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Abstract

Stochastic Dominance Option Pricing:

An Alternative Paradigm

Ioan Mihai Oancea, Ph.D.

Concordia University

This thesis examines the pricing of options under several models with market
incompleteness. The theoretical approach relies on the absence of stochastically
dominating portfolios containing the underlying asset, the option and the riskless
bond. The stochastic dominance approach provides two bounds on the equilibrium
pricing of options by risk-averse investors. The two bounds are discounted conditional
expectations of the option payoff under two probability measures.

This research generalizes the previous stochastic dominance pricing results in
discrete time to non-i.i.d. underlying asset return processes and to contingent claims
with non-convex payoffs. The new results are then used to examine the stochastic
dominance pricing bounds for several discrete and continuous time processes of the
underlying asset.

The continuous time bounds are obtained by constructing a sequence of discrete
approximations that converge weakly to a given continuous time process. The weak
convergence property provides the convergence of the two option bounds, which are
discounted expectations of the option payoff. In the case of a univariate diffusion pro-
cess, the two option bounds converge to a common limit. The two bounds converge
to distinct limits when the underlying asset follows a jump-diffusion mixture.

The non-iid stochastic dominance pricing results are then applied to the pricing of

il



options for a GARCH specification of the underlying asset returns. The two stochas-
tic dominance bounds are obtained both for conditional normal and non-normal
returns. The impact of the model estimation error is examined by generating a re-
turn sample from a known model and computing the stochastic dominance bounds

implied by several estimated models.
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Chapter 1

Review of the Literature

Option pricing has been one of the most productive fields of financial economics
and no review can be fair to all the contributors of this field. As an introduction
to the stochastic dominance approach to option pricing, which is the main topic of
this thesis, this literature review will present the main approaches used in option
pricing - the arbitrage and the equilibrium approach - stressing the aspects of these
approaches that are shared with the stochastic dominance approach. This review will
also present the weaknesses of the arbitrage and equilibrium approaches when the
markets are incomplete. These weaknesses are addressed by the stochastic dominance

approach, which is the topic of this thesis.

1.1 The arbitrage pricing approach

The first approach used in option pricing relied on the construction of a strategy that
replicated the option payoff, by the continuous rebalancing of a portfolio invested in
the underlying asset and a riskless bond. The absence of arbitrage opportunities re-

quires that the replicating portfolio have the same value as the option. An equivalent



method is to construct a riskless hedge by the continuous rebalancing of a portfolio
containing the option and the underlying asset. In this case, the absence of arbitrage
requires that the rate of return on the hedge equals the riskless interest rate. This
continuous hedging argument underlies the partial differential equations obtained by
Black and Scholes (1973) or Merton (1973), which express such equalities implied by
the absence of arbitrage opportunities. The option pricing formula obtained in the
two above mentioned papers is the solution of the partial differential equation with
a terminal condition given by the option payoff at maturity.

A breakthrough in the arbitrage pricing approach was the risk neutral pricing es-
tablished by Cox and Ross (1976) through an economic insight and later by Harrison
and Kreps (1979) and Harrison and Pliska (1981) through a probabilistic interpre-
tation. Cox and Ross (1976) argued that the option price can be obtained as a
risk-adjusted expectation of the payoff. But, since the arbitrage approach yields a
unique price that is independent of the investor’s preferences, the option price can be
obtained, without loss of generality, as the expected option payoff from the point of
view of a risk-neutral investor. The risk-neutral pricing approach reduces the option
pricing problem to the calculation of an expectation, and the pricing of options on a
variety of stochastic processes becomes mathematically tractable.

The formal proofs of the risk-neutral pricing approach were obtained by Harrison
and Kreps (1979) and Harrison and Pliska (1981). The main result of these two
papers is a theorem that proves the equivalence of the absence of arbitrage opportu-
nities with the existence of a probability measure under which the contingent claims
can be priced as discounted expectations of their payoffs. Under such a probability
measure, the discounted price processes of all assets in the market are martingales.
The risk neutral pricing of a contingent claim starts by finding a probability measure

under which the discounted price processes of all assets in the market are martingales.



In a discrete time economy, the martingale measure is the solution of a linear system
of equations, which reflect the martingale property of the prices. In continuous time,
a risk-neutral price process can be obtained by adjusting the actual process with risk
premia associated to the sources of uncertainty in the asset price.

The findings of Harrison and Kreps (1979) and Harrison and Pliska (1981) show
that the arbitrage methodology relies on two fundamental assumptions that cannot
be relaxed easily in most applications: the dynamic completeness of the markets and
the absence of trading costs. The former assumption provides that all contingent
claim payoffs can be manufactured from assets available in the market. The latter
assumption reflects the requirement that the options are replicated using a self-
financing strategy. That is, no cash can enter or exit the strategies and all the
proceeds from selling one asset must be reinvested in the strategy.

In principle, a contingent claim is attainable if the market contains a sufficiently
large number of securities. Breeden and Litzenberger (1978) proved that a market
can be completed with an infinite number of call options spanning all possible strike
prices. In practice, it is desirable that the option be replicated using only the under-
lying asset and a riskless bond. In this case, the completeness of the market can be
ascertained from the stochastic process of the underlying asset.

In discrete time, a stock following a binomial price process provides a complete
market. In the binomial tree model of Cox, Ross, and Rubinstein (1979), the risk
neutral probabilities are the solution of two equations with two unknowns. Con-
versely, a stock following a trinomial price process renders the market incomplete,
as will be shown in the next chapter. In continuous time, a stock price described by
a univariate diffusion provides a complete market, as shown by Harrison and Pliska
(1981). Other processes, such as the stochastic volatility specification of Hull and

White (1987) or the jump diffusion specification of Merton (1976) do not satisfy the



market completeness requirement.

The empirical rejection of the Black and Scholes (1973) and other univariate
diffusion models - for instance the constant elasticity of variance model of Cox and
Ross (1976) or the compound option model of Geske (1979) - redirected the option
pricing research to more complex specifications, such as the stochastic volatility
models of Hull and White (1987), Johnson and Shanno (1987), Heston (1993) or
the stochastic volatility jump-diffusion mixtures of Bates (1996) or Bakshi, Cao, and
Chen (1997). In fact, starting from the paper of Heston (1993), an entire strand of
the option pricing literature specialized in the pricing of options on various processes
using a Fourier transform technique. Duffie, Pan, and Singleton (2000) applied
this technique to a large class of multivariate affine models that nests the previous
stochastic volatility and jump models.

All these studies adopted the arbitrage methodology for its tractability, but did
not always address the market incompleteness issue. Hull and White (1987) assumed
that the volatility risk is diversifiable, but this assumption was later refuted by the
study of Lamoureux and Lastrapes (1993), who found evidence that the volatility risk
was priced. The pursuant papers adopted risk neutral models that included a price of
volatility risk. In such models, the infinite number of possible risk neutral processes
was reduced to a single process with parameters implied by the cross-section of option
prices, under the assumption that the risk neutral model is correctly specified.

This approach is hard to support empirically, since the change of probability
measure from the actual return distribution to the risk-neutral requires some rela-
tionships to be satisfied between the process parameters under the two probability
measures. The studies of Bates (1996) and Bakshi, Cao, and Chen (1997) could not
reconcile the parameters of the risk-neutral process estimated from the cross-section

of option prices with the actual process parameters estimated from the time series



of the returns. Pan (2002) performed a joint estimation of a jump-diffusion from the
time series of the S&P500 index and the cross-section of options. She found that the
price of the jump risk is much higher than the price of diffusion risk, which is hard
to reconcile with the preferences of rational investors. Chernov (2003) used several
asset classes - the S&P500 index, individual equities, T-bills and gold futures - to
estimate the pricing kernel, which must be common to all assets to avoid arbitrage.
The asset return dynamics was described by a multivariate stochastic volatility diffu-
sion, with assets exposed both to systematic and specific risk. The estimated kernel
is not consistent with a time-separable utility function.

Related to the estimation of a risk-neutral stochastic process from option prices is
the nonparametric estimation of the entire risk neutral probability distribution from
the cross-section of option prices. Rubinstein (1994) found the closest distribution to
a lognormal prior, which prices the options correctly. Ait-Sahalia and Lo (1998) fit a
kernel regression to option prices and obtained the risk neutral probability density as
the second derivative of the option price with respect to the strike price - a relation
established by Breeden and Litzenberger (1978). See the monograph of Jackwerth
(2004) for a survey of these methods. Still, these risk neutral probabilities could
not be reconciled with the actual returns distribution, unless the risk aversion had
weird patterns. The studies of Ait-Sahalia and Lo (2000) and Jackwerth (2000)

documented such findings.

1.2 The equilibrium pricing approach

Equilibrium pricing has been an alternative to the arbitrage approach from the very
beginning of the option pricing literature. Black and Scholes (1973) provided an

alternative derivation of their equation as an application of the capital asset pricing



model in a continuous time economy.

The power of an equilibrium methodology was revealed in the studies of Ru-
binstein (1976) and Brennan (1979), who obtained the Black-Scholes formula in a
two-period economy, without intermediate trading between the purchase and the
maturity of the option. Their result was based on the valuation of the option pay-
off by rational investors and relied on assumptions on the representative investor’s
preferences and the distribution of the asset price at the expiration of the option in
the second period. The law of one price provides that the value of the asset at time
zero is the expectation of its second period payoff, multiplied by a random quantity
called pricing kernel, state price or stochastic discount factor. This quantity is the
marginal rate of substitution between a unit of first period consumption and a unit
of random second period consumption and depends on the investor’s utility function.

Rubinstein (1976) and Brennan (1979) found that, under certain combinations
of assumptions on the asset return distribution and the investor’s utility, the equi-
librium option price is identical to the arbitrage price obtained under a risk neu-
tral approach. Rubinstein (1976) obtained the Black-Scholes pricing formula under
the joint assumptions of lognormal returns and constant proportional risk aversion
(CPRA) preferences of the representative investor. Brennan (1979) found a larger
class of distributions and pricing kernels that satisfy these so-called risk neutral val-
uation relationships (RNVR). Such relationships make the equilibrium pricing very
tractable. Although an assumption is made on the functional form of the utility, the
option pricing formula is preference free, since the risk aversion parameter vanishes
from this formula.

The equilibrium pricing approach was extended to a multiperiod setting in the
paper of Amin and Ng (1993). They applied this approach to the pricing of options

on assets that feature stochastic volatility or jumps, whether or not a part of the



stochastic volatility or jump risk can be diversified. Their results relied on the joint
lognormality of the returns and consumption processes on the one hand, and the
CPRA preferences of the representative investor on the other hand.

A similar equilibrium argument underlies all the GARCH option pricing models
in the literature. Duan (1995) found that, under CPRA preferences and conditional
lognormal returns, a so-called local risk neutral valuation relationship (LRNVR)
provides the existence of a risk-neutral probability measure under which the options
can be priced as discounted expectations of their payoffs. An important property
of GARCH models is their convergence to stochastic volatility models, proved by
Nelson (1990) and Duan (1997). Duan, Ritchken, and Sun (2005) developed a class
of GARCH models that converge to various jump-diffusions, with jumps both in
returns and in volatility. All these contributions make the GARCH models very
attractive for option pricing, since they are much easier to estimate.

The equilibrium approach can also be used in the pricing of options in continuous
time. In this case, the tractability is obtained by matching the stochastic process of
the pricing kernel with the asset price process. For instance, the Fourier transform
technique applied by Duffie, Pan, and Singleton (2000) to the pricing of options on
affine processes can be applied in an equilibrium framework if the pricing kernel has
itself an affine specification.

Unless they assume a CRRA utility and normal returns, equilibrium models re-
quire some information about the parameters of the utility function, such as the risk
aversion parameter. This renders the equilibrium methodology problematic, as there
exists no reliable way to estimate the pricing kernel. Unless other options are used in
the estimation procedure, the utility function has to be estimated from consumption
measurements. The inconsistencies between utility functions obtained in this way

and asset prices have been documented by the equity premium puzzle literature.



The few cases in which a (local) risk neutral valuation relationship holds are too

restrictive.

1.3 Option pricing in incomplete markets

The equilibrium methodology can give a unique option price under market incom-
pleteness, if the absence of arbitrage assumption is complemented with assumptions
about the investor preferences. Another strand of the literature focused on the
derivation of price intervals for the contingent claims. Merton (1973) used absence
of arbitrage arguments to obtain several important results regarding the pricing of
options, such as inequalities that have to be satisfied by the option prices. These
option pricing bounds are not very useful, since they are very wide.

Perrakis and Ryan (1984) and Perrakis (1986) obtained tighter bounds by finding
conditions under which two portfolios containing the underlying asset, the option
and the riskless bond stochastically dominate each other. This criterion yields two
bounds on the prices at which all risk averse investors would agree to buy or sell the
option. Their results were derived within the equilibrium framework of Rubinstein
(1976) and Brennan (1979), using the extra assumption of a non-increasing ordering
of the stochastic discount factor as a function of the price change. This assumption
relaxes the standard CRRA or CARA assumptions of the equilibrium framework,
while making no assumption on the distribution of the price process.

The results of Perrakis and Ryan (1984) and Perrakis (1986) were dependent on
the choice of portfolios used in the stochastic dominance assessment. In the second
paper, a better portfolio choice resulted in tighter bounds. Levy (1985) used a general
stochastic dominance result that applies to all the possible portfolios containing the

stock, the bond and the option. These bounds are the tightest possible bounds



implied by a risk aversion assumption, though Perrakis (1986) obtained a tighter
upper bound in the case when the next period asset price is strictly positive.

Ritchken (1985) expressed the arbitrage and equilibrium option pricing problems
as linear programming problems. He obtained the Merton (1973) bounds as the solu-
tion of the arbitrage problem and the Levy (1985) as the solution of the equilibrium
problem. The linear programming approach was extended to multiperiod models by
Ritchken and Kuo (1988) and to the n-th degree stochastic dominance and decreasing
absolute risk aversion (DARA) preferences by Ritchken and Kuo (1989). The upper
bound remains the same as the second degree stochastic dominance bound. Mathur
and Ritchken (1999) found the lower pricing bound under DARA and decreasing
relative risk aversion (DRRA) preferences in a single period economy. The linear
programming approach is the most tractable manner to obtain stochastic dominance
bounds and will be presented in detail in the next chapter.

When the number of trading period increases, the option pricing bounds become
tighter. Perrakis (1988) and Perrakis (1993) studied the convergence of the option
bounds as the number of trading periods increases to infinity. When the underlying
asset follows a Black-Scholes diffusion, both option bounds converge to the Black-
Scholes price. The bounds converge to distinct values in the case of jump-diffusions.

As an alternative to these risk-aversion bounds, other studies obtain risky ar-
bitrage option bounds. The risky arbitrage methodology rules out investment op-
portunities that are very attractive to the representative investor. Cochrane and
SaaRequejo (2000) measured the attractiveness of an investment by its Sharpe ratio,
while Bernardo and Ledoit (2001) defined a gain-loss ratio as a measure of the in-
vestment attractiveness. Another approach pursued by Carr and Madan (2001) was
to define a set of probability measures and floors that had to be exceeded by the

expected payoff, in order for an investment to be considered acceptable. The lat-



ter approach has been applied in a single period setting. None of these approaches
provides a clear cut criterion for the attractiveness of an investment. In contrast,
stochastic dominance is an economic criterion that can be verified. The violation of
the stochastic dominance upper (lower) bound would permit an investor to increase

utility by writing (purchasing) the option.
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Chapter 2

The Stochastic Dominance Approach

In an economy with incomplete markets, options are not redundant securities and
the replication argument used by the arbitrage pricing methodology fails to provide a
unique price. The purpose of this chapter is to present an alternative class of models
that were designed to handle market incompleteness and were more recently used in
the pricing of options under transaction costs. These models rely on the absence of
stochastically dominating strategies involving the available assets.

Stochastic dominance provides an ordering for risky assets. It is said that risky
asset A dominates asset B in the sense of First degree stochastic dominance (FSD)
if all investors with increasing utility functions prefer A to B. Asset A dominates B
in the sense of Second degree stochastic dominance (SSD) if all risk averse investors
prefer A to B.!

Perrakis and Ryan (1984) introduced this class of option pricing model as an
extension of the equilibrium framework of Rubinstein (1976) and Brennan (1979)
under very weak preference assumptions. Their option bounds relied on a result

obtained by Perrakis and Ryan (1984), which provided conditions for the stochastic

1For a discussion of stochastic dominance, see for instance Chapter 2 of Huang and Litzenberger
(1988).
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dominance between the underlying asset on the one hand and a portfolio containing
the option and the riskless asset on the other hand.? This result can be applied
recursively to provide option bounds in a multiperiod economy.

Levy (1985) used a more general stochastic dominance criterion, which provided
the tightest possible bounds in a single period economy, but could not be extended
to a multiperiod setting.

A breakthrough in the stochastic dominance pricing of options was obtained by
Ritchken (1985), who expressed the option pricing problem as a linear program with
constraints given by the structure of preferences. This approach was extended to a
multiperiod setting by Ritchken and Kuo (1988) and to more complex preferences
by Ritchken and Kuo (1989). The linear programming formulation has been the
workhorse of all the further applications of the stochastic dominance methodology
in a market incompleteness setting.

An important application of the stochastic dominance pricing approach is the
pricing of options in the presence of transaction costs.®> This has been done done
successfully using the portfolio construction approach of Perrakis and Ryan (1984),

but none of the alternative methods could provide a solution to this problem so far.

ZPerrakis and Ryan (1984) considered the following portfolios in their analysis

Portfolio A: one share of the underlying asset at price Sp.
Portfolio B: one call option at price Cy and § — Cy invested in the riskless asset.

Portfolio C: g—‘; call options at price Cy each.

Portfolios B and C can be obtained by varying the weights in a portfolio containing the riskless
asset and the option. Perrakis (1986) analyzed the absence of stochastic dominance between the
latter portfolio and the underlying asset

3See Constantinides and Perrakis (2002), which shows that the Perrakis-Ryan upper bound
remains essentially unchanged if trading costs are introduced in trading the underlying asset. This
paper also provides a tight lower bound for European put options under transaction costs. An
equally tight upper bound holds for American call options and a tight lower bound holds for
American put options. See Constantinides and Perrakis (2006).

12



2.1 Stochastic dominance option pricing in a two-

period economy

2.1.1 First degree stochastic dominance

Ritchken (1985) studied the pricing of an option in a two-period economy, when the
underlying asset price is a random variable with a multinomial distribution. The
underlying asset has the price Sy at time 0 and will take a random value S7, which
will be revealed in the second period at time 7. The n possible states of the economy
in the second period are described by the asset price outcomes s; < 59 < ... < sy,
which are known at time 0. There is a riskless bond with price By at ¢ = 0, which will
take the same value of one unit of consumption in any of the second period states.
The pricing problem consists in finding the price at time ¢ = 0 of a contingent
claim that pays Cr = g(St) when it expires in the second period. The payoff of .a call
option with exercise price K is g(Sr) = maz(Sy — K,0), while the payoff of a put
option with the same exercise price is ¢'(S7) = maz(K—St,0). Denote ¢; = g(s;) the
amount paid by the claim in state j. Using the state price methodology introduced
by Arrow (1964), each state in the second period can be assigned a fictitious security
called state contingent claim, which pays one unit of consumption if the state is
realized and zero otherwise. Denote d; ds, .. .d, the time zero prices of these claims,

also called state prices. The law of one price implies that the underlying asset, the

13



bond and the option have respectively the prices

SO = Z dej>
7=1

Bg == Z dj, (21)
j=1

CO = Z dej-
j=1

If n = 2, the two state prices can be derived uniquely from the stock and bond
pricing equations. The unique option price can then be obtained by substituting
this solution into the option pricing equation. This complete market example is a
single period version of the binomial option pricing model derived by Cox, Ross, and
Rubinstein (1979).

If n > 3, the stock and the bond pricing equation are not sufficient to determine
the state prices. This is an obvious example of market incompleteness, in which the
arbitrage methodology is not able to provide an option price. We use this setting to
introduce the linear programming approach of Ritchken (1985). That study assumed
that the underlying asset and the riskless bond are correctly priced. The option can

take any value in an interval obtained by solving two linear programs:

14



min(max) Cp = chdj (2.2)
j=1

subject to:

n

So = Z dej

j=1
By=> d,
j=1

dJZO,ijl,n

The objective of the two linear programs is the option price, while the first two
constraints are the arbitrage pricing equations of the underlying asset and the bond.
The last set of constraints requires that all state prices be positive, a condition
implied by the absence of arbitrage.

While linear programming had been used previously in option pricing applications
- see for instance Garman (1976a), who derived the arbitrage bounds of Merton
(1973) in this manner - the formulation of Ritchken (1985) can be easily enriched
with information regarding preferences. Moreover, in the case of contingent claims
with a convex payoff function, such as call and put options, the problems admits
a closed form solution, which is presented here. Figure 2.1 depicts the payoff as
a function of the stock return z;, = %’Oi The convexity of the option payoff as a
function of the asset price implies that the coordinates (z;,¢;),7 = 1,...n form a
convex polygon. By writing the bond pricing equation as Z?zl d;/By = 1, we notice
that the stock and the option prices are convex combinations of the discounted
payoffs Byc; and respectively Bys;. The feasible solutions must therefore lie inside

the polygon determined by the option payoffs. The stock pricing equation, which
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max

min

24 2 zp R Zhet  Zn
Stock Return z

Figure 2.1: Geometric solution to the option bounds problem

can be rewritten as Z?:o z;d;/ By = R, further restricts the feasible solutions to the
vertical line z = R. The solutions of the maximization, respectively minimization
problems are the two intersections of the vertical line with the polygon. By inspecting

Figure 2.1 and using the equality By = 1/R, the upper and lower option bounds are

1 |z,— R R—2z
Croz = = 2.3
R[zn—zlcl+zn—zlcn1 (2:3)
1 - R R—
Cin = I {Zhﬂ cp + Zh Ch+1:|
Zh41 — Zh Zh+1 — Zh

where the index h is obtained from the condition z; < R < 2.
There are two interesting limit cases that can be analyzed by inspecting the

formulas and the geometric interpretation of the problem. The first is the case of

16



the upper bound when the underlying asset price can reach zero, z; = 0. The option
price is zero in this situation and the point (zy, ¢1) is the origin. This is the case with

many return distributions, such as the lognormal. The upper bound is in this case

Cmax = —Cp
Zn,

The second interesting case is the lower bound for a return distribution when 2, = R
for some return index h. This latter case is useful in the extension of the results to

continuous returns distributions In this case,

1
Cmin =5
R

The analysis of the linear program solutions that underlie the two option bounds
provides more insight to the stochastic dominance option pricing. The FSD problem
2.2 consists in finding two risk neutral probability distributions under which the
two bounds are attained. From the inspection of equations 2.3, the upper bound
is reached under a binomial distribution of the returns, with outcomes equal to the
extreme stock returns. The lower bound is attained under the binomial distribution
of the two return outcomes that nest the riskless interest rate. The upper and lower
bound distributions are the highest, respectively lowest return volatility distributions

among all possible risk neutral distributions.

2.1.2 Second degree stochastic dominance

The previous section introduced the linear programming methodology of Ritchken
(1985) in a first degree stochastic dominance setting. The linear programs have been

adapted to other classes of preferences by modifying the constraints. Ritchken (1985)

17



derived option bounds for risk-averse preferences, while Ritchken and Kuo (1989)
studied the general case of n -th degree stochastic dominance, as well as the pricing
of options under decreasing absolute risk aversion. While the latter case introduces
nonlinear constraints, all the other applications are extensions of the FSD problem
and can be solved in a similar manner. The second degree stochastic dominance case
relies on the assumptions of the equilibrium pricing framework of Rubinstein (1976)

and Brennan (1979):

Assumption 1: law of one price

Assumption 2: nonsatiation

Assumption 3: perfect competitive, Pareto efficient markets

Assumption 4: rational time-additive tastes, with a concave utility functions
Assumption 5: weak aggregation

The weak aggregation property assures that the state prices are identical to the
state prices of an economy with a single utility maximizing investor who holds the
aggregate consumption in the first period and in each second period state. Let
the probabilities pi,ps,...pn denote the beliefs of this investor about the second
period values s; < 89 < --- < s, of the underlying asset. The state prices are then
d; = pym;,Vj = 1,...,n, where m;, called stochastic discount factor, represents
the marginal rate of substitution between consumption in state j and first period
consumption®.

A problem of the equilibrium models is the presence of consumption as an argu-

ment of the utility functions. Consumption cannot be measured in a reliable man-

ner, and a set of beliefs on future consumption would not be a realistic assumption.

4See the discussion in the Chapter 5 of Huang and Litzenberger (1988)
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Equilibrium option pricing models remove consumption from the pricing equation
by making assumptions on the relation between the underlying asset price and the
aggregate consumption. Most equilibrium models, starting from those of Rubin-
stein (1976) and Brennan (1979), assume the joint lognormality of the aggregate
consumption and the underlying asset price. For mathematical tractability, these
models also make assumptions on the functional form of the utility function, which
usually belongs to the constant proportional risk aversion class. The counterpart
of these assumptions in the stochastic dominance framework is the following milder

assumption introduced by Perrakis and Ryan (1984):

Assumption 6: non-increasing ordering of the stochastic discount factor with re-

spect to the underlying asset.

This is a basic assumption of the stochastic dominance approach, the monotonicity
of the state contingent discount factors with respect to the stock returns. This as-
sumption is rigorously justified when there exists at least one investor in the economy
who holds only the stock, the option and the riskless asset. This assumption implies
that the underlying asset has a positive consumption beta. However, the analysis can
be repeated for negative beta assets. More importantly, the stochastic dominance
approach does not make any distributional assumption on the return process, and
can therefore accommodate any return distribution observed empirically. There are
also no restrictions on preferences, except risk aversion.

The new preference assumptions transform the option bounds problem to the

pair of linear programs
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min(max) Cy = Z c;m;p; (2.4)

j=1

subject to:

n
Sy = E 5;M5D;
j=1

n
Bo=) _ mp;
j=1

my2my2>---2>2my >0

The objective and the pricing constraints are identical to the FSD problem described
by the linear program (2.2). The last set of constraints describes the risk averse
preferences.

The SSD problem 2.4 optimizes the stochastic discount factors under which the
two option bounds are attained. From a probabilistic point of view, the stochas-
tic discount factors are, up to a constant of 1/R, the Radon-Nikodym derivatives
(likelihood ratios) that transform the beliefs of the representative investor into the

risk-neutral distributions used to price the two option bounds. Let us assume that

4

we found the stochastic discount factors m;

and m},j = 1,...,n under which the
upper and respectively lower option bounds are attained. We can denote

L

m .
U, = and  1; = =

(2.5)

It is clear from the bond pricing equation that 377 U; = 1 and 377, L; = 1, so

Uj; and Lj,j = 1,...,n define two probability measures U and L. With this new
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notation, we can write the two option bounds as

Conaz = T 9(57)], (2.0
Crin = B [9(S1)].
Note also that we have
(3] [3]

Equations (2.6) express the two option pricing bounds as discounted expectations
of the option payoff under the probability measures U and L, while (2.7) shows that
U and L are risk-neutral probability measures. The two risk neutral probability mea-
sures can be obtained from the solutions of the linear program (2.4), using equations
(2.5).

Equations (2.6) express the stochastic dominance bounds of any contingent claim
price. For call and put options, Ritchken (1985) obtained closed form solutions of

the linear programs (2.4). By introducing the substitutions

. .
5, — =L S 6 = Zimon (2.8)
J J 1 Di J Zg:lpi

1=

j J
y; = (Zpi> z; where z; >0,Vj =1,...n such that sz =m;, (2.9)

i=1 =1
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the linear program becomes

n
min(max) Cp = Z CiY;
j=1

subject to:

n

So = Z 531

j=1
n

Bo= uj
j=1

y; >0,Vj=1,...n

which is similar to 2.2, if we substitute y; for ¢;. Using the solution of the FSD

problem and denoting Z; = §;/Sp, the two option bounds under risk aversion are

11(2,— R R—Zl
Crae = — | = c e 2.10
maz R{én—zll z«n—zlc] (2.10)
1241 — R R—12%, .
Cmin:_ A+1 —Cp + < hACh-H
R | Zhy — 2y Zp+1 — Zh

The upper bound given by (2.10) is the same as the one obtained by Perrakis (1986)
by a portfolio construction methodology. The solutions of the SSD problem can
therefore be expressed in terms of risk neutral probabilities as shown in the studies
of Ritchken and Kuo (1988), Perrakis (1988) and Perrakis (1993).

We can obtain the two risk neutral probabilities from the inspection of the SSD
bounds equations 2.10. The option upper bound is a function of all the returns out-

comes and the corresponding risk neutral distribution is a multinomial distribution
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with the outcome probabilities

%n—R+R—zl

U1: — D1 (211)
Zn — 21 Zn — 21
R—Zl .

Uj=A Dy, j=2,...,n
Zn T 21

The lower bound is obtained from the first A + 1 outcomes of the returns and the
corresponding risk neutral distribution is a multinomial distribution with A + 1 out-

comes

S — R p; R .
P R VR N S N ¢ (2.12)
Zhel = EZR Y Di PRl T 2Ry s

I R—2, pra
ht1 = 7 s A1
Zhtl = Zh )iy Di

An interesting case which simplifies the analysis of the lower bound when the
return has a continuous distribution is the case when 2, = R. In this case, the lower

bound distribution becomes

Li==L =1, h

h b
D1 Di

a distribution obtained by truncating the actual return distribution and keeping only
the outcomes z;|2; < R.

We can now express the two bound distributions for an underlying asset with a
continuous return distribution. The two distributions are risk neutral transforma-
tions of the actual return distribution. The upper bound distribution is a mixture of
the whole return distribution and a distribution concentrated in the minimum return
outcome, with weights that imply risk neutrality. The lower bound distribution is

obtained from a truncation of the actual return distribution in such a manner that
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the resulting distribution is risk-neutral.

R — zmin EF[2]- R
_ VT Fmin poyg 2 BT, 2.1
P(Z) 1z<z* L
= — h * =
L(z) <) where z* solves E* (2) = R

If the asset return can be zero with a positive probability, 2,,;, = 0 and the upper
bound becomes
1

Crnaz = WEP[g(ST)} (2.14)

In practice, this upper bound can be obtained by replacing the riskless rate with the
mean return in the risk-neutral option pricing formula.

If the underlying asset has a negative consumption beta then the last constraint
in 2.4 is replaced by 0 < m; < ... < m,. While this case is not very common in
practice, it can arise in multiperiod models when the returns are not independent
and identically distributed (iid) or when the underlying asset is not an equity. We
provide here briefly the expressions that form the counterparts of (2.10) and (2.13)
in this case. We define the conditional expectations

n
Z ZiPi

_ i=j

Zj = —— = Eler|zr > zj] (2.15)
Zpi
i=j
Then instead of (2.10) we get
1 [z — R R-%
Cvlnaz ) |:fh+1 —Ch + = Zh_ Eh+1:| (216)
R | Zpt1 — Zn Zhi1 — Zn
11z, — R_ R—2z _
Cl. == -
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Here again the two states z, and z,,, are defined from the relation z; < R < Zj;.
For a continuous return distribution P(z) the risk neutral distributions U(z) and

L(z) of the upper and lower bounds respectively become, instead of (2.13)

Zmax — B R—E(z)
—F—FF 1, . 2.17
P(Z) 1222*

P(z > z*)’

U'z) =

where z* solves E* (2) = R

L'(z)=

2.2 Stochastic dominance bounds

in multiperiod economies

The linear programming problems used by Ritchken (1985) to derive the two option
pricing bounds rely on general equilibrium and arbitrage arguments and can be used
to price any contingent claim in an incomplete market with risk averse investors.
The extension of the approach to the pricing of contingent claims in a multiperiod
economy reduces to the recursive solving of the two optimization problems.

Under very mild assumptions call and put option prices are convex functions of
the underlying asset price. When this property holds, the structure of the single
period problem is preserved in each step of the multiperiod problem. Ritchken and
Kuo (1988) used this idea to extend the linear programming approach to multiperiod
economies where investors can revise their portfolio holdings during the life of the
option. Perrakis (1988) and Perrakis (1993) formulated the option bounds in the
spirit of the risk-neutral pricing approach presented in the previous section.

All these papers focused on the pricing of options on a process with iid multi-
nomial returns. While such processes can be general enough to approximate the

unconditional asset distribution at the expiration of the option, they cannot repro-
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duce some features observed in the markets, such as a time-varying volatility. The
two option bounds are obtained by dynamic programming and may be sensitive to
the local properties of the asset price process. The reformulation of the multiperiod
pricing bounds presented here is general enough to accommodate more recent speci-
fications of the underlying asset distribution with non-iid returns, such as stochastic
volatility, jump diffusion mixtures or GARCH processes.

The generalization of the multiperiod results to non-iid returns can be obtained
by using the discrete time market model of Harrison and Pliska (1981). The market
is specified by the probability space (2, F, P). Each event in the sample space
represents a possible path of the underlying asset price (and possibly other variables
such as volatility) and F is the o - algebra generated by all the subsets of €. The
probability measure P represents the beliefs of an investor regarding the time path
of the asset price. The information structure of this market is represented by the
filtration F = {Fq, F1,..., Fr} with /ey C F, C--- C Fpr = F.

Assuming the investors are risk averse, the two option pricing bounds can be

obtained recursively by solving the following linear programs, fort =7 —1,...,0
n
min(max) C; = Z Ci 1Myt +1Dj .41 (2.18)
j=1
subject to:

n
Sy = E Sjt+1M5 t4+1P5,64+1
Jj=1

n
B = E My t4+1DP5,6+1
j=1

M1 = Moyl = -0 2 My iy > 0

where p; 11 = Prob (S¢y1 = s; |F;) is the conditional probability of state j at time ¢+
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1 given the information available at time ¢ and s;,,1, ¢; 41 and m; ;. are respectively
the underlying asset, the option price and the stochastic discount factor in that state
at ¢ + 1.

The optimization problem for ¢ = T — 1 is the single period problem solved
in the previous section. Assume that we have solved the optimization problem for
T—-1,...,t+ 1. We can apply the single period solution to express the two bounds

of the option price at time t.

1

C_'t = EEU [Ct-H |ﬂ]
1
Qt = EEL [CH—I |~7:t]

where the probability measures U and L are the multiperiod counterparts of the risk
neutral probabilities defined in equations (2.11) and (2.12) for the single period case.

The application of the upper bound equation implies the recursion.

Cy < SEY [Ciy1 |F]

< =EY [Ciy1 |F] (2.19)

1
EY EEU [Ciia | Fisa ]| F

=yl abev el s

|~

= EY [Ct+2 |-7:t]

2

e

The last equality of (2.19) is obtained by applying the law of iterated expectations.
By repeatedly applying this recursion from 7'—1 to 0, the claim price Cy must satisfy

the inequality

LBV (g(Sp) | Ro] (2.20)

Co < AT
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It can be shown in a similar recursive manner that the option price C; must

satisfy the inequality
Loz

Equations 2.20 and 2.21 show that the option pricing bounds under risk aversion
can be computed in the same manner as any other option price, by using the risk
neutral pricing framework of Cox and Ross (1976) and Harrison and Kreps (1979).
This interpretation of the option bounds is very useful since it extends the risk neutral
pricing used in the arbitrage approach to the pricing of the two bounds under risk
aversion. Most arbitrage pricing models are expressions or algorithms that compute
the expectation of the payoff under a risk neutral distribution. These models extend
easily to the two risk neutral distributions involved in computing the two option
bounds, assuming we can obtain these distributions.

An application of the stochastic dominance approach in a multiperiod setting is
the pricing of American options. We can use the same recursive method to obtain
the pricing bounds for an American option on an asset that pays a dividend d; equal

to dt = ")/St

Car =Cy; = 9(Sr(1+7)),
_ 1 _
Car = EEU[maf(g(StH(l + 7)), Caes1)| Fil

1
QA,t = EEL[max(g(StH(l + ’7))aQA,t+1)|}—t]-

The two bounds can be used to obtain the maximum buying price, and respectively

the minimum writing price for an American option. However, they cannot be used
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to decide whether or not to exercise an option if the exercise value lies between the

bounds.

2.2.1 Call and put option bounds

In general, the probability measures U and L can be obtained recursively by solving
the linear programs (2.18) for ¢ =7 — 1,...,0. If the option price C;;; is a convex
function of the underlying asset price S;y1, the closed form solution obtained in the
two-period case extends to the time ¢ step of the problems (2.18). Using the solutions
of the two period problem, it is convenient to express the probabilities U and L as
conditional probabilities of the return between ¢ and ¢ + 1 given the information

available at time ¢.

o R— Zt+1,min
U (ze41|F2) = P oo 1] = Zt+1,minP (2e41 [F2)

EF [Zt+1 ‘ft] — R

1zt 1=Z¢41,min 222
EF [Zt+1 |~7:t] — Z¢+1,min * A ( )
L(zn |Fo) = P (241 |Ft) 1zi+1szt*+1
e Pz < 2 | F)
where 27, ; solves E” (2,11 |F;) = R (2.23)

The extension of the closed form results of the two-period problem relies on the
convexity of the option payoft as a function of the underlying asset price. Merton
(1973) proved that this property holds for call and put options if the distribution of
the underlying asset returns is independent of the stock price. Bergman, Grundy, and
Wiener (1996) showed that the price convexity holds whenever the underlying asset
returns follow a univariate diffusion. This extends the validity of the closed form
bounds defined by the probabilities (2.22) and (2.23) to some asset specifications

with a return distribution that depends on the underlying asset price, for instance
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the constant elasticity of variance model of Cox and Ross (1976).

Most processes used in the modeling of asset prices assume the Markov property.
If the information set F; is defined by the evolution of the asset price Sy, ..., S;, the
Markov property provides that the conditional probabilities involved in (2.22) and
(2.23) depend only on the time ¢ value of the underlying asset price S;. In subsequent
chapters we examine the multiperiod option bounds in cases where the Markov prop-
erty ensures that convexity holds, as well as the computation of stochastic dominance

bounds whenever convexity is violated.

30



Chapter 3

Stochastic dominance option pricing

1n continuous time

The previous chapter examined the stochastic dominance approach to option pricing
in discrete time. While asset prices are discrete by the nature of the trading process,
many option pricing results have been obtained in a continuous time paradigm. The
main reason is the mathematical tractability of continuous time models, in which op-
tion prices can be obtained by solving a partial differential equation. The constant
volatility diffusion model of Black and Scholes (1973) is the best known continuous
time model. Since then, a large number models relaxed the constant volatility as-
sumption. Early models assumed univariate price processes, such as the constant
elasticity of variance model of Cox and Ross (1976) or the jump diffusion mixture
of Merton (1976). More complex models rely on bivariate processes, using price and
volatility as state variables. Such stochastic volatility models were proposed by Gar-
man (1976b), Hull and White (1987) and many others. Heston (1993) obtained a
closed form for the characteristic function of the risk-neutral probability of a stochas-

tic volatility diffusion. Bates (1996) and Bakshi, Cao, and Chen (1997) extended this
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technique to jump-diffusion mixtures, while the affine jump diffusions of Duffie, Pan,
and Singleton (2000) can accommodate stochastic volatility of the volatility or jumps
in volatility.

All these models have been priced in the arbitrage framework introduced by Black
and Scholes (1973) and Merton (1973), by applying the risk neutral pricing method-
ology of Cox and Ross (1976) and Harrison and Kreps (1979). Under the risk neutral
pricing approach, the price of any contingent claim is the discounted expectation of
the payoff under a so-called risk-neutral probability measure. In continuous time
models, the risk-neutral probability measure is obtained by applying Girsanov’s the-
orem, such that the discounted underlying asset price follows a martingale under the
new probability measure.

Unfortunately, the martingale probability measure is unique only when the un-
derlying asset follows a univariate diffusion. When the underlying asset price process
incorporates stochastic volatility or jumps, the market is incomplete and extra as-
sumptions are needed to price the option.

This chapter derives stochastic dominance pricing bounds for options on diffu-
sion and jump-diffusion processes. The bounds are obtained by analyzing the limit
behavior of the discrete time stochastic dominance bounds. In discrete time, the two
option bounds are discounted expectations of the option payoff under two probability
measures U and L. Using the two risk neutral distributions, the two bounds for the

price of a an option with payoff g(Sr) can be written as

Conas = 7B [9(51) 7o (3.1
Conin = =7 B* 9(57) | 7o (32)

When ¢(St) is a convex function of the underlying asset price, for instance in the
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case of call and put options, the two probability measures can be obtained in closed
form from the actual return distribution.

Perrakis (1988) examined the convergence of the option bounds for the special
case of a stock return following a trinomial distribution. It was shown that when that
distribution tended to a diffusion process the limit of both upper and lower bounds
was the Black-Scholes option price. The convergence criteria used in that study were
the ones provided by Merton (1982) for iid returns following a general multinomial
process. Since the bounds are available in closed form in such a case, it suffices to
show that the limiting form of the multiperiod convolutions of the distributions U (z)
and L(z) is a risk neutral diffusion with the same constant volatility as the initial
process.

This line of approach is, unfortunately, not available when the underlying stock
returns are not iid. Although the Merton (1982) criteria for the convergence to a
diffusion of the multinomial discretization of the underlying stochastic process are
still valid, they are not very useful in characterizing the limiting process. Further, the
option bounds themselves are available only as recursive expressions of time-varying
distributions, whose limiting form is not easy to ascertain under general conditions.

For this reason we shall examine the behavior of the bounds by adopting a more
general approach to convergence analysis. In analyzing the convergence of stochastic
processes it is important to use the right type of convergence. We adopt the notion
of weak convergence. Given a sequence of random variables Z" on the probability
probability spaces (Q", F", P"), and the random variable Z on the probability space
(Q,F,P), Z™ is said to converge in distribution to Z and P" is said to converge
weakly to P when the following limit exists for any real value z.

lim P*(Z" < z2)=P(Z < z2) (3.3)

n—oo
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The weak convergence property holds if and only if for any continuous bounded

function g, we have

lim E" [g(Z™)] = E” [9(2)], (3.4)

n—00

Since option prices are expectations of the option payoff, equation (3.4) underlies
the use of discrete time models such as binomial trees to approximate options on
continuous time processes.

In our stochastic dominance setting, if we can prove the convergence of the se-
quences of probability measures U™ and L" to the limits U and L, the weak con-
vergence property provides that the option prices on the continuous time process
X; (which contains, but is not necessarily limited to the underlying asset price S; ),
are bounded by the discounted expectations of the payoff under the two probability
measures U and L. A unique option price results if both U™ and L™ converge to the
same limit.

We adopt a three-step procedure for the analysis, where we use the superscript

h to denote a discrete process with sampling interval At = h:

e Find a sequence of stochastic processes X[ that converge weakly to the given

continuous time process X; as h — 0.

e For each approximating stochastic process X", obtain the two risk-neutral
probability measures U" and L under which the stochastic dominance bounds

are attained

e Analyze the convergence of the two probability measures as h — 0.

In the following sections, we apply this methodology to examine the convergence

of the option bounds when the underlying asset follows a diffusion and a jump-
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diffusion mixture. Apart from stochastic volatility and GARCH processes, which are
examined in the next chapter, these two cases cover most continuous time option

pricing models studied in the literature.

3.1 Option Bounds in Continuous Time:
the Diffusion Case

We consider the general case of a multivariate diffusion process

dX, = p(X,)dt + S(X,)dW, (3.5)

where X, is a d -dimensional vector of state variables known at time ¢ including the
underlying asset S;. The drift coefficient vector ©(X;) and the diffusion coefficient
matrix %(X,) are unspecified continuous functions of X; in R¢ and respectively R,
Since they are continuous, the functions p(X;) and 3(X;) satisfy a Lipschitz condition
that provides the existence of a unique strong solution of the stochastic differential
equation (3.5).

We assume without loss of generality that ¥ is a lower triangular matrix. W, is
a d -dimensional Brownian motion with independent components. In the traditional
Black-Scholes model X; = S, and both the mean and variance are linear functions
with constant coefficients, ©(S) = 1S and o(S) = 0S. In bivariate models, the first
component of X is the underlying asset price, while the second component is usually
a measure of the return volatility.

In the first step of the convergence analysis, we seek a sequence of discrete time
Markovian stochastic process over the interval [0, 7| to option expiration that con-

verges to (3.5) as the length h of the elementary time period tends to zero. There
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are several ways to verify the weak convergence of Markov processes'. For instance,
a necessary and sufficient condition for the convergence to a multivariate diffusion
is the Lindeberg condition, which was used by Merton (1982) to develop criteria for
the convergence of multinomial processes and by Nelson (1990) to prove the conver-
gence of some ARCH type processes to diffusions. Let X denote a family of discrete
multidimensional stochastic processes. The Lindeberg condition stipulates that for

any fixed § > 0 we must have

lim — / x dy) =0 3.6
h—0 h lly— a:||>6 ) ( )

where P"(x,dy) is the transition probability from X = z to X}, = y during the
time interval h and ||-|| denotes the Euclidean norm in R%. Intuitively, the Lindeberg
requires that X! does not change very much when the time interval A tends to zero.

When the Lindeberg condition is satisfied, the following limits exist

— X; h T,
lim © /| P ) = (3.7)
lim 7 [ ey =) P dy) = oo (3.3)

The conditions (3.6), (3.7) and (3.8) are equivalent to the weak convergence of the

discrete process X[ to a diffusion process with the generator

1
433 L 09

i=1,j=1 1=1

The generator of the diffusion X, is, by definition, the operator

1For more on weak convergence for Markov processes see Ethier and Kurz (1986), or Strook and
Varadhan (1979).
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= Au

lim

EU(Xt+h) — U(Xt)
h—0 h

for any bounded, real valued function u. An alternative representation of this diffu-
sion is the d -dimensional stochastic differential equation (3.5).

We now construct a sequence of discrete processes that converges to the diffusion
(3.5). Inspired by the Euler approximation used in Monte Carlo simulations, we

show that the following process is a valid discretization of (3.5).
Xesn — Xo = p(X)h + S(X)ersnVh (3.10)

In (3.10), the elements of the return innovation e, are independent random
variables drawn from a bounded continuous distribution of mean zero and variance
one, egonr ~ D(0,1) and emin < £44a¢ < Emax, Dut otherwise unrestricted. We express

the convergence through the following result proved in the appendix.

Lemma 1. The discrete process described by equation (3.10) converges weakly to

the diffusion (3.5).

Having proved the lemma, we can construct a process that converges weakly to a
given diffusion. We first examine the convergence of the bounds when the underlying
asset converges weakly to the univariate diffusion defined by the stochastic differential
equation

% = p(Sy)dt + o(Sy)dW. (3.11)

We pick the following discrete approximation
(Spsn — S1)/Se = zeen = (SR + o (S)evVh (3.12)
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where the innovations have a uniform distribution with mean zero and variance one,

1

fle) = ‘2—al—a§e§a, (3.13)

where a = /3.

In the second step of the convergence analysis, we construct the two bound prob-
abilities U" and L", corresponding to the sampling interval h. Since the convexity of
the option price holds, the two bound distributions are available in the closed form
defined by equations (2.22) and (2.23). The two option bounds are defined by the

discrete processes

2 =rh+0(S)eY Vh, (3.14)

2L = rh+ o(S)elVh, (3.15)

where the innovations of the bound processes are defined by the laws

w—=r 1
fe) = (1 - \/ﬁ) Pa et Regor sy (316)

oa
=
oa

\/Elé‘:—a-}—(—u;—r)\/ﬁ’

1
Ly L
f (E ) = 2( (/J,—T) \/E) 1—a+%\/ﬁ§elz§a_(#;r)\/ﬁ'
a —_— —_—

(3.17)

It can be verified by elementary algebra that EV[eV] = E%[el] = 0 and that
limy,_o VarY[e¥] = limp_o Vartel] = 1.

By applying the lemma to the discrete bound processes zV and z%, we prove the
weak convergence of both bound processes to the same risk-neutral pricing process.

We summarize this result in the following two propositions®:

2Since (2.22) and (2.23) hold only whenever u(S;) > r, we need to show that the convergence of
the bounds as in Propositions 1 and 2 is also preserved in the case u(S;) < r. The demonstration
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Proposition 1. When the underlying asset follows a continuous time process de-
scribed by (3.11) the stochastic dominance upper bound of a European call or
put option converges to the discounted expectation of the terminal payoff of

an option on an asset whose dynamics are described by the process

% = rdt+ o(X,)dW (3.18)

where 7 is the (continuous time) riskless rate of interest.

Proposition 2. Under the conditions of Proposition 1 the stochastic dominance
lower bound of a European call or put option converges to the same limit as

the upper bound.

This result shows that, in a complete market setting where the underlying asset
follows a univariate diffusion process, the two stochastic dominance option pricing
bounds converge to the arbitrage option price.

Propositions 1 and 2 were shown to hold for a uniform distribution of the discrete
innovations. In fact they hold under any return innovation that satisfies Lemma 1.
In the appendix we prove the convergence of the two bounds to a common limit
under such general conditions.

Note that the univariate Ito process is the only type of asset dynamics, cor-
responding to dynamically complete markets, for which options can be priced by
arbitrage considerations alone. The stochastic volatility and mixed jump-diffusion
models need additional assumptions beyond arbitrage in order to complete the mar-
ket.

Figure 3.1 illustrates the convergence of the two option bounds for an at-the

money call option with strike price K = 100 and maturity 7" = 0.25 years on a

is straightforward and will be omitted.
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Black-Scholes diffusion with the annual return mean g ranging between 0.05 and
0.07, and annual volatility ¢ = 0.1. The riskless interest rate is r = 0.03. The
diffusion process was approximated by a trinomial tree constructed according to the
algorithm of Kamrad and Ritchken (1991) with 300 periods. The two option bounds
have been computed as discounted expectations of the payoffs under the risk-neutral
probabilities obtained by applying the closed formulas (2.22) and (2.23) to subtrees of
the 300-period trinomial tree. For instance, the 150-period tree is a recombining tree
obtained by self-replicating a 2-period trinomial tree. The risk-neutral probabilities
are the 150-period convolutions of the elementary bound probabilities computed on
the terminal distribution of the 2-period trinomial tree (which is a 5-nomial tree).
The convolution is an application of the Fast Fourier Transform and is a convenient
way to obtain the closed forms of the terminal distribution of the underlying asset

and the bounds, when the single-period returns are i.i.d.

3.2 Mixed Jump-Diffusion Processes

Jump-diffusion processes characterize the dynamics of the underlying asset price
distribution whenever there are discontinuous jumps in the time path of the stock
price caused by the sudden and unexpected arrival of important information. Such
jumps have long been recognized as an important source of market incompleteness.
Their presence makes the valuation of options solely by arbitrage methods infeasible,
except in a binomial model.? As for the stochastic dominance approach, it was shown
that the two bounds converge to two different option values at the limit of continuous
trading even in the case of a very simple three-state jump process (up, down, and

stay the same).*

3See Cox and Rubinstein (1985, pp. 365-368).
4See Proposition 6 in Perrakis (1988).
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Convergence of the option bounds — Univariate Diffusion
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Figure 3.1: Convergence of the option bounds when the underlying process follows
a diffusion

41



When there are jumps in the underlying asset price distribution it is not possible
to replicate the option with a portfolio comprising the riskless asset and the under-
lying asset. The pricing of the option requires extra assumptions regarding the jump
risk. The most common assumption, originally introduced by Merton (1976), is that
the jump risk is diversifiable. In such a case the market will not pay a risk premium
over the riskless rate for bearing the jump risk and risk neutral pricing applies by
assuming that the jump probabilities are risk neutral. With such an assumption
a closed-form expression for the option price was provided by Merton for the case
where the amplitude of the jump size follows a lognormal distribution. Alternative
approaches for valuing options in jump-diffusion cases have been provided by Amin
and Ng (1993), Amin (1993) and Bates (1991, 1996).°

In this section we examine the stochastic dominance approach to option pricing in
the case of underlying assets whose returns follow jump-diffusion processes. As with
the general diffusion case, we first provide a discretization of the continuous time
process that converges at the limit to the given jump-diffusion process. The option
bounds are derived by the stochastic dominance approach from such a discretization
by applying the risk neutral transformations (2.22) and (2.23) to the discrete one-
period distribution. The two transformed distributions are then shown to converge at
the continuous time limit to two different option prices. These prices correspond to
two different risk neutral jump-diffusion processes, each one of which prices options
in a manner similar to the Merton (1976) assumption of diversifiable jump risk.
We provide two partial differential equations (pde) satisfied by the upper and lower

bounds respectively. Last but not least, we show that the two bounds contain all

5See also Bakshi, Cao and Chen (1997), who added jump components to a stochastic volatility
model. More recently Duffie, Pan and Singleton (2000) have introduced option pricing models for
underlying assets that contain jumps in both asset returns and their stochastic volatility.

50f these two pde’s only the one corresponding to the upper bound yields a closed-form solution
under a lognormal distribution of the amplitude of the jumps. Closed form solutions also arise
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the jump-diffusion option prices that have appeared in earlier studies, including the

Merton (1976) price. We assume that the underlying asset returns follow the process

ds,

? = (,ut — )\/,Lj)dt -+ Utth + Jtht (319)
t

where the last term is a jump component added to the diffusion. Although our results
apply to the more general case where both y; and o; are functions of S;, we shall
assume in what follows that u; = p,0¢ = 0, \; = XA and J; = J, in line with earlier
studies; we shall also assume that x> r. The variable J represents the logarithm of
the jump size. It is a random variable with density function f;(J), with mean u,
and variance o;. N is a Poisson counting process with intensity A. In most of the
literature it is assumed that the jumps are normally distributed.

The first step in deriving the bounds on this process is to find a discrete approx-
imation that converges weakly to (3.19). It will be shown that the following process

is such an approximation.

Zesn = (L — Aug)h + oevVh + JAN (3.20)

where € is a random variable with a given distribution, with a bounded continu-
ous distribution D(0,1). We can pick any density function with these properties,
for instance the uniform density function (3.13). The transition probability of the

returns process can be characterized as a mixture of a diffusion and a jump, with

under simple discrete distributions, like the trinomial used in Perrakis (1993). For the lower bound,
and for all other jump amplitude distributions, both option bounds can be obtained either through
numerical methods or through their characteristic functions following the approach of Heston (1993)
and Bates (1996).
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corresponding probabilities 1 — Ah and Ah:

zp = (1t — Mus)h + oev/h  with probability 1 — M
Rtt+At =
J with probability Ah

It can be easily seen that this process does not satisfy the Lindeberg condition,

since

lim %Ph(:r, dy) = X / £5()dT + lim ~ (1 — Mh)f(e)de

|zt 8 +0]>6 h—0 h |2¢,t4-n|>06

As shown in the proof of Lemma 1 for the diffusion case, the second integrand is
zero for h sufficiently low. However, the first integrand is strictly positive for any A,
implying that the process does not converge to a diffusion in continuous time. The
following result, proved in the appendix, shows that (3.20) is a valid discrete time

representation of (3.19).

Lemma 2. The discrete process described by (3.20) converges weakly to the jump-

diffusion process (3.19).

Next we examine the limiting behavior of the stochastic dominance bounds derived
from (3.20). We assume, without loss of generality, that the variable J takes both
positive and negative values, or that Jun;, < 0 < Jpax, implying that the jump
amplitude takes values both above and below 1. For the option upper bound we
apply (2.22) to the discrete time process defined by (3.20). For such a process we
note that as h decreases, there exists an h, such that for any h < h, the minimum
outcome of the jump component is less than the minimum outcome of the diffusion
component, Jyi, < ph + TtEmin V1. Consequently, for any h < h, the minimum

outcome of the returns distribution is Ji,, which is the value that we substitute for
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Zmin 10 (2.22). With such a substitution we have now the following result, proved in

the appendix.

Proposition 3. When the underlying asset follows a jump-diffusion process de-
scribed by (3.19), the upper option bound is the discounted expected payoff
of an option on an asset whose dynamics is described by the jump-diffusion
process

dS;

?rzzh—(A+Awuﬂdt+aﬂV+JUMW (3.21)
t

where 7 is the riskless interest rate,

—r
)\U B _quin ’
JY is a jump with the distribution
A A
Uy = Y 1, 3.22
fi(J) )\+/\UfJ(J)+)\+/\U J=Jsin (3.22)

and uY is the mean of the jumps under U

AL v
A+t T Ay

,Ulljj = Jmin

Given now Proposition 3, we can then use the results derived by Merton (1976) for
options on assets following jump-diffusion processes with the jump risk fully diversi-
fiable.” Applying Merton’s approach to (3.21) we find that the upper bound C(S;, t)

on claim prices for the jump-diffusion process (3.19) must satisfy the following pde,

"Remark that in the stochastic dominance approach, we do not assume that the jump risk is
diversifiable.
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with terminal condition C(Sr,T) = f(S7) :

oc oC 1 ,.,0C _ _ _
[r = O+ )] S35~ 575 +50°8 5+ M EVIC(S7) ~T(S)| 1T = 0 (3.23)

An important special case is when the lower limit of the jump amplitude is equal

to 0, in which case J,i, = —oo. In such a case r is replaced by i in Merton’s pde,

which becomes

ocC aC 1 ,_,0°C _ — _
If (3.24) holds and we assume, in addition, that the amplitude of the jumps has a
lognormal distribution with J ~ N(us,0;), the distribution of the asset price given

that k jumps occurred is conditionally normal, with mean and variance

k
e = p— kApg + fln(l + 1)

g

2 2 2
Op =0 + =05

T

Hence, if k jumps occurred, the option price would be a Black-Scholes expression
with p, replacing the riskless rate r, or BS(S, X, T, u, ox). Integrating (3.24) would

then yield the following upper bound, which can be obtained directly from Merton

(1976) by replacing r by pu.

—_— AL+ p)t]
C= Zexp[—/\(]' + MJ)t]%BS(Sa Xa T7 Hks Uk)
k=0 )

When the jump distribution is not normal, the conditional asset distribution given

k jumps is the convolution of a normal and k jump distributions. The upper bound
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cannot be obtained in closed form, but it is possible to obtain the characteristic func-
tion of the bound distribution. Similar approaches can be applied to the integration
of equation (3.23), which holds whenever 0 > J;, > —o0. Closed form solutions can
also be found whenever the amplitude of the jumps is fixed as, for instance, when
there is only an up and a down jump of a fixed size.?

Next we examine the option lower bound for the jump-diffusion process given by

(3.19) and its discretization (3.20). We apply now (2.23) to the process (3.20) and

we prove in the appendix the following result.

Proposition 4. When the underlying asset follows a jump-diffusion process de-
scribed by (3.19), the lower option bound is the discounted expected payoff
of an option on an asset whose dynamics are described by the jump-diffusion
process

dS;

g—zp—AﬁLﬁ+mﬂm+J%M (3.25)
t

where J” is a jump with the truncated distribution J|J < J The mean of the

jump and the value of J can be obtained by solving the equations

=g+ Ak =7 (3.26)

ui=E(J)J < J)

Observe that (3.26) always has a solution since yu > 7 by assumption. From the
discretization (3.20) it is also clear that as h — 0 all the outcomes of the diffusion
component will be lower than J. Therefore, the limiting distribution will include

the whole diffusion component and a truncated jump component. The maximum

8See, for instance, Perrakis (1993).
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jump outcome in this truncated distribution is obtained from the condition that the
distribution is risk neutral, which is expressed in (3.26). As with the upper bound,
we can apply the Merton (1976) approach to derive the pde satisfied by the option

lower bound, which is given by

2
[r — At 5% - Z—% + %UQSQZTQQ +AEL[C(STE) = C(S) = RC =0 (3.27)

with terminal condition Cr = C(Sp,T) = ¢(Sr). The solution of (3.27) can be
obtained in closed form only when the jump amplitudes are fixed, since even when
the jumps are normally distributed, the lower bound jump distribution is truncated.

Figure 3.2 illustrates the convergence of the two option bounds for an at-the
money call option with strike price K = 100 and maturity 7' = 0.25 years on a
jump-diffusion process described by the model of Merton (1976) with the annual
return mean p ranging between 0.05 and 0.09, and annual volatility of the diffusion
component ¢ = 0.1. The jumps have the intensity A = 0.3 and are normally dis-
tributed with mean p; = —0.05 and volatility o; = 0.07. The riskless interest rate
is r = 0.03. The jump-diffusion process was approximated by a 300-period tree built
according to the method introduced by Amin (1993). The bounds were computed
by taking the discounted expectation of the payoff under risk-neutral probabilities
obtained by applying the closed formulas (2.22) and (2.23) to subtrees, in the same
manner as in the diffusion case. The risk-neutral price is the the Merton (1976) price
for this process.

The plot shows a spread of less than 10%. It is important to note that this range
of allowable prices in the stochastic dominance approach is the exact counterpart
of the inability of the “traditional” arbitrage-based approaches to produce a single

option price for jump diffusion processes. Indeed, the exact option prices under jump
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Convergence of the option bounds — Jump Diffusion
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Figure 3.2: Convergence of the option bounds when the underlying process follows
a jump-diffusion

diffusion derived in the well-known studies of Bates (1991), Amin and Ng (1993) and
Amin (1993) are all functions of the risk aversion parameter of the CPRA utility
function of consumption used in the derivations; see, for instance, equation (27)
of Amin and Ng (1993), or equation (33) of Amin (1993). Further, the assumed
monotonicity of the state-contingent discount factors of the stochastic dominance
approach in an elementary discrete time period also holds in the combination of
jump diffusion asset dynamics and CPRA utility of consumption used in the more
traditional approaches. The stochastic dominance option bounds are, therefore, a
more general approach to option pricing than general equilibrium based on specific

forms of the utility function.
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3.3 Multivariate diffusions

We now discuss the case when the underlying asset follows a multivariate diffusion,
as in the stochastic volatility models of Garman (1976b), Hull and White (1987),
Heston (1993) and many others. We specify the state vector X, as the pair (S, Y;),
where S; is the underlying asset price and Y; incorporates other state variables that
measure the asset volatility.

In principle, we can apply the lemma and construct a discretization of these
models according to equation 3.10. However, the multiperiod optimization problem
(2.18) is not easily tractable with this type of discretization. The main difficulty is
that the next option price C;,p, is now a function of both the stock price Sy, and
the volatility Y;,,. In the univariate case, the convexity of the option with respect to
the stock return holds in most cases except a few perverse counterexamples®. This
allows us to apply the closed forms of the two bound probabilities and express the
bounds as expectations under these probabilities. In the multivariate case, we can
often ascertain the convexity of the option price with respect to the stock price if the
volatility is fixed'®. However, the closed formulas (2.22) and (2.23) are a result of the
convexity of Cyy,(Sip), rather than the convexity of Cy(S;), given the information
available at time ¢. Since the next period states occur across various volatilities,
neither the criteria of Bergman, Grundy, and Wiener (1996), nor that of Merton(73)
provide the required convexity.

We can address this difficulty from two points of view. Early stochastic volatility

models, such as that of Hull and White (1987), assumed that the volatility risk

9GSee for instance Bergman, Grundy, and Wiener (1996). However, their example is a non-
Markovian process

10Bergman, Grundy, and Wiener (1996) examined the convexity of the option price with respect
to the underlying asset for a bivariate diffusion. Most stochastic volatility models satisfy their
convexity condition.
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was diversifiable. Under this assumption, the result expressed by Propositions 1
and 2 still holds. Assume, without loss of generality, a stochastic volatility process

described by the bivariate SDE

s,
St
dYy = py (S, Yy)dt + osy(St, Y2)dWs + oyy (Si, Yi)dWy

= ps(Sy, Yi)dt + 0ss(S;, Yy)dWs

This form of the SDE is more tractable from a stochastic dominance perspective due
to the univariate nature of the return equation. When the volatility is diversifiable,
the argument of Hull and White (1987) applies to the two stochastic dominance
option bounds. The argument that the volatility risk is diversifiable implies that
C; is the value of a portfolio of options that are contingent on the next volatility
realization Y;,p, and that the weights in this portfolio are proportional with the
actual probabilities of Y;.,. Assuming that we solved the linear programs (2.18) up

to t + h, the following equation holds for the upper bound

Cy < e ™EY [EU [Ct+h |St,Yt+h]]

< o T(T-) pYer [EU [CT |St7 Y;t,T”

where U denotes the univariate upper bound probability, Y; r denote all the possible
volatility paths to maturity and EY, EY+T are expectations taken with respect to
the volatility. Each of the volatility paths determines a univariate diffusion, for

which Propositions 1 and 2 apply. The two bounds will converge to the discounted
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expectation of the payoff under the risk-neutral bivariate diffusion

s,
St

dY, = py (S, Y)dt + osy (Si, V1)dWs + oyy (S, Ys)dWy

= rdt + Uss(St, Y;)dWS (328)

The fact that the volatility equations do not change under the risk-neutral prob-
ability measure can be expressed by a zero price of volatility risk. The common limit
of the two option pricing bounds is a risk-neutral option price obtained under this
price of risk assumption.

In fact, the pricing of volatility risk is an artifact of risk-neutral pricing in mul-
tivariate diffusion models. The change of probability measure is an application of
Girsanov’s theorem. The martingale pricing principle implies that the drift of the
return must equal the riskless interest rate under the risk-neutral probability mea-
sure, but says nothing about how the other state variables are affected. That is, the
martingale pricing does not say how the change of measure affects py in equation
(3.28). The assumption that the volatility risk is diversifiable implies that py stays
the same. When volatility is priced, the so-called “price of the volatility risk” pro-
vides a relation between uy and pu}-, the volatility drifts under the two probability
measures.

Implementations of stochastic volatility models handle this ambiguity by fitting
a risk-neutral model of the returns. Equilibrium models resolve this issue by adding
extra assumptions on preferences. In a paper that examines the convergence of
GARCH processes to their diffusion limits, Duan (1996b) obtains a price of volatility
risk that is implied by the convergence of the GARCH process under the equilibrium
probability measure.

In principle, the linear programming approach can incorporate a discount factor

92



that is contingent on volatility. The main problem with this approach is that, while
the decreasing stochastic discount factor as a function of consumption is an expression
of risk-aversion, we don’t have an economic argument that tells us how the volatility
states should be discounted.

However, stochastic dominance provides a more natural way to price contingent

claims. Consider for instance the following discretization of the Hull and White

(1987) model:

S
In tS”‘” — ph+ VipetVh, & = +1 (3.29)
t
v,
In ;fh =mh+ oyeavh, e5==+1
t

The states at t + h are

In(Sein/St) In(Vien/V5) Probability

2 = ph+Vivh | Vi = mh+ovvVh 1/4

29 = ph+ Vavh | Vo = mh — oyvh 1/4
z3 = ph — Vavh | Vo = mh — oyvVh 1/4
24:uh—V1\/ﬁ V1=mh+ov\/ﬁ 1/4

It can be verified that this discrete process converges weakly to the bivariate
diffusion of Hull and White (1987). This discretization scheme can accommodate
stochastic volatility processes with correlated return and volatility by changing the
probabilities of the four states. The four values of the return S;;;/S; are ordered,
and we can obtain the stochastic dominance bounds by recursively solving the two
univariate linear programs (2.18). The two solutions of the linear programs can be
expressed as two risk-neutral probability measures U and L, which change both the
price and volatility processes. In general, the convexity of Cy,p(z) does not hold and

equations (2.22) and (2.23) may not apply. However, the probabilities obtained by
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solving (2.18) have a finite support and the lemma still applies, so the limit bound
processes are diffusions. The parameters of the limit diffusions depend on the solution
of the two dynamic programs and are not available in closed form. Conversely, in
the arbitrage framework a single parameter - the price of volatility risk - determines
the transformation between the actual and the risk-neutral process.

The discretization (3.29) can illustrate the stochastic dominance pricing for a
bivariate diffusion of the underlying asset, but is of little practical use, since it uses
a non-recombining tree. We can obtain the stochastic dominance bounds for a wide
range of stochastic volatility processes using the lattice proposed by Leisen (2000).
This bivariate tree can approximate stochastic volatility processes described by the

following specification:

dSt = V(W)Stdt—i-?,b(‘/})stthl

aV, = K(Ve = V)dt + o(Vi)dW?

with corr(dW},dW?) = p. The discretization uses two volatility states and eight
return states. Figure 3.3 shows a possible snapshot from this lattice. For a given
price and volatility, the next period states are obtained by finding the closest points
on the grid, such that the moments of the discrete process satisfy equations (3.7) and
(3.8) and the resulting state probabilities are positive. Please refer to Leisen (2000)
for the details of this discretization.

Another possible discretization is a GARCH approximation of the stochastic
volatility process. Nelson (1990) and Duan (1997) proved the convergence of several
GARCH processes to bivariate diffusions, including some popular stochastic volatil-
ity models. GARCH models have a single source of randomness, which perturbs both

the price and the volatility. The application of the stochastic dominance approach
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Figure 3.3: Prices and volatilities in Leisen’s stochastic volatility trees

to the pricing of options on GARCH processes will be discussed in detail in the next
chapter.

Figure 3.4 illustrates the convergence of the two option bounds for an at-the
money call option with strike price K = 100 and maturity 7" = 0.25 years on a mean-
reverting stochastic volatility process following the specification of Heston (1993).
The process has an annual mean return g = 0.05 and an initial annual volatility
of v/Vo = 0.1. The mean reversion coefficient for the variance equation is k = 2,
while the long-run return variance is ¢ = 0.01 and the volatility of the volatility is
o = 0.1. The two Brownian motions are negatively correlated, with p = —0.5. The
riskless interest rate is v = 0.03. The bounds were computed by the Monte Carlo
simulation method detailed in the next chapter, using the analytical option price
as a control variate. The horizontal line depicts this price, which was computed
under the assumption that the market price of volatility risk is zero. The plot
shows a spread of less than 5%, which persists as the number of periods increases.
The slow convergence of the upper bound can be attributed to the fact that the
bounds were computed by discretising distinct realizations of the simulated processes.
Thus, the simulation used to compute the 50-period bounds was not the same as the

simulation used to compute the 300-period bounds. Moreover, the complexity of
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Convergence of the option bounds — Heston’s stochastic volatility model

2.5 T T T T T
245+ -
dS; = pSydt + V.S dW}
dVy = k(0 — V;)dt + o/ VedW
[72]
T 24r i
c
3
O
o) -
3 [ ——
S - ST
‘5. -
§ 2351 - ~ 1
s S =100 V=001
K=100 k=2
T=0.25 0=0.01
23| mu=0.05 0=0.1 i
r=0.03
2.25 1 1 1 1 1
0 50 100 150 200 250 300

Number of periods

Figure 3.4: Convergence of the option bounds when the underlying process follows
a stochastic volatility model

the bivariate process limits the number of states that can be spanned by a Monte
Carlo simulation. Conversely, in the case of the bounds depicted in Figures 3.1 and
3.2, all the discretizations were sampled from the same process, which spanned all
the possible realizations of the multinomial process for the given number of periods.
Better results might be obtained with other discretizations of the stochastic volatility
process. The discretization scheme used to approximate a continuous time process
is an important implementation aspect of the stochastic dominance bounds and will
be studied in future research.

In principle, this spread can be mapped into different values of the price of volatil-

ity risk by fitting risk-neutral option prices to the two option bounds. However, such
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models would be misspecified. When applying a risk neutral pricing approach, the
price of risk is assumed to have a very simple functional form. This functional form
does not matter when the risk-neutral model is estimated from option prices. But
when the actual and risk neutral models are put side by side, for instance in Bates
(1996), the parameters of the two models can hardly be reconciled only by a price of
risk parameter. Likewise, since the two limit processes are the solutions of a dynamic
program, their functional form is not available in closed form and cannot be obtained

by transforming the actual process via the price of volatility risk.
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Chapter 4

Preference-free option pricing under

GARCH

One of the most documented empirical finding about asset returns is their departure
from lognormality. In option pricing models, this departure is best described by the
smile or smirk pattern obtained by plotting the implied volatilities of the options
on the same asset against their strike price. This finding contrasts with the Black
and Scholes (1973), assumption of lognormal returns, which would imply a constant
volatility, irrespective of the strike price.

The first models that departed from the constant volatility model of Black and
Scholes (1973) were more general univariate diffusions, such as the constant elasticity
of variance specification of Cox and Ross (1976) or the displaced diffusion model of
Rubinstein (1983). These models were soon replaced by bivariate diffusions, which
specify a dynamic behavior of the asset volatility that is independent of the strike
price. Such models have been studied by Garman (1976b), Hull and White (1987),
Stein and Stein (1991) or Heston (1993). The more recent models of Bates (1996),

Bakshi, Cao, and Chen (1997) or Duffie, Pan, and Singleton (2000) incorporated
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jumps in such multivariate specifications.

Stochastic volatility models have been developed with mathematical tractability
in mind. To obtain a closed formula, the volatility, jumps and perhaps the pricing
kernel must be affine functions of two or more state variables, of which only the
asset price is observable. The difficulty of estimating these variables adds to the
misspecification caused by the affine model assumption.

An alternative specification of the volatility randomness was introduced in the
econometric literature by Engle (1982) and Bollerslev (1986). The (generalized)
autoregressive conditional heteroscedasticity models or (G)ARCH are discrete time
models that capture the clustering of the volatility of the financial returns. In all
these models, volatility is a function of past values of the volatility and the return
innovations. There is a very rich literature that specializes in the estimation and
forecasting of the volatility using this class of models. See Bollerslev, Chou, and
Kroner (1992) for an in-depth discussion.

The success of GARCH models in describing the asset returns made this class
of models a good candidate for use in option pricing. However, any option pricing
application of a GARCH model must address the market incompleteness created by
the infinite number of possible outcomes of the innovation in any discrete time period.
Duan (1995) addressed market incompleteness by using a multiperiod version of the
equilibrium framework of Rubinstein (1976) and Brennan (1979). He established
that, for certain types of preferences and return distributions, the option price can
be computed as if the return process were risk neutral during any discrete time period.
This set of conditions was called a local risk-neutral valuation relationship (LRNVR).
Most GARCH specifications assume a conditional normal distribution of the log
return innovations. In this case, a LRNVR is provided by constant proportional risk

aversion (CPRA) preferences. Any extension of the GARCH model to more general
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distributions of the return innovation, such as the jump models of Duan, Ritchken,
and Sun (2005), or the closed form GARCH model with a normal inverse Gaussian
distribution developed by Christoffersen and Jacobs (2005b) requires a dedicated
functional form of the pricing kernel, in order that a LRNVR holds!.

This very strict preference requirement is a serious drawback of the GARCH
models in option pricing. One could use the now traditional approach of estimating
the model parameters from the cross-section of option prices. However, Christoffersen
and Jacobs (2004) found discrepancies between the parameters of the risk-neutral
process implied by the cross-section of options and the actual process estimated
from the time series of the returns for several GARCH specifications. This finding
implies that the pricing kernel used to price the options might be misspecified.

Besides the abundance of parametric specifications aiming at the description of
various properties of the financial returns, a more accurate model that could cap-
ture the skewness and the fat tails of the conditional return distribution was desir-
able. Engle and Gonzalez-Rivera (1991) introduced a class of semiparametric ARCH
models, where the return and volatility were described by a standard ARCH type
specification, but the return innovation had a general distribution, specified by a
nonparametric model. Option pricing applications for this class of models have been
developed by Duan (2002) and Barone-Adesi, Engle, and Mancini (2004). To address
market incompleteness, the former study prices the options under the risk neutral
distribution that satisfies a minimum entropy criterion, while the latter estimates the
two models implied by the actual and risk-neutral distributions without restricting
the pricing kernel implied by the two distributions. Interestingly, the state price den-

sity implied by the two terminal distributions of the underlying asset is decreasing

1 As an alternative to the preference-based LRNVR approach, Christoffersen and Jacobs (2005a)
derived an arbitrage-based risk neutral probability measure for the pricing of options under GARCH.
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for all values of the underlying asset. This property implied by risk aversion is not
featured by the pricing kernels obtained through other empirical procedures.

In this chapter I derive preference free option pricing models for GARCH specifi-
cations of the underlying asset price. The models are an application of the stochastic
dominance pricing methodology established by Perrakis and Ryan (1984), Ritchken
(1985) and others. The approach consists in finding upper and lower option pricing
bounds under which no stochastically dominating strategies are available in a market
containing the underlying asset, the riskless bond and the option. Compared to the
RNVR approaches, the stochastic dominance approach requires only that investors
are risk-averse. Moreover, the approach does not require any assumptions regard-
ing the return distribution. The stochastic dominance methodology works for any
specification of the GARCH dynamics, including nonparametric models of the return
innovations. Thus, model estimation by GARCH and stochastic dominance pricing
provide a robust option pricing methodology that applies to any process, without
requiring assumptions that cannot be validated empirically.

The details of the stochastic dominance approach have been presented in Chap-
ter II. The two option bounds are obtained as discounted expectations of the option
payoff under two risk-neutral probability measures. This relates the stochastic domi-
nance option pricing with the arbitrage approach used in the continuous time models
and with the RNVR approach used in the pricing of options on processes described
by GARCH models.

Unlike in the previous applications, where the convexity of the option price with
respect to the asset return resulted in closed forms of the two risk-neutral distribu-
tions, the convexity cannot be guaranteed for GARCH processes. However, the two
bounds can be obtained by dynamic programming.

The next section presents the GARCH option pricing under the equilibrium and
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stochastic dominance approaches. Section 4.2 presents a numerical method used
to price the stochastic dominance bounds for non-i.i.d. return processes. The last
two sections present some results. Section 4.3 examines the stochastic dominance
pricing bounds for conditionally normal and non-normal distributions of the return
innovations. The implications of choosing a wrong model are presented in Section

4.4.

4.1 Option pricing under GARCH

4.1.1 The equilibrium approach

The literature on GARCH models for asset returns is very rich, with specifications
that target various types of behavior of asset prices. This abundance of models is a
consequence of the flexibility of the GARCH type models, which differ only by the
formula used to update the volatility. Most option pricing applications have been
developed around the NGARCH specification of Engle and Ng (1993) and Duan
(1996a), but the extension to any other specification, such as the GJR-GARCH of
Lawrence R. Glosten (1993) or the EGARCH model of Nelson (1991) is straightfor-
ward. For the sake of clarity, I use the NGARCH model throughout this chapter.
The NGARCH model assumes the following price and volatility dynamics under

the probability measure P, which reflects the representative investor’s beliefs

S 1 r—
In S—l =7+ A1 — ‘Q‘ht—i-l +vVhien

heyr = Bo + Brhe + Bahy (0 — ’7)2 (4.1)

€t+1|E ~ D(Oa 1)
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In the log return equation, S; is the asset price at time ¢, r is the riskless interest rate,
A is the price of risk? and h,,; is the conditional variance of the random component.
The second equation specifies the return variance, which differentiates among the
GARCH specifications. In order that the volatility be positive the coefficients [y, 51
and J; must be positive. The positive parameter ~ captures the negative correlation
between the return and volatility. The log return and variance are driven by the same
random component. In the specification of Duan (1996a), the conditional distribution
of the innovation €;,1|F; is standard normal. More recent models depart from this
assumption.

Since the return described by equation (4.1) can take an infinite number of values
at any moment in time, the market containing a riskless bond and an asset following
this price dynamic is obviously incomplete. The absence of arbitrage opportunities
does not provide a unique option price. In his GARCH option pricing model, Duan
(1995) applied the equilibrium approach of Rubinstein (1976) and Brennan (1979).
He found that, for lognormal returns and a power utility of the representative in-
vestor, there exists a probability measure ) under which the option can be priced
by assuming risk-neutrality.

The price and volatility dynamics under @) are described by the following GARCH

2An exception is the model of Heston and Nandi (2000), which uses a risk premium that is
proportional with the return variance, rather than the standard deviation.

S, 1
PR (A _ 5) hest + Ve

t

However, the option pricing principles are the same.
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model

S, 1 .
In ;+1 =T - §ht+1 + VvV he1€, s
t

hey1 =00 + Brhe + Bahy (€] — ’)’*)2 s (4.2)

where €}, ,|F; is a standardized normal random variable under ¢ and v* = v+ A. The
price at time t of a European contingent claim with maturity 7" and payoff described

by the function g(Sr) is then
e = e T TOEQg(S) A, (4.3)

the conditional expectation of the payoff under @, given the information available at
time ¢.

The risk neutral valuation approach is very tractable, but unfortunately relies
on strong preference assumptions. Under the conditional lognormality assumption
used in early GARCH models, any power utility function would provide a LRNVR.
More recent GARCH models depart from the conditional lognormality assumption
in the attempt to provide a better description of the fat tails observed in daily
returns. The departure from the conditional lognormality assumption requires a
pricing kernel that is tailored to the functional form of the return distribution, in
order that a LRNVR holds. For instance, in the GARCH model with jumps of Duan,
Ritchken, and Sun (2005), the pricing kernel and the return process must have a jump
component with the same intensity. In the model with inverse-gaussian innovations
by Christoffersen and Jacobs (2005b), the LRNVR is provided by a power utility

function with parameters related to the parameters of the underlying innovation
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distribution. The pricing approach proposed in the next section can accommodate
any conditional return distribution without making other preference assumptions

than risk aversion.

4.1.2 The stochastic dominance approach

The stochastic dominance option pricing approach introduced by Perrakis and Ryan
(1984) extended the equilibrium framework of Rubinstein (1976) and Brennan (1979)
under very weak preference assumptions. The approach relies on the absence of
stochastically dominating portfolios containing the underlying asset, the option and
the riskless asset. This condition provides two bounds on admissible option prices.

The stochastic dominance pricing approach has been presented in detail in Chap-
ter II. The pricing problem consists in finding the price at time ¢ = 0 of a contingent
claim on the stock with the return dynamics described by the GARCH model 4.1.
The claim pays Cp = g(Sr) when it expires. The payoff of a call option with exercise
price K is g(St) = maxz(St — K, 0), while the payoff of a put option with the same
exercise price is max(K — St,0).

In the formulation of Ritchken (1985), the option bounds problem reduces to a
pair of linear programs that minimize, respectively maximize the option price ¢,
provided that the underlying asset and the riskless bond are correctly priced by a

risk-averse representative investor.
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min(max)ct = E[thctHU:t]
M1

subject to

Sy = E[mt+15t+1|-7:t]

1
—é = E[mt+1|ft]

my,1 non-increasing function of Sy

where my is the stochastic discount factor used to price assets at time ¢. We include
the assumption that investors are risk-averse by constraining the stochastic discount
factor to be a non-increasing function of S;;;. This monotonicity condition holds
for assets with a positive consumption beta. In the case of the GARCH process
described by equations (4.1), this condition is provided by the positive risk premium
factor .

The solutions of the two linear programs are two stochastic discount factors m;, |
and m,,; under which the option bounds are attained. As shown in Chapter II,
the two bounds can also be expressed as discounted conditional expectations of the

payoff under two probability measures U and L.

1

= = B lg(S0)|
1
Qt = RT_tEL[g(ST)‘ft]

This formulation of the option bounds is useful in proving convergence results such
as the diffusion limits obtained in Chapter III. It is also useful in the implementation

of the two bounds. However, the two probability measures U and L are available
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in closed form only when the next period option price is a convex function of next
period return.

In the case of a GARCH process, we can invoke the criterion of Merton (1973),
that the option price is a convex function of the underlying asset price when the
return distribution is independent of the price. That is, the option price C;(S;) is
a convex function if the terminal return distribution f(Sr/S¢|F:) is independent of
S;. Unfortunately, we cannot invoke this criterion to verify the convexity of the next
period option price C;;; with respect to the asset return S;,,/S;. The GARCH
dynamics affect both price and volatility, and next period’s option prices will be
realized in different volatility states.

An intuitive argument against convexity is that, for a strictly increasing set of
next period prices driven by increasing €;, the next period volatility will have a
minimum at €¢;,., = 7. The option price change between states with €, 1 slightly
below v, will have an increasing component as a result of increasing volatility and
a decreasing component caused by the decreasing price. With typical values of the
leverage parameter v around one, this option price behavior corresponds to a one

standard deviation price increase and should be captured by the return model.

4.2 A Markov chain approximation

The implementation of the linear programs (2.18) requires a discrete representation
of the conditional return distribution. Monte Carlo simulation has been the tra-
ditional approach to the pricing of options on assets following a GARCH process.
However, its application to the stochastic dominance pricing problem (2.18) is not
straightforward. The main difficulty of applying Monte Carlo simulation is that,

in finding the two option bounds, we need to maximize, respectively minimize the
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conditional expectation of the next period option price. However, each path in the
Monte Carlo simulation provides a distinct value of the price and volatility at each
moment of time. Since Monte Carlo computes expectations by taking the mean of a
sample, we need a way to produce such samples.

An alternative approach is the Markov chain approximation of Duan and Si-
monato (2001). In this approach, the return process is approximated by a homo-
geneous Markov chain. The ingredients of the Markov chain approximation are a
discretization of the state space and a matrix containing the probabilities of tran-
sitions between the states. In the case of a Black-Scholes diffusion, the states are
defined by log price intervals. In a Markov chain with n states, the process is in
state ¢ whenever the log price belongs to the interval [L;, L;y[, with L; = —oo and
L,y1 = oo. In the Markov chain approximation of a GARCH process, the states
are defined by log price-volatility pairs. Both the Black-Scholes and the GARCH
process have a univariate random component ¢;,1, which is assumed to be normally
distributed. The transition probabilities are obtained in closed form from the dis-
tribution of this random component. For instance, in the case of the Black-Scholes
diffusion, with drift ;4 and diffusion coefficient o, the transition probability from state

t to state 7 is

_ [ Lin = (Lt Livd)/2 — u] N [Lj — (L + Lis1)/2 —

b

g ag

where N[ is the cumulative normal distribution function. In a similar manner,
Duan (2002) computes the transition matrix of a GARCH process with a general
innovation term.

The risk-neutral pricing of European and American options reduces to a matrix
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multiplication. If () denotes the risk-neutral transition probability, the price at time
0 of a European option with payoff g(St) is R~7QT g(S), where the vector S contains
the prices in all the states of the Markov chain.

This approach can be easily adapted to the stochastic dominance pricing of op-
tions on i.i.d. processes, where one could use equations (2.22) and (2.23) to derive
the transition matrices of the two bound pricing probabilities. However, the possible
convexity violations in the case of non-iid processes require the recursive solving of
the linear programs (2.18) at each period of time, rather than computing the bound
probabilities and taking the expectations by a matrix multiplication. A Markov chain
approximation with 501 prices and 101 volatilities, used for instance in Duan (2002)
would require the solving of 50601 linear programs in each discrete time period.
However, the size of these problems is small in the case of a GARCH process.

The method adopted here is a combination of Monte Carlo simulation and Markov
chain approximation. The insight of this method is Merton’s finding that the option
price is homogeneous in the underlying asset, if the return distribution is indepen-
dent of the price. This property holds for many GARCH and stochastic volatility
specifications.? If we condition the return distribution on the volatility, we can group
all the paths that have the same volatility at time ¢ and solve the linear programs
(2.18) using S, =1, S1y = Si41/S: and ¢,,; = ¢;41/S;. From the solutions ¢, and
¢, of the two problems, we recover the option bounds at time t as ¢ = S,¢, and
¢ = Sig;-

We can condition on the volatility by approximating this state variable with a

discrete variable that can take m values. In a Monte Carlo simulation, we can ac-

3Remark that the homogeneity of the option price C; in the underlying asset price S; holds for
all paths that have a common volatility h;. There is a similar convexity property of C;(S;), but the
closed form solutions of the bounds probabilities require the convexity of all paths of Cyy1(St41)
that start from h. The latter convexity property does not hold in general.

69



complish this by accomplish this by assigning the value (V; +V;4;)/2 to any volatility
belonging to the interval [V;, V;11[. This is akin to a Markov chain approximation
of the volatility, but not of the price. By sampling from a given return process and
assigning volatilities in this manner, the transition probability is built into the Monte
Carlo simulation.

The same state aggregation approach is used to compute the closed form pricing
probabilities given by equations (2.22) and (2.23). Using this closed form, the bounds
are computed much faster than by linear programming. However, the cost of this
gain in speed is the bias of the bounds when the option price convexity is violated.
The closed form upper bound is lower than the maximum objective of (2.18), while
the closed form lower bound is higher than the minimum objective of this program.
Consequently, the closed form bounds are tighter than the optimal bounds obtained
from the linear programs.*

While there is no mention of this Monte Carlo technique in the mainstream option
pricing literature, this feature is available in Monte Carlo simulation software. See

for instance Meyer (2004). This technique was used in the previous chapter to price

the two bounds of a stochastic volatility process.

4.3 The impact of the innovations distribution

The stochastic dominance option pricing approach can easily be applied to the avail-
able GARCH models without forced assumptions about the pricing kernel. In the
tradition of the GARCH option pricing literature, the return process follows equa-
tions (4.1), which describe the NGARCH(1,1) of Engle and Ng (1993) and Duan

(1996a). To illustrate the power of the stochastic dominance approach, two distri-

“Due to the numerical instability of the available linear programming software, all the results in
this chapter report the closed form bounds
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butions of the return innovation will be examined

¢ normal distribution

o Generalized Error Distribution (GED)

The latter distribution is widely used in the modeling of fat-tailed asset returns.
Duan (1999) developed a risk-neutral pricing approach for GARCH processes with
conditional returns described by a GED distribution. The GED distribution is stan-
dardized, such that the innovations have mean zero and variance one. The parameter
of the GED distribution is v = 1.6, obtained by estimating a GARCH(1,1) model
from S&P 500 returns during 2000-2005°. Figure 4.1 depicts the two distributions.

The underlying asset is assumed to follow a GARCH specification similar to that
of Duan and Simonato (2001). Under the actual return distribution, the process
follows equations (4.1) with the parameters 3, = 0.00001, 3, = 0.8, 8, = 0.1,
~v = 0.49 and A = 0.01. The annualized riskless rate is r = 0.05. The initial
stock price is Sy = 100 and the initial return volatility is assumed to be equal to
the stationary volatility hy = 8y/(1 — 81 — B2/(1 +~+?)), which gives an annualized
volatility of 0.18.

Table 4.1 presents the prices and Figure 4.2 depicts the volatility smiles for 3-
month options. The stochastic dominance bounds were computed in closed form
using equations (2.22) and (2.23), while the equilibrium prices were computed using
the approach of Duan (1996a). It can be seen from the table that both normal bounds
bracket the equilibrium prices. The tight fat-tailed bounds indicate larger biases of
the closed form bounds from the solutions of the linear programs (2.18). These biases

indicate violations of the convexity assumption underlying the closed form bound

5This parameter of the GED distribution is somewhat artificial. The estimation of a
NGARCH(1,1) from the series of S&P 500 returns using 1-month LIBOR rates as riskless rates
yielded normal residuals.
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Figure 4.1: Probability densities of the GARCH error term
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Normal innovations GED innovations

Strike Equilibrium  Upper  Lower Upper  Lower
T=1 month
90 10.5057 10.5231 10.5041 10.6031 10.5928
95 5.8740  5.9072  5.8579 5.9696  5.9406
100 2.2743  2.3116  2.2378 2.3457  2.3002
105 0.5017  0.5214  0.4696 0.5301  0.4984
110 0.0597  0.0641  0.0491 0.0652  0.0559
T=3 months
90 11.6602 11.7016 11.6218 11.9319 11.8680
95 7.4951  7.5667  7.4300 7.7461  7.6512
100 4.1789  4.2620  4.0938 4.3822  4.2709
105 1.9568 2.0288 1.8718 2.0947  1.9925
110 0.7492  0.7962  0.6843 0.8250  0.7524

Table 4.1: GARCH option prices for normal and GED innovations.
The parameters are So = 100, r = 0.05 (annualized). The parameters of the GARCH
process are By = 0.00001, 8, = 0.8, By = 0.1, v = 0.49, A = 0.01. The initial
return volatility is 0.18 (annualized). The GED innovations are standardized and
the parameter of the GED distribution is v = 1.6

pricing probabilities (2.22) and (2.23). Another indication of such violations is that
the equilibrium prices of “in the money” options under GED distributed conditional
returns (not reported here) violate the lower pricing bound. An in-depth analysis of

the implications of the convexity assumptions is left for future research.

4.4 Option bounds from estimated models

This final application examines the option bounds implications of the model esti-
mation. We assume that we know the underlying asset process and we sample the
returns from this process. We compute the option pricing bounds using the estimated
models and compare them with the bounds derived from the true model.

Let us assume that the returns are sampled from an NGARCH process with

constant mean returns and conditionally normal innovations:

73



Implied Volatility smiles, T = 3 months
0.24 T T T T
E - - - Bounds - Normal innovations

0.23f ------ Bounds — GED innovations 1

Equilibrium price

0.22p |

0.21

Volatility
O
T o
[{e] N

o
—h
@

I Il 1

0.9 0.95 1 1.05 1.1 1.15
Moneyness X/S

Figure 4.2: Implied volatility smiles for the option bounds and equilibrium price
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t

hiy1 = Bo + Brhe + Pahy (0 — 7)2 (4.4)

ecr1|Fe ~ N(0, 1)

Unlike the process described in the previous section, this specification does not
contain a GARCH-in-mean term. While such a term may be helpful in modeling
risk premia, the estimation of this term is not very reliable. In general this term is
not statistically significant and its unconstrained estimation may result in negative
values during periods of market decline.

With the exception of A which is now zero, the process has the same parameters
as the process examined in the previous section: [y = 0.00001, 3; = 0.8, 5, = 0.1
and v = 0.49. The annualized riskless rate is r = 0.05 and the mean return is 0.09.
The initial stock price is Sy = 100 and the initial return volatility is assumed to be
equal to the stationary volatility hy = Go/(1 — 81 — 52/(1 + +?)), which gives an
annualized volatility of 0.18.

The theoretical pricing bounds for options with 1 and 3 months to maturity
and moneyness between 0.9 and 1.1 are given in the leftmost columns of Table 4.6.
The first application examines the implications of the errors in the estimation of a
model with the same structure as the data generating model. The second application

examines the bounds pricing implications of a misspecified model.
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Bo B Ba 4
Min. 4.66E-06 0.650 0.043 0.083
Ist Qu. 8.33E-06 0.769 0.082 0.406
Median 1.03E-05 0.797 0.098 0.503
Mean 1.05E-05 0.795 0.098 0.520
3rd Qu. 1.23E-05 0.823 0.112 0.616
Max. 2.54E-05 0.895 0.175 1.387
Std 3.04E-06 0.040 0.022 0.166

Table 4.2: Descriptive Statistics of the estimated NGARCH parameters
The models are estimated from 500 samples of 1500 returns each, that are randomly
generated from the NGARCH process described by equation (4.4), with parameters
w=0.09, B, = 0.00001, B; = 0.8, F = 0.1 and ~ = 0.49.

4.4.1 Pricing with estimated parameters

In this section, we draw 500 samples of returns from the process (4.4) with the
known parameters. Each sample has 1500 daily returns. We estimate the model
parameters and compute the bounds using the point estimation of each sample.
Table 4.2 presents the descriptive statistics of the estimated parameters and Table
4.3 presents the results. In the pricing of the bounds, the mean return was assumed
to be the same as the theoretical mean. The top panel presents the theoretical
bounds. The middle panel presents the descriptive statistics of the upper bounds
and the number of violation cases in which both estimated bounds are below the
theoretical lower bound. The bottom panel presents the descriptive statistics of the
lower bounds and the number of violation cases in which both estimated bounds are
above the theoretical upper bound. In most of the 81 violations of the theoretical
bounds, the two bounds implied by the estimated model are above the theoretical

upper bound. Most of these violations occur for deep in the money options.
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Option Bounds, Actual and Estimated Processes
Moneyness 0.9 0.95 1 1.05 1.1
Actual Process Bounds
Upper Bound 10.467 5.883 2.313 0.526 0.068
Lower Bound 10.394 5.769 2.169 0.432 0.042
Estimated Processes, Upper Bound

Min. 10.377 5.771 2.243 0.457 0.036
1st Qu. 10.450 5.853 2.290 0.512 0.059
Median 10.467 5.876 2.311 0.526 0.067
Mean 10.467 5.877 2.312 0.527 0.067
3rd Qu. 10.486 5.902 2.332 0.540 0.074
Max. 10.566 6.003 2.444 0.609 0.106
Std 0.027 0.037 0.032 0.023 0.011
Violation 5 0 0 0 2
Estimated Processes, Lower Bound
Min. 10.408 5.746 2.155 0.396 0.024
1st Qu. 10.436 5.795 2.192 0.441 0.040
Median 10.448 5.817 2.207 0.453 0.045
Mean 10.448 5.817 2.209 0.454 0.046
3rd Qu. 10.458 5.836 2.225 0.464 0.051
Max. 10.502 5.924 2.331 0.517 0.075
Std 0.016 0.030 0.026 0.018 0.008
Violation 53 13 1 0 7

Table 4.3: Option Bounds implied by estimated parameters

Option bounds implied by the estimation of 500 samples of 1500 returns drawn
from the NGARCH process described by equation (4.4), with parameters p = 0.09,
Bo = 0.00001, B; = 0.8, B = 0.1 and v = 0.49. In the pricing of the bounds,
the mean return was assumed to be the same as the theoretical mean. The top
panel presents the theoretical bounds. The middle panel presents the descriptive
statistics of the upper bounds and the number of violation cases in which both
estimated bounds are below the theoretical lower bound. The bottom panel presents
the descriptive statistics of the lower bounds and the number of violation cases in
which both estimated bounds are above the theoretical upper bound.
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4.4.2 Pricing with a misspecified model

In this section, we draw a sample of 1500 daily returns from the known process
and estimate several models from this sample. Figures 4.3, 4.4 and 4.5 present the
simulated price, the histogram and the normal probability plot of the log returns.
Table 4.4 presents the descriptive statistics and two normality tests of the log returns.
It can be seen from this table that both the Kolmogorov-Smirnov and the Shapiro-
Wilk test reject the normality. The departure of the log returns from normality is
also obvious in the histogram and the normal probability plot.

The following models are estimated from the simulated data and used to price

the options:

e an NGARCH model with the same structure
e a linear GARCH(1,1) model with v =0

e a nonparametric i.i.d. return model.

The first two models belong to the same class as the model from which the sample
was drawn. While the first model has the same specification as the actual model,
the second model has a simpler GARCH specification, which does not capture the
leverage effect. While the two models are parametric, they provide us with an esti-
mate of the conditional return distribution. The third model attempts to capture the
properties of the returns from the data, without knowing the stochastic process that
generated the data. The calculation of the stochastic dominance bounds requires
only the return distribution, which can be obtained in this way.

Table 4.5 presents the estimated parameters. The option bounds are presented
in Table 4.6. It can be seen from the table that both GARCH models outperform

the nonparametric model. This finding suggests the importance of modeling the
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Figure 4.3: Simulated Price
The price was obtained by simulating the NGARCH process described by equation
(4.4), with parameters p = 0.09, Gy = 0.00001, 8; = 0.8, B2 = 0.1 and v = 0.49.

Descriptive Statistics

Min. -0.05423
1st Qu. -0.00719
Median 0.00015
Mean 0.00032
3rd Qu. 0.00758
Max. 0.04363

Normality tests
Shapiro-Wilk
W =0.9971 p = 0.0079
Kolmogorov-Smirnov
D =0.4848 p < 2.2e-16

Table 4.4: Descriptive statistics of the log returns
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Figure 4.4: Histogram of the daily log returns
The returns are simulated from the NGARCH process described by equation (4.4),
with parameters p = 0.09, Gy = 0.00001, 5, = 0.8, §3 = 0.1 and ~v = 0.49.

NGARCH GARCH
Coeflicient Std. Error Coefficient Std. Error
0o 1.2E-05 3.95E-06 1.12E-05 3.74E-06

B 0.7705 0.04472321  0.768577  0.045313
Bo 0.1319 0.02337707  0.148774  0.026613
~ 0.2757 0.10611231

Table 4.5: GARCH model parameter estimation
The models are estimated from returns that are randomly generated from the
NGARCH process described by equation (4.4), with parameters u = 0.09, G, =
0.00001, 6y = 0.8, B2 = 0.1 and v = 0.49.
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Figure 4.5: Normal Q-Q plot of the daily log returns
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conditional rather than the unconditional returns for stochastic dominance pricing
purposes. Whether a parametric or a non-parametric conditional return model per-
forms better is a topic of future research.

A second finding is that short term options are priced better. This is probably
caused by the numerical method, which uses the daily discretization period used in
the estimation of the GARCH model. The possibility of a GARCH model to describe
conditional non-normal returns can be used together with a longer sampling period
to mitigate this effect.

In both applications, the theoretical mean return was used to price the bounds
from the estimated models. In principle, the sample mean could have been used as
an estimation of the mean return, but the poor predictive power of past returns is
well known. The bounds implications of return models, such as factor models, will

be examined in future research.
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Chapter 5

Conclusions

This thesis presented a new approach to option pricing, the stochastic dominance
approach. This approach derives two bounds on allowable option prices dependent
on the entire distribution of underlying asset returns. The distribution can be of
any type, but the contingent claim bounds have a closed form only for options with
convex payoffs. We show that the two bounds are discounted payoff expectations
under two risk neutral transformations of the original asset dynamics.

We then examined the convergence of the discrete time option bounds derived
by stochastic dominance methods in a multiperiod context as trading becomes pro-
gressively more dense, under a variety of assumptions about the limiting distribution
of the underlying asset returns. We found that this stochastic dominance approach
nests virtually the entire set of option prices available in the literature under a vari-
ety of alternative methods, including arbitrage and general equilibrium. Specifically,
they nest all the models where the distribution of the underlying asset depends on
a single random factor, as well as the models in which this same distribution can be
approximated by a discrete model with a single random factor.

The probabilistic interpretation of the two option bounds extends to options
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with non-convex payoffs, although the two bound distributions cannot be obtained
in closed form. This extension is useful in deriving convergence results. A topic of
future research will be the convergence of the two bounds for stochastic volatility
and jump models approximated by discrete GARCH processes.

There are two major advantages of the stochastic dominance approach over al-
ternative derivatives pricing methods. The first one is that it does produce useful
results in the presence of market frictions such as transaction costs, in sharp con-
trast to the arbitrage approach. The second one is that it is not necessary to know
the stochastic process governing the evolution of the price of the underlying asset
in order to price the derivative, as long as an empirical distribution represented by
a histogram of possible future values (or returns) of the asset is available. Such an
empirical distribution is sufficient to derive the risk neutral U and L distributions
that define the option bounds. The pricing implications stemming from the choice
of the wrong model have been briefly examined for a GARCH specification of the
returns. The results show the importance of modeling the conditional return distri-
bution when the price is generated by a non-i.i.d. process. A thorough examination

of this important topic will be the subject of future research.
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Appendix

Proof of Lemma 1

The proof is similar to the one used by Merton (1982), the only difference being
that ;.5 is now a bounded continuous random variable rather than a multinomial
discrete one. Denote (Q);(d) the conditional probability that | X, — X;| > J, given
the information available at time ¢. Since €;1p, is bounded, define & = max |g;p| =
max(|€min|, [Emax|). For any &t > 0, define h*(§) as the solution of the equation

0 = ph+ o&v/h. This equation admits a positive solution

m_ —o¢€ + 02§2+4u5
N .

For any h < h*(8) and for any possible Xy, we have
| Xepn — Xi| = |uh + oeenVh| < ph* + 0eVh* =6

50 Q1(8) = Pr(|X¢yar — Xi| > 6 = 0 whenever h < h* and hence }lzir% +Q:(6) = 0 The
Lindeberg condition is thus satisfied. Equations (3.7) and (3.8) are satisfied by the

construction of this discrete process, so the diffusion limit of (3.10) is (3.5), QED.
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Proof of Proposition 1

We shall consider only the case p > r; the proof for the case p < r is similar and
is omitted. Under the upper bound probability given by (2.13), the return process
becomes

g¢  with probability 1— @
2hn = MX)h + o(X)Vh a (1)

Emin  With probability @
where Q is the following probability

E(z) —rh
E(z) — min(2z4,4)

Q:
_ ph —rh ,u—r\/ﬁ

ph — (ph + oeminVh) T Ofmin

The random component of the returns in (1) has a bounded continuous distribu-
tion, so the upper bound process satisfies the Lindeberg condition. This process has

the mean

EY [240) = pth + QovVR)emin

= rh.

Its variance is

Var? [z40] = 0*h [(1 — Q) Vary [ze4n] + ngnin]

- o2h 1+N_7"\/E_M_T\/E€2

min
O€min O&min

= %h + O(h*?)
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Consequently, the upper bound process converges weakly to the diffusion (3.18).

Proof of Proposition 2

As with the proof of Proposition 1, we shall consider only the case x> r. Under the
probability distribution given by (2.13) for the lower bound the transformed returns
process becomes

Zein = (X)h + 0(X,)évh,

where £; is a truncated random variable {&;|e; < £}, with & found from the condition
EY[z1] = rh. Since &; is truncated from a bounded continuous distribution the
Lindeberg condition is satisfied. The risk neutrality of the lower bound distribution
implies that

ph+ oVhE ] = rh

and the mean of £; is

Ble) = —F—Vh 2)

Since this random variable is drawn from a distribution that is truncated from

the distribution of £; we get

. 1 i
E[&] = —Pr(et =) /6 edf (g¢).

min

We picked ¢; such that E; [¢;] = 0 and we have

/Emax edf(e,) = /Et edf (€¢) + /Emax eudf (€¢) = 0. ®)

€min €min €t

Then, from (2)-(3) we get
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i T\/E = —1—) /Ema" eudf (g)

o Pr(e; < &
1 €max
=,d
— 1—Pr(g, > &) /E-t eudf (<)
N €_t PI'(Et > gt)
T 1—Pr(e > &)

From the last inequality we get

L=B./p
Pr(e, > &) < —2—— = O(Vh).
I‘(Et gt)_f_t‘l‘%R\/’ﬁ ( )

Since £; < £1nax, We also have

/Smax grdf(e:) < €2 /Em df (e,) = O(Vh).

€t €t

The last two result are used to compute the variance of &;

Var (&) = E [&]] — (E[)])°

_ 1 o, w—r\>
N Pr(st < gt)/; Etdf(gt) B ( g ) h

min

_ 1 Emax = 2
=T Pie > 2) (“L i) - (457)

=1+ 0(Vh)

It follows that VarE [z.44] = 02h + O(h®?). The diffusion limit is, therefore, the

process described by equation (3.18), QED.
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Proof of Lemma 2

As shown in the proof of Lemma 1, the first two terms of (3.20) converge to a

diffusion. The generator of this diffusion is

Elu(zptin, t +h)] —ulzpy, t)

Au = lim h
B ou Ou 1 2 28
== M)Sge+ 5 + 3905 5

Denote A" the generator of the discrete process described by (3.20). This gener-

ator converges to

lim A u = lim E[u(zt-i-ha t+ h)] - u(zt, t)
At—0 h—0 h

= lim(1 — /\h)E[U(ZD,t+h,t+ h)] — u(zpy,t)

h—0 h
Elu(zgtn t + h)] —u(zse, t)
h

Ou Ou 9%y

= (Nt—)\MJ)S%%——a—t-l— 252852

+ Ak

+ AE[u(SJ) — u(S)],

which is the generator of 3.19, QED.!

Proof of Proposition 3

As with Propositions 1 and 2, we consider the multiperiod discrete time bounds of
Chapter 2, obtained by successive expectations under the risk-neutral upper bound

distribution. We then seek the limit of this distribution as h — 0. The mixing

1See for instance Merton (1992) for a discussion on the generators of diffusions and jump pro-
cesses.
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probability in (2.22) is given by

E(z)—rh _ (u—1)h
E(Z) — Jmin N ,LLh - Jmin

~ Avh

where \yy = —£=" since the expected return under the subjective probability dis-

Jmm

tribution is

E(21n) = (1 = M) (= Apg)h + Apgh = ph + o(h)

Observe that Ay is always positive since Jpi, < 0 and E(z) > rh. Hence, the discrete

time upper bound process is

zp  with probability (1 —Ah)(1— Ayh),
Zti+h = J with probability AR(1 — Ayh),

Jmin  With probability Ay h.

By removing the terms in o(h), the upper bound process becomes

zp with probability 1— (A+ Ay)h
Ztt+h = )
JY with probability (A + A\y)h
where JY is given by (3.22). This is a mixture of the diffusion component and a
jump with intensity A 4+ Ay. It can be readily verified that the upper bound process

is risk neutral by construction. By Lemma 2, therefore, it converges weakly to a

jump-diffusion process with the generator

5
AVF = [r— (A + )] 5% +2—f

1222 BV (s0Y) - ()

27”7 gz TV '
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This process, however, corresponds to (3.21), QED.

Proof of Proposition 4

The proof is very similar to those of Lemma 2 and Proposition 3. We apply equation
(2.22) and observe that, as with the upper bound, the lower bound distribution over
(t,t + h) is a mixture of the diffusion component and a jump of intensity A and

log-amplitude distribution J*, the truncated distribution {J|J < J}.

zp with probability 1 — Ah
Ztt+h = .
JE  with probability Ah

By Lemma 2 this process converges weakly for h — 0 to a jump-diffusion process

with generator

of 0
.ALf: [r—uﬂ S%-l-g{‘
+ o228 RS+ Ity - 1))
27 ° 552 '

which corresponds to (3.25), QED.
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