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ABSTRACT

An Empirical Comparison of Alternative Stochastic Volatility Option Pricing Models:
Canadian Evidence

Tiezhu Gao

In this thesis, | empirically compare the pricing performance of three classes of
stochastic volatility option pricing models and the traditional Black-Scholes (1973)
model in the pricing of S&P Canada 60 Index Options. The stochastic volatility models
that | study are as follows: 1) the ad hoc Black and Scholes (1973) procedure that fits
the implied volatility surface, 2) Madan et al.’s (1998) variance gamma model, and 3)
Heston’s (1993) continuous-time stochastic volatility model. | find that Heston’s
continuous-time stochastic volatility model outperforms the other models in terms of in-
sample pricing and out-of-sample pricing. Second, the addition of the stochastic volatility
term to the stochastic volatility model and variance gamma model does not resolve the
“volatility smiles” effects, but it reduces the effects. Third, the Black-Scholes model
performs adequately in pricing options, with the advantage of simplicity, although it
suffers from the shortcoming of the “volatility smiles” effect. Finally, although it includes
more parameters, the ad hoc Black and Scholes model does not perform as well as

expected.
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L. Introduction

Since Black and Scholes (1973) published their seminal article on option pricing,
numerous empirical studies have found that this famous model results in
systematic biases across moneyness and maturity. It is well known that after the
October 1987 crash, the implied volatility computed from options on the stock
index in the US market inferred from the Black-Scholes model (BS) appears to be
different across exercise prices. This is the so-called “volatility smile”. Given the
Black-Scholes model’s assumptions, all option prices on the same underlying
security with the same expiration date but with different exercise prices should
have the same implied volatility. However, the “volatility smile” pattern suggests
that the Black-Scholes model tends to misprice deep in-the-money (ITM) and deep

out-of-money (OTM) options.

In the last two decades, option pricing has experienced an explosion of new
models that each relaxes some of the restrictive Black-Scholes assumptions. Hull
and White (1987), Johnson and Shanno (1987), Scott (1987), Wiggins (1987),
Melino and Turnbull (1990, 1995), Stein and Stein (1991) and Heston (1993)
suggest a continuous-time stochastic volatility model. Merton (1976), Bates (1991)
and Naik and Lee (1990) propose a jump-diffusion model. Duan (1995) and
Heston and Nandi (2000) develop an option pricing model based on the GARCH
process. Recently, Madan et al. (1998) use a three-parameter stochastic process,

termed the variance gamma process, as an alternative model for the dynamics of



log stock prices.

Most of the previous studies compared a range of stochastic volatility models
using US data. For example, Bakshi et al. (1997) evaluated the performance of
alternative models for the S&P 500 index option contracts. They examined how
much additional parameters improve pricing performance. They showed that the
stochastic volatility term provides a great improvement over Black-Scholes model

(henceforth BS).

In this thesis, I use Canadian data to compare alternative stochastic volatility
models to gauge their relative pricing performance. My thesis offers further
evidence on whether the addition of the stochastic volatility term can improve the

performance of option pricing models.

The first class of stochastic volatility models is the ad hoc Black and Scholes
procedure (henceforth AHBS) proposed by Dumas et al. (1998). Assuming that
option prices are given for all strikes and for all maturities, AHBS fits a volatility
function for the underlying asset price process to the prices of option contracts.
Once the volatility function is determined, it can be used to price other derivative

assets.

The second class of stochastic volatility models is the variance gamma option

pricing model (henceforth VG). The variance gamma process derived by Madan



and Milne (1991) is aimed at providing a model for a log-return distribution that
offers a physical interpretation and incorporates both long-tailness and skewness

characteristics in a log-return distribution.

The third class of stochastic volatility models is the continuous-time stochastic
volatility model (henceforth SV) of Heston (1993) which models the square of the
volatility process with mean-reverting dynamics, allowing for changes in the
underlying asset price to be contemporaneously correlated with changes in the

volatility process.

In my opinion, the significance of this thesis lies in two aspects. First, I examine
whether it is possible to improve upon the Black-Scholes model by allowing
stochastic volatility terms in pricing S&P Canada 60 Index Options. Second,
previous studies have examined the performance of stochastic volatility option
pricing models in major markets such as S&P500 and FTSE 100. In this thesis I
investigate if the pricing performance of stochastic volatility models in the

Canadian market is consistent with other major markets.

The rest of the thesis is arranged as follows. In section 2, alternative stochastic
volatility option pricing models are reviewed. In section 3, the data used for this
analysis are described. The methodology, including estimation methods and

models comparison methods, is described in section 4. In section 5, I outline some



empirical findings to evaluate the pricing performance of alternative models.

Section 6 summarizes the results and reviews the conclusions.



I1. Models

According to option pricing theory, European options are priced by evaluating the
expectation of the discounted terminal payoff of the option at maturity under an
equivalent risk neutral measure Q. Hence the price of a European call with a strike
price of K and maturity t is given by

C(t’ T,K) = e_rtEtQ[maX(SHr _K’O)] (1)

where E?[.] stands for the conditional expectation under the risk-neutral density.

Bakshi and Madan(2000) show that the above equation can be decomposed into

two components as

C = SP] — Ke_rtPZ (2)

S+1
:9 Is,ox)) and B =EP[lg 4]

t

where P, = E?[

and the indication function 1, _,, is unity when S, > X .

The price of a European put can be determined from the put-call parity

relationship.
In the later part of this section, I only present the probability £, and P, of each

model.



2.1 Ad hoc Black and Scholes (AHBS) Model

Because VG and SV have more parameters than BS, they may have the capability
to price options with greater precision. Therefore, I follow Dumas et al. (1998) and
construct the AHBS in which each option has its own implied volatility depending
on a strike price and time to maturity. However, I consider only the function of the
strike price because the liquidity of the S&P/TSX 60 index options market is
concentrated in the nearest expiration contract. Even if there are options with

multiple maturities in a specific day, only the function of the strike price is applied.

Specifically, the following specification is adopted for the BS implied volatilities:

@, =B+ B (S/K,)+B(SIK,) G)

where «, is the implied volatility for an nth option of strike K, and spot price S.

A four-step procedure is conducted to obtain the model’s option prices. First, the
BS implied volatility is extracted from each option price. Second, the #; (i =1, 2, 3)
are estimated by ordinary least squares. Third, using estimated parameters from
the second step, each option’s moneyness is plugged into the equation to obtain the
model-implied volatility for each option. Finally, the volatility estimates computed

in the third step are used to price options with the BS formula.



AHBS, although theoretically inconsistent, can be a more challenging benchmark

than the simple BS for any competing option valuation model.

2.2 Variance Gamma Model

The variance gamma process is obtained by evaluating Brownian motion with drift
at a random time given by a gamma process. Let

b(t;0,0)=0t+cW(t) 4

where W(t) is a standard Brownian motion. The process b(t; ?, s) is a Brownian
motion with drift ? and volatility s. The gamma process ?(t; u, ?) with mean rate p
and variance rate ? is the process of independent gamma increments over non-
overlapping intervals. The VG process, X(t; s, ?, ?), is defined in terms of

Brownian motion with drift b(t; ?, s) and the gamma process with unit mean rate,

c(t; 1,?7)as X(t; 8,2, 7)=b(?(t; 1,7), 7 ,8).

Thus, the assumed process of the underlying asset, S;, is given by replacing the
role of Brownian motion in the original Black—Scholes geometric Brownian
motion model by the variance gamma process as follows:

S, =8, exp[mt + X (t;0,0,0) + wt] (5)
where S, is the initial stock price, m is the mean rate of stock return, and
w=(1/v)In(1-& —cv/2).

Based on the above process, Madan et al. (1998) derive risk neutral probabilities



for the price of a European option as follows:

R=gldy=2 (@ +0) ] (©6)
B =gld"2,a [ 1] (7)

2.3 Stochastic Volatility Model
Heston (1993) provided a closed-form solution for pricing a European style option
when volatility follows a mean-reverting square-root process. The actual diffusion

processes for the underlying asset and its volatility are specified as

dS = pSdt +\Jv, Saw (8)
dv, = (0 —v,)dt + 0 \Jv,dW, ©)

where dW; and dW, have an arbitrary correlation ?, v, is the instantaneous

variance. « is the speed of adjustment to the long-run mean €, and o is the

variation coefficient of variance.

Given the dynamics in equation 8 and 9 above, Heston (1993) shows that risk
neutral probabilities for pricing a European call option with t periods to maturity
is given by

p=L,1 wRe[

oK) f:(t,7,80),R@),V (1);¢)
i¢

A XL

}d¢ g=12) (10)



where Re[.] denotes the real part of complex variables, i is the imaginary number,

V=1, f,(xv,,7:0) =exp[C(z;¢) + D(r;p)v, +igx] and C(z;4) and D(z;¢) are

functions of 6,x, p,o,v,.

The risk neutral probability distribution function is addressed in Appendix A.



III. Data

3.1 Data Source

The data 1 adopt to compare the alternative classes of options models are the
S&P/TSX 60 index options traded on the Montreal Exchange, where three
consecutive near-term delivery months and one additional month from the
quarterly cycle (March, June, September and December) make up four contract
months. The expiration day is the second Thursday of each contract month. Each
option contract month has at least five strike prices. The number of strike prices
may, however, increase according to the price movement. Trading in the S&P/TSX
60 index options is fully automated. The exercise style of the S&P/TSX 60 index
options is European and thus contracts can be exercised only on the expiration
dates. Hence my test results are not affected by the complication that arises due to
the early exercise feature of American options. Moreover, it is important to note

that liquidity is concentrated in the nearest expiration contract.

The sample period extends from January 3, 2004 through December 31, 2005.
Price data on SXO came from the transaction records provided by the Montreal
Exchange (www.m-x.ca). Intradaily data were used to avoid imperfect
synchronization of closing prices with the underlying index price. Midpoints of
bid and ask quotes were used. The analysis used the last quote for a particular
option in terms of exercise price, maturity, and type between 2:30 p.m. and 3:00

p.m. every trading day in the sample period. Contemporaneous index levels are

10



obtained from the website of Finance.yahoo.com. The 3-month Treasure bill rate,

the source of which is www.bankofcanada.ca, proxies as the risk-free rate.

3.2 Data Filtering
I apply the following rules to filter data needed for the test.

1). For each day in the sample, only the last reported transaction price, which has
to occur between 2:30 p.m. and 3:00 p.m., of each option contract is employed in

the empirical test.

2) An option of a particular moneyness and maturity is represented only once in
the sample. This means that although the same option may be quoted again during

the time window, only the last record of that option is included in the sample.

3) Prices lower than 0.6 are deleted to decrease the impact of price discreteness on

option valuation.

4) Similarly, only options with number of days to expiration between 6 and 90 are
included. Very short term options have substantial time decay that could interfere
with the ability to isolate the volatility parameters. Very long term options are not

included because they are not actively traded.

11



5) Prices not satisfying the following arbitrage restriction are excluded:

Ct,r 2 St _Ze~r,,,SDt+S _KBt,r (11)

s-1

Pt 2 KB!,r —St +Ze_r"rSDt+S (12)
-1

B

{Insert Table B1 Here}

{Insert Table B2 Here}

I divide the option data into several categories according to moneyness, S/K. Table
B1 describes certain sample properties of the S&P/TSX 60 index option prices
used in the study. Summary statistics are reported for the option price and the total
number of observations, according to each moneyness-option type category.
Because the liquidity of the S&P/TSX 60 index option contracts is concentrated in
the nearest expiration contract, I do not observe the maturity category separately.

The data pool includes 3244 call and 3511 put option observations, with out of the

12



money (OTM) options comprising 30% of call option observations and 32% of put

option observations.

13



IV. Methodology

I follow the estimation method used in previous research, (e.g., Bakshi et al.
(1997), Bates (1991, 19964, c), Dumas et al. (1995), Longstaff (1995), Madan and
Chang (1996), and Nandi(1996), Bakshi et al. (2000), Kirgiz, (2001)) and estimate
parameters of each model for each sample day. In applying option pricing models,
one difficulty is that the spot volatility and the structural parameters are
unobservable. Although in theory, econometric tools (such as maximum likelihood
or the generalized methods of moments) can be applied to obtain the required
estimates, such an estimation is difficult, because of the requirement of a long time
series of historical data. To avoid this difficulty, previous scholars have tried to use
option-implied volatility based on the model. Not only has this practice reduced
data requirements greatly, but it has also led to significant performance
improvement (e.g. Bates (1996 a,b,c), Bodurtha and Courtadon (1987), and
Melino and Turnbull (1990, 1995)). Following this tradition, I adapt the following
steps to each of the alternative stochastic models.

The first step is to collect N option prices on the same stock, taken from the same

day. For each n=1,...,N, let 7, and K, be respectively the time-to-expiration and

the strike price of the n-th option; let O, (+,7,;K,) be its observed price, and

O; (t,7,;K,) its model price as determined by, for example, formula (2) using

observed spot prices and risk free rates. The difference between O, (¢,7,;K,) and

14



O; (t,t,;K,) is a function of the values taken by V(t) and the parameter vector ? .

n’
For each n, define

e V), ®]=0,(r7,;K,)-0,(t7,;K,) (13)

n’

The second step is to find V(t) and parameter vector ? by solving,

2

&,V (9),0] (14)

SSE(t) =min .

V{t),®, a=l
This step results in an estimate of the implied spot variance and the structural
parameter values, for date t. Go back to the first step until the two steps have been

repeated for each day in the sample.

The objective function in equation (14) is defined as the sum of squared pricing
errors, which may force the estimation to assign more weight to relatively
expensive options (e.g., ITM options and long-term options) and less weight to
short-term and OTM options. An alternative could be to minimize the sum of
squared percentage pricing errors of all options, but that would lead to a more
favorable treatment of cheaper options (e.g. OTM options) at the expense of ITM
and long-term options. Based on this and other considerations, I choose to use the
objective function in equation (14).

For AHBS, the coefficients ﬂ,,ﬂz,ﬁs are estimated by ordinary least squares. For

15



VG, the unobservable volatility parameter ¥ with structural parameters {o,o} is
estimated. For SG, the unobservable volatility parameter v, with structural

parameters {0, x, p,c} are estimated.

I use multiple linear regression to estimate the parameters of the AHBS. And I
apply nonlinear estimation to estimate the parameters of the SV and VG models.
The regression results are addressed in Appendix C and the SAS code is addressed

in Appendix E.

After the parameters are estimated, I use them to predict the option prices in terms
of the alternative models. Then the empirical performances of these stochastic
volatility models are compared with respect to in-sample performance and out-of-

sample performance.

Denote £, =0,-0," , where O, is the market price and O, is the model price.

The pricing performance is evaluated by four measures: 1) mean absolute errors

N
(henceforth MAESs, estimated by (Z| &,])/ N)-the mean of the absolute values of

n=l1

N
errors; 2) mean percentage errors (henceforth MPEs, estimated by (D ¢,/0,)/ N )-

n=l1
the mean error as a percentage of the actual values, which is only calculated if all

data values are greater than 0; 3) mean absolute percentage errors (henceforth

16



N
MAPEs, estimated by (Zlgn |/0,)/ N )-the mean of the absolute values of the

n=l
errors, as a percentage of the actual values, which is only calculated if all data

values are greater than 0; 4) mean squared errors (henceforth MSEs, estimated

. _
by (Z (€,)’/ N)- the average or mean of the squared errors. MAEs and MAPEs

n=l1
measure the magnitude of pricing errors, MPEs indicate the direction of the

pricing errors. MSEs measure the volatility of errors.

17



V. Empirical findings

In conducting the procedure described in the last section, I first use all call and put
option prices available on each given day, regardless of maturity and moneyness,
as inputs to estimate the daily spot implied volatility and relative structural

parameters.

For each model, Table C4 reports average and standard deviations (in parentheses)

of parameters, which are estimated daily.

{Insert Table C4 Here}

The implicit parameters are not constrained to be constant over time. While re-
estimating the parameters daily is admittedly potentially inconsistent with the
assumption of constant or slow-changing parameters used in deriving the option
pricing model, such estimation is useful for indicating market sentiment on a daily

basis.

Also from Table C4, we can see that the parameters of all these models which
include a stochastic volatility term have large standard deviations. This shows that
the stability of parameters is not supported for each model. However, as stated

thereafter, the pricing performance of the model with parameters having large

18



standard deviations is better than that of the model with parameters having small
ones, i.e. it is found that the stability of the interdependence among parameters is

more important than that of individual parameters in option pricing.

The implied correlation coefficient is negative as expected (The positive a and ? of
VG indicate a negative correlation). This is consistent with the leverage effect
documented by Black (1976) and Christie (1982), whereby lower overall firm
values increase the volatility of equity returns, and the volatility feedback effects
of Poterba and Summers (1986) whereby higher volatility assessments lead to

heavier discounting of future expected dividends and thereby lower equity price.

5.1. In-sample pricing performance

First of all, I evaluate the in-sample performance of each model by comparing
market prices with model prices computed by using the parameter estimates from
the current day. Table D1 reports the in-sample valuation errors for alternative
models computed over the whole sample of options as well as across six
moneyness and two option type categories. Results from the analysis are as

follows.

First, considering the whole sample, with respect to MAPEs and MAEs, the SV
model shows the best performance (its MAPE is 0.1251 for calls and 0.1163 for

puts; and its MAE is 0.4104 for calls and 0.3913 for puts, the least of all models).

19



The VG model performs second best (its MAPE is 0.1415 for calls and 0.1282 for
puts; and its MAE is 0.4510 for calls and 0.4151for puts). However, when
considering MSEs, the order changes. For call options, the AHBS model has the
smallest errors (its MSE is equal to 0.4868) followed by the SV model (its MSE is
0.5068). For put options, the BS model (its MSE is 0.4216) has the best
performance followed by the SV model (its MSE is 0.4249). On the whole, no
matter which measures are compared, the comprehensive pricing performance of

the SV model is better than that of other models for in-sample pricing.

Unexpectedly, AHBS is not better than BS although AHBS has more parameters
than BS does. This result can be explained by the lower R* compared to advanced
markets. From the regression that I use to estimate the parameters for the AHBS
(see Table C1), I obtain an R? of 32% on average, which is low. In the study of
Kirgiz (2001) on the S&P 500, the R* was 93%. Due to the lower level of R?,

AHBS seems to lead to a relatively large in-sample error.

Compared with the studies of US options markets (Bakshi et al. 1997), in the
Canadian options market, the traditional Black-Scholes model shows good results.
Even though this model does not have the best performance, it provides a good fit

considering that it uses only one parameter.

Second, each of the models shows moneyness-based valuation errors, and exhibits

20



the evident trend that the worst fit is for the OTM options and the best fit is for the
in-the-money (ITM) options. For both call and put options, the fit of the models,
as measured by MAPEs, steadily decreases as we move along the moneyness line
from OTM to ITM options. For call options, the exception is the VG model and
SV model, the MAPESs of which first increase to the second OTM (0.94-0.97) and
then decrease till the deepest ITM. For put options, the inconsistency also occurs
with the VG model and the SV model. The MAPEs of the VG model rise up from
the second OTM (1.03-1.06) through the second ATM (0.97-1.00) and then fall
down; the MAPEs of the SV model increase from the deepest OTM (>1.06) to the
first ATM (1.00-1.03) and then decrease. This obvious bias perhaps is due to the
objective function in equation (14) that I adopt to estimate the parameters, which
is déﬁhed as the sum of squared dollar pricing errors. This definition may force the
estimation to assign more weight to relatively expensive options (e.g., ITM
options and long-term options) and less weight to short-term and OTM options,

thus leading to the moneyness-based valuation errors.

Third, regardless of option type and moneyness, incorporating stochastic volatility
produces a significant improvement over the Black-Scholes model, reducing the
MAPEs typically by 11.3% ( (the MAPE of BS — the MAPE of SV)/(the MAPE of
BS)=(0.1621-0.1438)/0.1621)) to 41.6% (=(0.1987-0.116)/0.1987). Pricing
improvement for both OTM (especially the deepest OTM) and ITM options is

particularly striking. For instance, take a typical OTM call with moneyness less

21



than 0.94. When the BS model is applied to value this call, the resulting MAPE is
0.1987 as shown in the Table D1, but when the SV model is applied, the MAPE
goes down to 0.1160. This example suggests that once stochastic volatility is

modeled, adding other features usually leads to second-order pricing improvement.

To sum up, the stochastic volatility option model shows the best in-sample

performance.

5.2. Out-of-sample pricing performance

It has been shown that the in-the-sample fit of daily option prices is increasingly
better as we fhove from the BS model to the AHBS model and VG model and then
to the SV model. As one may argue, the increasingly better fit might just be a
consequence of using a larger number of structural parameters. To lower the
impact of this on the results, I turn to examining the model’s out-of-sample cross-
sectional pricing performance. In the out-of-sample pricing, the presence of more
parameters may actually cause over-fitting, and have the model penalized if the
extra parameters do not improve structural fitting. This analysis also has the
purpose of assessing each model’s parameter stability over time. To control for
parameter stability over alternative time periods, I analyze out-of-sample valuation
errors for the next day and for the next week. I use the current day’s estimated

structural parameters to price options on the next day and the next week.

22



To achieve this purpose, I use the option prices of one day ahead and one week
ahead to compute the required parameters and volatility values and then apply
them as input to get the current day’s model-based options prices. Then, I estimate
the four statistical measures, i.e., MPE, MAPE, MAE, and MSE for every call and
put and every day in the sample to compare the pricing performance of these

models.

For all the models, the current day’s estimated instantaneous volatility and

structural parameters are used to price options for the next day and the next week.

Tables D2 and D3 répdrt the results using 1 day ahead and 1 week ahead option

prices, respectively.

{Insert Tables D2 here}

{Insert Tables D3 here}

First, backed by each valuation measure, the relative ranking of the models gets
changed from that of in-sample performance. In 1 day ahead out-of-sample pricing,

the average pricing errors of the SV model for all measures are all the least (for

23



calls, the MPE, MAPE and MAE are -0.0041,0.1735, and 0.4906 ,respectively; for
puts, the MPE, MAPE and MAE are -0.02412, 0.1545, and 0.447 respectively;),
closely followed by BS (for calls, the MPE, MAPE and MAE are -0.0054, 0.1892,
and 0.5194, respectively; for puts, the MPE, MAPE and MAE are -0.01568, 0.1614,
and 0.4497 respectively), and VG (for calls, the MPE, MAPE and MAE are
0.0086, 0.1789 and 0.5064 respectively; for puts, the MPE, MAPE and MAE are
0.005417, 0.1578 and 0.4638 respectively), so the SV shows the best performance.
One exception appears in MSEs of put options, where the BS (with MSE of
0.4559) has the smallest errors followed by the VG (with MSE of 0.4975). In 1
week ahead out-of-sample pricing, for call options, with respect to the MAPEs and
MAEs of all the options, SV (with MAPE of 0.2193 and MAE of 0.5740) and VG
(with MAPE of 0.2125 and MAE of 0.5770) show better performance than the BS
(its MAPE is 0.2231 and its MAE is 0.5841) and the AHBS (with MAPE of
0.2931 and MAE of 0.6775). In MSEs, VG (with MSE of 0.7116) is the best
followed by BS (with MSE of 0.7127). For put options, the rankings of these
models for all four measures are consistent, i.e., the SV model (with MPE of -
0.0250, MAPE of 0.2099, MAE of 0.5684 and MSE of 0.6209) shows the best
performance closely followed by BS (with MPE of -0.0222, MAPE of 0.2115,
MAE of 0.5710 and MSE of 0.6513) and VG (with MPE of -0.0123, MAPE of
0.2105 , MAE of 0.5710 and MSE of 0.6538). As a result, combining all the
results of the above comparisons, the pricing performance of the stochastic

volatility option model is the best over all the other models in out-of-sample
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pricing, too.

Second, pricing errors deteriorate when shifting from in-sample pricing to out-of-
sample pricing. The average of MAPEs of all models for call (put) options is
15.65% (14.36%) for in-sample pricing, and grows to 19.30% (17.88%) for 1 day
ahead out-of-sample pricing. There is not a striking contrast between the errors of
in-sample pricing and 1 day ahead out-of-sample pricing. But, in 1 week ahead
out-of-sample pricing, the errors grow to 21.40% (24.35%). The extent of increase
in the errors reaches almost 40% and 70% for call and put options respectively.
The differences in results between in-sample and out-of-sample pricing fully
indicates that adding some structural parameters can affect the pricing
performance of the option pricing models Wifh stochastic volatility terms, although
the magnitude of this effect does not change the order of the pricing performance

of these models.

Third, the difference between the BS model and the SV model, which show better
performance than all the other models, grows smaller in out-of-sample pricing.
The ratio of MAPEs from BS to SV (the MAPE of BS/ the MAPE of SV) is 1.305
(1.254) for in-sample errors of call (put) options. This ratio changes to 1.090
(1.045) and 1.017 (1.0076) for 1 day and 1 week ahead out-of-sample errors,
respectively. And as the period of out-of-sample pricing gets longer, the difference

between these two models becomes smaller. The results show that the Black-
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Scholes model with only one single parameter can do as well as other complicated

models in pricing options, especially in long-term forecasting.

Fourth, like in-sample pricing errors, out-of-sample pricing errors show
moneyness-based biases. For call options, in both 1 day and 1 week ahead out-of-
sample valuation errors, all the four models produce negative MPEs for calls with
moneyness S/K=1.00 and positive MPEs for options with S/K=1.00, subject to
their time-to-expiration not exceeding 90 days. For put options, the situation is
similar except that MPEs are positive for all the four models with moneyness
S/K=1.03. This means that the models systematically overprice OTM options
while they underprice ITM options. But the magnitude of such mispricing varies
dramatically across the models, with the BS model prodﬁéing the highest and the

SV model the lowest errors.

As was the case with in-sample pricing performances, the Black-Scholes model
with our Canadian options data exhibits a good fit for out-of-sample pricing
contrary to performance in the US options markets (Bakshi et al., 1997). This
result shows the Black-Scholes model is sufficient for out-of-sample pricing with
the advantage of simplicity in the options markets of relatively low trading volume

such as the Canadian options market.
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5.3 The structure of pricing errors

To further analyze the structure of remaining pricing errors, I apply a regression
analysis to study the association between the errors and factors that are either
contract-specific or market condition-dependent. I apply a regression analysis that
uses a combination of moneyness and interest rates as the explanatory variables.
Among others, Madan et al. (1998) and Lam et al. (2002) have applied this
regression for similar purposes. The mathematical expression of the regression

model is:
€, =By +Bi(S, /K )+ B,(S,/K,)’ + Bz, + Byr, +1,(D) (14)

where ¢,,denote the 1 day ahead absolute percentage pricing error (MAPE) on
day t, S,/K, represents the moneyness, 7, the time to maturity of option contract,
and r, the risk-free interest rate at date t. The square of moneyness is employed to
detect the volatility smile effects. Since Black-Scholes model cannot describe
option prices dynamics in real markets. The characteristic observed effects of
“volatility smiles” contrast with the assumption of constant volatility of the
underlying asset. Indeed there is strong evidence that volatility depends in some

way on volatility term structure such as moneyness. A complete smile would result

in a negative linear term and a positive quadratic term. Table D4 reports the
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regression results based on the entire sample period, where the standard error for

each coefficient estimate is given in parentheses.

{Insert Table D4 here}

From Table D4, we can see that, regardless of the model, each independent
variable has statistically significant explanatory power for the remaining pricing
errors, i.e., the pricing error from each model has some moneyness, time to
maturity, and risk-free interest rate related biases. For all the four models,
coefficients of moneyness are significant both in linear and quadratic components
showing a smile shape except that a linear component of the BS model and the VG
model is not significant for put options (the standard deviation of B; of the BS
model and the VG model are 0.1242 and 0.0521, respectively). However, both the
SV model and the VG model show the best performance in a regression analysis
for call and put options, respectively, because the adjusted R? coefficient and the F
statistics of VG and SV are the smallest. For example, for call options, the
adjusted R? of BS, AHBS, VG and SV are 0.1414, 0.1026, 0.0710 and 0.0820,
respectively; F statistics of BS, AHBS, VG and SV are 193.72, 140.49, 96.14, and
112.46, respectively. All the models considering the stochastic volatility term show
better performance than the BS model except the VG model which performs worse
for put options. Considering all the analyses above, I conclude that this result

offers an indirect evidence that although the addition of the stochastic volatility
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term does not settle the volatility smiles effects of the BS model, it reduces the

extent of the effects a little bit.
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VII. Conclusions
In this thesis, I examine the pricing performance of alternative stochastic volatility

option pricing models: the ad hoc Black and Scholes procedure that fits the
implied volatility surface, Madan et al.’s (1998) variance gamma model and
Heston’s (1993) continuous-time stochastic volatility model and compare them to
the original Black and Scholes (1973) model. I apply each model to S&P TSX 60

index option prices. My results are as follows.

First, the SV model outperforms other models in terms of in-sample pricing and
out-of-sample pricing. Second, the addition of the stochastic volatility term does
not resolve the ‘““volatility smiles™ effects, but it reduces the effects. Third, the BS
model performs adequately in option pricing with the advantage of simplicity. This
result reflects the fact that the BS model is still a very popular tool for most market

practitioners to price options. Finally, AHBS is the relatively worse performer.

This empirical issue can also be reexamined using data from individual stock
options, American-style index options, options on futures, and so on. Eventually,
whether or not to accept the option pricing models with added features will be
judged not only by their pricing performance as demonstrated in this thesis, but
also by the model’s success or failure in pricing and hedging other types of options.

This extension can be left for future research.
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Appendix_A: Risk Neutral Probability of VG Model and SV Model
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Appendix B: Characteristics of data used
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Table B1. Sample properties of S&P Canada 60 Index Options

Moneyness Days-to-Expiration
S/K Penal A: Call

6~30 30~60 60~90
O™ <0.94 $1.19 $1.35 $1.16
(0.22) (0.38) (0.47)
{130} {136} {150}
0.94~0.97 $1.58 $1.78 $3.00
(0.39) (0.53) (0.95)
{129} {195} {219}
ATM  0.97~1.00 $2.43 $4.56 $7.33
(0.56) 0.91) (1.34)
{125} {209} {215}
1.0~1.03 $8.83 $12.49 $15.59
(0.98) (1.34) (1.63)
{88} {261} {273}
IT™ 1.03~1.06 $21.04 $23.72 $26.26
(1.22) (1.50) (1.86)
{134} {267} {268}
>1.06 $36.38 $36.66 $38.35
: (1.33) (1.46) (1.60)
{90} {152} {231}
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Table B1. Sample properties of S&P Canada 60 Index Options

Moneyness Days-to-Expiration
S/K Penal B: Put

6~30 30~60 60~90
O™ <0.94 $40.61 $40.97 $41.80
(1.13) (1.09) (1.43)

{197} {183} {139}

0.94~0.97 $26.77 $26.88 $27.52

(1.45) (1.39) (1.75)

{166} {186} {252}

ATM  0.97~1.00 $12.96 $15.30 $17.95
(1.29) (1.39) (1.67)

{204} {253} {257}

1.0~1.03 $4.01 $7.08 $10.11

(0.78) (1.15) (1.50)

{200} {160} {259}

IT™ 1.03~1.06 $1.85 $3.25 $5.72
(0.46) (1.00) (1.32)

{108} {258} {166}

>1.06 $1.12 $1.76 $2.95

(0.38) . (0.54) (0.82)

{37} {203} {282}
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Table B2. Implied volatility

S/K | <0.94 | 0.94- 0.97—- 1.00- 1.03— >1.06

0.97 1.00 1.03 1.06

Jan. 2004- Call | 0.1239 | 0.1183 0.1189 0.1248 0.1338 0.1449
June.2004

Put | 0.2065 | 0.1515 0.1369 0.1429 0.1568 0.1731
July 2004— Call | 0.1242 | 0.1155 0.1118 0.1195 0.1265 0.1403
Dec. 2004

Put | 0.2150 | 0.1454 0.1294 0.1368 0.1523 0.1713
Jan. 2005- Call | 0.1073 | 0.1020 0.0967 0.1012 0.1056 0.1295
June 2005

Put | 0.1269 | 0.1284 0.1269 0.1249 0.1310 0.1373
July 2005 Call | 0.1676 | 0.1411 0.1268 0.1278 0.1346 0.1405
Dec. 2005

Put | 0.1213 | 0.1321 0.1305 0.1340 0.1320 0.1300
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Appendix C: Model Estimation Results
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Table C1. Parameter Estimation: Ad Hoc Black-Scholes Model

02:52 wednesday, February 22, 2006
Parameter Estimation: Ad Hoc Black-Sholes Model

Model: MODEL1
Dependent variable: sigma

Analysis of variance

sum of Mean
source DF Sqguares square F value Pr > F
Model 2 0.13834 0.06917 69.14 <.0001
Error 6752 6.75458 0.00100
Corrected Total 6754 6.89292

R2 of Regression 31.764%

Parameter Standard
variable Estimate Error Type II SS F value Pr > F
Intercept 0.61669 0.06320 0.09524 95.20 <.0001
m -1.03162 0.12504 0.06810 68.07 <.0001
m2 0.54603 0.06201 0.07757 77.54 <.0001

R2 of Regression 31.56%

Bounds on condition number: 212.44, 849.74

Table C2. Parameter Estimation: Variance Gamma Model

04:38 wednesday, February 22, 2006
Parameter Estimation: variance Gamma Model

Non-Linear Least Squares Iterative Phase
Dependent variable Y Method: Gauss-Newton
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Iter

AUV PARWNRO

Parameter

Alpha
Sigma

Nu

el e

A

Tpha

.000000
.095762
.097521
.098736
.099742
.100976
.102315

Estimate

1.102315
0.432323
0.141245

S

COOOOORr

igma Nu sum of Squares
.000000 0.500000 4295.2673023
.532489 0.200142 2447 .5471845
.282456 0.148425 2441.4855755
.325468 0.146321 2441 .3458717
.385421 0.144256 2441.3214574
.426584 0.141847 2441.2574784
.432323 0.141245 2441.2533478
Asymptotic Asymptotic 95 %
std. Error confidence Interval
Lower Upper
4.183734 -3.2447825 5.365471
0.029424 0.4012547 0.463587
0.124285 0.0145874 0.275415

Table C3. Parameter Estimation: Stochastic Volatility Model

08:23 wednesday, February 22, 2006

Parameter Estimation: Stochastic volatility Model

Non-Linear Least Squares Iterative Phase
variable Y

Dependent
Iter theta kappa
0 1.000000 1.000000
1 5.074582 3.247117
2 5.102652 5.014741
3 5.152447 4.924474
4 5.165471 4.714517
5 5.172365 4.698476
6 5.174514 4.668369
Parameter Estimate

-0.
-0.
-0.
-0.
-0.
-0.
-0.

rho

500000
424417
381471
379625
377582
377025
376912

S

OCOOOOOH

Asymptotic

44

Method:

igma

.000000
.514271
.482435
.480027
.475247
.471071
.468784

COOCOOOCO

Gauss-Newton

nu
. 500000
.204141
.110148
.119572
.127521
.130445
.133719

sum

8247.
8125.
7951.
7928,
7927.
7926.
7926.

of Squares
2551225
1458714
2565821
5414557
2574154
9587912
3657482

Asymptotic 95 %




std. Error

confidence Interval

theta 5.174514 11.248725 _6.841547  17.511144
Kappa 4.668369 10.974058 -6.945272  16.258778
Rho -0.376912 2.6571579 -3.334474 2.551447
Sigma 0.468784 0.2504365 0.196744 0.721465
Nu 0.133719 0.2135784 -0.095841 0.352478
Table C4. Compiled Parameter estimates
BS AHBS VG SV
0132829 g 0.61669 a 11023 2 5.1745
(0.000389) (0.06320) (4.1837) (11.2487)
B, -1.03162 s 0.4325 ? 4.6684
(0.12504) (0.0294) (10.9741)
Bs 0.54603 ? 0.1412 ? -0.3769
(0.06201) (0.1243) (2.6572)
s 0.46878
(0.2504)
? 0.1337

(0.2136)




Appendix D: Comparison of models
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Table D1: In-sample pricing errors

S/K <094 094097 097-1.00 1.00-1.03 1.03-1.06 >1.06 ALL

Panel A: Calls

MPE  BS 0.0657  -0.0793  -0.0511 0.0418  0.0502 0.0610  -0.0072
AHBS 00824 -0.0635 -0.0451 0.0352 0.0370 0.0415  -0.0129
VG -0.0134  -0.0738  -0.0716  0.0632  0.0627 0.0627  0.0050
SV -0.0632  -0.0398  -0.0379  0.0456  0.0559 0.0632  0.0040

MAPE BS 0.1987  0.1890  0.1621 0.1401 0.1195 0.0992  0.1632
AHBS 03039 01992 0.1582  0.1286  0.1052 0.0809  0.1961
VG 0.1464  0.1558  0.1553  0.1504  0.1296 0.1019  0.1415
SV 0.1160  0.1478 01438  0.1341  0.1208 0.1018  0.1251

MAE  BS 0.2924 04696 05011 05767 06132 0.7582  0.4794
AHBS 03904 04621 04736 05056 05086 0.5256  0.4571
VG 02162  0.3778 04774 06273 06797 07799  0.4510
SV 01732  0.3579 04358  0.5390 06123 0.7785  0.4104

MSE  BS 0.2158  0.5276  0.4559  0.6326  0.7424 1.50966  0.5945
AHBS 03984 04387 03954 04869  0.5305 0.8124  0.4868
VG 0.1459  0.3821 03953  0.7281  0.8753 1.6274  0.5683
SV 0.1086  0.3586  0.3555  0.5235  0.6963 1.6309  0.5068
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Table D1: In-sample pricing errors-Continued

S/KK  <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >1.06 ALL
Panel B: Puts
MPE BS -0.0456  -0.0564  -0.0632  -0.0634  0.0532 0.0979 -0.01292
AHBS 00338 -00599 -00689 -0.0794 01126 0.1825 0.00885
VG -0.0415  -0.0594  -0.0476 0.039 0.0668  0.0988 0.00935
SV -0.0419  -0.0658 -0.0765 -0.0725 0.0567  0.063 -0.02283
MAPEBS 0.0815 0.1145 0.1317 0.1522 0.1642  0.1938 0.1458
AHBS  0.0683 0.1083 0.1316 0.1662 0.2143  0.3032 0.1842
VG 0.0868 0.1251 0.1295 0.1250 0.1228  0.1577 0.1282
SV 0.0856 0.1198 0.1318 0.1383 01272  0.1138 0.1163
MAE BS 0.6694 0.5573 0.4781 0.4013 0.3058 0.2446 0.4213
AHBS 0.4848 0.5204 0.4777 0.4342 0.3725 0.3512 0.4268
VG 0.7188 0.6278 0.4817 0.3507 0.2479  0.2079 0.4151
SV 0.7162 0.5911 0.4777 0.3605 0.2379  0.1517 0.3913
MSE BS 1.0649 0.5390 0.3854 0.2734 0.1688  0.1538 0.4216
AHBS 0.5376 0.5159 0.3858 0.3212 0.2526  0.7195 0.5095
VG 1.1658 0.7086 0.4061 0.2556 0.1447  0.1444 0.4559
SV 1.1975 0.5954 0.3786 0.2296 0.1197  0.1074 0.4249
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Table D2: One day ahead out-of-sample pricing errors

S/K <094 0.94-0.97 0.97-1.00 1.00- 1.03-1.06 >1.06 ALL
1.03

Panel A: Calls

MPE BS  -0.0633 -0.0691 -0.0467 0.0388 0.0485 0.0597 -0.0054
AHBS 00690 -0.0583 -0.0425 0.0312 00377 0.0426 -0.0097
VG  -0.0032 -0.0654 -0.0684 0.0633 0.0633 0.0619 0.0086
SV 00622 -00504 -0.0366 0.0291 0.0416  0.0542 -0.0041

MAPE BS 0.2557 0.2107 0.1736  0.1455 0.1227 0.0985 0.1892
AHBS 0.3790 0.2118 0.1684  0.1383  0.1174  0.0936 0.2303
VG 0.2307 0.1901 01716  0.1541  0.1302 0.1008 0.1789
SV 0.2275 0.1864 01611 01432 01234 01019 0.1735

MAE BS 0.3571 0.5213 0.5440 05986 0.6306 0.7541 0.5194
AHBS 0.4906 0.5168 0.5214 05556 0.5910 0.6994  0.5461
VG  0.3128 0.4541 0.5369 06453 06837 07708 0.5064
SV 0.3140 0.4534 0.5012 0.5746 0.6285 0.7802 0.4906

MSE  BS 0.2752 0.6062 0.5224 06735 0.7538 1.5984  0.6422
AHBS 0.8222 0.6216 04635 0.5622 0.6451 1.4355 0.7833
VG 0.2349 0.4901 0.5497 0.7873 0.8709 1.6143  0.6428
SV 0.2728 0.5669 0.4343  0.6010 0.7117 1.6584  0.6220
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Table D2: One day ahead out-of-sample pricing errors-Continued

S/KK <094 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >1.06 ALL
Panel B: Puts
MPE BS -0.047 -0.0567 -0.0646  -0.0717  0.0618 0.0841 -0.01568
AHBS 00377 -00602 -0.0684 -0.0887  0.1137 0.2691 0.0213
VG -0.0419 -0.0593  -0.0501 0.0321 0.0596  0.0921 0.005417
SV -0.0446 -0.0619  -0.0752  -0.0847  0.0724  0.0493 -0.02412
MAPE BS 0.082 0.119 0.1348 0.1651 01865 0.2269 0.1614
AHBS 0.0799 0.1193 0.1383 0.1811 0.2297 0.4624 0.2416
VG 0.0873  0.1298 0.1346 0.1546 01714 0.2187 0.1578
SV 0.0853  0.1197 0.1354 0.1621 01757  0.2089 0.1545
MAE BS 0.6745  0.5854 0.4979 0.4443 0.3468 0.28  0.4497
AHBS 06495 05934 0.5158 0.4905 0.411 0.5025 0.5307
VG 0.7225  0.6576 0.5064 0.4333 0.3294 0.2728 0.4638
SV 0.7136  0.5923 0.4927 0.4331 0.3251 0.255  0.447
MSE BS 1.0699  0.5961 0.4237 0.329 0.2162  0.1813 0.4559
AHBS 1.0436  0.6491 0.4661 0.4226 0.3039  1.3305 0.8408
VG 1.1587  0.7555 0.4502 0.3498 0.2072  0.178  0.4975
SV 1.2014  0.5999 0.4155 0.4574 0.2647 0.2211 05173
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Table D3: One week ahead out-of-sample pricing errors

S/K <094 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >1.06 ALL
Panel A: Calls
MPE BS -0.0689 -0.0553  -0.0338  0.0317 0.0466 0.0584 -0.0036
AHBS -0.0393 -0.0471  -0.0294  0.0221 0.0334 0.0460 -0.0024
VG -0.0095 -0.0480  -0.0612  0.0600 0.0621 0.0616 0.0108
SV -0.0875 -0.0522  -0.0277  0.0261 0.0438 0.0529 -0.0074
MAPEBS 0.3226  0.2394 0.1985 0.1577 0.1294 0.0993 0.2231
AHBS 05119  0.2488 0.2023 0.1583 0.1325 0.1015 0.2931
VG 0.2935  0.2246 0.1997 0.1686 0.1369 0.1018 0.2125
SV 0.3204  0.2313 0.2003 0.1585 0.1302 0.0996 0.2193
MAE BS 0.4464  0.5761 0.6308 0.6615 0.6797 0.7610 0.5841
AHBS 0.6712  0.6099 0.6486 0.6619 0.6985 0.7895 0.6775
VG 0.3975  0.5341 0.6326 0.7201 0.7348 0.7789 0.5770
SV 0.4243  0.5478 0.6230 0.6610 0.6820 0.7568 0.5740
MSE BS 0.3608  0.6381 0.6661 0.7574 0.8043 1.6117 0.7127
AHBS 1.9609  0.7927 0.7299 0.7916 0.8423 1.7528 1.3419
VG 0.3001  0.5841 0.6597 0.8649 0.9073 1.6361 0.7116
SV 0.3881  0.6092 0.6701 0.7341 0.8073 1.6043 0.7237
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Table D3: One week ahead out-of-sample pricing errors-Continued

S/K <094 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >1.06 ALL
Panel B: Puts
MPE BS -0.0498 -0.0559 -0.0731 -0.0826  0.0760 0.0520 -0.0222
AHBS 00398 -00600 -0.0818 -0.1047  0.1323 0.4438 0.0483
VG -0.0443 -0.0591  -0.0530 -0.0284  0.0444 0.0665 -0.0123
SV -0.0520 -0.0552  -0.0741  -0.0881 0.0771 0.0425 -0.0250
MAPE BS 0.0880 0.1341 0.1634 0.2083 0.2468 0.3259 0.2115
AHBS 0.0894 0.1411 0.1753 0.2329 0.2969 0.7093 0.3421
VG 0.0919  0.1421 0.1647 0.2030 0.2352 0.3256 0.2105
SV 0.0899  0.1345 0.1637 0.2074 0.2418 0.3261 0.2099
MAE BS 0.7427  0.7001 0.6404 0.5951 0.4938 0.4056 0.5710
AHBS 0.7385  0.7450 0.6940 0.6659 05991 0.7681 0.7166
VG 0.7616  0.7490 0.6497 0.5895 0.4844 0.4037 0.5805
SV 0.7583  0.7026 0.6334 0.5812 0.4756 0.3952 0.5684
MSE BS 1.1997 0.8513 0.6816 0.5788 0.4369 0.3351 0.6513
AHBS 11654 1.0595 0.8760 0.7423 0.7142 2.0491 1.2805
VG 1.1057  1.0022 0.7087 0.5800 0.4274 0.3269 0.6538
SV 11025  0.8425 0.6585 0.5854 0.3966 0.3099 0.6209
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Table D4: Regression coefficients of independent variables for pricing errors

Coefficients BS AHBS VG SV

One day ahead out-of-sample pricing errors

Panel A:
Calls
Bo 1.8324 8.9421 3.0184 2.3649
(0.0000) (0.0000) (0.0000) (0.0000)
B3, -2.5479 -15.336 -5.9217 -4.1254
(0.0000) (0.0000) (0.0000) (0.0000)
B3, 2.9547 6.2511 4.2261 1.8422
(0.0000) (0.0000) (0.0000) (0.0000)
B35 1.7502 2.3407 1.2174 -0.7742

(0.3820) (0.0097) (0.0000) (0.6544)
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B4

Adjusted R?

F

6.5468
(0.0000)
0.1415

193.72

5.6244
(0.2112)
0.0820

112.46

6.4566
(0.0000)
0.0710

96.14

6.3331
(0.0000)
0.1026

140.49

Table D4: Regression coefficients of independent variables for pricing errors

Coefficients BS AHBS VG SV
One day ahead out-of-sample pricing errors
Panel B:
Puts
Bo -2.4152 16.4876 -1.0362 1.2010
(0.3652) (0.0000) (0.4139) (0.0072)
53 -3.2341 -30.5713 -1.6359 -2.3657
(0.1242) (0.0000) (0.0521) (0.0000)
B3, 3.3658 17.8461 2.0037 2.6879
(0.0000) (0.0000) (0.0000) (0.0000)
B35 -0.4712 3.1279 -1.2476 0.9884
(0.04251) (0.0032) (0.0452) (0.03234)
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B4 5.5427 -4.1132 3.6214 4.3256

(0.0000) (0.6327) (0.0000) (0.0023)
Adjusted R? 0.2318 0.1758 0.1945 0.1175
F 312.76 237.16 262.45 158.52

Appendix E: SAS code for Parameter Estimation
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El: SAS code for estimating the parameters of the VG model

data vgmodel ;
infile 'E:/my thesis/program/data option.dat' ;
input S, K, ¥, t y;

label S= 'spot index price’
K= 'exercise price’
r= 'risk-free interest rate’

t= "time to maturity'
y= 'option prices';
run;

proc nlin data=vgmodel method=newton;
parameters alpha= 1 sigma=1 nu=0.5

terml=nu* (alpha+sigma) * (alpha+sigma) /2;
term2=nu*alpha*alpha/2;

term3=(LOG(S/K)+ r*t + t*LOG((i-terml)/(l1-term2))/nu)/sigma;

termd= CDF(‘(term3*SQRT((1-terml)/ (nu*t))+ (alpha+sigma)*SQRT ( (nu*t)/(i-
terml) ) *EXP(-t) /GAMMA (t/nu)’ ) ;

termb= CDF { ‘' (term3*3QRT ( (1-term2)/(nu*t))+alpha*SQRT ( (nu*t)/ (1-
term2) ) *EXP(-t) /GAMMA (t/nu)’);

model y =S*termd-EXP(-2*r*t)*term5 ;

title "Paramter Estimation: Variance Gamma Model';

run;
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E2: SAS code for estimating the parameters of the SV model

data svmodel ;
infile 'E:/my thesis/program/data option.dat’ ;

input S, K, r, t y;

label S= 'spot index price’
K= 'exercise price'’
r= 'risk~free interest rate’
= "time to maturity’
y= 'option prices’;
run;

proc nlin data=svmodel method=newton;
parameters theta=1 kappa=1 rho=-0.5 sigma=1 nu=0.5

terml=SQRT (kappa*kappa-sigma*sigma) ;
term2=8QRT ( (rho*sigma~kappa)* ( rho*sigma-kappa)+sigma*sigma);

term3=(kappa-2*rho*sigmatterml) /( kappa-2*rho*sigma-terml) ;
termd=(kappa-*rho*sigma+term2) /( kappa-*rho*sigma-term?2);

termb=kappa*theta* ( (kappa-rho*sigma+terml) *t-2*LOG( (1~

term3*EXP (terml*t))/{(l-term3)) )/(sigma*sigma);
term6= kappa*theta* ( (kappa +term2) *t-2*LOG ( (1-termd*EXP (term2*t) )/ (1-
termd)))/ (sigma*sigma) ;

term7=(kappa-rho*sigma+terml)* ( (1-EXP(terml*t)/(1-

EXP{term3*EXP (terml*t))))/(sigma*sigma);
term8=( kappa +term2)* ((1-EXP(term2*t)/ (1-
EXP{termd*EXP(term2*t))))/(sigma*sigma);

term9=0.5+ CDF{(‘EXP(-LOG(K)+termb+term7)") /o ;
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terml0=0.5+ CDF(‘EXP(-LOG(K)+termb6+term8)’)/m ;
model y =S*term9-EXP(~2*r*t)*termlO ;
title 'Paramter Estimation: Stochastic Volatility Option Model’;

ran;

E3: SAS code for estimating the parameters of the AHBS model

data AHBS ;
infile 'E:/my thesis/program/data optionl.dat' ;
input sigma m m2 ;

label sigma='implied volatility'
m= ‘moneyness’
m2="squared moneyness';

run;

Proc reg data= AHBS ;

model sigma= m m2 /selection=stepwise;

title 'Paramter Estimation: Ad Hoco Black-Scholes Model';
run;
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