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ABSTRACT

Static and Modal Analyses of Laminated Composite Plates using

Hierarchical Finite Element Method

Karun Nayyar

Composite materials are widely being used in aircraft, automotive and robotic
industries where the components under different loading conditions are subject to motion.
There is a need for the accurate prediction of not only their static response but also their
dynamic characteristics so that they can be designed against the failure due to various

types of possible static and dynamic loads.

In the present thesis, static and vibration analyses of laminated plates are
conducted using conventional and hierarchical finite element formulations based on First-
order Shear Deformation Theory (FSDT). Conventional finite element formulation
requires a large number of elements to obtain acceptable results. Besides, the necessity to

satisfy internal C, or C, continuity across the elements’ interfaces creates complexity

even in simple structures. In order to overcome these limitations, the formulation based
on Hierarchical Finite Element Method (HFEM) is developed in the present thesis for
static and vibration analyses of laminated composite plates based on first-order shear
deformation theory. Conventional finite element formulation is also developed based on

FSDT. The developed formulations are applied to the analysis of various types of

11



laminated composite plates. The results are compared and the efficiency and accuracy of
HFEM over conventional finite element method is explained. The efficiency and
accuracy of the developed formulation is also established in comparison with
approximate solutions based on Ritz method which are also developed for the cases under
study. A detailed parametric study has been conducted on various types of laminated
composite plates, all made of NCT-301 graphite/epoxy, in order to investigate the effects
of boundary conditions, laminate configuration, aspect ratio values and elastic modulus to

shear modulus (E/G) ratio.
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Chapter 1

INTRODUCTION

1.1 Static and Modal Analysis in Mechanical Design

Linear static analysis allows engineers to test different load conditions and
their resulting stresses and deformation. Knowing how a design will perform under
different conditions allows engineers to make changes prior to physical prototyping, thus
saving both time and money. Apart from static analysis, vibration analysis is also a
critical component of design. Any physical system can vibrate. The frequencies at which
vibration naturally occurs and the mode shapes which the vibrating system assumes are
the properties of the system. An analyst must know these properties of the system in

order to design it against the failure due to vibrations.

Inherent vibration modes in structural components or mechanical systems can
shorten the equipment life and cause premature or completely unanticipated failure, often
resulting in hazardous situations. Resonances are determined by the material properties
(such as mass, stiffness, damping) and boundary conditions of the structure. If either the

material properties or the boundary conditions of a structure change, its modes will



change. Modes are used as a simple and efficient means of characterizing resonant
vibration, which makes a structure to vibrate with excessive, sustained oscillatory motion.
Resonant vibration is caused by an interaction between the inertial and elastic properties

of the material within the structure.

Detailed modal analysis determines the fundamental vibration mode shapes and
corresponding frequencies. This can be relatively simple for the basic components of a
simple system, and extremely complicated when qualifying a complex mechanical device
or structure exposed to periodic loading. These systems require accurate determination of

natural frequencies and mode shapes using techniques such as Finite Element Analysis.

1.2 Composite Materials and Structures in Mechanical Design

Over the last three decades, composites have found increasing application in
engineering structures and in manufacturing industry. Broadly speaking, the word
‘composites’ means made of two or more different materials or phases. Each constituent
material or phase has significantly different macroscopic behavior and a distinct interface
exists between the constituent materials. Generally a composite material is a combination
of two components of which one serves as the matrix and the other as fibers. Individual
fiber is usually stiffer and stronger than the matrix. The fibers are the main load carrying
agents and the matrix acts as a protecting agent and provides a means to distribute the
load. The fibers and matrix are blended together under controlled temperature and

pressure to give a new material called composite, with properties and performance



characteristics better than the constituent materials. Unlike isotropic materials, the most
important aspect of composite materials is that composites can be optimized for strength,
stiffness, fatigue, and heat and moisture resistance by changing the orientation of fibers.
Composite materials have much higher strength to weight ratio than the conventional
materials. The structural elements such as bars, beams and plates are made of stacking
together many plies of fiber reinforced layers in different angles to achieve the desired
properties. Currently thick laminates made of orthotropic layers find extensive

application in fabricated plate and shell structures.

1.3 Finite Element Method in Mechanical Design

In the field of engineering design we come across many complex problems, the
mathematical formulation of which is tedious and usually not possible to solve by
analytical methods. The governing equations of motion are generally nonlinear partial
differential equations, which are extremely difficult to solve in the closed form. At such
instants we resort to the use of numerical techniques. The availability and sophistication
of modern digital computers has made possible the extensive use of the finite element
method for analyzing complex structures. Finite Element Method (FEM) is one of the
most powerful numerical analysis tools in the engineering and physical sciences. The
basic concept is that a body or structure may be divided into smaller elements of finite
dimensions called as “Finite Elements”. The original body or structure is then considered

as an assemblage of these elements connected at a finite number of joints called as



“Nodes” or “Nodal Points”. The properties of the elements are formulated and combined

to obtain the properties of the entire body.

The equations of equilibrium for the entire structure or body are then obtained
by combining the equilibrium equation of each element such that the continuity is
ensured at each node. The necessary boundary conditions are then imposed and the
equations of equilibrium are then solved to obtain the required variables such as Stress,
Strain, Temperature Distribution or Velocity Flow depending on the application. Thus
instead of solving the problem for the entire structure or body in one operation, in FEM
attention is mainly devoted to the formulation of properties of the constituent elements. A
common procedure is adopted for combining the elements, solution of equations and
evaluation of the required variables in various disciplines of engineering. Further
advancements in Finite element methodology have been made and Hierarchical Finite
element Method (HFEM) has been developed. The HFEM provides us with critical
advantages of using fewer elements and obtaining better accuracy in the calculation of

natural frequencies, displacements and stresses of the component under study.

14 Literature Survey

In the following subsections, a comprehensive literature survey is presented on
the free vibration analysis of laminated composite plates using higher order shear
deformation theories and finite element methods. Important works done on the dynamic

analysis of composite plates by analytical, experimental and finite element methodologies



have been chronicled. After a brief history of the hierarchical finite element method,

works on the HFEM analysis of plates have been presented.

14.1 Dynamic Analysis of Composite Plates

A lot of attention has been given and extensive study has been done on linear
dynamic behavior of isotropic rectangular plates. Leissa [3] gave accurate and
comprehensive results for free vibrations of rectangular plates. Further improvements in
the accuracy of solution and reduction in computational efforts has been done by works
of Dickinson and Di Blasio [4], Bhat [5] and Liew et al [6]. All these authors used
Rayleigh-Ritz discretization procedure with different choices of admissible displacements
functions. On the dynamic behavior of composite laminated plates, most of the works
have been published on the free vibration analysis. Lin and King [7] used classical
laminated plate theory to compute the natural frequencies of un-symmetrically laminated

rectangular plates.

The classical laminate theory which is an extension of classical plate theory to
laminated plates ignores transverse stress components and models the plate as an
equivalent single layer system. Transverse shear deformation and transverse normal
stress are ignored in classical plate theory. Reissner [8] and Mindlin [9] improved the

classical theory by including transverse shear deformations and rotary inertia effects.

In thick laminated systems, the components of stress and strain that are

transverse to the plane of the laminate strongly influence the behavior. Thus the classical



laminate theory, which essentially ignores the effect of individual lamina across the
thickness of the plate or shell, does not account for the effect of these stress and strain
components. A number of shear deformation theories have been proposed till date. For
laminated isotropic plates, such a theory was first proposed by Stavsky [10] and later
generalized to laminated anisotropic plates by Yang, Norris and Stavsky [11].The Yang-
Norris-Stavsky (YNS) theory was adequate for predicting the flexural vibration response

of laminated anisotropic plates in the first few modes.

Ambartsumyan [12] developed a rather difficult approach to define transverse
shear stresses that satisfy the required continuity conditions at the layer interfaces. This
bending theory is limited to laminates consisting of orthotropic layers stacked
symmetrically with respect to the mid-plane of the plate and having the axes of material
symmetry coinciding with the plate co-ordinates axes. Yang et al [11] extended Mindlin’s
theory [9] for homogenous isotropic plates to thick laminates consisting of an arbitrary
number of bonded anisotropic layers. The approach of Yang et al [11] was used by
Whitney and Pagano [13] .Whitney [14] later concluded that the introduction of shear
deformations can not improve the in-plane stress distributions as determined from
classical plate theory. In the quest to obtain more accurate prediction of the behavior of
composite plates, Lo et al [15] [16] and Kant et al [17] have proposed higher order
theories in which the displacement assumptions are expressed in terms of a power series
in the thickness variable. Whitney and Sun [18] and Nelson and Lorch [19] introduced
quadratic variations and Lo et al [20] introduced cubic variations of in-plane

displacements through the plate thickness. Reddy [21] obtained even higher order



variations by imposing the condition of vanishing transverse shear strains on the top and
bottom surface of the plate. Higher order plate theory derived by Whitney and Sun was
applied by Pagano [22] in the case of free edge boundary value problems with a plane of
symmetry. Another class of approximate laminate theory was put forward by Srinivas
[23] in which the number of field equations and boundary conditions do not depend upon
the number of layers. Theoretical solutions of three dimensional elasticity theory were
developed for the prediction of inter laminar stresses by Pagano [24] and Srinivas and
Rao [25].These solutions were restricted to the special case of cross-ply laminates

subjected to uniformity distributed loading and simply supported boundary conditions.

1.4.2 Hierarchical Finite Element Method (HFEM)

The idea of finite element method is to divide the domain of interest into
smaller sub-domains called finite elements. The finite element method in general is a
special case of Rayleigh-Ritz method, with the main difference between the two being the
choice of interpolation functions used in the series representation of the solution. There
are various procedures for the refinement of the finite element solutions. Broadly these
fall into two categories. The first and most common procedure involves refining the mesh
while keeping the degree of the polynomial approximation fixed. This is termed as h-
version of the finite element method or simply finite element method. The second method
involves keeping the mesh size constant and letting the degree of the approximating
polynomial to tend to infinity [27], [28]. This approach is known as p-version of the finite
element method or the Hierarchical Finite Element Method (HFEM).Though HFEM has

much in common with the classical Rayleigh-Ritz method but the use of local



approximating displacement functions in HFEM results in greater versatility and

improved rates of convergence.

While considerable effort has been made in the finite element vibration analysis
of isotropic plates, only limited work has been done in the field of laminated anisotropic
plates. Exploiting the symmetries exhibited by anisotropic plates, Noor and Mathers [29],
[30] studied the effects of shear deformation and anisotropy on the accuracy and
convergence of several shear-flexible displacement finite element models. The analysis

was limited to symmetrically laminated cross-ply plates.

Hierarchical functions were initially introduced by Zienkiewicz et al [31].
Initial applications of HFEM were in the analysis of nuclear reactor vessels. [32]. After
that, new and useful families of p-type elements were introduced by Peano [33] and
Szabo et al [34], [35]. Adaptive refinements in the HFEM was put forward by
Zienkiewicz et al [36]. Babuska et al [27] describes the mathematical aspect of the
convergence of the finite element solution for the p-refinement. Szabo [37] showed that
the uniform p-refinement allows the global energy norm error to be approximately
extrapolated by three consecutive solutions. Kelly et al [38] and Gago et al [39] who
initiated non-uniform p-refinement also dealt with error analysis and adaptive processes

applied to finite element calculations.

The applications of HFEM at the commercial level took long time before its

merits were recognized. Polynomial functions are more common in the finite element



analysis. With regards to HFEM, Legendre polynomials in the Rodrigues form are most
popular. They have been applied to linear dynamic analysis of the plates using thin plate
theory in references [40], [41] and to non-linear dynamic analysis of beams and plates in
the frequency domain in references [42], [43].It has been shown that convergence is
achieved with far fewer degrees of freedom in the HFEM than that in the h-version of the
FEM. Bardell [44] used HFEM to determine the natural frequencies and modes of flat
rectangular isotropic plates. Bardell et al [45] applied h-p method to study the linear
vibrations of shells. Han et al [46] have extended Bardell’s [41] model of HFEM for free
vibration analysis of plates, to geometrically non-linear static analysis of symmetrically

laminated rectangular plates.

1.5 Objectives of the Thesis

The objectives of the present thesis are, (1) to develop and apply the
hierarchical finite element formulation based on First-order Shear Deformation Theory
(FSDT) to static and modal analyses of laminated composite plates; (2) to show the
superiority of the HFEM over conventional FEM by comparing the results from both the
formulations for different laminates under various boundary conditions; and, (3) to
conduct a detailed parametric study of laminated composite plates considering different

laminate configurations, aspect ratios and E/G ratios.

Hierarchical finite element formulations are developed using polynomial

functions. The developed methodology not only provides more accurate and better



convergence, but also, uses less number of elements as compared to the conventional
FEM. Use of lesser number of elements results in lesser discontinuities in stress and
strain distribution across element interfaces. Simple structures like rectangular plates can
be analyzed using only one Hierarchical element thus completely eliminating the time

and the cost involved in the meshing.

1.6 Layout of the Thesis

The present chapter is the first chapter and it provided a brief introduction and
literature survey on static and dynamic analysis of rectangular isotropic and anisotropic
plates using conventional and Hierarchical FEM. In chapter 2, the hierarchical finite
element formulation is developed and applied to static analysis of laminated composite
plates. Ritz method based on first order shear deformation theory is developed. Results

are compared with conventional FEM and solutions available from various references.

In chapter 3, the hierarchical finite element formulation is developed and
applied to modal analysis of laminated composite plates. Results are compared with
conventional FEM based on first order shear deformation theory, and with Ritz method.
In chapter 4, a detailed parametric study is performed which includes the effect of
laminate configurations, boundary conditions, aspect ratio and E/G ratio on static
deflection and natural frequencies of laminated composite plates. Chapter 5 brings the
thesis to its end by providing the overall conclusions of the present work and

recommendations for the future work.

10



Chapter 2

Static Analysis of Laminated Plates using Hierarchical Finite Element Formulation

2.1 Introduction

Engineering structures are generally designed on the basis of stress sustaining
capacity of the structural components. Since weight is a crucial factor in the design of
structures, the use of conventional isotropic material gives very little room for weight
savings. Composite materials on the other hand have high strength to weight ratio and
stiffness to weight ratio. Unlike the isotropic materials, the properties of composite
materials can be tailored to have very high strength and yet being very light. A certain
number of laminae with different fiber orientations are bonded together under a
controlled environment with required heat and pressure to obtain a composite laminate
with desired thickness and stiffness. The orientations of the fibers also depend upon the
type of loadings the laminate undergoes. We can place fibers oriented perpendicular to
each other for a laminate which is subjected to transverse loads and a laminate subjected
to shear and tension may need fibers oriented at 45 degrees to resist the shear load and 0
and/or 90 degrees to resist the tensile load. Composite materials are being widely used in

aircraft, automotive and robotic industries where the parts under different loading

11



conditions are subject to motion. There is therefore a need for the accurate prediction of
not only their static but also their dynamic characteristics so that we can design them

against the failure due to various types of possible static and dynamic loads.

In this chapter the static analysis of laminated plates is conducted using
conventional and hierarchical finite element formulations based on First-order Shear
Deformation Theory (FSDT). Section 2.2 discusses the plate theory employed and states
the advantage of using the First-order Shear Deformation Theory over Classical
Laminated Theory for the plate under study. In Section 2.4, Ritz solution for specially
orthotropic plate has been provided. In Section 2.5, the finite element formulation for
uniform laminated composite plates has been developed using FSDT. In Section 2.6, the
formulation using the Hierarchical Finite Element Method (HFEM) is developed. The
chapter ends with the comparison of results from conventional and hierarchical finite
element formulations and summarizes the advantages of using HFEM over conventional

finite element formulation for static analysis of laminated composite plates.

2.2 Plate Theory

When the thickness of the laminate is small as compared to the planar
dimensions, laminate theories based on equivalent two-dimensional descriptions are used
to analyze laminated composite structures. These two-dimensional theories, called as
equivalent single layer theories are obtained from three dimensional elasticity theories.

Some assumptions about the variations of displacements and stresses through the
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thickness of laminate are made. Many theories with different assumptions have been
developed over the years to accurately predict the response of laminated composite
plates. The earliest plate theory suggested for the plates was the Kirchhoff plate theory or
Classical Plate Theory (CPT). In this theory the normal of the plane is assumed to be
straight and normal in the deformed configuration. The theory was extended to laminated
plates and called as Classical Laminated Plate Theory (CLPT). The CLPT can be applied
to a fine degree of accuracy to analyze the laminates whose thickness is small by two
orders of magnitude as compared to the planar dimensions. Such an assumption neglects
the transverse shear effects, which have significant impact on the behavior of laminated

composite plates. This limits the usage of the theory for only thin laminates.

Since there are many structural applications using thick laminated composite
plates with very high elasticity modulus to shear modulus ratios and are susceptible to
thickness failures, the CLPT becomes inadequate. Although the transverse shear and
normal stresses are an order of magnitude smaller than the in-plane stresses, the material
strength allowable for the transverse stresses are also an order of magnitude smaller than

the allowables for the in-plane stresses.

Mindlin further refined the CPT by including the transverse shear effects in his
model and the theory when applied to composite laminates is called the First-order Shear
Deformation Theory (FSDT). In this model, the normal of the plate is assumed to be
straight but no longer normal in the deformed configuration thus allowing the

independent rotations of the transverse normal as shown in Figure 2.1. This assumption
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makes the transverse shear strains and stresses to be constant in the thickness direction of
the laminated plate and thus requires the shear correction factor. The shear correction
factor is a dimensionless quantity, which accounts for the difference between the constant
state of shear strains and stresses in the First-order Shear Deformation Theory and the
actual distribution of shear strains and stresses according to the elasticity theory. For
composite laminates, the ply properties, lamination scheme, geometry of the structure and

boundary conditions also affect the value of shear correction factor.

Normal to the mid plane
/ of the plate before deformation

w=g-y
Direction of deformed section

Normal to the mid plane
of the plate after deformation

where ¢ is slope of the plate,
v is the actual rotation of the laminate, and
y 1is the shear strain.

Figure 2.1 Deformation of the mid plane according to FSDT

2.3 Governing Equations

For a laminated plate of constant thickness “h” with different orientations of

each layer with respect to a Cartesian co-ordinate system, the origin of the coordinate
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system is located at the middle plane with z-axis being normal to the mid-plane. The
material of each layer is assumed to have a plane of elastic symmetry parallel to the x-y

plane. The assumed displacement field as per FSDT is as below

u(x,y,z) =uy(x,y) +zy (x,y)
W(x,,2) =vy(x, ¥)+zy (X, )

W(x7y7z):w0(x7y) (21)

where u, v and w are the displacement components in x, y and z directions respectively,
u,,v, andw, are the corresponding mid-plane displacements in x, y and z directions,
w, and y  are the rotations about x and y directions respectively, and

z is the thickness variable in z-direction.

The corresponding strain field is given by

0
gxx:%—*-z%’ & :%4_2&, zz=0
ox Ox Yooy oy
ov 0
7/{}):%_{..__0_’_2 %.{..& 5 7xz=%_+l//x7 }/Z:%_i_‘//
&y ox dy  ox ox gy Y

(2.2)
The constitutive relation for any layer taking into consideration the plane of elastic

symmetry is given by:
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o] O @y, Q6 O 0 | &
o, On On O O 0 |e,

Ty |= O O G O 0 Y~ (2.3)

Ty 0 0 0 Ou Qs|7,.

Ty 0 0 0 Oy Os]7-

where, O, (1, j = 1,2,6) are the plane stress reduced stiffness components and 0;(1,j=

4,5) are the transverse shear stiffness components of the layer material. We can introduce

force and moment resultants per unit length as follows

hi2 hi2
(NoNN = [0,0,7,)d,  (0.0)= [C..7.)dz,
-h/2 -h/2
hi2
(M M, ,M_)= j(ax,ay,rxy)zdz (2.4)
-h/2

where N ,N, and N are in plane force resultants,
0, and Q, are transverse force resultants,
M, and M, are bending moment resultants, and

M, is the twisting moment resultant.

The constitutive equation of laminates according to FSDT associates the resultants and

moments as follows:
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N, ] [4, 4, 4, B, B, B, 0 0] u, / Ox
Ny Al?_ AZZ A26 Bl2 B22 BZ6 O O aVO /Gy
No | |46 4y Aq Be By Be O 0 || duy/dy+ov,/ox
M, | |B, B, B¢ D, D, D, O 0 Oy, /ox
My B, By By D, Dy Dy 0 0 | aWy/ay
M, B By By Dy Dy Dy 0 0 ||Oy, /Oy+0y,/0x
0, 0 0 0 0 0 0 F, Fgl ow/oy+y,
o, 1 L0 0 0 0 0 0 Fy Fi|| Oow/ox+y,
2.5)
where 4;, B; and D, are given by
hi2
(4;,B,,D,)= [0, (Lz,2)dz  i,j=126 (2.6a)
—hi2
/2
A, =k |0, "dz i,j=4,5 (2.6b)

~h/2

where Q,.j('") are stiffness coefficients of the mth layer and

k is the shear correction factor.

Generally each lamina in the laminate can have its own material properties. The material
properties of a lamina are known in their own coordinate system. They are first

transformed into the plate coordinate system, using angle of orientation to obtain the

I/

stiffness coefficients, Q. for each lamina. Then 4;, B; and D; are obtained using

Equation (2.6) where
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h/2 N, hiyy (m)
_ (m)
Az‘j = IQU dz = Z IQU dZ (2.7)
-h/2 m=l b

where A, The distance of the lower surface of the m" layer from the mid plane along the

thickness coordinate and A, is total number of layers of the laminate.

Once the 4.,

;» B, and D, are obtained the whole plate is analyzed as if made of a

single material with characteristic constants 4,, B, and D,.In the absence of body

forces and shear stresses on the faces of laminate, the equations of plates are [1]

ON,/0x+0N,, /3y =p,0*uldt’, 6N, /ox+0N,/dy=p,0°v/of
00, /0x+0Q, /0y = p,0*w/ot’, oM, /ox+0M /oy —Q, =10y o

2 2
oM, /0x+0M ,/0y—-Q, =10y, /ot (2.8)
where p is the translational inertia coefficient and I is the rotary inertia coefficient.

In case of static problems the right hand side of Equations (2.8) reduces to zero.

Strain energy of the laminate is given by

U= % jJ'J.(O-ng + O-ng t0.&, + z-yz}/yz tT.V. T Txy}/xy }iXdde (29)

Now substituting the values from Equations (2.2), (2.3), (2.5) into Equation (2.8), we can

express strain energy in terms of displacements and slope functions as follows
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dy o
+EO[A12 aauo + 4, (Z‘yo)"' aauyo (A26%+A66 aav—]“' (A16%+ auo)
X x

o oy
2 2
+A22(av j 2A26@@+A66(%j

oy oy O Ox

0 0
AL Bn%'*'Bw al//x"'Blzﬂ"'Bm Wy
Ox Ox Oy Ox

1% ov, 0 0 0
+ ﬂ_*__o x| By . +Bgg —— al//x + By . + B, Yy
oy Ox Ox Oy oy Ox

2 2
%{All(%) +2A]6 aauoaal;()_}_A66(auoj +au0(A Z"'Alé aV()J
X X
Wy
ox

Ov 0 0
+—x| B, oy, + B, oY, +B,, Yy + B, Yy
oy Ox oy oy Ox

yVslp Oy g o g Mo g
Ox Ox oy oy

0
0 0
o Ve Y B, Oy +B,, Ou, +B,,—* vy ¢ +B,, iy
oy Ox Ox oy oy Ox

0 0 0 ov, ov,
+ Y lz'io""'stﬂ"'Bzz—o‘*'Bze :
Oy Ox

dy % Ox

5l
(

ow ow ow ow
Ay, + AssWx)"' ‘//x(A Py — t4s a)+l//y(A44 5 + 4, a_x}
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2.10
x o (2.10)
a 2
+D66[ﬁ) +A441//y2}dA
Ox

24

Ritz Solution for Specially Orthotropic Symmetric Laminate

In this Section the approximate solution using Ritz method is discussed. In the

case of pure bending of specially orthotropic and symmetric composite laminate using

FSDT, the strain energy equation is given by

2
1 oy, oy oy,
U, =E”{Dll[ o ) +Dzz( yJ +D66(

2 2
0 0
5 Gy) +D66[ (;//yj +2D,, a‘//x v,
29

Ox Oy
oy, Oy ow)’ owY’ ow ow
+2D Py 6_;+A44(5] +A55(a) +A44(‘//y)z+A55(‘//x)2+2A4sa_xa
+24, %‘)z//x +24,, %vz//y +24, ow

ow
Py W, +24s —a;l//x +2A5y .y, }dA

(2.11)
The potential energy related with the uniformly distributed transverse load q(x,y) is
a b
W= | [aCxy)w,(x, y)dxdy 2.12)
x=0 y=0
The load g(x, y) can be expanded as Fourier series as follows
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q(x,y) = ZZqU sm( )sin(%zy) (2.13)

i=l j=1

In the case of uniform loading distributed over the surface of plate,

16
;= IfMandNareodd ie.ij=1357.......
'y
(2.14)
g, =0 IfM and N are even i.e. i,j=2,4,6,8........
In the general case the load can be rewritten as
LY 16 j — .
q(x,y) = ZZ 9o - sin( (2 Dm)sin(wj L,j=1,23..........
i=l j=1 7[ _1)(2.] _1) a b
(2.15)
The approximated solution is expanded in a double series as below
M N
IACIEDIPI I S ENACY (2.162)
m=l n=l
M N
Vi (6)= 2.2 B, F, ()0, () (2.16b)
M
V5= 03 CuSu L) (2.16¢)
m=] n=1

The expression for potential energy (2.12) after substituting the expression for q(x, y)

from Equation (2.15) and w,(x, y) from Equation (2.16) becomes as follows:

e b1 g 164, (QRi-Dmx) . (QRj-Dmy L
NP rra j_l)sm( - ) ( jggAmnXm(x)Yn(y)wdy
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(2.17)

The functions X, (x)and Y, (y)are chosen so as to satisfy the boundary conditions.

These functions could be polynomials, trigonometric functions, etc. The coefficients

A,,,B,,,C,, are determined by stationarity condition which can be written as

mn? "~ mn?

~

oU, _ oW,

= 2.18a
04,, ©0A,, ( )
% = % (2.18b)
oB,, OB
_ayi = % (2.18¢)
aCﬂ"l acmn

where U , and 717_,. are the strain energy and the potential energy because of transverse

load, obtained by substituting the approximate expression (2.16) for the deflection into
the Equations (2.11) and (2.12). We can calculate the terms corresponding to potential
energy and strain energy by taking the partial derivatives of strain energy and potential
B

energy with respect to 4 C,,, as given below.

mn? "~ mnd

The right hand side of Equation (2.18a) can be solved to give the resulting expression as

follows

T ey 164, (Qi-Dm) . (2D
[ Zzﬂ2(2i—l)(2j—1)sm( - )sm( ; )Xm(x)Yn(y)dxdy (2.19)

x=0 y=0 i=l j=l

Note: The right hand sides of Equations (2.18b) and (2.18c¢) are zero.
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The expression for the strain energy (2.11) contains 16 terms added inside the integral.
The integral of the various terms in the expression of strain energy can be written as sum
of integrals of individual terms. The left hand sides of Equations (2.18a), (2.18b), (2.18¢)
can be obtained by substituting the assumed solutions from Equation (2.16), into each of

these 16 terms, taking their partial derivatives with respect to constants 4, ,B, ,C, = and

then taking the integral of the resulting terms as given below.

First 4 terms are calculated here, the calculation of remaining 12 terms can be found in

Appendix-I

Term 1

oy, \
o[ %)
29

After substituting the assumed solutions from Equation (2.16)

M N M N dP dP

T 1=D B B —2 )

m 1= Dy 20,2, BBy 525 0,0,
and

1 o

- - 2

2 oA (Term1)=0 (2.20a)
1 0 M I dP._ dP

———(Terml)=D B, —n ! . 2.20b
2aan( ermi) “Z”Z; Ve e O (2-200)
1 0

——(Terml)= 2.2

2 oC (erm) 0 (2.20c)

Integration of non zero term yields
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1 0 4o dP, dP,
ELO fzoam(Terml}lxdy =Dy, ;FIB,. -[o s —idx f 0,0,dy

Term 2

%

After substituting the assumed solutions from Equation (2.16)

M N M N dT dT
T 2=D Cc C. ——S .
erm 22 ;g;; mn " if dy dy n*~j
and
l—6—(Term2)=0
204,
1 pu—
EE(Term2)~0
1
2ac 22,1,,‘fd dy

Integration of non zero term yields

ar, dT

_f f TermZ)dxdy D,, chuf § def d— dyd

i=l j=1

Term 3

D“(awx}
oy

After substituting the assumed solutions from Equation (2.16)

Term 3 = D, iiii&n B, 40, 40, PP
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(2.222)

(2.22b)

(2.22¢)
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1 0 L& dQ, dO;
———\Term3)=D B z

2 aan ( erm ) 66 ;; if dy dy m* i
1 p—

55C—(Term3)—0

Integration of non zero term yields

dQ, Q
_f J:] Term3ﬁXdy Dy ZZBU f P, Fdx f dy

i=l j=1

Term 4

oy 2
D b
66( ax J

After substituting the assumed solutions from Equation (2.16)

M N M N dS dS
T 4= D C C. n—TT,
crm 66 ;;;; mn i dx dx noj
li(Term4)=0
204,
1 p—
EBB*W(Term4)—O
1 ds,, dS T
2ac % Pdy dx "

i=l j=1

Integration of non zero term yields

%Lof —(Term4)dxdy Deszz y_[' a5, 45, dxjj T,T,dy

08C ST ho gy dy
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(2.24b)

(2.24c¢)

(2.25)

(2.26a)

(2.26b)

(2.26¢)

(2.27)



After substituting the 4 terms as calculated above and the remaining 12 terms from
Appendix-I, the Equation (2.18) can be written in the matrix form as given in equation
(2.28), to solve for the three constants. The number of equations and hence the related
constants differ as the values of m and n (number of terms used in approximation

functions of the solutions) increases.

In case where m=n=1 the system of equations becomes

a, b, ¢ |4 K
a, by ¢ B |=10 (2.28)
0

ay ¢y ¢y | G

First matrix on the left hand side contains the terms of strain energy. The second
matrix on the left hand side consists of the vector of constants which are to be
determined. The matrix on the right hand side contains the terms of potential energy. F|
denotes the potential energy due to transverse load corresponding to transverse
displacement. As there is no external moment applied, so the terms of the potential

energy corresponding to rotations y, and y , are zero.

In the case where m = n =2 the system of Equations (2.18a), (2.18b), (2.18c) becomes

ay, a, by, by, ¢ o |4 F,
ay ay by by oy oyl 4 F,
ay ay by b, ¢ c,| B _ 0 } (2.29)
ay ay by by, ¢y cy| B 0 .
as; ap, by by, ¢ oy | C 0
ag 4y by by ¢ cq LG 0
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The set of Equations (2.29) can be written in the concise form as below
labc){4BC} ={F} (2.30)

The constants can be determined as below

{4BC} = [abe] " {F} (2.31)

The values of 4, and 4, are substituted in Equation (2.16a) to calculate transverse

deflection ‘w’. The value of maximum transverse deflection is found by finding the

displacement at x = a/2 and y = b/2.

24.1 Validation of Ritz Solution
The results obtained using Ritz method based on FSDT for simply supported
boundary conditions (SSSS) are compared with the exact solution based on CLPT that is

available in reference [1].

Example 2.1

The correctness of the program is checked by considering the bending analysis of
[0/90],,, laminate which is a 96 ply symmetric cross-ply rectangular laminate of
dimensions 0.55 by 0.55 meters and subjected to a uniform surface load of 1MPa with all
sides simply supported. The composite material is NCT-301 graphite/epoxy. The material

properties are given below in Table 2.1.
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E, 144 GPa
E, E, |12.14GPa
vy, vy | 0017

Vys 0.458

G,, G, |448GPa

G,, 3.2 GPa

D 1660.8 kg/m’

Table 2.1 Material properties of NCT-301 graphite/epoxy [47]

Exact Solution using CLPT [1] : The maximum transverse displacement w,,, is given by

16g,a*
e = 20 (2.32)
T
where, ¢,=1.0x10°, a=0.55 meters, b = 0.55 meters, R = a/b,
a =zzamn (2.33)
m=1 n=1
__1\mtn-2
a, = D (2.34)
2m-1)(2n- 1)D2m—1,2n-1
where
D,, =D,m" +2(D,, + 2D )(mnR)’ + D,,(nR)* (2.35)

After substituting the values from Equation (2.33) and values of respective bending
stiffness coefficients into Equation (2.32) the value of transverse deflection at the centre

of the plate is

Womax = 0-05798 meters

28



Ritz Solution based on FSDT

The values of transverse deflection for different values of M and N as in
Equation (2.16) using Ritz Method are given in Table 2.2 The results show an
improvement in the transverse deflection as we increase the values of M and N in the

displacement function.

Value of M | Value of N | Center Deflection (meters)
1 1 060961645
2 2 060961721
3 3 061051270
4 4 061051271

Table 2.2 Ritz Solution for [O/ 90]24s Laminate for SSSS Boundary Condition

The approximate value for the transverse deflection is obtained for M = N = 4 which is

Wy max =0-06105 meters

25 Formulation using Conventional Finite Element Method

2.5.1 Interpolation Functions
In the present analysis of the plate a Mindlin finite element is employed using
nine node rectangular element. The resulting element stiffness matrix is of the order of 45

by 45.
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Figure 2.2 Nine node rectangular element

The corresponding shape functions are

Ny =@ -6’ - Ny = (-8 =)

Ny =€+ =) Ne =5 & +E1-7)

Ny =+ ) Ny = (=D’ +7)

=€ =5 +m) M= o)
=(1-¢H0-n%) (236)

25.2 Stiffness Matrix for Composite Laminate

Displacements can be expressed in terms of interpolation functions as follows

9 9
Z i 01’ :z i ot’w —ZN‘ 017 l//x ZNWXI7 ‘//y ZNWyt
=1 =1
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Thus,

u, N 0 0 0 07u,
v,| |0 N 0 0 0]v,
w,[=>10 0 N, 0 0w,
vl 710 0 0 N 0w,
v, 0 0 0 O N,.__l,//y,-_

which is of the form,

fu} =[V}a}

where

{d}:‘.ul VIV a Ve Ug Vo Wo Y/ 9 ‘//y9_|T

Strain-displacement matrix [B] can be expressed as,

[Bls,as = [a]SxS [N ]5x45

where
i 0O 0 o0 O
Ox
0 2 0 0 0
oy
i i O 0 0
oy Ox
0O 0 O i 0
[8 ] = Ox o
o 0 o0 o0 —
oy
0o 0 o 2 9
oy Ox
0 0 2 0 -1
oy
0 0 _6_ -1 0
L Ox J
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Thus the matrix [B] is given by:

N, O 0 0 0 N, 0 0 0 0
O N, O 0 0 O N, 0 0 0
N, N, 0 0 0 Ny, No, 0 0 0
0 0 0 N 0 0 0 0 N, 0
[B]= N & (2.42)
o 0 0 0 N, o 0 0 0 N,
o 0 0 N, N, O 0 0 N, N,
0 0 N, 0 =N, o 0 N, 0 -N,
0 0 N, -N, 0 0 0 N, -N, 0 |
The element stiffness matrix can be written as
[K1= [[BY sts [Ely.s[Bly.ssdd (2.43)
A

where [E] is the elasticity matrix from the right hand side of Equation (2.5) and

[B] is the strain displacement matrix from Equation (2.42).

253 Validation of Conventional Finite Element Formulation

The correctness of the formulation and program is checked by considering the
bending analysis of a 96 ply symmetric cross-ply rectangular laminate [0/90],,, of

dimensions 0.55 by 0.55 meters and subjected to a uniform surface load of 1MPa with all

sides simply supported. The composite material is NCT-301 graphite/epoxy.

The approximate solution for maximum transverse deflection obtained using the Ritz

method based on FSDT from Example 2.1 is

Womax = 00105 meters
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The value of transverse deflection at the centre of the plate using a mesh of 10x10
elements in Conventional FEM is
Womax = 0-05855 meters

254 Convergence Check for the Conventional Finite Element Formulation

The convergence is checked and the results obtained are as given in Table 2.3
for plates of different laminate configurations and different boundary conditions.
Maximum Transverse Displacement (w,_, ) of laminated composite plate described in
Example 2.1, with all sides simply supported (SSSS) is determined using conventional

finite element method based on FSDT for different laminate configurations.

Mesh 2by2 3by3 4by4 5by5 6by6
Laminate ( WOmax ) ( wOmax ) ( wOmax ) ( WOmax ) ( wOmax )
Configuration

[0/90],,, 0.04969 0.05595 0.05724 0.05792 0.05820
[0/90/+-45],, | 0.03904 | 0.04259 0.04327 | 004369 | 0.04392
[+-45],,, 0.03174 0.03380 0.03429 0.03461 0.03484
[+-45], 0.03174 0.03379 0.03428 0.03460 0.03483

Toy7 8bys 9by9 10by10

( WOmax ) ( WOmax ) ( wOmax ) ( WOmax )

0.05836 0.05845 0.05851 0.05855

0.04408 0.04420 0.04429 0.04437

0.03501 0.03514 0.03524 0.03532

0.03500 0.03513 0.03523 0.03531

Table 2.3 Convergence of maximum transverse displacement of laminated composite
plates with all sides simply supported (SSSS)
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Note: 2by2 represents a mesh of 2 elements in each direction. Similar meaning applies

for 3by3, 4by4, etc.

Example 2.2

The correctness of the formulation and program is checked by considering the bending
analysis of a 96 ply symmetric cross-ply rectangular laminate [0/90],,, of dimensions
0.55 by 0.55 meters and subjected to a uniform surface load of q,= 1MPa with all sides

fully clamped (CCCC).

The approximate solution using the beam functions [1] in the Ritz Method based on

CLPT is given by

4
Wy =0.00348 902 . : (2.44)
D,, +0.6047(D,, + 2Dy )R* + DR

Substituting the given values of dimensions and loadings and the values of bending
stiffness coefficients for 96 ply symmetric cross-ply laminate the deflection at the centre
is calculated :

Womax — 0.01350 meters

Conventional FEM

The value of transverse deflection at the centre of the plate using a mesh of 15
by 15 conventional elements is:

Wymax = 0.01337 meters
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The convergence is checked and the results obtained are as given below for plates of
different laminate configurations and different boundary conditions. Maximum transverse
displacement (w,,,, ) of laminated composite plate described in Example 2.1 with all

sides clamped (CCCC) is determined using conventional finite element method based on

FSDT for different laminate configurations as given in Table 2.4.

Mesh 2by2 3by3 4by4 5byS5 6by6
Laminate . ( WOmax ) ( w()max ) ( wOmax ) ( WOmax ) ( wOmax )
Configuration

[0/90],,, 0.00301 0.01015 0.01176 0.01258 0.01292
[0/90/ +-45],,, 0.00302 0.01027 0.01190 0.01272 0.01308
[+-45],,, 0.00304 0.01049 0.01217 0.01298 0.01340
[+-45], 0.00304 0.01049 0.01217 0.01298 0.01340

Toy7 8by8 9by9 10by10

( wOmax ) ( wOmax ) ( WOmax ) ( wOmax )

0.01311 0.01321 0.01327 0.01330

0.01328 0.01340 0.01346 0.01350

0.01364 0.01377 0.01386 0.01391

0.01363 0.01377 0.01386 0.01391

Table 2.4 Convergence of maximum transverse displacement of laminated composite
plates with all sides clamped (CCCC)

2.6 Hierarchical Finite Element Formulation

Contrary to h version of finite element formulation, in p version or hierarchical

finite element formulation, the mesh is left unchanged; instead, the order of polynomial
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of interpolation functions is increased to refine the solution. The Hierarchical Finite
Element is a special form of Classical Rayleigh-Ritz method. The only difference in the
two is in the choice of interpolation function used for interpolating the solution. In the
conventional Finite Element Method the domain of interest is divided into a number of
smaller, not necessarily identical but convex sub domains, which are called finite
elements. The solution is then approximated by locally admissible polynomial functions,
which are piece-wise continuous over each sub domain. The degree of these polynomials

1s generally of the order of one, two or maximum three.

The accuracy of the finite element approximation can be improved by two means.
Either by increasing the number of sub domains called as finite elements, keeping the
degree of interpolating polynomial constant or by keeping the mesh size constant and by
letting the degree of interpolating polynomial functions to go to infinity. The latter
approach is known as p-version of finite element method or better known as Hierarchical
Finite Element Method (HFEM). Clearly the HFEM and Rayleigh-Ritz method have
much in common. In HFEM the admissible displacement interpolation functions are local
unlike the global functions as in Rayleigh-Ritz method. This results in greater versatility
and better convergence rates. The HFEM has many advantages over conventional FEM.
First of all, in HFEM the accuracy of the solution is improved by increasing the degree of
polynomial without disturbing the mesh size and number of nodes. Secondly, when the
order of Hierarchical Mode is increased the size of element stiffness and mass matrices
are also increased and the original element and mass matrices are embedded in the new

ones. Now because of this embedding property the computed eigen values always
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approach their actual values asymptotically and always are upper bound to their actual
values. Thirdly for eigen values of equal order the HFEM always gives better
approximation as compared to conventional FEM and last but not least in HFEM it is
possible to model the simple structures like a plate as just one hierarchical finite element.

This helps in avoiding the necessity to satisfy internal C, or C, continuity across the

elements’ interfaces.

2.6.1 Hierarchical Shape Functions

The hierarchical shape functions can be selected from a variety of polynomial
or trigonometric functions provided the chosen set is complete. In this thesis we have
chosen the polynomial functions. The best suitable polynomials would be the ones, which
have the property that the set of functions corresponding to an approximation of lower
order constitutes a subset of set of functions corresponding to a higher order
approximation. The set of functions used in present work has been derived from
Rodrigues form of Legendre Polynomials. The element stiffness matrix will always
involve integral of product of derivatives of the interpolation functions. If those
derivatives were orthogonal then they would result in diagonal square matrix. It is well
known that the Legendre Polynomials are orthogonal. So we chose our hierarchical shape
functions as integrals of Legendre Polynomials so that their derivatives are Legendre

polynomials.

We obtain shape functions for 2 dimensional p-elements as a tensor product of

simple one-dimensional shape functions. P-degrees of freedom are associated with
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directional derivatives at midpoints of element edges and with mixed derivatives at the

center point of the element.

In one dimension we can write displacements as

14
u=Nu, +N,u, + ZN,ﬂuhi (2.45)

i=2
where i=2,....... p is the order of hierarchical polynomial.

Extending this concept to 2-dimensions and knowing that shape functions in 2-
dimensions are tensor product of shape functions in one dimension, we can write

displacement as

P
u=Nu, +Nyu, + Ny + Ny + Y Ny, (2.46)
i=2
where N,,N,,N,,N, are conventional shape functions.
7
1O —(O3
Q h nodes
9
| | ]  pnodes
8 6

IO [ I 02

Figure 2.3  Location of p and h nodes for two-dimensional element
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The h degrees of freedom in our case are (u,v,w,y .,y )and p degrees of freedom are

associated with the directional derivative at midpoint of element edges and with mixed

derivative at the center point of the element as shown in Figure 2.3.

We will first derive shape functions in one dimension.

Ni(§)=(1-8)/2
Ny (&) =(1+5)/2

N, &) =9¢,,() i =34, p+1
where
0, & =21 [P 0
J 2 - Jj-t
1
= P.(&)-P, 1 =23 i, 2.47
\/4]_—_2( ()= P ,(5)) 1=23, (2.47)

and P, (£) are well known Legendre Polynomials

1 4t
25k dEr

P.(&)= (E*-DF  k=01...cciiiiiniiinn... (2.48)

Shape functions for 2 dimensional cases can now be easily constructed by taking tensor
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product. When one hierarchical shape function is added and the tensor product is taken,

we get the resulting set of hierarchical shape functions as below:

o ged

@ = h-version or conventional shape function.

= p-version or hierarchical shape function.

Figure 2.4 Visualization of hierarchical shape functions

The first four hierarchical shape functions in one dimension as derived from Equation

(2.47) are as given below
37 -
I 2\/6
3 —

Ny, = 7\@(2 5) (2.49)
N = (35s* =305 +7)

" 814
N = (63s° —90s” +27s)

" 242
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3(s% 1)
276

taken as shown in Figure 2.4 the resulting two dimensional shape functions are given by

When one hierarchical shape function (N, = ) is added and the tensor product is

[ (1-s) | A-s)(A-0) (A-s)A+1) (A-5)3( -1

T 2 2 2 2 2 2J6
(1+5) X[(l—t) (1+1) 3(#—1)}: A+s)(1-1) A+ A+1)  (A+5) 32 -1)

2 2 2 2.6 2 2 2 2 2 2J6
3(s* -1 3 -1 (1-1) 3(*-1D)(A+1) 3(s*-1) 3¢ -1)
N 26 2 26 2 2J6 26 |
(2.50)

The 2-dimensional hierarchical shape functions obtained after tensor product
are arranged in a row vector according to a set pattern as per the numbering shown in
figure above. The resulting shape function row vector as per the numbering shown in

Figure 2.4 will contain

N = [Four conventional shape functions represented by numbers 1,2,3 4

corresponding to four corner nodes, Shape functions represented by 5,6,7,8
corresponding to four edges, Shape functions represented by number 9 corresponding to

inner domain of the element].

2.6.2 The Development of Hierarchical Finite element Method

The displacement u of the hierarchical composite element is defined by nodal

displacement u, and hierarchical displacement variable a;,

u=Nu,+N,a,=Nu (2.51)
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where, the matrix N contains the nodal shape functions N, (i = 1,..,4) and hierarchical

shape functions N, (j=5,..,n), where ‘n’ represents the number of all hierarchical shape

functions. The vector u contains the nodal displacements u, (i = 1,..,4) and hierarchical
displacement variable a; (j= 5,..,n) where ‘n’ represents the number of all hierarchical

shape functions.

The element equations can be derived by using the principal of virtual work

SU,—6W =0 (2.52)

The external virtual work is given by

oW =ou"F' + (5" F*dV + fauTFst (2.53)
V S

where ', F? and F°® are the vectors of nodal forces, body forces and surface forces

respectively.

The internal virtual work is given by

8U, = (8¢ oy (2.54)
Vv
where o is the stress tensor.

The virtual displacement and strains are defined as follows
u=Nou
(2.55)
Sc=B& 1;
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where B represents the strain displacement matrix

N, 0 0 0 0 N, O 0 0 0
0O N, 0 0 0 0O N, 0 0 0
N, N, 0 0 0 N, N, O 0 0
sl 0 0 0 N, 0 o 0 0 N, O
o 0 0 0 N, o 0 0 0 N,
0o 0 0 N, N, 0O 0 0 N, N,
0 0 N, 0 -N, 0 0 N, 0 -N,
0 0 N, -N, 0 0 0 Ny, -N, 0 |

Substituting Equation (2.55) into Equation (2.52), the principal of virtual work becomes
. A ~ aY T A A
F'+ jNTFBdV+ INTFSdS = _[B CBdVu (2.56)
Vv S 14

In the absence of body forces and nodal concentrated forces, when there is only surface

forces Equation (2.56) becomes

A T A Fay

[ou"Foas = [B cBavu (2.57)

S 14
The element stiffness matrix

A T N
K= [B CBdV (2.58)
14

2.7 Validation of Hierarchical Finite Element Formulation

Example 2.3

The correctness of the formulation and program is checked by considering the bending

analysis of a 96 ply symmetric cross-ply rectangular laminate [0/90],,, with dimensions
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0.55 by 0.55 meters and subjected to a uniform surface load of 100 Pa with one side (x =

0) fully clamped and other sides free (CFFF).The material used is NCT-301 graphite/

€poxy.

Since in Section 2.5.3 we have verified the correctness of the conventional
FEM program for CCCC and SSSS boundary conditions, so using that program this time
for CFFF boundary conditions, the results of transverse deflection at the top right corner

node of the plate given in Example 2.3 are compared with the results of HFEM.

The results obtained using conventional FEM

The value of transverse deflection at the top right corner node of the laminated
plate as described in Example 2.3, using a mesh of 10 by 10 elements of conventional

FEM is

w,= 9.9048 x10° meters

The results obtained using HFEM

The value of transverse deflection at the top right corner node of the laminated
plate as described in Example 2.3, using one element with four hierarchical shape

functions is given as

w,=9.9172x10” meters
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Example 2.4

The correctness of the formulation and program is checked by considering the bending
analysis of a 96 ply symmetric cross-ply rectangular laminate [0/90],,, of dimensions
0.55 by 0.55 meters and subjected to a uniform surface load of 1KPa with one side fully

clamped (CFFC). The material used is NCT-301 graphite/epoxy.

Again using the Conventional FEM program as verified in Section 2.5.3, this

time for CFFC boundary conditions, the results of transverse deflection at the top right

corner node of the plate given in Example 2.3 are compared with the results of HFEM.

The results obtained using Conventional FEM

The value of transverse deflection at the top right corner node of the laminated
plate as described in Example 2.4, using a mesh of 100 elements with 10 in each

direction, in the conventional FEM is

w,= 6.3186x10™" meters

The results obtained using HFEM

The value of transverse deflection at the top right corner node of the laminated
plate as described in Example 2.4, using one element with four hierarchical shape

functions is given as

w,=  6.2769x10™* meters
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2.8 Conclusions

Hierarchical FEM has been applied for static analysis of laminated composite
plates. The results are compared with that of the conventional FEM and Ritz solutions
based on classical laminate theory as well as first order shear deformation theory. Four
hierarchical shape functions are included corresponding to each of the x and y directions.
Tensor product of the vectors in two directions gives 36 shape functions, out of which 4
shape functions corresponding to four corner nodes are the conventional shape functions.
The remaining 32 shape functions are distributed as 4 along each side and 16 inside the
element. The static deflection at a desired node obtained using HFEM with one element
having (36 x 5 =) 180 degrees of freedom gives approximately the same value as that
obtained using conventional FEM with 10 elements in each x and y directions, with each
element having 9 nodes, which gives 21 nodes in each direction and each node having 5
degrees of freedom, which gives (441 x 5 =) 2205 degrees of freedom. In conventional
FEM, the continuity of displacement and slope is enforced at the common nodes across
the elements’ interface. The stresses in a plate are directly proportional to the rate of
change of slope of the plate. The continuity of the rate of change of slope is not enforced
across the elements’ interface in the conventional FEM. As the number of elements are
increased in the mesh to refine the solution, more and more discontinuities result in the
model across the elements’ interfaces. In hierarchical FEM, not only the displacement
and slope continuity is satisfied but also the number of element interfaces are
significantly reduced which helps to avoid the discontinuities in the values of stresses in

the finite element model.
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Chapter 3

Modal Analysis of Laminated Plates using Hierarchical Finite Element Formulation

3.1 Introduction

It is very essential to know the behavior of a composite plate under dynamic
loading because it can cause serious damage in composite plates e.g. matrix cracking,
fiber cracking and delamination. Many researchers have carried out extensive study of
dynamic response of isotropic plates. Only a few have carried out investigations on
laminated composite plates. Most of the studies provide analytical and semi-analytical
solutions, which are based on classical laminate plate theory neglecting the effects of
shear deformation and rotary inertia. As a result the free vibration frequencies calculated
by using the thin plate theory are higher than those obtained by Mindlin Plate Theory (in
which the transverse shear and rotary inertia effects are included). The deviation
increases with increasing mode number. Therefore, in order to get the reliable prediction
of natural frequencies of high modulus laminated composite plates, shear deformable
theories become necessary to use. A number of shear deformable theories have been used
till date. In the present study, the FSDT has been employed in the vibration analysis of

the laminated composite plates.
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3.2 Equations of Motion

When time is taken into account, the general displacement field at a point

(x,y,z) at the instant t, for the First-order Shear Deformation Theory becomes

u(x,y,z,t) =uy(x, y,t) + zyy (x,,t) (3.1a)
(X, 3,2,8) = vy (X, y,0) + 2 (X, 1) (3.1b)
W(X,y,Z,t)zwo(x,)"at) (3'10)

The displacement field can further be written in the form as given below where @ is the

angular frequency of the plate’s vibration.

Uy (%, y,0) = U,y (x, y)e'™ (3.2a)
Vo (X, 3,8) =V, (x, y)e™ (3.2b)
w, (x, y,8) =W, (x,y)e™ (3.2¢)
w, (x,,0) =¥, (x, y)e" (3.2d)
w,(x,y,0) =¥, (x,y)e™ (3.2¢)

Corresponding strain field and the constitutive relations are as given in Equation (2.2)
and (2.3) respectively. In the absence of body forces, the equations of motion associated

with the given plate are [26]

ON,/ox+0N_ /0y =p,0*ulor’ (3.3a)

ON,, /ox+0N,/dy = pd*v/ot’ (3.3b)
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00, /ox+0Q, /oy = p,0*w/ ot (3.3¢)
oM, /ox+0M,, /3y -0, =10y | of (3.3d)

OM_ /ox+0M  /dy~Q, =10y, /ot (3.3¢)
Xy y y y

where (N_,N,,N ) and (M ,M ,M_) are Force and Moment resultants as given in

Equation (2.4) in Chapter 2 and Translational Inertia (p,) and Rotary Inertia ()

coefficients are as given in Equation (3.4).

hi2

(p.D)= [A,2)p"dz (3.4)

~h/2

where p™ is the material density of the layer ‘m’.

For the finite element formulation, the variational form of Equation (3.3) is required. So
one needs to find the Strain Energy and Kinetic Energy associated with the plate under

study.

33 Approximate Solution for Specially Orthotropic Symmetric Composite

Laminate by Ritz Method.

In this section the approximate solution in conjunction with Ritz method is
discussed. In the case of specially orthotropic and symmetric composite laminate, using

FSDT, the strain energy is as given in Equation (3.5).
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2 2 2
I ov,\ ., (v oy, oy dy, Oy
U, :E”{Dll( o ) +D22( y] +D66[ + Dy =~ | +2Dy, -

oy oy Ox ox Oy
oy Oy ow)’ owY’ ow Bw
+2Dg Py a—xy"'AM(gy“] +A55(6_xj '*"444(‘//y)z +A55(l//x)2 +24, ag

ow ow ow ow
+24,, az//x +24,, 5% +2A4, 5;% + 24, a—xz//x +24,5y W, }dA

(3.5)
The kinetic energy for the specially orthotropic and symmetric composite laminate,

considering the shear deformation and rotary inertia effect is as given in Equation (3.6).

! zigf{”s [(%J +(%j2 +(%V)2}”[( " J +(aZy ﬂ}dAdt (.6
e o

3.7)

+

2 2

Buy ) Z(aw )2 du, Oy v, )2 (0w, dv, O, (awo)
—2 | + —TE N 4 p 2z E  p 2O —2 +p 22—t — Ly p| L
{p‘( a’t) P dt s dt dt Ps dt Pt dt P2 dt dt Ps dt

%))

(3.8)
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which can also be written as:

2
Bu, Y NEAY Bu, dy v, )’ ,( v, dv, Oy, w,
— | + — | +p2z——F+p|— | + +p2z——+p,| —
p‘( dt) Pt ( dt P a P P " P @ P dt

(3.9)
Finally the expression for kinetic energy neglecting in-plane velocities becomes
T= %é[{-ez"‘"psa)z (zzt//x2 +2% ) +w,? )—Iez"‘”’a)2 (t,//x?‘ +y,! )}I’A (3.10)
Maximum kinetic energy is given by
T, = % J o’y 2+ 22w w10yt +y,  Jua (3.11)
T = %Qf{wz(l +p 2 0 L+ 2y, + potw, A (3.12)

In the absence of transverse loads, the maximum energy function reduces to
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U

b 2 a 2 2 a 2

d max j[{Dll(aV/xj +D,, Yy + Dge % + Dy, 4

% ox Oy Oy Ox
oy, oy oy, oy ow) ow\’

+2D,, 6x. ?y"'ZDse Py “_a‘xl"'AM 5 + Ass a +AM(Wy)Z+A55(Wx)2
ow ow ow ow ow ow

+24,5 554'21445 5‘/& +24,, 5‘/@ +24, gx"‘//y +24; a_x‘//x + 2A45‘//x‘//y}

—{@*U+p,2 W+’ I+ p,2 ), + p,0*w, }]dA

L
_T‘"“zljo

=0y

(3.13)

The approximate solutions are sought in the usual form of a double series.

w,(5,9)=>.> 4,,X,(x)Y,(») (3.14a)

m=1 n=1

v (x,y)= ZzanPm (x)0,(») (3.14b)

v, (%)=2.Y CuS, (DT, () (3.140)

where the functions X, .Y P, .0, .S, ,T, are chosen so as to satisfy the boundary

m?*=n?

conditions along the edges x = 0, x=a and y=0, y=b. The coefficients 4, B, ,C,, are
determined by stationarity condition which can be written as
i ﬁdmax _fmax]:() or %2% (3.15a)
04, 04,, 04,
9 oU oT,
2 U g max Tmax]= 0 or ama _ M (3.15b)
OB, 0B, OB,
O g, T ]=0 or WYams _ Oluax (3.15¢)
oC,, oc, oC,,
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where U and T ax are the maximum strain energy and the maximum kinetic energy

d max
associated with the laminate under study, obtained by substituting the approximate
expression (3.13) for the deflection into the Equations (3.4) and (3.11). We can calculate
the terms corresponding to kinetic energy and strain energy by taking the partial

derivative of kinetic energy and strain energy with respectto 4,,,,B,,,,C, ., .

mn?"~"mn?

Terms corresponding to strain energy

There are 16 terms added inside the integral in the expression of strain energy.
The integral of the various terms in the expression of the strain energy can be written as
sum of the integrals of the individual terms. The left hand side of the Equations (3.14a),
(3.14b) and (3.14c) can be obtained by substituting the assumed solutions from Equation
(3.13), into each of these 16 terms, taking their partial derivative with respect to constants
A

B,,.,C,, and then taking the integral of the resulting terms as calculated in Section

mn? "~ mn?

2.4.

After substituting the 16 terms the left hand side of the Equation (3.14) can be
written in the matrix form as below to solve for the three constants. The number of
equations and hence the related constants differ as the values of m and n (number of

terms used in approximation functions of the solutions) increases.

In case where m=n=1 the left hand side of Equation (3.15) becomes
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ay, a, by b, o o4
a4y ay by by ¢y cyll4
ay ay by by oy oy | B
ay Ay by by cy cy ||l B,
as; a5, by by, ¢ ¢y || G
% g by by ¢ cq LG

The above matrices can be written in the concise form as below

[abc){4BC}

Terms corresponding to kinetic energy

(3.16)

(3.17)

(3.18)

There are 3 terms added inside the integral in the expression of the kinetic

energy. The integral of the various terms in the expression of the strain energy can be

written as sum of the integrals of the individual terms. The right hand side of the

Equations (3.15a), (3.15b) and (3.15c) can be obtained by substituting the assumed

solutions from Equation (3.14), into each of these 16 terms, taking their partial derivative

with respect to constants 4 _,B

mn3 "~ mn?>

as in the following.

54

C, . and then taking the integral of the resulting terms



Term 1

o' (I+pz )y,

After substituting the assumed solutions from Equation (3.14)

Term 1 = 0*(I + p zz)iiii P,0,PO,
s mn u nti

n=l i=1 j=1

m=

and

l—(Terml) 0

204

1

26 (Terml) 0] (I+pz ) ZZBU 0. F0;
i=l j=l

lL(Terml) 0

20C,,

Integration of non zero term yields

—f —oa Terml)alxdy = 0 (I+p,z )ZZBUI' P,Pdx[ 0,0dv
i=l j=1

Term 2

O I+,

After substituting the assumed solutions from Equation (3.14)

- B 5 5 M N M N
erm 2= 0’(I+p,2°)). > > > C,.C,S,T.5T,

m=1 n=1 i=l j=1

and

li(Term2) =0
204,,
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(3.19b)

(3.19¢)

(3.20)

(3.21a)



——(Term2)=0

mn

M N
——(Term2)=0’ (I + p,2*) Y. >.C,S,T.S.T,

mn i=l j=1

[\)»—-A

Integration of non zero term yields

_f Jjoac Termz)dxdy—w(upz)zz:cyf S, Sdx [ T,7,dy

i=l j=1

Term 3
psa)ZM}O2

After substituting the assumed solutions from Equation (3.14)

M N M N
Term3 = po®Y > > > 4, 4,X,Y,XY,

m=l n=1 = j=I
and

1 a M N

> a— (Term3) = p,o 21: Z A, X, VXY,
i=l j=1

1

_—— T =

5 GBW, ( erm3)=0

1

5 'a?— (Term3) 0

Integration of non zero term yields

_f foa (Term3Yixdy = p,w ;;Ay Xdexf Y,Y,dy

(3.21b)

(3.21¢)

(3.22)

(3.23a)

(3.23b)

(3.23¢)

(3.24)

After substituting the 3 terms as calculated above, the right hand side of Equation (3.15)
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can be written in the matrix form as below to solve for the three constants. The number of
equations and hence the related constants differ as the values of m and n (number of

terms used in approximation functions of the solutions) increases.

In case where m=n=1 the right hand side of Equation (3.15) becomes

a, 0 0|4
0 B, 0 |B (3.25)
0 0 |G

First matrix contains the terms of kinetic energy. The second matrix consists of the vector

of constants which are to be determined.

In the case where m = n =2 the right hand side of Equation (3.15) becomes

(2, a, 0 0 0 074
a, a, 0 0 0 0 |4,
O 0 ﬂll IBIZ 0 O Bl (326)
O 0 ﬂZl ﬂ22 O 0 B2
0 0 0 0 1w 2 |G
| 0 0 0 0 20 Xn|GC ]
The above matrices can be written in the concise form as below
B2 J{4Bc} (3.27)
From Equations (3.18) and (3.27), the Equation (3.15) can be written as
{labe] —[apy {aBC} =0 (3.28)
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Now the system of Equations (3.28) is homogenous and a non-zero solution is obtained
when the determinant of the system is zero, i.e.

Determinant ( {fabc] — [aBxH =0 (3.29)
The above condition leads to an equation whose solutions are the natural frequencies of
flexural vibration of the plate. The lowest value of natural frequency is important from

the structural design point of view.

3.3.1 Validation of Ritz Solution

The results from Ritz Method using FSDT for simply supported boundary

conditions (SSSS) are compared with the solutions based on CLPT given in reference [1].

Example 3.1

The correctness of the formulation and program is checked by considering the modal
analysis of [0/90],,, laminate which is a 96 ply symmetric cross-ply rectangular laminate
of dimensions 0.55 by 0.55 meters with all sides simply supported. The composite

material is NCT-301 graphite/epoxy. The material properties are given below in Table

3.1.

E, 144 GPa
E, E, 12.14 GPa
Vors Vi 0.017

Vys 0.458
G,, G, |448GPa

G,, 3.2 GPa

p) 1660.8 kg/m’

Table 3.1 Material properties of NCT-301 graphite/epoxy [47]
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Approximate solution by Ritz method using CLPT

1 |D

=7 —‘—‘~\/c14 +2(a,, + 20 )R, + a,Rie,
where

a, =D, /Dy, Qy, =Dy /Dy, Qg =Dy / Dy,

_ _ 4 _

C, =7, C=7, =7

a=055R=1
and

p, = 1660.8 x (Thickness of laminate)

(3.30)

(3.31)

(3.32)

(3.33)

=1660.8 x (Thickness of each layer x Number of layers of the laminate)

=1660.8 x (1.25 x 10™*)x 96

(3.34)

After substituting the values from Equations (3.31), (3.32), (3.33) and (3.34) in the

Equation (3.30) the value of the first (lowest) natural frequency of the plate under study is

@,,=1.1750x 10’ rad/s

Ritz solution using FSDT

The value of the lowest natural frequency of the simply supported (SSSS)

laminated rectangular plate under study for M = N = 4 using Ritz method based on FSDT

is:

@,,= 1.1487x 10’ rad/s
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34 Analysis using Conventional Finite Element Formulation

34.1 Interpolation Functions

The first variation of the Lagrangian L (= T - V) i.e. Hamilton’s principle leads
to the equation of motion (3.3) expressed in terms of the displacements and slope
functions. Here V denotes the total potential energy which is sum of the strain energy and
the energy due to applied loads of the plate. This variational form is convenient for the
finite element formulation. Since the primary interest here is in the free vibration

analysis, the potential energy due to applied loads is zero.

Let the domain o be divided into a set of finite elements. The restriction of the

Lagrangian functional ‘L’ to the finite element o, is denoted by L.,

N

L= LfuS v ww ) (3.35)

e=1

where, N is the total number of finite element in the mesh.

9 9 9 9 9
uo:ZNiuoi; vozzNivoi; WOZZNin.; l//x:ZNil//xi; l//yzzNi‘//yi
i=1 i=1 =1 . i=1

i=1

(3.36)
[u, ] N, 0 0 0 07u,]
v, . 0O N 0 0 O0}{v,
w,|=>10 0 N, 0 0w, (3.37)
vl 710 0 0 N 0w,
Yy 00 0 0 N |vy,]
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which is of the form,

w} =[VRa}

where

{d}= [, vy Wi W g W e o Vo Wo ¥ l//yg]T

(3.38)

(3.39)

where N,(x,y) are the finite element shape functions. In the present analysis of

the plate under study a Mindlin finite element is employed using nine node rectangular

elements with the nine shape functions as given in Equation (2.28) in Chapter 2. The

resulting element stiffness matrix and mass matrix are of the order of 45 by 45. The same

interpolations are employed for all the five fields. Substitution of Equation (3.10) into the

first variation JL,of L. gives the following set of equations for a typical element o,

[+ [k Ka}={o}

where,

{A}: l{ui}T7{vi}T»{Wi}Ta{ xi}T’{‘//yi}TJ

[M]= [T [NdA

A4

[K]= [[BY [E][Bld4

where ¢ p’ is the density and ‘h’ is the thickness of the laminate.

Matrix [B] can be expressed as,

[Blssas = [a]SxS [N ]5x45
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(3.41)

(3.42)

(3.43)

(3.44)



N, 0 0 0 0 N, 0 0 0 0
0 N, O 0 0 o N, 0 0 0
N, N, 0 0 0 Ny, N, O 0 0
0o 0 0 N, 0 o 0 0 N, 0
Bl=l o 0 0 o N, o 0 0 0 N,
0 0 0 N, N, 0 0 0 N, N,
0o 0 N, 0 -N, o 0 N, 0 =N,
0 0 N, -N, 0 0 0 N, -N, 0 |

3.4.2 Validation of Conventional Finite Element Formulation

Example 3.2

The correctness of the formulation and program is checked by considering the modal
analysis of [0/90],,, laminate which is a 96 ply symmetric cross ply rectangular laminate
of dimensions 0.55 by 0.55 meters with all sides simply supported. The composite

material is NCT-301 graphite/epoxy.

The material properties are given below in Table 3.1.The approximate solution

using the Ritz method based on FSDT is as given in Example 3.1

o =1.1487x 10’ rad/s

Conventional FEM

The value of first natural frequency of the plate under study using a mesh of

10x 10 elements of conventional FEM is

@ =1.3168x 10’ rad/s
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Example 3.3
The correctness of the formulation and program is checked by considering the modal
analysis of [0/90],,, laminate which is a 96 ply symmetric cross ply rectangular laminate

of dimensions 0.55 by 0.55 meters with all sides clamped. The composite material is

NCT-301 graphite/epoxy.

Material Properties of NCT-301 are taken from Table 3.1 given in example 3.1.

The approximate solution using the Ritz method is

@ =2.5427x 10%rad/s

Conventional FEM

The value of first natural frequency of the plate under study using a mesh of

10x 10 elements in conventional FEM is

® =2.532X 10°rad/s

Convergence Check for the Conventional Finite Element Solution

The convergence of the solution is checked and the results obtained are as given
below for plates of different laminate configurations and different boundary conditions.
The lowest natural frequency (@,,,) of laminated composite plate described in Example
3.1 with all sides simply supported (SSSS) is calculated using conventional finite element

method based on FSDT for different laminate configurations as given in Table 3.2.
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Mesh 2by2 3by3 4by4 5by5 6by6
Laminate ) (@) (o)) (@) (@) (@)
Configuration

[0/90],,, 1.4176 X 10° | 1.3541 X 10° | 1.3337X 10° | 1.3254X 10° | 1.3214X 10°
[0/90/£45],, |1.5992X 10° | 1.5487X 10’ | 1.5309X 10* | 1.5223 X 10° | 1.5172X 10°

[+45],,, 1.7728 X 10° | 1.7312X 10° | 1.7134X 10° | 1.7028 X 10° | 1.6957 X 10°

[+45],, 1.7730X 10° | 1.7314X 10* | 1.7137X 10* | 1.7031 X 10° | 1.6960 X 10°

Tby7 8by8 9by9 10by10
(o) (@) (@) (o)
1.3193X 10 | 1.3181 X 10* | 1.3173 X 10° | 1.3168 X 10°
1.5138 X 10° | 1.5114X 10* | 1.5096 X 10* | 1.5083 X 10°
1.6907 X 10° | 1.6870X 10° | 1.6842X 10° | 1.6821 X 10
1.6909X 10° | 1.6872X 10° | 1.6844 X 10° | 1.6823 X 10°

Table 3.2 Convergence of the lowest natural frequency of laminated composite plates
with all sides simply supported (SSSS)

The lowest natural frequency (@,) of laminated composite plate described in Example

3.1 with all sides clamped (CCCC) is calculated using conventional finite element

method based on FSDT for different laminate configurations as given in Table 3.3.
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Mesh 2by2 3by3 4by4 5by5 6by6
Laminate™ (@) (@) () () (o)
Configuration

[0/90],,, 6179.94 2831.53 2667.48 2598.42 2566.32
[0/90/ + 45],,, 6158.30 2809.48 2648.15 2583.48 2553.33
[+45],,, 6131.34 2768.83 2612.05 2551.88 2523.46
[+45],, 6131.39 2769.02 2612.33 2552.20 2523.82

Tby7 8by8 9by9 10by10

(@) (@) (@) (o)

2549.92 2540.91 2535.66 2532.45

2537.75 2529.06 2523.94 2520.76

2508.39 2499.75 2494.52 2491.20

2508.75 2500.12 2494.89 2491.58

Table 3.3 Convergence of the lowest natural frequency of laminated composite plates
with all sides clamped (CCCC)

Mode Shapes

Mode shapes are plotted using surf (P) command in MATLAB, where P is the
m x n matrix generated out of eigenvector corresponding to the lowest eigenvalue and
hence the lowest natural frequency. In our case a mesh of (10x10 =) 100 elements is
used. Since a 9-node rectangular element is used in meshing, the mesh contains (21 x 21
=) 441 nodes. The size of eigenvector is (441x5 =) 2205. The node numbers 1 to 21
which are numbered along the edge x = 0, contribute to the first set of (21 x5=) 105

values of eigenvector, node numbers 22 to 42 contribute to the 2™ set of 21 values and so
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on. Finally node numbers 421 to 441 contribute to the 21% set of 21 values. Altogether it
gives (105x21 =) 2205 values of eigenvector. The eigenvector comprises of the values
corresponding to all the five degrees of freedom. In order to plot the mode shapes, first
we separate the values corresponding to the 3™ degree of freedom which is the transverse
displacement in z-direction. The resulting vector is of size (2205/5 =) 441. It comprises of
21 sets of 21 values. Now these 21 sets of 21 values are arranged in the form of matrix
with first set of 21 values becoming the first vector, 2™ set of 21values becoming the 2™
vector and so on. Finally we get a matrix of size 21x21. This is the matrix P used in surf
(P) command in MATLAB. Surf (P) creates a 3-dimensional shaded surface from the z-
component in matrix P using x = 1: n and y = 1: m where [m, n] = size (P). The surface
height specified by P is a single valued function defined over a geometrically rectangular
grid.

In all of the following mode shapes in Figures 3.1 and 3.2, the x-axis ranges
from 1 to 21 and y-axis ranges from 1 to 21 corresponding to [m, n] which is the size of

matrix (P), as explained above. The z-axis gives the surface height in meters.

Mode shapes for CCCC and CFFF boundary conditions

Mode shapes of first six modes of [0/90],,, laminated plate with dimensions given in

Example 3.1 and with all sides clamped (CCCC) are as given in Fig.3.1. Mode shapes of

first six modes of [0/90],,. laminated plate with dimensions given in Example 3.1 and

with one side clamped and others free (CFFF) are as given in Fig 3.2.
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Fig 3.1  First six mode shapes of [0/90],,, laminated plate with all sides clamped
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Mode 1 Mode 2

Mode 3 Mode 4
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Fig 3.2  First six mode shapes of [0/90],,, laminated plate with CFFF boundary
condition
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35 Hierarchical Finite Element Formulation

In this section, the HFEM developed in Chapter 2 is applied to free vibration
analysis of laminated rectangular plates. A fully clamped rectangular symmetric
laminated plate is considered. Since very high order polynomials are used as
displacement functions, the plate is modeled as only one finite element. The stiffness and
mass matrices in the equations of motion are evaluated using symbolic integration in
MATLAB environment. The convergence of natural frequencies with increasing number
of hierarchical shape functions is analyzed. The natural frequencies obtained using
HFEM are compared with those obtained using conventional FEM in Section 3.2. First-
order shear deformation theory is employed which takes into account shear deformation

and rotary inertia effects.

3.5.1 Stiffness and Mass Matrices

A flat specially orthotropic laminated rectangular plate is considered with edges
of the plate as x=0, x =a, y=0, y=b. The displacement fields can be expanded in terms of

hierarchical shape functions as below.
V4
u=Nu +Nyu, + Nyu, + Nu, + ZN,”.u,”.
i=1

v=Nv,+N,v, + Nyv; + Ny, + iN,liv,“.

i=1

p
w=Nw+Nw +Nw+Nw,+> N,.w,.
1 1 2 2 3 3 4 4 ; h; hx (3.45)

y4
l//x = Nll//xl + Nzl/sz + N3l//x3 + N4l//x4 + ZNhinhi

i=1

P
V/y = Nl‘//yl + N2Wy2 + N3l//y3 + N4‘//y4 + z Nhil/j)’hi
i=1
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Where N,,N,,N, and N, are the conventional shape functions for 4 node finite

element, Nh, are the hierarchical shape functions. Equation (3.45) can be written in
precise form as
{u} =[N{q} (3.46)

where [N] is the shape function matrix, and {q} is the generalized displacements matrix.

The equations of motion of the plate are obtained by substituting Equation (3.46) into the
expressions for the strain energy and kinetic energy and then employing Lagrange’s

equations.

Substituting Equation (3.46) into Equation (3.5), which is the expression for strain energy
and Equation (3.12), which is the expression for kinetic energy, and making use of

Lagrange’s equations [40], the following equations of motion are obtained.

[M]{g}+[K1{q} =0 (3.47)
[M]= [ph[NT [N]dA (3.48)
[K]= f[B]T[E][B]dA (3.49)

where M is the mass matrix and K is the stiffness matrix The integrals in mass matrix

and stiffness matrix are evaluated using symbolic integration.
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3.5.2 Validation of Hierarchical Finite Element Formulation

Example 3.4

The correctness of the formulation and program is checked by considering the modal
analysis of a 96 ply symmetric cross ply rectangular laminate of dimensions 0.30 by 0.30
meters and with all sides fully clamped (CCCC). The composite material is NCT-301
graphite/epoxy. Material Properties of NCT-301 are taken from Table 3.1 given in

Example 3.1

The results obtained using Ritz method based on CLPT

The approximate value of first natural frequency of the laminated plate under study, using

Ritz Method based on CLPT is given by

= aiz %\/C14 +2(ay, +2a4)R%c, +a,R'c,” (3.50)
where
a,=D,/D,,  @y=D,/D,, ag=Dg!D, (3.51)
¢, =4.730, ¢, =151.30, c, =4.730 (3.52)
a=030,R=1 (3.53)
and

p,=1660.8 x (Thickness of laminate)
=1660.8x (Thickness of each layer x Number of layers of the laminate)

=1660.8 x (1.25 x 107)x96 (3.54)
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Substituting the values from Equations (3.51), (3.52), (3.53) and (3.54) into Equation

(3.50) the lowest natural frequency is

@,, = 8.5462x10’

The results obtained using HFEM

The value of lowest natural frequency of the laminated plate under study, using 4

Hierarchical shape functions is given as below.

@,, =8.3714x10’

3.6 Conclusions

Conventional finite element formulation has been developed using first order
shear deformation theory for free vibration analysis and the values of lowest natural
frequencies have been determined. The results are compared with that of the Ritz method.
Hierarchical finite element formulation has also been developed and applied for modal
analysis of rectangular laminated plates. The values of lowest natural frequencies are
determined using hierarchical finite element method and the results are compared with
that of the Ritz method. The accuracy of HFEM with one element having 180 degrees of
freedom as explained in Section 2.8 is approximately the same as that of the conventional
FEM with 100 elements having 2205 degrees of freedom. So less number of degrees of
freedom is required using HFEM than using conventional FEM for providing almost the

same results.
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Chapter 4

Parametric Study of Composite Laminates

4.1 Introduction

In the previous chapters, the conventional and hierarchical finite element
formulations for static and modal analyses of laminated rectangular composite plates
have been developed. The HFEM was applied first to conduct the static analysis and then

the modal analysis.

We will now conduct a comprehensive parametric study of the static and
dynamic response of laminated composite plates using conventional and hierarchical
finite element analyses. Parametric study is conducted on NCT-301 graphite/epoxy
rectangular laminated plate. The properties are listed in Table 4.1. The specifications of
composite laminate and the geometric properties are detailed in individual cases of
parametric study. All the problems are solved using both conventional and hierarchical

finite element formulations.
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4.2 Parametric Study on Static Response of Rectangular Laminated Plate

Problem Description: A rectangular laminated composite plate has the following

geometric properties: Length (a) = width (b) = 0.55 m, Thickness of each ply = 0.125

mm, Number of plies= 96.

4

Figure 4.1 Rectangular laminated NCT-301 graphite/epoxy composite plate

Uniformly distributed load is applied on the rectangular plate and central
deflection is determined for all possible changes that can be performed on the composite
plates such as, the change in the boundary conditions, the change in the laminate
configurations, the change in aspect ratio, and the change in elastic modulus to shear

modulus (E/G) ratio. The static analysis is performed using both the formulations,
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conventional and hierarchical as described in the previous chapters. Tables and Figures

are provided for comparison and commenting purposes.

1660.80

144

12.14

(=E))

4.48

=Gy)

3.20

0.21

0.017

Table 4.1 Mechanical properties of NCT-301 graphite/epoxy composite material [47]

4.2.1 The Effect of Boundary Conditions on Static Deflection

To consider the effects of different boundary conditions on the static deflection
of the laminated plate shown in Figure 4.1, different laminate configurations under
CCCC and SSSS boundary conditions are taken and the values of the maximum central
deflection are obtained under 100 Pa uniformly distributed load using the hierarchical

finite element formulation.

75



[0/90],,, 1.9089x107° 2.5694x107
[0/90/ + 457 ., 1.8588x107° 1.2881x10™
[+10],,, 1.9922x107° 4.9498x107*
[+201,,, 1.9341x107° 4.2510x10™
[+30],,, 1.8746x107° 3.3491x10™
[+45],,, 1.8206x10° 1.0777x107*
[+45], 1.8200x107° 1.0774x107

Table 4.2 Central deflection of CCCC (fully clamped) and SSSS (simply supported)
laminates with different laminate configurations using hierarchical finite
element formulation

It is observed that the fully clamped plate (CCCC) and simply supported plate
(SSSS) behave in a similar manner for different laminate configurations, except that the
values are different for each laminate configuration. For both the cases i.e. CCCC and

SSSS boundary conditions, different laminate configurations behave as below.

The static deflection of symmetric cross-ply laminate [0/90],,, is more than
that of quasi-isotropic laminate[0/90/ +45],,,. For angle-ply laminates the deflection
decreases as the angle of fiber orientation increases i.e. central deflection of [+10],,,
laminate is greater than that of [+20],,  laminate which is greater than that of [+30],,,

and which in turn is greater than that of [+45],, laminate.
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Figure 4.2a Variation of central deflection of different laminate configurations under
CCCC and SSSS boundary conditions

Out of symmetric laminate [+45],,  and anti-symmetric laminate [+45],, the

central deflection is more for symmetric laminate though the difference is very less. This

implies that out of the laminate configurations under study, [+45],; laminate has greatest
stiffness and [+10],,, has least stiffness. The variation of central deflection of different

laminate configurations under CCCC boundary conditions is plotted at a smaller scale as

shown in Figure 4.2b
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x 10° Central deflection under CCCC boundary conditions
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Figure 4.2b Variation of central deflection of different laminate configurations under
CCCC boundary conditions

4.2.2 The Effect of Aspect Ratio on Static Deflection

To consider the effect of aspect ratio on the static deflection, different laminate
configurations under CCCC boundary conditions are analyzed under 100 Pa uniformly

distributed load.

[0/90],,, 12.1797x10™ [3.3488x10™ [1.9089x107° [3.5279x10~° |2.3833x10"°

[0/90/ £ 45],,, |2.9783x10™ [3.7774x107° [1.8588x107° [3.8933x10™° |3.1357x10°°

[£45],,, 4.5079x107° [4.4673x10™ |1.8206x107° [4.4673x107° [4.5079x107°

Table 4.3 Effect of aspect ratio on central deflection of CCCC (fully clamped)
laminate using hierarchical finite element formulation
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Effect of aspect ratio on static deflection is determined in two parts.

First,[0/90],,., [0/90/ + 45] ,, and [+45],,, laminates are analyzed.

x 10°  Vanation in Static Deflection with different Aspect Ratio

[0/90]24s |
O [0/90/+ 45]12s |

4.5,77?7 R [+ - 45]24s

3.5‘7‘ ”\\ ’ ”"""’/7/: ’y‘/"‘r‘*af:""" ""’""‘li:r””””’f

Central Deflection (meters)

2.5' - " 1777;:'}\77:7 "/7’/,;"/””””’3'”' - CT T ST T T T T TS T T ””’*

1.5

Aspect Ratio
Figure 4.3  Variation of central deflection of CCCC laminate for different aspect ratio
values
It is observed that as the aspect ratio is increased beyond 1.0, the central
deflection also increases. When aspect ratio is decreased to 0.5, the central deflection
increases and when aspect ratio is decreased further to 0.25, the central deflection
decreases. When aspect ratio is increased beyond one, the laminates behave exactly the
same for aspect ratio values of 2.0 and 4.0 as shown in Figure 4.3.In the second part,

laminates with configurations[+10],,,,[+20],,,, [+30],,, are analyzed. It is observed that

for aspect ratio value less than 1.0, the central deflection is greatest for [+30],, and
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lowest for [£10],, but as the aspect ratio increases more than 1.0, the deflection for

[+10],,, becomes greatest followed by [+20],,, ,which is further followed by [£30],,. .

[+10],,, 5.8277x107° [1.7781x107° [1.9922x107° | 1.34661 e-4 |2.2708x107*
[+201,,, 8.1416x107° [2.0694x107° {1.9341x107° |1.10748 -4 |1.8511x10™
[+301,,, 1.6014x107° [2.6523x107° |1.8746x107° [8.0423x107° [1.1804x107*
Table 4.4 Effect of aspect ratio on central deflection of CCCC (fully clamped)

angle-ply laminates using hierarchical finite element formulation

x 10*  Varation in Static Deflection with different Aspect Ratio
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Figure 4.4  Variation of central deflection of CCCC laminates for different aspect

ratio values
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The effect of laminate configuration on the static deflection is explained as below. We

already know from Table 4.2 that the static deflection for [£10],,, laminate is greater

than that of [+20],, which is greater than that of [£30],,, for a square plate. As the

aspect ratio is lowered below 1, the laminate looks as below in Figure 4.5

22000

<< sl
)(\ —

—

ool —-

05500 '4»% 05500
| x
| i

- 3.3500
Aspect Ratio =1 Aspect Ratio = 0.5 Aspect Ratio = 0.25
Figure 4.5 Laminates with aspect ratio less than or equal to 1.0

We observe that as the aspect ratio is lowered than 1.0, y-axis becomes the major axis of
the laminate. The fiber angle with respect to major axis (in this case y axis) is changed
from @ to (360- ). This causes the reversal of behavior of angle-ply laminates than the

one shown in Table 4.2.
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- remmm— 22000 —
Aspect Ratio =1 Aspect Ratio=2  Aspect Ratio = 4
Figure 4.6 Laminates with aspect ratio greater than or equal to 1.0

In the case when the aspect ratio is increased beyond 1.0, the major axis of the laminate is
x-axis so the angle of fibers with respect to major axis is still the same, and so the angle-

ply laminates preserve their behavior as shown for a square plate given in Table 4.2.

4.2.3 The Effect of Elastic Modulus to Shear Modulus (E/G) Ratio on Static

Deflection
The effect of change in the ratio of Elastic Modulus in transverse direction ( E,)

to shear modulus (G) is analyzed in this section. Keeping elastic modulus constant the

shear modulus is changed and the changing central deflection value is analyzed.



[+10],,, 1.9847x107° |1.9607x107° [1.9372x10™° [1.9142x107° |[1.8916x107°
[+201,,, 1.9272x107° |1.9052x107 [1.8837x107° |1.8625x107° |1.8418x107°
[+301,,, 1.8682x107° |1.8477x107° |1.8276x107° [1.8080x10° [1.7888x107°
[0/90],,, 1.9018x107° |1.8789x107° [1.8566x107° [1.8347x10™° |[1.8132x107°
[0/90/ +45],,, 11.8523x10 [1.8318x10™° |1.8117x107° [1.7920x107° [1.7727x107°
[+45],,, 1.8144x107° |1.7948x107° [1.7757x107° |[1.7571x107° |1.7388x107°
Table 4.5  Central deflection (in meters) for different E/G ratios for different laminate
configurations with CCCC boundary conditions
x 10° Variation in Static Deflection with different E/G Ratio
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Central deflection (in meters) for different E/G ratios for different laminate

configurations with CCCC boundary conditions




We observe that as the E/G ratio is decreased the central deflection decreases for all the
laminate configurations. The behavior of different laminate configurations for changing

E/G ratio can be seen in Figure 4.7.

4.3 Parametric Study on Free Vibration Response of Rectangular Laminated

Plate

The lowest 4 natural frequencies are determined for all possible changes that can
be performed on the composite plates such as, the change in the boundary conditions, the
change in the laminate configurations, the change in aspect ratio, and the change in E/G
ratio. The natural frequencies are obtained using both the formulations, conventional and
hierarchical as described in the previous chapters. Tables and Figures are provided for

comparison and commenting purposes.

4.3.1 The Effect of Boundary Conditions on Natural Frequencies

To consider the effects of different boundary conditions on the natural
frequencies of the laminated plate, the laminate with configuration of [0/90],,_is taken

and the values of the lowest four natural frequencies are obtained using the hierarchical

finite element formulation.
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1 2578.262 908.920 680.656 479.044

2 3508.950 925.980 1401.795 611.379

3 3575.024 1203.932 1593.991 1244.64

4 3847.203 1235.984 1884.468 1422.337
Table 4.6 First four frequencies (rad/s) of [0/90],,, laminate subjected to different

boundary conditions using hierarchical finite element formulation
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internal hierarchical degrees of freedom each in x and y directions respectively are used
to model the plate. The total internal degrees of freedom are 16 which are obtained by
taking the tensor product of degrees of freedom in each direction. It may be noted that the
frequencies and the modes are not continuous in a finite element model. However the
frequencies are plotted as continuous functions in Figure 4.8 and in similar figures that

follow, in order to observe the laminate behavior at a glance.

As expected, there is a considerable variation in the values of the frequencies for different
boundary conditions. We observe that relaxing the degrees of freedom along the edges of
the plate significantly reduces the initial frequencies. In Figure 4.1 the clamped-clamped
(CCCC) type of support gives the highest value of natural frequencies, whereas the CFFF
type gives the lowest value (The frequency of the first mode of the fully clamped plate is
nearly 6 times that of the plate with only one edge clamped). The simply supported type
(SSSS) comes as the second highest followed by CFFC as third highest in terms of values

of first natural frequency.

4.3.2 Hierarchical FEM vs. Conventional FEM

One hierarchical element with 4 internal degrees of freedom in each direction
gives the same results as that of a 64 elements mesh in conventional FEM. The
hierarchical element has 4 h-nodes, 4 p-nodes on each edge in between the h-nodes and
16 internal p-nodes as shown in Figure 2.3. In total there are 4 h-nodes and 32 p-nodes in

the hierarchical element chosen. The results from hierarchical and conventional finite
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element formulations are compared for 1* four natural frequencies of [0/90],,, laminate

with CCCC and CFFC boundary conditions, as given in Tables 4.7 and 4.8.

1 2540.919 ‘ 12578262 T 147
2 3404.098 3508.950 3.08
3 3465386 3575.024 3.16
4 3730.352 3847.203 3.13

Table 4.7  Comparison of frequencies obtained using conventional and hierarchical
finite elements for [0/ 90]24s laminate with CCCC boundary
conditions

1 T 678389 T 680.656 ] 033

2 1399.003 1401.795 0.20
3 1586.772 1593.991 0.45
4 1887.669 1884.468 0.17

Table 4.8  Comparison of frequencies obtained using conventional and hierarchical
finite elements for [0/90],,, laminate with CFFC boundary conditions

From Tables 4.7 and 4.8, we find that percentage change in the natural frequency
calculated using Hierarchical FEM from that of the Conventional FEM is less than 5 % in

all the cases.
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4.3.3 Mode shapes

In this section the first four mode shapes of [0/90],,. laminated plate with

boundary conditions of all sides fully clamped are plotted. The mode shapes for boundary
conditions SSSS (all sides simply supported), CFFC (sides x=0, y =b are fully clamped
and sides x=a, y =0 are free), CFFF (side x=0 fully clamped and other sides are free) are
plotted in Appendix-II. The mode shapes are generated using conventional finite element
method with a mesh of 64 elements. As explained in Section 3.4.2, since a mesh of 8 x 8
elements is used, the x-axis ranges from 1 to 17 and y-axis ranges from 1 to 17
corresponding to [m, n] which is the size of matrix (P), as explained above. The z-axis

gives the surface height in meters.

Comparing the mode shapes as given in Figure 4.9 and Figure 4.9.1 in
Appendix I, clearly the effect of the constraint on the degrees of freedom on the edges
of plate under CCCC and SSSS boundary conditions is reflected in different mode shapes
in both the cases. It is also interesting to observe the mode shapes under CFFC and CFFF

boundary conditions, which are given in Appendix —II
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1st Mode shape [0/90]24s Laminate with CCCC Boundary Conditions 3rd Mode Shape of [0/90]24s Laminate with CCCC Boundary Conditions

2nd Mode shape {0/90]24s laminate with CCCC Bounday Conditions 4th Mode shape [0/90)24s laminate with CCCC Bounday Conditions

0.015.. -~ 001 -~
0.01
0.005
0.005
0 0
0.005
-0.005
2.0t
2015 -0.01

Figure 4.9  First four mode shapes of [0/ 90]24: laminate with CCCC boundary
conditions
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Swapping the boundary conditions: Another observation is made by swapping the

boundary conditions of clamped and free edges, and by observing the difference in the
values of first four natural frequencies. In CFCF, sides x= 0 and x=a are clamped and y =
0 and y = b are free and reversing the boundary conditions it becomes FCFC, with sides
x=0 and x=a free and y=0 and y=b clamped .The frequencies are calculated using

Conventional FEM.

1 182.719 183.017
2 195.144 191.636
3 273.921 266.852
4 280.251 283.919

Table 4.9 First four frequencies of [0/ 90]24: laminate with CFCF and FCFC boundary
conditions

We can see that the natural frequency differs when the boundary conditions are swapped
which is because of the anisotropic behavior of [0/90],,, laminate. The corresponding

mode shapes for both the boundary conditions discussed are plotted in Figure 4.10 and
Figure 4.11. In these figures, we can see the symmetric changes in the mode shapes upon

swapping the boundary conditions.
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1st Mode Shape of [0/90]24s Laminate with CFCF Boundary Conditions 2nd Mode Shape of [0/90]24s laminate with CFCF boundary conditions

’
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N

3rd Mode shape of [0/90]24s laminate with CFCF Boundary conditions 4th Mode shape of [0/90]24s iaminate with CFCF boundary conditions
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Figure 4.10  First four mode shapes of [0/90],,, laminate with CFCF boundary
conditions
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1st Mode shape of [0/90] laminate with FCFC boundary conditions 2nd Mode shape of {0/90]24s laminate with FCFC boundary conditions

0.01 -

0005, -~ "

-0.005

3rd Mode Shape of [0/90)24s Laminate with FCFC Boundary Conditions 4th Mode shape of [0/90]24s Laminate with FCFC Boundary Conditions
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0.005
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0.005
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0 0.01
2 20

Figure 4.11 First four mode shapes of [O /90],,, laminate with FCFC boundary
conditions

We will now see the effect of swapping the boundary conditions for [0/90/+45],,,

laminate. The frequencies corresponding to first four modes are as given below. As
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expected the two sets of boundary conditions give different natural frequencies because

of the anisotropic behavior of laminate.

1 196.658 194.842

2 202.474 202.444
3 244.385 240.544
4 288.254 290.209

Table 4.10 First four frequencies of [0/90/ + 45],,. laminate with CFCF and FCFC
boundary conditions

We will now observe the effect of swapping the boundary conditions as discussed before

but on anti-symmetric laminate[+45],,. The corresponding table containing the

frequencies for the first four modes is given below.

183. 83.29
2 192.078 192.078
3 232.827 232.827
4 275.353 275.353

Table 4.11 First four frequencies of [+45],, laminate with CFCF and FCFC boundary
conditions

Clearly the swapping of the boundary conditions does not have any effect on [+-45],,

laminate which is because of the special alignment of the fibers at + and - 45 degrees
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which gives the laminate same stiffness in both x and y directions. It is very interesting to

observe how the mode shapes of [0/90/+45],, and [+45],, laminates change upon

swapping the boundary conditions. The respective mode shapes are given in Appendix-II

in Figure 4.10.1, Figure 4.10.2, and Figure 4.11.1and Figure 4.11.2.

4.4 The Effects of Boundary Conditions and Laminate Configurations

In this section the effect of different boundary conditions on the frequencies for

different laminate configurations other than [O/ 90],,,is considered. The laminate
configurations under study in this section are[0/90/ £ 45],, , [+45],,, and [i 45]48. The

mode shapes for CCCC boundary condition are provided here along with the comparison
graph for all the boundary conditions. The mode shapes for boundary conditions SSSS,

CFFC and CFFF are shown in Figure 4.12.1, Figure 4.12.2, and Figure 4.12.3

respectively in Appendix-II.

2546.349 956.857 804.297 533.600
2 3434.591 1141.121 1281.203 733.016
3 3474.886 1152.725 1799.486 1237.817
4 4010.119 1186.488 2049.237 1567.964

Table 4.12  Natural frequencies (rad/s) for different boundary conditions for
[0/90/ £ 45],,, laminate
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It is interesting to observe from CCCC, CFFC and CFFF boundary conditions from Table

4.12 that the frequencies corresponding to first mode of [0/90/ + 45],,  laminate decrease

as the constraints on the edges are relaxed. Comparing the first four natural frequencies
of CCCC, CFFC and CFFF boundary conditions from Table 4.6 with the corresponding
values in Table 4.12, it is observed that the frequencies for [0/90/ + 45],,, laminate are
less than that of the [O/ 90]24s laminate which explains the little stiffness edge symmetric

cross-ply laminate enjoys over symmetric quasi-isotropic laminate.

Natural Frequencies for different boundary conditions for
[0/90+ -45]12s Laminate
4500 - - - :

| ccect
40001 = -------- ,,,%,,,,,,,,,,,,,. ... __| %% 5888 ‘r
‘ | CFFC

3500 << oo P L . L
30000 T S e
2500 U S S .

20000 - N T T PR e

Natural Frequencies (rad / s)

1800 - -~ R -

1000~~~ =T - AR T o

500
1
Mode

Figure 4.12 Natural frequencies of [0/90/ +45],,. laminate under different
boundary conditions
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Mode Shapes

1st Mode shape of [0/90+ - 45]12s Laminate with CCCC Boundary Conditions 2nd mode shape of [0/90+ - 45}12s Laminate with CCCC Boundary Conditions

3rd Mode Shape of [0/90+ -45]12s Laminate with CCCC Boundar Conditions 4th Mode shape of [0/90+ - 45]12s alminate with CCCC Boundary Conditions

0.015
0.01

0.005

-0.005 -

-0.01

-0.015

Figure 4.13 First four mode shapes of [0/90/ £ 45],,, laminate with CCCC
boundary conditions
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1 2499.2?% 450.746 890.815 391.884
2 3309.732 1113.572 1056.381 892.600
3 3341.601 1207.779 1738.643 997.687
4 4172.888 1213.406 2177.093 1499.352

Table 4.13  Natural frequencies (rad/s) for different boundary conditions for [+45],,,

4500

laminate

Natural Frequencies for different boundary conditions for [+ -45]24s Laminate

4000
3500 |
3000
25001
2000

1500

Natural Frequencies (rad / s)

1000

500gf<,//,

0 e

1

—p -

|

Mode

Figure 4.14  Natural frequencies of [+45],,, laminate under different boundary
conditions
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Mode shapes

1st Mode shape of [+ - 45]24s Laminate with CCCC Boundary Conditions 2nd mode shape of [+ - 45]24s laminate with CCCC Boundary Conditions

3rd mode shape of [+ - 45]24s Laminate with CCCC Boundary Conditions 4th mode shape of [+ - 45]24s laminate with CCCC Boundary Conditions

Figure 4.15  First four mode shapes of [+ 45],, laminate with CCCC boundary
conditions

The mode shapes for boundary conditions SSSS, CFFC and CFFF are shown in Figure

4.13.1, Figure 4.13.2, and Figure 4.13.3 respectively in Appendix-II.
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1| 2499569 450.751 896.952 391.941
2 3325.851 1113.621 1059.825 892.912
3 3325.851 1210.982 1746.543 997.714
4 4173.083 1210.982 2182.122 1502.156

Table 4.14  Natural frequencies (rad/s) for different boundary conditions for [i 45]48

Natural Freque

4500 - ———-
|

4000 - ---

3500

2500 -
20001

1500 - :

Natural Frequencies (rad / s)

10000 -

500, =~ e

3000f -

laminate

ncies for different boundary conditions for [+ -45]24s Laminate

T

T — - \:%,7
,;:;;::,::;,—)*/, o
3
Mode

T ——————

Figure 4.16 Natural frequencies of [+45],, laminate under different boundary
conditions
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Mode Shapes

1st Mode shape of [+ - 45]48 Laminate with CCCC Boundary Conditions 2nd Mode shape of [+ - 45]48 Laminate with CCCC Boundary Conditions

3rd mode shape of [+ -45]48 Laminate with CCCC Boundary Conditions 4th mode shape of [+ -45]48 Laminate with CCCC Boundary Conditions

0.015
0.01

0.005

-0.005

0.0t .

-0.015
20

Figure 4.17  First four mode shapes of [+ 45],, Laminate with CCCC boundary
conditions

The mode shapes for boundary conditions SSSS, CFFC and CFFF are shown in Figure
4.14.1, Figure 4.14.2, and Figure 4.14.3 respectively in Appendix-II. From Tables 4.12,

4.13 and 4.14 and Figures 4.13, 4.15 and 4.17 we can see how the values and mode
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shapes of first four natural frequencies change for plates under exactly same boundary
conditions but with different laminate configurations. Under CCCC boundary condition,

the plate with laminate configuration[0/90/ £ 45],,. has the highest value of first natural

frequency followed by [i 45]48 and [i 45]24s .

4.5 The Effect of Fiber Orientations on Natural Frequencies

To see the effect of different fiber orientations on the natural frequencies of
rectangular laminated composite plates, different laminate configurations are chosen for
one particular boundary condition which in this case is CCCC i.e. all sides clamped. The
lowest four natural frequencies are determined for the following types of laminates that

have the following configurations: cross-ply[0/90],,, quasi-isotropic [0/90/+ 45),.,

symmetric angle-ply [i 45]24s and anti-symmetric angle-ply [i 45]48 laminates.

1 2578.262 2546.349 2499.218 2499.569
2 3508.950 3434.591 3309.732 3325.851
3 3575.024 3474.886 3341.601 3325.851
4 3847.203 4010.119 4172.888 4173.043

Table 4.15  Lowest four natural frequencies (rad/s) for different laminate
configurations for laminates clamped at all sides (CCCC)
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Clearly the symmetric cross-ply laminate has the highest first natural frequency
and symmetric angle-ply laminate has the lowest. The variation of first four natural
frequencies for different laminate configurations under CCCC boundary conditions is
shown in graph below. The values are determined using polynomial hierarchical finite
element formulation using only one element to model the plate. The element has 4

internal degrees of freedom in each direction which accounts to sixteen internal degrees

of freedom.
Natural Frequencies (rad/s) for different laminates configurations
for laminate clamped at all edges (CCCC)
4200, ——— [ e - Sy,
o [oe0j24s
400051 o [or00/45145]12s
3800 | | [+ - 45]24s
|- [+ - 45148
300F- - R
3400} - ------—-- -~ X . - -

3200 ---

3000

Natural Frequencies (rad / s)

2800+ A

2600, e T

2400 ' -
1
Mode

Fig 4.18 Natural frequencies of different laminate configurations under CCCC
boundary condition
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4.5 Effect of Aspect Ratio on Natural frequencies

In this section, the effect of changing the aspect ratio on natural frequencies is
studied for different laminate configurations under a particular boundary condition
(CCCQ). It is also interesting to see the effect of changing aspect ratios for various
laminate configurations under SSSS boundary conditions, as given in Tables 4.16.1,

4.17.1 and 4.18.1 in Appendix-II.

Firstly, the Boundary Condition of CCCC is applied to various laminate configurations

with different aspect ratios as below and the values of first 4 natural frequencies are

noted.

1 2189.500 2254.687 2578.262 2237.851 2155.396
2 2193.062 2302.604 3508.950 2259.104 2164.001
3 2329.720 2611.719 3575.024 2623.965 2281.215
4 2354.455 3173.147 3847.203 3222.320 2343.248

Table4.16  Natural frequencies (rad/s) for different aspect ratios for [0/90],,,
laminate with CCCC boundary conditions
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Variation in Natural Frequencies of [0/90]24s laminate
with different Aspect Ratio
4000 o e o R —

-~ Moded |

3200

3000

2800 -

Natural Frequencies (rad / s)
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0.25 0.5 1 2 4
Aspect Ratio

Figure 4.19 Variation of natural frequencies of [0/90],, laminate with different aspect
ratio values

It is observed that under CCCC boundary condition, the [0/90],,. laminate gives lower

values of natural frequencies as the aspect ratio is either increased or decreased than 1.

The maximum value for each mode is always reached when aspect ratio R=1.

Now we will observe the effect of aspect ratios on natural frequencies on [0/90/ £ 45],,,
and [+45],, laminates under CCCC boundary condition. We observe that these two

laminates also behave similar to [0/90],,. laminate as shown in Figures 4.20 and 4.21

and Tables 4.17 and 4.18.
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1 | 2168.961

2165744

2193.740 2546.349 2140.090
2 2169.823 2294.864 3434.591 2285.920 2146.617
3 2213.178 2648.780 3474.886 2659.107 2179.453
4 2261.154 3176.280 4010.119 3201.601 2249.237

Table 4.17 Natural frequencies (rad/s) for different aspect ratio values for

Variation in Natural Frequencies of [0/90/45/-45]12s
with different Aspect Ratio
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[0/90/ £ 45],,, laminate with CCCC boundary conditions

Figure 4.20 Variation in natural frequencies of [0/90/ + 45],, laminate with different

aspect ratio values
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1 | 1907.860

1907.860

2021.546 2499.218 2021.546
2 1998.817 2324935 3309.732 2324.935 1998.817
3 2129.860 2693.336 3341.601 2693.336 2129.860
4 2297.317 2872.568 4172.888 2872.568 2297.317
Table 4.18  Natural frequencies (rad/s) for different aspect ratio values for

[+45],,, laminate with CCCC boundary conditions

Variation in Natural Frequencies of [+ - 45]24s laminate
with different Aspect Ratio
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Figure 4.21 Variation in natural frequencies of [+45],, laminate with different aspect

ratio values
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4.7 Effect of Elastic Modulus to Shear Modulus (E/G) Ratio on Natural

Frequencies

In this section the natural frequencies are calculated for different elastic to shear

modulus (E/G) ratio values. The elastic modulus in transverse direction E, and shear

modulus G, are considered. The case of CCCC boundary conditions is considered. The

results are tabulated below and comparison is plotted in Figure 4.22.

1 2544.683 2556.774 2568.772 2580.680 2592.499
2 3408.840 3424.025 3439.021 3453.837 3468.479
3 3470.135 3485.334 3500.333 3515.140 3529.764
4 3739.831 3770.214 3800.263 3829.988 3859.398

Table 4.19 Natural frequencies of [0/90],,, laminate under CCCC boundary conditions
for different E/G ratio values

It is observed that as the E/G ratio decreases, the natural frequencies in all the first four
modes increase for [0/ 90]24s laminate with CCCC boundary conditions. It is also

interesting to note the variation of natural frequencies of plate under SSSS boundary
conditions which behaves quite similar to the one under CCCC boundary conditions as

shown in the following tables.
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3500 -

Natural Frequencies (rad / s)
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1

3000+ - -

Variation in Natural Frequencies of [0/90]24s laminate w.r.t.

different Elatsic to shear modulus E/G Ratio

Figure 4.22 Variation in natural frequencies of [0/90],,, laminate under CCCC
boundary conditions for different E/G ratios

1 1325.068 1342.651 1360.001 1377.127 394.037
2 2347.588 2363.849 2379.987 2396.004 2411.903
3 2398.239 2414.178 2430.000 2445.707 2461.302
4 2676.361 2711.591 2746.356 2780.675 2814.564

Table 4.20 Natural frequencies of [0/ 90]24S laminate under SSSS boundary conditions
for different E/G ratio values
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Variation in Natural Frequencies of [0/90]24s laminate w.r.t.
different Elatsic to shear modulus E/G Ratio
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Figure 4.23a Variation in natural frequencies of [0/90],,, laminate under SSSS
boundary conditions for different E/G ratio values

Variation in Natural Frequencies of [0/80])24s laminate w.r.t.
different Elatsic to shear modulus E/G Ratio
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Figure 4.23b  Variation in 2™ mode natural frequencies of [0/ 90]243 laminate under
SSSS boundary conditions for different E/G ratio values
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4.8 Conclusions

A detailed parametric study has been carried out using Conventional as well as
Hierarchical FEM. A comparison study between the two methods has also been carried
out and the superiority of HFEM over conventional FEM is proved. Effects of laminate
parameters such as boundary conditions, ply configuration, Aspect Ratio and Elastic
modulus to shear modulus (E/G) ratio are studied on the static deflection and natural
frequencies of laminated composite plates. Mode shapes are plotted for all the cases and
the change in their shapes is observed and compared under different laminate parameters

as explained in previous sections.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions
In the present thesis hierarchical finite element formulations have been
developed for the analysis of laminated composite plates. Static and modal analyses of

rectangular laminated plates have been conducted using the developed formulations.

Conventional finite element formulation is developed before introducing
HFEM. Results from HFEM are compared with those from conventional FEM to state the
efficiency and accuracy of HFEM. Conventional finite element modal is developed using
Mindlin finite element consisting of nine nodes, where each node has five degrees of
freedom. The hierarchical formulation improves the capabilities of the element by
making the degree of approximating polynomial to tend to infinity. The shape functions
of a bar element are retained and extra nodes are inserted with shape functions given by
Legendre polynomials of Rodrigues form. Stiffness and mass matrices are developed

using these shape functions.
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The programming involved symbolic computation and is done using
MATLAB software. The element properties such as stiffness and mass matrices have
been computed numerically using individual sub-routines. The parametric study is
performed on the laminated rectangular plates to see the effects of various changes in the
laminate parameters on the static deflection and natural frequencies. The effects of aspect
ratio, elastic modulus to shear modulus ratio, ply configurations and boundary conditions
are considered in the parametric study. The work done in the present thesis has provided
some conclusions on the performance of hierarchical finite element formulations based

on first order shear deformation theory.

The important conclusions are:-
1) The accuracy can be obtained more efficiently and rapidly by increasing the
degree of approximating polynomial than by increasing the number of elements.

A comparison of the conventional and hierarchical FEM justifies this conclusion.

2) Simple structures like a rectangular plate can be modeled using only one element
which completely eliminates the time and hassles involved in generating meshes

and subsequently the need to satisfy inter element continuity.

3) Parametric study performed on various rectangular laminated plates gives a
comprehensive understanding of their behavior under physical conditions. The

values of natural frequencies and static deflections under different boundary
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conditions and for different ply configurations provide useful contribution in

developing an optimum design.

5.2 Contributions

The primary contributions have been mentioned in the previous chapters and
are summarized below.
1) A set of polynomials has been proposed for polynomial hierarchical formulation
which performs better than the conventional FEM formulation.
2) Stiffness and mass matrices are developed using hierarchical finite element

formulation based on first-order shear deformation theory.

Besides above mentioned contributions, generalized programs are developed for
conventional finite element formulation, Hierarchical finite element formulation and
Rayleigh-Ritz Formulation based on first-order shear deformation theory for laminated

composite plates.

5.3 Recommendations for Future Work

The modal analysis of rectangular laminated plates using hierarchical finite

element formulation can be continued in the future based on following recommendations.
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1)

2)

3)

4)

5)

6)

The hierarchical finite element formulation developed in the present thesis can be
applied to the analysis of forced vibration response of different types of laminated
plates.

The HFEM formulation can be extended for the analysis of tapered laminated
composite plates.

Trigonometric functions could be used as approximating functions in HFEM for
the analysis of laminated rectangular plates.

H-p adaptivity could be used by increasing the number of elements as well as by
increasing the order of polynomial .The challenge here lies in developing the
accurate element connectivity matrix.

The effect of damping could be included in the free and forced vibration analysis
of laminated composite plates.

The HFEM could be extended by using second and third order shear deformation

theories.
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Appendix-I

Term 5 to Term 16 of the Equation (2.11)

Term 5
0
2D12 al//x l//y
Ox Oy

dr,
Term5=2D12iiiﬁ(B c, L S
=y y

l J—

EE(TermS) 0

1 ar,

EE(TermS) D,, ;JZ}:CU T Q iy

1 8 MY dTn
n ? i=1 j=l ’ j dy

Integration of non zero terms yields

1
2 Lo -C “00B, ——(TermS)ixdy = D,, ZZC,,

i=] j=1

%Lofoac (Terms)ixdy = D,, ZZB’I f ;

i=1 j=1

Term 6
2 D66 al//x W,V
oy Ox

122

B.C Q"

i mn

Sd f —Qdy

dT
de: "0 d
x dyQ,y

Sn)



dS dg, ds

— mn Ij dy dx lj mn dy i dx

Integration of non zero terms yields

—f ‘COGB Term6)ixdy D6622CU[' dS’de:’ dQan

i=l j=1

ds, dQ,
—'[‘ Jjoac (Ferms)ivdy - D66;,Z;B” R dyj Ly
Term 7
aw 2
{3
Oy
M N M N dY dY
Term 7= A4 A, A X —" i_!
44 ;;;; mn*"ij dy dy
1 0 MY dY Y
———(Term7) = A A nxy — L
2aA,,,"(erm) ““Z,,Z]: gy T dy
1.9 (Term7)=0
20B,,
%EE—(Term7)=0

123

an)
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Appendix-I1

Mode Shapes of various laminate configurations with different boundary conditions and
variation of natural frequencies of various laminate configurations with respect to aspect

ratio values with SSSS boundary conditions.

1st mode shape of [0/90]24s Laminate with S5SS Boundary Conditions 2nd mode shape of [0/90]24s Laminate with SSSS Bounary Conditions

3rd Mode Shape of [0/90]24s Laminate with SSSS Boundary Conditions 4th Mode shape of [0/90)24s Laminate with SSSS Boundary Conditions

PEREN

Figure 4.9.1  First four mode shapes of [0/90],,, laminate with SSSS boundary
conditions
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st Mode shape [0/90]24s laminate with CFFC Bounday Conditions 2nd  Mode shape [0/90]24s taminate with CFFC Bounday Conditions

3rd Mode shape [0/90]24s laminate with CFFC Bounday Conditions 4th Mode shape [0/90}24s laminate with CFFC Bounday Conditions
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Figure 4.9.2  First four mode shapes of [0/90],,, laminate with CFFC boundary
conditions
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1st Mode shape of [0/90]24s Laminate with CFFF Boundary Conditions 2nd Mode shape of [0/90]24s Laminate with CFFF Boundary Conditions

0.05

005 - 7
10

3rd Mode Shape of [0/90]24s Laminate with CFFF Boundary Conditions 4th Four mode shapes of [0/90]24s Laminate with CFFC Boundary Conditions
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Figure 4.9.3  First four mode shapes of [0/90],, laminate with CFFC boundary
conditions
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1st Mode shape of [0/90/+ - 45]12s Laminate with CFCF Boundary Conditions 2nd Mode shape of [0/90/+ - 45]12s Laminate with CFCF Boundary Conditions
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3rd Mode shape of [0/90/+ - 45}12s Laminate with CFCF Boundary Conditions 4th Mode shape of {0/90/+ - 45}12s Laminate with CFCF Boundary Conditions
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Figure 4.10.1 First four mode shapes of [0/90/ + 45],,, laminate with CFCF boundary
conditions
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1st Mode shape of [0/80/45/-45}12s laminate with FCFC Boundary Conditions 2nd Mode shape of [0/90/45/-45]12s laminate with FCFC Boundary Conditions

3rd Mode shape of [0/90/45/-45]12s laminate with FCFC Boundary Conditions 4th Mode shape of {0/90/45/-45]12s taminate with FCFC Boundary Conditions
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20

Figure 4.10.2  First four mode shapes of [0/90/ + 45],,, laminate with FCFC boundary
conditions
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1st Mode shape of {+ - 45]48 Laminate with CFCF Boundary Conditions 2nd Mode shape of [+ - 45]48 Laminate with CFCF Boundary Conditions
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3rd Mode shape of [+ - 45]48 Laminate with CFCF Boundary Conditions 4th Mode shape of [+ - 45]48 Laminate with CFCF Boundary Conditions
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Figure 4.11.1  First four mode shapes of [i 45),; laminate with CFCF boundary
conditions
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1st Mode shape of [+ - 45]48 Laminate with FCFC Boundary Conditions 2nd Mode shape of [+ - 45]48 Laminate with FCFC Boundary Conditions
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3rd Mode shape of [+ - 45]48 Laminate with FCFC Boundary Conditions 4th Mode shape of [+ - 45]48 Laminate with FCFC Boundary Conditions
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Figure 4.11.2  First Four mode shapes of [i 45]48 Laminate with FCFC Boundary
Conditions
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1st Mode shape of [0/90/+ - 45]12s Laminate with SSSS Boundary Conditions 2nd mode shape of [0/90/+ - 45]12s taminate with SSSS Boundary Conditions
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0.0155
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3rd Mode shape of [0/90/+ - 45]12s Laminate with SSSS Boundary Conditions 4th Mode shape of [0/90/+ - 45]12s Laminate with SSSS Boundary Conditions
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-0.005
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Figure 4.12.1  First four mode shapes of [0/90/ £ 45],,. laminate with SSSS boundary
conditions
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1st Mode shape of (0/90/+ - 45]12s Laminate with CFFC Boundary Conditions 2nd Mode shape of [0/90/+ - 45]12s Laminate with CFFC Boundary Conditions

3rd Mode shape of [0/90/+ - 45]12s Laminate with CFFC Boundary Conditions 4th Mode shape of [0/90/+ - 45}12s Laminate with CFFC Boundary Conditions
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Figure 4.12.2  First four mode shapes of [0/90/ £ 45],,, laminate with CFFC boundary
conditions
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1st mode shape of [0/90/+ - 45]12s laminate with CFFF Boundary Conditionss 2nd mode shape of [0/90/+ - 45]12s taminate with CFFF Boundary Conditions

3rd mode shape of [0/90/+ - 45]12s laminate with CFFF Boundary Conditions 4th mode shape of [0/90/+ - 45125 laminate with CFFF Boundary Conditions

o

-0.005 .

I
l
; 001
1

! 0.015
S 20

Figure 4.12.3  First four mode shapes of [0/90/ + 45],,, laminate with CFFF boundary
conditions
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1st mode shape of [+ - 45]24s iaminate with SSSS Boundary Conditions

3rd mode shape of [+ - 45]24s laminate with SSSS Boundary Conditions
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2nd mode shape of [+ - 45]24s laminate with SSSS Boundary Conditions

001 -7

20

1st mode shape of [+ - 45]24s laminate with SSSS Boundary Conditions

Figure 4.13.1 First four mode shape of [i 45]24s laminate with SSSS boundary
conditions

141



1st mode shape of [+ - 45]24s laminate with CFFC Boundary Conditions 2nd mode shape of [+ - 45]24s laminate with CFFC Boundary Conditions
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Figure 4.13.2  First four mode shape of [+45),,, laminate with CFFC boundary
conditions
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1st mode shape of [+ - 45]24s laminate with CFFF Boundary Conditions 2nd mode shape of [+ - 45]24s laminate with CFFF Boundary Conditions

3rd mode shape of [+ - 45]24s laminate with CFFF Boundary Conditions 4th mode shape of [+ - 45]24s laminate with CFFF Boundary Conditions
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Figure 4.13.3  First four mode shapes of [+ 45],,, laminate with CFFF boundary

conditions
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1st mode shape of [+ - 45]48 laminate with SSSS Boundary Conditions 2nd mode shape of [+ - 45]48 laminate with SSSS Boundary Conditions

3rd mode shape of [+ - 45]48 laminate with SSSS Boundary Conditions 4th mode shape of [+ - 45]48 laminate with SSSS Boundary Conditions
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20

Figure 4.14.1 First four mode shapes of [i 45),; laminate with SSSS boundary
conditions
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1st mode shape of [+ - 45}48 laminate with CFFC Boundary Conditions 2nd mode shape of [+ - 45]48 laminate with CFFC Boundary Conditions
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3rd mode shape of [+ - 45]48 laminate
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Figure 4.14.2 First four mode shapes of [+45],, laminate with CFFC boundary
conditions
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1st mode shape of [+ - 45}48 laminate with CFFF Boundary Conditions 2nd mode shape of [+ - 45]48 laminate with CFFF Boundary Conditions
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3rd mode shape of [+ - 45}48 laminate with CFFF Boundary Conditions 4th mode shape of [+ - 45]48 laminate with CFFF Boundary Conditions
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Figure 4.14.3  First four mode shapes of [i 45]48 laminate with CFFF boundary
conditions
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1183.304

1 1182.186 908.920 1156.794 1157.983
2 1216.473 1326.976 925.980 1327.154 1185.750
3 1216.568 1804.598 1203.932 1833.204 1202.631
4 1368.822 2394.942 1235.984 2344.225 1371.007

Table 4.16.1 Natural frequencies (rad/s) of [O/9O]Z4S laminate under SSSS boundary
conditions for different aspect ratio values

Natural Frequencies (rad / s)
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Figure 4.16.1 Variation of natural frequencies (rad/s) of [O / 90]245 laminate under SSSS
boundary conditions for different aspect ratio values
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1 1133.651 1220.175 956.857 1207.001 1116.332
2 1221.200 1537.657 1141.121 1536.899 1207.894
3 1365.990 1990.699 1152.725 2003.449 1358.548
4 1569.371 2302.848 1186.488 2267.983 1568.964

Table 4.17.1 Natural frequencies (rad/s) of [0/90/ +45], laminate under SSSS

boundary conditions for different aspect ratio values

Variation in Natural Frequencies of SSSS [0/90/45/-45]12s
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T
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Figure 4.17.1 Variation of natural frequencies (rad/s) of [0/90/ + 45],, laminate under
SSSS boundary conditions for different aspect ratio values
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1261.084

450.746

1 1031.467 1259.883 | 1030.906
2 1262.002 1745.135 1113.572 1742710 | 1260.386
3 1517.116 2094.766 1207.779 2093.931 | 1514.186
4 1768 484 2179.095 1213.406 2175990 | 1764321

Table 4.18.1 Natural frequencies (rad/s) of [£45],,, laminate under SSSS boundary
conditions for different aspect ratio values

Variation in Natural Frequencies SSSS [+ -45]24s laminate
with different Aspect Ratio values
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Figure 4.18.1 Variation of natural frequencies (rad/s) of [+45],,, laminate under SSSS

boundary conditions for different aspect ratio values
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Appendix-HI

The Comparison of times the MATLAB program takes for Hierarchical FEM and

Conventional FEM.

The comparison of times is done by considering a 96 ply symmetric cross-ply rectangular

laminate [0/90],,, of dimensions 0.55 by 0.55 meters with all sides fully clamped

(CCCC). The material used is NCT-301 graphite/epoxy.

In the MATLAB program for Hierarchical FEA in which the hierarchical shape functions
are determined, the symbolic variables and hence the symbolic integration were used.
The symbolic calculations consume the majority of the program execution time. So the
shape functions and their derivatives are calculated for 1 element with 36 hierarchical
shape functions in a separate sub-routine and are used in the main program. This avoids
the need to use symbolic variables and hence the symbolic integration for this particular
case. In this specific case, the time taken by Hierarchical FEM with 1 element and 36
shape functions with 4 hierarchical shape functions in each of the x and y directions is

compared with that of the conventional FEM, using a mesh of 100 elements.

Static_Analysis: Comparison is done for the bending analysis of the above laminate

subjected to 1KPa uniform surface load. The program is run five times for each method

and average of the times taken is compared as given in Table 4.19.1.
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Trial number for the | Time taken by Conventional FEM Time taken by HFEM
MATLAB program using 100 elements and 2205 using 1 element and 180
execution degrees of freedom degrees of freedom
1 18.1169 s 0.7483s
2" 17.9760s 0.6958s
3" 17.9601s 0.6459s
4" 17.9875s 0.6489s
5t 17.9608s 0.7212s
Average 18.0002s 0.6920s
Table 4.19.1 Comparison of times the MATLAB program takes for HFEM and

Conventional FEM for static analysis of [0/90],,, laminate under
CCCC boundary conditions subjected to 1KPa uniform surface load

Modal Analysis: Comparison is done for the modal analysis of the above laminate. The

program is run five times for each method and average of the times taken is compared as

given in Table 4.19.2.

Trial number for the | Time taken by Conventional FEM Time taken by HFEM
MATLAB program using 100 elements with 2205 using 1 element with 180
execution degrees of freedom degrees of freedom
1" 169.1434s 0.8067s
2nd 172.1939s 0.7676s
31 175.9138s 0.7762s
4" 174.3612s 0.7741s
5t 170.0850s 0.7784s
Average 172.3394s 0.7806s

Table 4.19.2 Comparison of times the MATLAB program takes for HFEM and
Conventional FEM for modal analysis of [0/90],,,laminate under

CCCC boundary conditions.
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