive Usage Profiling for Web Personalization

The main goal of adapting the model to the dynamic changes in the web environment is
to increase the relevance and accuracy of recommendations to the user. We now discuss
the results of the experiments performed to determine the recommendation quality when
using the maintenance algorithm. incremental RFSC fits in well with our fuzzy hybrid CF
technique introduced in Chapter 4 and hence we compare recommendation quality for the

following three techniques:
1) Fuzzy hybrid CF using incremental RFSC
2) Fuzzy hybrid CF using Reclustering
3) Memory-based CF

For this study, we divided the dataset of 64529 sessions into two sets: the training set
with 42000 sessions (65.08%), and the test set with 22529 sessions (34.92%). Again the
sessions are ordered by time they are created and the division was also made considering
this order. We applied the RFSC algorithm and the index of goodness. In all, 47 clusters
were found, i.e., C=47. For experimentation,-again we used the protocol introduced in
section 4.3.2 by which we randomly selected approximately 80% of the pages in each
session in the test set as seen, and tried to predict the other 20% of pages which were
hidden using the above algorithms. For each of the above, we checked to see if the hidden
pages are present in the top-N pages recommended by the respective algorithms. For
fuzzy hybrid CF with incremental RFSC, after every 4000 new sessions that were seen

from the test set, these sessions were added to the model using incremental RFSC.

101



Similarly for fuzzy hybrid CF with reclustering, complete reclustering was performed in
steps of 4000 sessions, i.e., at 46000, 50000, 54000, 58000, and 62000.

Fig. 16 shows the comparison of recommendation effectiveness, using recall, precision,
and F1. For these experiments, we kept the parameter k-nearest neighbor, k=100; fuzzy
K-nearest prototype, KNP=5; and varied the parameter TOPN from 5 to 30. We saw that
recommendation quality obtained using incremental RFSC and complete reclustering is
almost the same. Also as TOPN increases, even though we see an increase in recall, we
see that precision decreases and the overall combined effect (captured by F1 measure)
decreases as well. We also observe that effectiveness of fuzzy hybrid CF approaches that

of memory-based CF while achieving increased efficiency.

Recall vs TOPN | B@Memory-based
M CF with Incremental RFSC
- 0.9 [ CF with Reclustering

Recall

102



F1 vs TOPN
Memory-based

0.35

@ CF with Incremental RFSC

0.3

O CF with Reclustering

0.25

0.2

F1

0.15

0.1

0.05

5 10 15 0 25 30

Figure 16 Comparison of recommendation effectiveness

5.3.5 Discussion

‘We make the following observations from results of our comprehensive experimentation.

1. To demonstrate correctness of model obtained by incremental RFSC, we compute
similarity of the results from incremental RFSC clustering with the results from
complete reclustering using RFSC. Our experiments show that the similarity is

very high.

2. incremental RFSC is also very robust. We experimented with different batch sizes
for adding new sessions ranging from 2529 to 34529 sessions. Even for truly large
number of new additions, the cluster model using incremental RFSC was very
similar to the reclustered model.

3. Most important of all, our experiments also show that incremental RFSC does not
fail to discover new interest areas (clusters) when they ought to be found in the

newly added data. We computed impact factors in each case. The values obtained

103



for impact factor match very well to our intuition about the newly add data. When
a significantly new interest area develops and continues to evolve over time with
addition of new usage data, we observe a high impact factor indicating
reclustering of the entire dataset would achieve a better model.

Our experiments also clearly indicate that the quality of recommendation obtained
using this algorithm is almost as good as complete reclustering of the entire
dataset. Moreover, incremental RFSC is very fast, taking only a few seconds for
adapting the usage profile model with 100 new user sessions. This is what makes

it a powerful technique for online web usage profiling.

104



Chapter 6

Conclusions and Future Work

The World Wide Web has become an integral part of our lives being used by millions of
people nowadays for a wide range of e-commerce applications. The reasons for this
popularity include 24x7 availability, seamless communication over any distance, fast and
cheap information access. However, further sustained growth in e-commerce mandates
significant improvements in the ease and the speed with which a layman can do a
business transaction on the web. Users often face the problem of information overload
wherein the amount of information is far more than what can be easily assimilated and
interpreted by human beings. Users generally feel lost in this huge information space.
Web personalization is an approach to address this problem by providing content and
services at a web site tailored to the needs of individual users from the knowledge gained

through previous interactions of users with the site.

In this work, we first studied the web personalization process and the various phases of
personalization. We identified the key issues of effectiveness and efficiency in current
personalization systems, particularly related to recommender systems. Our first major
contribution is a new algorithm for usage profile modeling. This is the Relational Fuzzy
Subtractive Clustering algorithm for efficiently mining usage data of a web site to extract

usage profiles which give us knowledge about the current interests and trends among the

105



users accessing the site. RFSC has a number of advantages over previously known fuzzy
clustering algorithms. Significant among these are the following:

scalability to large datasets,

- reduced concern over the prohibitively large model compilation time,
- no requirement for any user specified control parameters which may bias the
clustering to not manifest the true structure in the data,
- high immunity to noise, which is inherent in web data, and
- ability to directly handle non-Euclidean data thus avoiding the need for the
expensive P spread transformations for converting the non-Euclidean relational data
into Euclidean space, that are essential for most other methods.
We also proposed a validity index called index of goodness for RFSC to measure the
quality of fuzzy clustering derived along the same lines as the popular Xie-Beni index
[Xie and Beni, 1991]. We conducted a comprehensive comparative study of Fuzzy C-
means based Any Relational Clustering Algorithm (ARCA) algorithm and Relational
Fuzzy Subtractive Clustering (RFSC). To the best of our knowledge, this is the first such
comprehensive experimental study, providing us with valuable measures to objectively
judge the performance of these techniques. In addition to throwing up a number of
interesting observations, our study also provides a basis for future research and
applications of the proposed concepts and techniques.
Exploiting these properties of RFSC gives rise to a whole new class of algorithms for
effectively using and maintaining web usage profiles for different tasks. This has been
amply demonstrated in our research through the development of two different

improvements over collaborative filtering (CF)-based recommender systems and a very

106



efficient adaptive web usage profiling technique. These techniques address the two
fundamental challenges in CF-based recommender systems, accuracy and scalability. The
first technique called Fuzzy Hybrid CF is an improvement over cluster based
recommender model. This technique achieves the accuracy of memory-based and the
scalability of model-based CF, and hence inherits the advantages of both. This is
achieved by making innovative use of the fuzzy prototypes and the fuzzy membership
grades obtained from the RFSC model. The fuzzy nearest prototype of the active user is
used to find a group of like-minded users within which a memory-based search is
conducted. The second technique that we have proposed is the Two Level Model-based
CF technique which is an improvement over association rule based recommender model.
In this, we use RFSC as the first level modeling to separate the interest areas and then
mine for association rules within individual clusters. We showed how segregation of
interest areas helps in giving more relevant and pertinent recommendations to the current
user.
We identified the problem of adaptive web usage profiling for dealing with dynamically
changing browsing behavior of users on the web. As this has to be done online,
correctness, robustness and efficiency of adaptation are crucial for the success of
personalization. We proposed a profile maintenance scheme based on a new algorithm,
incremental RFSC that we have devised. Our maintenance scheme consists of the
following three components:

1. RFSC algorithm for initial clustering and reclustering;

2. incremental RFSC algorithm for adapting the profile model efficiently to newly

arriving web usage data; and

107



3. An impact factor whose value can be used to decide on when reclustering is
recommended.

The positive performance of this maintenance scheme as evidenced from our
comprehensive experimentation has already been presented in Chapter 5. We are not
aware of any other maintenance scheme that works with fuzzy clustering and provides
this quality of performance.

Several directions can be exploited as a continuation of this research. We discuss some of
these below.

1) Applications and Extensions of RFSC. In this work, we developed and
successfully used RFSC in the context of mining web usage data. Our emphasis
was on devising and experimentally validating a class of techniques for web
personalization based on improvements to collaborative filtering-based
recommender systems. We would like to step back and develop theoretical
aspects of RFSC independent of the domain. What kind of other datasets can
RFSC be applied to? Currently RFSC uses a Gaussian potential function to model
the data. Can we use any other potential function and what would be the
advantages?

Also to obtain the best clustering we use index of goodness which finds those

values of accept ratio€and reject ratio € for which the index is minimum.

Typically values of € and € are varied from 0.1 to 1 in steps of 0.1, such that €

< € and the index of goodness is found for each combination. Could there be a

more intelligent/efficient way for doing this search?

108



2)

As no clustering algorithm is a universal fit for all problems, we would like to
research areas such as bioinformatics and image processing, which face similar
challenges like the web, and to see whether RFSC has any specific advantages
over existing techniques.

Another issue is the following: Can RFSC be extended to work “Out of Core”?
With the pace at which data is growing today, an out of core modeling technique
will be very beneficial in future. A good start in this direction is incremental
RFSC which under certain conditions could be used as an “Out of Core”
algorithm. Another direction could be developing an out of core data structure to
support the clustering process. Again very few works have been reported in this
direction of “Out of Core” clustering.

Personalized Web Search. Current web search engines are built to serve all
users, independent of the special needs of any individual user (one size fits all).
As the amount of information on the web increases rapidly, it creates many new
challenges for web search. When the same query is submitted by different users, a
typical search engine returns the same result, regardless of who submitted the
query. This may not be suitable for users with different information needs. For
example, for the query "Apple", some users may be interested in documents
dealing with “apple” as “fruit”, while some other users may want documents
related to Apple computer. Personalization of web search is to carry out retrieval
for each user incorporating his/her interests [Glen and Widom, 2003, Liu et al.
2004]. For example, Google’s Personalized Search allows users to specify the

web page categories of interest. Some web search systems use relevance feedback

109



to refine user needs or ask users to register their demographic information
beforehand in order to provide better service, like, Yahoo®. Typically these
systems require users to engage in additional activities beyond search to
specify/modify their preferences manually. Can we develop approaches that are
able to implicitly capture users’ information needs?

Another issue is the following: Can we improve search results by using soft
computing techniques to capture fuzziness and uncertainty in the mind of the
user? How can we further improve scalability and efficiency?

The above are only a few of the directions in which our current research can be
carried further. Clearly, the primary technique for fuzzy clustering introduced in
this thesis, Relational Fuzzy Subtractive Clustering, is abundantly rich in its
properties to enable further research along many different paths and application in

many different domains.

110



Bibliography

[Abraham, 2003] Abraham, A. Business Intelligence from Web Usage Mining, J. of
Information & Knowledge Management (JIKM), World Scientific Publishing Co., 2(4),

pp. 375-390.

[Adomavicius and Tuzhilin, 2005] Adomavicius, G., Tuzhilin, A. Toward the Next
Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible

Extensions. IEEE Trans. Knowl. Data Eng. 17(6): 734-749 , 2005.

[Agrawal and Srikant, 1994} Agrawal, R., Srikant, R. Algorithms for Mining Association

Rules, In Proc. VLDB’94, Santiago, Sept 1994.

[Agrawal and Srikant, 1995] Agrawal, R., Srikant, R. Mining Sequential Patterns. In
Proceedings of the International Conference on Data Engineering (ICDE’95), Taipei,

Taiwan, March 1995.

[Breese et al, 1998] Breese, J., Heckerman, D.; Kadie, C. Empirical analysis of

predictive algorithms for collaborative filtering, In Proc. of UAI-98, pp. 43-52, 1998.

[Bezdek 1981] Bezdek, J.C. Pattern recognition with fuzzy objective function algorithms,

Plenum, New York, 1981.

[Burke, 2002] Burke, R. Hybrid recommender systems: Survey and experiments, User

Modeling and User Adapted Interaction, 2002.

[Billsus and Pazzani, 1998] Billsus, D., Pazzani, M. Learning Collaborative Information

Filters, Proc. Int’l Conf, Machine Learning, 1998.

111



[Billsus et al., 2002] Billsus, D., Brunk, C., Evans, C., Gladish, B., Pazzani, M. Adaptive

Interfaces for Ubiquitous Web Access, Comm. ACM, vol. 45, no. 5, pp. 34-38, 2002.

[Can et al., 1987] Can, F., Ozkarahan, E.A. A dynamic cluster maintenance system for
information retrieval, In Proc. of the 10th Annual International ACM-SIGIR Conference,

pp. 123-131, 1987.

[Charikar et al., 2004] Charikar, M., Chekuri, C., Feder, T., Motwani, R. Incremental
clustering and dynamic information retrieval, In SIAM Journal on Computing 33 (6), pp.

1417-1440, 2004.

[Chiu, 1994] Chiu, S.L. Fuzzy model identification based on cluster estimation, J. of

Intelligent and Fuzzy Systems, 2(3), 1994.

[Chien and George, 1999] Chien, Y., George, E.I. A Bayesian Model for Collaborative

Filtering, Proc. Seventh Int’l Workshop Artificial Intelligence and Statistics, 1999.

[Corsini et al. 2004] Corsini, P., Lazzerini, B., Marcelloni, F. A new fuzzy relational
clustering algorithm based on fuzzy C-means algorithm, Soft Computing, Springer-
Verlag,2004.

[Cooley, 2000] Cooley, R. Web Usage Mining: Discovery and Application of Interesting

Patterns from Web Data, PhD thesis, University of Minnesota, 2000.

[Cooley et al., 1999] Cooley, R., Mobasher, B. and Srivastava, J. Data Preparation for
Mining World Wide Web Browsing Patterns, J. of Knowledge and Information Systems,

1, pp. 1-27, 1999.

[Coenen et al., 2000] Coenen, F., Swinnen, G., Vanhoof, K., Wets, G. 2000. A

framework for self adaptive websites: Tactical versus strategic changes. In Proc. of

112



WEBKDD’2000, at Sixth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (Boston, August).

[Delgado and Ishii, 1999] Delgado, J., Ishii, N., Memory-Based Weighted-Majority
Prediction for Recommender Systems, Proc. ACM SIGIR ’99 Workshop Recommender

Systems: Algorithms and Evaluation, 1999.

[Dave, 1991] Dave, R.N. Characterization and detection of noise in clustering, Pattern

Recognition Letters, vol. 12, 657-664, 1991.

[Dave and Sen, 2002] Dave, R.N., Sen, S. Robust Fuzzy Clustering of Relational Data,

IEEE Trans. Fuzzy Sys., 10(6), pp. 713-726, 2002

[Eirinaki and Vazirgiannis, 2003] Eirinaki M., Vazirgiannis M., Web mining for Web
personalization, ACM Transactions on Internet Technology 3(1): 1-27, 2003.
[Ester et al., 1998] Ester, M., Kriegel, H., Sander, J., Wimmer, M., Xu, X.: Incremental

clustering for mining in a data warehousing environment, In Proc. of VLDB 1998,

Morgan Kaufmann Publishers Inc., pp. 323-333, 1998.

[Fu et al., 2000] Fu, X., Budzik, J., Hammond, K., Mining Navigation History for

Recommendation, In Proc. Intelligent User Interfaces, New Orleans, LA, Jan 2000.

[Getoor and Sahami, 1999] Getoor, L. Sahami, M., Using Probabilistic Relational Models

for Collaborative Filtering, Proc. Workshop Web Usage Analysis and User Profiling

(WEBKDD *99), Aug. 1999.

[Glen and Widom, 2003] Glen, J.,, Widom, J. Scaling Personalized Web Search. In

Proceedings International WWW Conference, Budapest, Hungary, 2003

113



[Hathaway and Bezdek, 1994] Hathaway, R.J., Bezdek, J.C. NERF c-means: Non-

Euclidean relational fuzzy clustering, Pattern Recognition 27, pp. 429-437, 1994.

[Hathaway et al. 1996] Hathaway, R.J., Bezdek, J.C., Davenport, J.W. On relational data

version of c-means algorithm, Pattern Recognition Letters 17, pp. 607-612, 1996.

[Han and Kamber, 2000] Han, J., Kamber, M., Data Mining: Concepts and Techniques,

Morgan Kaufmann, 2000.

[Hofmann, 2003] Hofmann, T., “Collaborative Filtering via Gaussian Probabilistic Latent

Semantic Analysis,” Proc. 26th Int’l ACM SIGIR Conf., 2003.

[Jain and Dubes, 1988] Jain, A. K., Dubes, R. C. Algorithms for Clustering Data,

Prentice-Hall, Englewood Cliffs, N. J., 1988.

[Konstan et al., 1997] Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon,
L. R., and Riedl, J. Applying collaborative filtering to usenet news, Communications of

the ACM, 40(3):77-87, 1997.

[Keller et al., 1985] Keller, J., Gray, M. and Givens, J., A fuzzy k-nearest neighbor

algorithm, IEEE Transaction on Systems, Man and Cybernetics, 15(4): 580, 1985.

[Linden et al., 2003] Linden G., Smith B., and York J. Amazon.com Recommendations

Item-to-item collaborative filtering, IEEE Internet Computing, 7(1), 76-80, 2003.

[Liu et al. 2004] Liu, F., Yu, C., Meng, W. Personalized Web Search for Improving

Retrieval Effectiveness, IEEE Transactions on Knowledge and Data Engineering, 2004.

[Mobasher, 2004] Mobasher, B. Web Usage Mining and Personalization, Practical

Handbook of Internet Computing, Munindar P. Singh (ed.), CRC Press, 2004.

114



[Mobasher et al., 1999] Mobasher, B., Cooley, R., Srivastava, J. Creating adaptive web

sites through usage based clustering of URLs. In Proc. of KDEX’99, Nov. 1999.

[Mobasher et al., 2000] Mobasher, B., Cooley, R., Srivastava, J. Automatic
personalization based on web usage mining. Comm. ACM, 43, pp. 142-151, August

2000.

[Mobasher et al., 2001] Mobasher, B., Dai, H., Luvo, T., Nakagawa, M. Improving the
Effectiveness of Collaborative Filtering on Anonymous Web Usage Data, In Proc. of

ITWP’01, Seattle, August 2001.

[Nasraoui et al., 2005] Nasraoui, O. World Wide Web Personalization, Encyclopedia of

Data Mining and Data Warehousing, J. Wang, Ed, 2005, Idea Group.

[Nasraoui et al., 2000] Nasraoui O., Frigui H., Krishnapuram R., Joshi A. Extracting Web
User Profiles Using Relational Competitive Fuzzy Clustering, In Proc. International

Journal on Artificial Intelligence Tools, 9(4): 509-526, 2000.

[Nasraoui et al., 2002] Nasraoui O., Krishnapuram R., Joshi A., Kamdar T. Automatic
Web User Profiling and Personalization using Robust Fuzzy Relational Clustering, in E-

Commerce and Intelligent Methods Ed., 2002, Springer-Verlag.

[Nasraoui et al., 2003] Nasraoui O., Cardona C., Rojas C., and Gonzalez F.: Mining
Evolving User Profiles in Noisy Web Clickstream Data with a Scalable Immune System

Clustering Algorithm, In Proc. of WebKDD, Washington DC, August 2003.

[Nakagawa and Mobasher, 2003] Nakagawa, M., Mobasher, B. A Hybrid Web
Personalization Model Based on Site Connectivity, In Proc. of WEBKDD 2003, pp. 59-

70, Washington USA, August 28, 2003.

115



[O'Connor and Herlocker, 1999] O'Connor, M. & Herlocker, J. Clustering Items for
Collaborative Filtering, In Proc. of the ACM SIGIR Workshop on Recommender

Systems, CA, 1999.

[Pennock et al., 2000] Pennock, D. M., Horvitz, E., Lawrence, S., and Giles, C. L.
Collaborative filtering by personality diagnosis: A hybrid memory- and model-based

approach, In Proc. of UAI-2000, pp. 473-480, Stanford, CA, 2000.

[Perkowitz and Etzioni, 1998] Perkowitz, M., Etzioni, O. Adaptive Web Sites:
Automatically Synthesizing Web Pages, In Proc. of 15th National Conference on

Artificial Intelligence, Madison, WI, July 1998.

[Perkowitz and Etzioni 2000] Perkowitz, M., Etzioni, O. Adaptive web sites. Comm.

ACM, 43, 8 (August), 152-158, 2000.

[Rijsbergen, 1979] Van Rijsbergen, C. J.: Information Retrieval. 2nd ed. Butterworths,

London, 1979,

[Shani et al. 2002] Shani, G., Brafman, R., Heckerman, D. An MDP-Based

Recommender System, Proc. 18th Conf. Uncertainty in Artificial Intelligence, Aug. 2002.

[Sarwar et al., 2000a] Sarwar, B., Karypis, G., Konstan, J., Riedl, J. Application of
dimensionality reduction in recommender system—A case study. In Proc. of WebKDD

2000 Web Mining for e-Commerce Workshop, Boston, USA, 2000.

[Sarwar et al., 2000b] Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J. Analysis of
recommender algorithms for e-commerce. In Proc. of the 2nd ACM E-commerce

Conference, Minnesota, USA, 2000.

[Sarwar et al., 2001] Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J. Item-Based

116



Collaborative Filtering Recommendation Algorithms, In Proc. 10™ Int’l WWW Conf,,

2001.

[Schafer et al., 1999] Schafer, J.B., Konstan, J.A., Riedl, J. Recommender Systems in E-

Commerce. In ACM Conference on Electronic Commerce (EC-99), pages 158-166, 1999,

[Shardanand and Maes, 1995] Shardanand, U., Maes, P. Social Information Filtering:
Algorithms for Automating ‘Word of Mouth’, In Proc. Conf. Human Factors in

Computing Systems, 1995.

[Shahabi et al., 2002] Shahabi, C., Banaei-Kashani, F. A Framework for Efficient and
Anonymous Web Usage Mining Based on Client-Side Tracking. In Proc. of WEBKDD

2001, Springer-Verlag, New York, 2002.

[Shahabi et al.,, 2003] Shahabi, C., Chen, Y. Web Information Personalization:
Challenges and Approaches, In 3rd Workshop on Databases in Networked Information

Systems, Japan, 2003

[Shahabi et al., 2001] Shahabi, C., Kashani, F., Chen, Y., McLeod, D. Yoda: An
Accurate and Scalable Web-Based Recommendation System. In Proc. of CoopIS 2001,

pp. 418-432, Italy, 2001.

[Spiliopoulou and Faulstich, 1998] Spiliopoulou, M., Faulstich, L. WUM: A Tool for
Web Utilization Analysis. In Proc. of EDBT Workshop at WebDB’98, LNCS 1590,

pages 184-203. Springer Verlag, 1999,

[Srivastava et al., 2000] Srivastava, J., Cooley, R., Deshpande, M., Tan P. Web Usage
Mining: Discovery and applications of usage patterns from web data. SIGKDD

Explorations, 1(2), 2000.

117



[Suryavanshi et al. 2005a] Suryavanshi, B.S., Shiri; N., Mudur, S.P. An Efficient
Technique for Mining Usage Profiles using Relational Fuzzy Subtractive Clustering”, In
Proc. of Int'l Workshop on Challenges in Web Information Retrieval and Integration

(WIRI 05), Held at ICDE 2005, Tokyo, Japan, April 8-9, 2005

[Suryavanshi et al., 2005b] Suryavanshi, B.S., Shiri, N., Mudur, S.P. A Fuzzy Hybrid
Collaborative Filtering Technique for Web Personalization", In Proc. of the Third
Workshop on Intelligent Techniques for Web Personalization (ITWP 05), Held at [JCAI

2005, Edinburgh, Scotland, August, 2005

[Suryavanshi et al., 2005c] Suryavanshi, B.S., Shiri, N., Mudur, S.P. Improving the
Effectiveness of Model Based Recommender Systems for Highly Sparse and Noisy Web
Usage Data, In Proc. of 2005 IEEE/WIC/ACM International Conference on Web

Intelligence (WI'05), Compiegne, France, September 19-22, 2005

[Suryavanshi et al.,, 2005d] Suryavanshi, B.S., Shiri, N., Mudur, S.P. Incremental
Relational Fuzzy Subtractive Clustering for Dynamic Web Usage Profiling, In Proc. of
WebKDD '05 - Taming Evolving, Expanding and Multi-faceted Web Clickstreams, in

conjunction with the ACM-SIGKDD 2005,Chicago, Illinois, August, 2005.

[Suryavanshi et al., 2006] Suryavanshi, B.S., Shiri, N., Mudur, S.P. Adaptive Web Usage
Profiling, submitted for consideration in LNCS WebKDD book, Nasraoui, Zaiane,

Spiliopoulou, Mobasher, Masand, and Yu (eds.), 2006.

[Tasoulis et al., 2005] Tasoulis, D., Vrahatis, M. Unsupervised Clustering on Dynamic

Databases. Pattern Recognition Letters (to appear), 2005.

118



[Ungar and Foster, 1998] Ungar, L. H., Foster, D. P. Clustering methods for collaborative

filtering. In Proc. of the 1998 Workshop on Recommender Systems, 1998, AAAI Press.

[Xie and Beni, 1991] Xie, X.L., Beni, G. A validity measure for fuzzy clustering, [EEE

Transactions on PAMI, 13(8), pp. 841-847, 1991.

[Xu and Wunsch, 2005] Xu, R., Wunsch, D., II. Survey of clustering algorithms, IEEE

Transactions on Neural Networks, page(s): 645- 678, Volume: 16, Issue: 3, May 2005.

[Yan et al. 1996] Yan, T. W., Jacobsen, M., Garcia-Molina, H., Dayal, U., From User
Access Patterns to Dynamic Hypertext Linking, In Proc. of the Fifth International World

Wide Web Conference, 1996.

[Yager and Filev, 1994] Yager R.R., Filev D.P., Approximate clustering via the mountain

method. IEEE Transaction on System Man Cybern; 24:1279-1284, 1994.

[Yu et al., 2002} Yu, K., Xu, X., Tao, J., Ester, M., Kriegel, H. Instance Selection
Techniques for Memory-Based Collaborative Filtering, In Proc. Second SIAM Int’l Conf.

Data Mining (SDM ’02), 2002.

[Zadeh, 1965] Zadeh, L. Fuzzy sets, Information Control, vol. 8, pp. 338-353, 1965.

119



