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ABSTRACT

A Mathematical Contribution to Dance Notation:

Analysing Labanotation with Euclidean Geometry,
Computing Matrices for Dance Notation,
and Choreographing with Crystallographic Groups

Claudia Farnesi

Dances consist of bodies moving through space and time, a concept established by the
great choreographer Merce Cunningham. Dance notation is the recording of these
movements on paper. This multidisciplinary research aims at bridging the gap between the
sciences and the arts. We mathematically investigate an existing system of dance notation,
and use mathematical tools to generate new ones.

The arts of dance and dance notation contain numerous mathematical concepts, mostly
relating to Euclidean geometry. The first objective of this research is to identify these
mathematical structures present in Labanotation. The second is to characterize dances
using algebra. In one section, positions of partners in contradancing are defined by matrices
and calculated through matrix muitiplication using Homogeneous Coordinates. In another
section, body movements are encoded into 4 x 6 matrices; the rows represent the
four-dimensional coordinate space, and the columns the different body parts. After raising
into 5 x 7 matrices using the concept of homogeneous coordinates, summing a sequence of
matrices provides a choreography matrix representing the final position of a dancer as
dictated by the sequence. The third objective is to choreograph using crystallographic
groups (or wallpaper groups). Geometric shapes are designed to represent the basic steps
of certain ballroom dances, and each group is applied to each symbol using Artlandia’s
SymmetryWorks in Adobe lllustrator. A brief discussion explains why only five groups are
relevant, and the ensuing results illustrate that these groups applied to the dance symbols

generate mostly feasible choreographic routines.
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as daring as the most secret dreams of imagination,
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CHAPTER 1

Introduction

It is widely known and often stated that mathematics is required in almost any field of
study. Although it is not so apparent at first, the arts is one domain that involves powerful
mathematical concepts. In this thesis, we further investigate the connections between
mathematics and the art of dance.

There currently exists very little research connecting dance to mathematics. What could
be found relates Group Theory to contradancing and squaredancing formations, and is
briefly discussed. However, the focus of this thesis is on notation, specifically of body
movements, although a small chapter relates to group formations. On the whole, it consists
mostly of an innovative contribution to the dance community using mathematics as dance

notation.

1.1 | 'Mathematics in Art

Specialists in the dance community have, at various times, suggested a connection
between science and dance. For example, the great choreographer Merce Cunningham
states, “The dance is an art in space and time. The object of the dancer is to obliterate that”
[17, p. 37]. He explains that a good dancer should, among other things, disregard the
apparent fact that weight and gravity ekiét. Although other interesting points have been
raised, most of these connections have been at a philosophical level. But to a certain
extent, philosophy and mathematics are intimately linked. Plato argued that mathematics
consists of abstract objects that exist separately from the time and space in which we live,
and thus move [22]. Since dance is simply a creative combination of everyday body
movements, generally performed to some form of musical composition that strings together
a given time sequence, dance notation is thus nothing more than movement notation. Itis

therefore possible to strip a choreography of all its creative elements and be left with the



movements in their purest form, which can then be examined at a mathematical level.
However, no mathematician ever undertook the task of concretely examining the
mathematical aspects evident in dance and movement notation.

The goal of this thesis is precisely to undertake such a challenge. As a motivating
example, consider the recording of movement on paper, popularly called dance notation. By
definition, “Dance notation is the translation of four-dimensional movements (time being the
fourth dimension) into signs written on two-dimensional paper” [14, p. xiv]. From the start,
this definition involves mathematical ideas, including affine transformations, vectors and
coordinate spaces. By delving further, as this thesis intends to do, one will notice that the art
and notation of dance are strongly connected to mathematics.

The purpose of the research is to bring a scientiﬁc» approach to an art discipline, where a
connection to mathematics has been suggested by members of the dance community, yet
never fully investigated from a mathematician’s perspective. When enlightened by this fact, |
we hope that artists can leamn to be less afraid of the mathematics they perhaps once
feared, and more aware of the concepts they use every day. For their part, mathematicians
can better éppreciate both the natural and man-made art and view it in new light.
Furthermore, establishing such an intimate link between mathematics and dance will
hopefully attract more women into a predominantly male area of study. Ultimately, this

thesis will document the importance of mathematics as a multidisciplinary skill.

1.2 The Art of Notation

Our research concentrates on the role of notation in the art of dance. An existing
method is discussed and analysed, and then new methods using only mathematics are
presented. For the moment, we compare the influence of good notation in the advance of
modern dance with the impact of appropriate notation on the advance of mathematics.

In mathematics, there exist various number systems, each created independently by



different civilizations, for different and also similar reasons. As a starting example, consider
the ordinal numbers. Today’s society generally works in base 10. This is the method taught
in schools from a young age, and we continue to view the number system as such
throughout our life. However, counting in base 5,20 or 60 is also feasible. In fact, the
vigesimal system was used by Mayans and Aztécs and its influence is present in the choice
of names for numbers in French, such as “quatre-vingts” (four-twenty) for 80. For its part,
the sexagesimai system was employed by the Babylonians, as well as Greek and Arab
astronomers; but most importantly, it is still beneficial to us today when telling time or
calculating angles [4]. This illustrates how although working in base 60 has proven itself
more difficult for simple, everyday tasks, the reason astronomers chose this method of
counting was its ultimate importance for their discipline.

As another example, we use the Arabic numerals
0,1,2,3,...,10,11,...,100,101,...

and the decimal notation to represent numbers. Our ability to calculate with ease strongly
depends on this notation, such that the addition
45

+ 17
62

is easily carried out. On the other hand, calculating the sum of 45 and 17 in Roman
numerals,
XLV

+ XVH
LXII

involves notational gymnastics and is not built on structural principles. Similarly, the

Egyptians also had their own numeral system, where summing 45 and 17 would look like



Innnn

+ o
Innnnnn

One reason for the failure of the Romans to make significant contributions to

mathematics is that their numerical notation did not provide a framework for defining
computational procedures. The Egyptians, however, went a bit further than the Romans
when creating their symbols, and also created one for fractions. In fact, their method of
writing fractions as - is still employed worldwide today [4], even if the rest of their system
has been discarded.

Lastly, consider the evolution of binary numbers, first presented by the Indian

mathematician Pangola circa 3 BC. The modern system was fully described by Gottfried
Wilhelm Leibniz in 1676, George Boole presented what is how known as Boolean Algebra in
1854 [26], and conversion hetween binary and decimal numbers became possible thanks to
Georg Brander [4]. Nevertheless, this system remained rather unpopular until the twentieth
century, following advancements in technology. The use of binary numbers in digital circuit
designs and relay-based computer systems were presented by Claude Shannon and
George Stibitz, respectively, in 1937 [26]. These inventions led to a cycle of research and
development in the field of computer science and engineering which is still ongoing today,
illustrating how some discoveries can be beneficial in other disciplines as well. Relating
back to developments in mathematics, Euler's use of binary numbers in simplifying
calculations led him to a counter-example for one of Fermat's conjectures. We now know
that not every number of the form F,, = 2* + 1, with k£ = 2~, is prime, since for n = 5, we have
F, = 232 1 1 which is divisible by 1 + 27 +2° [4].

The different developments presented for mathematical notation paraliel those involved
in dance notation. As early as the mid-15th century, dance performers and teachers took

interest in recording their choreography on paper. These included not only classical dances



(ballets), but also court dances and English Country-Dances (contredanses) [15]. As a
result, various dance notation systems eventually emerged, each providing something of
direct use and interest to the inventor. While some of the earlier systems used words or
word abbreviations, and others used track drawings, newer systems were visual (or stick
figure), music note or abstract symbol systems [14]. Innovators of the three former models
are Margaret Morris [3], Raoul Auger Feuillet and Arthur Saint-Léon, respectively [9].
The two systems most widely used today are the Benesh stick figure system and the

| ‘Laban abstract symbol system. The Benesh system uses a matrix to represent the body.
This is actually a part of a horizontal music staff, and the position of the body is represented
by stick figures [14]. Laban’s system, on the other hand, is more mathematically appealing
due to the choice of the abstract symbols. This system can be used to represent any
movement performed by the body, which leads to the idea of the fundamental aspect of
mathematics in performing everyday actions.

It is important to emphasize the reason behind the reduced use of most dance notation

systems. Notation systems are created because their inventors want to keep a record of
their choreographies for future dancers to reproduce; therefore, the systems are designed in
such a way that benefits their inventors directly. However, only a few of them — those that
are beneficial to everyone in the field — become universally accepted and remain as such for
years to come. Most methods are either too difficult to write or understand; therefore, the
need for their creation is not being properly met. -They are slowly discarded until a few
remain, mirroring the survival of some mathematical notations over others, as discussed
above.

The Laban system itself appears overwhelmingly complex and the lack of a shorthand
renders it slower to write; however, it is very visual and thus more legible, and the high
amount of detail each symbol contains is what advantages this system over others.

Furthermore, the modern version of Laban’s system of dance notation has been developed

EN



and refined from an analysis of movement conducted worldwide, as opposed to being the
product of only one person’s needs, adding to its universal appeal [15].

Another possible reason for the success of Labanotation is its indirect use of
mathematics, which can be considered as a universal language. An interesting point to
" raise is that the set up of Labanotation, fully explained in Chapter 3, is analogous td the -
computational set up of the Abacus, where individual columns hold unique information. |
While the Abacus was useful at the time it was designed, advancements in technology led to
the creation of newer tools, such as the pocket calculator, which eliminated the need for the
Abacus. On the other hand, Labanotation remains to this day a powerful method of dance
notation, proving that the column set up is advantageous given the proper discipline.
Nevertheless, we might ask ourselves whether Labanotation survives because no one has
attempted to invent a newer, better method of dance notation, or because anyone who tried
has failed.

Currently, Laban’s system of dance notation is extremely beneficial in its own field.
However, the case may have been different if the mathematical ideas had not existed prior
to the system’s creation. The premise upon which this thesis is built is that appropriate
notation was a major factor in advancing science to its modern state. The research shows
that the principles of good notation learned from its role in mathematics have had a major
influence in the advance of other disciplines. We illustrate this claim by examining the role

of notation in choreography and dance.

1.3 Scope of the Thesis

This thesis is divided into seven chapters, and organized in an evolutionary sequence.
Each chapter further develops ideas and concepts discussed in previous chapters.
- Following this introduction is chapter 2, which introduces the mathematics discussed in all

subsequent chapters. Chapter 3 focuses on Labanotation and the Euclidean geometry



embedded within it.
in chapter 4, we discuss the art of contradancing and establish a possible system of
notation using matrices and the concept of homogeneous coordinates. Chapter 5 examines
body movements and their notation by considering a four-dimensional coordinate space,
where time represents the fourth dimension. We then present an evolved inethod of dance
notation using matrices. |
In chapter 6, we choreograph using groups. Specifically, we create symbols to
represent basic steps of a few ballroom dances, and briefly discuss their relation to dihedral
groups. Afterwards, we apply the crystallographic groups (also known as walipaper
patterns) to these symbols, in the hopes of generafing feasible dance displacements. The \
‘resulting floor patterns are presented and analysed in this chapter. The entirety of this

thesis is finally concluded in chapter 7.



CHAPTER 2
Mathematical Preliminaries

This chapter presents all the necessary mathematical tools relevant to discussions in

subsequent chapters. Although most of the following content can be found in any
higher-level undergraduate texts on Linear Algebra, Abstract Algebra, Group Theory and

Plane Symmetries, we cite from [6], [11], [23] and [25].

2.1  Dihedral Groups and Permutation Groups

Definition Consider any regular polygon with n sides, n > 3. Then the corresponding
group, called the dihedral group of order 2n, is denoted D,. This group is

also often called the group of symmetries of a regular n —gon.

Definition A permutation of a set A is a function from A to A that is both one-to-one

and onto.

Definition A permutation group of a set A is a set of permutations of A that forms a

group under function composition.

Example Recall the dihedral group D,. Associate each motion in D4 with the
permutation of the locations of each of the four comers of a square. These

eight permutations, called symmetries of a square, are:

R, = Rotation of 0°
Ry = Rotation of 90° counterclockwise
Ry = Rotation of 180°
Ryo = Rotation of 270°
= Reflection about a horizontal axis
V = Reflection about a vertical axis
D = Reflection about the main diagonal

>
I

Reflection about the other diagonal

We find that only two elements are required in order to generate the entire



group. These elements are the 90° rotation R, called p, and the reflection H

across a horizontal axis, called ¢, where:

1234 |
- — (1234
Pl 23 41 (1234)
and
1234 |
- — (12)(34
¢ )1 43 (12)(34)

for the square labeled as such:

2.2  Symmetry Groups and Affine Transformations

Definition The symmetry group of a plane figure F is the set of all symmetries of F.

Definition A cyclic rotation group of order n, denoted < R >, is a symmetry group

consisting of the rotational symmetries of 0°, 36 26 188" and no other
n n n

symmetries.

Definition An isometry of n —dimensional space R” is a function from R” onto R” that
preserves distance. |

Hence, for any function T from R” onto R”, if the distance from T(p) to 7(g) is the same
as the distance from p to ¢ V pairs of points p,q € R”, then the function T is called an
isometry. All isometries in R? can be classified into one of four types:
1. Rotation
2. Translation
3. Reflection

4. Glide-reflection



Definition A translation is a function that carries all points the same distance in

the same direction.

Definition A reflection across a line L is the transformation that leaves every
point of L fixed and takes every point Q not on L to the point Q' such

that L is the perpendicular bisector of the line segment joining Q and

1

0.
Definition The line L is called the axis of reflection.

Definition A glide-reflection is the product of a translation and a reflection

across the line containing the translation vector.

Example Figure 2.1 illustrates an example of a glide-reflection:

Figure 2.1 Successive footprints in wet sand

2.3  Frieze Groups and Crystallographic Groups

There exist two types of infinite symmetry groups that arise from periodic designs in a
plane. They are:
1. the discrete frieze groups, the symmetry groups of patterns in R? whose
subgroup of translations is isomorphic to Z, and

2. the plane crystallographic groups, the discrete symmetry groups of patterns in

10



R? whose subgroups of translations are isomorphicto Z @ Z.
There exist seven Frieze patterns, listed below along with their groups of symmetries.

These patterns leave designs invariant under all multiples of just one translation.

Table 2.1 The Seven Frieze Patterns

Pattern ‘ Generated by: Isomorphic to:
X e X X
R R R R x = translation z
X @ &t
R R R
[ K . )
P x x = glide-reflection Z
rpoat ¥y e wox — i
R R AR x = translation D..

y = vertical reflection

X e X
R ___R__R
] d q x = translation D
' Wy y = rotation of 180° ’
“;If{ XX
K AR x = glide-reflection D,
¥ y = rotation of 180°
L 14 X
R R R ¢ lati
' = translation
’. N K " . Zo02Z,
vy 5 o y = horizontal reflection
vl ze @y x = translation
AR AR AR = horizontal reflection D.®Z
WE WK dB 4 ?

z = vertical reflection

The type of infinite symmetry group relevant to this thesis, however, are the
crystallographic groups, also known as the wallpaper groups. These patterns arise from
infinitely repeating designs in a plane, and they are invariant under linear combinations of

two linearly independent translations [11]. There exist a total of seventeen 2 —dimensional

11



wallpaper patterns, named and classified according to the geometrical transformations used
to generate them. Five contain only translations and rotations. The remaining twelve
patterns contain opposite isometries. Their names include an m for mirror refiections and a

g for glide reflections, as listed below [6]:

Table 2.2 The Seventeen Crystallographic Patterns

Pattern | Generated by:
pl 2 translations
P2 2 translations, 180° rotation
3 120° rotations about 2 different points
pa 180° and 90° rotations
pé 180° and 120- rotations
gl glide reflection

pm 2 reflections in paraliel, 1 translation
rg 3 parallel glide reflections
pmm | reflections in 4 sides of a rectangle
pgg | 2 perpendicular glide reflections
pmg | reflection and glide in perpendicular axes, translation not parallel to glide
cm reflection and glide in parallél
cmm | 2 perpendicular reflections, 180° rotation
pdg | reflection, 90" rotation
pém | 3 reflections in sides of 30 — 60 — 90 triangle
p31m | 3 reflections in sides of equilateral triangle

p3ml | reflection, 120° rotation

2.4  Matrices and Homogeneous Coordinates
Matrix multiplication is a necessary tool in creating affine transformations of

two-dimensional images. The idea is to embed these images in R® in order to use matrix

multiplication in R, before converting the images back into R2,

Definition The corresponding coordinates (x,y,1) € R? of (x,y) € R?* are called

homogeneous coordinates.

Suppose we want to translate a point (x,y) to (x + A,y + k). We would apply the 3 x 3

12



matrix

to the homogeneous coordinates (x,y,1). The resulting position (x + A,y + k, 1) would aiso be
in homogeneous coordinates, but it is easily observed that the new position can be obtained
by removing the 1 and converting back to R?.

Now suppose that, after translation, we want to reflect the point (x + 4,y + k) about the

x —axis. We would apply the augmented matrix

1 00
B=| 0-10
0 01

to the homogeneous coordinates (x + 4,y + k,1). After conversion, we would have the new

position vector (x + h,—(y + k)) € R%.
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CHAPTER 3
Labanotation and Affine Geometfy

In this chapter, we present Rudolf von Laban’s system of dance notation, also called
Labanotation. After defining the majority of the symbols used to record movements with this
system, we discuss the elements of Euclidean geometry embedded within it. We also
explain Laban’s associated system for recording the displacement of dancers on a stage,

and analyse the possible Affine transformations present in these floor plans.

3.1 The Laban System

As with math and dance notations, the Laban system has undergone many changes.
During the Second World War, isolation between countries created differences between the
European Kinetography established at the Kinetographisches Institute in Essen and the
American Labanotation developed at the Dance Notation Bureau in New York, USA. After
the war, the International Council of Kinetography Laban tried to unify the systems to
eliminate most of the differences, which it succeeded in doing [18]. Nonetheless, some
minor variations exist, and this paper focuses on the American Labanotation.

Rudolf von Laban (1879 — 1958) was, among other things, a ballet master and movement
theorist [1]. He first presented his notation in Schrifttanz (Written Dance), published in
Vienna in 1928. The English and French editions of the book appeared two years later.
From the start, Laban credited the inventors of systems from which he had been inspired,
notably Raoul Feuillet’s track drawing system itself inspired from Pierre Beauchamp and
possibly even André Lorin. The Beauchamp-Feuillet system first published in 1700 in
Chorégraphie ou l'art de décrire la danse [15] included numerous principles from which
Laban built his notation. The two principles of most interest are the central line which
divides the movements of the right and left sides of the body, and the use of specific

directional signs to indicate to the dancer how to move. The other two principles are the
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partitions by bar-strokes along the central line to indicate a metrical time division, and the

use of special stress signs to indicate basic body actions [18].

GS | SG

Figure 3.1 The cross staff

The key difference between the systems is that Beauchamp and Feuillet wrote their
notation along a floor pattern line, and restricted the notation to steps and leg gestures.
Instead, the Laban notation is recorded along a vertical staff, and it includes the upper body
movements as well [18]. Before deciding on the vertical staff, however, Laban designed a
cross staff, written and read in a horizontal progression (Figure 3.1). The letters A, B, G and
S indicate where the arm and body movements and leg and support gestures were written,
respectively. The right side represents the right side of the body.and the left represents the
left side [15]. Eventually, one of his pupils, a German dancer by the name of Kurt Jooss,
suggested a vertical division for both the upper-and lower body parts, thus inspiring the
vertical staff known today [1). This staff is composed of eleven columns. The first ten are
symmetric columns representing the left and right sides of the body, and the right-most
column indicates the head movements, as shown in Figure 3.2. In actuality, only the three

solid lines are present on the staff {15,16].
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body

leg gesture

support

leg gesture

arm

left right
Figure 3.2 Laban’s modern vertical staff

The main advantage of this vertical staff is that the lateral symmetry of the body is
visually apparent. Furthermore, the continuous flow of the movements is more evident due
to the lack Qf breaks between symbols, especially when movements overlap. This same
visual advantage exists with the direction symbols [15]. These symbols are symmetric and
represent eight basic directions illustrated in Figure 3.3. Starting from the top left and
moving clockwise, they are: forward (on the left or right side), right forward diagonal, right
side, right back diagonal, back (on the right or left side), left back diagonal, left side, and left

forward diagonal. Finally, a complete rectangle represents the “in place” direction [16].

i

b [
{—€—D

) 1A

aah

Figure 3.3 Direction symbols
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These basic directions are used for all body parts, and are shaded accordingly to
indicate at what level the movement occurs. For example, the symbols in Figure 3.4
represent a low, middle and high in place movement, respectively [14]. Itis important to
note, however, that these directions and levels are relative to the body parts being moved.
For example, with respect to steps in the support columns, “low” refers to a bend in the knee
and “high” implies being on half toes, whereas “middle” is the normal placement of the foot
on the ground. For arm and leg gestures, “middle” refers to the level of the point of
attachment of the body to either the arm or the leg — that is, the shoulder and hip jointé,
respectively. Furthermore, “forward” implies that the extremity of the arm (the hand) or the

leg (the foot) is brought in front of the body [15].

117

Figure 3.4 Levels

Another advantage of the Laban system is therefore its compactness. Just one Symbol
can tell the reader what body part is moving (depending on the column in which it is placed),
to where it is moving (direction and level), as well as when to start the movement and how
long it should last [15]. The duration and rhythm part is achieved through the ticking of the
central line of the staff, where each tick indicates one count and a bar line marks the end of
the measure [16). The amount of space covered by one symbol illustrates for how long the
movements should last. The breaks between, or overlaps of different symbols, specify
whether they should be performed in a discontinuous or continuous manner [14].
Furthermore, if a series of movements should not overlap but must appear as one flowing
movement, phrasing bows such as () for the left and right sides are used around the
movements in question [16].

In addition to the direction and level of a move, a contraction or extension at the elbow or

the knee can also define arm and leg gestures and the degree of knee bend while the legs
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are used as support. Furthermore, lengths of steps and positions of the feet can also be
modified. The two basic symbols used to express any such modifications are an X and a
reversed N [16]. Using the hand as an example, the former indicates grasping and the latter
stretching [18]. The length of a step and the position of the feet are more-specifically
determined with four symbols. These are shown in Table 3.1, with-a brief description of
what they mean. Similarly, Table 3.2 describes the six degrees of contraction and two
degrees of extension of the arms and the legs, as well as the six degrees of knee bends

while the legs support [16].

Table 3.1 Symbols Modifying Steps and Feet Positions

| }Sjrml‘ml v/‘Length of Step Description | Position of Feet Description
% very shott VELY NArrow
x short narrow:
l/l 10@ wide
l/i very long Very wide
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Table 3.2 Degrees of Contraction and Extension

Svibol Degree of Arm and Leg Knee Bend
v ym Contraction [Extension| Description / Position Description
1 slighily bent slightly bent
2 more rounded more bent
3 right angle at the elbow/knee | typical demi-plié
‘ iohtly past 90° bent with heels off
4 slightly past 90 i
5 more contracted typical grand-plie
& handifoot touches shoulder/hip squat
1 more extended than normal N/A
2 hyper-extension (rarely used) N/A

Specification symbols such as parallelograms and pins also exist to express pivot turns,
revolutions on a straight path, as well as curved paths. Pivotturns, or rotations around one’s
own vertical axis, are indicated with the use of parallelograms. These are drawn vertically in
the appropriate support columns, with the slanted edges at the top and at the bottom. The

tip of the slant indicates the direction of the turn, as shown in Figure 3.5.

clockwise counterclockwrise
Figure 3.5 Parallelograms of rotation

Pins are then added inside the parallelograms to tell the performer how much of a
rotation must be completed. There exist eight different degrees of rotation, with the position
of the pins being relative to the direction of the turn. Figure 3.6 indicates the pins and their

degree of rotation within a wheel.
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Figure 3.6 Pins indicating degrees of rotation

if more than one rotation is to be completed, the smallest whole number of rotations is
indicated with an actual number, and a pin is added to specify the remaining degree of

rotation. Figure 3.7 illustrates a 2.5 counterclockwise rotation [16].

i

Figure 3.7 A 2.5 counterclockwise rotation

These same parallelograms and pins are used to represent curved paths and revolutions
on straight paths (Figure 3.8). For example, if a sequence of movements is being performed
along a curved path, a vertical line is placed to the right of the staff. As with the
parallelogram, edges at a slant at the top and at the bottom indicate the direction of the turn.
A pin is then added in the break of the vertical line to show how much of a rotation to
complete. The center of rotation of these curved paths is either to the right or to the left of
the dancer, depending if the curve is clockwise or counterclockwise, and whether the dancer
is walking forwards or backwards. If a revolution occurs ona straight path, the same vertical
line is placed to the right of the staff. However, perpendicular edges instead of slanted ones
are added at the top and bottom. This combination is called a way sign. The parallelogram
and the pin are then added inside the break of the vertical line to indicate the direction and

degree of the revolution completed along the straight path [16)].
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Figure 3.8 Different rotations possible

3.1.1  Other Important Symbols

Symbols that should be mentioned in this context, in addition to those used to identify
different body parts, include touching bows, and return to normal, space hold, body hold,
hold weight and repeat signs. These signs will not be discussed in-a mathematical concept,
but are included at this point because of their use in the final section of this chapter.
Nonetheless, some of the mathematics involved with each sign is relatively obvious.

The touching bows are vertical brackets that link two body parts together, indicating

‘touching between them. An X can be placed either centered on the bow or closer to one
end to specify whether both body parts are active in the touching, or if only one is acting and
the other is passive [18]. Examples include two feet touching during an aerial movement
[16], or one hand gripping the other [18). These bows are allowed to cross the staff if
necessary.

The retumn to normal sign is a circle with a dot inside ®. Depending in which column and
with which body part symbol it is placed, it indicates that the respective body part should
re-assume its normal position — normal implying the state that the body part naturally takes.
The retum to normal sign is thus often used to cancel space hold, body hold and hold weight
signs. The space hold sign is a small diamond ¢ placed after a movement. It indicates that
until a new movement is performed within that column or a return to normal sign is

encountered, then the position should be held with respect to the space it occupies. The
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body hold sign is simply an empty circle O used in the same manner as the space hold sign,
but it indicates that the position is being held with respect to the body. An example is when
a dancer has his arm stretched frontward and then pivots 180° cpunterclockwise. If a space
hold sign appeared after the raising of the arm, then the arm would finish in back of the
dancer. If the body hold sign were used instead, then the arm would remain in front of the
body as the dancer pivots. The hold weight sign is also a small, empty circle. Itis placed in
the support columns to indicate that the weight must be held on the body part doing the
supporting. Only movement performed by the body part supporting the weight can cancel
the effect of the hold weight sign [16].

Repeat signs in their basic form are a slanted line with two dots, one above the line to
the left, and the other below the line to the right, resembling the percentage sign %. They
indicate that a movement is to be repeated exactly. If the sign has two parallel slanted lines
instead of one, it is called laterally symmetric, and implies that the exact movement is to be
repeated to the opposite side. These signs can be centered within the staff crossing the
central line to indicate that a count, measure or several measures are to be repeated, in
which case the sign is-drawn continuously bigger. To specify the measure to be repeated,
the number of that measure replaces the bottom dot [16].

The repeat signs can also be used for short or long sectional repeats. in such cases, the
sign is placed outside of the staff. To indicate the parts to be repeated, one sign is placed to
the left of where it begins, and another is placed at the right of the staff to show where the
repetition ends. When repeating measures that have already been repeated, the repeat
signs are placed further left and right. If some parts are to be repeated more than once,
then the top dot of the initial sign and the bottom dot of the end sign are replaced by the
number of repetitions to be made. To indicate that the steps of another performer are being
repeated, then the letter of the said performer replaces the top dot [16].

Lastly, for precise positioning of every part of the body, symbols have been created to
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identify each such part. The diagram in Figure 3.9 illustrates these symbols [15].

Figure 3.9 Symbols for body parts

3.2 The Mathematics of Labanotation

When reading through the description of the various symbols used in Labanotation,
there are many instances where the mathematics involved is very clear. Indeed, possibly
every element contains at least one mathematical idea. More interesting is the fact that
often, this inadvertently leads us to connect mathematics to other non-Labanotation

concepts.

3.2.1 Symmetry and Geometric Shapes

Let us begin with the vertical staff. Of its eleven columns, ten are set up in a very
symmetrical manner. The main purpose, as described earlier, is to imitate the human
body’s own set up and clearly distinguish the movements of its right and left sides. Hence,
the mathematical concept of symmetry visible in the staff leads us to consider the symmetry
of the human body. Furthermore, Labanotation is a method used to record movefnent on
paper. Any movement that the human body performs can also be recorded in this manner,
without restrictions to dance steps. This forces the idea that perhaps some common,
everyday movements are also performed symmetrically; hence, mathematically.

Next, consider the choice of the direction symbols. These include a triangle, a tetragon
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and a hexagon — all of which are geometric shapes. However, it is not only the symbols
themselves that are directly related to mathematics. The idea of symmetry is also present
here. By observing the symbols, we can assume that there are actually five directions:
forwards, diagonal forward, side, diagonal backward and backwards. These become ten

directions since each can be performed either to the right or to the left.

3.2.2 Coordinate Systems

Now consider a person standing upright. Let the sideways direction represent the
x —axis and the forward/backward direction be the y -axis. It is thus evident that the direction
symbols represent movement on an xy —plane, where the axes are as defined above. One
can delve further into the mathematics and consider instead an xyz —coordinate system,
where the z —axis is the body’s own vertical axis. This enables the idea of levels in the
movements. Recall that high, middle and low movements are relative to the body part
moving. For example, the middle level for the arm would be shoulder-height, whereas
middle level for the leg would be at the height of the hip. Hence, the point of origin for the
xyz —plane is not fixed, as is the case with the xy —plane. Rather, the point of origin shifts
upwards or downwards, depending on the body part being moved. For example, the origin

of the xyz —coordinate system for a hand movement would be the wrist.

3.2.3 Angles

Another important mathematical concept involved in Labanotation is that of angles. The
most prominent elements of Labanotation with this feature are, in particular, the degrees of
contraction of the arms and the legs. As described in Table 3.2, there exist six degrees of
contraction, each equivalent to a certain angle formed at the elbow or the knee. For
example, a contraction of degree 3 is geometrically equivalent to a right angle. Hence,
degrees 1 and 2 represent obtuse angles and degrees 4 and 5 acute angles. Degree 6, with

the hand/foot touching the shoulder/hip, theoretically represents a 0° angle. The 180° angle
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is the normal extension of the arm/leg.

Just as an example, consider a person standing upright. Let his right arm be in a degree
3 contraction at position right, middle level. Since the right arm is moving, the point of origiﬁ
for the xyz —coordinate system is the right shoulder. The upper part of the arm is thus along
the x —axis, and the forearm is paraliel to the y —axis. Now imagine that there is a line
connecting the shoulder to the tip of the fingers, creating a right triangle. If measurements of
the arm were known, a mathematician would be intrigued in using trigonometry to determine
the angle of inclination between the shoulder and the ﬁhgers.

The concept of angles is also exploited with the choice of pins to indicate the fraction of
a rotation completed in any type of turn. The diagram used to present the pins and the fact
that they are used to represent degrees of turns lead us to consider angles within a circle.
Let us first consider the pins established for the counterclockwise direction. Their directions
are directly related to the angles of a unit circle in the xy —plane. If we let one rotation be
equiValent to 2z radians (R) on the unit circle, then we obtain the correspondence listed in
Table 3.3 below.

Table 3.3 Angles of Rotation
i Rotation | Angle (R)

oo Bl cofu M= oo dmfee oo}—
N &I“ ml‘" al"’ N &I“’ w{a\ 4:-’24
3 S 3 S B

Let us now consider the pins established for the clockwise direction. Recall that for any

counterclockwise angle 6, where 0 < @ < 2r, its clockwise-equivalent angle is ' = 0 - 2x,

where the resulting negative sign indicates that the angle is clockwise. Yet, if we temporarily
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neglect this negative sign, then the above still holds. After all, in Labanotation, the pins
represent a fraction of a turn completed in the indicated direction, and are thus always

positive.

3.2.4 Rotations

To continue the discussion of rotations, recall that pivot turns are illustrated with the use
of parallelograms. As was the case for the direction symbols, the mere use of a geometric
shape implies a mathematical connection. Now let us consider the similarities and
differences existing between pivot turns, curved paths, and revolutions on a straight path.
We already discussed the difference in their notations, although they all make use of the
pins and/or parallelograms. So let us shift our focus to the actual movements being
performed. In the case of pivot turns, the dancer stays in place, pivoting about its own
vertical axis. This is the z —axis of our imaginary xyz —coordinate system.

In the case .of revolutions on a straight path, the dancer again pivots about its own
vertical axis; however, because the dancer is also moving in a certain direction, the origin of
the xyz —coordinate system is being translated in a continuous fashion as the dancer moves.
For example, if the dancer is pivoting clockwise while walking “ahead” on what represents
the y —axis, then the origin of the xyz —coordinate system is being shifted along the y —axis to
maintain it at the body of the dancer. With curved paths, however, the axis of rotation is
dependent on the direction of the turn and on the position of the body. Let us suppose the
dancer is simply walking along on a curved path — the axis of rotation is therefore at the
center of the circle formed by this ;Nalk. Yet, where is the axis relative to the dancer? If the
dancer is walking forward clockwise or backward counterclockwise, the axis of rotation is to
his right. If the dancer is walking forward counterclockwise or backward clockwise, the axis

of rotation is to his left.

26



3.3  Floor Plans and Affine Transformations
One final aspect to mention regarding any form of dance notation is floor plans. At the

time of the Renaissance, movement of the dancers on the baliroom floor was rather simple
and generally known, and it was therefore not necessary to record these movements on
paper. Eventually, however, more intricate patterns were created and it became a necessity
to have these steps recorded. Floor plans are thus simply a record of the area occupied by
dancers on a ballroom floor or on a stage. One of the earliest, most widely known floor
patterns is Fabritio Caroso’s 1600 rose design from Nobilita de Dame (see Figure 3.10). It
depicts the paths of Dames and Cavaliers as they cross one another. Interestingly, this
pattern is titled “The Contrepasso according to the true mathematics after the verses of

Ovid’ [14].

Figure 3.10 Fabritio Caroso’s rose design

As with the dance notation syétems, different people created different symbols to
represent the men and women in the floor plans. Stepanov's method, for example,
represented the men with an X and the women with a circle (0. Published in Russia in 1892,
this method was much clearer to recognize and easier to draw. In all instances, however,
the floor patterns created were generally repeating. Hence, the symbols were just
necessary to indicate where the man and woman started, and perhaps also to include their

positions at various moments in the dance [14].
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The emergence of ballets then led to floor plans being recorded relative to a stage. With
Labanotation, the patterns are recorded onto a stage as illustrated and labeled in Figure

3.11 below.

downstage

stage left stage right

upstage
Figure 3.11 The stage

A tack L, which is the symbol used to indicate perpendicular lines in mathematics,
represents the starting position of the dancer, regardless if it is a male or female. The
horizontal line represents the back of the dancer, and the tip of the vertical line indicates
w/here the dancer is facing. When more than one dancer is present on the stage, letters are
placed next to the tack to distinguish one from another. These same letters are placed
underneath the central columns of the staff when different dancers perform different steps
[16].

To show the movement of the dancers, arrows are drawn from the tack to the desired
end location, curving the arrow as necessary to illustrate the path taken. If paths are
retraced, two arrows are drawn, with the second line drawn shorter. When more than one
dancer is present on the stage and paths cross, the arrow of the dancer passing second is
cut at the point of intersection [16]. Figure 3.12 depicts two dancers — one facing the
audience, the other facing stage right — whose paths cross, after which the dancer B

retraces his steps.
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~ Figure 3.12 Example of a floor plan

Floor plans are drawn for any given set of measures. The range of these measures is
then indicated under the plans. For example, if the above floor plan depicts the pattern
followed for the first three measures of a given notated dance, then the range 1 — 3 is added
underneath it. The floor plans are included next to or underneath the notated steps, near the
measures to which they relate [16].

The mathematical concepts involved in floor plans are mostly geometrical. In fact, every
pattern illustrated corresponds to a transformation. In all cases, however, it is preferable to
disregard the movements performed by the dancer betWeen these transformations, as well
as the final position of the dancer. Since we are dealing solely with the floor plans, we
should instead assume that the position of the dancer’s body is held throughout the
transformations.

The most obvious transformation illustrated in any floor plan is a translation, where an
object retains its orientation and is simply shifted along any straight line. In general, every
floor plan cléarly shows a translation. The latter is in fact the basic component of any
choreography. Another type of transformation that might be visible in the floor plans is a
reflection. Reflections involve shifting an object, currently established in a given set of
coordinates, to its relative position on the other side of a given line, called the axis of
reflection. Sometimes, choreographers might find it necessary and aesthetically pleasing to
have dancers change place along an imaginary line. This line is in fact the axis of reflection.

Finally, choreographers also make use of rotations, where an object is shifted in a circular
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fashion, maintaining its distance from an imaginary point called the axis of rotation. As was
discussed in the previous section, these rotations are created when dancers perform steps

along a curved path.

3.4 An Example: The Matrix Choreography

In September 2002, | was asked to join the team at Les Ballets Jazz du Québec
(Brossard, Québec) and was offered to teach an adolescent-adult class of Jazz 2 level. For
the dance school’s annual show presented June 28" and 29*,2003, | choreographed a
dance to music from the soundtrack of the motion picture The Matrix.

In order to put into practice the concepts of Labanotation and floor plans, | notated a
small excerpt of my choreography using Laban’s system (Figure 3.13). Also included are
floor plans, the first of which corresponds to the notated steps (Figure 3.14). The affine
transformations involved in these floor plans are clearly visible, and by performing the steps
that are notated, some of the other mathematical concepts discussed earlier also become
apparent. Although this is but a small example, it serves its purpose in summing up the
various mathematical ideas that have been brought forth in this chapter, and their

connection with one of the most known dance notation systems in the world, Labanotation.
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Figure 3.14 Floor plans for measures 1 — 23 of The Matrix

The various aspects of Labanotation that have a direct relationship with mathematics B
include the choice of geometric shapes for various symbols and the symmetry in the set up
of the staff, which reflects the symmetry of the human body. Also, there exists the
theoretical concept of both an xy —plan and an xyz —coordinate system to understand the
movement of different parts of the body in terms of direction and level. Finally, angles are
indirectly used to indicate to what extent a body part must be bent, or how much of a rotation
must be completed.

These ideas are easily identified in the above notation, particularly the concept of
symmetric steps and arm movements. The idea of the xyz —coordinate system also is
exploited in measure 1 for the symmetric arm movements. Furthermore, measures 3,5 and
6 illustrate thé use of angles in body rotations, and the degree of contraction for-arms and
legs is visible throughout.

Also related to Labanotation are floor plans, which in their depiction of the movement of
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dancers across a stage make use of different affine transformations. In the examples
provided, translations and reflections are present, clearly illustrating the intimate link

between mathematics and Labanotation.
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CHAPTER 4

Contradancing and Homogeneous Coordinates

In this chapter, we begin working on the idea of using matrices for notation by applying
the already established concept of matrix multiplication for translations. We-encode
displacements of partners in an improper formation of contradancing, generalized to a total

of ¢ couples, and a working example is provided for a sample of ¢ = 4 couples.

4.1 A Brief Description of Contradancing

The term contradancing encompasses various types of folk dances stemming from both
the French court dances and the English country-dances. Unarguably, the setup consists of
two straight lines of an even number of couples, compared to the square formation of two
couples in square-dancing [8]. Two of three possible arrangements for these lines are a
proper or improper formation (the Beckett formation will not be discussed). The latter
implies an altenating male-female arrangement with partners facing each other, whereas
the former consists of all men in one line facing their female partner in the other line [727].
Regardless, each couple will perform a sequence of steps; at the end of the 64 —beat
sequence, two neighboring couples will have exchanged places. The sequence is repeated
until the first couple reaches the end of the line [8). Note that in every other set of steps, the
two couples at each end dance by themselves and are called “out”. The end couples then
proceed to dance their way back to their starting position while performing the same
sequence of steps [5].

This is all the information necessary for understanding the following section of our
chapter; however, a slightly more detailed description of contradancing is available at [24] for
those interested. Before proceeding with our trial method of contradance notation, note that
formations in contradancing is one area that has been largely studied by mathematicians.

Research relating to group theory, specifically symmetries of the square and the dihedral
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group Dy, can be found in [5], [7] and [19].

4.2 Notation using Homogeneous Coordinates

Let 1 represent a couple, where the tip of the arrow represents the man. Assume the
arrow is 2 units in length.

Now visualize graphically the arrangement of four couples. Arrange each couple at
positions 1,2,3 and 4, with the x —axis centered between each man and woman.

Consider an improper formation, such that there are never two men or two women next
to each other; arrange each arrow with the tips alternating up/down/up/down. This gives

roughly:

Figure 4.1 Improper formation of 4 couples

(Note that here, the diamond o represents the tip of the arrow (the man) and the +
represents the woman.)
Let us now generalize to ¢ couples. We shall use a structure similar to the idea of shape

grammar to deduce the matrix representatives of contradancing. The goal is to shift dancers
down an imaginary line, although the men and women of a pair also need to be
interchanged every other turn. Hence, only two possible steps exist, repeated alternately:

Step #1 : To move all couples at positions with x odd by +1, and all couples at positions with

x even by —1.

35



Step #2 : To move all couples at positions with x even, x < ¢, by +1, and all couples at
positions with x odd, x > 1, by —1. Then, reflect along the x —axis all couples at positions
l<x<e.

These simple steps are translations, easily expressed in matrix form using a

homogeneous coordinate system. . In general, recall from section 2.4 that the matrix

represents the displacement made by the dancer’s feet on an xy —plane, and the matrix

1 00
B=| 0 -10
0 01

represents a reflection of the dancer about the x —axis. So for the steps described above,
we obtain:
Step #1 :

01

° 0 1 0 |forposition (x,y) with x odd (more specifically, with
0 01

x=2k+1Lk=0,1,..,£-1)

1 0 -1
° 0 1 0 |forposition (x,y) with x even (more specifically, with
00 1

x=2kk= 1,2,...,%)

2

Step #2 :
1 00 1 0 -1 1 0 -1
) 0 -10 01 0 |=} 0-1 0
0 01 00 1 0 0 1
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for position (x,y) withx > 1odd (x = 2k+ 1,k = 1,2,..., £~ 1)

00 101 1 01
® 0-10 010 |=}] 0-10
01 001 0 01

for position (x,y) with x < c even (x = 2kk = 1,2,...,< - 1)
Multiplying the augmented position vector (x,y, 1) of one partner by the appropriate

matrix (one of the four above) would result in the partner's new position, as such:

1 0 #1 x x*1
01 0 y | = ty
0 0 1 1 1

Is it possible to deduce how many steps it would take for ¢ couples to return to their
starting positions? Consider first two examples, wherec =4andc =6 :

Example Forc = 4 couples:

ABCD 1 BADC 2 BDAC 1 DBCA 2 DCBA 1 CDAB 2, CADB 1 ACBD 2,

ABCD
.. It takes 8 steps.

Example Forc = 6 couples:

ABCDEF 1 BADCFE 2 BDAFCE 1 DBFAEC 2 DFBEAC 1, FDEBCA 2,
FEDCBA 1 EFCDAB 2, ECFADB 1 CEAFBD 2, CAEBFD 1 ACBEDF 2,

ABCDEF
.. It takes 12 steps.

We can generalize:;

Claim 1/t will take c couples a total of 2c steps to retum to their starting positions.

Proof Suppose the ¢ couples are arranged in order 1,2,...,c— 1,c. Note that it
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takes couple ¢, ¢ — 1 steps to get from its starting position to position 1. The
couple then stays in this position for 1 step while all couples-not at the ends
switch. This sumsto (c— 1) + 1 = ¢ steps in one direction. The entire process
is then repeated in the opposite direction in order to return all the couples tq
their starting positions; this will take another ¢ steps. Hence, ittakes c+ ¢ = 2¢

steps in all. n

4.3 A Working Example

Suppose we have ¢ = 4 couples. Let us consider couple #1. The man and woman

begin at positions (1,1) and (1,-1), respectively. Applying step #1 (for x odd):

1] [ 2

1 1 =] 1
0 1 1
and

101 1| [ 2
010 =] 4
001 1 1

in other words, the man is now at position (2, 1) and the woman at position (2,-1). Applying

step #2 (for x < 4 even):

1 01 2 3
0 -1 0 1 =] =
0 0 1 1 1

and

1 01 21 [ 3

0 -10 -1 = 1

0 01 1 1

such that the man is now at position (3,—1) and the woman is at position (3,1). Applying

step #1 (again for x odd):
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1ot [ 31 [
010 || -1 |=| =
001 || 1 1
and
101 3| [ 4
10 1 | =
00 1 O

with the man ending at position (4,—1) and the woman at position (4,1). Note that we
cannot apply step #2 here because x = 4. This means that the couple has reached one end
of the line and stays in position for one step while the middle couples change place. We

now apply step #1,. but this time for x even:

10 -1 4 | [ 3
01 0 =] -
00 1 1 1

and
10 -1 4] [ 3
01 0 1 |=] 1
00 1 1 1

This brings the man back to (3,-1) and the woman back to (3,1). Applying step #2 (here for

x > 1 odd), such that

1 0 -1 3 2
0 -1 0 a |=] 1
0 0 1 1 1
and
1 0 -1 31 [ 2
0 -1 0 1 |=] =1
0 0 1 1 1

leaves the man at (2,1) and the woman at (2,-1).

39



Applying step #1 for x even, we get:

10 -1 2 ] [ 1
01 0 1 =] 1
00 1 1 1

and
10 -1 2 | [ 1
01 0 1 = -1
00 1 || 1 1

such that the man is back at its starting position (1, 1) and the same for the woman, who is
back at (1,—1). Since x = 1, we cannot apply step #2 for x odd, such that the couple stays in
place while the others move, as required by contradancing rules.

We observe that our mathematics works well, since our couple completed each of the
required steps in contradancing (moving along the line up to one end, staying in position,
and then coming back all the way with a final stay in position). Furthermore, it took 2(4) = 8

steps for the couple to complete the routine and finish in their starting position.
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CHAPTER5

Matrices and Dance Notation

One main goal of this thesis pertains to devising an encoding process for general body

movements using mathematical tools directly. In this chapter, we define such a process
using matrices. Note that for simplicity, we are considering only basic body parts, and

restricting movements.

5.1 Body Matrix

First picture the human body, and recall the analysis of Labanotation discussed in
Chapter 3. Suppose that each basic body part (head, right arm, left arm, torso, right leg, left
leg) has its own coordinate system, with the origin centered at the joint where the body part
attaches to the body. In all cases, the x —axis goes from left to right, the y —axis goes from
back to front, and the z —axis goes upwards. Assume that the initial position is standing legs
straight, arms down on either side, looking straight ahead. (This is the anatomical position
of the body, but with the palms of the hands facing each other instead of forwards.) -

Now consider a 4 x 6 matrix, where each column represents the six basic body parts
listed above. The first three rows represent movement along the x,y and z axis, with the
coordinate system as defined previously. Similarly to Labanotation, a negative in the z
direction implies bending in the knees for the legs, a bending of the torso, and so forth.

For simplicity, we are restricting all possible entries in the first three rows to the set
{-2,-1,0,1,2}. The negatives mean the movement is made "backwards” along the axis, the
0 represents no movement, and the positives are movements made “forwards”. If a
movement is made from the origin, then it can only move 1 in any direction. But if a certain
body part has already moved, say down 1, then it can either return to its starting position by
moving 1 unit, or go to its opposing position, in this case up, by moving 2 units. The fourth

row represents time 7, where the entries are positive integers indicating how long the
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movement for its respective column should take to complete. If a body part is motioniess

during this time, the entry in that column is 0.

In the same manner as with homogeneous coordinates, we now raise this matrix into a
5 x 7 matrix. All extra entries are 0, except for the corner, which instead of being 1 is the
maximum of all the numbers entered in the time row. (This is explained in detail in section

5.4.)

Hence, we have the movement matrix:
i h. ra. la. to, ri, I, ]
h, ra, la, to, rl, I,
M, = h, ra, la, to, rl, I,
he ra, la, to, rl, II, O
0 0 0 0 0 0 ftu

o © O

with
tmax = max{h;,ra,, lat, tOt,rlp, ”1}.

For the initial position described above, we define the initial position matrix

0 0 00000 |
0 0 00000
I=| 0110000
0 0 00000
| 0 0 00000

5.2 Examples

1. Move your head down to look at the ground in 1 beat while lifting both your arms

up towards the sky in 2 beats. This is represented by the matrix
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2.

5.

M

0000000
0000000
-1220000
1220000
00000©O02

Afterwards, move your arms straight out on both sides while jumping with both

legs opening aiso on both sides, everything in 1 beat. This is:

M,

0 1 -101 -1
0 06 000 O
0-1-100 O
01 101 1
0 0 000 O

- OO O

In 1 beat, lift your head back to look in front of you, such that:

M; =

S == o O
(=N I I S
O o o ©
o o o o ©
S o o o o
TR T I = N =
- oo O

In 2 beats, twist your whole torso to the left with the head following, the left arm

staying left relative to the torso, and the right arm coming in front of the torso (so

left of its original position). We get:

My =

-1 -2
0 0

1 -1

[ R e N e I = A =
(=T e R o N o N
N O O o O

0 0
2 2 2
0 0

S N O

Coming back in 1 beat would simply be the negative of above:

43



Ms

Il

6. To complete an 8 —beat sequence, close your left leg to your right leg, while

lowering your left arm to its starting position, and lifting your right arm towards the

sky. Then:

Ms

5.3  Addition for Choreography

So what shall we do with all these matrices? The idea is to sum them. The one

S O O O O

S = o O =
S = O O W

|
—_—

O e O

|
—

(=

(= =
[T R e I N =
[ e o B = N
_— O O O

10
00
-1 0
10
00

S O O o O
(= = = A

-0 o O O

resulting matrix would then indicate the final position of the dancer. - For example, summing

the above matrices gives:
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M=M+M, + M+ M, +Ms+ Ms

0000000 0 1-101-10 ]
0000000 0 0 000 00
=1 -1220000 |[+] 01100 00
1220000 01 101 10
000000 2 00 000 01 |
0000000 | | <12 1-1000 |
0000000 0 0-1 0000
+| 1000000 |+]| 0o 0 0 0000
1000000 2 2 2 2000
0000001 0 0 0 000 2
1211000 ] [o0o-1 10020
00 10000 0 0 00000
+| 00 00000 |+] 0 1-10000
11 11000 01 100710
00 00001 0 0 0000 1
[ 0000110 |
0000 0
-l 0200 0
5773 0
0000008

Based on our definitions, this means that the dancer completes the sequence of
movements having moved right 1 unit, with the right arm stretched up to the sky and all other
body parts in their initial position.

But what about the 2 at the right-arm / z-axis position? We know that this number is only
significant when the body part is coming from an opposite direction. We recall that the initial
position of the dancer was with -both-arms down on either side, as indicated in-matrix 1. - So
for our results to vbe more telling, we must always sum the sequence of movement matrix
M = Z,',’: , M; with the initial position matrix 7. The resulting matrix is the choreography matrix
C, which properly shows the final position of the dancer. In fact, the matrix C'is analogous to

the idea of a terminal matrix.
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In our example, we thus get:

C=M+I
0000110 1| [0 0 00000 |
0000000 0 0 00000
-l 0200000 |[+| 0110000
5773120 0 0 00000
0000008 | | 00 00000
00 00110 |
00 00000
-l 0o1-10000
57 73120
00 00008

which is in fact the appropriate final position of the dancer relative to the coordinate axes.

It is important to mention that we defined one possible initial matrix I; however, there
exist an infinite number of different starting positions for a choreography. It is thus important
to always specify this initial position and to sum the sequence of movements with the
appropriate matrix 7 to obtain the correct choreography matrix.

Now note that although the head and torso are in their initial positions, their nonzero
éntries in the time row indicates that these body parts were nevertheless moving during this
sequence. These entries thus indicate how many beats were required for the given body
part to move and return to its initial position. So in our example, the head moved during 5

beats, ending where it began.

5.4 Time Sequence

Now what about the time sequence? According to each step of our example above, we
should have an 8 —beat sequence. Notice that this number appears in the final entry of the

choreography matrix C, but nowhere in the time row. So what do these numbers actually

signify?
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First, recall that each entry in the time row indicates the total number of beats the
respective body part moved. So for example, the arms moved for a total of 7 beats during
the entire sequence, whereas the right leg only moved for 1 beat. Therefore, the reason that
the total 8 beats does not appear in this row is precisely because not one body part was
moving for the entire sequence, which is an appropriate representation of most
choreographies. However, we cannot just sum the entries of the time row either, because
there were beats during which different body parts moved at the same time, which is also
customary.

This is why we defined the last entry of our matrix A, as
Imax = max<{hy,raslas,tos,rl, .

By using the addition operation, this entry provides us with an effective counter. In fact, the
final number indicates how long the entire sequence M requires for completion, and within A/

we still have the individual times for each body part. Hence in our example above, we had

v
S Wwnh O O O
(=R B B = )
o N o o O
(=T VL I = I — I =
S - OO
(= S N N =

0

0

0

0
where the 8 appropriately indicates the total 8 —beat sequence. Note that 8 is not the #ya
value of this matrix A instead, it is the sum of all the 7., values contained in the matrices
M;.

Recall that to obtain the choreography matrix C, we needed to sum the matrix M with the

initial position matrix 7. Given
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[0 0 o ]

0 0000
0 0 0000O0O
I=f 0-1-10000
0 0 000O00O
0000000_

we observe that the last entry is 0. Although this is done on purpose, it is not false in any

way, since our initial position does not take up any time in the sequence.

So we obtain
[ 00 110 |
00 000
C=M+1I= 01 -1 000
57 73120
00 0 008

and everything works out as required.

5.5 Special Cases

5.5.1 Holding Positions

Sometimes, a choreographer may decide that the dancer should hold a position for a
specific amount of time, be it at the beginning, during or at the end of a performance. In
these instances, we must make an exception to the definition provided for our entry
tmax = max{h,,ra,las, to,,rl,ll}. Supposing the position is to be held for s beats, then we
calculate

tmax = 8+ max{hy,rasla,, to,rl, U}

and input instead this value in the matrix.

By observation, one can then see that the entry is greater than the maximum of the time

row, deduce that the position is being held, and by simple subtraction, one can calculate for
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how long this occurs.
As examples, consider:

1. The initial position defined above, to be held for s = 4 beats. Then we define:

[0 0 00000 |
0 0 00000
I=| 0110000
0 0 00000
00 00004 |

2. The position in example 4 above, to be held for s = 8 beats. Then:

[ 12 1-100 0 | [ <12 1-100 0]
0 0-1 000 0 0 0-1 000 0
M= 0 0 0 000 0 |=| 00 0 000 0
) 200 0 2 2 2 200 0
0 0 000 2+8 0 0 0 000 10

5.5.2 Possible Time Overlaps

In choreographies, there are often moments when a body part is moving for numerous
beats, while other body parts take turns moving for less beats. For example, we could have
both arms taking 6 beats to extend upwards and 2 to come back down; meanwhile, the head
could be moving to look down in 2 beats, up in 2 beats, and back to its starting position in 2

beats, followed by the right leg moving right in 1 beat and the left leg moving left in a

subsequent beat.
In this case, the arising problem is how to encode this information in a matrix so that:

1. we still have all necessary information (ie: which body part moves, where, and for

how long);
2. we know which movements are being performed at the same time;

3. we do not end up with an excess number of total beats for the choreography.
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The solution we propose is simple. For any movement performed during the “leftover”
beats of the previous matrix, we set 7.« = 0. Only simple observation is then required to
notice this difference. For the example provided above, we encode the first set of

movements as before, such that:

[ 0000000 |
0000000

Mi=| 1220000
660000
0000006

To encode all subsequent movements that are performed at the same time as the

remaining 6 — 2 = 4 beats, we write:

0000000 [ 0000000 |
0000000 000000
My=| 2000000 | M=| -1000000
0000000 0000000
0000000 | 0000000
We proceed to encode the remaining movements:
[ 0 0 00000 | [ 0000100 |
0 0 00000 0000000
Mi=| 0220000 |M=| 0000000
0 2 20000 0000000
0 0 0000 2 0000000
[ 00000 -10 |
00000 00
Mi=| 00000 00
00000 00
00000 00

Summing these matrices, we obtain:

50



M=M +M;+ M+ My+ Ms + Mg

00000
00000

=l 12200
26600
00000

[ 0000
0000

+| <1000
000
000
0000
0000

+| 0000
0000
0000

[ 00001
00000

=l 00000
28800

| 00000

(=R e I = =]
AN © O ©

S © O o O
S O O o QO
[==J <= B R A =

S O O O =

[T e I = )

(=B e T« N ]
L O O O O

0

o O O O O

l

S O VO 2
(=R e I
(= =R -
S O O o O

[ I I = =

[T R e B N =)

(=R = I e T N =

[==RN e 2 = N =]
< O © o O
S O O O O

[ e I o B B

O O O o ©

o o O o O

;I—-OOOOO
S O O o O
N © © O O

[ I = N |

o O O o O

and assuming that we hold our initial position for 4 beats before beginning our sequence of

movements, we calculate the choreography matrix:
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" 00001-10 ][0 0 00000 |
00000 00 0 0 00000
-1 00000 00 |+] 0-1-10000
28800 00 0 0 00000
00000 08 | | 00 00004
000 001 -1 0 |
0 0 000 0 0
=l 0-1-100 0 0
2 8 800 0 0
| 00 000 012

As can be seen, we lose nothing in our final result, which appropriately illustrates the
final position of the dancer, as well as the total 12 beats required to complete this sequence

of movements.

5.6 Computer Animation

With the advancements in technology, computer animation has become a great interest
of today’s society. In particular, choreographers and dance notators welcome this: form of
science in their artistic domain. Various computer animation programs currently exist or are
being developed as a means to choreograph and simulate what a tentative dance routine
might look like. Most of these programs use Labanotation as their source code, either to
facilitate or complement its use [10, 12, 21].

In our case, we decided that it would be interesting to test what the above notation might
look like once animated. Included in the Appendix is the beginnings of such a process,
provided courtesy of Denis Wong Wong Keet, B. Eng. Computer Engineering. The dance
notation is automated using the language OpenGL and the interface of C++. First, the basic
OpenGL functions required for viewing (the camera angles) and for the environment (the
dance floor and dance box) were set up. Second, the term dancerBody was defined to refer

to the dancer's body. Finally, by isolating the different body parts of the dancer into separate
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classes, it is possible to apply different animations to the relevant body parts.

For example, given the matrix

0000000
00000000
0200000
0200000
00.00002_

we réquire that just the right arm be raised, in two counts, from its initial position (down on
the Side) to above the head. Hence, only the rightArm() class would be given-new values.
Note that the variables utilized in the code signify the angle of rotation for each body part. It
is necessary to have three variables for both rotation and translation purposes — one for
each axis (x,y,z). These necessary angle and translation variables have been created.
Anyone interested in pursuing the programming can refer to the Appendix for the initial
code with comments, frame images, as well as a detailed explanation of what steps must be
undertaken next. Overall, what we are trying to show is that the notation presented in this
chapter is simple and useful for basic movement notation. Furthermore, it is also possible to
generate a computer program in which we input the values of a sequence of matrices, and

obtain as output an animation of the dance sequence dictated by this sequence.
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CHAPTER 6

Choreographing with Wallpaper Patterns

The main question in this chapter is whether it is possible to take basic ballroom dance
steps and generate feasible routines with the same process used to create 2 —dimensional
wallpaper patterns. These seventeen crystallographic patterns and the geometric

transformations employed to generate them were discussed in section 2.3.

6.1 Choreographing Procedure

We begin by choosing a given number of ballroom dances with simple, yet interesting
basic steps, and assign a symbol to-each. Each symbol should clearly indicate the starting
position, pause position and ending position of the dancer, with-an extra identification to
distinguish the right foot from the left foot. The pause position refers to the half-way point of
the basic step, nbt always involving an actual pause in time. Usually, this pause implies that
the steps will then be performed in “reverse” order, to come back to the starting position. As
such, the starting and ending positions are usually the same. (Note that in the cases below,
this is true for all the dances except the Tango.) All steps of the right foot are connected and
all steps of the left foot are connected. An extra line connects the starting positions of the
right and left feet. If a foot steps in place, a perpendicular line is added as indication.

The symbols presented in section 6.3 are kept to scale, to adequately indicate the
proportional differences in the steps for each dance. HoWever, each symbol was reduced to
a 1 inch x1 inch square in order to generate the patterns using the Artlandia SymmetryWorks

add-in for Adobe lllustrator 10 [2]. The resulting patterns for p1,p2,p3,p4 and p6 are shown

below and discussed in section 6. 5.

6.2 Ballroom Dancing Specifications

It is important to note that the designed symbols are specific to the female. Due to the



face-to-face positioning of the couple for performing basic steps in ballroom dancing, the
leader (generally the male) steps forward into a sequence, whereas the follower (usually the
female) mirrors the footwork and steps back [29]. F uﬁhermore, the female always begins
her steps with the right foot. This will be necessary when trying to determine which routines
generated can be said feasible under these conditions. In fact, given this information, we
can immediately determine that all routines generated by either a mirror reflection m or glide
reflection g will not be feasible. These reflections imply that the female dancer will alternate
the performance of her basic step between starting with the right foot, and starting with the
left foot; however, in ballroom dancing, only the male begins the steps with his left foot, so
this switch is impossibie.

This implies that already twelve of the seventeen wallpaper patterns — precisely all those
containing opposite isometries — cannot generate feasible routines. Given the restrictions of
ballroom dancing mentioned above, we now investigate the remaining five patterns — those
containing only transiations and rotations — for the following dances: Waltz, Tango, Chacha,
Samba, and Salsa/Mambo. Note that we are investigating only the steps and neglecting all
aspects of time. In this case, the Salsa basic step is exactly like the. Mambo basic step, and
we henceforth refer to either of them only as the Mambo step.

Nevertheless, these timing differences affect the labeling of the pause. For example, the
Chacha has a fake pause (identified as *pause), which is used solely to indicate the
“reverse” repetition. In fact, there does not exist any actual pause when performing the
Chacha. With the set up and the Samba, there exists a very short pause (identified as
~pduse). The Waltz is counted 1 — 2 — 3 on 4 beats/measure, and the Samba is counted
1 - & -2 on 2 beats/measure, creating a small pause of + measure. The Mambo, however,
has 3 steps performed to 4 beats/measure, with each step taking one full beat, such that an
actual pause occurs before repetition of steps in the opposite direction. The difference
between the Salsa and the Mambo is precisely with the positioning of the pause, called a

hold in ballroom dancing terminology. While the Mambo hold occurs at count 1, the Salsa
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hold occurs at count 4. Therefore, since the Mambo usually begins on count 2, whereas the
Salsa begins on count 1, the latter is called “Salsa On One” or “On One”, and the former,
“On Two” [30].

As with dance notation, ballroom dances have also evolved differently. There currently
exists two styles of ballroom dancing categories: Ameri‘can and International. Both of these
are subdivided to distinguish the soft, slow, flowing dances from the faster, rhythmic Latin
dances. The American Style is divided into American Smooth, which includes the Waltz and
the Tango, and American Rhythm, which includes the Chacha, Mambo and sometimes the
Samba. The loosely-equivalent categories in the International Style are, respectively,
Standard and Latin [28]. The symbois desighed below and the subsequent discussions
pertain specifically to the American Style, taught at the Arthur Murray Ballroom Dance

Studios.
6.3 Symbols are to Steps as Patterns are to Dances

6.3.1 Waltz
The Waltz consists of six steps in total. The female steps with the following feet: right,
left, right, (~-pause), left, right, left. These steps are taken in the following directions: back,

left, left, (~pause), front, right, right. The symbol designed to represent the Waltz is:

4

Figure 6.1 The Waliz

The five routines generated with SymmetryWorks are illustrated in Figures 6.2 — 6.6.
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Figure 6.3 Pattern p2 generated with the Waltz
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Figure 6.5 Pattern p4 generated with the Waltz
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Figure 6.6 Pattern p6 generated with the Waltz

6.3.2 Tango

The Tango consists of five steps in total. The female steps with the following feet: right,
left, right, left, right. These steps are taken in the following directions: back, back, back, left,
left. As mentioned before, the Tango is the only one of the five dances discussed in this
chapter that does not have repetition of steps in the opposite direction; hence, the ending
position is not the sa'me as the starting position, which is clearly visible on the chosen

symbol:
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Figure 6.7 The Tango

The five routines generated using SymmetryWorks are illustrated in Figures 6.8 — 6.12.

Figure 6.8 Pattern p1 generated with the Tango
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Figure 6.10 Pattern p3 generated with the Tango

Figure 6.11 Pattern p4 generated with the Tango
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Figure 6.12 Pattern p6 generated with the Tango

6.3.3 Chacha

The Chacha basic step has ten steps in total. The female steps with the feet: right, left,
right, left, right, (*pause), left, right, left, right, left. These feet step in the following directions:

right, front, in place, left, left, (*pause), left, back, in place, right, right. The symbol designed

to represent the Chacha is:

S S

Figure 6.13 The Chacha
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The five routines generated with SymmetryWorks are illustrated in Figures 6.14 - 6.18.
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Figure 6.15 Pattern p2 generated with the Chacha
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Figure 6.17 Pattern p4 generated with the Chacha
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Figure 6.18 Pattern p6 generated with the Chacha

6.3.4 Samba
There are a total of six steps in the Samba, performed by the following feet: right, left,
right, (-pause), left, right, left. The direction of the steps are: back, back, in place, (-pause),

front, front, in place. The chosen symbol for the Samba is:

Figure 6.19 The Samba

The five routines generated with SymmetryWorks are illustrated in Figures 6.20 — 6.24.
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Figure 6.20 Pattern p1 generated with the Samba
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Figure 6.21 Pattern p2 generated with the Samba
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Figure 6.22 Pattern p3 generated with the Samba
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Figure 6.23 Pattern p4 generated with the Samba
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Figure 6.24 Pattern p6 generated with the Samba

6.3.5 Mambo

The Mambo consists of a total of six steps. The female steps with her right, Ieft; right,
pause, left, right, left feet, in the following directions: back, in place, front, (pause), front, in
place, back. Recall that the Mambo steps are exactly like the Salsa steps, except for the
timing, which affects the position of the hold (or pause). Regardless, the symbol designed to

represent the music-less steps of the Mambo (and Salsa) is:

Figure 6.25 The Mambo

The five routines generated with SymmetryWorks are illustrated in Figures 6.26 — 6.30.
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Figure 6.26 Pattern p1 generated with the Mambo
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Figure 6.27 Pattern p2 generated with the Mambo
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Figure 6.30 Pattern p6 generated with the Mambo

6.4  Analysis of Symbols

Symbols were created to define the female basic step of the Waltz, Tango, Chacha,
Samba and Mambo. Applying to these symbols the five wallpaper patterns that do not
contain opposite isometries subsequently generated the above floor patterns. Of
importance now is to analyse each pattern and determine which are feasible given the
constraints of the respective dances. In doing so, we discuss the geometric properties
present, and whether these can be executed by the dancer as she retains the style of the
dance.

Before, however, we shall discuss the separate symbols to determine some of their
associations to groups other than the crystallographic patterns. To do so, we omit the circle
identifying the initial position of the right foot, and all other extra symbols; instead, we focus
our attention on the lines. As a first example, consider rotational symmetries, discussed

previously in section 2.2. Unfortunately in our cases, none of the symbols contain more
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than one rotational symmetry, so none of the dances can be called a cyclic rotation group,
regardless of which order. Nevertheless, there are two symbols to which we can apply a
180° rotation and they still remain in position. These are the symbols for the Chacha and the

Mambo (see Figures 6.31 — 6.32).

Figure 6.31 Ris applied to the Chacha

Ny

Figure 6.32 Ri3 applied to the Mambo

Relating this back to the eight symmetries of the square discussed in section 2.1, this
rotation is called R,s, rotation of 180°. Furthermore, given the specific symbols, this rotation
is also equivalent to D', a reflection about the non-main diagonal. Conversely, in the case of
the Waltz symbol, the reflection D' is not equivalent to the rotatipn Ris. While applying D'

generates the Waltz symbol as is:
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Figure 6.33 D' applied to the Waltz

applying R s creates a small difference, notably in the connection of the initial position

(purple circle):

I\—\\‘\"“—._’-P"f.'-!
Figure 6.34 R,s applied to the Waltz

In the case of the Tango, there does not exist any transformation that can regenerate the
symbol as is when applied. We already established that the Tango basic step is the only
one of the five discussed to not include repetition in reverse direction; we can thus assume
- that this directly explains the lack of symmetry in the symbol.

Lastly, consider the symbol for the Samba and imagine it as an open square. We can

easily perform a reflection along a vertical axis and still obtain the same symbol:
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Figure 6.35 V applied to the Samba

This transformation is equivalent to one of the eight symmetries of the square,
specifically ¥, the reflection about a vertical axis. Now consider the Samba symbol rotated
90°, say counterclockwise. The previous symmetry ¥ no longer exists; instead, we have the

symmetry H, a reflection about a horizontal axis:

=1 o

Figure 6.36 H applied to the Samba

Recall that we defined this transformation as ¢ in section 2. 1; hence, notice that the
Samba, rotated 90°, creates an element of the dihedral group D,. (In fact, the
transformation ¢ generates two of the eight symmetries of the square, R3 and H : rotation
of 180° and reflection about a horizontal axis, respectively.) Unfortunately, since the Samba
symbol is an open square, we cannot apply a 90° rotation p and still obtain the same symbol
(the difference is visible above), so the Samba does not generate all elements of D,.

Hence, we conclude that although the dance symbols possess symmetries equivalent to
those of the square, the Samba is the only one with potential to create a generator of the
dihedral group Ds. We now proceed to analyse the floor patterns generated by applying the

crystallographic groups to our symbois.
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6.5 Analysis of Patterns

We begin this discussion with the Chacha, since of the five patterns generated, only p4
is a feasible floor pattern. Given the basic Chacha step, the female dancer cannot achieve
displacements equivalent to a backwards or side translation, a half-turn or a 120° rotation.
Hence, the five patterns generated as such are discarded. In p4, only the quarter-turn (see
the blue arrows in Figure 6.37) is feasible due to the alignment of the right-most steps (pink
horizontal line); however, note that this quarter-turn occurs clockwise, opposite the

theoretical counterclockwise direction, precisely due to the feet restrictions.
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Figure 6.37 Analysis of Chacha p4

After the dancer steps forward with her left foot (green circle), she rotates slightly to her right
as she completes the in-place step with her right foot, thereby creating the clockwise
guarter-turn. The dancer then continues the Chacha step facing a new direction. Note that
the quarter-turn established is not an actual Chacha step, although it mimics the half-turn
used in the Sweetheart Chase. In addition, given the Chacha basic step, this half-turn can
also only be performed clockwise.

We now move on to the Tango, since p2 and p3 are both entirely rejected as feasible
floor patterns. Recall that the Tango is the only one of the five dances where the starting

and ending positions are not the same. In order for the patterns to be feasible, it is thus a
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necessity that the start and end positions meet. Unfortunately in p3, all the starts are
grouped together and all the ends together. Also in the Tango, the amount of space covered
by the basic step is the largest among all five dances. The distance covered in trying to
displace the movement in p2, either backwards or with the half-turn, is hence too big to be
performed comfortably. However, the backwards translation in p1 is perfectly executable
(Figure 6.38). In fact, this displacement is the exact performance of the Tango basic step in

real life.

Figure 6.38 Analysis of Tango pl

The floor patterns generated by p4 and p6 are also feasible. In p4, neither the
quarter-turn p nor the half-turn a can be achieved from the initial position 1 while rﬁaintaining
the graceful composure of the Tango. Yet it is possible to rotate directly to position pa from 1
(see blue arrow in ngure 6.39) given the position of the feet and the fact that the female

dancer must always step back into position.
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Figure 6.39 Analysis of Tango p4

In p6, the half-turn is feasible due to the closeness between the starting and ending
positions of the feet (see blue arrows in Figure 6.40). Also, this half-turn can only be
executed clockwise. A counterclockwise rotation would force the dancer to step forward into
the second execution of the basic step, contradicting the fact that she should be stepping
backwards. This is the key point in determining the rotation direction required to make a
floor pattern feasible. Lastly, there does not exist any feasible 120° rotation in p6. As shown
in red below, the distance between the start and end positions is too wide for a graceful
execution. However, note that it would be possible to dance our way through the inner-circle

pattern counterclockwise due to the closeness of the steps (green arrow).
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Figure 6.40 Analysis of Tango p6

In the previous two dances, there existed unfeasible floor patterns. The constraints of
either the Chacha or the Tango rendered the execution of some patterns either
uncomfortable or simply not possible. However, for the Waltz, Samba and Mambo, all the
patterns generated contain feasible parts. We now discuss each of these patterns.

Due to the diagonal movement already present in the basic step of the Waltz, it is quickly
seen how a backwards translation s~ is possible (blue arrows in Figure 6.41). Unfortunately,
this left-backwards diagonal movement is also what prevents any rightward translation. In

addition, the first step being backwards also prevents any leftward translation.
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Figure 6.41 Analysis of Waliz p1

For p2, we already established above that a backwards translation is feasible. The
half-turn is also feasible, but only counterclockwise due to the positioning of the feet.
Hence, as the blue arrows illustrate in Figure 6.42, a dancer could begin at one end, move
backwards,v rotate, and then move back “up”. At this point, however, she would have no
choice but to rotate back into her initial starting position. Moving “right” as shown by the red
arrow is not feasible because the displacement step would be too wide, thus removing the
ease and grace required of the Waltz performer. It is important to note that the half-turn a
discussed is generated by the dancer from position s~!, whereas in theory, it is generated

directly from the initial position 1.
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Figure 6.42 Analysis of Waltz p2
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The pattern generated for p3 using the Waltz basic step is also feasible given the
positioning of the feet and the required steps. The 120° rotation about point p
(counterclockwise, facing inwards) (see blue arrow in Figure 6.43) is feasible because as
she steps forward with her left foot, the dancer rotates in preparation of the second basic

step, with the right foot moving in a right, forwards fashion relative to herself (pink arrow):
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Figure 6.43 Analysis of Waltz p3

Similarly, the second 120° rotation is feasible about point g~! (green arrow), in the sense that
instead of rotating counterclockwise (facing outwards) about point g, the rotation occurs
clockwise (still facing outwards). Observing the above diagram, it would not be in context of
the Waltz, nor comfortable for the dancer or aesthetically pleasing to the spectator, to move
opposite the direction of the green arrow.

Following this reasoning, half-turns in p4 are not feasible because the right foot would
have to step too far, inhibiting the graceful poise of the dancer. Nevertheless, the
quarter-turn p (counterclockwise, blue arrows in Figure 6.44) is definitely feasible due to the
closeness of the position of the right foot in each sequence. This is illustrated by the pink

square.
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Figure 6.44 Analysis of Waltz p4

Using the same previous discussions, it is concluded that a side-by-side half-turn is not
feasible given the Waltz basic step. Furthermore, it is already established that 120° rotations
are feasible about both p and ¢!, as shown in Figure 6.45. However, note that the dancer

might face more difficulty in gracefully executing the rotations in p6 compared to p3 due to

the bigger displacement required.

Figure 6.45 Analysis of Waltz p6

There now remain two dances to investigate: the Samba and the Mambo, both rhythmic

Latin dances. As in all previous dances, only a backward translation s~! is feasible in p1

(and p2) for both cases:
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Figure 6.46 Analysis of Samba pl

Figure 6.47 Analysis of Mambo pl

We now consider the half-turn a present in p2. Given the closeness of the steps of the

right foot, such a counterclockwise turn is definitely feasible for the Samba, thus generating

the following possible sequence:
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Figure 6.48 Analysis of Samba p2

However, the sequence can only loop back because too much distance would need to
be covered if trying to move right, as illustrated by the red arrow. Furthermore, as with the
Waltz, the half-turn q is theoretically generated from the initial position, whereas the dancer
steps into it following the s~! translation. This occurs due to the large distance between
position 1 and a, which would be difficult to execute even with the little bounce present in the
Samba.

We already established that a backwards translation s~! is feasible in p2 for the Mambo.
As before, there also exists a feasible half-turn, although this is not the usual half-turn a
identified in red (see Figure 6.49). Rather, the only half-turn feasible given the close
positioning of the feet is the half-turn sa, completed clockwise, as shown by the green
arrows. The execution of this rotation is possible by the dancer starting a slight rotation
while stepping forward with her left foot. She continues the rotation with her right foot,
cheating slightly to move into her new position. She completes the half-turn with her last left

step, now in its starting position in sa (green circle).
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Figure 6.49 Analysis of Mambo p2

The situation in p3 for the Samba is exactly the same as all the previous feasible cases:
Two feasible 120° rotations are about p, counterclockwise facing inwards (blue arrow in

Figure 6.50), and about ¢!, clockwise facing outwards (green arrow).

Figure 6.50 Analysis of Samba p3

The reasoning is also the same: the steps are relatively small, and so the feet are always
close to their next position. Also, the bounce present in the Samba provides ease for the
dancer to execute the rotations. In the Mambo, however, the dancer is relatively more
constrained by her posture. Hence, the feasible patterns change slightly. Both 120°
rotations can be executed, but in both cases, this occurs only in opposite direction from the
theory. In other words, one rotation occurs as before about point ¢g~', clockwise facing

outwards (blue arrow in Figure 6.51). The second rotation occurs about point p~!, also

85



clockwise but facing inwards (green arrow).

Figure 6.51 Analysis of Mambo p3

This difference is allocated to the restriction of having to step back with the right foot first;
if rotating counterclockwise about point p, the dancer would seem to be stepping forwards,
conflicting with the style of the Mambo. In addition, a variation of the rotation about p™
actually occurs in Mambo and Salsa. In the execution of a turn (also called open), the
dancer is required to step back with her right foot as such — the difference is in the steps that
follow.

In p4, both the half-turn a and quarter-turn p are feasible for the Samba. Once again, the
tight positioning of the feet and the presence of the bounce render these transformations
feasible for the dancer. The gquarter-turn must be executed counterclockwise due to the
“right step back” restriction (green arrow in Figure 6.52). On the other hand, the half-turn
- can be completed either clockwise or counterclockwise (blue arrows). The latter permits the
dancer to spot into position before “bouncing” back with her right foot, and is more easily
performed. If choosing to rotate clockwise instead, the dancer must start rotating her feet
slightly when stepping in place at the end of the sequence, in order to be able to execute the

second sequence without removing style from the dance.
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Figure 6.52 Analysis of Samba p4

The counterclockwise quarter-turn p is also feasible in the case of the Mambo, still due
to the positioning of the feet and the “right step back” restriction (green arrow in Figure 6.53).
The half-turn a, however, cannot be directly executed because of the feet alignment. Based
on the starting position, the only feasible half-turn is sa as in pattern p2 (see Figure 6.49).
Nevertheless, it is possible for the dancer to get into position a by completing clockwise
quarter-turns as indicated by the blue arrows below. Like the other quarter-turns, these are

feasible due to the tight position of the feet/steps.

Figure 6.53 Analysis of Mambo p4

‘We conclude this discussion with pattern p6 for both the Samba and the Mambo. The
side-by-side half-turn in p6 is actually advantaged by the steps of both these dances. Their

alignment makes the half-turn easily executed both clockwise and counterclockwise;
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however, due to the female dancer’s restriction of having to step back first, we accept only
the clockwise turn (green arrow in Figure 6.54). In the case of the Mambo, no other
transformations are feasible. The tight movements of this dance inhibit the execution of any

120° rotation due to the wide spacing between each position.
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Figure 6.54 Analysis of Mambo p6

For the Samba, in addition to the half-turn (green arrow in Figure 6.55), a 120° rotation is
also feasible. Always as a consequence of the bounce which distinguishes the Samba from
any of the other dances discussed, this rotation can be executed both clockwise or

counterclockwise, illustrated below by the blue arrows.
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Figure 6.55 Analysis of Samba p6

Given the analysis of this section, it is safe to conclude that applying crystallographic
groups to symbols representing specific ballroom dancing steps generates mostly feasible
routines. In fact, almost every pattern generated contained at least one feasible
displacement. The exceptions are pl1,p2,p3 and p6 for the Chacha, and p2 and p3 for the
Tango. Nevertheless, it is important to note that all the patterns presented were obtained by

shifting the control path in the SymmetryWorks add-on; perhaps a different control path
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might have generated feasible patterns for these exceptions. In addition, changing the
control path was itself creating displacements of symbols that could produce
visually-entertaining floor plans. Hence, using crystallographic groups for choreographing

purposes is not only an interesting suggestion, but also a feasible one.
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CHAPTER 7

Conclusion

The original purpose of this research was to present an innovative contribution to the
dance community using mathematics as dance notation, in the hopes of bridging the gap
between science and art. In Chapter 3, we discussed an existing method of dance notation
called Labanotation, which is widely-used today due to its compactness, preciseness, and
ability to encode any body movement without restriction to dance steps. We presented the
different aspects of mathematics embedded within it, such as symmetry, geometric shapes,
2 —dimensional and 3 —dimensional coordinate systems, angles and rotations. We also
described the different affine transformations involved in the displacement of dancers
relative to a stage. Translations, reflections and rotations are all necessary choreographic
elements of floor plans. These mathematical concepts were made evident through an
example, which included a very small excerpt of a choreography performed to music from
the motion picture The Matrix.

The ideas presented in Chapter 3 were put on hold in Chapter 4. Instead, we presented
the art of contradancing, which has been often examined by mathematicians from a group
theory point of view. However, our focus was on encoding the displacements of couples in
an improper contradancing formation. Using homogeneous coordinates, we generated
translation matrices and reflection matrices to indicate the displacements of each partner in
a couple. Depending on the values of the position vector (x,y), the augmented vector

(x,y,1) was multiplied by one of the four different matrices

101 1 0 -1 1 0 -1 1 01
010 | 01 O |,}] 0-1t O [,|] 0 -1k
001 00 1 0 0 1 0 01

to obtain the new position vector. An example illustrating the effective use of this system

was provided for 4 couples.
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In Chapter 5, we combined together the ideas of the two previous chapters. We further
developed the concept of matrix notation by creating a 4 x 6 matrix. Each column represents
a different body part, as per the modern vertical staff used in Labanotation. The first three
rows represent the x,y and z —axis of a three-dimensional coordinate space, with the origin
centered as in Labanotation (at the point of attachment of the body part to the body).
Possible values for these entries are restricted to the set {-2,-1,0,1,2}, depending on the
previous position of the dancer. The fourth row represents the non-negative time variable
t > 0, indicating how many beats a movement should take for completion. Augmenting the
matrix with the concept of homogeneous coordinates resulted in the 5 x 7 movement matrix
i he rax lax to, vl T
h, ra, la, to, rl, I,
M=\ h, ra, la, to, rl, I,

h; ra, la, 1o, rl, llt 0
0 0 0 0 0 O it
-

[=R R

where t,w = max{hy,ras,las, to, vl Il }. Recall that if positions are held for a length of s beats,
this value is added to the amount of time the movement takes for completion (such as
§ + tmax)-

Summing a sequence of matrices M; results in the sequence of movement matrix M;
however, the entries of this matrix only make sense relative to the initial position matrix I.

This matrix usually contains the values h, = ra, = la, = to, = rl, = ll, = 0 and

Hence, summing these matrices together results in the choreography matrix C = M+,
which was shown to appropriately indicate the final position of the dancer given the
sequence described by the matrices M,.

To further emphasize the effectiveness of this dance notation, despite its restrictions to

very basic body movements, we discussed the possible implementation of a computer
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program for animation. The beginnings of such a program is presented in the Appendix,
including the commented code and some screen shots. Presently, the animation occurs
without input of values; instead, one presses a specific letter on the keyboard for rotation of
the head about the x —axis, say, and the head rotates as long as the letter is pressed.
Nevertheless, it is possible to continue the implementation in order to have matrix values as
input and the relevant animation as output. The interested developer can find in the
Appendix a description of the steps required for completion of the program.

Finally, the focus of Chapter 6 was on choreographing with crystallographic groups. Also
known as wallpaper patterns, there exist seventeen such patterns. Given the restriction that
the female generally steps backwards with her right foot in most lead-and-follow dances,
twelve of the seventeen patterns were dismissed because they contain opposite isometries,
including reflections and glide-reflections. These opposite isometries would result in the
female stepping forwards with her left foot, contradicting the structure of the lead-and-follow
dances.

Five baliroom dances were chosen for analysis: two American Smooth dances (the
Waltz and the Tango) and three American Rhythm dances (the Chacha, Samba and
Mambo). A symbol was created to represent the basic step of each dance as performed by
the female. An analysis of these symbols illustrated that, with the exception of the Tango,
they all possess exactly one symmetry equivalent to that of the square. The Chacha and
Mambo both contain the symmetry R,5 (rotation of 180°) and the Waltz is symmetric about
the non-main diagonal (D). The Samba is symmetric about the vertical axis (¥), but if
rotated by 90°, it is also symmetric about the horizontal axis (H), thus creating an element of
the dihedral group D,. In the case of the Tango, the lack of repetition of steps in the reverse
direction directly explains the lack of symmetry in the symbol.

The five crystallographic groups not containing opposite isometries (p1,p2,p3,p4 and p6)

were applied to each symbol using Artlandia’s SymmetryWorks add-in for Adobe lllustrator.
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We observed all the patterns to determine whether any of them contained feasible
displacements by the female dancer. We found that with few exceptions (namely p1,p2,p3
and p6 for the Chacha and p2 and p3 for the Tango), each pattern contained at least one
feasible displacement. Furthermore, these patterns were obtained by testing different
control paths in the SymmetryWorks program. Although the basic restrictions of each
pattern remains unchanged, it is nonetheless possible that a different control path could
either generate feasible patterns when none currently exist (such as in the exceptions
above), or create more feasible displacements within the already feasible patterns. Thus,
we can safely conclude that applying crystallographic groups to symbols representing
specific dance steps is an effective method for choreographing feasible dance routines.

As intended, this reseérch employed various mathematical tools to analyse an existing
method of dance notation and to create new methods. Hence, we have shown that
mathematics is indeed a universal language required in any field of study, including the arts.
Connections between dance and physics (particularly time and space) were already
established by the great choreographer Merce Cunningham. Also, research had already
been done on the presence of group theory in contradancing formations, and the use of
technology to create animation programs for the purpose of choreographing had already
been started. However, the possibility of using mathematics directly for dance notation was
still vague, and this thesis has rendered it more realistic. Furthermore, no one had actually
researched the connections between mathematics and Labanotation, and it is intriguing that
the survival of this method of dance notation might be directly linked to the mathematics.
Overall, the research showed the direct impact of good notation on the development of

certain disciplines, particularly the use of mathematical notation in dance.
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APPENDIX
Dance Animation

The following pages present the initial commented source code and frames for computer
animation of the matrix notation created in Chapter 5. Recall that the language of choice is
OpenGL, and the interface utilized is that of C++.

For the interested developer who wishes to continue the programming aspect further,
one simply has to complete the body parts, and then create a global class to draw all the
parts together, such as drawBody() which would contain drawHead(), drawNeck(), and so
forth. Afterwards, it is just a matter of making the rotations and/or translations of the specific
body part work either through animation or manually.

In terms of animation, the user would have to enter the matrices as steps. The program
would then have to store these matrices in an array or some type of head memory. When a
certain flag or bool is activated, the dancer would then perform these actions from the _
matrices saved in the array. On the other hand, the manual technique would involve the
user entering the matrix and seeing the model changé position in real-time. This can be
achieved if the user enters special codes such that the program understands which body
part is to be moved, and how. For example, the program would prompt the user for input.

The user can then enter a string of the form
[BodyPart][translate x][translate y][translate z][rotate x][rotate y][rotate z]

where:
o BodyPart = 2 characters;
e Translate x,y,z = 2 characters = [bit][number] = [0/1][0 — 9], where [0] = positive and
[1]} = negative;
o Rotate x,y,z = 4 characters = [bit][number] = [0/1][0 — 999], where [0] = clockwise and

[1] = counterclockwise.
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So for example, entering the string RA000100002200001105 would signify:

[BodyPart] = RA, so move the right arm;
[translate y] = [01], so translate 1 unit in the positive y direction;
[rotate x] = [0022], so rotate 22° clockwise along the x —axis;

[rotate z] = [1105], so rotate 105° counterclockwise along the z —axis.
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