Protocol and Architecture for the Secure Delivery of High-Value Digital Content

Alexander Truskovsky

A Thesis
in
The Department
of
Computer Science
and

Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

November 2005

© Alexander Truskovsky, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14339-8
Our file Notre référence
ISBN: 0-494-14339-8
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT
Protocol and Architecture for the Secure Delivery of High-Value Digital Content

Alexander Truskovsky

Digital Rights Management (DRM) is used to control access to digitized intellectual
property and sometimes to control how that property is used. In the media context, this
often involves a player together with a (possibly incorporated) "set-top box".
Historically, DRM schemes have been too fragile to protect high-value digital content. In
this thesis, we remedy that problem. Through registration, a user's identity is bound to a
tamper-proof set-top box storing shared secrets and running a hard-wired program.
Encrypted content of interest is obtained by arbitrary means. The user activates the box
to engage in a protocol with a remote server operated on behalf of the content owner.
The server securely delivers the capability to display this content precisely once and
records this fact. Keying information is hidden from the user in such a way that key
distribution and authentication are radically simplified, resulting in an extremely robust

security architecture.

iii

ACKNOWLEDGMENTS

I would like to thank my supervisor David K. Probst for introducing me to many issues
and perspectives in information-systems security, including the sometimes wild and
wacky world of digital-rights management (DRM). He provided guidance for this
research and was always available to answer my many questions, sometimes at odd

hours. Above all, I enjoyed the stimulating discussions we had whenever we met.

I would also like to thank my wife Christine for her endless patience and support while I
was working on this thesis. I am aware that the long hours spent on my thesis work took
time away from being with my family and I thank my wife for her understanding in this

matter.

v

Table of Contents

LSt OF FIGUIES ..ttt sttt ettt e b et e et e sebe e beasseasara s vii
LASt Of TADBLES ..ottt s ix
1 INEEOUCTION.....eetiieeeiiieietenteete ettt et et sre s e sresbe st e e bt e saseanesaesraeetaersnasaesssensesnsesseenns 1
1.1 ClassiC CryptOgraphyc.cocvverieriiieriieriieiieestesresreesieesreesaesesseeseressraeasesssssessanssesnes 3
1.2 Unbreakable Cryptosystem (One-Time Pad)........ccccocevvivieveniininieninniininisieninnanens 4
1.3 Commercial CryPlOSYStEIMSc.eeurrierieeieieeieeeeete ettt et eseesee e seaeseereeeeeane e 4
1.4 Problem of the TResisc.cvevveiiiriiiiiieeieneeieit et 6
1.5 ProtOCOL SECUIILY.....eirviiieeiiiiieiiieeterteeete et e siressteeeresebeenaessaeasssesstaesabasaneessseenseens 13
2 Key Establishment Protocolscccvoiviririnieiinrininecennsestse et 14
2.1 An Example of a Key Establishment Protocolcccccceviveniricinienininenennennn 14
2.2 Key Establishment Protocol Classification...........coceveveecirinennecnenienineneneenenns 18
2.3 Use Of an ON-liNE SETVETcc.covveriiriiiriieiiniteteetete ettt st st ste e sesrae e eseaas 19
2.3 Use of an Off-liN€ SEIVETccvevieerieriiiierieiieneertestei e eieer ettt se e seeete e ennas 22
2.5 When the secret is already shared between the participants............cccceveerveeeneennn. 25
2.6 Attacks on Key Establishment Protocols........cccceecvinieviiincicnniniiicciieceee e 27
BRINAACL...cciiiiiiiiieee ettt ettt e et e st e e b e s aab e e streenaneeas 30
3.1 Input and OULPULcc.eeriiiieiieet ettt ettt ea 31
3.2 ENCTYPHOM .ottt ettt ettt ettt et b s bt st b e b e eebe st e b eabesenesbeennenieens 32
IR B 110 o7 15 103 « R ST P RO P PR PPRSO PRI 34
3.4 The Number of Rounds and Key Schedule........c..cccvieinnininniiiiiiiiee, 36
3.5 RIJNAAC] SECUIILY ... ceoueiiieeiieiie ettt ettt seeesneeene 38
3.6 Rijndael EXPErimEntccccveiieiiiiiriieieiieeete et e st ee e siteesateseneessneesnsesaneans 39

4 Tamper-Proof HArdWareccoooiiiiiiiiiiieeeceeeceee e 41

4.1 Tamper-Proof Box ReqUITEMENTS.........ccceeriiirieiiiiiieiieieee i siiee e e saeesine e 42
4.2 FIPS Standard “Security Requirements for Cryptographic Modules” 45
4.3 IBIM’S SECUIE COPIOCESSOT ...cevuvrieiurreerierrnsreesreeenireesatraesereseseteesbeeessreesasesesossessssees 49

5 Security Architecture for Controlled Access to Digital Contentccccceevvveieennnnnne. 53
5.1 Security Architecture OVEIVIEWcoceiiiieriiriieiieniitie et 53
5.2 ProtoCOl DESCIIPLIONcvvieeiiiiiiiieciiieeieeereeeiteeeire e e srae e savaeeeneeeeeate e e eeaeeeeaveeeanns 56
S2.T SETUP ettt ettt e 56
5.2.2 ProtoCOl MESSAZES ...c..eeverieriirieeieeiiieettenteetesiesteesteestesieeneeeneeseeeseeneesneenseaneas 59
5.2.3 The Protocol in Operation / A State-Transition VIeWc.ccccoecviievnriennnn. 61
5.2.4 Comprehensive Description of the Protocolccccceeiiniiniiiiiiniinicnn, 63
5.2.4.1 The Client Programi...........cccoceevuirerieneeieniseerie e e e 63

5.2.4.2 The Server PrOGIamcccciviieiieriieieiin ettt 68

5.3 PTOtOCO] SECUTTLYecveeieriiiierteriieert ettt ettt sttt e saae s eeeaesseensa e 73

6 CONCIUSION ...ovteiiieiieeiceteeie sttt ettt ettt et e e eaae s et e e e e stee bt e st s ese et e essesssesseenseaseassean 77
6.1 Design PhilOSOPIYcooveviiiiiiieiieee ettt sttt 78
6.2 Related WOTKcvicviriiiieeniiee ettt sttt b et sbasbe e ae s 84
0.3 FULUIE WOTK ...utiiiiiiiiicieic ettt eb bbb 89
RELEIENCES ...ttt ettt ettt 92

vi

List of Figures

Figure 2.1 Simple Key Establishment Protocol............ccoooeiiiiieiiniiieeeceee 15
Figure 2.2 Improved Simple Key Establishment Protocolcccceeioviiiiniiinicninnnen. 16

Figure 2.3 Improved Simple Key Establishment Protocol Modified to Withstand

MoOdIfication ATACKceeieiiiiriiiiiere ettt st 17
Figure 2.4 Needham-Schroeder Shared Key Protocol...........cccvvvviniicniiiiniinenieneeenenne, 19
Figure 2.5 Denning and Sacco SOIULIONc.covirievieriinienienieienieineieenrese e eeess e sse e 21
Figure 2.6 Beller-Yacobi Protocol.........cccociiiiiinimininininienceneeccceee e 22

Figure 2.7 Potential attack on Beller-Yacobi Protocol proposed by Boyd and Mathuria 24

Figure 2.8 Solution proposed by Boyd and Mathuria............ccccoeceveercereieneneneneneeeneene, 25
Figure 2.9 The Andrew Secure RPC Protocol.......c.cccovveeiiierceieeiceeeeeee 25
Figure 3.1 Sample Plaintext BIOCKccceeririiiiniiiiniiniii e 31
Figure 3.2 Rijndael Encryption Process.......ccoovviieiiinienieiienie e svee s 33
Figure 3.3 Round Transformationscceveriereenienenenienienieniesieniesreseeseeneeseesessseseessenns 34
Figure 3.4 Round Transformations of the Straightforward Decryption Algorithm.......... 35

Figure 3.5 Straightforward Decryption Algorithm for the Two-Round Cariant of Rijndael

... 35
Figure 3.6 Structure of EqQRound and EqFinalRound............cccoooeniiiiiniiniiiieicieeen, 36
Figure 3.7 Structure of the Equivalent Decryption Algorithmccccoveviniiievninnnn. 36
Figure 3.8 Rijndael Experiment Results.......c.ccooviviiiiiiniiniininiieecen e 40
Figure 4.1 Tamper-Proof BOX......ccccouetiiiiiieriieienieeeniteeet e s 42
Figure 4.4 Hardware Architecture of IBM’s High-End Secure Coprocessor 50
Figure 5.1 Protocol MESSAZESccevuiriirinieneniiienienieeteneterctereecete ettt 59

vii

Figure 5.2 Protocol States........cccverienieiininniiinneinienecnenceeee
Figure 6.1 Conventional Trust Model (For Communicating)........

Figure 6.2 Unconventional Trust Model (For Capability Passing)

viii

List of Tables

Table 1.1 Typical Versus Our Approach in the Military Example..........c.cccocvvervnrnennen. 10
Table 3.1 N; as a Function of N and Ni..cooeeveviieiin oottt eessiittt e s e eeseeenenees 37
Table 3.2 Summary of Attacks on Rijndael...........cccooiiiiiiiiiiiiiee 38
Table 4.1 Summary of Security REQUITEMENtSccevveeveriiieriniirereecee e 47
Table 4.2 Summary of Physical Security Requirementsc..cccocceevcveririeenienirennnennnn 48

ix

1 Introduction

This thesis proposes a novel security architecture for Digital Rights Management (DRM)
of extremely high-value digital content, which maintains its high value for an extended
period of time. Like most security systems that are used in e-commerce and elsewhere,
our security architecture combines well-known primitives such as cryptographic
algorithms and ideas from known security protocols, but combines them in novel ways
that is made possible by using an entirely new set of assumptions. In the introduction, we
offer a general overview as a lead-up to explaining how our problem and solution is

similar to yet differs from previous attempts.

We propose a security architecture, designed in a specific DRM context, although it may
have other applicability. The normal DRM context is managing intellectual property by
building an architecture for the secure delivery of high value digital content. This

involved design of key-exchange protocols, adaptation of cryptographic algorithms, etc...

But what drove us to a different problem from the normal? The two main issues that led

us to the new problem are the issues of scalability and trust.

In a typical case two peer entities that are equally trusted decide to securely communicate
a plaintext message. Usually, one is the server that pushes the digital content and one is
the client that receives it. However, if there are many clients that want to receive the

digital context at the same time, say to view a movie on the opening night, we have a

potential problem of bandwidth because of the volume of the digital content. Thus we
were led to consider a low bandwidth solution of “virtual” delivery that preserves

scalability.

The basic idea is make the delivery of encrypted content orthogonal to the delivery of the
capability to display it. In this way, channels with widely different bandwidths can be
used. Once the capability has been delivered over a low-bandwidth channel, the digital
content can be displayed exactly once and then the capability vanishes. This gives us a
great amount of flexibility in that we are not forced to push many giga bytes of encrypted

data through the network.

The second issue is trust. Here our model is changed from a programmable computer
plus an untrusted person to a non-programmable, hard-wired, tamper-proof box plus an
untrusted person. A number of shared secrets are buried deep inside the tamper-proof
box. The end-user has no access to the shared secrets, which allows us to control when
and how often the digital content is displayed. This provides us with the ability to

securely control the delivery of high value digital context.

The proposed architecture changes the concept of a shared secret. The secrets are known
to the server but are not known to the user; they are hidden inside the tamper-proof client
box. In short, the secrets are shared between two “boxes”, although we do trust the user
of the server box. The main consequence of changing the trust model by changing the

concept of a shared secret is that secret protection takes on a new flavor. The public key

cryptography is used in our key-transport protocol, but the public keys are not publicly
known and are buried inside the hard-wired tamper-proof client boxes. If the integrity of

the client box is being compromised, all the secrets buried inside are erased.

We formulated an entirely new DRM problem by making new assumptions that
significantly simplify design and implementation. In section 1.4 we give a more detailed

example of our DRM problem.

1.1 Classic Cryptography

Since the ancient times, cryptography has been used to protect sensitive information.
One of the most rudimentary cryptographic protocols was used by Julius Caesar. The
Caesar Cipher is a special case of Shift Cipher, with which messages could be manually
encrypted and decrypted. In actual use, cryptographic algorithms are embedded into
cryptographic protocols to accomplish specific tasks. Over time, these algorithms
evolved and became more complex, and with the invention of computers became
computationally intensive. Cryptographic algorithms are usually incorporated into
cryptographic protocols that provide solutions for a number of tasks. These protocols,
e.g., SSL for secure web browsing, are built from cryptographic algorithms, such as
symmetric and asymmetric encryption algorithms, key exchange and establishment

algorithms, and message authentication codes (MAC).

1.2 Unbreakable Cryptosystem (One-Time Pad)

The only information-theoretically secure cryptosystem is the One-Time Pad. It was first
described by Gilbert Vernam in 1917 and was proved to be “unbreakable” after Shannon
developed a concept of perfect secrecy in 1949. Having a One-Time Pad is extremely
inconvenient, since it requires having the key length to be at least as long as the length of
the plaintext. This complicates the key establishment problem, even assuming we have a
genuine random number generator, like a noisy diode. It is the case that government,
military or intelligence agencies may prefer the unconditional security the One-Time Pad
offers. For example a diplomatic pouch containing the secret keys could be taken to the
embassies abroad on regular basis to facilitate secure communication between a finite
number of principals. It is still true that the One-Time Pad has no practical commercial
application, because of the expense of key distribution. The common thing is symmetric
cryptosystems where asymmetric techniques are used to handle key distribution. Indeed,
whole new protocols based on asymmetric key cryptosystems have been developed in
situations where large number of parties needing to communicate exist, and where

different parties have no knowledge of each other prior to communication.

1.3 Commercial cryptosystems

In many commercial, military, and intelligence-community cryptosystems, the principals
are not known to each other and the scale precludes usage of “in-person” key
establishment protocols. This is so even though cryptosystems that employ in-person key

establishment protocols are considered to be generally more secure compared to systems

that do not. Usually, key establishment using standard cryptographic protocols is done
dynamically on per session basis, between parties that never meet. Modern sophisticated
public-key infrastructures support general key establishment protocols that are scalable
and can provide service to a large number, not known a priori, of users. In the jargon,
they handle “any-to-any” connectivity. One-Time Pads, on the other hand, were
designed to facilitate secure communication between predetermined principals with the

ability to distribute the keys out of band.

We will measure the security of a cryptosystem by comparing the cost of breaking it to
the value of the information being protected by it. Of course, there is always a possibility
that one of the principals may sell the secret key and the data can be decrypted without
employing any of the cryptanalytic techniques, which reminds us of the need to pay equal
attention to both technical and non technical attacks on our system. Most of the
encryption algorithms that are used in commercial cryptosystems are generally
computationally secure, in the sense that it is impossible to break the cryptosystem
without knowledge of any secrets within a reasonable amount of time. In some cases,
when significant analysis has been done, known attacks have been discovered that are
much better than exhaustive search through the key space. In other cases, there is not
much difference. In such cases, with an ample key space, such as the one provided by
Rijndael, this is good security indeed. DES is insecure mostly because its key space is
too small. Therefore, if the key space is sufficiently large and known attacks are not
significantly better than exhaustive search, the encryption algorithm is considered to be

computationally secure. Key establishment protocols, on the other hand, are vulnerable

to various kinds of attacks, e.g., man in the middle attack. Paradoxically, because
protocols are usually made more sophisticated to counter a wide range of protocol
attacks, they become quite complex and, sometimes, introduce new vulnerabilities that

are hard to see because of the complexity.

1.4 Problem of the Thesis

In this thesis, we propose a security architecture that provides secure “virtual delivery” of
high value digital content even in a low-bandwidth environment. Our work is in contrast
to standard security protocols, which takes for granted a set of assumptions that is
reasonable for a pair of trusted peer entities that desire to communicate securely.
Because our specific problem differs from problems based on this standard situation we
have been led to a quite different set of assumptions, with the result that we can use
standard mechanisms in different ways. For example, normally, when RSA is used, we
publish 7 and e, which are the two components of the public key, for every principal. In
our case we have been led to explore contexts where publication is not necessary but this
does not stop us from using RSA. If we don’t publish the values of the public key but
keep them secret, then we are not concerned with factorization and other attacks. Since
we have a specific problem in which our set of assumptions is appreciably different, this
allows us to use classical components in novel ways. The standard assumptions are no
longer relevant and the standard attacks are no longer a concern, although the new

assumptions might force us to counter new attacks.

The original motivation was the DRM problem mentioned at the very beginning. But
much of the solution structure appears general and we would not be surprised if there
were several other concrete problems where these or very similar techniques might be

used.

We mention that there are a number of important issues that are not addressed in this
thesis. First, although we make strong security assumptions about the server, we have
not provided a security architecture for the server, including the building in which it sits.
Second, although we make equally strong assumptions about the client box, we have not

provided a secure manufacturing process.

Third, the security architecture in this thesis should be regarded as a large Internet
service; as such, it must deal with concurrency on a large scale, theoretically, up to
possibly hundreds of thousands of client boxes that have been registered with a given

server, all of whom can request service at the same time.

The server is a parallel computer that — ideally — can execute as many threads as there are
registered client boxes. For example, there may be a statically created pool of threads as
large as the number of client boxes, and one of these threads is dispatched from the pool
when a new protocol instance is instantiated by a request message. If the parallel
computer cannot support this many threads — perhaps due to operating-system overhead
due to thread scheduling — without performance degradation, the excess concurrency is

absorbed by a queue and, although the response time increases with load, the throughput

does not degrade. Another possibility to be considered is to assign distinct server IP
addresses to distinct subgroups of client boxes at the time of manufacture. There is
considerable freedom here given that the server engages in only very special-purpose

computation.

Fourth, this security architecture should be viewed as a "capability service provider".
Thus, just as there can be multiple users, so there can be multiple digital-content
providers. The capability service provider is merely a middleman between content

providers and users, all of whom — in some sense — are its clients.

Our first motivating example is in the area of Digital Rights Management. For instance,
there is a new movie opening soon. The movie studio ships copies of the movie to the
theaters. On a particular date the movie opens and the theaters are allowed to show it to
the public. Often, movies are pirated soon after the opening and illegal copies are sold on
the street. Piracy is a problem with the current distribution model. We propose a new
distribution model. In parallel to shipping a plaintext movie to theaters, we ship
encrypted copies of the movie to individual customers. Alternatively, the customers can
download it from studio’s web site or pick up a copy at a Blockbuster, etc. Starting on

the opening night, the customers can request to play the movie on pay-per-view basis.

We are actually thinking of a problem that would allow the studios to offer an entirely
new distribution model. We would like to propose a new technology that would allow

the option of having an entirely new distribution system.

This is sort of like conventional pay-per-view. The basic idea is: instead of shipping the
digital content, we ship the capability to view the digital content precisely once and then
the capability self destructs. The real problem is: we would like to allow somebody in an
uncontrolled physical space, but perhaps with a physically controlled box for displaying
purposes, to possess the encrypted form of high value digital content in insecure storage.
We would then like to invent a protocol, where upon request from the paying customer
we would ship a capability to display the content exactly once. This capability can
neither be stolen nor copied, and self-destructs at the end of displaying. And if the
customer wishes to display the content again, he/she has to go through protocol again -

each play is a new request.

Could we find another application? Let’s consider protecting software. Our example is
from the area of classified programs. We are not sure this example is realistic; however,
it does illustrate our point. Assume that there is an agent in the hostile territory. The
command station needs to communicate a specific contingency plan to him, depending on
the circumstances. For bandwidth reasons, for example to escape detection, the agent
would already posses all possible contingency plans in encrypted form. Encrypted
contingency plans are safe from everybody including the agent. After being informed
which plan is relevant, a simple modification of our protocol has him requesting the
permission to view the corresponding contingency plan. He/she would get a capability to
decrypt and display a specific plan for a short period of time, and then the capability

would vanish. The agent could destroy the box or “zeroize” the secrets in case of

probable capture. Also, the station can deny the request to view any encrypted
information once the fact that the agent has been captured has been established. Table 1
compares how some of the scenarios are handled in the typical approach and our

approach.

Typical Ours

The long-term secrets are stored
The agent has the knowledge of |
)) in the tamper-proof box, and the
long-term secrets in plaintext.
agent has no access to them.

Requires high bandwidth to Very small messages, since only
transmit large messages. Agent | keys are sent. Does not require
may be easier to detect while on- | high bandwidth and reduces the

line for too long. chances of being detected.

Table 1.1 Typical Versus Our Approach in the Military Example

Let us summarize the differences more systematically:
1. We are dealing with vast quantities of high value digital content. We want to
maintain full control of when and how many times the content is viewed or used.
2. We are not interested in distributing content, which is done some other way, only
the capability to display it. The capabilities may go over the Internet, but the
protocols use very little bandwidth because relatively few bits need to be

exchanged.

10

Trust model: we have a trusted server, and a finite but large number of client
boxes, which are considered to be in the hands of untrusted users. We shift the
trust from the customer to the client box.

The server has a source of true randomness — a true random number generator.
Each client box has long-term secrets shared between the server and itself which
were uploaded to it at the factory.

The box runs precisely one hard-wired program. The client box user has no
control over the program’s execution. It runs inside the tamper-proof box. Once
a request is made, the program always executes from the beginning to the end. If
the execution is interrupted, say by power failure, the next request starts the
program from the beginning again.

We need special tamper-proof hardware that will protect the long-term secrets and
the protocol’s execution, should someone try to physically steal the secrets. An
attempt to tamper with the hardware in order to extract the long term secrets will
cause the hardware to destroy all the secret cryptographic information.

We need a very secure encryption strategy that is highly resistant to ciphertext
only attacks, since the encrypted content will be available without restriction. By
very secure encryption we mean that the computer power needed to break the
encryption would approach in cost the economic value of the data. We would like
to raise the computational cost of breaking the encryption well above of what the
thief is going to gain by stealing the movie, so that it becomes not economically

interesting to steal the movie in this way.

11

9. We need a very simple protocol with high assurance that all imaginable attacks on
the protocol fail. Key establishment protocols are notorious for slowly discovered
bugs. We would like something so simple that we know it is correct from day
one, because if the bug is discovered after the system is deployed, it would

probably seriously demotivate the studio from continuing.

One major win over the typical security architecture attributes (e.g., the copy-protection
schemes that last on the average about a week before they are cracked) is that the
exchange of long term secrets is done a priori, at the time the box is manufactured (the
client box is subsequently registered with the purchaser). One major problem is that we
will have the client boxes in the hands of untrusted users and we have to protect the long-
term secrets inside. Here we rely on an extension of standard ideas about tamper-proof
hardware. In Chapter 4 we will discus some research in this area and show how it solves

our problem of manufacturing a tamper-proof client box.

This thesis tells a simple story which can be summarized in four points:
» We adopt a nuclear threat model in the sense that if even one adversary can defeat
out DRM technology, all is lost.
* We adopt a modified trust model in which a registered but untrusted user is bound
to a tamper-proof set-top box with shared secrets and a hard-wired program.
» We adopt a capability-based protocol solution in which a client box acquires a
display-once capability for user-selected digital content via a protocol with a

trusted server.

12

* We adopt a tamper-proof vault as our architecture solution, in which keying

secrets are protected by active countermeasures.

1.5 Protocol Security

What are the consequences of the new problem? The good thing is that the shared secrets
are protected inside the tamper-proof client box. Since there is no disclosure of shared
secrets, like public keys, many attacks on cryptographic parts of the key establishment
protocol will not work. The encrypted messages that will be sent to client will contain
the capabilities to display the digital content. The capabilities will consist of the content
keys needed to decrypt the digital content. Since the content keys are genuinely random,
we are safe from ciphertext only attacks that are based on the statistical regularity and
redundancy of a natural language. In particular, the standard statistical cryptanalytic

techniques have no force.

What we are doing here is changing a number of trust assumptions that constitute the
trust model of the security protocol. We are sharing the secrets not with the client box
user but with the client box itself, over which we assume we have total physical control
in principle due to the tamper-proof hardware. That is to say we assume that we can
“zeroize” the secrets before anyone can steal them. This of course means that attacks that
would be possible if the shared secrets were disclosed are impossible. Another radically
difference is that we have secrets shared among server and client boxes that are not

shared between the human users (the clients).

13

2 Key Establishment Protocols

A key establishment protocol is an integral part of most security architectures. In this
chapter we discuss existing key establishment protocols. Different protocols are used in
different environments. We present some existing protocols, classifying them by the

environments they are used in rather than using the typical classification criteria.

When two users wish to securely communicate through the use of cryptographic
protocols they require a session key. A session key is usually used for one instance of the
communication protocol and then discarded. After establishing a session key, each party
must be certain that the new key is known only to the parties wishing to communicate

and perhaps a trusted server, and no one else. The key also has to be fresh.

2.1 An Example of a Key Establishment Protocol

Here is an example that demonstrates a key establishment protocol. We start with a very
basic protocol, and then attempt to improve its security, thus demonstrating the

challenges the protocol designers have to deal with.

A wishes to communicate with B. 4 will obtain a fresh session key K45 from server S and

transport it to B. This is shown in Figure 2.1.

14

(1) 4,B

(D) "o () s (3

Message 1: 4 sends a request to S for a session key to communicate with B.

Message 2: S generates and sends K45 to 4 for communication with B.

Message 3: 4 sends a newly received session key K4z to B.

Figure 2.1 Simple Key Establishment Protocol

It is obvious that this protocol is not secure. Anyone may listen in on the conversation
and intercept the session key, and subsequently read all the messages 4 and B exchange.

This Eavesdropping attack is the most basic of the attacks on key establishment protocol.

Let us now assume that every entity involved in the protocol shares a secret key with the

server. With this assumption we try to improve our basic protocol as shown in Figure

2.2.

15

(1) 4,B

@ (2) {Kup}Kus, {Kas}Kps @ (3) A, {K45}Kps R

Message 1: 4 sends a request to S saying that it requires a session key to

communicate with B.

Message 2: S generates a session key K, 5. It then encrypts one copy of
the key with Ks (the key it shares with 4) and the other one with Kjgs
(the key it shares with B).

Message 3: 4 sends the session key K45 to B encrypted with Kgg (the

key shared between S and B).

Figure 2.2 Improved Simple Key Establishment Protocol

In this case, we are protected from the eavesdropping attack since each copy of the key is
encrypted with the secret key shared between individual parties and the server. However,
in the 3™ message, the identity 4 is sent in plaintext and an adversary, say Oscar, can
intercept the message and replace 4 with O. B therefore will believe that it is sharing a
session key with O and not with 4. This is an example of a Modification attack. Now,

let us modify the protocol to circumvent this attack, as shown in Figure 2.3.

16

(1) 4,B

@ (2) {Kap, B}Kys, {Kup, A} Kps @ (3) {Kup, A}Kss -

Figure 2.3 Improved Simple Key Establishment Protocol Modified to Withstand

Modification Attack

In this version of the protocol, S encrypts K45 along with the identities 4 and B. Now

message 3 cannot be modified since only B (and of course S) can decrypt it.

Here are some goals of key establishment protocols:

o Entity authentication is the process of establishing the identity of a second party
involved in a protocol, and the aliveness of the second party for a given protocol
instance.

o Data origin authentication is a type of authentication of a party as the (original)
source of data.

o Key authentication is where one party is assured that no other party aside from a
specifically identified second party may gain access to a particular secret key.

o Key confirmation is where one party is assured that a second party actually

possesses a particular secret key.

17

2.2 Key Establishment Protocol Classification

The standard classification is obtained by using two sets of criteria. The first set
classifies key establishment protocols as either key transport or key agreement. In the
key transport technique one party creates or otherwise obtains a secret value, and
securely transfers it to the other. In the key agreement technique a secret value is derived
from the information contributed by two (or more) parties wishing to communicate. The
second set classifies key establishment protocols as either symmetric key establishment
protocols (i.e., ones that use symmetric encryption) and asymimetric key establishment

protocols (i.e., ones that use asymmetric encryption).

We would like to classify the key establishment protocols using more practical (i.e., high
level) criteria. In order to establish an authenticated session key some existing trust basis
must already be available. The principals may already be sharing long term secret keys,
or certified public keys may be available. The concept of using public key certificates is
considered to be the equivalent of using an off-line server. Here are the three possibilities

that allow two principals to establish an authenticated session key:

1. The session key is established with the help of an on-line server. In this case each
principal shares a long term key with the trusted on-line server.

2. The session key is established with the help of an off-line server. In this case
each principal possesses a certified public key.

3. The session key is established with the help of a previously shared secret key

between the principals.

18

We would like to provide one example of a session key establishment protocol for each
of the above mentioned categories, along with the typical attacks on these protocols. We
will show that the third possibility is generally more secure that the first two. But, first

let us describe the types of protocol attacks that exist.

2.3 Use of an on-line server

Server-based key establishment protocols usually use symmetric encryption to establish a
session key. All parties that participate in the protocol share a secret key with the trusted
server. When one party wishes to communicate with another, they establish a session key
through the trusted server, using secrets shared pairwise between individual parties and

the server.

As an example, we would like to present the classic protocol proposed by Needham and
Schroeder in 1978, which is called the Needham-Schroeder Shared Key Protocol. See

Figure 2.4.

1. 4—> S:4,B,N,

2.8 = A:{N,,B,K 5 {K 5, A}¢, }x.
3. A Bi{K 5, 4}y,

4. B> A:{Ny},.

5. 4 B:{Ny -1},

Figure 2.4 Needham-Schroeder Shared Key Protocol

19

Step 1: 4 sends to S a message with the following contents:
- The identity A4 to identify itself
- The identity B to identify a party 4 wants to establish a session key with

- A nonce N4 to be used as a proof of freshness

Step 2: S sends to A a message encrypted with the private key K5 shared between 4 and
S. The contents of the encrypted message are:

- A nonce N, as a proof of message freshness

- A session key K45 generated by S

- A message containing K4 and 4 encrypted with the secret key Kjpg shared between B

and S

Step 3: 4 sends to B a message encrypted with the private key Kjps shared between B and

S. The contents of the encrypted message are:
- The session key K5 and the identity 4. Only B (and S) can decrypt this message. B
is certain that the session key K p was generated by S and is to be used for

communication with 4.

Step 4: B sends to 4 a message encrypted with the session key K5 shared between 4 and
B. The contents of the encrypted message are:

- A nonce N to verify that 4 possesses the same session key

20

Step 5: 4 sends to B a message encrypted with the session key K4p shared between A and
B. The contents of the encrypted message are:
- The nonce (Np — I) encrypted with the session key K,p that proves that 4 possesses

Kup

Before discussing the attack, let us summarize the main idea of the protocol. In message
4, B generates a random number Np and sends it to A. If 4 possesses the session key K4z
it decrypts N3, subtracts /, encrypts (Np — 1) and sends it back to B. This proves to B that

A possesses the new session key K4p.

In 1981 Denning and Sacco pointed out a weakness in this protocol and suggested a
solution. This protocol achieves the “good key” property with respect to A (see below).
In the second message encrypted with a secret key K, s shared with S, 4 receives Ny,
which is an assurance of key freshness, and identity B, which is an assurance of key
authentication. In message 3, B receives 4 and K43. However, since there is no proof of
message freshness, this protocol is vulnerable to Replay attack. If Kz was compromised,
the adversary can replay message 3 and make B believe that it shares a session key with
A. The proposed solution involves usage of timestamps to prove freshness, as shown in

Figure 2.5.

1. 4—> S:4,B
2. 8-> A:{BaKABaTS’{A’KAB’TS}KBs}KAS
3. A—)BZ{A,KAB:TS}KBS

Figure 2.5 Denning and Sacco Solution

21

2.3 Use of an off-line server

Key establishment protocols that use off-line servers usually employ asymmetric
encryption. The off-line server in this case is a certification authority. Each party

possesses a signed certificate from the certification authority that proves its identity.

The Beller-Yacobi Protocol, as shown in Figure 2.6, is an example of a key transport

protocol that uses a certificate to authenticate the end user.

1.4 >B:4,K,
2.B>A4:E (K ;)
3. A->B:{N s}«

4. B—>4: {BaKBacert(B)sSig(NA)}KAB

Figure 2.6 Beller-Yacobi Protocol

Step 1: 4 sends to B a message with the following contents:
- Identity 4 to identify itself

- A’s public encryption key K

Step 2: B sends to A a message encrypted with A’s public encryption key K,. The
contents of the encrypted message are:

- A session key K 5.

22

Step 3: 4 sends to B a message encrypted with the session key K4p. The contents of the
encrypted message are:

- Nonce N, generated by A4 to be used as a challenge.

Step 4: B sends to 4 a message encrypted with the session key K45. The contents of the
encrypted message are:

- Identity of B

- B’s public encryption key Kp

- B’s certificate

- N4 signed with B’s secret signature

After step 4 A4 is able to ascertain that it established a session key with B. A’s challenge
(N,4) is signed by B — encrypted with B’s private encryption key. A4 can decrypt it with
B’s public decryption key and be convinced that N4 was in fact encrypted with B’s
private key. The owner of B’s private key Ep can be verified with Cert(B) which is

signed by a trusted certificate authority.

This protocol is not completely secure. Here is a potential attack on this protocol

proposed by Boyd and Mathuria.

23

1.4 5C,: 4,K,

2.C, > A1 E (K ;)

3.4 5 Cyi{N 3.

1'C— B:C,K,

2.B—>C:E.(K',)

3.C—> B:{N

4'.'B—> C:{B,K;,Cert (B),Sig(NA)}K.AB
4.Cp—> A :{B,K;,Cert (B),Sig (N)},

Figure 2.7 Potential attack on Beller-Yacobi Protocol proposed by Boyd and Mathuria

In this attack C starts a parallel session with B. In message 4' C obtains B’s signature on

A’s challenge N4. In message 4 A accepts K45 as a session key between 4 and B, whereas

in fact it is shared with C.

Boyd and Mathuria proposed a simple solution, as shown in Figure 2.8, to avoid this
attack. Essentially the B should sign the new session key K45 and the challenge N4 in the
second message, where N, guarantees Kyp’s freshness. K,p’s confidentiality is protected
by a one-way function 4. Use of such functions is standard practice in most digital
signature schemes. Since Kyp is authenticated in the second message, the original fourth

message is redundant.

24

1.A—>B: A,N,
2.B>A: E (K 3).{B,K;,Cert(B)}, ,Sig(h(4,B,N ;,K ;)
3. A5 B:{N ¢,

Figure 2.8 Solution proposed by Boyd and Mathuria

2.5 When the secret is already shared between the participants

In this case users wishing to communicate must share individual secrets with each other
party participating in the protocol. The session key may either be generated by one party

and then transported to the other, or each party may contribute to the generation of the

session key.

As an example we present the Andrew Secure RPC Protocol. See Figure 2.9. In the first

three messages A and B perform a handshake, and in the forth message B sends a new

session key to A.

I.A—> B {N).
2.B—> A:{N,+1,N,},
3.4 B:{N,+1},

4.B-> A:{K'y ,N'y)y.

Figure 2.9 The Andrew Secure RPC Protocol

25

Step 1: 4 sends to B a message encrypted with a secret symmetric key shared between 4
and B. The contents of the encrypted message are:

- Nonce N4 generated by 4

Step 2: B sends to 4 a message encrypted with a secret symmetric key shared between 4
and B. The contents of the encrypted message are:
- Incremented nonce (N4 + I) sent by 4

- Nonce Np generated by B

Step 3: 4 sends to B a message encrypted with a secret symmetric key shared between A4
and B. The contents of the encrypted message are:

- Incremented nonce (Np + 1) sent by B

Step 4: B sends to 4 a message encrypted with a secret symmetric key shared between 4
and B. The contents of the encrypted message are:
- New session key K'yp

- New nonce N'p

A major flaw was pointed out by Burrows et al. Since there is no proof of session key
freshness in message 4, an intruder may substitute a previously recorded message 4 and

force A4 to accept an old (compromised) session key.

26

2.6 Attacks on Key Establishment Protocols

Since there are infinitely many ways in which an adversary can attack protocols, the
following list is obviously not complete. It is however a list of typical (classical) attacks
that are known. One must have high assurance, when designing a protocol, that it meets
its security objectives given a list of assumptions. It is helpful for the designer to know

that a protocol is not vulnerable to the set of known attacks.

The Eavesdropping Attack is considered to be the most basic of attacks. It does not
require the adversary to disturb the communications between the legitimate principals,

and therefore it is a passive attack. It is usually circumvented by using strong encryption.

The Modification Attack involves modification of a message or message fields. Typically
cryptographic integrity mechanisms are used to ensure that the message was not tampered

with.

The Replay Attack consists of interference with the protocol run caused by inserting a

message that had been sent previously in another protocol run.

The Reflection Attack is a special case of a replay attack. This attack requires that
parallel runs of the same protocol are allowed. Essentially, in the case of two principals
engaged in a shared-key protocol one simply returns a challenge that is intended for

itself.

27

The Denial of Service Attack is an attempt on the part of the adversary to prevent
legitimate users from completing the protocol. These attacks are directed at servers that
are required to interact with many clients. These attacks are divided into resource
depletion attacks that use up the computational resources of the server, and connection

depletion attacks that exhaust the number of allowed connections to this server.

The Typing Attack exploits the fact that, although the protocol elements are clearly
distinct when written on a piece of paper, in practice the principal receives a bit string
and has to interpret it. For instance, an element that is intended as an identifier is
accepted as a key which is a message element of a different type. These attacks typically

work with replay of a previous message.

One of the Cryptanalysis Attacks is guessing a weak key. Often, the keys are formed
from a password that needs to be remembered by a human. Once sufficient evidence is
available that suggests how a password has been generated, the attacker can start

guessing it and subsequently form a key.

In a Certificate Manipulation Attack an adversary gains a certificate asserting that a

public key is its own, even though it does not have the corresponding private key.

Finally, a Protocol Interaction Attack may be effective if the long-term keys are intended

to be used for a single protocol and are in fact used in multiple protocols. For instance, if

one protocol is using decryption to prove the possession of an authenticating key, then

28

the adversary may attempt to use it to decrypt the messages from other protocols. For
example, assume server S is using key K to encrypt messages sent to A and also using K
to decrypt challenges from B. If B intercepts a message intended for 4, it can simply

send it to S which will assume the message is a challenge from B and decrypt it.

29

3 Rijndael

In January 1997, the US National Institute of Standards and Technology (NIST)
announced the start of an initiative to develop the Advanced Encryption Standard (AES).
The new AES would replace the existing Data Encryption Standard (DES) that was
adopted as a standard for “unclassified” applications by the National Bureau of Standards
on January 15, 1977. DES is a 16-round Feistel cipher that operates on a 64-bit block
with a 56-bit key. After two decades, with the advances in cryptanalysis and faster
hardware, there was a need for a new and more secure standard. On October 2, 2000
Rijndael was chosen as the cryptographic algorithm of the AES. AES was adopted as a
Federal Information Processing Standard (FIPS) on November 26, 2001 and was to be

used only for documents that contain sensitive but not classified information.

The difference between the Rijndael and AES is the range of supported values for the
cipher key length and the block size. AES standardized 128-bit block size and 128, 192
and 256-bit key sizes. Rijndael, on the other hand, can accommodate any block size and
key sizes that are multiples of 32, as well as changes in the number of rounds that are

specified.

30

3.1 Input and Output

The input and output are one-dimensional arrays of 8-bit bytes. One plaintext block and
a key are the input for the encryption, and one ciphertext block is the output. One
ciphertext block and a key are the input for decryption, and one plaintext block is the

output.

In the encryption phase the plaintext block becomes an intermediate state during
processing, which at the end of the encryption becomes the ciphertext block. In the
similar way, in the decryption phase the ciphertext block becomes an intermediate state
during processing, and then becomes the plaintext block. The state can be pictured as a
rectangular array of bytes, with four rows. The number of columns (N}) is equal to the
block length divided by 32. Let the plaintext block be denoted by popip2 ... pa*no - 1,
where py is the first byte and pssnp - is the last byte. Similarly, a ciphertext block can be
denoted by cocics ... casnp-1. If we used ASCII to encode the “it is an example” string —

one byte per character, then the 128-bit plaintext block would look like this:

I|S M
T E|P

AIX|L
I INJAE

Figure 3.1 Sample Plaintext Block

31

Let the state be denoted by sij, 0 <i <4, 0 <j <N,. The input bytes are mapped onto the
state in the following order: sq g, 1,0, 52,0, $3,0, S1,1> S2,1 S3.1, 3.1 For the encryption, the
input is the plaintext and the mapping is sij = pi +4j, 0 <1 <4, 0 <j <N,. For the
decryption, the input is the ciphertext and the mapping is sij = ¢j+4j, 0 <1 <4, 0 <j <N,
At the end on encryption the ciphertext is extracted from the state: ¢; = Simod 4, i, 0 <1 <
4Np. At the end of decryption the plaintext is extracted from state: p; = Simod 4, i, 0 <1<

4Ny,

Similarly, the key is mapped onto a two-dimensional cipher key. The cipher key can also
be pictured as a rectangular array with four rows. The number of columns (Ny) is equal

to the key length divided by 32. The bytes of the key are mapped onto the bytes of the

cipher key in the following order: ko, ki0, k2.0, k3.0, k1.1, ko1, k3.1, k31 If we denote
the key by: mo my, my, ... , mg* Nk -1, then the mapping is kij =mj+4, 0 <i<4,0<j<
Nk.

3.2 Encryption

Rijndael is a block cipher that performs the repeated application of a round
transformation on the state. In Figure 3.2 we show the encryption process. First the
cipher key is expanded into (N; + 1) sub keys (expandedKey) with the KeyExpansion
operation. Then the AddRoundKey operation is executed, which takes as input the
plaintext and the expandedKey. Next is the Round operation, which takes expandedKey

and state as the input and is executed (N; - 1) times. The last operation on the state and

32

the expandedKey is the FinalRound. FinalRound returns the state, which is the cipher

text.
expanded
Plain Text Key, state
(Nr - 1 times)
Key expanded | Add Round expanded expanded) Cipher
Key i Key, state Key, state Round Key, state | FinalRound | ey
»| Expansion N Key Y, . »

Figure 3.2 Rijndael Encryption Process

KeyExpansion consists of two components: the key expansion and the round key
selection. Key expansion specifies how expandedKey is derived from the cipher key.
AddRoundKey modifies the state by combining it with the bitwise XOR operation and
one of the expanded keys. A round key is denoted by expandedKey[i], 0 <i <N,. Figure
3.3 shows the details of the Round and FinalRound transformations. The FinalRound
operation differs by one step, namely MixColumns, from the Round operation. The
SubBytes is a bricklayer permutation consisting of an S-box applied to the bytes of the
state. ShiftRows operation is a byte transposition that cyclically shifts the rows of the
state over different offsets. MixColumns is a bricklayer permutation operating on the

state column by column.

33

Round Final Round

SubBytes (state)
ShiftRows (state)
MixColumns (state)
AddRoundKey (state,
expandedKeyli])

SubBytes (state)
ShiftRows (state)
AddRoundKey (state,
expandedKey[Nr])

Figure 3.3 Round Transformations

3.3 Decryption

The decryption algorithm can be found in a straightforward way by using the inverse of
the steps InvSubBytes, InvShiftRows, InvMixColumns and AddRoundKey in the reverse
order. The resulting algorithm is called the straightforward decryption algorithm. In this
algorithm the steps and their order differ from those used in encryption. For
implementation reasons, it is often convenient that the only non-linear step (SubBytes) is
the first step of the round transformation. The structure of Rijndael makes it possible to
define an equivalent algorithm for decryption in which the sequence of steps is equal to
that of encryption, with steps replaced by their inverses and a change in the key schedule.
Round transformations of the straightforward decryption algorithm are shown in Figure
3.4. Figure 3.5 gives a straightforward decryption algorithm for the two-round variant of

Rijndael.

34

InvRound InvFinalRound

AddRoundKey (state,
Y (AddRoundKey (state,
expandedKey[i)
. expandedKey[Nr])
InvMixColumns (state) .
) InvShiftRows (state)
InvShiftRows (state) InvSubBytes (state)
InvSubBytes (state)

Figure 3.4 Round Transformations of the Straightforward Decryption Algorithm

AddRoundKey(state, expandedKey|[2])
InvShiftRows(state)
InvSubBytes (state)

AddRoundKey(state, expandedKey/[1))

InvMixColumns (state)
InvShiftRows(state)
InvSubBytes (state)

AddRoundKey(state, expandedKey[0])

Figure 3.5 Straightforward Decryption Algorithm for the Two-Round Cariant of Rijndael

In order to define the equivalent decryption algorithm the order of InvShiftRows and
InvSubBytes is indifferent. InvShiftRows transposes the bytes and has no effect on the
byte values. InvSubBytes operates on individual bytes, independent of their position.
Therefore, the two steps commute. The order of AddRoundKey and InvMixColumns has
to be inverted. It can be done if the round key is adapted accordingly. EqKeyExpansion
has been modified to adapt the round key so AddRoundKey and InvMixColumns could

to be inverted.

35

Figure 3.6 shows the structure of EqRound and EqFinalRound.

structure of the equivalent decryption algorithm.

EqRound EgFinalRound
InvSu'bBytes (state) InvSubBytes (state)
InvShiftRows (state) .

. InvShiftRows (state)
InvMixColumns (state)
AddRoundKey (state,
AddRoundKey (state, eqExpandedKey]0))
eqExpandedKey(i]) 9=Xp 4

Cipher Text
EqKey eqExpanded
Key ; Key, state
) Expansion Y L

3.4 The Number of Rounds and Key Schedule

Figure 3.7 Structure of the Equivalent Decryption Algorithm

Add Round
Key

Figure 3.6 Structure of EQRound and EqFinalRound

eqExpanded

eqExpanded
Key, state
(Nr - 1 times)
>
eqExpanded
EqRound Key, state

Key, state |
»

EqgFinal
Round

Figure 3.7 shows the

Plain
Text

The number of rounds (N;) is chosen based on the fact that the resistance of iterative

block ciphers to cryptanalytic attacks increases with the number of rounds. The designers

of the algorithm determined the number of rounds by considering the maximum number

of rounds for which shortcut attacks have been found that are significantly more efficient

than an exhaustive search and then added a considerable security margin. Table 3.1 gives

36

the relationship between the block and key size and the number of rounds. If at some
point in time the cryptanalytic attacks on iterative block ciphers improve, the number of
rounds may be increased in order to increase security at the cost of increasing the

computational time.

10 | 11 112 113 | 14
1T {11 12 113 | 14
12 112 [12 | 13 | 14
13 113|113 |13} 14
14 | 14 | 14| 14 | 14

o 3] O\ W\

Table 3.1 N; as a Function of N}, and N

(Np = block length/32 and Ny = key length/32)

The key expansion specifies how expandedKey is derived from the cipher key. The
number of bits in the expandedKey is equal to (block size) * (number of rounds + 1),
since the cipher requires one round key for each of the rounds, and one round key for the

initial key addition.

37

3.5 Rijndael Security

Rijndael is secure against all known attacks. There are a number of attacks that have
been found against a reduced Rijndael with no more than 9 rounds. The time complexity,
although lower that the exhaustive key search, is still too high to have any practical use.
A summary of these attacks, including time and data complexities, is described in Table

3.2.

Complexity
Cipher Key Size [Data] [Time] Comments

Rijndael-6 | (all) 2’2 CP 27 square attack
Rijndael-6 | (all) 6 - 2°*CP 2% partial sums
Rijndael-7 | (192) 19-2%Cp |2™° partial sums
Rijndael-7 | (256) 21-2¢cp |27 partial sums
Rijndael-7 | (all) I _ oI oI partial sums
Rijndael-8 | (192) pf# ol 1olss partial sums
Rijndael-8 | (256) ple ol 120 partial sums
Rijndael-9 | (256) 2 RK - CP [2% related-key attack

CP - chosen plaintext, RK-CP — related-key chosen plaintext.

Table 3.2 Summary of Attacks on Rijndael [15]

Up to now the versions of Rijndael with a 128-bit block size have been looked at.
Rijndacl with larger block sizes is different enough that it will have to be analyzed
separately. Current techniques have discovered attacks on 7 (of 10) rounds for 128-bit

keys, 8 (of 12) rounds for 192-bit key size, and 8 (of 14) rounds for 256-bit keys. Many

38

of these attacks require virtually the entire codebook of texts and hence are not very
practical.

2224

The 9-round related-key attack has a complexity of , which is faster than the

exhaustive key search, but is still impractical [15].

3.6 Rijndael Experiment

Since one of the proposed usages of our security architecture involves encrypting images,
we wanted to test diffusion in Rijndael. Diffusion refers to rearranging or spreading out
the bits in the message so that any redundancy in the plaintext is spread out over the
ciphertext. Patterns in an image are easier to spot as compared to text. The goal of the
experiment was to see whether there is a partial similarity between the original image and
the image produced by decrypting the encrypted image with a key close to the actual key.
A good test would be to compare the images decrypted with all the keys in the key range.
However, the smallest key size is 32 bit and would generate 2°? images. Since we were
unable to view 2*? images, we generated several hundred images with decryption keys
close to the correct key. This experiment does not prove anything, but provides a visual
illustration of diffusion in Rijndael. In Figure 3.8 we show an image, originally
encrypted with the key = 25, decrypted with key values from 0 through 55. Key = 25
yields the original image and the rest of the keys around 25 yield images that bear no

similarity to the original image.

39

r

s

~
@
<

AL

~
Q
-
oo

L |

.-.,.
'?.%_;, :

~
¢}
B
—
(%41

L

~
5)
<
)
O

%’% A

)
N
LI

7

~
gheh
(s}
O\-I
-

Key: 43

Key: 50

3

<
N
-+

WII II‘.I

@

= i
w
Pk

i

Key: 3

o

x

Key: 4

Key: 53

L

fgﬁ

Figure 3.8 Rijndael Experiment Results

4 Tamper-Proof Hardware

The venerable Kirchoff’s principle states that you should expect an adversary to learn
your encryption algorithm eventually and that your real effort should go into protecting
the cryptographic keys. In our security architecture, we have key-like material stored on
the server and in physical modules, namely the client boxes, that are not under our
physical control. For this reason, one of the requirements of our security architecture is
to have the client boxes tamper proof. Detailed design of such tamper-proof boxes is
beyond the scope of this thesis. However, in this chapter we would like to present our
requirements and solution (4.1), discuss the FIPS standard that manufacturers follow
when designing tamper-proof hardware (4.2), and give an example of IBM’s secure

coprocessor (4.3).

There are several approaches (several levels of security) to physical security designs.

One can provide:

Tamper evidence, where packaging forces tampering to leave indelible physical
changes.

- Tamper resistance, where the device packaging makes tampering difficult.

- Tamper detection, where the device actually is aware of tampering.

- Tamper response, where the device actively takes countermeasures upon tampering.

For our client boxes we require the highest security level, that is, a robust tamper

detection and response mechanism.

41

4.1 Tamper-Proof Box Requirements

Here we describe the requirements for the tamper-proof box in our security architecture,
as well as the chain of our needs and solutions. Our tamper-proof box must provide
necessary physical security to protect the key-like secrets inside. Figure 4.1 shows a
diagram of the tamper-proof box we have in mind. Upon tamper detection the secrets
must be immediately erased (memory must be zeroized). In our protocol, the secrets are
divided into short-term secrets and long-term secrets. They are stored differently and
therefore have different erasing mechanisms. The protective enclosure must have tamper
detection mechanisms built into it. The response to detected intrusion is part of our
security design. Upon tamper detection, the box will execute tamper-response measures,

namely, it will destroy all the secrets inside.

Both tamper detection and secure data

deletion are the two most challenging subjects in tamper-proof hardware design.

_ | Battery-Backed Memory

(Long-term Secrets)

Connection to Server Interface
- > Controler ["}«
—_—— Clear Text Output
! - e e e] Interface | >
Lplayer <"" - ~——~-——~-——"— Controler {~ |
Cipher Text Interface
Encrypted Digital Controler [~
Content

Memory
(Short-term Secrets)

Tamper Detection
& Response

Finite State
Machine

Tamper-Proof Vault

Figure 4.1 Tamper-Proof Box

42

The short-term secrets are the session keys, the digital content decryption keys, and the
plaintext digital content. Short-term secrets are stored in the volatile memory (for
example, DRAM) and are erased after protocol termination. Session keys, digital
content-decryption keys and plaintext digital content must be protected at all cost. With
segmentation, these are also somewhat transient, as material related to earlier segments is
overwritten by keys and contents of later segments. We do use multiple content-
decryption keys per digital content using segmentation, so it is the case that content-

decryption keys are slightly self-protecting; they are overwritten as they are used.

Long-term secrets are stored in the non-volatile memory (for example, battery-backed
SRAM) for an extended period of time and are used during some protocol steps. Long-
term secrets yield physical bias — they tend to “burn” into memory. We have one
technique to overcome bias, but because of non-volatility we require physically active

erasing methods for non-volatile memory.

We respond to detected tampering by zeroing out both long-term and short-term secrets.
Volatile memory (DRAM), which stores short-term secrets, is zeroized by simply cutting
off the power. Non-volatile memory (battery-backed SRAM), which stores long-term
secrets, may retain some information because of non-volatility. To make effective
zeroization physically feasible, we employ bit-flipping for the long term secrets to reduce
bias in the physical medium. Bit-flipping is simply the regular reversal of a bit pattern to
be its complement. Assuming bit-flipping, we can effectively zeroize the non-volatile

memory as well by cutting off the power, without leaving information residue.

43

Here are some of the physical principles of bias. Volatile semiconductor memory does
not entirely lose its contents when the power is removed. If data is stored transiently,
there is no time for it to “burn in”. When the same data is stored for long periods of time,
it may “burn in”. SRAM and DRAM retain some information about the bits that were
stored there while the power was still applied. The longer the same information is stored,
the more the chip “remembers” what it was after the power-down. In SRAM, the same
data stored for extended period of time has the effect of altering the preferred power-up
state to the state which was stored when the power was removed. Older SRAM chips
could often “remember” the state for several days. If we assume that DRAM can
“remember” only if the data was stored for a significant period of time then it will be
sufficient to just power it down, but for the SRAM where we know the data will be stored

for long periods of time we have to do something more, namely bit-flipping.

Bias is thus dealt with using an active mechanism. We are not troubled by bias for the
following simple reason. In order to reduce physical traces of the long-term keys stored
in memory for extended period of time (prevent them from burning in), a bit-flipping
technique can be used to flip the bits periodically. The goal of this technique is to keep

inverting the value stored in order to prevent it from “burning in”.

44

4.2 FIPS Standard “Security Requirements for Cryptographic

Modules”

FIPS PUB 140-2 is a publication that specifies the security requirements that must be
satisfied by a cryptographic module used within a cryptographic-based security system
that provides protection for sensitive or valuable data in Federal organizations. There are
four different levels of security intended to cover a range of potential environments.
With each increasing level the security requirements are higher. As we see later, we need
a variant of Security Level 4, the highest level. Although, some of the criteria are not
relevant to us in their literal forms, we probably need an analog of each of the things in
Security Level 4. Two in particular are of special importance. These are tamper
detection / response and secure data deletion. We discuss them more in the next section.
Table 4.1 summarizes the general requirements while Table 4.2 summarizes the physical
security requirements of a cryptographic module. = Manufacturers must meet the
requirements of a particular security level in order for their device to be used by Federal
organizations. There are a number of devices available today from manufacturers such as

Cylink, IBM, National Semiconductor, Spyrus, Telequip, and others.

45

Security Security Security Security

Level 1 Level 2 Level 3 Level 4
Cryptographic | Specification of cryptographic module, cryptographic boundary,
MOdf‘le) Approved algorithms, and Approved modes of operation. Description
Specification of cryptographic module, including all hardware, software, and

firmware components. Statement of module security policy.

Cryptographic | Required and optional interfaces. | Data ports for unprotected critical
Module Ports

and Interfaces

Specification of all interfaces and

of all input and output data paths.

security parameters logically or
physically separated from other

data ports.
Roles, Services, | Logical Role-based or | Identity-based operator
and separation of identity-based | authentication.
Authentication required and operator
optional roles authentication.
and services.
Finite State Specification of finite state model. Required states and optional states.
Model State transition diagram and specification of state transitions.
Physical Production Locks or Tamper Tamper
Security grade tamper detection and detection and
equipment. evidence. response for response for
covers and covers and
doors. doors.
Environmental
failure
protection
(EFP) or
environmental
failure testing
(EFT)
Operational Single operator. | Referenced Referenced Referenced
Environment Executable Protection Protection Protection
code. Approved | Profiles Profiles plus Profiles plus
integrity evaluated at trusted path trusted path
technique. Evaluation evaluated at evaluated at
Assurance Evaluation Evaluation
Level 2 Assurance Assurance
(EAL2) with Level 3 (EAL3) | Level 4
specified plus security (EAL4).
discretionary policy
access control | modeling.

mechanisms
and auditing.

46

Cryptographic
Key

Key management mechanisms; random number and key generation,
key establishment, key distribution, key entry/output, key storage, and

Management key zeroization.
Secret and private keys Secret and private keys
established using manual methods | established using manual methods
may be entered or output in shall be entered or output
plaintext form. encrypted or with split knowledge

procedures.

Electromagnetic | 47 Code of Federal Regulations 47 Code of Federal Regulations

Interference/ _ | of Federal Communications of Federal Communications

gfg;::?;ﬁ;tl;m Commission (FCC) Part 15. Commission (FCC) Part 15.

(EMI/EMC) Subpart B, Class A (Business Subpart B, Class B (Home use).
use). Applicable FCC
requirements (for radio).

Self-Tests Power-up tests: cryptographic algorithm tests, software/firmware
integrity tests, critical functions tests. Conditional tests.

Design Configuration Configuration | High-level Formal model.

Assurance management management | language Detailed
(CM). Secure (CM) system. | implementation. | explanations
installation and | Secure (informal
generation. distribution. proofs).
Design and Functional Preconditions
policy specification. and
correspondence. postconditions.
Guidance
documents.

Mitigation of Specification of mitigation of attacks for which no testable

Other Attacks

requirements are currently available.

47

Table 4.1 Summary of Security Requirements

Security Security Security Security
Level 1 Level 2 Level 3 Level 4
General Production- Evidence of Automatic Environmental
Requirements | o,4¢ tampering zeroization when failure
E’;zg diments cor‘nponents (e.g., cover, acc.essing the protection
(with standard | enclosure, or maintenance access | (EFP) or
passivation). seal). interface. Tamper environmental
response and failure testing
zeroization (EFT) for
circuitry. Protected | temperature
vents. and voltage.
Single-Chip No additional | Opaque Hard opaque Hard opaque
Cryptographic | reqyirements. | tamper-evident | tamper-evident removal-
Modules coating on coating on chip or | resistant
chip or strong removal- coating on
enclosure. resistant and chip.
penetration
resistant enclosure.
Multiple-Chip | If applicable, | Opaque Hard opaque Tamper
Embedded production- tamper-evident | potting material detection
ﬁlry;)t:)grap hic grade encapsulating | encapsulation of envelope with
odules enclosure or material or multiple chip tamper
removable enclosure with | circuitry response and
cover. tamper-evident | embodiment or zeroization
seals or pick- applicable circuitry.
resistant locks | Multiple-Chip
for doors or Standalone Security
removable Level 3
covers, requirements.
Multiple-Chip | Production- Opaque Hard opaque Tamper
Embedded grade enclosure with | potting material detection/
g[ryé)t;)graphic enclosure. tamper-evident | encapsulation of response
ocules seals or pick- multiple chip envelope with
resistant locks | circuitry tamper
for doors or embodiment or response and
removable strong enclosure zeroization
covers. with circuitry.

removal/penetration
attempts causing
serious damage.

Table 4.2 Summary of Physical Security Requirements

48

4.3 IBM’s secure coprocessor

We now give a brief real-world example of a tamper-proof device developed by IBM in
1997. We do so to illustrate how one manufacturer designed a tamper-proof device.
Although there are many details in the design, we will mostly concentrate on tamper
detection, response and secure data deletion. Figure 4.4 shows the hardware architecture
of IBM’s high-end secure coprocessor. Two of the design philosophy points that we
would like to concentrate on are the following:

- Battery-backed RAM (BBRAM) is used as the non-volatile, secure memory

- The device is assembled on a circuit board with technology to actively sense tamper

and near instantly zeroize the BBRAM

Note that the non battery-backed DRAM corresponds to the volatile memory in which we

store short-tem secrets.

49

Physical 486
Security Processor DRAM BBRAM FLASH,
Sensing =g | and PC ROM
and Support
Response 4 4 [} 1
A \
* Hardware Locks
[})
Y L4 v y
i A | | |
Y) v Y
Routing |«—»| DES v Random Real-
Control Modular Number Time
and FIFO | Math Generator clock

A
Y

PCI Bus Interface

Physical Security Boundary

A
[

Host PCIl Bus

Figure 4.4 Hardware Architecture of IBM’s High-End Secure Coprocessor

50

Tamper detection has a layering approach. The attacker has to go through many layers in
order to penetrate the device. The basic element is a grid of conductors that is monitored
by special circuitry that can detect changes in the properties of conductors.
conductors are made of the non-metallic material that closely resembles the material in
which they are embedded, in order to make discovery, isolation and manipulation close to
impossible. The grids are arranged in several layers and the sensing circuitry can detect
accidental connection between the layers and changes in individual layer. The grids are
made of very flexible material and are wrapped around and attached to the device as if it

were being gift-wrapped. After the package is wrapped it is embedded in a potting

material. Since the potting material closely resembles the material of conductors in the
sensing grids, it is harder to find the conductors and nearly impossible for an attacker to
penetrate the potting without also affecting the conductors. At the end the entire package
is enclosed in a grounded shield in order to reduce susceptibility to electro-magnetic

interference and to reduce detectable electromagnetic emanations.

Tamper response is to erase (zeroize) secrets from the SRAM, erase operating memory
and cease operating. SRAM is made persistent with a small battery, and can easily be
erased. This battery-backed SRAM (BBRAM) is used as storage for secrets. Upon
tamper detection, the BBRAM is zeroized and the rest of the device is held in reset.
Tamper detection / response circuitry is active at all times and runs on the same battery as
the BBRAM when unit is unpowered. Since tamper can occur quickly, the SRAM must
be erased quickly without depending on the CPU being sufficiently operational for
sufficiently long to overwrite the contents of the SRAM. To achieve a quick zeroization
a simple and effective technique is employed. SRAMs power connection is switched to
ground and all data, address and control lines are forced to a high impedance state, in

order to prevent back-powering of the SRAM via those lines.

There are some issues that hinder effective zeroization. Low temperatures will allow
SRAM to retain its data even when the power connection is shorted to ground. To
counteract this, a temperature sensor in the device will respond to tamper if the
temperature goes below a present level. Ionization radiation will cause an SRAM to

retain its data, and may disrupt circuit operation. To prevent this, the device detects

51

significant amounts of ionizing radiation and triggers the tamper response. Storing the
same value in a bit in SRAM will cause the value to imprint. For this reason, a bit-

flipping software protocol inverts the bits periodically.

52

5 Security Architecture for Controlled Access to Digital Content

In the previous three chapters we described the concepts and technologies that underlie
our security architecture and briefly described some of our assumptions about
implementation constraints. In this chapter we make a comprehensive statement about
these assumptions and present our contribution — the Security Architecture for Controlled

Access to Digital Content, which we describe in detail in this chapter.

5.1 Security Architecture Overview

The goal of our security architecture is the controlled display of high-value digital
content. (Only registered players can display content, and one protocol instance is
required for each display.) The goal already contains the first assumption, which is that
distribution and display can be completely independent. The digital content is encrypted
and can be distributed out-of-band. The protocol is not concerned with how the user gets
the encrypted digital content. The encrypted content can be downloaded, picked up at a

store or ordered by mail, etc.

The digital content is encrypted with a powerful encryption technique and is solid enough
so that we can leave it around for a while. Each digital-content entity is encrypted once,
with one set of keys. We use a good algorithm, long keys, and enough segmentation (i.e.,
break the digital file into segments and encrypt each one with the separate key) to make

any straightforward cryptanalysis extremely unlikely. Good algorithms, long high-

53

entropy keys (indeed, truly random ones) and nesting (i.e., iterated encryption) are the
three basic sources of strength in any symmetric-key encryption. We will pick these
parameters to make it impossibly expensive or impossibly unlikely to crack this

encryption. (This is of course relative to the cost of losing the digital content.)

For digital content encryption, we chose Rijndael. This has replaced DES as the new
federal standard. It is secure, flexible on the block and key sizes, efficient on a variety of
execution platforms. The block and key size of Rijndael caﬁ be any multiple of 32.
Since Rijndael is a block cipher and we want to use one key on several blocks (in a
segment), we chose to use Cipher Block Chaining (CBC), which is a standard choice.
Although the plaintext digital content may have some regularity and redundancy, as we
saw in Chapter 2, there are no known attacks against Rijndael that are significantly better
that the brute-force attack. With a 256-bit key the brute-force attack is not feasible within

a reasonable amount of time.

We have chosen to have a rich set of shared long-term key material to allow a very
simple (session) key-exchange protocol. These shared long-term keys have to be
protected both physically (tamper-proof) and logically (i.e., use of the protocol doesn’t
expose any shared key to risk). Using this protocol, we distribute the digital content-
decryption keys securely so that they can only be used in a “use once” fashion, i.e., these

keys are immediately erased upon use.

54

For initial authentication, we use public-key algorithms without publishing the keys. We
have one public-key, private-key pair shared between the server and all client boxes but
neither key in the pair is published. (The server has the private key and each client box
has a copy of the public key.) All long-term key material is buried either inside one of
the tamper-proof hardware client boxes or inside the server. Other key-like material,
including a long-term symmetric key, is similarly stored. We chose RSA as our public-
key algorithm, which is a standard choice. However, other public-key algorithms may be

used, e.g., elliptic-curve cryptography.

The protocol, which may be thought of as a key-transport protocol, involves the request,
authentication and the encrypted transport of the content-decryption keys, which is then
followed by phase in which the box decrypts the content. The protocol consists of
several steps. First, the client box makes a request to display a particular digital-content
entity. Second, the server securely distributes the capability (set of crypto keys) to permit
display with two design constraints:

1. There is no argument about whether the capability was received.

2. The capability can only be used once and is self-erasing.

By assumption, the server is totally trusted. The client box is trusted if it can confirm its
identity using the long-term secrets buried inside it. However, the user of the client box
is not trusted. This user has no access to the shared secrets and no access to the
hardwired program in the client box that executes the protocol. The box runs the

program to completion (or aborts) each time the user initiates it. The program code itself

55

is not secret but it is hardwired into the box. It executes within a tamper-proof
environment and the working memory is secure from the user. Any attempt to gain
access inside the tamper-proof space will result in complete erasure of the long-term

secrets and the working memory.

As we mentioned in Chapter 1, the goal of this architecture is delivering the capability to
play digital content, (where play is to be interpreted abstractly). Some of the examples of
the digital content include a film, a game, a program, etc. Once one capability is
delivered and the content is decrypted it is displayed as “plaintext”. A player must be
able to securely play the content without allowing the user to access the “plaintext” bits
of the content. The design of such a player and incorporation of the client box into such a
player is outside the scope of this thesis. Note that digital content spans many things
including entertainment media (films), sensitive programs whose execution needs to be

controlled, etc.

5.2 Protocol Description

5.2.1 Setup

Long-term and short-term (mostly keying) material is distributed among the server and
the client boxes. Nobody other than the server and the collection of the client boxes has

access to this material.

56

Long-term material (determined at client box manufacture time and known to the server):

o C4yury — Client’s secret identification/authentication string (shared long-term
between the server and a particular client box).

e C;p — Client’s short ID used to allow lookup optimization (shared long-term
between the server and a client box).

e K" — Server’s RSA public key used to encrypt messages sent by the client boxes to
the server and known to all the client boxes but otherwise secret. (Shared long-term
between the server and all client boxes).

e K~ — Server’s RSA private key used to decrypt all the incoming messages sent by
the client boxes to the server and known only to the server. As always, the keys
include the modulus.

e Kcs — one Rijndael key shared between the server and each particular client box.

(Shared long-term between the server and a particular client box).

Short-term material (created during protocol instances):
e Wes— Session key (Rijndael) that the server sends to a client box and is used during
one protocol instance.
e n. — Session identifier (sequence number) generated by the client box. The

previous value is remembered by both the server and the client box.

Constants for a given digital content:
o file — Digital content identifier (or a file name) of the content the client wishes to

view.

57

e Nk - The number of the content-decryption keys.
e Iy — Content-decryption key index. (0 <=Ix <= Ng)
e K; — The i™ Rijndael key used for content decryption. If i = 0, it is a CBC

initialization vector. Ifi> 0, it is a Rijndael key.

Messages are self-interpreting as to their type. Here are the message types and the
padding symbol:

e REQ - identifies a request message

e SK - identifies a message containing the session key

e ACK - identifies an acknowledgment message

e CK - identifies a message containing the content key

o ABORT - identifies an abort message

e P - Padding bytes (see below)

For padding messages encrypted with RSA we use the Public-Key Cryptography
Standard #1 (PKCS) which is the standard way of formatting messages to be encrypted
with RSA (See 5.2.6 Protocol Design Philosophy). We use P to denote the padding bytes
{0x00, 0x02, PS, 0x00}, where the first byte is 0, the second byte is 2, the next eight

bytes are random nonzero bytes, here called PS, and the eleventh byte is 0.

58

5.2.2 Protocol Messages

We first display the protocol exchanges graphically and then explain in English.

(1) {P, REQ, Cip, Cyurn, o, file} K~

A

Server Client
Box

{SK A, Wcsr NK } KCS

v

(3) {P. ACK, Cpp, {n.} W.} Ks"

A

(4) {CK R, IK: Kl} WCS

Figure 5.1 Protocol Messages

1. The first message contains P — padding bytes, REQ — a bit pattern that identifies the

message as a request message, C,yry — the client box’s authentication string, Cjp —

the client box’s short ID, n. — a newly generated (by the client box) session

identifier to be used for the current protocol instance, and file — digital-content

identifier. The entire message is encrypted with K, which is the server’s RSA

public key.

2. The second message contains SK — a bit pattern that identifies the message as a

message containing the session key, n, — the current session identifier, Wcs — the

59

newly generated (by the server) session key, and Nx — the number of the digital-
content-decryption keys for the digital content identified by file. The entire
message is encrypted by Kcs — which is the Rijndael key shared between the server
and a particular client box.

. The third message contains P — padding bytes, ACK — a bit pattern that identifies
the message as a session-key acknowledgment message, Cjp — the client box’s short
ID, {n.}W,; — current session identifier encrypted with the newly established
session key. The entire message is encrypted with Ks', which is the server’s RSA
public key.

. The fourth message contains CK — a bit pattern that identifies the message as a
message containing one of the content-decryption keys, n, — the current session
identifier, Ix — the index of the content-decryption key in this message, and K; — the
i™ Rijndael content-decryption key (if i = 0, it is a CBC initialization vector). The
entire message is encrypted with the W, — the session key established for this
protocol instance. Note that there will be as many messages sent as there are
Rijndael content-decryption keys for the digital content identified by file, plus an
additional message containing the CBC initialization vector.

. The fifth message is not part of the protocol. It is used to assert that not all content-
decryption keys were received. It contains P — padding bytes, ABORT — a bit
pattern that identifies the message as an abort message, Cp — the client box’s short
ID, C4ury — the client box’s authentication string and n. — the current session
identifier. The entire message is encrypted with Ks*, which is the server’s RSA

public key.

60

5.2.3 The Protocol in Operation / A State-Transition View

Here we show graphically how the protocol works. We describe the interaction of two
finite-state machines, namely the client box and the server. During protocol execution,
the server and the relevant client box expect various types of messages while in certain
states. Upon receiving an expected message relative to the current state, each machine
performs some action and then transitions to another state. Machines ignore unexpected
messages. Note that the server may be involved protocol instances with multiple client
boxes at the same time. Thus, the server maintains multiple server states, where each
server state shows the progression of a protocol instance with respect to one of the
registered client boxes. The Figure 5.2 below depicts both the server and some particular
client box as they cycle through their states during a protocol instance. A detailed

description of the protocol states and actions follows shortly.

61

Server States

Client Box States

4 e N\

Expected Message: user
pushes the start button

Action: send request message
and go to "Waiting for Session

| message in the Client Box
| record for processing "above” |
| the protocol J

Idle Request Key" state j
Expected Message: a valid \
request message
Action: authenticate Client Box v
request, send Session Key . — -
and go to "Wait for Ack" state Session Key :/ Waiting for Session Key \
Expected Message: message
containing Session Key
Action: validate Session Key,
send Ack and go to "Waiting
— for Content Keys" state. On
f Waiting for Ack P Ack timeout go to "Idle" state.
Expected Message: Ack \ /
message
Action: send all of the ’
encrypted Content Keys and "
when done go to "ldle" state Content Keys :ﬁNaltmg for Content Keys
Some Number of Expected
Message: messages
containing Content Keys
Action: receive the Content
Keys, play the content and go
to "ldle" state. On timeout
___________ . __| send "Abort" message and go
{: Non-protocol State {o"ldle” state. /
______________ 1
| |
| Will listen to: "Abort" message |
| Action: store the "Abort" Qplbgrt_M_e_s_sfng

Figure 5.2 Protocol States

62

5.2.4 Comprehensive Description of the Protocol

This section describes the protocol steps without any justification of the choices we
made. The goal of this section is to explain to the reader how the protocol works. A
hardware or software developer should be able to implement the protocol simply by
reading through this section. In a later section, we present the design philosophy behind
the choices that we made. The description is broken into two parts. First, we show the
client program represented as a Mealy machine (finite-state machine with both inputs and
outputs). The client program is presented by considering each client state in sequence,
and showing how the client responds to messages when in that state. Second, we show
the server program, also represented as a Mealy machine. The server program may be
serving multiple clients simultaneously and may therefore be in different states for
different client boxes. The server program is presented by considering each server state

in sequence, and showing how the server responds to messages when in that state.

5.2.4.1 The Client Program

Here we describe the actions to be taken by the Client machine. In each state, the
client program is listening for a specific message. Only the expected messages will
cause the client program to react. Unexpected messages are ignored. After receiving
a message, the machine performs some validation to see if that message is expected in
this state. If any of the validation steps fail, the client box program discards the
message and continues waiting for a valid message. If no valid message arrives
within the timeout period, the client box program it returns to the “Idle” state and, in

one instance, sends an “Abort” message. In an abort, the session identifier »; is stored

63

by the client box and will be increased in future protocol instances; all other protocol
data generated or received for this instance of the protocol is erased; the client box

returns to its idle state.

Client State: Idle

The only message expected in this state is the user internal message selecting the
content to view and pressing the “Start” button. Other messages are ignored. When
the user presses the start button, the client box keys up the appropriate encrypted
digital content, prepares and sends an authentication/request message to the server
containing authentication information, content identification and a client-chosen
session identifier. To do this, the client box prepares four entities that will be
concatenated, encrypted and sent as one message to the server. Some items, notably
the authentication information, are the same between different protocol instances
while others are different. We now describe the four entities that the client box
prepares for authentication/request message:

1. A 256-bit random identifier C,yry used to authenticate the client box to the
server. This is one of the main long-term secrets stored inside the client box
and is used in all the protocol instances of a given client box.

2. A 32-bit identifier Cjp, which is a short client box name to allow easier lookups
of the client box record on the server side. This is one of the long-term secrets
stored inside the client box and is used in all the protocol instances for that

client box. (Note: this is an implementation optimization only).

64

3. A 64-bit session identifier n; used to identify this protocol instance. This
number is generated by the client box for each protocol instance. Session
identifiers are random but strictly monotonically increasing. The session
identifier is used to prevent self-replay (see Client State: Waiting for Session
Key) and to authenticate messages from the server that contain either the
encrypted Session Key or the encrypted Content Keys (see Client State: Waiting
for Session Key and Client State: Waiting for Content Keys). The client box
stores the generated session identifier for this protocol instance. It will be used
during this protocol instance and during the generation of a session identifier for
the new protocol instance.

4. A 32-bit digital content identifier file the user of the client box wishes to view.

All of these four items are concatenated, padded and then encrypted with RSA using
the server’s shared long-term key Ks'. The client box then sends the encrypted
message to the server and goes to state Waiting for Session Key. Symbolically, the

message sent is: {P, REQ, Cip, Cqurs, ns, file}Ks"

Client State: Waiting for Session Key

In this state the message client box is expecting is the following message: {SK, n,,
Wes, Nx}Kcs, which should contain the session key for this protocol instance. Here,
SK is an encoding that this is a Session Key message and the other symbols have been
defined. When the message is received, the client box uses the long-term Rijndael

key Kcs and the long-term CBC initialization vector Ics, both of which are shared

65

between the server and a particular client box to decrypt the received message. When
the message is decrypted, three entities are extracted, namely the session identifier »,,
the session key W, and the number of the content-decryption keys Nk that it should
expect. The client box then performs the following actions:

1. The client box checks the session identifier n, to guarantee that this message
belongs to the session instance it expects.

2. The client box saves the session key W, to be used for the current instance of
the protocol. Specifically, the session key is used by the server to encrypt and
by the client box to decrypt the content-decryption keys, themselves entirely
random.

3. The client box saves the number of the content-decryption keys Ny that it should
expect from the server for the requested digital content. These will arrive in

encrypted form and will be decrypted using the session key.

After successfully verifying the session identifier n., and storing the session key W,
and the number of the expected content-decryption keys Nk, the client box prepares
an acknowledgment message for the server. The client box takes the session
identifier n. and encrypts it with the newly received session key Wcs. It then takes its
short identifier Cp, the encrypted session identifier {n.} W, pads the message with
PKCS, encrypts it with the server’s RSA encryption key K5 and sends the message
to the server. The first byte of the data part is an encoding, namely ACK, that

identifies the given message as an acknowledgment message. After sending the

66

acknowledgment message the client box goes into state Expecting Content Keys.

Symbolically, the message sent is: {P, ACK, Cjp, {n.} Wes}Ks"

Client State: Waiting for Content Keys
In this state the client box is waiting for multiple messages from the server, each of
which will contain one of the 256-bit content-decryptions keys K; encrypted with W..
Symbolically, the expected message is the following: {CK, n. Ix, K;}Wcs. The
number of messages expected by the client box in this state is just the number of
content-decryption keys Nx. Here, CK is an encoding that identifies this as a Content
Key message. When a message is received, the client box decrypts it using the
session key W, established for this session between the server and the client box.
When the message is decrypted, three entities are extracted, namely the session
identifier n., the ordinal number (index) of the content-decryption key Ix and the
content-decryption key K. For every message containing a content-decryption key,
the client box performs the following actions:
1. The client box checks the session identifier n, to guarantee that this message
belongs to the session instance we expect.
2. The client box saves the index Ix of the content-decryption key, so that we know
which order to apply the keys.

3. The client box saves that particular content-decryption key K.

Once all of these messages are received, the client box is ready to play the content.

The client box will first delete the session key W, and then will play the digital

67

content. Content-decryption keys will be flushed as soon as their use is complete.
Although there is a tamper-proof implementation, this further minimizes the window

of vulnerability.

If the client box does not receive all the content-decryption keys in a timely fashion it
will send the “Abort” message to the server, which symbolically is: {ABORT, Cp,
Ciutn, ns}KS+. Here, ABORT is an encoding that identifies this as an “Abort”
message. After sending the “Abort” message the client box will erase the dynamic
protocol data and will transition to the “Idle” state. (Thus, the box may abort the

protocol with or without sending an “Abort” message).

5.2.4.2 The Server Program

Here we describe the actions that are taken by the server program. As before, the
server has states, but these are per registered client box. Thus, the server is a
collection of Mealy machines. When the server receives a message from a client box
it must first determine from which client box the message is coming in order to
determine what state it is in with respect to that client box. Therefore, some
processing is required on the server’s part before it knows how to react to the client
box message it just received. For a given client box, the server will be expecting
either a request or an acknowledgment message. The server may also receive an
optional “Abort” message from the client box it the latter did not succeed in
completing the protocol instance. Note that “Abort” messages are handled at a higher

level than the protocol itself; strictly speaking they are transparent to the protocol.

68

We have seen that the client box expects messages of various kinds from the server;
having distinct client states allows the client box to ignore unexpected messages. The
situation in the server is the same. However, since the Server may receive messages
from any number of client boxes, it needs one state per client box. Unexpected
messages from a given client box are ignored; they are treated as unexpected relative
to the stored state of a specific protocol instance (or absence of such) of a specific
client box. In other words, the server has one state per client box. The server
maintains state information for each client box including information about any
protocol instance it is engaged in. The server program listens for either a request
message for a protocol instance to be initiated or an acknowledgement message that
belongs to some protocol instance that is underway. When a valid request message
arrives, the server acts upon it by sending the session key to the client box program,
and when a valid session-key acknowledgment message arrives, the server acts upon

it by sending the content-decryption keys to the client box program.

Even after sending all content-decryption keys, the server does not know immediately
whether a protocol instance has completed successfully. Nonetheless, it behaves as if
this were the case as soon as it has sent the last content-decryption key. If the client
box times out waiting for the content-decryption keys it will send an “Abort”
message. If the server receives an “Abort” message, it makes a note of this fact.
Action based on the “Abort” message is decided by the higher administrative layers

and is not part of the protocol per se.

69

All the incoming messages are encrypted with the same RSA encryption key K,
which is not publicly known but is a long-term shared secret shared between the
server and all the client boxes. Once the server receives a message, it uses its RSA
decryption key Ks to decrypt the message. When the message is decrypted, the
server checks which client box the message is coming from, fetches the record it
maintains about this client box, and verifies whether the message is expected given

the current server state with respect to this client box.

Server State: Idle (Waiting for Request Message)

In this state the server is expecting a request message from a registered client box.
Symbolically the expected message is the following: {P, REQ, Cip, Cuurm ns
file}Ks'. As mentioned earlier, REQ is an encoding that identifies this as a request

message.

Briefly, in order to for a request message to be authenticated, the client box identifier
C,ury must match the one the server has on record and the session identifier must be
greater than the one stored in the client box record, which is maintained by the server
and contains all the information the server has about that client box. In detail, the
server performs the following actions:

1. The server uses the short identifier Cjp to fetch the record of a particular client

box.

70

If the record exists the server goes on to Cyyry. The server compares the Cyyry
it received with the one in the client box record. If they match the server goes
on to the session identifier x.

The server’s client box record, amongst other things, contains the session
identifier used during the last initiated protocol instance between the server and
that client box. The server will verify that the current session identifier is
greater than the one stored in the client box record.

Given a C4yry match, if the session identifier n; is greater than the one stored in
the record, the identity claim of the request has been authenticated and we know
that this is a new request from that client box. The server then stores the current
session identifier n; and the current digital content identifier file in the client box
record.

The server fetches the number of the decryption keys Ng for the requested
digital content.

The server generates a fresh “true random” session key W¢s that will be used to
encrypt all digital content keys it will subsequently send to the client box.

The server then concatenates the session identifier »., the newly generated
session key Wcs and the number of the decryption keys Ng. The concatenation
of these values is encrypted with the long-term Rijndael key K¢g and the long-
term CBC initialization vector /s shared between the server and this client box.

The server sends the encrypted message to the client box.

71

After sending the session key message the server goes into state Waiting for
Acknowledgment Message with respect to this particular client box. Symbolically,

the message sent is: {SK, n., Wcs, Nk} Kcs

Server State: Waiting for Acknowledgment Message
In this state the server is expecting an acknowledgment message. Symbolically the

expected message is the following: {P, ACK, Cpp, {n.} Wes}Ks".

After decrypting the message the server performs the following actions:
1. The server uses the short identifier Cjp to fetch the record of a particular client
box.
2. The server verifies whether the client box possesses the newly established
session key Wcs by decrypting the current session identifier . that the client

box encrypted with the session key Ws.

After the server has validated the acknowledgement message, it sends the content-
decryption keys encrypted with the session key established for this protocol instance.
The number of the digital content-decryption keys the client box should expect was
sent to it previously in the message containing the session key. Each message the
server sends consists of the concatenation of the session identifier n., the index Iy of
the current content-decryption key and the content-decryption key itself K. Each
message in this sequence is encrypted with new newly established session key W¢s

and symbolically is: {CK, n., Ng, K5} Wes. As an added security layer, we send the

72

keys in the reverse order, i.e., from K, to Kj, thus sending the CBC initialization
vector Ics (Kp) last. The CBC initialization vector is the first piece of key material
used when decrypting the digital content. Once the content-decryption keys have
been sent, the server regards this session as having completed successfully and goes
into state (Idle: Waiting for Request Message) with respect to this particular client

box.

Content Key Abort Message (Not state specific)

If the client box does not receive all of the content-decryption keys, it will time out
and sent an “Abort” message. Although this message is received by the server and
recorded, it is transparent to the protocol and will be handled by higher administrative
layers. Symbolically the abort message is: {4ABORT, Cip, Curu, ns}Ks'. Note that
this message will be accepted in any state, given only that the content-decryption keys

were in fact sent.

5.3 Protocol Security

Although the ways in which the adversary can interact with a protocol run are essentially
infinite, we would like to demonstrate that our protocol is not susceptible to the most
commonly encountered threats to cryptographic protocols. Each attack has already been

briefly described in Chapter 2.

73

The Eavesdropping Attack, i.e., listening in, is usually circumvented by using encryption.
All of our protocol messages are encrypted and therefore are invulnerable to the

Eavesdropping Attack.

In the Replay Attack, an adversary (here, the untrusted client box user) can record all the
message traffic from a successful protocol run that was used previously to display digital
content ‘A’. The adversary can then initiate a new instance of the protocol by requesting
to display digital content ‘A’ again, but instead of communicating with the server, the
user can simulate server responses by re-playing pre-recorded server messages from the
previous successful protocol run. In order to prevent self-replay from happening, we
require that, for every new request, the protocol running on the client box generates a
fresh session identifier and stores it for the duration of the protocol run. When the client
box receives the message with the session key, it will first check the session identifier and
then proceed with the protocol only if the session identifier is correct, thus preventing

self-replay and protecting from the Replay Attack.

The Modification Attack involves modification of a message or message fields. We have
a number of integrity message checks. In particular, all our messages contain the session
identifier, which is verified after the message is decrypted and before the message is

processed, thus confirming that the message was not tampered with.

The Reflection Attack requires that parallel runs of the same protocol are allowed. We

only allow one instance of the protocol at a time to be run from a particular box.

74

Remember that the program in the client box is hard-wired. Instances from distinct client

boxes are easily kept separate by the server, because of the unique client box identifier.

Within the scope of this thesis, there is no comprehensive solution to counter a Denial of
Service attack. If our connectivity is destroyed, this is outside the range of threats we are
prepared to deal with. On the other hand, the protocol does discard ill-formed or spurious

messages so only denial of connectivity or flooding is dangerous.

The Typing Attack (confusion as to type) exploits the fact that, although the protocol
elements are clearly distinct when written on a piece of paper, in practice the principal
receives a bit string and has to interpret it. In our case each message contains a message

type identifier, so that there can be no confusion (ambiguity) about the message type.

The ciphertext-only Cryptanalysis Attack is only possible if some underlying plaintext
redundancy exists and has been characterized. Normally, you massage the ciphertext by
various cryptographic transformations in the hopes of moving it closer to the plaintext,
which you sense by seeing if you have decreased the entropy. In our protocol, all the
plaintext — the content decryption keys and the session keys — that the server sends to the
client box is perfectly random. Digital content keys are generated prior to any protocol
instance on a machine that has a source of true randomness. Session keys are generated
entirely by the server, which has access to a source of true randomness. Therefore the
entropy of the plaintext sent by the server is maximal. Although not all plaintext set by

the client box is perfectly random or pseudorandom, our use of “hidden” RSA (that is, no

75

exposure of any keying material) limits any vulnerability. The client identifier is
perfectly random, the session identifier is pseudo-random and only the content identifier

is fixed.

The Certificate Manipulation Attack does not apply to our protocol since we do not use
public certificates to identify the clients, but use built-in ids for that purpose. Certificates
are required when one protocol participant must prove its identity to another. In our
protocol, each client box has a built-in secret ID with which it identifies itself to the
server. The client box operator has no access to the value of this ID. It is sent to the
server encrypted with the server’s public encryption key. Only the server has the private

decryption key, thus only the server is able to decrypt the message with client’s secret ID.

The Protocol Interaction Attack in general can be effective if the long-term keys

originally created to be used for a single protocol and are then used in other protocols.

Since we only have one protocol in our security architecture this attack does not apply.

76

6 Conclusion

In this thesis we formulated a new DRM problem and then attempted to solve it.
Although our primary motivation was the DRM issues in delivering high-value digital
content such as first-run movies, the security architecture may be generic enough to be
useful in other areas, as we demonstrated in the introduction by the military example. By
changing the conventional trust model we created a new set of assumptions. In the
conventional trust model, as shown in Figure 6.1, there are two users that want to
communicate with each other. Both of the users are trusted. Both of them have access to
cryptographic keys and plaintext content. In particular, each will have access to shared

cryptographic keys and will be in control (as a programmer) of the protocol steps.

Alice Bob
- trusted user - trusted user
- has access to keys - has access to keys
and programs and programs

Programmable | Programmable
Computer | Computer

Figure 6.1 Conventional Trust Model (For Communicating)

In our unconventional trust model, as shown in Figure 6.2, we have one trusted user

(namely, the server operator) and multiple untrusted users (namely, each of the client box

users).

77

Operator Client User
- trusted user - untrusted user
- has access to keys - has no access to
and programs keys and programs
Programmable Tamper-proof,
Computer i« hardwired
(Server) Client Box
B
l"'i---l
Encrypted : :
Digital t Player
Content : :

Figure 6.2 Unconventional Trust Model (For Capability Passing)

6.1 Design Philosophy

The DRM problem we wanted to solve consisted of two parts. The first one was “How
can we achieve a separation of concerns so that delivery of encrypted digital content is
orthogonal to having the capability to display it, which requires decrypting it?” The

second one was: “How do we deliver the capability to display digital content?”

This gave rise to numerous sub-problems. We had to find an encryption mechanism that
was robust and fast to decrypt. The fact that it had to be fast right away led us to choose
a symmetric algorithm. We decided to look at the available symmetric algorithms and
see which one would fit our needs. The first and most important characteristic was the

security of the algorithm. The second one was the efficiency of the algorithm. Naturally,

78

we started looking at the protocols submitted for the Advanced Encryption Standard

(AES). We chose Rijndael, which is the current AES.

One of the conditions for an AES candidate was that the block size must be 256 bits and
the key size must be 128, 192, or 256 bits. Although some of the submitted protocols
were rated as more secure than Rijndael, we still chose Rijndael because of its
extensibility. That is, Rijndael can grow the block size and key size to any bit value that
is a multiple of 32. As we showed in Chapter 3, there is no known attack on Rijndael that
is much better than the brute-force attack. We chose to use a 256-bit block and a 256-bit
key in our security architecture. As we see from Chapter 3, the closest configuration that
was analyzed during the competition to see if it could be broken was a 128-bit block with
256-bit key and a reduced number of rounds (9 as opposed to 14). The best short cut

found a marginally better attack than the brute-force attack. That is, in order to break the

2256 2224.

encrypted message, instead of 2 operations we would need
If we plot any reasonable utility function of the value of cracking the movie after time ¢,
we see that the cost of doing so vastly exceeds the utility no matter how much computer
power we choose to employ. We ran a little test on a PC with 2.8GHz CPU and 1GB of
RAM to estimate the time required to try every key in the 256-bit key space. It took on
average 70 seconds to try every key in a 2*° key space. If we multiply the 70 seconds by
235620 e get 2.45 * 10%° years. Generally, a movie is most valuable within 1 year of
its release, giving essentially a step function for the utility function. In order to try every

key in a 256-bit key space within one year, we would need 2.45 * 10°° PCs whose value

79

is obviously greater than the movie itself. A speedup by a factor of 100 or even a 1000
would make no difference, e.g., if we were to use Field-Programmable Gate Arrays
(FPGAs). The cost of obtaining and running any configuration whose time to solution is

sufficiently small is obviously greater than the value obtained.

Rijndael is also very efficient on the variety of CPUs, thus giving us the choice of using
either a merchant (“commodity”) processor or a custom Application-Specific Integrated

Circuit (ASIC) inside the client box.

Designing a way to deliver the capability to diplay digital content was a much harder
task. We had to find a way to deliver the actual capability and protect it on the client
side. We looked at the tamper-proof hardware available today and concluded that it
would be possible to design hardware that would meet our requirements. We have
discussed the IBM example to demonstrate this. As we mentioned earlier, design of such
hardware is outside of the scope of this thesis. However, we wanted to touch on some of

the design choices we made for the tamper-proof hardware box.

The main contribution of this thesis is the identification of a new DRM problem
characterized by its unconventional trust model together with a key transport protocol we
designed to transmit the capability to display high-value digitai content, in a controlled
fashion, given our assumptions about the existence of a tamper-proof box with a hard-

wired program and shared secrets that were not really shared.

80

The question we set out to answer was, is it possible to combine various forms of well-
known security components in a security architecture in such a way that it would be so
manifestly robust that content providers would entrust us with delivering their truly high-
value digital content? The design philosophy we followed was to 1) give the user a white
box, unlike Sony BMG, 2) deliver capability rather than content, and 3) use protocols for

authentication and key transport.

The Request Messages — messages sent to the server — are encrypted using the RSA
algorithm. We wanted to use one key to encrypt all messages sent to the server, so that
we would not have to send a client box identifier in plaintext along with the encrypted
message — in order for the server to know which key to use to decrypt the incoming
message. Using a symmetric key is slightly more dangerous, because if one client box is
compromised then the adversary can learn the secret ids of any client box by decrypting
recorded requests to play digital content and thus impersonate any client box. Using an
asymmetric key (RSA in our case) is safer, because discovering the encryption key does

not automatically give the adversary the decryption key.

Each message encrypted with RSA is padded, using Public-Key Cryptography Standard
#1, to improve message security. Also, since both the encryption key (exponent) and the
modulus for RSA are unavailable, the standard RSA cryptanalysis techniques do not

apply.

81

To avoid any ambiguity as to the message type, each message contains a message type
identifier. These identifiers are perfectly random bit-strings, so they do not increase the

entropy of the plaintext.

Each message contains a session identifier. The session identifier is primarily used to
prevent self-replay by the client box user. It is also used to filter the messages the client
box allegedly receives from the server. If a client box receives a message that is not from
the server, it can easily reject this message by passing it through the decryption
mechanism and failing to verify the session identifier. The unique session identifier is
also used by the server for accounting purposes, to keep track of the protocol runs

initiated by a particular client box.

The client box is securely identified by its long random identification string. For
efficiency reasons, we also use a short identification string. By providing the client box
short identification string, we allow the server to do faster lookups of the client box

record.

The Session Key Message — the message the server sends to a client box containing the
session key for a particular protocol instance — is encrypted using a symmetric key shared
between the server and a particular client box. Most of the plaintext content of the
message is random and therefore has near maximal entropy, thus making ciphertext-only

Cryptanalysis Attacks difficult if not impossible.

82

One of the items the session key message contains is the session identifier. It is used by
the hardwired client box programs to guard against self-replay. Without it, the client box
user could record all the traffic from the server during a valid protocol execution and then
play the content multiple times without the server being involved. The client box user
can request to play the same content and then intercept all the outgoing client box
messages to the server, and thus hiding all activity from the server, and then feed the box
the pre-recorded server responses from a successfully completed protocol instance. With
the session id freshly generated and stored inside the client box for the duration of a
particular protocol instance this is impossible. The hardwired client program checks
whether the message containing the session key belong to the current protocol instance
and ignores the message if it is not, i.e., when the session identifier does not match the

one saved by the client box.

By sending the Acknowledgment Message the client box confirms that it possesses the
correct session key for this protocol instance. It does so by encrypting the current session
identifier using the newly established session key and sending to the server inside the
acknowledgement message. When the server decrypts the session identifier using the
session key and verifies that the session identifier is current, it knows that it could have
only be encrypted with the session key by the client box. Session key confirmation is

done without the actual key being sent by the client box.

The Content Key Messages are encrypted with the newly established session key. Each

digital content entity is typically encrypted with several Rijndael keys — one distinct key

83

per segment. Content key messages also contain a content key index, since these
messages may arrive out of order. Only after all of the content decryption keys arrive is

the client box able to use any of them.

The Abort Message will be sent any time a client box times out before receiving all the
content decryption keys. Still, this message is “optional” in the sense that it does not lead
to any server protocol options (other than reporting to an administrator). If the client box
does not receive all of the content keys, say, due to network problems, it can timeout and
send an abort message to the server. If the server receives an abort message, it is left to
up to the administrator to deal with the fact that the protocol instance has failed.

Normally, an abort message is evidence that the protocol did not complete successfully.

6.2 Related Work

We did not find someone working on precisely the same problem. Much DRM work is
kept secret by a foolish belief in security by obscurity. However, there is a wide range of
DRM problems that people are actively working on. Some of these DRM problems are
more general than ours, e.g., “Can I play the digital content on my PC and on my iPod in
the car?” Most of the problems are members of the copy-protection family rather than
members of the capability-to-display family. Most often, solutions to these problems are
described at a very high level. Not many details are available about the protocols that are
used, which makes it impossible to do a one-to-one technical comparison with our
solution. We will list some DRM problems and (sketches of) solutions of some other

people.

84

Sun Microsystems has initiated an open-source community project to develop a royalty-
free digital rights management standard. It is planning to share the entirety of its internal
Sun Labs Project DReaM (DRM/everywhere available) with the community. Sun
believes that a federated DRM solution must be built by the community for the
community. We mention this only to show that others are working on somewhat related

problems, not because we think the Sun initiative will amount to anything.

Project DReaM includes an interoperable DRM architecture called DRM-OPERA as well
as some technology components for digital video management and distribution. OPERA
achieves interoperability among DRM systems essentially by reducing DRM licenses to
the lowest common denominator of authenticating users only and providing “play once”
as an atomic licensing term that all DRM systems can understand and support. OPERA’s
approach does not work well with rights that differ from “play”, such as rights to copy,
move, and even render content in other ways, like “print”. If a single DRM system is to
control more complex rights expressions, like “play n times” or “play for a week”, then it
will not be able to support rights to export content to other systems under terms other

than the simple “play once” [16].

Microsoft's DRM solution for Windows Media - Windows Media Rights Manager — lets
content providers deliver digital content, such as music, videos, etc., over the Internet in a
protected, encrypted file format. Encrypted digital content entities are packaged with

extra information about the media file in a packaged file. The extra information includes

85

among other things the URL where the license can be obtained. The encrypted license
contains the content key and is distributed separately. The protected packaged files can
be obtained in a number of ways, including Internet download, CD distribution, e-mail,
etc. In order to play a packaged digital media file, the consumer must first acquire a
license. The license contains the content key that unlocks the media file as well as the
rights (or rules) that govern the use of the digital media file. Possible rights include the
number of times the file can be played, which devices the file can be played on, when the
user can start playing the file and when this right expires, whether the file can be burned

onto a CD, etc. [17].

If we compare our architecture to the Windows Media Rights Manager, we see that
Microsoft's way of content distribution in a protected form is somewhat similar to ours.
We both have the digital content distributed in an encrypted form from a variety of
sources, including Internet download, CD distribution, e-mail, etc. In Microsoft's scheme
the user requests a license on-line. The license the user receives contains the key to
decrypt the digital content. A programmable computer unpacks the license, retrieves the
key, decrypts and plays the digital content. Microsoft has to use an elaborate scheme to
obscure what is happening behind the scenes in order to protect plaintext digital content
and the digital content keys. There are a number of exploits already available that
successfully attack and defeat this DRM scheme. There are also exploits that simply
capture the plaintext digital content on its way to the sound card, in the case where the
digital content is music. In our architecture, the user is not using a programmable

computer but instead a tamper-proof client box very much like set-top box. The user has

86

no access to plaintext digital content or digital content keys. Because of the use of the
tamper-proof box, we do not need to employ security by obscurity, which seems to be the
only solution in the case of the programmable computers, to hide the secrets from the
user. We know that any attempt to defeat the tamper-proof box will result in total erasure
out of all the short-term and long-term secrets. Also, since we assume total security on
the client box side, we can have a simple protocol with, it appears, no possibility of

successful protocol attack.

The fundamental difference between us and Microsoft is that they make security depend
on the alleged difficulty of reverse engineering (the major false assumption underlying

conventional DRM) and we do not.

A European project TIRAMISU (The Innovative Rights and Access Management Inter-
platform Solution) is geared towards digital video in home entertainment networks. It is
essentially a SmartCard-based design intended to create a smooth transition for legacy
conditional access (CA) players. TIRAMSU calls for authentication of devices and
domains but not users. The TIRAMISU project enables scenarios, in which users are
able to get media content (in protected form) from various sources. In order to access the
content the user must have a license issued by the rights owner for each content instance.

These licenses are stored on the SmartCards and are portable between devices [18].

In TIRAMISU’s solution, as well as in ours, the protected digital content is delivered in

an encrypted form. In TIRAMISU’s case the capability is distributed on a SmartCard

87

that the user has to physically obtain. In our case the capability is securely delivered on-
line. In TIRAMISU’s solution content decryption is done in a set-top box that is not
tamper-proof. Extracting the plaintext digital content from an unprotected set-top box is
difficult but not impossible. The difficulty of extracting it from a set-top box is probably
enough to discourage a user from extracting content that can easily be purchased on a
DVD for $20. However, it is not enough discourage a user from extracting a first-run
movie worth millions of dollars. For this we need a tamper-proof hardware box capable

of instantaneously and securely deleting all the secrets upon detecting tampering.

We close this section with an incidental remark. One of the problems that our security
architecture solves is the issue of movie piracy or more precisely, protecting digital bit
streams from being pirated up to the moment of display. Of course, there are
complimentary aspects of protection here. According to New York Times, Hollywood
movie studious are frustrated with what they view as laziness or reluctance on the part of
consumer electronics and information technologies industries to invest in anti-piracy
technology. Six movie studios have partnered on a research laboratory (MovieLabs) to
develop new techniques to thwart film pirates. Some of the initial investigations will
include methods of disrupting the recording of movies inside cinemas by camcorders,
preventing home and personal digital networks from being hacked while allowing
consumers to send content to multiple TVs without being overcharged, detecting
unauthorized content sharing on peer-to-peer networks, spotting and impeding illegal file

transfers on campus and business networks, connecting senders and receivers of films

88

relayed over the Internet to geographic and political territories, watchdogging the

distribution of movies, and curbing license agreement violations [19].

6.3 Future Work

There are several open questions. Perhaps the basic question is: "How can this security
architecture be extended to other DRM problems?" Our current architecture only
supports the "play once" right. It is trivial to see how to extend it to very similar but
more complex rights such as "play n times" or "play for a week". The real question
therefore is how to add flexibility so that the DRM system controls the acquisition of a
particular capability out of a much wider set of capabilities. This of course requires the
construction of a more general "player". Essentially, the display system needs to become

more like a general purpose information appliance.

The future research program with the most promise and interest is to move into the more
general area of Information Rights Management (IRM), where users are permitted some
subset of “access” rights among all the access rights that might be granted for a particular
information object, to accomplish similar things to what an operating system
accomplishes when it uses an access control list in a file system. For example, if the
digital content were an e-mail, the full set of rights might include displaying, forwarding,
printing, saving, etc., and the IRM protocol would allow the user to acquire a proper

subset of those rights.

89

Another, unrelated open problem concerns not so much extending our single-capability
DRM system into a multi-capability IRM system (as discussed above), but rather finding
a good solution to the "last-mile" problem in the original DRM problem. Essentially, at
some point the plaintext has to go from the box to the display unit. Thus, it would leave
the tamper-proof vault. We need to prevent theft of the digital content while it is being
transmitted from the box to the display unit. Possible solutions include quantum-
cryptographic techniques to detect signal capture (and shut the system down) during such
transmission or possibly incorporating both box and display unit into a single tamper-

proof vault.

In this thesis we have attempted to find a solution to a special-purpose DRM problem that
is perhaps worthy enough to deserve a solution optimized precisely for this one problem.
The problem is, deliver the capability for one-time display of a very high-value digital
content. The content in this case may be a digital media file or a special program. We
think it may potentially have other DRM as well as military applications. Since much of
what the military does is classified, we cannot provide any real military scenarios where
our solution can be applied, nor can we compare our solution to any of the solutions
available for the military. Therefore, we have mostly treated our solution as a pure DRM

solution.

In all honesty, considering the interest in multilevel security in most classified shops, the

real military value probably lies in an expanded, opened-up version of the architecture, in

90

which capabilities for some subset of a multitude of "access operations” would be

securely distributed to different users (with different clearances) of information objects.

In short, we suspect that the important next-generation civilian and military IRM

problems are one and the same.

In conclusion, we strongly recommend the vital and underexplored problem of
Information Rights Management (IRM), where IRM is rights management of (sensitive)
distributed shared information. This involves a shift of focus from piracy to privacy
(civil liberties). It is required for future databases containing such things as health or
counterterrorism information (indeed, to civilize many future federal data activities).
Here are two sample IRM problems and an IRM recommendation: 1) who can access and
use sensitive information?, 2) can sensitive information be printed, forwarded, or copied
by unauthorized people?, and 3) IRM policies & guidelines and IRM technologies should

be developed in tandem — after all, they are both in their infancy.

91

References

(1]
[2]
[3]

(4]

[6]

[7]

(8]
[9]

[10]

[11]

[12]

Joan Daemen and Vincent Rijmen, The Design of Rijndael, Springer, 2002
Bruce Schneier, Applied Cryptography, John Wiley & Sons, Inc, 1996

Colin Boyd & Anish Mathuria, Protocols for Authentication and Key
Establishment, Springer, 2003

Michael Luby, Pseudorandomness and Cryptographic Applications, Princeton
Computer Science Notes, 1996

Aviel D. Rubin, White-Hat Security Arsenal, Addison-Wesley, 2001

Alfred J. Menezes, Paul V. van Oorschot and Scott A. Vanstone, Handbook of
Applied Cryptography, CRC Press, 1997

William F. Friedman, The Classic Elements of Cryptanalysis, Aegean Park Press,
1976

Douglas R. Stinson, Cryptography. Theory and Practice, CRC Press, 1995
Douglas R. Stinson, Cryptography: Theory and Practice, Second Edition,
Chapman & Hall/CRC Press, 2002

NIST, Report on the Development of the Advanced Encryption Standard (AES),
October 2, 2000

Peter Gutmann, Secure Deletion of Data from Magnetic and Solid-State Memory,
Sixth USENIX Security Proceedings, July 22-25, 1996

Sean W. Smith, Steve Weingart, Building a high-performance, programmable

secure coprocessor, Computer Networks 31 (1999) 831-860

92

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Bennet Yee (Microsoft Corporation), J.D. Tygar (Carnegie Mellon University),
Secure Coprocessors in Electronic Commerce Applications,
(http://www.cs.berkeley.edu/~tygar/papers/Secure_coprocessors_in_e-comm.pdf)
FIPS PUB 140-2, Security Requirements for Cryptographic Modules, May 25,
2001

Niels Ferguson, John Kelsey, Bruce Schneier (Counterpane Internet Security,
Inc., CA, USA), Stefan Lucks (University of Mannheim, Mannheim, Germany),
Mike Stay (AccessData Corp, UT, USA), David Wagner (University of California
Berkeley, CA, USA), and Doug Whiting (Hi/fn, Inc, CA, USA), Improved
Cryptanalysis of Rijndael, (http://www.schneier.com/paper-rijndael.html)

Bill Rosenblatt, Sun's Open-Source DReaM, September 1, 2005
(http://www.drmwatch.com/standards/article.php/3531651)

Microsoft Corporation, Windows Media DRM 10,
(http://www.microsoft.com/windows/windowsmedia/drm/default.aspx)
TIRAMISU - The Innovative Rights and Access Management Inter-platform
Solution, (http://www.tiramisu-project.org)

Ed Dawson, Andrew Clark and Mark Looi, Key management in a non-trusted
distributed environment, Elsevier Science B.V., March 1999

Martin Abadi, Roger Needham, Prudent Engineering Practice for Cryptographic
Protocols, Digital Equipment Corporation, November 1, 1995

Sreekanth Malladi, Jim Alves-Foss, Robert B. Heckendorn, On Preventing Replay
Attacks on Security Protocols, Center for Secure and Dependable Systems,

Department of Computer Science, University of Idaho, Moscow, ID 83844 USA

93

[22]

[23]

[24]

Tuomas Aura, Strategies against Replay Attacks, Digital Systems Laboratory,
Helsinki University of Technology, Finland, 1997

Lawrence C. Paulson, Proving Security Protocols Correct, Computer Laboratory,
University of Cambridge, England

The New York Times (David M. Halbfinger), Hollywood Unites in the Battle to
Wipe Out Movie Pirates, September 19, 2005,

(http://www.nytimes.com/2005/09/19/business/19film.html)

94

