Web Services for the Dissemination of Ambient Information to I-centric Applications

Truong Ta

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at

Concordia University
Montréal, Québec, Canada

November 2005

©Truong Ta, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14283-9
Our file Notre référence
ISBN: 0-494-14283-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Web Services for the Dissemination of Ambient Information to I-centric

Applications

Truong Ta

Applications offered to end-users as value added services, or more simply
services, are crucial to the success of future generations mobile communication systems.
One important capability that will enable novel services is ambient awareness. The
awareness of ambient information is usually acquired by a netwérk of sensors and is
related to end-users’ context in terms of situation and environment. There exist several
frameworks for the dissemination of sensor data to end-user applications. They range
from low-level APIs to databases and include Web services. This thesis advocates Web
services for the dissemination of ambient information to I-centric applications. It shows
the shortcomings of the current dissemination frameworks and demonstrates the promises
of Web services as a framework. High level of abstraction offered to application
developers and ease of integration are among the key motivating factors. A set of Web
services for bridging these applications and sensor networks are defined and
implemented. They provide ambient information such as location, velocity,
environmental data, physical presence and proximity. A generic functional architecture of
the framework and a model for ambient information provide sensor interoperability and
are implemented as part of the thesis. To ultimately show the feasibility of the Web
service based framework, performance measurements are conducted with respect to

network load and response time. The analysis shows that response time is increased while

iii

network load may decrease or increase depending on the type of ambient information
requested. Ultimately, it is a small price to pay for benefiting from sensor interoperability

and ease of application development.

v

Acknowledgements

I wish to express my sincere gratitude and appreciation to all the people who
helped me made this master thesis possible. First and foremost, I dedicate special thanks
to both my supervisors Dr. Ferhat Khendek and Dr. Roch Glitho who kept an eye on my
progress and supported me with sound advices and discussions. Their words of wisdom
always oriented me in the right direction or showed me different perspectives and I am
very grateful for that.

I would like to further extend my gratitude to the Natural Sciences and
Engineering Research Council of Canada (NSERC) and Ericsson Research for their
financial support. I also thank my fellow researchers who shared with me their past
experiences, gave me constructive comments and helped me with my projects. I had great
pleasure working with all of you and enjoyed being péﬁ bf this research team.

Last but not least, my personal thanks go to my dearest friends and family who
never ceased to give me moral support and were there when I needed them. You always

understood and supported the choices I made during this long and personal journey.

Truong Ta, December 2005

Table of Contents

LSt Of FIZUIES ..eevvviiiiiiiieiieitcesiterieeette st et s st e e e et eebessaeeeseeessnesemnsesntseneeseeseneenasseenn X
LSt OF TADIES..c.ueiiieiieieeeeee ettt satesr s aa e et e sae b ne X1
LSt OF TaDLES...cuviieieeiiereieniee ettt ettt st ettt e b e s b e s e e e e e e e et e beesseeenmenennne Xi
List of Acronyms and ADDIeviationsccecuereeriierirsienrieniineereestesee et eeeseeeseeseeseeens xii
Chapter 1 INtrodUCHIONc..eieeiieieeiieteeeeeee ettt ettt e e vaessbe e b e s e e stbsessbeesaveas 1
1.1 The Research DOomaincoveveeeeieeieniienieieeietceectestee ettt et 1
1.1.1 AMDIENE AWATEINESS ...oveeevreeieenrerieniieeeiiiiesteesteseesieseessresnessesstessessnesssees 2
1.1.2 Wireless Sensor NEtWOTKco.vveevverierrernerirenerenenenneseesneesessessessnssnesses 2
1.1.3 WED SEIVICES...covertirririieriieeterieetenerte sttt et s e s et eseseaessaesbeesnnesseens 3

1.2 Problem Statement and Contribution of the Thesis et 3
1.3 Organization 0f the ThesiSccceerueeririinieciriineerecceieetee ettt seessae e 5
Chapter 2 Ambient Awareness, Wireless Sensor Networks and Web Services.............. 7
2.1 [-centric COMMUNICALIONS ...cc.errveereerieriinrenteneeeeeiesrresrteeesresaesseesesonesesessneeane 7
2.1.1 AMDICNt AWATEINESS ..c.uvevveeireeieeireneeieeieeeetesieetesstesseesatessessessesssessaensens 9
2.1.2 PersonaliZationcceeueeeeeerniieniieceeeeet ettt ettt 10
2.1.3 AdAptability......coovieeiiiriieiiiiireeee et beesee s 11
2.1.4 Business Modelcoooeiniieriiinieiieniciteceeteitesee ettt 12

2.2 Wireless Sensor NEtWOTKSeiiiiiiiriiiieiiniieen ettt seirte e srtee e e e 12
2.2.1 Sensor CharaCteriStiCs . ..oecueeirieriieesienie et s et s esre e 13
222 Wireless Sensor Network TOPOlogYcoovvevvvrveiiieriiinciieneerresreeseeeenees 14
223 Field of ApPICations......c.ccooieeieiiiiiniieciiiineeie ettt 16

vi

224 Wireless Sensor Networks: Strengths and Weaknesses...........ccceveveveeneee. 17
2.3 WED SEIVICES...ceiiiiiiiiieiierieenreerrte et e et es et et eat e e s e e sbes e seesereessbe s beesssseasas 18
2.3.1 Definition and Basic PrinCiples.........ooceivirininveeninienicenieeneeeeecieennes 19

2.3.2 Service Oriented Architecture Definition, Roles, Operations and Internet

StANAAIAS ..veiveevieiieeie ettt et s e e et sar et 20
233 Web Services Industry EXamples........ccocerirenrieninneenieneeneenennenseesnneennes 24
2.3.4 Web Services Key Benefits.......cooocviiiiinicniiiniciineecieeeieeeeesenessnenenees 24
Chapter 3 Data Dissemination Framework for Wireless Sensor Networks................... 26

3.1 Requirements for a Dissemination Framework for an I-centric Environment.. 26

3.2 Data Dissemination Approaches for Wireless Sensor Networks........cc.cceueeneee. 28
3.2.1 Low Level Commands and APIScccceeeeinienenienennrnceneececnreeeeeneen 28
3.2.2 DAtabASES .. .eeuieeiiieiieeeie ettt e s ae e s s 31
323 MOBIIE COUC.rrrrrerssrseseseesesesrseesesessssssssseses st 34
324 WED SEIVICES...oeiiueeriieeieenteeieeeiee ettt et sr s re s s s e seesanesesees 36
3.2.5 OhETS ..ttt ettt et re e e s be s sessbe st s sbeaens 39

3.3 Data Dissemination Frameworks Using Other Technologies........c.cccccvveuenee 42

34 SUIMALY ©1eiieiirieeieniieeeeeiireeeresirereeeserereeesesiereesseseeesssaressossressssssssanansssessorassesses 43

Chapter 4 Design of a Web Service Based Data Dissemination Framework for an I-

CENLTIC ENVITONIMENT ...euvvieriiiiieeiienieetee ettt sa st s re e s 45
4.1 ROIE MOMEL.....eieeeee ettt 45
4.2 The World Model.......coovviiiiiriiiiiiteecte ettt 46
4.3 Proposed INterfacesccooeiviemiiiniiiieeceecet e 48

43.1 Common Parameters of the Interfacesccocevveieiiiiiiiiiniiiiiiiiieeee, 49

vii

43.2 Subscribe LoCation()c.ccceverevenirnienienreniiiniecienieereneeeecnreaserenee 51

433 Subscribe AreaEnvironmentalData()cocoeeeveriienieinieneniennieneneeeneens 53
434 Subscribe ProxXimity() ...cccceeeeereeerreerernrerieninensensrestenseesressresiesseessessnens 57
4.3.5 Subscribe PhysicalPreSence().......ccvvveeveeierireenieenenreneeneceeenereseeseessenens 58
4.3.6 Subscribe VElOCIEY()...cocveeeverenieiiieieeeieetee et 60
4.3.7 Subscribe EntityEnvironmentalData()ccocoeveriieeneinneineeeneenee 62

44 Functional Architecture of the Proposed Web Service Based Framework....... 63
4.5 SUMIMATY .eeevveiiiieieiiieeiieirte ettt eee e s e atesenes e sosbessssarasssasasssraesas 65
Chapter 5 Prototype Implementation and Performance Evaluationc.ccccevvvneenenne. 66
5.1 Prototype Implementation..........cccceeevuierrieereenirernennieiscrenisrersienseeesseesssensresssenas 66
5.1.1 Backend WSNuiiiiieeneetertetcrteeeet et et tesre et sae e sane e s 70
512 MapPIng t0 SENSOIS ..ccueivecrieriiinrieniiiientereeresreere et sresssesseessnesasessssasssaess 72
513 OPHIMIZALIONS ...eeeivieiriieieieeeeirieeeseeeesseeesteesteessssaessssaessnsesssssesssssessssesenns 74
514 Development Platformcoccovevvieiniiiniiiecceceentecen e 76

5.2 Performance Evaluation.........ccccooeeeriniienieneniniiencreneeestee e 76
5.2.1 Performance MEtIICScccveeiererieiriiieiteieeeresie e seesesstesressesseesessessnens 76
52.2 TESEDE ..ot st s 77
523 Results and ANALYSIScccveriririeeriiinieiseesnienieseseesnseesennessesesseessaesssesssnees 78

5.3 Application: SenSECall........cccocereriiriiiiniieniieieeeniineereereiseesresseeesssresseeseassenens 81
Chapter 6 CONCIUSION.coouiiiiiiieierce ettt sttt see e 84
6.1 Thesis CONIIDULIONSovveviiriirieiriiiienieierrene et seeseessnesatssnee e snesas 84
6.2 FUuture WOrkooeeeeiee ettt 86
RETEIEIICES ..eieviiiiiiirrii ettt cere e e e s s e e sreessane e s st e s ssteesssaessssaesnsnensnnns 87

viii

Appendix A - sample SensorWare script

..

1X

Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 5.4.
Figure 5.5.

Figure 5.6.

List of Figures

Reference model of I-centric communiCations.............oevvevereeeueevesreseereerereenens 8
MICA MOTE.....cceireiiriieiiieietee ettt et et r st e aesnrensesaasassesonennan 13
MiCADOt MOLE ...ttt 13
GOLEM DIUSE ...ttt a oo ne e 13
WSN HOPOLOZY ..ottt ettt e eb s tess s seorenes 16
Web service architecture..........ocveeeverieieiericieiieciceeereece et 21
Low level commands from CreKets.........oeeveeverieveiiieeeciieeceeeeeecv e 30
Example of SENSOT QUETY ...c.c.covrirmiiiniirieiteeeee et 32
Shaman SEIVICe GAtEWAYcocertrreriererieriienreiissee sttt sseseseans 40
A SQL-like subscribe statementocveeerevoeeeeveieiieiereeee et 41
Role model for the ambient awareness frameworkccoovvververereeneenennn. 46
Space and Area CONCEPLSc.coverieerererenieerreeeeeteereeseeter e ese et s eesesreeens 48
Web services INterfaces OVEIVIEWoccevvieeverinvietienieeeeieenreseeseeeeeeeseeenas 49
Overall functional architeCtureoo.eevevieiveeeece e 63
‘higher class’ for handling high level details of the Web service................... 68
‘lower class’ for handling sensor specific details..........c..ocoevevervevereevecennenen. 68
Physical deploYMEnt VIEWccccvceveuivieiericrireeeeceeeceete et 72
Mapping Service for location data...............coecoeevererviieineceeeeeeeeeeee e, 73
Mapping Service for environmental datac.ocoeeveeiviiieieiiieeceeene, 74
The overall architecture of SenseCall.............cccooeveiiieiieeeiiiieceeeeesen 82

List of Tables

Table 2.1. Service Oriented Architecture protocols........eeivvverrerririrenereninnrennerereeneene 22
Table 3.1. Summary of the existing dissemination frameworks.........ccccceeveereireereneennen. 44
Table 4.1. Selected parameters of Subscribe Location().......cocceveerveeveerceeriieriecnveneenennne. 53
Table 4.2. Selected parameters of Subscribe AreaEnvironmentalData()...........cccceouen..e. 56
Table 4.3. Selected parameters of Subscribe_Proximity() .. 58
Table 4.4. Selected parameters of Subscribe PhysicalPresence()coceevvereeenvenerruenene 60
Table 4.5. Selected parameters of Subscribe VElocity()oveevvevrenerviercrerieninenivenenruennes 61
Table 4.6. Selected parameters of Subscribe EntityEnvironmentalData()....................... 62
Table 5.1. Average network load per measurement, sent and received from the client

1Y 0) 0] (7214 o) 1 U USROS UR RSSO 79
Table 5.2. Average response time per measurements for proprietary and Web service

interfaces

Xi

APTL:

CORBA:

CPXe:

DBMS:

IETF:

MMS:

MOD:

OASIS:

OGC:

SMS:

SOA:

SOAP:

UDDI:

VAS:

WSDL:

WSN:

WWREF:

W3C:

XML:

List of Acronyms and Abbreviations

Application Programming Interface

Common Object Request Broker Architecture (Object Management
Group)

Common Picture eXchange Environment (International Imagery Industry
Association)

Database Management System

Internet Engineering Task Force

Multimedia Message Service

Moving Object Database

Organization for the Advancement of Structured Information Standards
Open Geospatial Consortium

Short Message Service

Service Oriented Architecture

Simple Object Access Protocol

Universal Description, Discovery and Integration standard

Value Added Service

Web Service Description Language

Wireless Sensor Network

Wireless World Research Forum

World Wide Web Consortium

eXtended Markup Language

Xit

Chapter 1 Introduction

1.1 The Research Domain

Recent studies showed that today’s telecommunication network operators face a
saturation of the voice market. The mobile penetration level is high in Europe and Asia
and stagnation is setting in. These telecommunication network operators are shifting to
Value Added Service (VAS) to increase revenues in both data and voice services. VAS
are services that add extra value for the basic service offering or could be standalone
services like Short Message Service (SMS). This opens up new opportunities and so far,
the VAS segment is still growing in terms of profitability and in diversity of services
offered.

Traditional telephony VAS include call forwarding, call screening, call transfer,
call hold and conferencing; innovative VAS include Multimedia Messaging Service
(MMS), presence and other lucrative VAS include downloading ring tones, movies,
online gaming and tracking the scoreboard of sport events. A new emerging class of VAS
are ambient-aware services. These VAS are sensitive to end-users’ context in terms of
situation and environment. Location-based services such as offering location-sensitive
information and tracking services are a subset of ambient-aware VAS. This class of
services is considered as a key VAS for telecommunication network operators to deliver

in the coming years.

1.1.1 Ambient Awareness

Ambient awareness is one of the main features for enabling this class of services.
It allows information about the individual user, his/her environment and situation to be
known to applications in order to simplify interactions and to enrich communication. This
user-centric view of computing leads to automatic, adaptive and personalized
applications. Let us consider the example of a user trying to contact a colleague. An
ambient-aware application may determine that the colleague is in a meeting, implied by
the fact that other users are present in the same room. The user is notified and contact
attempt is postponed until the colleague is alone. Once alone, the application may
establish a video phone call or regular call depending on the nearest equipment available

to the colleague.

1.1.2 Wireless Sensor Network

There are many ways to acquire information about the user situation and
environment, or more simply his/her ambient information. Capturing this information is
usually done by a sensor, or group of sensors. A typical sensor node is a small scale,
multi-purpose sensing and computing device, with wireless connectivity, and is deployed
in the environment. The area of application of this technology spans more than just
providing ambient information for VASs. It is also used by the military, the scientific
community, the health-care and industrial sector. Because of the wide area of
applications, the sensors are very heterogeneous and as a consequence, there are several
possible techniques to harvest information produced by sensors. These techniques range
from low level APIs to databases, to mobile code and include Web services. There is an

ongoing standardization however it is for very specific areas of application which are not

necessarily applicable for VAS. Currently, there is no specific ways to model and

disseminate this ambient information to VASs.

1.1.3 Web Services

Web services in its simplest definition are programmatic interfaces that allow
application to application communication over a network. When properly designed, Web
service interfaces provide a high level of abstraction as well as loose coupling between
interacting software components. This ease the development of applications since
developers are not required to have extensive domain-specific knowledge. Web services
have been adopted in many application domains (telecommunications, digital imaging, e-
commerce, etc), the reason to do so have mainly been ease of integration with other
applications or with other business processes. The mentioned features make Web services
an attractive solution to expose sensor capabilities while hiding their domain-specific

details, to enable interoperability and to ease the development of VASs.

1.2 Problem Statement and Contribution of the Thesis

Ambient-aware applications are slowly gaining momentum in the industry.
Location-based services are gaining popularity as telecom operators, public LAN
providers and enterprises are developing and deploying these services. The target
audience for these services includes any mobile computing and communication device,
such as cellular phone, PDA and laptop. Since service providers and service consumers

are increasing in variety and volume, it is expected that rapid development and

deployment of VASs will be a key strategy in the success of any service provider.
However, from an application developer point of view, providing ambient awareness to
applications and using it is not an easy task.

First, current data dissemination mechanism for sensors have several shortcomings
that may hinder the application developer productivity. Some of these mechanisms are
programming language dependant, others require extensive knowledge of sensors and its
low level details, and a few of them do not have the right level of abstraction for building
user-centric services (i.e. requires many methods to perform a simple ambient
information request). In brief, it is difficult to integrate sensor technology in applications.

Second, since sensors may be embedded in the environment, application
portability is a problem that end-user faces and application developers have to deal with.
Because of the heterogeneous nature of sensors, there is no guaranty that an ambient
aware application may work when the user is in a foreign environment with different
sensors types, manufacturers, models or data dissemination mechanisms. Service
continuity is an important aspect of customer satisfaction and hence, the application
developer has to spend a portion of the development effort in dealing with sensor
heterogeneity (write code to support different sensors).

This thesis proposes a high level and user-centric Web service interfaces and an
accompanying framework to disseminate ambient information, more precisely
environmental and spatial information. The goal is to allow application designers to
quickly prototype ambient aware-applications, to concentrate on the high-level details of
acquiring and acting on ambient information while letting the framework handle the time-

consuming and tedious low-level details of ambient-aware computing. Hence, high level

and user-centric Web services seem to be a promising approach to ease the development
of ambient-aware applications.

As part of the research work, the proposed interfaces are implemented along with
the generic framework. Commercially available sensors are integrated in the whole
system and a simple prototype application has been created and tested. Performance
measurements were taken and analyzed to evaluate the overhead of using the Web

service middleware approach.

1.3 Organization of the Thesis

Chapter 2 gives and overview of technologies and concepts involved. It introduces
" the I-centric paradigm with a strong focus on ambient-awareness. It also outlines two
other features related to ambient awareness: adaptability and personalization. Wireless
sensor networks characteristics are described along with their logical topology, field of
applications and their strengths and weaknesses. The last section defines Web services,
their basic principles, architecture and application in the industry. Finally it concludes
with the key benefits of Web services.

Chapter 3 defines key requirements for a data dissemination framework for
wireless sensor network in an I-centric environment. An evaluation of those requirements
for different data dissemination approaches follows before the concluding summary.

Chapter 4 starts with the description of the world model used for modeling
ambient information. The Web service interfaces for disseminating ambient information

is detailed and a generic functional architecture of the framework is outlined.

Chapter 5 describes the implementation of the framework including the sensors
used, the mapping to the sensors and optimizations used. A section on performance
measurements and analysis is included. A sample application prototype is described at
the end of this chapter.

Chapter 6 concludes with the thesis contributions and potential future work.

Chapter 2 Ambient Awareness, Wireless Sensor

Networks and Web Services

This chapter introduces three main topics: ambient awareness, wireless sensor
networks and Web services. The first section describes ambient awareness in I-centric
communications and its role with respect to other features of I-centric communications.
The second section discusses wireless sensor network, a technology that enables the
capture of ambient information. Wireless sensor network characteristics, topology, their
strengths and weaknesses are overviewed. The third section is about a technology that
enables seamless application to application communication: Web services. It outlines

Web services as well as its principles, architecture and standards.

2.1 Il-centric Communications

The Working Group 2 of the Wireless World Research Forum (WWRF) [14] has
worked in the area of service architecture for future wireless communications systems.
They envisioned a communication environment [6] where the individual end-user, ‘I’, is
in the center of all activities a communication system has to perform. I-centric
applications are a subset of context-aware applications. It focuses on end-users and their
individual needs, preferences and surroundings in order to adapt to the changing
situations. In I-centric communications, the user interacts with his or her communication

space defined by related context and objects. This communication space support three

features: personalization [41], adaptability [40] and most importantly ambient awareness
[39]. The reference model is shown in Figure 2.1. Because I-centric applications should
work under changing environmental conditions, these three features affect all layers of
the communication. Hence a vertical approach is adopted and is provided by generic
service elements, a set of common functions that ease the creation of I-centric services.
Among the generic service elements, environment monitoring provides awareness of the
user context to all layers. The service platform supports the development and operation of
I-centric services (APIs to applications, runtime environment, etc) while the IP

communication subsystem provides call control, session control and mobility

management. The next sections elaborate on the three features.

Generic service
elements for all
layers

IP
communication
subsystem

Figure 2.1. Reference model of I-centric communications

2.1.1 Ambient Awareness

Ambient awareness denotes the functionality of sensing and exchanging the
ambient information of a user in his communication space. A communication space
denotes the surrounding space of a user along with the objects he or she is
communicating with. Ambient information is any information pertaining to the
situational context in which an individual user is in. The situational context includes three
main parts: spatial information, environmental information and physiological
information. Spatial information is not limited to location but also includes orientation,
speed, acceleration, surroundings (i.e. indoor/outdoor), proximity and physical presence.
Environmental information includes temperature, air quality, humidity, dust level,
luminosity and noise level. Examples of physiological information are blood pressure,
heart rate, respiration rate, muscle activity and tone of voice. Besides the main situational
contexts, there are also mental, social and task context. The goal of ambient awareness is
to utilize ambient information to enable services to adapt actively to the changing
context. Ambient information can also be combined with situational models (e.g.
topology information) to produce higher level concepts (i.e. the user is in a room). There
are countless ways to acquire ambient information, each have different format, reliability,
applicability, uncertainty and so on. Ambient information can be acquired from an
application, the network, sensors or other sources. For instance a networked calendar can
give rough location information of a user given his time/activity schedule; IP addresses
can give location and similar concepts can be applied to credit card/bank transactions to
retrieve location. Of course, ambient information can also be retrieved by hardware

sources such as sensors. Needless to say that a system that provides ambient awareness

will need to retrieve diverse types of ambient information coming from various sources
and to deliver to assorted devices or systems.

Application for ambient awareness can be much diversified. For security
applications, one can create an application that detects an abrupt rise in ambient noise
(such as a scream) in a school campus and notifies the nearest security guard [25]. For
added security in corporate wireless access point, location information can be used to
only permit network access to users who are within the physical boundaries of the
corporate building. Ambient aware user interface is also a good area of application. For
instance, the typical user interface of an email client is text-based, whereas it would

become speech-based if the user is driving his/her car.

2.1.2 Personalization

Personalization provides means to model preferences and allows the individual
user to manage his/her own information and communication space. These preferences
allow the user to select, configure and arrange presented information individually to
increase the usefulness and acceptance of digital information and applications, while
filtering out unnecessary/irrelevant information. With personalization, products, services
and data can be tailored to individual preferences and characteristics. Ambient
information plays an important role in personalization of services. It dictates when (i.e. in
which situation) a personalized service should be offered or adapted, it specifies how to
personalize to the current situation and it is used to acquire preferences implicitly. While
preferences can be specified explicitly (i.e. users input their preferred banking institution,
set a bookmark, apply a “Theme’, etc), acquiring preferences implicitly can be done by

Rule-based systems. Rule-based systems learn user preferences by observing their

10

behavior (i.e. recurrence of a location or environmental conditions in which the user is
consistently performing a task).

In order to share user preferences or profile information across different domains,
it is important to formally define the semantics of this information, as well as trust and
privacy considerations. Ongoing standardization efforts for handling profile information
include IDsec [42] from the Internet Engineering Task Force (IETF), Composite
Capability and Preferences Profiles [43] (CC/PP) and Platform for Privacy Preferences

[44] (P3P) from the World Wide Web Consortium [49] (W3C).

2.1.3 Adaptability

Adaptability is defined as the ability of services and applications to change their
behavior to reflect changes in the environmental conditions and/or individual preferences.
By adapting, these services and applications meet current user needs and preferences. An
example of adaptation can be a media streaming application that changes the sound
output to text output on the display while the user moves from a silent environment to a
noisy one. Other types of adaptation includes: altering the communication streams (bit
rate) during transmission, adapting the presentation of information (changing from text
output to sound output), altering the content of a message (adding / removing
information) or modifying behavior (switching to another algorithm). Adaptability must
be reactive as well as proactive. For instance, a mobile device that is merely reacting to a
failing connectivity might still face service interruption. Anticipation is required for
service continuity and implies predicting the near future. In all cases, adaptation requires

constant environmental monitoring and event notification.

11

2.1.4 Business Model

Organizational and financial aspects are becoming more important in the
development of telecommunication systems and hence the results of I-centric
communication will be partly driven by business models and market demands as well as
R&D outcomes. The WWREF identifies a flexible business model as a starting point to
describe the roles, relationship and reference points of each party in the business
community. This is done to motivate the participation of business partners as well as to
provide a standardize point of contact (reference points) for the information exchange

between business partners.

2.2 Wireless Sensor Networks

A sensor, in a very generic definition, is a system that can sense a phenomenon
and provide/display the sensed information. The sensed phenomenon can be of any type
ranging form environmental conditions (temperature, magnetic fields, atmospheric
pressure, humidity, etc), to chemical constitution and including electrical properties. A
wireless sensor network [51] (WSN) is a collection of small-scale hardware sensor nodes
capable of four main functions: sensing, powering, processing and communicating. The
processing unit is typically an embedded microcontroller responsible for aggregating [26]
[27], encrypting [28], storing the data as well as managing the collaboration with other
nodes using power-aware routing algorithms. The communicating unit is responsible for
the transmission and reception of data. The transmission media is typically done via radio

communication but there are also instances of ultra-sound [2], optical communication

12

[36] and infrared. The sensor is powered by a power unit; it can operate on batteries, on
an alternate power source such as solar cells or both in order to recharge the depleted
batteries. Finally, the sensing unit might have more than one sensing capabilities as seen
in Smart-Its [33].

A popular platform for developing WSNs is the mote platform from Berkeley
University [45] and there have been many WSNs developed from it. The mica-mote [47],
micadot-mote [48] and MIT crickets [2] are commercially available examples from
Crossbow Technologies. Figure 2.2 and Figure 2.3 show the mica sensors next to golem-
dust [Figure 2.4] a prototype sensor developed at Berkeley Sensor and Actuator Center

[46].

Figure 2.2. Mica Mote Figure 2.3. MicaDot mote Figure 2.4. Golem Dust

2.2.1 Sensor Characteristics

Sensors have intrinsic and extrinsic characteristics [50]. Intrinsic characteristics
are defined by the type of information they sense (or scientific requirements) and are not
affected by the hardware design. The number of data source is the number of connected
sources needed to make a meaningful measurement. For instance, measuring seismic

activity requires a lot more data sources than measuring ambient temperature of a room.

13

This directly impacts the scalability of the data transport as well as management and
administrative functions of the system. The data rate will depends on the type of
collected data (i.e. numerical measurement, image data, video data, etc) and the sampling
rate. The timelessness indicates if the collected data is to be use in real-time or for later
analysis. The value of the data indicates the sensitivity to data loss. Systems collecting
valuable data may incorporate fault-tolerance or redundancy mechanisms to avoid this
loss. Extrinsic characteristics depend on the hardware design such as processing power,
memory, available bandwidth, power consumption and uniqueness of design. Uniqueness
of design is a characteristic of sensors that can only operate in certain environmental

conditions (i.e. outer-space).

2.2.2 Wireless Sensor Network Topology

Typically, WSNs are densely deployed in a sensor field either by throwing them
in a mass or placing them one by one. Several hundreds to thousands nodes are deployed
in the field and the node density can be as high as 20 nodes/m® [51]. After initial
deployment, the logical topology of the sensor network can rearrange itself due to many
factors: node failure/malfunction, poor connectivity, insufficient energy/power or node
mobility. Thus it is natural for a WSN to have self-configuration and self-organization
capabilities. Furthermore, with the constant rearrangement of the topology and the
redundancy in the WSNs nodes, global addressing is not appropriate in WSN. The
importance of any one particular node is reduced as compared to traditional networks,
hence addressing is done according to the attributes of the WSN or the data it provides.
An example of data-centric addressing is geographical addressing, where data is retrieved

based on a geographic ‘bounding-box’ or region.

14

In general, WSNs have a sink node in which external applications can interact
with. The sink node is a special node with enhanced capabilities such as more processing
power, storage, memory or a direct link to a gateway or the Internet. It may not have
sensing capabilities like normal nodes, however it possess other roles such as the
knowledge of the WSN (what data is available, how to communicate with the WSN,
logical topology, etc). Of course, it also exposes WSN capabilities to the interested
applications. Figure 2.5 shows the typical topology of WSNs and depicts a sink node that
is not directly interacting with all the sensor nodes. Since data transmission is the most
power-hungry operation in a sensor node, techniques such as multi-hop, aggregation and
other power-aware routing protocols [29][30][31][32] are used to relay data to the sink
node while minimizing power consumption. The aggregating nodes are connected to
other sensor node(s), collect the data from the connected node(s) and forward it to the
sink (or other closer node). Application interacting with the sink node might require low
level or proprietary APIs. There are also other approaches such as databases, mobile code

and Web service that will be discussed in Chapter 3.

15

: Sink node

@ :Sensornode
Figure 2.5. WSN topology

2.2.3 Field of Applications

WSNs can sense a wide variety of ambient information. With a wide variety of
information one can expect a wide variety of application domains. Apart from ambient
awareness applications discussed in Section 2.1.1, WSNs are also used in military
applications, environment and habitat monitoring, health sector, home and other
commercial areas.

Military applications benefit from the rapid deployment, self-organization and
fault tolerance of WSNs. The destruction of some of these nodes by hostile forces does
not affect much the operation of the WSN while providing friendly forces with
intelligence, surveillance, reconnaissance and targeting data. Examples include
monitoring friendly forces, equipment and ammunition; battlefield surveillance;
reconnaissance of opposing forces and terrain, and targeting/guidance system

improvement.

16

Environment and habitat monitoring [34] use WSN to study vegetation response
to climatic trends and diseases. In the same context, acoustic and imaging sensors can
identify, track and measure the population of many species. Flood detection [35], such as
the ALERT system deployed in the United States, employ rainfall, water level and
weather sensors. Other examples include forest fire detection and precision agriculture
where pesticide level, soil erosion and air pollution are monitored in real-time.

In the health sector, human physiological data can be collected, stored and used
for medical exploration. It can also detect elderly people’s behavior (e.g. a fall), and help
doctors to identify pre-defined symptoms earlier, as well as to track doctors and patients
location inside the hospital. For home applications and commercial areas, there are
intrusion detection systems, interactive museum, environmental control in office

buildings, location tracking and many more.

2.2.4 Wireless Sensor Networks: Strengths and Weaknesses

While ambient information can be collected from other sources, it does not equal
all the benefits WSNs can provide. The vast diversity, accuracy and availability (when
densely deployed) of the collected information can easily be the deciding factors. It is a
known fact that WSNs are suited for environmental information. For physiological
information there seems to be no other obvious choices than sensors. Combine these
benefits with their form-factor and their wireless feature, and it makes them even more
attractive.

As for the weaknesses, sensor nodes have limited resources. There has been

consistent research work in this area, notably in minimizing power consumption (i.e.

17

power aware routing algorithms, time-scheduling collection, low-power hardware design,
etc). The fragile nodes are prone to failure, both in the node hardware or communication.

Using commands or low level APIs to access data via the sink node is also a
limitation. This often requires technical knowledge of WSNs and their topologies when a
data-centric addressing scheme is not available. Low level APIs are not suitable for rapid
application development especially when developers do not have prior experience with
WSNSs.

WSNs are also heterogeneous; sensing one type of ambient information can be
done by many sensor model/manufacturer. An application that needs to replace a sensor
model/manufacturer by another model/manufacturer can be a difficult task. It will require
modification of the application if the APIs are proprietary or use a different programming
language/platform than the original one. Furthermore the problem of integrating and
mixing heterogeneous types of sensors in an ambient-aware application can become an

even more challenging task.

2.3 Web Services

Ambient awareness is the knowledge of ambient information and WSNs provides
means to capture it. Web services deals with communicating information to applications.
This sub-section defines and details Web services and its principles, architecture and
standards involved. Some industry examples are discussed before concluding with a

summary of the advantages of Web services.

18

2.3.1 Definition and Basic Principles

Adam Bosworth, one of the main contributors to the development and evolution
of Web services, defines them as an architecture that allows applications to interact with
each other over a network. There are three foundation principles [64] on top of which
Web services are built: high level of abstraction, loose coupling and asynchronous
communication.

High level of abstraction, also known as the coarse-grain approach, is to combine
the steps involved in the communication process into one big operation. Effectively, this
principle deals with communication efficiency by minimizing the interactions between
the communicating components. There is also the added benefit of transactional integrity
when dealing with atomic operations.

Loose coupling deals with minimizing interdependency of the communicating
components. It is desirable to handle changes gracefully and reliably; a change in one
component should not affect another component in the communication.

The third principle suggests that the mode of communication should be
asynchronous. However synchronous mode is also supported. Asynchrony in the
communication means that a component should not wait for the response of another
component in order to continue its task. This is meant to handle unavailability in real-
world application as they might go down, run into temporary bottlenecks or just take a

large amount of time to complete (i.e. requires human intervention).

19

2.3.2 Service Oriented Architecture Definition, Roles, Operations and

Internet Standards

A Service Oriented Architecture (SOA) is a software architecture that defines the
use of services to make resources available to network nodes through a well-defined and
standard interface. Web services implements this architecture.

The W3C defines the Web services architecture [Figure 2.6] by three entities [18]
- the service requester, the service provider and the service registry - and their
relationships: publish, find and bind. The service provider owns the service and publishes
the service description in the service registry. The service description uses a standard
format to describe the service and contains information on what is the service (i.e. inputs
and/or outputs), where it can be located (i.e. network location of the service
implementation) and sow to use it. The service registry maintains a collection of service
descriptions while providing search and publication operations to the service requester
and service provider respectively. The service registry also contains general information
about service providers, a classification of business and service types, and technical
details of a service. The service requester finds the appropriate service by querying the
service registry and binds to the service provider. While the service requester is the
consumer of the Web service, the role of a service requester and service provider are not
mutually exclusive. In fact, a service requestor can consume a Web service in order to
provide a greater service to other service requestors.

Each of the three entities has two of the following behaviors: publishing a service
description, finding a service description, and binding (or invoking) a service. Before a

service description can be published, it needs to be created. This can be done by hand-

20

coding it, but there are more efficient ways such as software tools that generates them
automatically from the programming model. The publication can be done via various
mechanisms. The simplest case is the direct publish where the service provider sends the
service description to the service requestor by common distribution scheme (i.e. email
attachment, URL, CD-ROM distribution). In this case, it is assumed that the two parties
have agreed on the business terms and/or the service requestor has paid the fees for using
the service. Finding the service description can be done by either querying the service
registry or retrieving it directly. Some find operations are used at design time for program
development purposes while others are used at runtime for retrieving the service binding.

Lastly, the bind operation involves locating, contacting and invoking the Web service at

runtime using the information found in the service description.

Figure 2.6. Web service architecture
The concept of SOA has been around for some time. Most standard distributed
computing middleware such as Java Remote Method Invocation (Java RMI), the Object

Management Group (OMG) Common Object Request Broker Architecture (CORBA) and

21

the Open Group Distributed Computing Environment (DCE) all implements SOA
concepts. While detailing these middleware is out of the scope of this thesis, the general
difference is that Web services do not rely on a new set of protocols, but rather build on
top of existing standard Internet protocols. Table 2.1 shows these differences.

Table 2.1. Service Oriented Architecture protocols

Java RMI CORBA DCE Web services
Data Format Serialized Java | CDR NDR XML
Wire Format Stream GIOP PDU SOAP
Transport protocol JRMP IIOP RPCCO | HTTP, SMTP.,...

Interface description | Java Interface CORBA IDL |DCEIDL | WSDL

Discovery Java Registry COS naming | CDS UDDI
mechanism
2.3.21 XML: Extensible Markup Language

The fundamental building block is XML [65] which is a platform and
programming language neutral mechanism to represent data in a structured fashion. It is
human-legible and easily parsable by software for validation. It separates data

representation from data content

23.2.2 SOAP: Simple Object Access Protocol

The de facto standard for the communication between all entities is the Simple
Object Access Protocol [12] (SOAP). SOAP is an XML-based protocol fulfilling three
main roles: it defines a framework for describing messages and how to process them, it

specifies a set of encoding rules for expressing instances of application-defined datatypes

22

and it provides a framework for transport protocol binding. The binding allows SOAP
messages to be transferred using various transport protocols (HTTP/S, SMTP, POP3,

IMAP, etc).

2.3.23 WSDL: Web Service Description Language

The service description is expressed in a standard XML format: the Web Service
Description Language [11] (WSDL). The WSDL service description contains an
application-level service description and protocol-dependant instructions in order to
access the Web service. The application-level service description is an abstract interface
that describes what consist in the Web service. This includes the service type and
information on the operations such as the input/output of the exchanged messages, the
format of the messages as well as the individual datatypes of the messages elements. The
protocol-dependant instructions contain information on Asow to communicate with the
Web service and where to invoke it. The how details the binding of the abstract interface
to a set of protocols. The bindings specifies which XML encoding style to use, which
transport protocols to use, etc. The where details the service implementation as a

collection of one or more related ports. A port is the access point of the actual service.

2.3.2.4 UDDI: Universal Description, Discovery and Integration

The interface for publication and find operations is specified by the Universal
Discovery, Description and Integration [13] (UDDI). An entry in the UDDI contains
three types of information pertaining to Web services: white-pages information which
includes a brief description, contact information and business identifiers; yellow-pages

information which provides a classification of business and service type; and green-pages

23

information which covers the technical details of a service such as compliance to certain
technical specifications as well as a pointer to the WSDL document. The publication can
be done to a private UDDI node hosted within an enterprise (i.e. for internal enterprise
application integration), or to a public UDDI Operator node in hopes of being discovered
by potential business partners. Searching the UDDI can be done by service type or by
service provider. UDDI also defines a core set of taxonomies such as geographic

location, product codes and industry codes to refine the search.

2.3.3 Web Services Industry Examples

Web services also allow corporate business models to extend by facilitating the
development and deployment of new services, or by outsourcing services. New services
can be easily created without requiring technical knowledge of the underlying
technology. Parlay-X [7] is an example where a set of telecommunication capabilities
(i.e. location, presence, multimedia messaging and call control) are exposed as Web
services to ease the development of applications by developers that are not necessarily
expert in telephony or telecommunications. The Common Picture Exchange environment
(CPXe) [24] also uses Web services to facilitate the order, print, share and delivery of
digital photographic images. CPXe provides standard Web service interfaces for
business-to-consumer access services and wholesale business-to-business services to

ultimately enable a digital picture to be printed and delivered at someone doorstep.

2.3.4 Web Services Key Benefits

This section outlines the key benefits the Web services.

24

Loose coupling allows for two main advantages: interoperability and ease of
integration. Interoperability is achieved because changes made to the internals of a
service do not impact the service requester side as long as the service interface does
not change. This allows applications to easily port from one underlying technology
implementation to another (i.e. from one sensor network to another). Additionally,
integration between disparate systems is as easy as agreeing to a standard format for
the information exchange. Integration is also made easy since Web services are not
tied to any particular programming language, platform and protocol.

Open Internet Standards (XML, WSDL, SOAP, UDDI) allows for programming
language, platform and transport protocol independence. Web services make use of
existing ubiquitous transport protocols (HTTP) leveraging existing infrastructure and
allowing ubiquitous access by a wide range of communication devices.

Web seﬁiéés create new business opportunities by facilitating the development and
deployment of new services, or by outsourcing services to third parties. Additionally,
new business partnerships can be constructed dynamically by finding suitable
services in the UDDI. The discovery/publication and security features provide
supporting functionalities for a flexible business model. Any entity can become a
service provider or requester and benefits from those features.

Web services, being modular, can be reused easily and can extend the life and value
of legacy system without much development effort. This entails that development

effort using Web services is greatly reduced in terms of time and difficulty.

25

Chapter 3 Data Dissemination Framework for

Wireless Sensor Networks

The bridging element of WSNs and end-user applications is the data dissemination
framework. There are different ways for WSNs to communicate the sensed information
to external applications. Each has their advantages and their own area of application but
ultimately is meant to simplify the development of applications. This chapter discusses
the different data dissemination framework available for WSNs. The first section outlines
some of the requirements of such framework for an I-centric environment. The following
sections overviews the available frameworks. The last section summarizes the most

promising framework.

3.1 Requirements for a Dissemination Framework for an I-

centric Environment

The following requirements show what is needed in an I-centric dissemination
framework from an application developer perspective.

Provide a high level of abstraction - The interface between the WSNs and the
applications should be defined at the highest level of abstraction. To enable fast
application development, the developer should not be aware of the low level details such

as where the ambient information comes from (source of ambient information and

26

technology used) and what approach underneath the framework is being used to
disseminate/collect the data. As a direct implication, addressing sensors should be done
as a whole and not on a node-by-node basis.

Provide interoperability and ease of integration - The software glue that connects
heterogeneous sensors to applications on heterogeneous clients should make it easy for
the developer to use and access ambient information. The developer is not expected to
learn new programming paradigms, new programming languages or new technological
concepts in order to use ambient information. Integration should be done with minimal
effort. As a direct implication, the framework should be programming language
independent. Providing a generic and flexible interface should insure interoperability.

Support a flexible business model - As mentioned in the Chapter 1, I-centric
applications require a flexible business model. This adds security and
publication/discovery requiremeﬁté 'to the framework. The expected security features
should include authentication and authorization of the entities involved in the business
model; encryption and privacy mechanisms to protect sensitive data such as user location;
non-repudiation as charging may be involved; and data integrity to prevent malicious
tampering. Since adaptability plays an important role in I-centric communication, the
framework should provide discovery/publication to cope with the changing environment
and the reflecting availability of services or ambient information.

Support for asynchronous and synchronous mode of communication - When an
application is requesting ambient information, it should not be blocked while waiting for
the response of the framework. Thus the framework should support both mode of

communication. More specifically to I-centric communications, the framework should

27

support event notification to facilitate monitoring tasks and to promptly respond to
changes in the environment.

Introduce little overhead - The framework should attempt to minimize the
overhead related to network load and response time. While low overhead is important in
some applications (i.e. location aware applications), it is not the case for all applications
or all types of ambient data. Having a low overhead means that the framework can

support a wider range of application requirements.

3.2 Data Dissemination Approaches for Wireless Sensor

Networks

There are many dissemination franieWbrks available. This section classifies them
by the programming paradigm used in conveying the sensed information to end-user
applications. The following categories are evaluated: low level commands and APIs,
databases, mobile code, Web services and others when the framework does not fit in the

first four categories.

3.2.1 Low Level Commands and APIs

Almost every sensor has a low level command interface. The use of this low level
command interface can serve several purposes including debugging, configuring it (e.g.
crickets needs to set its mode of operation), upgrading its firmware or to retrieve data
readings. This can be done via proprietary software provided by the sensor manufacturer

or a standard text interfacing client (i.e. telnet, HyperTerminal). A general understanding

28

of WSNs is not enough to fully use the commands but rather a full understanding of this
particular instance of WSN. In the case of MIT Crickets, programming a sensor node
requires the developer to connect it to a programming board; the programming board is
then connected to the computer via a RS232 or USB interface; then after the installation
of its libraries and its executing environment, the developer can send commands (via a
telnet interface) to the software process that controls the sensor node. Even the
commands themselves require the understanding of the technology/algorithms involved
or the scientific nature behind the sensor themselves (i.e. the command <TM> in Figure
3.1). The advantage here is that the developer has full control of every aspects of the
sensor as he works closely with the hardware. Figure 3.1 show an example of low level

commands of Crickets

The general command format is: <directive> <command> <parameters>. In
response to any command, the Cricket echoes the specified command followed by the

result: <command><result>

<directive> The character “G” or “P” for “getting” or “setting” a value.
<command> The command to perform

<parameters> The argument(s) to the command.

Some cricket commands:
<TM> getting the uncorrected time-of-flight of the ultrasonic pulse
<DB> distance to beacon

<SV> save setting to flash

29

Figure 3.1. Low level commands from Crickets

This approach does not meet any of the requirements except for the low overhead.
It has a low-level of abstraction for the reasons above along with treating the sensors on a
node-by-node basis. It is difficult to integrate with other applications as it requires a steep
learning curve from the low level details and the unique commands. Synchronous access
is usually the only mode of communication available since commands tend to minimize
complexity. The same reasoning can be applied to security / publication / discovery
mechanism.

Fortunately, most WSNs also provide a basic set of APIs which builds on top of
the primitive commands. The set of APIs might be based on high level programming
languages like JAVA, C++, and C; or specialized programming languages like Nesc [1].
Some commercially available products use this approach: MIT provides Crickets with a
JAVA API, ClientLib [2]; Ember [53] provides Embernet [54]; é .set of APIs and some
development tools for Ember WSNs; Sensoria [55] provides sGate [56], a sensor gateway
product, with C APIs as part of their development platform. While this approach allows
for a higher level of abstraction than primitive commands, it is still considered as a low
level approach since current APIs are still dealing with low level details of the WSNs.
These details involve specifying IP addresses, port numbers, enabling special flag
parameters, following a special chain of programming operations and requiring the use of
certain programming constructs. With the support of high level programming languages,
the mode of communication with the sink/gateway node can be both asynchronous and
synchronous, and addressing the WSNs can be done as a whole or on a node-by-node

basis. In Embernet security features like encryption is supported, however it is not the

30

case for all available products. The overhead is not affected by much if not at all, and
publication/discovery features are ignored. Integration is done more easily: the developer
needs to include the library files in his/her programming environment to access the
sensed information. It does still however tie the programming languages of the APIs to
the application to be developed. This approach also does not necessarily store the data in
a persistent storage, but rather focuses on current data. To avoid the loss of historical

data, it is up to the application to retrieve and store them explicitly.

3.2.2 Databases

This approach is the most popular so far. It consists in treating the sensor network
as a logical relational database. Applications send an SQL-like query to the sink/gateway
node, which in turns propagates the query into the sensor network in the case of a
distributed implementation, or processes it directly in the case of a centralized
implementation (assuming that the database is co-located at the sink/gateway node). In
many cases the query language is an extension of SQL because traditional query
languages are not suitable for WSN. While traditional query languages tend to minimize
computation time and disk accesses, query languages for WSN tend to minimize power
consumption by using aggregation [26][27] techniques. The sensor nodes have a database
processor which remembers all the long-running queries (i.e. the average temperature of
an office every ¢ seconds) in the WSN. This allows continuous update of data without

having to send a separate query each time. Figure 3.2 shows a simple query.

31

SELECT AVG (temperature), room FROM sensors
WHERE floor = 6
GROUP BY room
HAVING AVG (temperature) > 10

EPOCH DURATION 30s

Figure 3.2. Example of sensor query

Query processing in distributed database - The application sends a query to the
sink/gateway node. A spanning tree rooted at the sink node of the network is formed and
maintained as the WSN topology changes. The query is flooded in a controlled fashion
within the WSN to notify a newly active query task. A leaf node reads its sensor data,
applies the query and sends it to its parent. The parent node receives the sensed data from
all of its child nodes, combines it with its own sensor reading and applies the query. The
parent sends the in-network aggregated data to its parent and the process goes on until t-hé.
sink node receives the final query results. Finally, the application receives the results as if
it was querying a centralized database. This approach is common to TinyDB [3], TASK
(uses TinyDB) [70], COUGAR [31], ALERT [35], SINA [69], IrisNet [59], Mica2 and
Mica2dot.

TinyDB is a simple query processing engine for extracting data from WSNs. It
runs on TinyOS and it is designed to greatly simplify many data collection tasks, and
includes support for power management, time synchronization, and in-network storage.

In TASK the sink/gateway node is the Sensor Network Appliance (SNA), it includes a
DBMS accessed via ODBC to log all collected data. Data can be accessed via a web
browser or dedicated client software. COUGAR and ALERT developed their own query

language as well as their own query processing optimizations. SINA and Irisnet both use

32

non-standard query languages. SINA developed the Sensor Query and Tasking
Languages, while Irisnet uses XPATH to represent queries. However, Irisnet uses XML
database to store the sensed data and XML schema to represent it. Mica2 and Mica2dot
use a standard DBMS to log incoming data. However, application queries are not injected
in the WSN, but rather the individual sensor nodes periodically reports its sensed data to
the sink (i.e. there is no query processing done at the nodes). On each of these reports,
data is logged in a central database and application queries are directed there.

The database approach offers a high level of abstraction since dealing with the
WSN can be seen as interacting with a relational database system. The details of the
WSN are hidden to the application and addressing the WSN can be done in a data-centric
fashion. Database triggers allow for asynchronous notifications and integrating database
connectivity in application is generally easy. It does however tie the application to a
particular database access method (i.e. ODBC, JDBC, OLE DB, etc) that the sink node is
using. This is usually not a problem since most high level programming languages
supports a wide selection of database access method. On the same matter, many of the
mentioned database approaches use their own query languages and compatibility with
standard DBMS systems is not entirely clear. Therefore integration varies but tends
towards being difficult for these particular cases. The overhead of the DBMS at the sink
node is usually low. Publication and discovery are not supported; however security
mechanisms such as encryption and authentication are supported in some DBMS
implementation. Finally, traditional database systems are not suitable for all types of
ambient data. In the case of highly dynamic data such as location of moving objects,

there are many issues at hand [38]. Location data has to be modeled in a different way,

33

query language has to be enhanced to support spatial and temporal constraints and
intelligent indexing techniques have to be provided to increase performance of location

updates.

3.2.3 Mobile Code

In mobile code we consider mobile agents and active networks as part of this
approach.

Mobile Agents - A mobile agent is a composition of software and data, which is
able to migrate from one network node (or sensor node) to another autonomously and to
continue its execution (data collection) on the destination network node (or sensor node).
The mobile agent may duplicate itself and move the execution to several other nodes
while communicating with existing agents. The application developer injects the mobile
agent into the WSN at the sink node. Eventually, each of the sensor nodes will have an
agent that migrated and collected sensed data which will be carried or transmitted back to
the sink node. This programming paradigm requires a mobile agent platform to be
running on the sensors node. Agilla [52] uses this approach and is a middleware built on
top of TinyOS. It supports geographical addressing (data-centric) however it does not
scale well as each sensor node can only have up to four agents running concurrently.

Active Networks - In active networks, the network node (or sensor node) can
perform customized computations on, and modify, the content of a message flowing
through them in response to some event (network event, sensing event, timeout, etc). In
contrast, traditional packet networks just pass the user data from one node to another
without modification or examination with the exception of the packet header. Since the

computation done are customized on a per-user or per-application basis, sensor nodes can

34

be instructed on the operations to be done on the sensed data as well as the received data
from adjacent nodes. These instructions are injected in the WSN as programs or scripts
and command the sensor nodes to return the collected data to the application that made
the injection. SensorWare [4] uses this approach and instructions are specified in Tcl, a
procedural programming language. This entails a run-time environment to be installed on
the sensor nodes such a script interpreter.

The mobile code approach provides a high level of abstraction since it treats the
WSN as a whole by injecting high level instructions at the sink node. However, writing
the scripts or programs is much more difficult than writing a simple query as seen in the
database approach. Not only does it requires to learn a specialized language but also the
low level details of sensors as well as the paradigm itself (i.e. when to migrate, duplicate,
stop collecting data, communicate with other running scripts). Appendix A shows a
sample SensorWare script whose role is to find the maximal value sensed in the WSN.
Integration with external application is rather difficult: mobile code is not a commonly
known programming paradigm and it requires the knowledge of specific
scripting/programming languages. Furthermore this approach is not appropriate for all
types of WSN since it requires a specific run-time environment to be present on each
individual node. Not all types of sensor may be able to operate a run-time environment
due to their limited resources. Because of the great level of control in this approach,
asynchronous communication is achieved by programming the script to return on the
occurrence of an event. Security in mobile code is problematic since the code needs to be
protected as well as the node running the code. Security issues are not addressed in this

approach. This also holds true for publication and discovery.

35

3.2.4 Web Services

The Web service approach has been adopted by the Open Geospatial Consortium
[8] (OGC) in their Sensor Web vision. OGC is a non-profit and international organization
that is leading the development of standards for geospatial and location based services.
The Common Instrument Middleware Architecture [50] (CIMA) also uses Web services
to bring scientific instruments and sensors on the Grid to allow different scientific
communities to access the data as it is being collected. The Grid is a community of large
scale, non-profit research projects of global significance involving the coordination and
sharing of data, computing and network resources across different organizations. Tendril
[72] and Ember are developing Web service support [73] for the Zigbee [71] protocol.
Zigbee is a wireless standard-based radio-technology that addresses the unique needs of
remote monitoring and control and sensor network applications.

One possible configuration with Web service as suggested in [61] is to model the
sink node as the service provider and applications as clients of such services. The sink
node also performs a secondary role: it acts as a service registry where sensor nodes
publish their data and functionality to the sink node. Binary XML [75] is used to lighten
the communication. The service registry contains two types of service description: one is
provided by the sensor node for the sink node, the other is provided by the sink node for
applications. Possible operations done at the nodes are as follow: Publish content(), used
by the sensor node to send a SOAP message containing its service description,
Publish_data(), used by the sensor node to send a SOAP message containing the data,
Subscribe _interest() used by an application to submit a query to a sink node,

Subscribe filter() used by an application to inject a filter in the WSN.

36

Subscribe_interest() must specify the sensor type, data type, geographical region of
interest, acquisition interval/duration and real-time constraints (i.e. deadlines). Data
disseminated to applications contains the data type, data value, sensor location,
confidence data collected, timestamp and the current sensor amount of energy.

The dual role of the sink node is not used in CIMA or OGC Sensor Web. Instead,
they simply expose the sensed data as Web services at the sink node. Nothing else is
assumed about roles of the sensor node and sink node within the sensor network itself.
The implementation of these Web services implies mapping of APIs or other framework
approaches to the Web services.

The benefits of using Web services have been discussed in Chapter 2 and apply to
this approach. It is evident that high level of abstraction, ease of integration,
asynchronous mode of communication and publication/discovery mechanism are
provided. There are several specifications to provide security mechanisms to this
approach: XML encryption [67] from W3C, XML Signature [66] from W3C and IETF,
Web service Security [5] (WS-security) from the Organization for the Advancement of
Structured Information Standards (OASIS) and many more. The main drawback of this
approach is its high overhead.

OGC Sensor Web - OGC Sensor Web is a web-centric, open, interconnected and
dynamic network of sensors that presents a new vision on how we deploy, collect, fuse
and distribute sensor information. OGC is defining the standard specifications [22] to
enable the sensor web vision (Sensor Web Enablement Initiative). Sensor Web focuses
on environmental data related to Earth’s ecosystem (i.e. pollution, temperature, water

levels). Their work aims at solving the interoperability of sensor networks by defining

37

standard interfaces for sensor data and enabling their ubiquitous access through the
Internet. Specification documents are being developed in the areas of information
modeling and dissemination. Sensor Modeling Language (SensorML) provide a standard
XML schema that describe sensors and sensor networks as functional models with inputs,
outputs, parameters and observation methods. It describes the sensor identification (ID,
name, sensor type), the observable that can be measured, the sensor response
characteristics (sensitivity, range, quality), the information on the operator of the WSN
and other metadata (manufacturer, model name). On the other hand, the Observations &
Measurements specifications (O&M) provide the general models as well as the XML
encodings of the sensor observations and measurements (i.e. value, coverage, timestamp,
observation type, units, etc). The Sensor Observation Service (SOS) specifies the set of
Web services involved in the dissemination of sensors observations.

GetObservation() defined in the SOS, returns the sensor data to the entity
requesting it. GetObservation() addresses the WSN by geographical region with the aid
of a rectangular bounding box covering the area to be sensed. It can also address them by
sensorID. For geophysical applications, it is reasonable to address the WSN by
geographical region in order to get the corresponding ambient data. For I-centric
applications this is insufficient because addressing ambient information should be done in
terms of individual user. Just like getting location information or presence information
from an identity, ambient information should also be provided from an identity or user
perspective. There are three reasons for doing so. First, an interface using SensorID or a
bounding box implies that ambient information comes from sensors. A high level

interface should not tie the source of ambient information solely to sensors (or a

38

particular technology). Ideally the developer should not need to know or care about the
source of this ambient information. Second, without the identity perspective, requesting
ambient information from a user point of view requires two operations. It requires first
knowing the location of the user, then using that geographic data to map to a bounding
box or sensorlDs to retrieve ambient information perceived around that user. A high level
interface should only abstract the dissemination in one operation. Third, the idea of a
rectangular bounding box does not work well in an urban setting where areas of interest
are being juxtaposed (i.e. multiple floors in a building). Hence OGC Web services are
defined too specifically for geospatial applications. While the general approach seems
promising, new interfaces should be specified to focus more on I-centric needs. To
further motivate this need, OGC Sensor Web Enablement Initiative mainly focuses on
environmental data and does not cover location data and its derivative. Spatial data is

primordial to I-centric applications and should be part of the new interfaces.

3.2.5 Others

Shaman - Shaman [58] is an extendable java-based service gateway that integrates
sensor-actuator modules, or simply sensors, into heterogeneous ad-hoc networks. Shaman
supports multiple service wrappers (Jini wrapper, Universal Plug and Play (UPnP)
wrapper, etc) allowing multiple service interfaces to be available to heterogeneous
clients. Figure 3.3 illustrates Shaman main concepts. The boot protocol contains a simple
discovery mechanism that lets the sensor find a gateway to deploy its proxy and publish
its capabilities. The proxy translates client requests into sensor specific commands. The
proxy can be provided by the sensor or the network (i.e. downloaded from an URL). The

service wrapper exposes the sensor functionalities to the client.

39

Service wrappers provide a high level of abstraction, and depending on the
wrapper available, it may ease integration with other applications. However Shaman only
discusses Jini and UPnP wrappers. Applications can discover sensor services with the
service manager. Security is not addressed and a drawback of this system is that sensors
must implement a boot protocol and be able to deploy a java-based network proxy to a
gateway host. Shaman has a high level of abstraction since it claims to have plug-and-
work capabilities. Because of the presence of a gateway host and high level service
wrappers, overhead is assumed to be high and asynchronous communication is assumed

to be supported.

Gateway host

s

Gateway service n

Boot protocol

Figure 3.3. Shaman service gateway
DSWare - This [62] approach uses the notion of events. An application can
subscribe to certain events and when they occur, the application is notified. Subscribing
to events of interest is done in an SQL-like statement (Figure 3.4). It also allows the

specification of compound events or a pattern of basic events to be detected. Once an

40

event request is issued, DSware generates an execution plan and calls the corresponding
methods for the event detection. DSware introduces novel ideas such as caching the most
requested data and adding redundant storage within the nodes. The system also includes
real-time aspects such as deadlines for reporting events and a window of validity for the
events.

This approach has a high level of abstraction, a low overhead and supports
asynchronous mode of communication. DSware is used with traditional database and
with traditional query language. In this case, integration is assumed to be easy.

Publication, discovery and security are not discussed but are assumed to be non existent.

INSERT INTO EVENT LIST
(EVENT_ID, RANGE_TYPE, DETECTING RANGE,
SUBEVENT_SET, REGISTRANT SET, REPORT DEADLINE,
DETECTION_DURATION [, SPATIAL RESOLUTION]
[, ACTIONS])

VALUES {)

Figure 3.4. A SQL-like subscribe statement

Mires - Mires [60] is a message oriented middleware for WSN. The sensor nodes
advertise their available topics (e.g. temperature, light, etc). The advertised messages are
routed to the sink node where user applications can subscribe to topics that interest them.
Then the sensor nodes continue to publish their sensed data to Mires and applications use
APIs to communicate with Mires.

This approach has publication and discovery mechanisms. While it supports
asynchronous mode of communication, security features are not discussed. Also, the

nature of message-oriented middleware may implicate high overhead. The APIs provides

41

a high level of abstraction but ties to a proprietary communication protocol/interface, a
message format and a programming language.

Mate - Mate [63] is a virtual-machine (VM) based middleware for WSN. The
byte-code interpreter is build on top of TinyOS. To use the VM, mate provides an
instruction set reminiscent of the Assembly language. Mate provides an architecture that
allows the development of higher level languages and programming models for
application development. Using mate directly, the only requirement that can be met is

good performance.

3.3 Data Dissemination Frameworks Using Other Technologies

This section discusses some of the work pertinent to the Web service approach
and to ambient information but not necessarily in a WSN context. The work described is
specific to outdoor location information only.

Parlay-X - Chapter 2 briefly discusses that Parlay-X [7] is a set of
telecommunication capabilities exposed as Web services. Parlay-X defines a basic Web
service interface to get the location of one or many terminals expressed in latitude,
longitude and optionally altitude. The terminal location is provided immediately or
periodically. It also support notification of a change in the location of a terminal to
monitor if a terminal is entering or leaving a specified geographical region. Other than
terminal location, Parlay-X also provides online presence.

LORE - LORE [15] is a framework for developing location-aware applications. It

wraps heterogeneous location APIs into one consistent and simple interface. LORE

42

focuses on large scale management of location data by including a Moving Object
Database and a Query Engine. This enables LORE to handle complex services (i.e.
proximity detection, physical presence) as queries. The framework also provide
additional functionality such as specifying complex notifications (i.e. receive a
notification only when a particular user is in a particular geographical region) and a

service management framework (i.e. for privacy, billing, etc).

3.4 Summary

There are many frameworks available for disseminating ambient information.
Each of them adopts a different approach in the dissemination and hence has different
characteristics. Table 3.1 summarizes these characteristics and is an extended version of
the framework summary in [74]. None of these approaches fully satisfy all of the defined
requirements. The low level commands and APIs are either too low level or programming
language dependant. In database frameworks there is no discovery/publication
mechanism. In mobile code frameworks, integration is difficult since it requires
knowledge of WSN details, specialized programming languages and understanding
mobile code paradigm. There is also no support for discovery/publication mechanisms.
Other approaches exist but they lack security mechanisms or depend on a particular
programming language. The Web service approach seems to be the most promising since
it satisfies most of the main requirements. However, the current specifications (OGC

sensor web) are not suited for an I-centric application development but rather a

43

geophysical application development. So there is a need for new Web service interfaces

for disseminating ambient information specifically targeted to I-centric applications.

Table 3.1. Summary of the existing dissemination frameworks

High level | Interoperabilit | Flexible business | Synch/ Low

of y and ease of | model Asynch overhead

abstraction | integration Security | Disc./ | communic

Pub. ation

Commands | No No No No No Yes
APIs No No No No Yes Yes
Database Yes No Yes No Yes Yes
Mobile Yes No No No Yes Yes
code
Web Yes Yes Yes Yes Yes No
Service
Shaman Yes No No Yes Yes No
DSware Yes Yes No No Yes Yes
Mires Yes No No Yes Yes No
Mate No No No No No Yes

44

Chapter 4 Design of a Web Service Based Data

Dissemination Framework for an l-centric Environment

The previous section showed that a Web service based framework is the most
promising approach for the dissemination of ambient information. A Web service based
framework provides language, platform and protocol independent interfaces to
disseminate data. However, the existing Web service framework does not provide an
interface that is sufficiently appropriate for I-centric applications. This chapter proposes a
set of Web service methods to satisfy this need. The first section overviews the role
model involved, followed by a definition of the world model and necessary concepts, and

the proposed interfaces are detailed before the description of the framework architecture.

4.1 Role Model

Since the framework is based on Web services, the entities involved would share
similar roles to the Web service architectural model. The roles of the ambient information
provider, ambient information requestor and ambient information provider registry map
into the roles of service provider, service requestor and service registry respectively
[Figure 4.1]. The ambient information provider can be an owner of a WSN and provides
sensor data as services to I-centric applications. However the model is not restrictive to
WSN and should be able to provide ambient data form other sources as well. The ambient

information requestors, or simply I-centric applications, can search the ambient

45

information provider registry for a suitable ambient information provider. In light of the
requirements [Section 3.1], the ambient awareness framework will play the role of the

ambient information provider and the ambient information provider registry.

Figure 4.1. Role model for .thé ambient awareness framework

4.2 The World Model

A world model is necessary in order to establish a common ground for the
interpretation of spatial and environmental information. This preliminary step introduces
simple concepts that will be used as parameters in the proposed Web service methods.
Space, Entity and Observable are the three basic concepts that define the world model. A
Space is a static three-dimensional expanse defined by a unique center, range (or radius)
and a short description of the Space. As illustrated in Figure 4.2, an office room may

have a space (SpacelD4) centered in the middle of the office and where the range is the

46

distance to one of the walls. For describing more complex spaces such as the Electrical
and Computer Engineering department of an educational institution or an ‘L’-shaped
room, the term Area is used to define a collection of Spaces. The center of the Space is
defined in three dimensional Cartesian coordinates with a defined reference origin;
however any coordinate system can be used. An Area has an address field and a short
description. The address is defined to be the address of the establishment in which the
spaces are located. Since this model deals with a three-dimensional coordinate system, it
fits well in an urban setting and is not limited to the two-dimensional bounding box
problem as outlined in section 3.2.4. An Entity is an object that can be located and that
has an owner. An Entity has a type, such as laptop, PDA, printer or user; and a short
description. While an Entity can be classified by its type, ownership information is used
to further classify an Entity. An owner can be an individual or an organization.
Ownership information can also be used as a -pva.rt of a permission/authorization
mechanism for getting location information. An Observable is a sensed and measured
environmental phenomenon (i.e. temperature, the ambient light, etc). There are many
ways to quantify and express an observable: ambient sound can be expressed as a value
such as sound intensity (decibels), as a high level description such as “loud”, as an audio
sample of the ambient sound, or even as a video sample. In this world model,
Observables are limited to measured values and high-level descriptions. An Observable
should have a name, a description and the associated units. For instance, the name could
be “Temperature”, the description could be “ambient air temperature with humidity

compensated” and units are “Celsius”.

47

Figure 4.2. Space and Area concepts

4.3 Proposed Interfaces

Six Web service methods are proposed in order to provide spatial and
environmental information. Although physiological information is a subset of ambient
information, it is not covered in the proposed interfaces. Instead, the proposed interfaces
focus on commonly used and available ambient information. Figure 4.3 overviews the
proposed Web service methods. Subscribe Location() and
Subscribe_AreaEnvironmentalData() are basic Web services, while the rest are complex
Web services that may be reusing the core logic of the first two. Subscribe Location()

gives the location of an Entity while Subscribe AreaEnvironmentalData() gives the

48

environmental conditions of an Area. For complex spatial information,
Subscribe Velocity() gives the velocity of an Entity, Subscribe Proximity() lists all
Entities that are nearby a particular Entity, and Subscribe PhysicalPresence() lists all
Entities physically present in a confined Space. Subscribe EntityEnvironmentalData()
returns the environmental conditions perceived by a particular Entity. Applications can
access both basic and complex services. For each of the defined methods, there is a
corresponding unsubscribe() method which terminates the Web service, and a callback
method, onUpdate(), which notifies the subscribed application of a change in the ambient

information.

Complex Web

SEIviCes

Basic Web services
— building block for
complex Web
services

Figure 4.3. Web services interfaces overview

4.3.1 Common Parameters of the Interfaces

The common parameters for these Web services are the service metadata
parameters. QualityOfContext defines the desired minimum freshness of the sensed

information in milliseconds. All sensed information is timestamped and thus the

49

framework can determine the age of the sensed data. If the specified QualityOfContext is
high, the framework can reused a previously sensed data as long as it is less than the
specified QualityOfContext. If this is not the case, the framework will have to acquire
fresh data from the WSN. The service response always contains the measured
QualityOfContext in milliseconds. Because of the dynamicity of ambient information,
QualityOfContext is a valuable data for determining exactness and reliability of the
sensed information. OnetimeOnly specifies if the Web service should automatically
unsubscribe after sending one response as opposed to continuously sending updates
whenever they occur. NotificationTrigger specifies a condition, based on the value of the
sensed data, in which a notification (or service response) is necessary. A
NotificationTriggeChangeSensitivity is also provided to determine when the condition
occurs: it specifies the minimum amount of variation in the sensed value that will trigger
a notification. For instance, specifying that a notification is sent only if the arﬂbiént
temperature changes by five degrees Celsius. In the example, NotificationTrigger is the
‘change in temperature measurement’ and NoftificationTriggeChangeSensitivity is ‘five
degrees’. A NotificationTrigger allows filtering of uninteresting data and its event-driven
approach ensures timely adaptation of applications. RateOfNotification indicates the
maximum and minimum rate for the notifications or service responses. A maximum rate
is needed to avoid overflowing the requester with responses. If a minimum rate is
specified, it will supersede the NotificationTrigger: instead of having event-driven
notifications, notifications are sent periodically. Although it is possible to have both
approaches coexist, an exclusive approach is adopted for simplicity. The minimum and

maximum rate is specified in number of notifications per minute. Granularity specifies

50

the desired level of detail in the presentation of the ambient data. For instance, ambient
temperature has a high granularity when expressed as ‘HOT’, and low granularity when
expressed as a measurement in degree Celsius. UnitsType is simply the metric used in the

representation of the sensed data in the request and the response.

4.3.2 Subscribe_Location()

Subscribe_Location(int QoC, boolean OneTimeOnly, int MinRateOfNotification,
int MaxRateOfNotification, String NotificationTrigger, int
NotificationTriggerChangeSensitivity, String UnitsType, String Granularity, long
EntityID, long ArealD) — This method reports the location in terms of the current Space
closest to the Entity or the current physical coordinates of the Entity. While location can
be represented solely by physical coordinates, adding another representation to it, such as
a Space, provides a more meaningful view of location to the user. A Space is expressed
as a high level description such as “ECE-office512-EastWall” and the coordinate system
1s the same as the one in the world model. From the notifications, the method informs the

invoker when the Entity moves from one Space to another or within the same Space.

51

Table 4.1 details selected parameters for this method.

52

Table 4.1. Selected parameters of Subscribe Location()

Name Details Possible values
NotificationTrigger | Triggers a notification based on changes in | “CoordChanges”,
location coordinates or Space “SpaceChanges”
NotificationTriggerC | Valid only when the NotificationTriggeris | any
hangeSensitivity “CoordChanges”. It is the minimum
distance change from one location
notification to another
UnitsType Valid only when NotificationTrigger is “cm”, “m”, “inch”
“CoordChanges”, or when Granularity is
“Coordinates”. Units for location
coordinates
Granularity Location is presented in terms of “Coordinates”,
coordinates or Space description “Space”
EntityID Specifies the Entity which needs to be any
located
ArealD Specifies that any notification should be any
sent only if EntityID is in ArealD
4.3.3 Subscribe_AreaEnvironmentalData()
Subscribe_AreaEnvironmentalData(int QoC, boolean OneTimeOnly, int

MinRateOfNotification, int MaxRateOfNotification, WSEnvData[] envreq, long ArealD)

— This method reports the environmental conditions of a particular Area. Since there is

much environmental information to sense, this method groups them into one enumerated

53

parameter (envreq). Each WSEnvData entry contains all necessary specifications to
request one type of Observable. This adds flexibility to the method since the invoker can
select the ones it needs and allows future expansion of the supported Observables without
modifying the interface definition. The information returned for each Observable is a
single scientific measurement or a high level description (i.e. for ambient light there is
“dark”, “dim” and “bright”). It is assumed that the developer is not necessarily familiar
with scientific measurements and their quantitative meaning (i.e. how much brightness is
90 lumens). Additionally sensors may have proprietary metrics for the measurements of
data (i.e. use a scale of 0 to 100 for luminosity) and it is not obvious how to map them
into standard metrics. These reasons motivate the addition of a high level description for
environmental information. The reception of a notification can indicate three events:
current data differs from previous by at least a certain value
(NotificationTriggerChangeSensitivity), current data has exceeded or has gone below a
specified threshold, or current data differs from previous data by its high level description

(i.e. from ‘dark’ to ‘bright’).

54

Table 4.2 details selected parameters for this method.

55

Table 4.2. Selected parameters of Subscribe AreaEnvironmentalData()

Name Details Possible values
ObservableID The type of monitored observation any
NotificationTrigger | Triggers a notification based on a “ValueChanges”,
change in measured value, a reached “Threshold”,
threshold value or change in the “descriptionChange”
description of the sensed information
NotificationTriggerC | Triggers a notification when the sensed | any
hangeSensitivity data varies by at least this value
thresholdval A notification is triggered if the sensed | any
value exceed or goes below thresholdval
UnitsType The type of units for “Celsius”, “Kelvin”,
NotificationTriggerChangeSensitivity, “lumens”, “Decibels”
thresholdval and the service response
Granularity Environment data is presented in terms | “highLevel”,
of high level description or scientific “ScientificMeasurment
measurement s”
WSEnvData[] An enumeration of observation to be any
monitored {ObservablelD,
NotificationTrigger,
NotificationTriggerChangeSensitivity,
UnitsType, Granularity, thresholdval}
ArealD Area to be monitored any

56

4.3.4 Subscribe_Proximity()

Subscribe Proximity(int QoC, boolean OneTimeOnly, int MinRateOfNotification,
int MaxRateOfNotification, String NotificationTrigger, String UnitsType, String
Granularity, long EntityID, int MaxResults, int MaxRange, String[] Filters) — This
method reports a list of sorted Entities closest to the specified Entity and within a defined
range. When the entity moves from one place to another, its proximity information
changes. The resulting notifications may be that a new entity is detected in the circle of
proximity, or an entity has left. The list may also reorder itself (entities are moving within
the proximity circle) and result in a notification. Proximity information is useful to
redirect an application session to a more suitable device (closer to the user, better
computing resources, etc) or printing to the nearest printer. It provides awareness of all
entities in the communication space of the user. In terms of information granularity,
proximity is expressed as distance measurements (i.e. printer at 7 meters) or relative
measurements (i.e. ‘NEAR’, ‘FAR’”) with respect to the defined range. Mechanisms to
limit the amount of proximity information are provided by specifying a maximum list

size and by filtering the Entities by their type.

57

Table 4.3. Selected parameters of Subscribe Proximity()

Name Details Possible values
NotificationTrigger | Triggers a notification based on a new “EntityEnteringOrLe
Entity entering/leaving or on changes in aving”,
the list of closest entities “ListReorder”
UnitsType Units for the proximity measurements “cm”, “m” , “inch”
Granularity proximity measurements is presented in “distanceMeasureme
terms of distance or description nts”,
“relativeMeasureme
nts”
EntityID Specifies the Entity which proximity any
information should be based on
MaxResults The maximum number of results returned | any
MaxRange The radius around the Entity which any
determine relevant proximity events
Filters[] specifies which type of Entities should be | “Laptops”, “PDA”,

included in the proximity list

“Projector”,
“desktop”, “printer”,

“users”™

4.3.5 Subscribe_PhysicalPresence()

Subscribe_PhysicalPresence(int

QoC, boolean

OneTimeOnly, int

MinRateOfNotification, int MaxRateOfNotification, String NotificationTrigger, String

UnitsType, String Granularity, long ArealD, int MaxResults, String[] Filters) — This

58

method reports a list of all entities and their location in a specified Area. It is in some
respect similar to Subscribe Proximity(), except that it dissociates between an entity
entering and leaving, and it reports a location instead of a distance. The granularity of the
location information is similar to Subscribe Location(). A problem with
Subscribe_Proximity() is that it requires an Entity to detect other entities nearby.
Subscribe PhysicalPresence() does not have this problem since it is based on an existing
Area. This method is useful for an I-centric service provider who wishes to offer services
to Entities that are nearby a particular Area. For instance, an I-centric service provider
can send targeted ads to users that are nearby a store section. The ads target the products
within the vicinity of the user since the user may show interest in them by being in that

store section.

59

Table 4.4. Selected parameters of Subscribe_PhysicalPresence()

Name Details Possible values

NotificationTrigger | Triggers a notification based on a new “EntityEntered”,
Entity entering or an leaving the Area “EntityLeft”

UnitsType Valid when Granularity is “Coordinates”. “cm”, “m” and

Specifies the units for location coordinates. | “inch”

Granularity Physical presence is expressed as location in | “Coordinates”,
terms of coordinates or Space description “Space”

ArealD Area in which physical presence is any
monitored

MaxResults The maximum number of results returned any

Filters(] Specifies which type of Entity should be “Laptops”, “PDA”,

. included in the physical presence “Projector”,
information. “desktop”,

2% 46

13 by 2
printer”, “users

4.3.6 Subscribe_Velocity()

Subscribe_Velocity(int QoC, boolean OneTimeOnly, int MinRateOfNotification,
int MaxRateOfNotification, String NotificationTrigger, int NotTrigger ChangeSensitivity,
String UnitsType, String Granularity, long EntityID) — This method reports the velocity
in magnitude and direction of an Entity. The magnitude is expressed a speed value (i.e. 1
m/s) while the direction is a vector in the coordinate system of the world model. Using
different granularity, the velocity magnitude is expressed as a state such as ‘Stationary’,

‘walking’, ‘running’, and ‘driving’. As for the velocity vector, it can be mapped into

60

cardinal directions (North/South/East/West) since the coordinate system is known. While

velocity is information less often used than location, it has its meaningful use in some

applications. As preference settings, the user should be able to disable incoming calls

when he is running or driving. Alerts or application notifications should be postponed to

not distract the busy user. In some other applications such as the targeted ad described in

section 4.3.5, ads should be sent only if the user is in a stationary state within the store

since it may show that the user is interested in the surrounding products.

Table 4.5. Selected parameters of Subscribe_ Velocity()

Name Details Possible values
NotificationTrigger | Triggers a notification based on changes in | “VelocityChanges”
velocity magnitude or velocity state and
“VelocityStateCha
nges”
NotificationTriggerC | Valid only when the NotificationTrigger is | any
hangeSensitivity “VelocityChanges”.
UnitsType Valid only when NotificationTrigger is “cm/s”, “m/s” and
“VelocityChanges”, or when Granularity is | “inch/s”
“Velocity”.
Granularity Velocity is presented in terms of speed “Velocity” and
measurements or high level description “VelocityState”
EntitylD Entity whose velocity is being monitored any

61

4.3.7 Subscribe_EntityEnvironmentalData()

Subscribe EntityEnvironmentalData(int QoC, boolean OneTlimeOnly, int
MinRateOfNotification, int MaxRateOfNotification, WSEnvData[] envreq, long EntityID)
— This method reports the environmental data seen or perceived around an Entity. It is the
I-centric version of Subscribe AreaEnvironmentalData(), instead of specifying a fixed
area to monitor environmental conditions, it monitors the current surroundings of an
Entity. All other parameters and returned data are the same. This method provides a
higher level of abstraction: instead of requesting the Entity’s location and then requesting
environmental data based on that location, it does both steps in one method invocation.

Table 4.6. Selected parameters of Subscribe_EntityEnvironmentalData()

Name Details Possible values
ObservablelD, NotificationTrigger, See Table 4.2 for See Table 4.2 for
NotificationTriggerChangeSensitivity, | respective details respective details

Thresholdval, UnitsType, Granularity,

WSEnvData[]

EntityID Entity whose Any
environmental data

should be monitored

62

4.4 Functional Architecture of the Proposed Web Service

Based Framework

Application layer

Web Service interface

_/-‘un*mentia‘\avareness Adapter
layer

Sensor interface

S QO
Sensor layer Sensor { N

network -

o
Figure 4.4. Overall functional architecture

The previous sections describe the interfaces; this section is about the framework
that exposes these interfaces. The framework does more than just exposing the Web
services to applications. Its main function is to wrap different data dissemination
mechanisms for sensors (APIs, Databases, etc) into one consistent and simple Web
service interface. Others functions include supporting the framework with an ambient
information cache, logging sensed data for historical purposes, enhancing ambient
information by fusing together different sources into a more coherent result, and adding
ambient information by inferring from available sources. It is assumed that the raw data
of sensors may not directly map into ambient information used by applications, hence
most of the supporting functions relate to manipulating sensor data. Figure 4.4 shows the

overall functional architecture. The main components are the Notification Generator, the

63

Sensor Adapter and the Mapping Service. The Notification Generator builds and sends
the notifications to the application. It also keeps track of the previous notification sent so
the Context Processor can determine if a NotificationTrigger is satisfied or not. The heart
of the framework, the Sensor Adapter, is composed of a Translator and a Context
Processor. Sensor-specific data is sent to the Translator and converted into a data format
that can be used by the Context Processor. Same ambient information type but from
different sensor model or manufacturer should be converted into this same format. Some
ambient information may not be converted into this format directly (i.e. a proprietary
scale for ambient sound). In this case, algorithms or approximations are used to convert
ambient information into the desired format. The Context Processor encompasses three
roles — performed by the processor engine, the context fuser and the context inference
module. The context fuser retrieves ambient information from persistent storage and
integrates it with the results from the Translatdr or the context inference module into one
single, coherent and more reliable result. The role of the context fuser becomes more
important as the number of sources of the same type of ambient information increases.
Fusing should be considered as optional. For instance, an application requires a high
degree of reliability that cannot be met from a single ambient information source. Each
measurement has an error margin and multiple measurements should decrease this
margin effectively. The processor engine monitors the ambient information and generates
the notification events based on the specified NotificationTrigger. The context inference
module is the logic responsible for computing high level ambient information based on
low-level ambient information sources. For instance, location is most of the time inferred

from proximity. From one Translator to another, different context inference modules are

64

enabled depending on the type of ambient information available. Mapping the world
model elements such as Entities, Spaces and Observables to elements in the sensor world
is done by the Mapping Service. For instance, an Entity might map to a SensorNodelD or
any other necessary data for the retrieval of the sensor reading. The Mapping Service also
determines which Translator and/or which context inference module is needed to deliver
the ambient information. In some cases it maps into more than one source, for example,
velocity can be sensed by an accelerometer sensor or inferred by sampling several
instances of location data at a known time interval. The Subscription Handler receives the
Web service requests and, based on the mapping service, dispatches them to the Sensor

Adapter with an appropriate Translator and context inference module.

4.5 Summary

Designed with a high level of abstraction in mind, six Web service methods are
proposed for providing ambient information. These methods provide location, velocity,
proximity, and environmental information of an Entity. They also provide physical
presence and environmental information of an Area. Since the methods are centered on
the concept of Entity which may be a user, they are highly applicable in an I-centric
environment. A generic functional architecture is defined and will be used for the

implementation section that follows.

65

Chapter 5 Prototype Implementation and

Performance Evaluation

This chapter is broken down into three sub-sections. The first talks about the
implementation including the backend sensors, the mapping of the ambient awareness
framework to those sensors and some optimization schemes used or proposed. The
second sub-section deals with performance measurements and analysis. The last sub-

section overviews an application implemented for a demonstration.

5.1 Prototype Implementation

All of the components in the functional architecture are implemented with the
exception of the context fuser. The context fuser réquires more than one source of the
same type of ambient information in order to fuse them together. This functionality is
judged to be too complex since it requires defining a methodology for fusing data in
general (i.e. how to fuse 53°C from sensor X and ‘HOT’ from sensor Z, when to fuse,
etc).

The system also implements a shared cache for optimizing (discussed in section
5.1.3) response time and a database for logging historical data. The historicai database
contains only spatial data. Every time sensor data is received, this data is updated in the
cache as well as a temporary historical buffer in the main memory. Once the buffer is

full, the system does a bulk write to add the new entries into the historical database. This

66

is done to avoid continuous disk write operation each time there is new sensor data, thus
increasing the overall response time. The historical database can be use to predict the
mobility of an Entity in order to anticipate and adapt; or can be use for learning the Entity
preferences. The historical database does not contain environmental data since it is
already implemented as part of the software ‘package’ provided by the backend sensors.
A generic approach common to the implementation of the six Web service
methods is to break them into two main JAVA classes. One that handles the high level
details of the Web service [Figure 5.1] and another that handles the low level details of
the sensors [Figure 5.2]. The figures describe ProximityWS and ProximityModuleImpl
but the same logic is applied to all other Web services. For simplicity, the two classes are
referred to as “higher class” and “lower class” for the rest of the explanation. One
advantage of separating into two classes at that level is that the programming model
creates a clear separation between how data is acquired and how it is used. Hencé, .a.dding
a new WSN for implementing an existing Web service simply requires implementing a

Translator or Context Inference Module since they map into the “lower class”.

67

proxictrl

Member Variables

Figure 5.1. ‘higher class’ for handling high level details of the Web service

Figure 5.2. ‘lower class’ for handling sensor specific details

Execution of a Web service - The higher class implements the functionality of the
Subscription Handler, the Processor Engine and the Notification Generator. When an

application invokes a Web service, the Subscription handler validates the parameters and

68

an error message is returned if an invalid parameter is detected. The Mapping Service
(described in 5.1.2) is used to see what technology/sensor type is needed to get the
desired ambient information. In other words, it is a look up table that finds a Translator or
Context Inference Module for the task at hand. Parameters are validated again as
capabilities differs from one WSN to another (i.e. not all location aware sensors supports
location coordinates). Parameters are then passed to the lower class

The lower class implements the Context Inference Module for inferring
proximity, other complex Web services do the same with their own Context Inference
Module. Only the basic Web services implement the Translator functionality. While the
complex Web services could be implemented as composed Web services involving the
basic ones, the framework implementation does not offer this approach for performance
reasons. Instead, the core logic of the Translator is simply reused in the logic of the
inference module, thus avoiding overhead in response time. Once the lower class receives
the parameters from the higher class, it starts a polling timer which returns the current
sensed data (from the cache or the sensors) when a timeout occurs. The timer is restarted
until the next timeout and so on.

Then, the higher class receives the ambient information from the lower class, and
checks if it generates a notification (based on the NotificationTrigger criteria) and sends
it to the application. Whether or not a notification is generated, the cache is updated and
historical information is logged.

Database Triggers - The dissemination mechanism for the MTS300 sensors is
based on databases. Therefore a natural choice for implementing the NotificationTrigger

would be to use database triggers. However, they were not used. In general a database

69

trigger can be set to execute when an SQL ‘insert’ statement occurs and when a condition
is met. The trigger executes a stored SQL procedure. Usually DBMS systems allow these
procedures to be written in different programming languages. However, at the time of the
implementation, PostGreSQL 8.0 did not support JAVA procedure, only C, Tcl, Perl and
Python were supported. In this case, the lack of support for JAVA means that it would be

difficult to communicate with the framework that an ambient event has been detected.

5.1.1 Backend WSN

The ambient awareness framework uses MIT crickets sensors [2] for location data
and Crossbow MTS300 [9] sensors for environmental data.

Crickets provide a sharp accuracy of 1-3 centimetres and have coverage of up to
ten meters indoors. Location information can be expressed in terms of coordinates or
space identifiers. Modeling location as spaces is common to many location aware sensors
(Active Badges, Active Bats, RADAR), however using coordinates is less common. A
cricket sensor is about the size of two AA batteries and can operate as a beacon or
listener. Beacons are deployed on ceiling or walls and simultaneously broadcast radio
signals and ultrasonic pulses at a semi-regular interval (750-1150 milliseconds). The
listener sense both signals and pulses in order to determine the difference in time of
flight. This difference is used to infer the approximate proximity to a beacon. The listener
can be seen as a gateway/sink node and is attached to devices such as laptops or PDAs.
Proprietary applications (CricketDaemon and cricketd) are running on a Cygwin platform
on the host device. The roles of the two applications are to communicate with the sink,

process triangulation algorithms and answer the requests of external application requiring

70

the location of the host device. External applications use a JAVA API, ClientLib, to talk
to CricketDaemon.

The MTS300 can sense ambient light, sound and temperature. The MTS300
operates with MICA motes [Figure 2.2] to provide processing and wireless
communication capabilities. The MTS300 uses a proprietary scale for measuring light,
temperature and sound. However, formulas to convert the proprietary values to standard
values (i.e. Celsius degrees) are provided. Data collected is routed to the sink node and
stored in a local PostGreSQL database on the host gateway. For remote access, a
proprietary application can be used to view current readings. Alternatively, database
access methods (i.e. ODBC) can also be used. The database is updated at a period of 10-
15 seconds; this represents the minimum quality of context that is supported by this
particular WSN. MoteView is the required application that writes the MTS300 updates
into the PostGreSQL database.

Figure 5.3 shows the physical deployment of the ambient awareness framework
along with both backend WSNs. The framework is part of the Web service gateway for
sensor and is described in more details in section 5.2.2. The cricket beacons are densely
deployed (at least three for triangulation) in order to get location coordinates, on the other

hand, only one MTS300 is required per room.

71

Web Service interface

Proprietary interface

MTS300 Sink nade
Sensors ‘ A. Cricket listener node
deployed R I
. MTS300@CIHSE-430 !
in the < e ; ®
office ::)::'\ beacon@CIISE-410-eastwall
@
i MTS300@CI|S’E-410
\ o 5
beacon@CIISE-410-southwall Peacon@CIISE-410-northwall

Figure 5.3. Physical deployment view

5.1.2 Mapping to Sensors

The mapping functionalities in the Mapping Service [Figure 4.4] are defined as
relational databases. This mapping is necessary to bridge the connections between
different sensors (including various models by different manufacturers) into an Entity
that needs to be located or any other service that needs to be fulfilled. From the
framework point of view, this mapping answers the following questions: which translator
or inference module needs to be used and what are the required parameters for accessing
the sensors. For instance, cricket sensors require individual IP address and port
information in order to retrieve location, while another might use sensor node identifiers.

Additionally, the framework should not discard the case where an Entity can be located

72

using different technologies. In Figure 5.4, the framework is asked for the location of an

Entity and looks up the Entity-LocatorTechnology table to find that Entity ‘1’ is

associated with crickets. The framework then uses the Cricket-specific-data table to

retrieve the necessary parameters to query the location sensors. That particular table

indicates that the framework should use a Cricket Translator along with the specified

parameters to get location. However, the implementation only uses one location-

awareness technology and consequently the Entity-LocatorTechnology table maps to the

same LocatorTechnology.

Entity-LocatorTechnology mapping tapfe

Entity table
Entity ID | Type Description Owner
1 Laptop | Dell insp1150 | Truong
3 user Truong Ta Truong

Cricket-specific-data table.

EntitylD | cricketDaemon | CricketDaemo
P n port
192.168.1.1 2459

EntitylD | LocatorTechnology
1 Crickets
2 GPS
3 ActiveBat
Other technology
specific-data table
EntitylD | ActiveBat ID
3 OxFFFF

Figure 5.4. Mapping Service for location data

In other words, the mapping table provides a function focaion(Entity) =

{Technology-Specific-data-Table;, Technology-Specific-data-Table,, ...}.

The same

logic is applied for the other Web services. For environmental data, the function is

SEnvironmentaiData(Space, Observable) = {Technology-Specific-data-Table;, Technology-

Specific-data-Table;,, ...} and Figure 5.5 illustrates the above relationship. It is assumed

73

that the MTS300 sensors are deployed at a fixed location in the environment. For this
reason, a Space is associated with an Observable which an MTS300 node can provide.
For basic Web services, the mapping is simple and uses fiocation and fEnvironmentalData
directly. On the other hand, complex Web services are implemented as inference module
using a combination of spatial and/or environmental data. The mapping here is more
complex, as it requires finding a combination of parameters as well as performing
additional logic. Ultimately focation @0d fEnvironmentalData are used in the Context Inference

Modules as well.

Observable Table
ObservablelD | Observable name | Description units
2 ‘temperature’ ‘temperature with humidity ‘Celsius’
Space-Observable-Environmental Technology mapping tabl Space Table
SpacelD | ObservablelD | EnvironmentalTechnology S ™ - ywwm——"
1 1 (light) CrossbowMTS300-light 1°a°e Cf”s“;’o Ead'”s ReS;'(‘)’m"
1 2 CrossbowMTS300-temp / (15,30 m310 east
1 1 (light) IBMSensorZ-light
2 3 {sound) IBMSensorZ-sound
CrosshowMTS300-temp-specific data table
SpacelD | SensorlD | Other parameters
1 A
1 9]
1 B
2 B
2 D

Figure 5.5. Mapping Service for environmental dat

5.1.3 Optimizations

Cache - The cache is for spatial data only. It aggregates velocity, space and
coordinates of an entity into one table entry. The idea is to minimize requests to the
crickets sensors if the requested QualityOfContext is superior to the one in the current
cache. By avoiding this request, it increases the overall response time as location is

retrieved locally. The cache contains the latest spatial information of all Entities; it stores

74

the spatial data and associated timestamp. It is constantly updated and indexed by Entity
for fast searching. The cache supports different searching functions, such as searching by
Space(s), by velocity and by coordinates range. A caching scheme was not implemented
for environmental data since the gain in response time would not benefit much this type
of ambient information. Furthermore, environmental data is generally considered as static
and is limited by the long period of update of the MTS300.

Subscribe_Velocity() - The work described in [57] shows how to quickly find a
path based on location coordinates samples. The problem of finding accurate velocity
direction or path is also a problem in Subscribe Velocity(). Sampling only two location
coordinates to infer velocity is not enough and leads to significant inaccuracies. Based on
the author’s observations and the analysis in [57], the proposed solution is to sample at
least three location coordinates and use linear regression to effectively get the velocity
direction. Also, the sampling coordinates must be separated by a minimum distance.
There are a lot of similarities in [57] in terms of tools, settings and goals, thus the
proposed solution can be applied to Subscribe_Velocity().

Subscribe_PhysicalPresence() and Subscribe Proximity() - In both of these
services, the framework needs to know the location of many Entities in order to generate
the proximity or physical presence information. It is desired to have access to this
information without querying all the sensors in the WSN. One possible solution is to use
a Moving Object Database [38] (MOD). The literature behind MOD suggests that current
DBMSs are not suitable to handle highly dynamic data such as location. MOD solves the
main issues related to location, such as handling the dynamicity of the data by modeling

location differently (i.e. location is stored as trajectories), providing a flexible query

75

language for formulating complex queries over a space and time, and most importantly,
indexing dynamic attributes to allow range queries without going through all the objects

in the database.

5.1.4 Development Platform

For the development platform, refer to section 5.2.2 on the testbed. It is the same

software and hardware used for the Web service Gateway for sensors.

5.2 Performance Evaluation

This section talks about the performance measurements of the framework

followed by a short analysis of the results.

5.2.1 Performance Metrics

There are two main quantitative metrics that are considered for the performance
analysis: network load and response time. It is assumed that these parameters are
important from the network provider and the user points of view, respectively. For the
user, a short response time means that the application is highly responsive, or that an
adaptation is made just at the right moment. Additionally, knowing that these applications
will run on thin devices and that wireless communication is a power hungry operation;
measuring the network load in this context make a lot of sense. The tests are performed
by writing a small dummy application that uses each of the individual Web service

methods. This approach is also used to measure the performance of the proprietary

76

interfaces. The resulting measurements from using both interfaces are compared for the
purpose of the analysis.

Since the Web service responses are based on NotificationTriggers, a minor
modification was made in order to get accurate response time measurements. The
framework will immediately send the response without waiting for a NotificationTrigger
to occur. The measurements take into account two cases: when the framework is
retrieving the sensed data from the sensors and alternatively, from the cache. Response
time is calculated from timestamps embedded in the client application. It starts when a
request is issued and stops when a response is received. For the network load, a protocol-
analyzer is running during the tests; hence the average network load generated from a

pair of request-response can be calculated.

5.2.2 Testbed

The hardware specification of our testbed is as follows:
— Web service Gateway for sensors: Pentium 4 2.4GHz / 512MB / 100Mb(Ethernet)
/ ATA133, 7200rpm, 60GB, MTS300 sink node
— Web service Client and Proprietary Client: Mobile Pentium 4 1.6GHz / 512MB /
802.11g(WiF1) / 5400rpm, 40GB, cricket location aware sensor (listening mode)
— Miscellaneous: Linksys 802.11g in infrastructure mode, cricket location aware
sensor (beacon mode) deployed in two offices, a single MTS300 node deployed in

one office

As for the software used in the testbed: the Web Service Gateway for sensors is

deployed on BEA Weblogic 8.1.3sp3 while running MoteView 1.0/PostGreSQL 8.0.0 for

77

the MTS300 sensors; PointBase DBMS is used for all other database tables (Mapping
Service); The Web service Client and Proprietary Client are deployed on BEA Weblogic
8.1.3sp3 and Jbuilder 9, respectively, Cygwin 1.3, Cricket API v2.3.0 and firmware
v2.3.1 are used on both proprietary and Web service client applications. Each of the
machines has Sun JDK 1.4.2 and WindowsXP home sp2 installed, and is networked in a
closed test environment. Etherpeek NX 2.0 is used to capture all packets for the average
network load calculation. For each Web service methods, at most five runs are executed,

and each run has at least 100 measurements (request-response pair).

5.2.3 Results and Analysis

Table 5.1 shows the total network load for both cases. The column on network
load efficiency is the ratio of the network load difference and total network load of the
Web service interface (or total network load of the proprietary interface in the case of an
overhead). This ratio represents the percentage of request-response pair one interface can
do more than another. At first glance, the network load for the proprietary interfaces is
much higher than for the Web service interfaces. Closer inspection shows that this is due
to the large amount of low-level information exchanged between the sensor network and
the client such as statistical information (i.e. minimum / maximum / mean / median
distances for each beacon that can be heard). This is not the case for less verbose
interactions such as Area environmental where the location data is not retrieved from the
sensors. In this case, the overhead using the Web service is 321% compared to the
proprietary interface. In all of the other cases, Web service efficiency over the proprietary
APIs ranges from 81% to 249% with a mean of 171%. This percentage seems to scale

with the level of abstraction of the operations. The size of the SOAP envelope is included

78

in Table 5.1 for comparison and, in all cases, the SOAP message takes from 47% to 69%

of the Web service total message size. This percentage increases as the number of

parameters increases in the response and request messages.

Table 5.1. Average network load per measurement, sent and received from the

client application

Proprietary | Web service interface | Network | Network load
interface load efficiency for
Total Total SOAP differen | Web service in
network network | envelope | ce terms of
load load message request-
size response pair

(bytes) (bytes) | (bytes) (bytes) | (%)

Location 11865 6551 3190 5314 81

Velocity (3 samples) | 19060 6056 2858 13004 215

Physical presence (2 | 24277 7961 4495 16316 205

entities)

Proximity (2 24277 6956 3559 17321 249

entities)

Area 2058 8681 5842 -6623 321 (overhead)

environmental

Entity environmental | 17156 8366 5798 8790 105

79

Table 5.2. Average response time per measurements for proprietary and Web

service interfaces

Proprietary | Web service interface | Overhead
interface | Normal Cached | Normal Cached
operation | operation | operation | operation

(ms) (ms) (ms) (ms) | (%) | (ms) | (%)
location 486 1817 1597 1331 | 273 | 1111 | 228
velocity (3 samples) 494 1851 1667 1357 | 274 | 1173 | 237
physical presence (2 503 1967 1752 1464 | 291 | 1249 | 248
entities)
Proximity (2 entities) 909 2053 1784 1144 | 125 | 875 |96
area environmental 323 1078 n/a 755 | 233 {n/a |n/a
Entity environmental 694 1936 1648 1242 | 179 | 954 | 137

As shown in

80

Table 5.2, it is no surprise that the response times for the Web service framework are
longer than for proprietary frameworks. This extra delay can be attributed mainly to
SOAP serialization/deserialization. The delay is significant even when considering the
cache optimization. A head-to-head comparison shows that the overhead ranges from
125% to 291% when considering normal operations. While the cached operation
decreases the response time by an average of 235ms, the relative overhead is still large
and ranges from 96% to 248% with a mean of 189%.

On the other hand, it is expected that the footprint of the Web service client
application would be greatly reduced. In fact, proprietary clients have a footprint varying
from 90 loc to 150 loc, while for Web service clients, which consist of one single atomic

operation, it is less than 5 loc.

5.3 Application: SenseCall

SenseCall is an application that establishes a 3™ party call between two users when
they are both in their respective office space. For instance, it can notify an employee
when his colleague is back from a long meeting and automatically establish a call.
SenseCall, shown in Figure 5.6, uses the framework to retrieve the location of both users
and a Web service built on top of a Parlay gateway [10] to deliver the 3™ party call while
providing a high-level of abstraction for call control. Parlay [20][21] is a set of
telecommunication APIs that allow 3™ party application providers to access
telecommunications capabilities via a controlled and secured manner. The high level

APIs are programming language and network-technology independent (fixed, mobile or

81

IP networks). There are two types of APIs, service APIs, which cover call control,
messaging, presence, terminal location and account/policy management services, and
framework APIs, which cover authentication, authorization and discovery of network
service capabilities. SenseCall uses Subscribe Location() and its goal is to test and
demonstrate the ambient awareness framework. Although current specifications of
Parlay-X already support 3™ party call control capabilities, the Web service Parlay
gateway provides a high level of abstraction for call control as well as support for
conferencing capabilities (which was not available with Parlay-X at the time of SenseCall
implementation). Also, the Web service Parlay gateway was product of a previous

project.

Sensor
Network

Figure 5.6. The overall architecture of SenseCall

82

83

Chapter 6 Conclusion

This chapter concludes by presenting the main contributions and the lessons

learned. Potential future work is also outlined.

6.1 Thesis Contributions

In ambient-aware applications, a bulk of the development effort is spent building
mechanisms to disseminate ambient information collected from sensors. Many
frameworks have been proposed to disseminate ambient information to applications.
However, they are not completely suitable for application development in an I-centric
environment. The work described in this thesis investigates the use of Web services to
ease the development of I-centric applications.

As part of the thesis contributions, criteria for an ideal framework from a
developer’s point of view were outlined and existing frameworks were evaluated and
analyzed with respect to these criteria. The reviewed frameworks were based on API,
mobile code, database or Web service. With the exception of the Web service based
framework, the reviewed frameworks are programming language dependant, require
extensive knowledge of sensors, or do not support a flexible business model. On the other
hand, current Web service based framework does not have the right level of abstraction

for building I-centric services.

84

This thesis established that a Web service-based framework is the most promising.
When well defined, Web services provide a high level of abstraction and integrate easily
with other applications while being programming language and platform neutral. Web
services also provide needed security features as well as the capabilities to publish and
discover the sensing services to applications. These benefits lower the threshold for the
developers as they do not need to know the low level details of sensors or the details of
integration.

As the core contribution, a set of Web services for providing ambient information
is defined and implemented in the scope of this ideal framework and its overhead with
respect to network load and response time has been evaluated. This time, the Web
services were defined at the right level of abstraction for I-centric application
development. As a part of these Web services, a generic framework was defined and
implemented to provide performance improvements (i.e. caching), ambient informatioﬁ
enhancements (i.e. Quality of Context, high level representation of ambient information)
and mechanisms to consolidate with different types of sensor (Mapping Service).

Performance wise, Web services are found to be lagging by 189% in terms of
response time, while network load is a mixed bag of results. For verbose interactions
between the sensor network and the Web service gateway, Web services reduce the
network load by 171% by only disseminating the required high-level information. On the
other hand, terse interactions results in a network load overhead of 321% when using

Web services.

85

6.2 Future Work

One of the biggest drawbacks of Web services is performance in terms of response
time and in some cases, network load. Knowing that the bottleneck resides in the SOAP
serialization and deserialization, one possible future work is to investigate the different
mechanisms to accelerate or to avoid the serialization/deserialization of SOAP. Some of
the proposed mechanisms include dynamic multi-protocol framework and differential
serialization. Another future work is to investigate the use of Moving Object Database to
store location data and its impact on the overall performance and scalability. It would be
interesting to re-evaluate the framework performance in light of aforementioned
enhancements. Additionally, the test environment could be improved. Thin clients like
PDAs and cellular phones could be used as the testing platform, thus providing more
realistic performance evaluation.

Aside from performance considerations, another open issue is the notion of
context fusing. Potential work in this area could be to model a methodology for fusing

ambient information.

86

References

[1] Gay, D., Levis, P., Behren, R., Welsh, M., Brewer, E., Culler D.: The nesC Language:
A Holistic Approach to Networked Embedded Systems. Proceedings of the ACM
SIGPLAN 2003, San Diego, California, USA, pp. 1-11, 2003

[2] Cricket Version 2 User manual, MIT Computer Science and Artificial Intelligence
Lab, available at http://nms.csail.mit.edu/projects/cricket/v2man-html/, Jan 2005

[3] Madden, S., Franklin, M. J., Hellerstein, J. M. and Hong, W.: Tinydb: An
acquisitional query processing system for sensor networks. Transactions on Database
Systems (TODS), 2005.

[4] Athanassios, B., Chih-Chieh, H., Mani, B. S.: Design and implementation of a
framework for efficient and programmable sensor networks. Proceedings of the 1st
international conference on Mobile systems, applications and services, San Francisco,
California, pp. 187 — 200, 2003

[5] Specification: Web Services Security (WS-Security), available at: http:/www-
106.ibm.com/developerworks/webservices/library/ws-secure/

[6] Arbanowski, S., Ballon, P., David, K., Droegehomn, O., Eertink, H., Kellerer, W., Van
Kranenburg, H., Raatikainen, K., Popescu-Zeletin, R.: I-centric Communications:
Personalization, Ambient Awareness, and Adaptability for Future Mobile Services.
IEEE Communications Magazine pp. 63-69, Sept 2004.

[7] Parlay-X specifications Version 2, available at http://www.parlay.org/specs/

[8] Open Geospatial Consortium, available at http://www.opengeospatial.org

[9] Crossbow Technology, Mica2 Multi-Sensor Module, available at

http://www.xbow.com/Products/productsdetails.aspx?sid=75

87

[10] Torreira da Silva, J.S., Hassan, K., Glitho, R., Khendek, F.: Web services for
Conferencing in 3G Networks: A Parlay based implementation. Proceedings of
ICIN’2004, Bordeaux, France, October 2004

[11] Web Services Description Language (WSDL) 1.1, available at:
http://www.w3.org/TR/wsdl

[12] SOAP Version 1.2, available at: http://www.w3.org/TR/soap

[13] UDDI Version 3 Specifications, available at: http://www.uddi.org/

[14] Wireless world research Forum, available at: http://www.wireless-world-
research.org/

[15] Chen, Y., Chen, X.Y., Rao, F.Y., Yu, X.L., Li, Y., Liu, D.: LORE: An infrastructure
to support location-aware services. IBM Journal of Research and Development, Vol.
48. No 4/6, pp. 601-615, 2004

[16] Alonso, Casati, Ff, Kuno, H. and Machiraju, V.: Web Services Concepts,
Architectures and Applications, Chapter 5. Data-Centric Systems and Applications,
Springer Verlag, 2004

[17] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. and Weerawarana, S.:
Unraveling the Web Services Web An Introduction to SOAP, WSDL, and UDDI,
IEEE Internet Computing, March 2002

[18] Gottschalk, K., Graham, S., Kreger, H., Snell, J.: Introduction to Web services
architecture. IBM SYSTEMS JOURNAL, VOL 41, 170 NO 2, 2002

[19] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard,
D.: Web Services Architecture. W3C Working Group Note, available at:

http://www.w3.org/TR/ws-arch, Feb 2004

88

[20] Yates, M. J. and Boyd, 1.: The Parlay network API specification. BT Technology
Journal, Vol 18, No 2, April 2000

[21] Stretch R. M.: The Parlay API — allowing third party application providers safe and
secure access to network capabilities. BT Technology Journal, Vol 21, No 3, July 2003

[22] Botts, M., Percivall, G.: Sensor Web Enablement. Open Geospatial Consortium
white paper, Sept 2005

[23] Web services toolkit for mobile devices, available at:
http://www.alphaworks.ibm.com/tech/wstkmd

[24] Thompson, T., Weil, R., Wood, M. D.: CPXe: Web Services for Internet Imaging.
IEEE Computer Society, pp. 54-62, Oct 2003

[25] Cnet news: GPS-enabled school uniforms hit Japan, available at: http://ecoustics-
cnet.com.com/2061-10790-5671524.html, April 2005

[26] Krishnamachari, B., Estrin, D., Wicker, S.: Impact of Data Aggregation in Wireless
Sensor Networks. International Workshop on Distributed Event-Based Systems 2002,
Oct 2002

[27] Madden, S., Franklin, M. J., Hellerstein, J., & Hong, W.: TAG: a Tiny Aggregation
Service for Ad-Hoc Sensor Networks. Symposium on Operating Systems Design and
Implementation, Dec 2002

[28] Slijepcevic, S., Potkonjak, M., Tsiatsis, V., Zimbek, S., & Srivastava, M.: On
Communication Security in Wireless Ad-Hoc Sensor Networks. Proceedings of the
Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprises (WETICE’02), 2002

89

[29] Intanagonwiwat, C., Govindan R. and Estrin, D.: Directed diffusion: A scalable and
robust communication paradigm for sensor networks. Proceedings of the 6th Annual
ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom'00), Boston, MA, August 2000

[30] Lindsey, S. and Raghavendra, C. S.: PEGASIS: Power Efficient Gathering in Sensor
Information Systems. Proceedings of the IEEE Aerospace Conference, Big Sky,
Montana, March 2002

[31] Yao, Y., Gehrke, J.: The Cougar Approach to In-Network Query Processing in
Sensor Networks, Department of Computer Science Cornell university, SIGMOND
Record. Vol 31, No. 3, September 2002

[32] Braginsky D. and Estrin D.: Rumor Routing Algorithm for Sensor Networks.
Proceedings of the First Workshop on Sensor Networks and Applications (WSNA),
Atlanta, GA, October 2002

[33] Beigl, M., Zimmer, T., Krohn, A., Decker, C. and Robinson P.: Smart-Its —
Communication and Sensing Technology for UbiComp Environments. Telecooperation
Office (TecO), University of Karlsruhe

[34] Steere, D., Baptista, A., McNamee, D., Pu, C. and Walpole, J.: Research challenges
in environmental observation and forecasting systems. Proceedings of the 6th Int.
Conf. Mobile Computing and Networking (MOBICOMM), pp. 292299, 2000

[35] Bonnet, P., Gehrke, J. and Seshadri, P.: Querying the physical world. IEEE Personal

Communications, pp. 10-15, Oct 2000

90

[36] Warneke, B., Last, M., Leibowitz, B. and Pister, K. S. J.: Smart Dust:
Communicating with a Cubic-Millimeter Computer. Computer Magazine, January
2001

[37] Berkeley Robotics and Intelligent Machines Laboratory: Golem Dust, available at:
http://www-bsac.eecs.berkeley.edu/archive/users/warneke-brett/SmartDust/

[38] Wolfsony, O., Xuz, B., Chamberlainx, S., Jiang, L.: Moving Objects Databases:
Issues and Solutions. Proceedings of the 10th International Conference on Scientific
and Statistical Database Management, pp 111-122, 1998

[39] Working Group 2 Service architectures for the wireless world: White Paper on

Ambient Awareness. Wireless World Research Forum, Dec 2003

[40] Working Group 2 Service architectures for the wireless world: White Paper on
Service Adaptability. Wireless World Research Forum, Dec 2003

[41] Working Group 2 Service architectures for the wireless world, White Paper on
Service Personalization. Wireless World Research Forum, Dec 2003

[42] IDSec, available at: http://idsec.sourceforge.net/

[43] Composite Capabilities/Preference Profiles available at:
http://www.w3.0org/TR/2004/REC-CCPP-struct-vocab-20040115/

[44] Platform for Privacy Preferences available at: http://www.w3.org/P3P/

[45] Berkeley University of California available at: http://www.berkeley.edu/

[46] Berkeley Sensor and Actuator Center available at: http://www-
bsac.eecs.berkeley.edu/

[47] Crossbow Technology, mica-mote available at:

http://www.xbow.com/Products/productsdetails.aspx?sid=72

91

[48] Crossbow Technology, micadot-mote available at:
http://www.xbow.com/Products/productsdetails.aspx?sid=73

[49] World Wide Web Consortium available at: http://www.w3.org/

[50] Chiu, K., Bramley, R., Huffman, J.C., Huffman, K., McMullen, D.F.: Instruments
and Sensors as Network Services: Making Instruments First Class Members of the
Grid. Indiana University Computer Science department Technical report 588, 2003

[51] Akyildiz, 1., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A Survey on Sensor
Networks. IEEE Communications Magazine, pp. 102-114, August 2002

[52] Fok, C-L., Roman, G-C., Lu, C.: Mobile Agent Middleware for sensor networks: an
application case study. Washington University in St-Louis

[53] Ember Corporation available at: http://www.ember.com/index.html

[54] Ember Corporation , FEmberNet technical brief available at:
http://www.ember.com/downloads/pdfs/embernet_techbrief.pdf

[55] Sensoria Corporation available at: http://www.sensoria.com/

[56] Sensoria Corporation, sGate wireless sensor gateway available at:
http://www.sensoria.com/pdf/sGate-Brochure.pdf

[57]1 Gupta, S., Das, S. R.: Tracking Moving Targets in a Smart Sensor Network.
University of Cincinnati

[58] Schramm, P., Naroska, E., Resch, P., Platte, J., Linde, H., Stromberg, G., Sturm, T.:
A Service Gateway for Networked Sensor Systems. IEEE Pervasive Computing, pp.

66-74, January-March 2004

92

[59] Nath S., Deshpande A., Ke, Y., Gibbons, P. B., Karp, B., Seshan, S., IrisNet: An
Architecture for Internet-scale Sensing Services. In proceedings of the 29" VLDB
Conference, Berlin, Germany, 2003

[60] Souto E., Guimaraes, G., Vasconcelos, G., Vieira, M., Rosa, N. and Ferraz, C.: A
Message-Oriented Middleware for Sensor Networks. Federal University of
Pernambuco, 2™ International Workshop on Middleware for Pervasive and Ad-Hoc
Computing, Toronto, Ontario, Canada, October 2004

[61] Delicato, F. C., Pires, P. F., Pirmez, L., Rust da Costa Carmo, L. F.: A Flexible Web
Service based Architecture for Wireless Sensor Networks, Proceedings of the 231
International Conference on Distributed Computing System Workshops
(ICDCSW’03), 2003

[62]Li, S., Lin, Y., Son, S. H., Stankovic, J. A., Wei, Y.: Event Detection Services Using
Data Service Middleware in Distributed Sensor Networks, Department of Computer
Science, University of Virginia, 2003

[63] Levis, P., Culler, D.: Mate: A Tiny Virtual Machine for Sensor Networks, Computer
Science Division of University of California Bekerley and Intel Research

[64] McKusick, K.: A conversation with Adam Bosworth. ACM Queue vol. 1, no.
available at
http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=29,
March 2003

[65] XML available at: http://www.w3.org/ XML/

[66] XML signature available at: http://www.w3.org/Signature/

[67] XML encryption available at: http://www.w3.org/Encryption/2001/

93

[68] The Internet Engineering Task Force available at: http://www.ietf.org/

[69] Shen, C-C., Srisathapornphat, C. and Jaikaeo, C.: Sensor Information Networking
Architecture and Applications, IEEE Personal Communications, August 2001

[70] Buonadonna, P., Gay, D., Hellerstein, J. M., Hong W. and Madden, S.: TASK:
Sensor Network in a Box, Intel Research Berkeley and UC Berkeley, 2005

[71] Zigbee Alliance, Zigbee specification 1.0, June 2005, available at:
http://www.zigbee.org/en/index.asp

[72] Trendil Corporation, available at: http://www.tendrilnetworks.com/

[73] SOA Web Services News Desk: Tendril Creates Web Services “Server Broker” for
Zigbee, available at: http://webservices.sys-con.com/read/48248.htm

[74] Ta, T., Othman, N. Y., Glitho, R. and Khendek, F.: Bridging End-User Applications
and Wireless Sensor Networks with Web Services: A Promising Approach. Work
under review at Ad Hoc Networks, Elsevier, October 2005

[75] W3C note on WAP Binary XML Content Format, available at:

http://www.w3.org/TR/wbxml/

94

Appendix A - sample SensorWare script

set need_reply_from | replicate -m)
set maxvalue | query sensor value]
if {$need_reply_from == "} { send $parent $maxtemp; exit }
else { set return_reply_to $parent }
set first_time 1
while {1} {
wait anyRadioPck // "anyRadioPck" is a predefined eventiD
if { $msg_body ==add_user } {
if { $first_time == 1 }{
send $parent $Smsg_body
set first_time 0
}
set return_reply_to "$return_reply_to $msg_sender"
Jelse {
set maxvalue [expr {($maxvalue<$msg_body) ? Smaxvalue
: $ msg_body}]
set n [Isearch $need_reply_from $ msg_sender]
set need_reply_from [Ireplace $need_reply_from $n $n]
}
foreach node $return_reply_to {
if { (Sneed_reply_from=="")||($need_reply_from==8node)} {
send $node $maxvalue
set n [Isearch $refumn_reply_to $node]
set return_reply_to [Ireplace $return_reply_to $n $n]

}
}
if {$return_reply_to==""} {exit}

95

