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ABSTRACT
Novel Statistical Voice Activity Detectors

Abhijeet Sangwan

In this thesis, we propose a few practical statistical voice activity detectors (VADs)
which combine the voice activity information in the short-term and long-term statis-
tics of the speech signal. Unlike most VADs, which assume that the cues to activity
lie within the frame alone, the proposed VAD schemes seek information for activity
in the current as well as the neighboring frames. Particularly, we develop primary
and contextual detectors to process the short-term and long-term information, respec-
tively. We use the perceptual Ephraim-Malah (PEM) model to develop three primary
detectors based on the Bayesian, Neyman-Pearson (NP) and competitive NP (CNP)
approaches. Moreover, upon viewing voice activity detection as a composite hypothe-
sis where the‘prior signal-to-noise ratio (SNR) forms the free parameter, we reveal that
a correlation between the prior SNR and the hypothesis exists, i.e., a high prior SNR
is more likely to be associated with ‘speech hypothesis’ than the ‘pause hypothesis’
and vice-versa, and unlike the Bayesian and NP approaches, the CNP approach alone
exploits this correlation. Further, we also develop a contextual detector which uses
the statistics of the speech burst and pause periods to render decisions. Subsequently,
we combine the contextual detector with the primary detectors to obtain the compre-
hensive VADs (CVADs), i.e., the Bayesian, NP and CNP primary detectors yield the
CVAD-Bayesian, CVAD-NP and CVAD-CNP detectors. Finally, the proposed VADs
are tested under various noises and different SNRs, using speech samples from the
SWITCHBOARD database and are compared with the adaptive multi-rate (AMR)

VADs. A number of objective and subjective evaluation parameters are used to judge

il



the results which show that (i) the CNP detector outperforms the NP and Bayesian
detectors, and compares well to the AMR VADs, (ii) the CVAD-NP and CVAD-CNP
match or outperform the AMR VADs, (ili) the contextual detection scheme gives
significant improvements with minimal computational overhead, (iv) the CVAD-NP
and CVAD-CNP exhibit good speech and pause detection capability, respectively,

and (iv) the computational complexity of the proposed VADs is very low.
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Chapter 1

Introduction

1.1 Research Motivation

ONVERSATIONS are a sequence of contiguous segments of silence and speech
C [1]. The ability to segregate the speech and silence components of a conversa-
tion is of interest in many speech applications, and a system which accomplishes this
task is known as a voice activity detector (VAD) [2].

VAD is an important part of many modern speech communication systems such
as hands-free telephony, mobile telephony, voice over internet protocol (VoIP), audio-
conferencing, echo cancellation, speech coding, VSAT (very small aperture terminals),
speech recognition and enhancement [3-7]. Voice activity detection is also an integral
part of many wireless cellular and Personal Communications Systems (PCS) stan-
dards [3]. The use of VAD in second and third generation cellular systems would
facilitate an efficient consumption of the available radio-frequency (RF) spectra [8].
Similarly, in VoIP systems the bandwidth consumption is reduced by selectively en-
coding and transmitting noisy speech frames [4,9]. VAD also provides benefits like

increasing the number of radio channels and reducing the power consumption in



portable equipments {10]. For instance, a VAD can increase the channel capacity in
CDMA systems by a factor of 2 [6,11], and increase the bandwidth utilization effi-
ciency while improving the throughput/delay performance of the data transmission
in GSM/GPRS systems with minimum impact on the service [5].

The seemingly easy task of voice activity detection becomes difficult when con-
versations occur in noisy backgrounds, where speech has to be detected in presence
of non-stationary and unpredictable real-world noises [1]. Further, the difficulty in-
creases if the signal-to-noise ratio (SNR) of the noisy speech is lowered [3,12]. There-
fore, in practice, the mobile environment of cellular telephone systems is the most
challenging scenario for voice activity detection as it is least controlled and speech
is subjected to a variety of acoustical noises and SNRs. Thus, it is no surprise that
the major focus of research in voice activity detection has been towards develop-
ing low complexity, efficient and robust VADs for communication systems. Herein,
the International Telecommunications Union (ITU) and the European Telecommu-
nication Standards Institute (ETSI) have adopted the G.729 Annex B and adaptive
multi-rate (AMR) VAD, respectively as the de facto standards for communication sys-
tems [13,14]. Futher, various reseachers have developed different strategies to tackle
the problem of voice activity detection, where the case of statistically modeled VADs
is noteworthy due to their consistent performance across various noises and diftferent
SNRs [15-21]. Moreover, the statistical VADs have also presented an alternative to
the heuristically designed traditional VAD schemes as the former are more tractable
than the later. In general, it is far easier to tune the relevant parameters of a statisti-
cal VAD and extract an optimum performance. However, the foray into statistically
modeled VAD systems has still left many unresolved issues, and the design of a low
complexity robust VAD continues to be an open research problem. In this thesis,

we address some of these key issues and attempt to develop a VAD scheme which



operates reliably at low SNR.

1.2 Scope and Structure of the Thesis

The objective of this thesis is to develop a VAD scheme which is capable of delivering
robust performance at low SNR. The proposed VAD design is inspired by the human
auditory system, where it has been observed that audition and perception are highly
complex, as they utilize the multiple layers of redundancy in speech for detection
and recognition. Moreover, humans perform the task of speech and sound perception
with relative ease in low SNR conditions, as they increasingly exploit the diverse cues
in speech available at the acoustic, linguistic and prosodic levels. On the contrary,
contemporary VAD schemes are known to perform very well at high SNR but fail
in noisy conditions. We believe that the reason behind the poor performance of the
VADs at low SNR is the inability of the VAD to differentially utilize the various cues
in the speech signal. Hence, in this thesis, we propose to combine the voice activity
cues from two disparate sources in order to make a robust speech/pause decision for
the given frame in question, i.e., we compute the short-term and long-term statistics
of the noisy speech signal to extract the cues available at acoustical and utterance
level, respectively. The short-term and long-term information is processed separately
using the primary and contextual detectors, where a likelihood ratio (LR) for voice
activity is developed for both and subsequently combined into a single likelihood ratio
test (LRT). In this manner, we use the contextual cues to provide robustness at low
SNR, when the primary cues are often corrupted and unreliable for detection.

Most statistical VADs use the Ephraim-Malah (EM) model, which assumes that
the Fourier transform coefficients of speech and noise are statistically independent

zero-mean Gaussian random variables [22]. However, this model fails to accomodate



the perceptual properties of speech. The benefit of incorporating perception has been
observed in automatic speech recognition (ASR), where the perceptual feature ‘mel
frequency cepstral coefficients’ (MFCCs) has become the industry standard. Hence,
in this thesis, we propose a perceptual EM (PEM) model for the design of the primary
detector, where a mel based feature is used instead of the Fourier transform.

The problem of voice activity detection using the PEM (or EM) model can be
viewed as a composite hypothesis [23], with the prior SNR acting as the free param-
eter. Particularly in this composite hypothesis, there exists an intuitive relationship
between the free parameter and the hypotheses, i.e., a high value of prior SNR is
more likely to indicate ‘speech hypothesis’ than ‘pause hypothesis’ and vice-versa. It
is worth mentioning that so far this crutial prior information about the free parame-
ter (prior SNR) has been ignored by the EM based VADs, which use the prior SNR
estimates solely for computing the test statistics. The use of prior information has
shown improved performance in other detection problems like ‘dipole detection by
using magnetoencephalography (MEG) and electroencephalography (EEG)’ [24], and
‘radiodense versus radiolucent tissue detection in digitized mammograms’ [25], which
motivates the use of prior information in voice activity detection as well. Hence, in
order to incorporate the partial prior information about the free parameter into the
detector, we analyze the Bayesian, Neyman-Pearson (NP) and competitive NP (CNP)
design approaches [26], and show that the CNP approach alone is capable of modeling
the prior information about the free parameter into the detector design. It is useful
to note that the CNP approach was recently proposed by Levitan and Merhav [26],
and it is yet to see an application in VAD. Hence, via the CNP approach, this thesis
pioneers the use of prior information in statistically modeled VADs which have so far
depended entirely upon posterior information in the noisy speech signal for detection.

Lastly, a contextual detector which uses the information in the long-term speech



and pause durations to render decisions is also developed. From a functional perspec-
tive, the contextual detector is similar to a hang-over scheme as it attempts to correct
the errors made by the primary detector. However, unlike contemporary hang-over
schemes which work on the individual decisions of the primary detector, the con-
textual detector aggregates the individual speech and pause decisions into speech
bursts and pause periods, respectively. Thereafter, it uses statistical models of the
speech and pause durations to build a contextual LR. Lastly, it may be noted that
the contextual and primary detectors are developed independently, which increases
their efficacy as it maintains the possibility of using the primary detector alone, and
combining the contextual scheme with other existing statistical VAD schemes.

The layout of the thesis is as follows: In Chap. 2, we discuss the background ma-
terial on voice activity detection, where we start with a primer on speech processing,
followed by a review of the contemporary VAD systems and approaches. In Chap. 3,
we develop the proposed primary VADs using the Bayesian, NP and CNP approaches,
and the PEM model. We also show the superiority of the CNP over the NP as a more
generalized design approach. Finally, we develop the contextual detector which is
subsequently combined with the primary detectors to yeild the comprehensive VADs.
In Chap. 4, we test the proposed VADs using computer simulation, and compare the
performances with AMR VADs. Further, we evaluate the results obtained based on

a number of objective and subjective parameters.



Chapter 2

Background

N this chapter, we present the background material for voice activity detection.
I The first part of the chapter deals with the fundamentals of speech signal such
as voicing, articulation, acoustics, masking, critical-band phenomenon and context,
which are relevant towards understanding the design and operation of a VAD. In
the second part of the chapter, we discuss the problem of voice activity detection in
detail and review several contemporary VADs. We also highlight the advantages and

drawbacks of the different approaches towards voice activity detection.

2.1 Fundamentals of the Speech Signal

Speech signals are time varying pressure waves that are transmitted by a speaker
and serve to communicate information [27]. The source of speech is an egressive
airstream from the lungs. The airstream passes through the oral and nasal cavity
(together known as the vocal tract) which consists of a number of organs such as
the tongue, teeth, velum etc. The organs of the oral and nasal cavity are collectively

known as the articulators of the vocal tract.
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Figure 1: Illustrating waveforms of the main phoneme categories with their properties:
(a) vowel /O/ - periodic and high energy, (b) fricative /S/ - noise-like and low energy,
(c) stop /k/ - silence and aspiration, before and after the burst, respectively, and (d)
nasal /n/ - periodic and lower energy than vowels.



2.1.1 Voicing

A very important property of all speech sounds is voicing which is associated with
the functioning of a critical articulator: vocal cords. The vocal cords are present in
the larynx (at the base of the vocal tract) and are capable of vibrating which pro-
duces periodic restrictions in the egressive airstream. In this manner, the vocal cords
produce pulses of air which periodically excite the vocal tract and the speech hence
produced is called voiced. The frequency at which the vocal cords vibrate is known
as the fundamental frequency (F0) or pitch. On the other hand, unvoiced speech is
produced when vocal cords are not vibrated, and an alternate narrow constriction in
created elsewhere in the vocal tract. The articulatory aspects of voiced and unvoiced
sounds have a clear impact on their acoustics where voiced sound signals show a pe-
riodic waveform and unvoiced sounds have a noise like appearance [27]. Figure 1 (a)
and 1 (d) show the waveforms for two voiced sounds, /O/ (in coffee) and /n/ (in
new). Similarly, Fig. 1 (b) and 1 (c) show waveforms for two unvoiced sounds, /S/
(in shoe) and /k/ (in coffee). In voice activity detection, voiced sounds like the vowels
are easy to detect owing to their high energy and prominent periodic structure. On
the other hand, the similarity of the unvoiced sounds to noise or silence presents a
challenge to most VADs, such as the energy based detectors which fail to recognize

these sounds as speech [1].

2.1.2 Phonemes

Phonemes are the smallest unit of meaningful sound in a language [27]. They are
contrastive units which are distinguishable from each other, and the combination
of a sequence of phonemes forms a word. The sound produced when a phoneme is

articulated is called a phone. The phonemes of the English language are shown in



Table 3: Phonemes of the English language
| Category | Phoneme | Example word | | Category | Phoneme | Example word |

Vowels /1/ heat Nasals /m/ mother
J1/ it /n/ no
/e/ ate /n/ ring
J€e/ bet Fricatives /t/ family
Jae/ hat /v/ very
Ju/ fool /8] thick
Jo/ oval /6/ then
/O/ fought /s/ slim
JU/ pull /z] 200
/3/ putt /S/ shoe
/a/ father /Z/ measure

Stops /p/ pan /h/ hat
Jt/ tan Glides /v/ you
/k/ can Jw/ water
/b/ big Liquids /1/ light
/d/ dig /r/ rat
/8/ go

Table 3. Phonemes are grouped into six major classes based on their articulatory
brigins and acoustical properties: vowels, nasals, glides, liquids, fricatives and stops.
The waveforms for a vowel, fricative, stop and nasal are shown in Fig. 1 (a), (b), (¢)
and (d), respectively, illustrating some peculiar properties of each phoneme classes.
Each phoneme is associated with a unique articulatory configuration and acous-
tical characteristics. At a higher level, phonemes can be separated into two distinct
groups, i.e., vowels and consonants. A pair of phonemes form a syllable and words
are formed by combining syllables. A syllable consists of a dominant vowel sound
which is either preceded or succeeded by a consonant. Figure 2 shows the hierarchial
relationship between speech and phonemes along with the intermediate stages. It also

shows the classification of phonemes into vowel and consonant groups.
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i

PHRASES / SENTENCES

i

WORDS

i
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f
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Sonorants vowels  diphthongs glides nasals liquids
Obstruents stops fricatives

Figure 2: Hierarchial relationship between phonemes and conversational speech.

2.1.3 Articulatory Phonetics

At an articulatory level, sounds are distinguished based on their manner and place
of articulation. Manner of articulation is concerned with the nature of airflow in
production of sounds: the path that the airflow takes and the obstructions it faces in

form of vocal tract constrictions [27]. Phonemes are grouped into a number of broad

categories based on the manner of articulation:

¢ Vowels and diphthongs: They employ minimum or no constriction in the vocal

tract and the airflow is largely unrestricted.

e Glides: Similar to vowels but employ slight vocal tract constrictions.

e Liquids: Also similar to vowels but employ the tongue to produce vocal tract

constrictions.

10




alveolar ridge

upper teeth

hard palate
nasal passage
soft palate

upper lips uvula

pharynx
lower lips

lower teeth jalw

tongue

vocal cords

Figure 3: Major articulators and different places of articulation in the vocal tract [27].

e Nasals: Use velum as the vocal tract constriction which results in an unob-
structed airflow through the nasal passage, and no or reduced airflow through

the oral passage.
e Stops: Employ a closure and sudden release of a vocal tract constriction.

e Fricatives: Employ narrow vowel tract constriction which creates a noise like

sound.

Vowels, diphthongs, liquids, glides and nasals employ voicing and are strong
sounds which are also known as sonorants. Stops and fricatives use the vocal tract
constriction as their primary source of excitation, are both voiced and unvoiced, and
are also known as obstruents. Sonorants are high energy sounds which possess promi-
nant waveforms and are easily detected by VADs. Obstruents are weak sounds with

low energy and are difficult to pick up in a noisy backgrounds.

11



Table 4: Places of articulation.

f Articulator | Example I Comments J
Labials /t/, [m/ the lips constrict or
the lower lip touches the upper teeth.

Dental 10/ tongue touches the upper incisor teeth.
Alveolar /n/,/s/,/t/ tongue touches the alveolar ridge.
Palatal /S/,]Z/ tongue touches the hard palate.

Velar /n/, [k/ tongue touches the soft palate.
Uvular French /R/ tongue approaches the uvula.

Pharyngeal | Arabic /ha’/. the pharynx is constricted.
Glottal /h/ the vocal cords are constricted or closed.

The place of articulation is the location of the constriction in the vocal tract and
it is critical in distinguishing between the phonemes of the same group. For instance,
among the stop obstruents /p/, /t/ and /k/, the most important distinguishing factor
is the place of articulation. Table 4 enumerates the different places of articulation
employed by phonemes, and Fig. 3 shows the location of various articulators and

places of articulation.

2.1.4 Acoustic Phonetics

Acoustic phonetics deals with the acoustical properties of phonemes and it is closely
tied to audition and perception, where it is well known that the ear extracts infor-
mation from the speech spectrum. The primary acoustic cues to phonemes is the
dynamic behavior of the formant and spectral regions of energy. Formants are the
peaks observed in the speech spectrum and are related to the position and movement
of articulators [27].

Vowels are the strongest phonemes and show strong, pronounced formants. Most
spectral cues to the vowels sounds lie in the lower frequency region of 0-3 kHz where

they are identified and distinguished based on their formant locations. Figure 4 (a)
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shows the spectrum of the vowel phoneme /O/, where the formants are highlighted.
It is also seen that there is general roll-off in the spectrum with low frequencies
possessing greater energy than the higher frequencies. In general glides, diphthongs
and liquids show acoustical features which are similar to that of vowels. Nasals have
lower energy than vowels, and this shows in their suppressed formants. Moreover,
the nasal spectrum also shows the presence of a zero in the mid-frequency region, as
shown in Fig. 4 (d). Fricatives are characterized by a concentration of energy in high
frequencies and unvoiced fricatives mimic noise-like characteristics very closely. The
noise-like spectrum of the phoneme /S/ is seen in Fig. 4 (b), where it is observed
that the spectrum is relatively flat. Unlike other categories, stops are highly transient
phonemes which are acoustically complex. For most stops, the closure portion of the
waveform looks similar to silence or a signal of very low energy [27]. Figure 4 (c)
shows the spectrum of a stop, /k/.

From Fig. 4, it is observed that the speech spectrum reflects the diversity of
the speech sounds. As different phonemes are part of a conversation, the short-term
cues to voice activity detection are also diverse, and well distributed in the speech
spectrum. This property of speech is very important as it ensures that real-world
noises, which tend to be colored, corrupt only some portions of the speech spectrum,
and several voice activity cues remain well preserved in the relatively cleaner parts
of the spectrum. In this thesis, the proposed primary detector exploits the above
property where it estimates the clean and corrupted portions of the noisy speech
spectrum, and utilizes the voice activity cues within the clean portions alone for

detection.
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2.1.5 Masking

A single tone is heard by the ear when its intensity exceeds a particular threshold.
However, audition is complex when two sounds are played out simultaneously where
one sound affects the perception of the other and this phenomenon is known as mask-
ing. The presence of a masker sound raises the threshold of perception for the maskee
sound. In other words, it is harder for a listener to hear the maskee sound in presence
of the masker sound. Moreover, it is also observed that lower frequency sounds always
tend to mask higher frequency sounds, when played out simultaneously.

Masking is an important factor which introduces a nonlinearity into speech per-
ception where the total response of any complex stimuli cannot be assumed to be
the sum total of the individual responses [27]. Moreover, masking easily explains the
difficulty humans as well as VADs face in detecting speech at low SNR, i.e., strong

background noises easily mask weak phones.

2.1.6 Critical Band Phenomenon

The critical band (CB) phenomenon is commonly used to explain masking. The CBs
are similar to bandpass filters whose responses map the behavior of the auditory
neurons in the ear, and a set of 24 critical bands are usually used to model this
behavior. The CB phenomenon suggests that among two competing sounds in a
critical band, the sound with the greater energy (masker) dominates perception, and
the energy of masker is indicative of the degree of masking.

Hence, using the CB phenomenon, the discussion on the effect of colored noise
on speech in Sec. 2.1.4 can be restated in more effective terms, i.e., while colored
noises mask the speech sounds in certain critical bands, speech is relatively clean in

the other critical bands. Hence, humans must rely on the relatively clean critical
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Figure 5: Illustrating the perceptual properties of speech: (a) the mapping between
mel frequency and linear frequency, and (b) the structure of the triangular mel filter
banks which mimic the critical bands.

bands to decipher the sound stimulus [21]. The fact that humans do a very good job
of grasping different sounds at low SNRs implies that they exploit the diversity of
acoustical cues present in the speech signal. As mentioned in Sec. 2.1.4, the proposed
primary detector is inspired by this observation as it determines the corrupted and
clean critical bands, and utilizes the speech cues within the clean critical bands to

make a decision.

2.1.7 Mel scale

The critical bands show interesting peculiarities such as unequal bandwidths and
asymmetrical filter shapes. The bandwidth of the critical bands increase with increas-

ing frequency which indicates that the perceived frequency of a stimulus is different
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Figure 6: Illustrating the MFSC magnitude spectrum of (a) vowel /O/, (b) fricative
/S/, (c) stop /k/, and (d) nasal /n/.

from the acoustical frequency. In order to accommodate this observation, a percep-
tual measure known as the mel scale is used to map the acbustical frequencies to the
perceived frequencies, as shown in Fig. 5 (a).

The mel scale has been extensively used in speech processing applications, in the
form of MFCCs. The mel frequency transformation is applied to the speech power
spectra by using a set of triangular filters, as shown in Fig. 5 (b), where the increasing
bandwidth of the triangular filter mimics the critical band structure. The mel filter
banks transform the signal from a normal frequency domain to a perceptual frequency
domain. In this thesis, we propose a new mel based speech feature for voice activity
detection termed as the mel frequency spectral coeflicients (MFSCs), where the speech
spectrum is obtained by using the discrete cosine transform (DCT) rather than the

Fourier transform. The MFSCs are obtained by projecting the DCT coeflicients onto
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the mel filter banks [21], i.e.,
F =M"DTX (1)

where F = [f1, f2, .., fu]T are the MFSCs, M is the mel filter transformation as
shown in Fig. fig:melscale (b), D is the DCT transform and X is a frame of the
input noisy speech signal. Here, the matrix product DM represents the perceptual
frequency transformation. Fig. 6 shows the MFSC magnitude spectra of different

speech sounds.

2.1.8 Context and Redundancy in Speech

Speech is a highly redundant signal where a wide variety of cues are available for
humans to detect and recognize different speech sounds. For instance, speech can
be detected and deciphered using coarticulation at acoustical level, lexical knowledge
at word level, grammar at sentential level along with general knowledge, knowledge
of the speaker and the conversation context. The high redundancy in speech implies
that voice activity detection information is simultaneously available in the short-term
and long-term statistics of the speech signal.

In this thesis, we are particularly interested in detecting the voice activity cues
present at the utterance level, where it is well known that speech and pause periods
are sustained over short durations of time. It may be useful to note that the term
‘pause’ refers to a period of non-speech in the conversation, and it may be silence
or background noise in different circumstances. Typically, pauses in read speech are
1500ms, 530ms and 130 ms between paragraphs, sentences and phrases, respectively
[28]. Pauses tend to be the longest and most frequent in conversations where the
typical speech burst and pause last 300ms and 157ms, respectively [29] [30]. Hence,

the speech and pause durations in a conversation offer critical voice activity cues
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which could be used along with the cues in the short-term statistics to provide a

robust VAD.

2.2 Existing Voice Activity Detectors

Numerous design strategies for voice activity detection exist in contemporary liter-
ature. These design approaches can be broadly classified into two groups, with one
group comprising of the heuristically designed traditional VAD schemes, and the other
representing the new breed of statistically modeled VAD systems. In this section, we
first give a brief description of the general structure and operation of a VAD, and

then review several VADs belonging to each of the above mentioned groups.

2.2.1 General VAD Structure and Operation

Voice activity detectors detect speech bursts and pauses in a conversation using some
form of a speech pattern classification. At first, the speech signal is sliced into con-
tiguous frames of an appropriate length, i.e., generally, a frame length of 10 ms to
20 ms is chosen in order to adhere to the real-time constraints of communication
systems. Now, each frame is analysed for voice activity and subsequently classified as
speech or pause. Typically, the decision is made by associating a real-valued parame-
ter with each frame, and comparing it to a threshold [1]. In Fig. 7 (a), the operation
of a simple energy based VAD is shown. The VAD divides the speech signal into
frames and estimates a global noise energy threshold using pause only periods. Then,
the decisions are taken by comparing the average energy of each speech frame with
the noise threshold where speech or pause is declared if the average frame energy is

greater or lesser than the threshold, respectively. In general, the above description

19



(8

Speech Bursts

A instantaneous energy
average energy
energy
noise
.. A threshold
1
i
time
frame 1 frame 2 frame 3 frame 4 frame 5
speech pause pause speech pause
(b)
speech or pause f
core VAD algorithm
frame frame frame n- )
estimator
n+1 n 1
decision 7 A

Figure 7: (a) Operation of a simple energy based VAD. (b) Three stage VAD system
consisting of a preprocessing, core VAD algorithm and post-processing stage.

20



of the VAD operation is universal as most VADs use the parameter-threshold com-
parison for decision making and pause only periods for noise parameters estimation.
However, in the evolution of VADs many parameters other than the signal energy
such as the zero crossing rate (ZCR), linear prediction coefficients (LPC) etc. have
been successfully used for detection.

As illustrated in Fig. 7 (b), most modern VADs follow a three stage acrhitec-
ture which comprises of a core VAD algorithm sandwiched between a preprocessing
and post-processing layer. The purpose of the preprocessing stage is to enhance the
efficacy of the signal for detection by performing certain functions like framing, win-
dowing, frequency-domain transformations etc. Similarly, the post-processing stage
is generally used to reasses and correct the mistakes in the decisions of the core VAD
algorithm by employing hang-over schemes. The pre and post-processors work to-
wards boosting the performance of the core VAD algorithm which continues to be the

central decision maker of the VAD.

2.2.2 VADs based on General Speech Features

Short-term energy is among the most commonly used feature in voice activity de-
tection, where both the time and frequency domains have been used for the energy
computation [1,31]. Generally, the frequency domain calculations give better perfor-
mance over the time domain at the cost of additional computational complexity [32].
Most frequency domain algorithms divide the spectrum into sub-bands and calculate
the energy separately for each sub-band. Thereafter, unlike the time domain algo-
rithms which make a single VAD decision after the energy computation, the frequency
domain algorithms make a series of intermediate decisions for each sub-band and fi-
nally combine the individual decisions to make a final VAD decision. For instance,

Marzinzik and Kollmeier developed a highly complex energy based algorithm which
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uses frequency band specific energies to track the power envelope dynamics of the
speech signal, and make the VAD decisions [31]. Hence, in many ways the frequency
domain algorithms exploit the CB phenomenon of audition which was discussed in
Sec. 2.1.6. In general, energy based VADs are low complexity algorithms and easy to
implement. On the other hand, most algorithms use heuristics to divide the spectra
into sub-bands and to set up thresholds. Consequently, energy based VADs are prone
to miss-detect weak, low energy phonemes.

Another popular feature used by many VADs is the zero crossings rate (ZCR) [1,2].
The ZCR based VADs exploit a well known fact that the rate of zero crossings for a
speech signal falls within an established range. However, background noises may share
the ZCR range of the speech signal and this is the major drawback of the ZCR VADs.
The cepstrum also has been used as a feature by VAD algorithms {9, 33]. Cepstral
VADs generally resort to a speech pattern classification by building templates for
‘speech’ and ‘pause’, which are later used for classification. Some other commonly
used features are the linear predictive coefficients (LPC) [31], autocorrelation function
[9], periodicity measure [34] and pitch [35]. It is also common among VAD developers
to combine some of the aforementioned features to form a comprehensive or fusion
systems [2,32]. Comprehensive or fusion VADs rely on the paradigmm that increasing
the dimensionality of a feature leads to an improved performance of the detector.

Perhaps the most popular VADs to use general speech properties are the G.729
VAD and AMR VADs. The G.729 annex B uses a combination of line spectral
frequencies (LSF), full band energy, low band energy and ZCR for detection [13].
Similarly, the AMR VAD algorithm 1 adopts a frequency band energy computation
approach, where the SNR is estimated in as many as nine bands. The decision is
then taken by comparing the SNR estimates with thresholds where the thresholds
are adapted with noise. The AMR VAD algorithm 2 divides the speech frame into
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two sub-frames and computes the channel power, voice metrics, and noise power
for each sub-frame. The sub-frame is judged as speech, if the measured parameters
exceed certain adaptable thresholds, and the overall frame is declared speech, if at
least one sub-frame is speech [36].

In general, VAD systems based on speech properties tend to be heuristic in de-
velopment and inconsistent in performance [16]. Particularly, these schemes fails in
mobile environments like car, busy streets and other noisy public places, especially
when the SNR is low. This is largely because the design technique for the tradi-
tional VADs makes it harder to tune the relevant VAD parameters in order to adapt
to the non-stationarity of the speech and noise processes, which results in a under-
performing algorithm [16]. On the other hand, the operation of the traditional VADs

is straight-forward and intuitive, which reflects in their popularity.

2.2.3 Statistical VADs

Recently, there has been a growing interest in statistically modeled VAD systems.
Statistical VADs are more tractable than the traditional VADs as they are pack-
aged with tunable parameters which can be conveniently varied and set for desired
performance. Moreover, the design technique of statistical VADs ensures a consis-
tent performance across a wide variety of noises and SNRs. Most statistical VADs
adopt the model proposed by Ephraim and Malah (EM, [22]) which assumes that the
Fourier transform coefficients of speech and noise are statistically indepedent zero-
mean Gaussian random variables [16,21,37]. Some authors have proposed deviations
from the traditional EM model such as Chang and Kim, who use a Laplacian distribu-
tion {18], and Gazor and Zhang, who use a Laplacian-Gaussian model [19]. Further,
some unconventional VADs such as those based on higher order statistics (HOS) in

the LPC residual domain and the statistical chi-square test have also been proposed
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recently [17,20].

Among the first VADs to use the EM model was the VAD proposed by Sohn
and Sung, which uses the maximum likelihood criterion for estimating the unknown
parameters [38]. This VAD was later refined by Sohn et. al., who devised a decision
directed (DD) technique for the estimation of the unknown parameters [15]. Another
improvement over the Sohn VAD was proposed by Cho and Kondoz, who employed
a likelihood ratio smoothening technique which resulted in better detection perfor-
mance [37]. More recently, an EM based VAD which uses a special SNR measure
and threshold adaption technique was proposed by Davis and Nordholm [16]. Sim-
ilarly, Ramirez et. al. have also proposed a EM based multiple observation VAD
scheme which is claimed to have reduced the variance of the LRT and improved the
performance of the detector. The above-mentioned EM VADs have shown good per-
formance in comparison to the G.729 B and AMR VADs across various SNRs and
background noises. Further, the other significant advantage of the EM VADs is their
low complexity and simplicity in implementation where the EM VADs have signifi-
cantly lower number of parameters to tune when compared to the G.729 B or AMR
VAD. However, the EM VADs have failed to address some of the issues as listed

below:

e So far, EM VADs have not explored the usage of speech features based on
perceptual properties such as the MFCCs. The use of perceptual features has
shown benefits in parallel fields such as speech recognition which motivates their

use in VADs as well.

e The Bayesian form of the LRT has been the popular choice of implementation
for the EM VADs. However, setting an appropriate value for the Bayesian

threshold is difficult and not intuitive. This is because the prior probabilities
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of the speech and pause hypothesis are usually unknown and certainly not
universal, i.e., they change from one conversation to another. This makes the

tuning of the EM VADs unintuitive and cumbersome.

e The binary hypothesis posed by the EM model can be viewed as a composite
hypothesis testing problem where the prior SNR term acts as the free parameter.
The EM VADs estimate the value of the prior SNR from the data itself, and
use this value in the detector. However, all VADs ignore the prior information
that is available for the prior SNR in terms of a general relationship, i.e., a high
value of prior SNR is more likely to be associated with ‘speech hypothesis’ than

‘pause hypothesis’, and vice-versa.
In this thesis, we adopt the following strategy to tackle the above-mentioned issues:

e In order to incorporate the perceptual properties of speech, we propose a new
variant of the mel based speech features known as the MFSC, and explore its

use in voice activity detection.

e We analyze the recently proposed competitive Neyman-Pearson (CNP) ap-
proach towards detector design and show that unlike the Bayesian or NP ap-
proach, it is adept at modeling prior information into the detector. Further,
we develop Bayesian, NP and CNP detectors, and compare their performances

theoretically and using computer simulation.

e We avoid the difficulty of tuning the Bayesian detector by using the NP and

CNP detectors, where the tunable parameters are probability terms.
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2.2.4 Preprocessing

All VADs use a preprocessing stage which is generally used to perform primitive tasks
such as dividing the signal into frames with or without overlapping, windowing the
signal etc. The choice of the frame duration is largely dependent upon the application,
where real-time applications like the VolP systems use a short frame duration of
10ms or 20 ms and applications which do not have real-time constraints may use
longer frame lengths {1]. Also, depending on the VAD algorithm being used, the
preprocessing stage may transform the incoming time signal into the Fourier domain,
estimate the periodogram [16] or compute the cepstrum [33]. The preprocessor may
also be used to perform more complex functions such as in the VAD developed by
Tucker where the speech signal is preprocessed to detect and remove any kind of

periodic interference [34].

2.2.5 Post-processing

The post-processing stage generally employs a decision corrective stage which at-
tempts to boost the VAD performance. The primary function of the post-processing
schemes is to reduce the risk of misdetecting a low energy portion of speech at the
beginning or end of an utterance as pause [16]. The post-processing schemes achieve
lower misses by delaying the transitions of decisions from speech to pause and readily
transiting from a pause to speech decision.

Among the common systems employed for post-processing are the binary Markov
models which implement speech and pause as different states, and give soft voice
activity decisions in terms of probabilities [19]. A similar scheme based on the first

order Markov process was suggested by Sohn et. al. [15] in their statistical VAD
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scheme. The hang over scheme by Davis and Nordholm is another interesting imple-
mentation of a post-processor where a state machine is traversed as per the decisions
made by the VAD algorithm and the position on the state machine gives the final
VAD decision [16].

Most post-processing schemes implicitly model the duration of speech and pause.
However, Markov model based post-processors assume that speech/pause durations
are geometrically distributed which is not a good model of duration. On the other
hand, a recent study suggests that the Poisson density is a more accurate repre-
sentation of the distribution of speech duration [39]. In this thesis, we attempt to
develop a post-processor in form of a contextual detector which processes the dura-
tional information of speech and pause to render decisions. Unlike the conventional
post-processors which process the durational information on a frame by frame basis,
the contextual detector processes the durational information in a group of similar de-
cisions which we call as the same state periods (SSPs). Hence, the contextual detector
treats the entire speech burst or pause duration as one entity, and computes the like-
lihood of activity of the current frame based on the past SSP durations. Moreover,
the handling of frame decisions at a SSP level gives the added advantage of enforcing

well known facts that speech and pause durations have lower bounds [27].
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Chapter 3

Proposed Voice Activity Detectors

VAD scheme segments the input signal into contiguous frames and then classi-

A fies each frame as active or inactive. Most VAD algorithms seek voice activity
cues within the frame in question itself - primary cue, i.e., the algorithms compute
some form of short term statistics for detection. However, many speech events such
- as the acoustic similarity of an aspiration in a stop to pause and fricatives to noise,
present ambiguous primary cues and lead to misdetections. Naturally, complete de-
pendency on primary cues results in poor detection and obviates the need for a scheme
which accommodates the contextual speech cues or long term statistics into the final
VAD decision. This motivates the design of our statistical VAD scheme which de-
tects and combines the voice activity information present in the short-term and the
long-term statistics of the speech signal using the primary and contextual detectors.
In this chapter, we propose three primary detectors based on the PEM model,
using the Bayesian, Neyman-Pearson (NP) and competitive NP (CNP) design ap-
proaches. Further, we analyze and compare the proposed primary detectors, and
reveal the following new findings: (i) the sufficient statistics (SS) of the proposed

primary detectors is a speech energy estimator that is a function of the prior SNR of
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the noisy speech signal, (ii) the PEM model for voice activity detection can be viewed
as a composite hypothesis testing problem with the prior SNR acting as the free pa-
rameter, (iii) the NP approach assumes that the hypothesis and the free parameter
are uncorrelated, whereas the CNP approach exploits the correlation between the
hypothesis and the free parameter, and models their interdependency into the detec-
tor design. For the voice activity detection problem, since an intuitive relationship
between the hypothesis and the prior SNR (free parameter) exists, we assert that
the CNP detector should perform better than the NP as it makes use of the partial
prior information about the prior SNR. This assertion is confirmed by our simulation
results which shows that the performance of the CNP detector is consistently better
than that of the NP and Bayesian detectors at low SNRs.

Next, we propose a contextual detector which processes the long-term information
in the speech signal using the durational information in speech bursts and pause
periods. Unlike, traditional hang-over schemes, the contextual detector does not
process the individual decisions of the primary detector, but groups the speech and
pause decisions to form speech bursts and pause periods, respectively. Subsequently,
the statistics of the speech bursts and pause periods are used to estimate the voice
activity of a frame in the form of a LR. Finally, the contextual and primary LRs
are combined to obtain the comprehensive VAD (CVAD) scheme which gives the
final VAD decision. Particularly, the combination of the Bayesian, NP and CNP
primary detectors with the contextual detector gives the CVAD-Bayesian, CVAD-NP
and CVAD-CNP schemes, respectively.

The organization of this chapter is as follows: In Sec. 3.1, we discuss the ar-
chitecture of the proposed CVAD scheme using a block diagram. In Sec. 3.2, we
develop a Bayesian detector using the proposed PEM model, and show that the SS

acts as a speech energy estimator. We also derive some expressions for the conditional
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statistics of the SS based on which the NP and CNP detectors are developed in the
later sections. In Sec. 3.3, we analyze the CNP and NP approaches and show the
superiority of the CNP over the NP as a more generalized approach. In Sec. 3.4, we
develop the NP and CNP detectors, and carry out a theoretical comparison between
the proposed VADs in terms of the probabilities of false-alarm and miss-detection.
Finally, in Sec. 3.5, we develop the contextual detection scheme and in Sec. 3.6, we

combine the primary detectors with the contextual detector to form the CVADs.

3.1 Proposed VAD Scheme

The proposed CVAD scheme is illustrated in Fig. 8, where the functional relationship
between the primary and contextual detector is described diagrammatically. The
CVAD scheme first divides the input signal into frames Fj, where the frame Fj
precedes F; in time. Next, the primary detector gives a decision D; for each frame F;,
and the CVAD system stores the decisions D; along with the primary LR, AP(D;).
Note that the decision D; for the frame F; and its primary likelihood AP (D;) are based
on the short-term statistics of the speech signal alone. Further, the VAD system forms
a decision history consisting of the most recent m past decisions, D;.1, Diy2, ..., Ditm
for each decision D; where the decision history directly translates into speech and
pause durational information. Figure 8 shows the decision history of Dy only. Now,
the contextual detector processes the decision history of the frame F; and generates
a contextual likelihood A°(D;) of voice activity. Finally, the CVAD scheme combines
the primary AP(D;) and contextual likelihoods A®(D;) to obtain the overall likelihood
A(D;) of voice activity. The final decision F'D; for the frame F; is taken by comparing
the overall likelihood A(D;) with a threshold.
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Figure 8: Block diagram illustrating the operation of the proposed CVAD scheme.

31



3.2 Bayesian Detector using PEM Model

The VAD problem can be modeled as a binary hypothesis, i.e.,

Hy : pause,

H; : speech, (2)

where the input signal is first segmented into contiguous frames and then each frame
is assigned to H; or Hy, if it is detected as speech or pause, respectively. In order to
develop a Bayesian detector, we use the PEM model, which assumes that MFSCs are
mutually statistically independent and zero-mean Gaussian random variables [21].

Let S and N denote respectively, one frame of speech and that of noise, i.e.,

S = [81,82,...,51\/1], (3)

N = [nl,ng,...,nM], (4)

where s; and n; are the i** speech and noise MFSCs, respectively. Using the PEM
model, the binary hypothesis problem in (2) can be rewritten in terms of the MFSCs

of speech S and noise N as:

H() : F:N,

H1 : F = S -+ N, (5)
where F is the observation frame in the M-dimensional space DF as given by:

F = [fi,fo s fml. (6)
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Then, a likelihood ratio test (LRT) can be obtained using the definition of the likeli-

hood function and the Gaussian probability density function as [23]:

Fx (Ko 'K ) xFT g 1 1K,
9 < Hp In(n) — 3 X In I*I—{‘f—‘, (7)

where 7 is the Bayesian threshold, |.| the determinant, and K¢ and K,, are the covari-
ance matrix of the noisy speech (S + IN) and that of noise (N). The above equation
represents a Bayesian detector where the left hand side (LHS) is the SS denoted by
[, and the right hand side (RHS) is the overall threshold of the test which is denoted
by 7.

In the following subsections, we show a new interpretation for the SS in (7) as
a speech energy estimator where the value of the SS can be computed using the
estimates of the prior SNR. Further, we establish that if the binary hypothesis in
(5) is treated as a composite hypothesis problem {23}, then the prior SNR estimates
become free parameters of the hypothesis which is an important result for the design
of the CNP detector. Lastly, we derive a few expressions pertaining to the SS which

will be used later to design the CNP and NP detectors in Sec. 3.4.

3.2.1 Sufficient Statistics as a Speech Energy Estimator

In order to show that the SS in (7) is a speech energy estimator, we first apply a

nonsingular transform matrix Q to simultaneously diagonalize K,, and Kg, i.e.,

Q'K.Q = [ (8)
Q'KiQ = A, (9)
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where 1 is the identity matrix, and A is a diagonal matrix whose i* diagonal element

is given by \;, i.e.,

MO . 0
0 X ... O

A= (10)
0 0 .. Ay

It is well known that such a transform Q exists [40], and the technique to obtain Q
is given in Appendix A. Now, let Z = [z, 29, ..., 2u] be the transformed observation

in space DZ, namely:

Z = FQ, (11)
or

F = zQ" (12)

Using (12) into the LHS of (7), we get an equivalent expression for the SS as:

l 7 % (Q—lKn~1(Q—1)T _ Q—le—l(Q—l)T) % ZT

= 5 (13)

From (8) and (9), we get:
QK. QY = 1, (14)
QK QT = AL (15)
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and using these two identities, (13) can be simplified as,

! T
| = Z x (1 ./2\ )xZ, (16)

St ()

Dot —

where z; is the it* element of the transformed observation vector Z. In order to relate
the SS with the prior SNR of the noisy speech, we use the definitions of the prior and
posterior SNRs given by Ephraim and Malah [22], i.e., the i** posterior SNR, (7F) is

the ratio of the ¢** noisy speech variance (¢%) to the 7" noise variance (¢7;),

2
F_ 9
V= o (18)

while the i prior SNR (¢F) is defined by:

G =7 -1 (19)
We now extend the above definitions of the prior and posterior SNR to D? as:

where vZ and (Z are the counterparts of v and (¥, i.e., the posterior and prior SNR

in DZ. Using (20) and (21), the SS in (17) can be rewritten as:

M

L= () 22)
24 R

i=1

Now, we show that the SS is actually a speech energy estimator. Note that if the
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speech component in the signal dominates along the i** vector, namely, the i** prior

SNR. (¢?) is high, then,

¢F>>1, (23)
or
¢%
@it (24)

implying that the instantaneous signal energy (2?) along the it" vector is fully passed

by the detector. On the other hand, if noise is more dominant along the i** vector,

then

(¢ —0, (25)
or

¢?

implying that the corresponding instantaneous energy component is removed from
the detector. In general, the SS determines the proportion of speech along the 4"
vector on the basis of the estimate of the it* prior SNR (% and weighs the signal
energy of the noisy speech appropriately to obtain an estimate of the speech energy
along the i* dimension. Hence, the role of the SS as a speech energy estimator is
justified.

The above result is very interesting as it gives a common platform to compare the
PEM based VAD with the traditional energy based VAD schemes. 1t is clear from the
above analysis that the PEM VAD attempts to divide the signal subspace into speech
and noise subspaces. Subsequently, it relies heavily on the speech subspace for detec-
tion while downplaying the role of the noise subspace. This is similar in function to
the traditional frequency-domain based energy VADs which split the speech spectrum

into sub-bands. However, unlike the traditional scheme which employs heuristics to
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divide the spectra, the PEM VAD learns the subspaces from the data itself. Hence,
the PEM VAD is adaptable to different noises and SNRs, obviating its superiority

over the traditional scheme.

3.2.2 Properties of the Sufficient Statistics

In this subsection, we derive certain conditional statistics of the SS which are nec-
essary in the development and analysis of the proposed NP and CNP detectors.
Particularly, we derive the conditional means, E[l|Hy] and E{l|H,], and conditional
variance, Var[l|Hp| of the SS which will be used later in computing the probability
of false-alarm (Py) and that of miss-detection (F,,) for deriving the NP detector as
well as determining the theoretical performance of the proposed detectors. We also

deduce a formula for the normalized distance term d defined in {23] as:

\/(E”Hl El|Ho))? (27)

Var(l|Ho| ’

which will be used in the computation of the CNP threshold. In order to derive the

above mentioned statistical quantities, we first present the following theorem:

Theorem 3.2.1. Let the M-dimensional random vector ¥ be drawn from one of two
different zero-mean Gaussian distributions, where Hy and H, are the events that F s

chosen from the first and the second Gaussian distributions, respectively, i.e.,

Hy:F ~ N(0,Ky), (28)

Hi:F ~ N(0,Kp). (29)

37



Then the sufficient statistics,

CFx (Ky ' =K ) x FT

l 5 (30)
has the following properties:
(i) The conditional mean of | given Hy, E[l|Hy) is given by:
1A ¢F
Efl|Hy] = 5;(#>- (31)

(ii) The conditional mean of | given Hy, E[l|H,] is given by:
ElilH) = Z ¢ (32)
(11t) The conditional variance of l given Hy, Var[l|Hp| is given by:

Varll|Hy) = Z(g (33)
i=1 1

(iv) The value of the statistical quantity d defined in (27) is given by:

F\2
(L, 2

(34)
2 Zi:l(:,?)

where v¥ and (¥ are the posterior and prior SNR as defined in (18) and (19), respec-

tively.

The proof for Theorem 3.2.1 is given in Appendix B. The distance measure d given

by (27) is indicative of the separability of the conditional probability distributions,
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p(l|Hy) and p({|H,), in terms of the first and second order conditional statistics of
the SS, and depends purely on the value of the prior SNRs as seen from (34). As
expected, the higher the prior SNR, the larger the value of d, and the easier the task

of voice activity detection is.

3.2.3 Behavior of the Bayesian Threshold v

The behavior of the threshold v with changing prior SNR needs to be established in
order to comprehend the LRT completely. Using (8), (9), (20) and (21) the threshold

v in (7) can be simplified as:

v = In(n)+ %ln %, (35)

= In(n) + %ln ‘TI%I_" (36)
1o, .2

= In(n)+5 > In(¢F+1), (37)

=1

Now, it is observed that like the SS, the threshold term too is a function of the prior
SNR which clearly shows that the prior SNR is the free parameter of the composite

hypothesis. The threshold v in (37) consists of two terms with distinct behaviors,

ie.,
L M
v = lnnp + —Zln((iz—i—l).
~la ) (33)
fixed variable

where the variable term of the threshold - consists of a contribution from each of the
M dimensions. Using (31) and (32), it is easy to show that the variable component

of the threshold along each dimension is always bounded by the conditional means of
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SS [see Appendix C for details}, i.e.,
LM
zZ
E[l|Ho] < 2 ;111(41 + 1) < E[l|Hy). (39)

Now, it is easy to see that fixed part In(n) of v acts as a bias term by pushing
the threshold towards one hypothesis and biasing the detector in favor of the other
hypothesis. However, it is useful to note that for a given 7, v cannot selectively
bias the detector towards different hypothesis for different values of the prior SNR.
As shown later, this is the main reason for the inability of the Bayesian detector to

incorporate prior information about the prior SNR.

- 3.3 On the Neyman-Pearson and the Competitive
Neyman-Pearson Approaches

In this section, we analyze the CNP and NP approaches [23,26], and show that unlike
the NP, the CNP approach exploits the prior information about the free parameter
(the prior SNR) of the composite hypothesis in the detector design, making the CNP
approach a very useful design technique for voice activity detectors. The partial prior
information about the prior SNR (the free parameter) can be interpreted as a general
relation between the prior SNR and the hypothesis, i.e., higher values of prior SNR
are more likely to be associated with H; than Hy and vice-versa. This observation
can be justified through the following analysis.

We first briefly review the composite hypothesis problem, and the NP and CNP

approaches. Define a prior SNR vector ¢ as:

C = [Cl?CQ?“'CM] € ‘Ili~ (40)
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where W¥; is the parameter set consisting of prior SNR values generated when H; is
true. Let ¥ = WoU W, be the parameter space. It is interesting to note that for voice
activity detection, an exclusive partition of the space ¥ into ¥¢ and ¥, is in general
not obtainable, and it is reasonable to assume a complete overlap between ¥g and ¥;.
This observation is important as it renders the generalized LRT (GLRT) approach
towards hypothesis testing meaningless in voice activity detection [26]. The overlap
between ¥y and ¥, is mainly a result of the non-stationarity of the underlying speech
and noise processes.

The two types of errors in binary hypothesis testing are measured by P and

Py, [23], ie.,

Pi(y) & p(F € Hh|H,),

- / " (Ul Ho)dl, (41)
Pn(y) & p(F € Ho|Hy),
= /j p(llHl)dl, (42)

where p(l|Hy) and p(l{H;) are the conditional pdfs of the SS. The total error proba-

bility P, is given as a combination of Py and P, i.e.,
P(y) & P(Ho)Ps(v) + P(H1) Pru(y)- (43)

Now, the NP approach determines a y which minimizes P,, while constraining P; by

a constant upper bound, i.e.,

min P, (v),
B

Pr(y) <A, (44)
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where ) is a constant. On the other hand, the competitive Neyman-Pearson (CNP)
approach also minimizes P, but constrains P with a variable upper bound which is

a function of ¢ [26], i.e.,

min Pn(7),
i

Py(7) < AQ). (45)

Now, we analyze the NP and CNP approaches by expressing the prior probabilities
P(H;) in terms of the prior SNR as:

P(H,) = / PUHIQ)p(Q)dC,

¥

where p(() is the pdf of . Using the Bayes rule, the above expression can be rewritten
as:

P() = [ p(GIH)PH)G

Using the above expression along with (41) and (42), into (43), we get:

RO) = X [ scmpaHdc [ s,

1=0,1

= S| [ it Qe (46)

1=0,1

where Iy = {l : 00 > 1 > v}, Lo = {l : —00 < | < v}.Now, if the probability
law governing the generation of ¢ from the source, p({|H;), is completely known,
then the composite hypothesis problem can be easily reduced to a simple hypothesis
problem. However, in voice activity detection p(¢|H;) is not explicitly known and
a straightforward design for hypothesis testing is not possible as the parameter

cannot be removed via the integration in (46). Alternatively, one could work with a
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conditional error term which can be easily obtained from (46), i.e.,

_ p(¢)
B(y) = _01 // p(llHi, O)p CIH)()dCdl

B Hi)
= [ o [ s, of e a(c)dc

'101

where the term inside the parenthesis {.} represents the conditional error term P.(7|(),

i.e.,

P(v[() = ) P(H i )
i=0,1
C‘H ) / p(l|Hy, C)dl
(H1>p<<|H1) mmo P(H)p(C|Ho) Py (]C)
(0 ) '

In the RHS of the above expression, the first and second terms represent the con-
tributions to the overall error due to the conditional miss-detection and false-alarm,
respectively. If we minimize the error due to the first error term while constraining

the second error term by a constant value X, we get:

P(Hl)P(qu)Pm(’YK)

" - “n
P(Ho)p(¢IHo) Pr (20
p(¢) =A “8)

Clearly, the terms in (47) which do not contain vy can be removed from the minimiza-

tion. Further, the inequality (48) can be rewritten as:

Ap(¢)

P00 < Bmypicin)

(49)
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Thus, the constrained minimization problem described in (47) and (48) can be rewrit-

ten in a simplified form as:

H}yin Pm(’YK)» (50)
, p(§)
Pr(7|€) < A PAED (51)

where X = P—(%ES is a constant. Now, if ( and H; are uncorrelated, then p((|Ho) = p(¢)

and the RHS of (51) reduces to X’ only, yielding a constraint condition similar to the
NP approach given in (44). On the other hand, if there is a correlation between
¢ and H;, then the RHS of (51) becomes a function of {, i.e., N'({), resulting in a
constraint similar to the CNP approach given in (45). Hence, it is easily seen that
the CNP approach uses the correlation between the parameter and the hypothesis by
setting an upper bound for P as a function of the parameter itself. The ability of the
CNP approach to model the prior information about the free parameter (whenever
the information exists) into the detector design must lead to a better performance
over the NP detector.

Just as Py tunes the NP detector, it can be seen from (45) that the functional
relationship between Py and ( is the tuning parameter of the CNP detector. In other
words, different functional relationships between Py and ( give different operating
points for the CNP detector. Therefore, implementing the CNP detector via NP is
cumbersome as all the different functional relationships need to be determined and
stored. This difficulty can be avoided by following an alternative strategy to design

the CNP detector as described below. Let us define a probability term P, related to

Pf as:

o

RO 2 [ bl

v
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y o0
- /p(z|H0,<)dl+/ p(l|Ho, ¢)dl,
¥ v

= [ b, O+ P(310) (52)

Y

In the above expression, if P, is kept constant, then P; < P, V( when 7' < v, and
Py > P, V(¢ where 7' > . Hence, a designer can appropriately vary Py by suitably
adjusting the distance between ' and «y. If one maintains 7' < vy, then Py is always
bounded above and similarly, one can set lower bounds for P; (or equivalently upper
bounds on P,,) by maintaining v > . Hence, using this strategy the design of a
CNP detector boils down to determining an appropriate curve ', where P, becomes
the only tunable parameter of the detector. It is worth mentioning that the results
developed in this section are not tied to voice activity detection but can be applied

to the general composite hypothesis testing problem.

3.4 NP and CNP Detectors

We would first like to investigate the probability of false-alarm, Py for the proposed
Bayesian detector in (7), based on which the new NP and CNP detectors are devel-
oped. We also derive an expression for P, and then use both Pf and P, to evaluate

the theoretical performance of the Bayesian, NP and CNP detectors.

3.4.1 Probability of False-Alarm P

In order to obtain Py, we need to first determine the conditional probability density

p(l{|Ho) which is presented in the following theorem:

Theorem 3.4.1. Let | be the SS given by (17). If z; is a normal random variable ¥
t=1,2,..., M, then the pdf of | is Gaussian for a large M.
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Proof. The random variable [ given by (17) can be rewritten as:

_1 Lo 1§, o
l—QZ(l Ai)zi—Q;ﬂ,zi (53)

where k; = 1 — /\% is the i‘" weight factor. As z; is normal, the distribution of 2? is chi-
square (x?) with one degree of freedom. Further, since 21, 23, ..., 2, are independent
and identically distributed (i.i.d), the variables 22, 22, ..., 22 are i.i.d too. Now, [ is a

2. Therefore, using the central limit

weighted sum of many i.i.d random variables z
theorem, | can be expected to approach the Gaussian distribution provided that M

is sufficiently large. O

Using the Theorem 3.4.1, the conditional probability of SS, p({|Hp), is Gaussian
for a large frame size M since the observations z; are normal given the hypothesis
Hy. Note that, the mean (E[l{|Ho)) and variance (Var|[l|Hy)]) are given by (31) and

(33), respectively. Therefore, the expression for Ps in (41) can be written as:

B WY S (B 15
Br= \/——_—QWVar[llHo][, P variiE,)
. Bl
= 1 f( Var[l|Ho])' (54)

where er f(.) is the standard error function defined as:

erf(q;) 2 : M (55)

o V2
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3.4.2 Neyman-Pearson Detector

Using (54), the NP threshold yyp can be determined by constraining Py = « and

solving for :

v = /Var{l|Holerf (1 — @) + E[l|Ho). (56)

The RHS of (56) represents yyp where er f7(.) is the inverse of the standard error

function. The NP detector can be easily developed by substituting (56) into (7), i.e.,

H
I 2y e (57)

where Py or « is the tunable parameter of the detector.

3.4.3 Competitive Neyman-Pearson Detector

We now develop the CNP detector using the method described in Sec. 3.3 for which

the following expression is proposed for «/,

Inn d

Y = VarmHO](:S'TE)—x_d + ‘2‘) + E{l|Hol, (58)

where d is the normalized distance given by (34) and S(C) is given by:

= 2
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It is interesting to note that S({) is similar to the sigmoid function where the param-

eter ¢ represents the average prior SNR as given by:

1
Va F
(= ”?:1@ : (60)

The expression for the curve 4/ in (58) consists of two distinct terms which impact

the curve in different ways. These terms are obtained by simplifying (58):

y o STl VI

S(¢) x d B N g by (61)

-~

bias term optimizing term

The optimizing term in (61) ensures that the curve «' is equidistant from the condi-
tional likelihoods E[l|H,] and E[l|H;]. This can be shown very easily by simplifying

the expression for the optimizing term using the definition of d in (27):

Verlltl <, ppyy — (EMIL_BUHD YVarlif] | gy )

2 Var|l|Ho) 2
_ (EIH] - Ell|H])
] (Bl Hy) ; [ Ho]) T >
Ell|H| + Ell|Hy
5 (64)

where the term in (64) lies exactly in between the two mean-likelihoods E[l| Ho} and
E[l|H,), irrespective of the value of the prior SNR. The first term in (61) is the biasing
term which controls the bias of the detector towards the hypothesis.

Using (58) into (52) and setting P, = a, we get,

o = 1—erf(——1n—(-?L+g

S wd 2 (%)
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which is equivalent to:

In(n) = d x SQ)(erf (1~ 0) ~ 3).

By subtracting the term %ln Kol from both sides of the above equation, we get:

K¢l

Inr) - gIn g = dx S@ers 1 - a) - ) - gt

that is,

Y = YCNP-

Now, the CNP detector is given by:

[ 2
<H, YCNP-

Note that there is only one tunable parameter P, (or a) of the detector.

3.4.4 Probability of Miss-Detection P,

(66)

(67)

(68)

In order to compute P,, in (42), we need to determine p(l{H;). By defining a transform

Q' which simultaneously diagonalizes K¢ and K, i.e.,

QK.Q = A

Q'K:Q = 1,
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where A’ is a diagonal matrix whose " diagonal element is given by X}, and following

the steps similar to those in (11) to (17), we obtain a scalar form for the SS as:

wlr-*

Z 1 (71)

(.;

where 2/ is the i*" element of the transformed observation Z' = Q'F. Now, using
Theorem 3.4.1, p({|H;) is Gaussian as the element z] is normal given hypothesis H,,
and the mean (E[l|H,]) is given by (32). It can be shown that the variance (Var(l|Hi])

is given by [see appendix D for details]:

Var(l|H] = % Z (72)

Using the above results and following the steps in obtaining (54), a closed form

expression for P, can be achieved:

v — E[l|H,]

b= er I e L]

)- (73)

3.4.5 Comparison of the Bayesian, NP and CNP Detectors

The theoretical plots of P, and P with prior SNR for the proposed Bayesian, NP
and CNP detectors are shown in Fig. 9 (a)-(b), (c)-(d) and (e)-(h), respectively,
where the average prior SNR ( is set to -5 and 5 dB. Ideally, the VAD should favor
H, for low values of prior SNR, or it should have a high P, and low P;. Similarly,
the detector should favor H, for high values of prior SNR, corresponding to high and
low values of Py and P, respectively. This ideal behavior reflects the partial prior

knowledge about the prior SNR. From Fig. 9, it can be seen that all detectors achieve
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Figure 10: Nllustrating the relationship between F, and Py for the CNP detector using
different values of prior SNR: (a) ¢; = 1.1, (b) {; = 1.5, (¢) { = 2.1 and (d) ¢ = 3.
the ideal behavior for P, but only the CNP detector achieves the ideal behavior for
Py.

In order to divulge the relationship between the P, and Py in the CNP detector,
we plot the variation of Py with P, for different values of prior SNR in Fig. 10 (a),
(b), (c) and (d). It is seen that the value of Py is extremely small for small values of
P, for all prior SNRs '. As the value of P, increases, P; increases and finally exceeds
the value of F,. At low prior SNR, Py crosses P, at a relatively higher value when
compared to the case of higher prior SNR, where P; crosses P, at a lower value of

P,. In general, for a particular P, which is chosen as the operating value in the CNP

IThe Py vs. P, curves end abruptly for all prior SNRs at low values of P, due to level of numerical
precision available in MATLAB.
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detector, P, acts as an upper bound to Py at low prior SNR and lower bound at high
prior SNR.

3.5 Contextual Detector

The proposed contextual detection scheme estimates the activity of a frame via the
durational information present in the primary decisions of its neighboring frames.
The real-time constraints on the VAD system forces the usage of past frames alone
for this purpose. More specifically, the dynamic nature of speech suggests that a
frame’s activity is influenced by a short finite past. In order to process the contextual
information, a set of m immediate past decisions (with respect to the current frame)

is formed and termed as Bp, i.e.,

Bp = {Dy,Ds,...Dp} (74)

where D, is the decision preceding the current frame’s decision Dy, and D,, is the
oldest decision in the set. It is easily seen that a group of successive speech decisions
constitute a speech burst and successive pause decisions constitute a pause period
in the noisy speech signal. It is our intention to determine the likelihood of speech
activity in the i** frame F; based on neighboring speech bursts and pause periods in
Bp.

The process of contextual detection is demonstrated via an example in Fig. 11.
In the example, the primary detector takes a decision D; for the frame F; where Dy
represents the current primary decision. In our illustration, a set of 13 past decisions
with respect to Dy constitute the set Bp. Now, unlike contemporary hang-over
schemes, we do not process the decisions directly, but aggregate them into a more

intuitive and useful form, i.e., we define a group of successive similar decisions as a
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Figure 11: Illustrating the operation of the contextual detector.
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‘same state period’ (SSP). Hence, all decisions in Bp can be grouped into speech and
pause SSPs. For instance, in the example shown, S is formed by grouping the four
successive pause decisions and Ss is a group of four successive speech decisions. Thus,

from the decisions in Bp, a set of SSPs can be formed which we denote by Bg, i.e.,

Bs = {5,5,..,5.},(n<m) (75)

where S; is the it* SSP. In Fig. 11, four SSPs are formed with two SSPs each of
speech and pause.

Every SSP is characterized by duration, relative time position with respect to the
current frame Fy and its state of activity. The duration of the SSP is the ‘number
of frames’ which are a part of that SSP itself, and the time position of a SSP is
the minimum time distance between that SSP and the current frame Fy; measured in

‘number of frames’. We now define three sets - duration T, position X and activity

A as:

T = {t:1<t<m}, (76)
= {z:0<z<m—1}, (77)
A = {a:a= active or inactive}. (78)

Hence, a convenient representation for the SSP is obtained in form of an ordered
triplet:
Si = (ti, T4, a4), (79)

where t; € T, z; € X and a; € A. In Fig. 11, the duration, time position and activity
of each SSP is shown. As it is expected that the decisions of the primary detector

contain errors, we use the knowledge that speech/pause durations have lower limits
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to prune Bg, i.e., the contextual scheme validates all the SSPs in Bg by checking if
the duration of the speech and pause SSP exceeds the minimum limit 74, and T, ,
respectively. If a speech SSP duration is lower than T4, or a pause SSP duration is
lower than T)L. | then that SSP is invalidated and removed from the computation of
contextual LR.

Further, by defining Bag and Byg as sets which contain the speech and pause

SSPs alone, respectively, i.e.,

Bas = {S;:S; € Bs and a; = active}, (80)

Bis = {Si:S; € Bs and a; = inactive}, (81)

we form a partition over Bg. Now, the valid speech and pause SSPs in Bg are divided
between the B g and Byg, respectively. For instance, in the illustration, Sy, S3 € Bag
and Sy, S4 € Big assuming that all the SSPs are valid. Now, Bag and Byg are used to
compute the contextual likelihood of activity for the frame Fy, where the contextual
observation space is defined as the set of all possible SSPs, which can be expressed
as a cartesian product of sets T, X and A. If the contextual observation space is a
probability space OP, then each SSP S; is an event in OP. Hence, the contextual LR
of the decision Dy based on observing Bg, given the hypothesis in (2) can be written

as:

P(Bs|H;)
AS(D) = F(—ﬁz_l—f{;_)' (82)

where P(Bg|Hy) and P(Bg|H,) are the conditional probability mass functions (PMF's).
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The above equation is rewritten in terms of Bag and Bjg as:

P(BA3|H1) + P(BIS'H])

A°(D , 83
( ) P(BA5|H0)+P(B15|H0) ( )

which can be further simplified using Bayes rule as:
A°(D) = P(H\|Bas)P(Bas) gy + P(H1Bis)P(Bis) 5y (84)

P(Ho|Bas)P(Bas) iy + P(Ho|Bis) P(Bis) priy

If we assume that the speech and noise SSPs alone can influence the activity and
inactivity of the frame Fp, respectively then the conditional probabilities P(H;|Bys)

and P(Ho|Bas) become zero, and (84) can be simplified as:

P(H,|Bas) P(Bas) P(Hy)
P(Hy|Bis) P(Bis) P(H;)’

A°(D) (85)

The term Ilz—é—fl-(l’—; is a constant and can be omitted from the likelihood. From the

definition of the sets Bag and Byg in (80) and (81), we rewrite the likelihood in (85)

as:

P(HL| U, S PU; S

MO = B0, s, S (%)
Using the definition of conditional probability, we simplify (86) as:
P(H, SA
o - HLB
_ PUUHENSH)
= PUENSY) (%)

Since Bag and Big are sets of ordered triplets .S; which are mutually exclusive events
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in OP, we can further simplify (88) as:

AC(D) _ ZzP<HlﬂSzA)

X P(HONS)) (89)
2 P(H|S2) x P(S#) "
— X, P(Ho|S]) x P(S))’ (90)
i fel@i) X faa(ts)

T X olwy) X fulty)’ (91)

where f,q(t) and fi4(t) are the PMF of speech burst and pause duration, respectively.
Also, fp(x) represents the PMF of the positional influence of a SSP (due to its time
distance from the current frame) on the current frame. Hence, the likelihood in (91)
favors the hypothesis which has more probabilistic and time relevant observations
of SSPs. In a recent study on speech durational modeling, Chien and Huang [39]
have reported that the Poisson distribution gives a good fit to the speech duration

histogram. Hence, we assume that f,4(t) is Poisson distributed, i.e.,

Flts) = PA exp— B x - (92)
ad\li) — ti! P A N]/?p

where 4 is the parameter of the distribution, and N# is a normalizing factor in-
troduced as ¢t; € T. Similarly, the pause duration is also modeled as a Poission
distribution with the parameter 8; and normalizing factor N¥, i.e.,

fult;) = t—I, exp —f; x (93)
!

I
NF

Intuitively, the speech or pause SSPs closest to the current frame in time must

have the largest impact on the decision. Hence, it is assumed that the positional
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influence of the SSPs on the state of the current frame is geometrically distributed,

fola) = (1= Bp)"p x = (09
f

where (p is the parameter of the distribution and R is a normalizing factor intro-
duced as i € X. Using (92), (93) and (94) into (91),we obtain the final form of the

contextual likelihood, i.e.,

- z;—1 ﬁ_iai _ 1
A i 1, ) = O e - kb (95)
525(1 = Bp)518p x Gy exp —Br X 5r

3.6 Comprehensive Voice Activity Detector

The overall log likelihood of activity is given by the sum of primary and contextual

LRs, assuming that the observations D and F' are mutually independent, i.e.,
In(A(D, F)) = In(A°(D)) + In(AP(F)) (96)

where A(D, F) is the overall LR. While the contextual LR, A°(D) is given by (95), the

primary LRs for the Bayesian, NP and CNP detectors can be obtained by rewritting
(7), (57) and (68) as:

1 K > Hy

I+ iln—K—% Zu, Inmn, (97)
1 H -
m x (I — E[l|Hol) %H:} erf7'(1~a) (98)
and
1 1. K, d H -
Isoltaig) Ty e efT(-0) (99)
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respectively, where the LHS of (97), (98) and (99) represent the primary LRs of

Bayesian, NP, and CNP detectors, i.e.,

AE(F) = l+%ln§5, (100)
f
MiplF) = g * 0~ EUHD, (101)
| K. d
AZyp(D) ElT(z*)(”ih‘E”? (102)

Now, the LRT for CVAD-Bayesian, CVAD-NP and CVAD-CNP can be easily ob-

tained by replacing the primary LR in (97), (98) and (99) by the overall LR, i.e.,

Ap(D,F)=A°(D)+ A5(F) 2, ln (103)
Awp(D,F) = A°(D) + ARp(F) 2 erf™(1-a), (104)
Aonp(D,F) = AO(D) + Abyp(F)  Zgt erf(1-a). (105)

The implementation of the proposed Bayesian, NP and CNP primary detectors
is outlined in Algorithm 1. In steps (16) and (18), o and f are the parameters of
the updating rule which are set such that the time constants of the update rules for
speech and noise are 10ms and 0.5s, respectively [19]. Further, the implementation
of the CVAD-CNP, CVAD-NP and CVAD-Bayesian detectors is given in Algorithms
2 and 3.
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Algorithm 1 Proposed primary detectors

10:
11:
12:
13:

14:
15:
16:

17:
18:

19:
20:

1: Initialize: K¢, K, to non-zero values.

2: Compute a M- pomt MFSC for a speech frame.

3: Compute v/ —{—and (F=~F-1Vi=1,2.., M.
4: if implementing the CNP then

5:
6
7
8
9

Compute ¢ and S(C) using (60) and (59).
Compute d using (34) and yonp using (67).

. else if implementing the NP then

Compute E[l|Hp) and Var|l|Hp] using (31) and (33).
Compute yyp using (56).

else if implementing the Bayesian then
Compute «y using (37).

end if

Compute the SS using (18), (19) and (30), giving:

¢F 1
Z ol

Make a decision Dy using (68) for CNP, (57) for NP or (7) for Bayesian detector.
if VAD decision is speech then
Update K¢ using:

Ke[j} <= aKelj — 1] + (1 - a)(F[j} x F'[j]),

else
Update K,, using:

Kalj] < BKalj — 1] + (1 — B)(F[5] x F'[4]),

end if
Goto step 2 and repeat for next frame.
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Algorithm 2 Proposed contextual and comprehensive VADs

1: Initialize Bg.
2: Obtain the primary decision D; for frame F;

3: procedure UPDATE SSPs(Bg) > UPDATES SSPs IN Bg
4 add_flag =0

5: fori=1,2,...,ndo

6: if i#£1 AND ¢ # n then

7. T = x;+ 1

8 else

9: if i =1 then

10: if D, is speech & a; = activity | D; is pause & a; = inactivity then
11: L=t +1

12: else

13: &<+ 1

14: form new SSP Sy with D, as the only member.
15: set add_flag = 1

16: end if

17: end if

18: if ¢ = n then

19: if t, = 1 then
20: remove S, from Bg

21: else

22: t, <=t —1
23: T, <=z + 1
24: end if

25: end if

26: end if

27 end for
28: if add_flag = 1 then

29: add Sy as the first member of Bg > ADD NEW SSP TO Bg
30: reset add flag = 0
31 end if

32: end procedure
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Algorithm 3 Proposed contextual and comprehensive VADs: continued

33: procedure COMPUTE CONTEXTUAL LR/(Bg)
34: initialize N, D, =0
35: fori=1,2,..,ndo

36: if a; = activity then

37: if t; > T4  then

38: Compute foq4(t;) using (92), and f,(x;) using (94).
39: N, < N, + fad(ti)fp(xi)-

40: end if

41: else

42: if t; > TI, then

43: Compute fiq(t;) using (93), and f,(x;) using (94).
44: D, < D, + fid(ti)fp(xi)-

45: end if

46: end if

47: end for
48:  Compute A®(D) using (95), i.e., A°(D) = &=,

49: end procedure o

50: procedure COMPUTE OVERALL LR

51: if implementing CVAD-CNP then

52: Compute ALy p(F) using (102).

53: Use (105) to make the final VAD decision F Dy
54: else if implementing CVAD-NP then

55: Compute AR p(F) using (101).

56 Use (104) to make the final VAD decision F D,
57: else if implementing CVAD-Bayesian then

58: Compute AL(F) using (100).

59: Use (103) to make the final VAD decision F Dqy
60: end if

61: end procedure
62: Goto step 2 and repeat for next frame.
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Chapter 4

Evaluation of the Proposed Voice

Activity Detectors

N this chapter, we present the simulation results of the proposed VAD schemes,
I and compare them with the AMR VADs. We start with the description of the
simulation setup, followed by a discussion on the evaluation parameters used to mea-
sure the performance of the VADs, namely, the overall detection rate, speech and
pause detection rate, receiver operating characteristics (ROC), activity burst cor-
ruption (ABC) parameter, and computational complexity. Finally, we compare the

different VAD schemes using each of the above-mentioned evaluation parameters.

4.1 Simulation Setup

The proposed VAD schemes are tested using the SWITCHBOARD speech database
where the transcribed speech files provided by the database are used to evaluate the
performance of the VADs. The SWITCHBOARD database contains extracts from

actual telephonic conversations from which our simulation uses 21 speech samples of
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1 minute each with the percentage speech content of the files varying between 40%
and 60%. In order to create noisy speech samples of -10, 0, 15 and 30 dB SNR, four
types of noises: car, babble, F-16 cockpit and tank noise from the NOISEX database
are used following the additive noise model.

For the simulation results presented in this chapter, the various parameters of the
proposed VADs are set as follows. As in the AMR VADs, a frame length of 20 ms is
chosen for all the proposed VAD schemes. The length of the decision history set Bp
is chosen to be 500ms, i.e., it is equivalent to 25 noisy speech frames F;. Further, the
parameters o and (3, used in the covariance matrix update rules are set to 0.6 and
0.02, respectively, and the parameters of the Poisson distributions, 34 and (; are set

to 10 and 17. Finally, the parameter of the geometric distribution, 8p is set to 0.5.

4.2 Evaluation Criteria

We compare the proposed VAD schemes with the AMR VADs in terms of their
ability to correctly detect the speech and pause hypothesis. Towards this, we define

the following objective parameters:

o Querall Detection Rate (D): the ratio of correctly detected frames to the total
number of frames in the given speech sample speech, expressed as a percentage.

This parameter is complementary to the overall error probability (FP.).

o Speech Detection Rate (S): the ratio of correctly detected speech frames to the
total number of speech frames in the given speech sample speech, expressed as

a percentage. This parameter is complementary to miss-detections probability

(Prn)-

e Pause Detection Rate (P): the ratio of correctly detected pause frames to the
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total number of pause frames in the given speech sample, expressed as a per-

centage. This parameter is complementary to false alarm probability (Py).

In particular, we directly compare the overall detection rate (D) of the proposed
VAD schemes with the AMR VADs, and demonstrate the speech (S) and pause (P)
detection rates via the ROC curves. While the ROC completely characterizes the
performance of a LRT, it is not sufficient to assess the subjective performance of the
VADs. Subjective evaluation of a VAD is necessary to cofnprehend the perceptual
effects of clippings on the quality and intelligibility of a speech sample. Herein,
subjective measures such as the Comparison Mean Opinion Score (CMOS) are used
to rate the perceptual quality of the processed speech samples. Unfortunately, CMOS
scores are obtained via informal listening tests which can be a tedious and costly task.
Alternatively, Beritelli et. al. have proposed a new subjective parameter termed as
the Activity Burst Corruption (ABC), which can be calculated objectively. The ABC
is based on a psychoacoustic auditory model, and the authors have also shown a strong
correlation between the ABC and CMOS [41]. In this chapter, we present the ABC
scores of the proposed VADs and compare them with the AMR VADs. Further,
we also study the effect of incorporating the proposed contextual detector scheme by
comparing the performance of each primary detector with its CVAD counterpart, i.e.,
CNP with CVAD-CNP, NP with CVAD-NP and Bayesian with CVAD-Bayesian. The
benefit of employing the contextual detector is judged by measuring the percentage

change in overall detection rate, i.e.,

PI =100 x 92—192, (106)
DP

where D, and D, are the overall detection rates of the primary detector and its

CVAD counterpart, and PI represents the percentage change in detection. Finally,
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we also report the computational complexity of the proposed VAD schemes, which is

necessary to gauge the suitability of the VADs in real-time systems.

4.3 Overall Detection Rate

The overall detection rate (D) for the proposed primary VADs is compared with AMR
VADs in Fig. 12 (a), (b), (c) and (d) for babble, car, F-16 cockpit and tank noises,
respectively. As expected, the performance of the VADs is good at high SNR with
all VADs consistently hitting the 90% detection mark. However, the real difference
emerges at low to intermediate SNRs, where the superiority of the CNP detector
over its Bayesian and NP counterparts is clearly seen. It is observed that the CNP
detector achieves a performance improvement of close to 5-10% over the Bayesian
and NP detectors in F-16 cockpit and tank noises. Further, CNP and NP detectors
perform extremely well in babble noise where they outperform the AMR VADs by
big margins. The only exception is the car noise where the detection rate of every
VAD is very good across all SNRs, and the differences in performance are negligible.‘

At this point, it is useful to interpret the obtained results in terms of the spectral
properties of the different noises used in our simulation. While the car and tank noises
have a predominantly low-frequency spectrum, the F-16 cockpit and babble noises
have a diffused spectrum where the spectral energy is well distributed. Moreover, the
babble noise spectrum closely resembles the speech spectrum in terms of the energy
concentrations. Therefore, unlike the car noise which affects a few primary cues of
speech in low-frequency speech spectrum, the babble noise affects most primary cues
across the entire speech spectrum. Since the proposed VADs and AMR VADs are
frequency-band specific energy based methods, they rely on the clean frequency bands

to make decisions and fail when the entire spectrum is corrupted. This observation
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Figure 13: Performance Improvement (PI) parameter of the proposed CVAD schemes
in (a) babble, (b) car, (c¢) F-16 cockpit and (d) tank noises.

explains the relatively sharper fall in detection with lowering of the SNR. in babble and
F-16 cockpit noises, than car and tank noises. Moreover, as the corrupting capability
of the noises decrease with increasing SNR, the detector performance is seen to be
good for all noises at higher SNRs.

The above explanation also extends to the utility of the contextual detector, i.e.,
incorporating contextual scheme in babble noise gives big gains as the secondary cues
help in resolving the ambiguity posed by the primary cues. However, in the case
of car noise where primary cues are not ambiguous, the contextual detector’s value
addition is limited. The improvement in performance as a result of employing the

contextual detector scheme is shown in terms of the PI parameter in Fig. 13 (a),
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(b), (c) and (d) for babble, car, F-16 cockpit and tank noises, respectively. It is
immediately evident that the biggest gains are obtained at low SNRs for all noises,
and the gains diminish with increasing SNR. In fact, at high SNR, a small drop in
detection rate is also observed in some cases. However, the drop is insignificant in
all cases, as it coincides with a very high primary detection rate of 95% or above.
On the other hand, the improvements at 0 dB SNR in F-16 cockpit, tank and babble
noises are very impressive with gain margins of 10-15%. Finally, it is also seen that
the CVAD-NP registers the biggest gains across all noises and SNRs.

Now, we compare the overall detection rate (D) of the CVADs to AMR VADs in
Fig. 14 (a), (b), (c) and (d) for babble, car, F-16 cockpit and tank noises, respectively.
It is easily seen that the CVAD-NP and CVAD-CNP closely match or better the
performance of the AMR VADs consistently for all noises and SNRs. Again, the
biggest gains over the AMR VADs are obtained in the case of the babble noise. Also,
it is interesting to observe that while the CVAD-CNP and CVAD-NP schemes match
the performance of the AMR VADs in the case of F-16 cockpit and tank noises, the
performance of the CNP and NP primary detectors was inferior. This clearly indicates

the benefits of incorporating the contextual detection scheme.

4.4 Receiver Operating Characteristics

The ROC plots the probability of detect (P; = 1— P,,) against the probability of false-
alarm (Pf) by varying the tunable parameter of the detector {23]. In this manner, the
ROC gives a complete picture of the detector in terms of its performance at different
operating points. For the proposed VADs, the ROC curves are obtained by plotting
the speech detection rate (S) against the complement of the pause detection rate (100

- P). It is useful to note that for a binary hypothesis, the straight line P; = P (or,
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in this case, S = 100 — P) in the ROC is equivalent to random guessing. Hence, the
higher the ROC curve from the line S = 100 — P, the better the performance of the
detector is [23].

The ROC curves of the proposed detectors in babble, car, F-16 cockpit and tank
noises are shown in Figs. 15, 16, 17 and 18 for -10, 0, 15 and 30 dB SNRs, respectively.
For the babble and F-16 cockpit noises, it can be observed from Fig. 15 and 18 that
the performance of all detectors is extremely good or poor in high or low SNR,
respectively. This result is similar to the overall detection rate presented in the last
section, as it shows that the task of voice activity detection is very easy at high SNR,
and increasingly difficult with the lowering of the SNR. Comparing Figs. 15 and 18,
it is seen that while the performance of the CVAD-NP is better than CVAD-CNP
at 30 dB SNR for all noises, the CVAD-CNP does better than CVAD-NP at -10 dB
SNR. Further, from Figs 15, 16, 17 and 18, it is also seen that the ROC curves for
CVAD-CNP rise at a faster rate in comparison to CVAD-NP or CVAD-Bayesian,
suggesting that the pause detection capability of CVAD-CNP is the best among the
three CVADs. On the other hand, it can be seen that the CVAD-NP curve crosses
the CVAD-CNP in most cases and, climbs a greater vertical distance, suggesting that
the speech detection capability of CVAD-NP is better than CVAD-CNP or CVAD-

Bayesian.

4.5 Activity Burst Corruption

The ABC parameter for the proposed VADs and AMR VADs is shown in Fig. 19 (a),
(b), (c) and (d) for babble, car, F-16 cockpit and tank noises, respectively. It is useful
to note that the ABC is closely related to speech detection rate but independent of

overall detection rate. Hence, the ABC scores must not be judged in isolation, but
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in conjunction with overall detection rate.

As before, for all VADs, the fall in the ABC parameter as the SNR increases
indicates the improvement in the speech perception quality. Also, the improvement
in the ABC parameter while going from a primary to a comprehensive VAD scheme is
also evident for all three primary VADs. The CVAD-NP achieves the best ABC values
and is closely followed by the CVAD-CNP. Particularly, the CVAD-NP matches the
ABC score of the AMR VADs. Further, the biggest improvement in the ABC score is
achieved while moving from the NP to CVAD-NP detector. This result matches with
the trends observed in the ROC curves presented in the last section, where it was
concluded that the speech detection capability of the CVAD-NP is the best among
the CVADs.

4.6 Computational Complexity

The computational complexity of the CVAD-CNP, CVAD-NP and CVAD-Bayesian
is shown in terms of the number of mathematical operations and FLOPS (floating-
point operations) in Table 5. The split up of the operations between the primary and
contextual part of the detection scheme is also shown. The FLOPS for the various
mathematical operations are obtained from Pinka’s lightspeed Matlab toolbox [42],
where the numbers reflect an implementation on the Intel’s Pentium-4 architecture.
The complexity calculations in the table are specific to the Algorithms 1 and 2,
described in Chap. 3. Overall, the computational requirements of the proposed VAD

schemes is very low, and roughly equivalent for all the three CVAD schemes.
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Table 5: Computational complexity of the proposed CVAD-CNP, CVAD-NP and
CVAD-Bayesian detectors.

Math Flops per | CVAD-CNP | CVAD-NP | CVAD-Bayesian
Operation {(Op) Math Ops | Flops | Ops | Flops | Ops Flops
Operation
Contextual detector
Multiplication 1 12 12 10 10 10 10
Division 8 2 16 2 16 1 8
Sub/Add 1 39 39 37 37 37 37
Logical 1 6 6 6 6 6 6
Comparison 1 85 85 85 85 85 85
Total 158 154 146
Primary detector
Multiplication 1 8447 | 8447 | 8420 | 8420 | 8394 8394
Division 8 73 584 72 576 72 576
Sub/Add 1 9659 | 9659 | 9610 [ 9610 | 9586 9586
Logarithm 20 24 480 0 0 25 500
Exponential 40 1 40 0 0 0 0
Square Root 8 2 16 1 1 0 0
Comparison 1 1 1 1 1 1 1
Total 19227 18615 19057
| Grand Total | | [19358 ] | 18769 | | 19203 |
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Chapter 5

Conclusion

5.1 Summary

N this thesis, a few practical and low complexity VADs have been presented with
I the following new innovations: (i) the VADs incorporate perceptual preprocessing
via the use of the MFSC which is a mel based speech feature, (ii) the context based
information is exploited in dectection, (iii) the PEM (or EM) model is treated as a
composite hypothesis with the prior SNR as the free parameter, where it was shown
that the recently proposed CNP approach is adept at modeling the prior information
about the free parameter into the detector design, (iv) it is revealed that the popular
Bayesian and NP design approaches are not capable of incorporating prior information
about the free parameter into the detector design and (v) finally, a new strategy to
design the CNP detector is proposed which makes the tuning of the CNP detector
less cumbersome.

The proposed VAD schemes have been rigorously evaluated based on the overall
detection (D) percentages, ROC curves, psychoacoustic parameter ABC and compu-

tational complexity. Particularly, to evaluate the CNP approach, primary detectors
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based on the Bayesian, NP and CNP approaches have been developed, where it is
revealed that the CNP detector performs better than the NP or Bayesian detectors
as it models the prior information about the free parameter, i.e., the prior SNR of the
noisy speech, into the detector design. Further, the superiority of the CNP approach
has been also demonstrated via the computer simulation where it was observed that
the CNP outperforms the NP and Bayesian detectors, and compares well to the AMR
VADs.

We have also shown the advantage of using contextual information for detection in
low SNR and highlighted the important role of speech-pause duration as the source of
contextual information. Our CVAD scheme show that the addition of the contextual
detection enhances detection significantly. Moreover, it has been shown that the
contextual detector has very low computational complexity and a modular design
which allows for a convenient integration into existing LRT based VADs, making it
an excellent alternative to the contemporary hang-over schemes. In particular, the
CVAD-NP has a strong speech detection capability making it a good candidate for
application in VoIP, mobile telephony etc. On the other hand, the CVAD-CNP has

exhibited good pause detection which makes it ideal for speech enhancement systems.

5.2 Furture Work

The proposed NP and CNP detectors are members of the general family of CNP
VADs. Although, the NP and CNP detectors have delivered robust performance,
further reseach is warranted to discover other members of the CNP family which
may outperform the proposed detectors. Further, in this thesis, we have extensively
used the first and second-order statistics of the observation for detection with good

results. However, recent studies [20,43] have shown the benefits of using higher-order
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statistics (HOS) such as the skewness, kurtosis etc. in VADs. Hence, one could extend
the proposed PEM model such that it incorporates HOS based speech features, and
thereby evaluate the efficacy of HOS in the proposed detectors.

The proposed contextual detection scheme uses the Poisson and geometric den-
sities to model the physical attributes of the speech bursts and pauses. The dy-
namics of conversations obviate the fact that speech bursts and pause periods are
non-stationary. However, in this thesis, these parameters have been assigned fixed
values which is certainly an unrealistic assumption. Hence, in order to further im-
prove the efficacy of contextual detection, it is necessary to develop a technique by
which the values of these parameters can be learnt online, and updated regularly to

track non-stationarity.
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Appendix A

Simultaneous diagonalization of

two matrices

Let the eigenvalue decomposition (EVD) of K,, be given as:
ATK A = A, (A-1)

where A,, is the diagonal eigenvalue matrix of K,, and A is the corresponding eigen-

vector matrix. Now, consider a transform B given by:
B=AA,"3. (A-2)

It is easily seen that the transformation B transforms the matrix K,, into an identity
matrix, i.e.,

BK,B=1. (A-3)

Now, consider the EVD of matrix BTK¢B:

CT(BTK(B)C = A (A-4)
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where A is the diagonal eigenvalue matrix of BTK¢B and C is the corresponding

eigenvector matrix. Now, if we form a new transform Q such that:

Q = BC, (A-5)

then the (A-4) can be rewritten as:

QK:Q = A. (A-6)

Also, Q will diagonalize K,, to an identity matrix as the matrix C is orthonormal,

ie,

B'K,B =1 (A-7)
C'B"K,BC = CTIC (A-8)

Q'K.Q = L (A-9)

Hence, (A-5) gives the transform Q which simultaneously diagonalize K¢ and K,, as

per (8) and (9).
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Appendix B

Properties of the sufficient

statistics

Proof of the Theorem 8.2.1. From (30) and (16), it is seen that the transformation
Q preserves the SS. Hence, the statistics of SS can be equivalently computed in D¥
and DZ. Before proceeding to the proofs, we develop three identities. From (8) and

(9), we get:
Q'K KaQ = ATQT(QN)T (B-1)
Taking the trace (tr) on both sides, we have:

tr(Q' K¢ 'KaQ) = tr(A™Y), (B-2)

tr(Ke 'Ky) = tr(A™Y, (B-3)
Similarly, from (8) and (9), we also have:

tr(KeKo ') = tr(A). (B-4)
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Multiplying (B-1) with itself yields:

Q—leﬂlKan'_lKnQ = A—lA_ly (B-5)

tr(Ke ' KoK 'Ky) = tr(A72). (B-6)

Now, we prove of the conditional statistics of the SS in Theorem 3.2.1 by using (B-3),
(B-4) and (B-6).

(i) The conditional expectations E|l|Hp) is now calculated using (17) as
1< 1
. ol —_ )2 _
E[l|Ho) = E[2 ;21(1 )\i)zZ|H0]. (B-7)

Interchanging summation and expectation, we get:

Bl = 53 (1 = 3B o) (B-8)

l\DI»—-\

From the definition of the event Hp, we know that E[2?|H,] = 1. Therefore, the

conditional mean becomes:

E[l|Ho) =

er—t

M 1, 1
Z (1= 5) =5tr(I- AY, (B-9)

which can be simplified using (B-3) as:

1
E[l| Ho] = tr(I~ K: 'K,) Z(’)’F (B-10)
=1 't

In obtaining the last expression in (B-10), we have neglected the non-diagonal
elements of Ky and K, since they tend to be insignificant compared to the

diagonal ones as a results of applying the PEM model.
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(ii) Following the steps in (i), the conditional expectation E[l|H,] is calculated as:

1 1.,
EllH] = E[§Zl(1*3\‘i)ziiH1],
= EZM:(M"U7
2 =1
= Lty

By using (B-4), the above expression becomes:

M
1 _ 1
EQ|H)] = 5tr(KeKo ™' =D =5 > ¢f
=1

(iti) The conditional variance Var[l|Hp| is computed using the identity:

Var(l|Ho) = E[I*|Hy) — E*[I|Ho)

where the term E[[?|Hp) can be written as:

j 1
E[52|H0]=E[§Z EQZ 1—— 23| Ho),
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The terms E[z]2]|Ho] and E[z]|Ho| are the fourth order moments of Gaussian

random variables z; and hence can be simplified as:

E[z}7]|Ho| = E[2}|Ho|E[z5|Ho) = 1,

E[|H) = 3E[Z|Hy| = 3.

Using (B-19) and (B-20) in (B-18), we get:

1 M M A A 3 M CZ
EPH)=7> > () +7 D (%)
4
i=1 j=1j%#1 T i==ji=1 i

1 M M CZ VA 1 M CZ
U =330 >0 CC)+5 2 )
i=1 j==1 j#i T i=j,i=1 7

(B-19)

(B-20)

(B-21)

(B-22)

Now, the conditional variance can be computed by using (B-21) and (B-22) into

(B-15) as

M

1 c 1 _
Varll|Hy) = 5; ) = Str(I-A HI -
- %tr((l~2A“ + A7),

Using (B-3) and (B-6), we obtain:

1 1w (F

Var(l| Ho| = 5tr((1- K 'K,)?) = 5 Z(#V

1=1
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(iv) Finally using (B-10), (B-14) and (B-24) in the definition of d in (27), we obtain:

2 (BUH) - BH))?* _ (o, Gy
= Var|l|Hyp) B 2211\11(%;)2
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Appendix C

Bounds on the Bayesian threshold

By using (20) and (21), the term Zf‘il In(¢Z + 1) in (39) can be simplified as:

M M M
don(EZ+1)=> In(y) => Ink. (C-1)
=1 i=1 i=1

Using a well known logarithm identity, i.e.,:
In(z) < (z — 1), where z > 0. (C-2)

we get

In(A) < (N = 1), (C-3)

since \; > 1. Now, summing this result over ¢ = 1,2, ..., M, and multiplying both

sides by 3, we get the RHS of (39), i.e.,

1 1 I
5 Zln(Ai) < 3 Z()‘i - 1). (C-4)
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Next, since the reciprocal of J; is strictly a non-zero positive number Vi, we can use

the log-identity to obtain:

1

1
=N

which is further simplified to get the LHS in (39):

lim()\.) > liu-l)
21’-—_1 CT 2i=1 A

By using (C-1), the inequalities in (C-4) and (C-6) can be written as:

M
1

52 1—- ) < In(N) < (A — 1)
Now, (C-7) is further simplified by using (B-9) and (B-12), i.e

Ell|Ho| < In(N\) < E[L|Hy],

which gives the desired result.
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Appendix D

Conditional variance of the

sufficient statistics

Using (71), the conditional mean E[l|H;] becomes:

M

Bl = 5305, - D) (D-1)

=1

Using (B-15), and following the steps as in (B-16) to (B-22), one can obtain the

conditional variance Var[l|H;] below:
Var[l|Hy] = = Z — —1)? (D-2)
which can be rewritten in the vector form as:

Varli|Hy = %tr((A"l —1p). (D-3)
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Using (69) and (70) and following the steps in (B-1) to (B-3), we get:
tr(AY = tr(Ka'Ky). (D-4)

Using (D-4) into (D-3), we obtain:

M

Var(l|H;] = étr((Kn_le -1 = %Z(Czp)g

i=1
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