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ABSTRACT

The Stochastic Dominance Efficiency of the Mean-Variance Frontier

Mingli Tao

This paper examines the second-degree stochastic dominance (SSD) efficiency of
the portfolios on the mean-variance (EV) frontier. By applying Post’s linear
programming tests to our weekly and monthly data of a sample of U.S. equity funds, we
find that the higher portion of the EV frontier is SSD-efficient, while the lower portion is
SSD-inefficient. The quadratic utility test confirms that the top of the EV frontier is
SSD-efficient where the SSD-efficient portfolios have higher-means and higher-variances.

Based on Perrakis’ theoretical inequalities on the central moments derived from
polynomial utility functions, we test SSD efficiency on the third central moment and find
more SSD-undominated portfolios following the quadratic utility-efficient portfolios;
thus extending the SSD-efficient portion on the EV frontier. Then, we maximize the
polynomial utility functions on the third and the fourth central moments for SSD and on
the fourth central moment for TSD without constraining them to lie on the EV efficient
set. Hence, those new generated portfolios should be SSD- or TSD- efficient, but may or
may not be on the EV frontier. Our empirical work shows that such optimal portfolios
further extend the SSD-efficient portion of the EV frontier, but still lie on the EV frontier,

whose upper part lies entirely within the SSD-efficient set.
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1. Introduction

The two-moment Mean-Variance (EV) approach developed by Markowitz (1952,
1959) assumes either that decision makers have quadratic utility functions, or that their
utility functions are consistent with the von Neumann-Morgenstern expected utility
maximization on the basis of a restricted class of two-parameter distributions.
Unfortunately, the EV assumptions have been seriously criticized by extensive studies
both in its theoretical and in its empirical aspects. Fama (1965), and Breen and Savage
(1968) have shown that distributions of stock price changes are inconsistent with the
assumption of normal probability functions; rather, they conform quite well to the four-
parameter Stable Paretian distributions. Moreover, the quadratic utility functions imply
that beyond some level of wealth (or return) the investors’ marginal utility for wealth
becomes negative as their risk aversion increases with wealth. In other words, investors
would prefer less wealth to more wealth, which is unrealistic.'

An important development after the EV approach is the theory of Stochastic
Dominance (SD) for the optimal portfolio selection. The SD theory has firstly been
developed by four papers independently published by Hadar and Russell (1969), Hanoch
and Levy (1969), Rothschild and Stiglitz (1970), and Whitmore (1970). In contrast to the
EV approach, the SD approach is non-parametric in the sense that its criteria impose
neither explicit specifications of decision makers’ utility functions nor restrictions on
functional forms of probability distributions. Hence, the SD approach accounts for the
entire probability distributions and employs some general condition for decision makers’

risk preferences.

!'See Baumol (1963), Borch (1969), Breen (1968), Feldstein (1969), Hadar and Russell (1969), Hanoch and
Levy (1969), Lintner (1965), Pratt (1964), and Quirk and Saposnik (1962).



In the SD theory, the first-degree stochastic dominance (FSD) criterion, originally
developed by Quirk and Saposnik (1962), requires only that the first derivative of the
utility function be positive throughout or monotone increasing; therefore, it assumes only
non-satiation and allows for risk preference, risk indifference, or risk aversion. The
second-degree stochastic dominance (SSD) criterion, developed by Hadar and Russell
(1969), eliminates risk preference by adding the restriction that the second derivative of
the utility function be everywhere non-positive. In other words, SSD adds the
assumption of global risk-aversion; thus, utility is everywhere concave. The third-degree
stochastic dominance (TSD), developed by Whitmore (1970), adds the requirement that
the third derivative of the utility function be everywhere non-negative. Hence, TSD
imposes skewness preference in addition to non-satiation and risk aversion.

Despite the theoretical appeal of the SD criteria, the two-moment EV approach
has been more influential in empirical portfolio analysis. The attractiveness of the EV
model lies in its ability to test and build efficient diversification strategies. Further, since
only two parameters — mean and variance — are required for each portfolio, EV analysis is
rather simple and inexpensive. By contrast, the practical application of the SD criteria
demands a sophisticated technology. Specifically, once the probability functions are
specified, a relatively large number of means and variances need to be calculated and
ordered with a high degree of efficiency with the aid of a computer. However, with the
increase in observations and samples, the burden of computations required for the
implementation of various SD criteria makes such empirical work prohibitive. More
importantly, the SD approach is restricted to pairwise comparison of a finite number of

choice alternatives, which cannot be applied to problems with full diversification



possibilities, although it is computationally efficient for simple crossing algorithms to
check the difference of the empirical distribution functions (EDFs) of choice alternatives
when we apply SD criteria to empirical data.> Because of these limitations of the SD
application, decision makers still prefer the traditional EV approach when they believe
that the EV efficiency and the SD efficiency do not make much difference for the optimal
portfolio selection.

Recently, Post (2003) has developed the tractable Linear Programming (LP) tests
for the SD efficiency of a given portfolio relative to all possible portfolios created from a
set of assets. The development of the LP tests has provided us with an efficient and
effective tool to present our empirical study in this paper. In particular, as the
assumptions of the EV analysis suffer from serious flaws, the portfolios on the EV
frontier (or the EV efficient portfolios) are not necessarily efficient based on the
stochastic dominance criteria. Since FSD is a weak condition to impose on the investors’
utilities and Post’s LP tests are developed especially for the SSD efficiency, we focus our
empirical work on the SSD efficiency of the EV frontier.

We use some of Perrakis’ unpublished results to develop theoretical inequalities
on the central moments of the return distributions of a pair of portfolios, which are
necessary conditions for one portfolio to dominate the other in the second- or third-
degree. The new inequalities involve the first three central moments for SSD and the first
four central moments for both SSD and TSD. Hence, the central moment inequalities
provide us with additional rules to test the stochastic dominance efficiency for the
portfolios on the EV frontier. Then, we extend these developments to a new test based on

the utility maximization introduced by Kroll, Levy, and Markowitz (1984). In such

% See Levy (1992) Appendix A.



programs, the investors’ expected utilities drawn from a given set of utility functions are
maximized without the constraint that the mean and the variance have to be on the EV
efficient set. Therefore, the utility maximization includes all investment possibilities
allowing for various investors’ expected utilities and return distributions. The new
generated optimal portfolios by such maximizing programs should be SSD- or TSD-
efficient, but may or may not be on the EV frontier.

The remaining of the paper is arranged in the following structure: in section II,
we provide the literature review with regard to the development of the SD theory and the
research foéus on the SD efficiency on the EV frontier; for the paper’s integrity, in
section III, we very briefly introduce the concepts and computation of the EV frontier
based on Markowitz (1952, 1959); in section IV, we illustrate the theory of stochastic
dominance in the first-, second-, and third-degree; in section V, we describe the LP tests
by Post (2003) which are also the main tools for our empirical study to examine the SSD
efficiency for the portfolios on the EV frontier; in section VI, we start discussing the
polynomial utilities, based on which we introduce the central moment inequalities
developed by Perrakis for further testing the SSD efficiency on the second and the third
moments; in section VII, we extend our study to apply the utility maximizing programs
on the third and the fourth moments; in section VIII, we offer our empirical results; in our

final section IX, we give the conclusion and future research recommendations.



IIL. Literature Review
A. Development of the Stochastic Dominance Theory and Application

Since the publication of the four original papers’, there has been a proliferation of
papers on the SD theory published in a wide variety of finance and economics journals,
books, and conferences. In the survey of the literatures about stochastic dominance,
Bawa (1982) has listed about 400 publications, working papers, and books in his
bibliography including basic concepts of decision-making under uncertainty and various
applications in different scientific fields. The survey contains an exhaustive listing of
papers that are either basic contributions to the SD subject or primarily concerned with
applications of the SD concepts. It also contains selective listing of papers from finance,
economics, mathematics, mathematical physics, mathematical psychology, operation
research, and statistics literature to illustrate the wide applicability of SD concepts. Bawa
states that in finance and economics, the foundation of SD is the mainstream von
Neumann-Morgenstern expected utility paradigm. Its essence is to provide an admissible
set of choices under restrictions on individual decision maker’s utility functions that
follow from prevalent and appealing models of economic behavior. With alternative
choices equivalently characterized by probability distributions, SD can be viewed as
inequalities involving functions of the probability distributions that induce partial
orderings of the set of probability distributions.

In finance literature, the SD approach is applied to compare the performance of
alternative investment portfolios regarding their observed rates of returns. Therefore, the

empirical application of SD as well as its algorithmic development has typically focused

? These four original papers refer to Hadar and Russell (1969), Hanoch and Levy (1969), Rothschild and
Stiglitz (1970), and Whitmore (1970).



on discrete empirical distributions where each observed state of nature occurs with equal
probability. Bawa et al. (1979) notice that although SD rules are theoretically sound,
they are hard to implement because they require comparisons of probability distributions
over their entire ranges. In this sense, they develop an algorithm that should remedy this
situation. It exploits the theoretical results and computational techniques to efficiently
determine the SD admissible set of alternatives, which contains the optimal choices for
all decision makers whose preferences satisfy reasonable economic criteria. Further, they
indicate that in the portfolio choice problem which has an infinite choice set, the
algorithm can provide reasonable approximations to the true set of optimal choices via
the use of a suitably fine enough grid on the space of portfolios.

Applying Fishburn’s (1974) conditions for convex stochastic dominance (CSD),
Bawa et al. (1985) provide exact LP algorithms for assigning discrete return distributions
into the FSD and SSD optimal sets. For TSD, a super-convex stochastic dominance
approach is proposed which allows classification of choice elements into super-
dominated, mixed, and super-optimal sets. In the first application of CSD rules for
identifying the elements of the optimal set from the full choice set, the optimal sets were
found to be significantly smaller than the previously identified admissible sets. The CSD
procedure is a useful tool for limiting the set of alternatives that must be considered by an
individual having utility functions in the classes examined. Finally, the applicability of
super-convex SD for continuous distributions defined over a bounded interval is shown.
The difficulties in identifying the elements of the super-dominated set for distributions
defined over the entire real line are demonstrated in the determination of the dominated

choices for a set of normally distributed mutual fund returns previously examined by



Meyer (1979) using the mean-variance approach. Specifically, they find that the
dominated set determined by Meyer is too large.

However, an important reason why SD has not seen the proliferation that one
might expect based on its theoretical attractiveness is that until recently, SD efficiency
can only be tested pairwise. This restriction limits the scope of SD tests, because
investors generally can diversify between a set of assets and they can effectively face
infinitely many choice alternatives. That is probably the most important reason why the
two-moment EV model is still extensively used in the empirical portfolio analysis,
despite the theoretical superiority of the SD criteria that take into account the entire
distribution. As Levy (1992) concludes in his paper, “Ironically, the main drawback of
the SD framework is found in the area of finance where it is most intensively used,
namely, in choosing the efficient diversification strategies. This is because as yet there is
no way to find the SD efficient set of diversification strategies as prevailed by the M-V
framework. Therefore, the next important contribution in this area will probably be in
this direction.”

However, in recent years, many studies have tried to find computationally
tractable empirical tests for SD efficiency with full diversification possibilities. The first
breakthrough was made by Kuosmanen (2001). He has analytically characterized the sets
of time series vectors that dominate a given evaluated portfolio by FSD, SSD, and TSD,
respectively. Interestingly, these sets have a relatively simple polyhedral structure.
Based on these insights, he has proposed tests of SD efficiency. The major innovation is
that these tests account for diversification. In particular, he has formulated the FSD

efficiency test as a 0-1 mixed integer linear programming problem, while the SSD and



the TSD tests take the form of the standard LP problems. The generalizations to the
higher order SD criteria follow in a straightforward manner. Therefore, he argues that
such computationally tractable SD efficiency tests allow for diversified portfolios and
significantly enhance the power of the SD criteria as well as extend their empirical
applicability to areas where diversification plays an important role.

However, as Post (2003) states, the number of model variables increases
progressively with the number of observations. The computational complexity of LP
problems (as measured by the number of arithmetic operations, run time, and working
memory requirements) also increases significantly with the number of model variables.
Thus, the approach developed by Kuosmanen (2001) is computationally complicated for
samples that are sufficiently large to allow for powerful analysis. Next, Kuosmanen
(2004) has developed a series of operational tests for portfolio efficiency that are based
on the general SD criteria and account for infinite numbers of diversification strategies.
The key idea in this paper is to preserve the cross-sectional dependence of asset returns
when forming portfolios. Instead of arranging data in the form of empirical distribution
functions, he has re-expressed the SD criteria in T-dimensional Euclidean space spanned
by return vectors representing rates of return in T different states of nature. Then, he
derives explicit analytical characterizations for the FSD and SSD dominating sets as
subsets of this T-dimensional state-space. Using these results, he further derives
operational SD efficiency measures and test statistics that can be computed using
standard mathematical programming algorithms and readily available software packages.
Finally, the SD tests and efficiency measures are illustrated by an empirical application

that analyzes industrial diversification of the market portfolio.



Post (2003), using the straightforward LP tests, has developed empirical tests for
the SSD efficiency of a given portfolio with respect to all possible portfolios constructed
from a set of assets. Specifically, the LP tests include the primal and the dual tests. The
primal test checks whether we can construct a piecewise-linear utility function that
rationalizes the evaluated portfolio, while the dual test checks whether we can construct a
benchmark portfolio that outperforms the evaluated portfolio in terms of the ordered
mean differences (OMDs) introduced by Bowden (2000). Then, he applies bootstrapping
techniques and asymptotic distribution theory that can approximate the sampling
properties of the test results and allow for statistical inference. His approach presents a
very impressive start towards statistical inference in the SD framework with full
diversification possibilities. As for the empirical application, Post has analyzed whether
the Fama and French market portfolio is SSD efficient relative to all possible portfolios
constructed from 25 Fama and French benchmark portfolios and the one-month U.S.
Treasury bill (a riskless asset). The market portfolio is the value-weighted average of all
NYSE, AMEX, and Nasdaq stocks. The benchmark portfolios are the intersections of
five portfolios formed on market capitalization (size) and five portfolios formed on book-
to-market equity ratio (B/M). Monthly returns from July 1963 to October 2001 (460
months) are used in his tests. The main results suggest that the market portfolio is SSD-
inefficient.

The next paper of Post is to deal with the dual test which he has developed in Post
(2003) for the SSD efficiency. To illustrate the dual SSD test, Post (2005) applies the test
to analyze the effect of short-selling restrictions on the profitability of momentum

investment strategies. The main finding is that with looser restrictions on short sales, the



market portfolio is highly and significantly SSD inefficient, and that as an indicator of the
statistical significance, the bootstrap p-value rejects the null hypothesis of the SSD
efficiency. However, when imposing tighter restrictions on short sales, Post finds that the
profitability of momentum strategies falls quickly. In fact, if short sales are excluded, the
dual test and statistics suggest that no significant momentum effect remains.

Post and Vliet (2006) have also analyzed the SSD efficiency of the stock market
portfolio. They first extend Post’s (2003) empirical test for SSD efficiency in which they
derive the asymptotic sampling distribution of the SSD test statistic under the true null of
efficiency rather than the restrictive null of equal means that was used earlier. This
extension is intended to avoid rejection of efficiency in cases where the market portfolio
is efficient but the assets have substantially different means. Further, they derive a LP
test for EV efficiency that can be compared directly with the SSD test, which allows for
attributing differences between the two tests to omit moments exclusively. They find that
the value-weighted CRSP all-share index is SSD-efficient relative to common benchmark
portfolios formed on size, value, and momentum. However, the market portfolio is
significantly EV-inefficient relative to value and momentum, consistent with the existing
evidence on these puzzles. They also find that the SSD criterion is especially successful
in rationalizing EV inefficiencies that occur in the 1970s and the early 1980s. This
indicates that the asset pricing puzzles that occur in the EV framework can be explained
by omitted return moments during this period.

More recently, Post and Versijp (2006) have developed SSD and TSD efficiency
tests within the framework of Generalized Method of Moments (GMM). In contrast to

Post’s (2003) LP tests, the GMM tests consider all pricing errors rather than the
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maximum positive error only. Their application demonstrates that the mean-variance
inefficiency of the CRSP all-share index may reflect left-tail risk not captured by
variance. The low-beta stocks, which seem underpriced in mean-variance terms,
typically have relatively low tail-betas.

Starting from the reward-risk model for portfolio selection introduced in De
Giorgi (2005), De Giorgi and Post (2005) derive the reward-risk CAPM analogous to the
classic mean-variance CAPM. In contrast to the mean-variance model, reward-risk
portfolio selection arises from general axioms of investors’ preferences including
consistency with the second-order stochastic dominance. They establish that a necessary
condition for the existence of market equilibrium in complete markets with risk averse
investors is that investors’ optimal allocations are co-monotonic. Then, they derive the
pricing kernel as an explicitly given monotone decreasing function of market portfolio
return, depending on the representative agent’s risk perception through his probability
distortion function. An empirical application suggests that the reward-risk CAPM better
captures the cross-section of US stock returns than mean-variance CAPM does.
Moreover, they find that the pricing kernel arising from the reward-risk analysis is similar
to that obtained in the mean-semivariance equilibrium model.

Levy (1998) has developed the prospect stochastic dominance (PSD), which
assumes a S-shaped utility function that is convex for losses and concave for gains. In
addition, Levy and Levy (2002) have developed the Markowitz stochastic dominance
(MSD), which assumes a reverse S-shaped utility function that is concave for losses and
convex for gains. Levy and Post (2005) use the SSD, PSD, and MSD criteria to analyze

investor behavior. Based on the assumptions of the M-V CAMP, they use a single-period,
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portfolio-oriented model of a frictionless and competitive capital market. They use
various SD criteria that account for the possibility that investors exhibit local risk seeking
behavior. They also develop a general LP test based upon Post (2003) for fitting SD
efficiency criteria to empirical data and derive the asymptotic sampling distribution of the
test results. After they analyze the SD efficiency classification of the value-weighted
market portfolio relative to benchmark portfolios based on market capitalization, book-
to-market equity ration, and momentum, their results suggest that reverse S-shaped utility
functions, with risk aversion for losses and risk seeking for gains, can explain stock
returns. Those results are also consistent with a reverse S-shaped pattern of subjective
probability distortion, as in the cumulative prospect theory.

Empirically, co-skewness of asset returns seems to explain a substantial part of
the cross-sectional variation of mean return not explained by beta. This finding is
typically interpreted in terms of a risk averse representative investor with a cubic utility
function. However, Post, Vilet, and Levy (2006) have questioned this interpretation in
their paper. They show that the empirical tests fail to impose risk aversion and the
implied utility function takes an inverse S-shape. Unfortunately, the first-order
conditions are not sufficient to guarantee that the market portfolio is the global maximum
for this utility function, and their results suggest that the market portfolio is more likely to
represent the global minimum. In addition, co-skewness has minimal explanatory power

if they impose risk aversion.
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B. Research on the Stochastic Dominance Efficiency and the Mean-Variance
Efficiency

Although the SD criteria have been shown theoretically superior to the EV
approach, the question remains: If we apply the SD criteria to the portfolios that are on
the EV frontier, do these EV efficient portfolios satisfy the SD efficiency at the same
time? This question has been examined in several previous studies.

Porter and Gaumnitz (1972) have presented the results of several empirical
studies of the similarities and differences between the EV and the SD efficiency. Their
main finding is that the differences between the EV and the SSD efficiency are not great,
and that the most significant difference between the EV results and the SSD and the TSD
results is the tendency that the SD rules eliminate the EV efficient portfolios in the low-
mean and low-variance range. Interestingly, this result implies that the less risk averse an
investor is, the more indifferent he or she would be regarding a choice between EV and
SSD as efficiency criteria. This implication follows from the fact that as the degree of
risk aversion decreases, the investor moves up to the range of higher-mean and higher-
variance where the EV and SSD-efficient sets become similar. On the other hand, the
highly risk-averse investor is most likely to suffer from the use of the EV model. The
reason is that the EV efficient portfolios on the lower tier of the EV frontier are excluded
from the SSD-efficient set. Thus, when risk aversion is strong, the SSD and the TSD
criteria are more consistent with the maximization of expected utility than is the EV rule.

Then, Porter (1973) has further developed his study to examine the SD-EV
conflict from an empirical point of view. His findings confirm the conclusion in Porter

and Gaumnitz (1972) that the differences are almost non-existent in the range of high-
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mean and high-variance of return, while most of the portfolios that are EV but not SSD-
or TSD-efficient occur in the range of low-mean and low-variance. In this paper, Porter
has also used different types of historical data — monthly, quarterly, semiannually, and
annually — in order to figure out the most appropriate proxy for future data. The results
suggest a use of monthly data; however, the significance of the differences in the choice
of data should be evaluated more fully.

After a series of articles’ in which Porter and his associates have conducted
empirical comparisons of the EV and the SD portfolio choice criteria, Perrakis and
Zerbinis (1978) have offered an exact theoretical justification of those empirical results of
the aforementioned studies. They show that, for all cases of practical interest, a portion
of the EV frontier is a subset of the SSD-efficient set. First, they define a necessary and
sufficient condition for the corresponding portfolio to be quadratic utility-efficient. It is
shown that the EV efficient portfolios which meet the quadratic utility criterion on the
EV frontier are also SSD-efficient. In this sense, the theoretical proof confirms the
empirical conclusion that the high-mean and high-variance portfolios on the upper range
of EV frontier are both EV- and SSD-efficient. However, it does not follow necessarily
that the remaining portion of the EV frontier is SSD-inefficient. The reason lies that the
class of quadratic utilities (that is, the range of values of the parameter that guarantees a
non-decreasing and concave utility for all random returns, and then find expected utility-
maximizing portfolios for various values of the parameter within the range) can also be
done for other classes of utility functions, for example, the cubic utility functions. Since

the possibility exists that other classes of utility functions may also be satisfied by the

* See Porter (1973), Porter and Bey (1974), Porter and Carey (1974), and Porter and Gaumnitz (1972).
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efficient portfolios on the EV frontier, the low-mean and low-variance EV efficient
portfolios can be SSD-efficient or -inefficient.

Finally, Kroll, Levy, and Markowitz (1984) have developed the so called “direct
utility maximization” program which allows for various expected utility functions for a
case with an infinite number of alternative probability distributions. The optimal
portfolios generated by the direct utility maximization are not necessarily consistent with
the utility maximization required of the EV efficient set. Then, they compare the
empirical results from the EV utility maximization with those from the direct utility
maximization, finding that the mean and the variance of both maximization methods are
very much the same and that the direct maximization portfolios are almost on the EV
frontier. This result implies that the quadratic utility function assumed on the EV
criterion is a good proxy for the optimal portfolio selection. They further argue that
additional moments besides the mean and the variance will not improve the optimal

portfolio selection substantially.
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III. Theory and Computation of the Mean-Variance (EV) Frontier

Harry Markowitz first published his Nobel Prize winning mean-variance portfolio
selection theory in 1952, and later, in 1959, published his book Portfolio Selection’, one
of the most important books published in the history of financial economics. It rests
firmly at the root of the next half-century of research. His model is precisely step one of
portfolio management: the identification of the efficient set of portfolios, or, as it is often
called, the efficient frontier of risky assets.

The principal idea behind the Markowitz portfolio selection theory is that the
“risk” of a portfolio can be adequately represented by the variance of its return. Given
that, in identifying the frontier set of risky portfolios we must find, for any risk level, the
portfolio with the highest expected return. Alternatively, the frontier is the set of
portfolios that minimizes the variance for any target expected return.

Markowitz (1952, 1959) defines mean (E) and variance (V) of a specific portfolio

as follows:

N
E= Z /’i’iﬂi
i=1

M=

V=

i

N
2440, M

Jj=1

Il
—

N
where the 4’s are the weights put on different securities, and should satisfyz/?.,. =1. g,

i=1

is the expected return and o, is the standard deviation of security i.

* We use the EV theory from Markowitz, H., 1959(1* edition) and 1991(2"™ edition), Portfolio Selection,
John Wiley & Sons, New York.
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Markowitz also shows how to compute the EV efficient set. Specifically,

A
A=| |isa portfolio. 2)

A

n
A portfolio is legitimate if it satisfies constraints:

AA =0,

3
A20 ®

where A is an m by n matrix and b is an m component column vector. The second
constraint implies that no short sales are allowed, a restriction that we shall adopt in our

study but that is not part of the Markowitz theory. u; is the expected return on the jth

security; o, is the covariance between the jth and kth securities:

H
H= ,
L Hn
o, o,
co| @
ERN

The covariance matrix C is symmetric and positive semi-definite.
The expected return E of a portfolio is
E=4gA. )
The variance of return V of a portfolio is

V=1'CA (6)
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An E, V combination (E°,V°) is obtainable if there is a legitimate portfolio A°
with
E'=42° and V°=2""CA°. N
An E, V combination (E°,V°) s efficient if:
1. E°V° is obtainable, and
2. no obtainable combination E',V' exists, such that either E' >E® and V' <V’ or

else E'>E° and V' <V°.
A portfolio A is efficient if it is legitimate and if its E, V combination is efficient.
Therefore, our problem is to find:
1. the set of all efficient E, V combination, and
2. alegitimate portfolio for each efficient E, V combination.
In sum, the EV rule states that the investor would (or should) want to select one of
those portfolios which give rise to the (E, V) combinations with minimum V for given E

or more and maximum E for given V or less.
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IV.  Theory of Stochastic Dominance (SD)

In this section, we are going to introduce the theory of stochastic dominance in

the first-, second-, and third-degree developed by Levy (1998).

A. First-degree Stochastic Dominance (FSD)

Suppose that the investor wishes to rank two investments whose cumulative
distributions are F and G. We denote these two investments by F and G, respectively.
The FSD rule is a criterion that tells us whether one investment dominates another
investment where the only available information is thatU € U,, namely that U’ >0 and,
to avoid the trivial case of U’ coinciding with the horizontal axis, there is a range
where U’ > 0. Actually, this is the weakest assumption on preference because we assume
only that decision makers like more money rather than less money which conforms with
the monotonicity axiom. Hence, we assume that U is a continuous non-decreasing

function which implies that it is differentiable apart from a set of points whose measure is

ZEro.

Theorem 1: let F and G be the cumulative distributions of two distinct investments.
Then F dominates G by FSD (which we denote by FD,G , where D, denotes dominance
by the first order and the subscript 1 indicates that we assume only one piece of

information on U, namely that U is non-decreasing) for all U eU, if and only if
F(x)< G(x) for all values x, and there is at least some x, for which a strong inequality

holds. As FSD relates toU € U, , it can be summarized as follows:
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F(x) <G(x)for all x with a strong inequality for at least one x,
& EU(x)ZEU(x) forall UeU, with a strong inequality for at least one U, e U, .
Defining G(x)— F(x)=1,(x) (again the subscript 1 reminds us of dealing with
first order stochastic dominance), then the condition for FSD of F over G if that I,(x)=0

for all x and I,(x,) >0 for somex,.

B. Second-degree Stochastic Dominance (SSD)

So far, the only assumption for the FSD rule is thatU eU,, namely, U'>0.
There is much evidence that most, if not all, investors are probably risk averters.
Therefore, an additional rule has been developed appropriate for all risk averters. In all
the discussions below, we deal only with non-decreasing utility function, U € U,, and add
the assumption of risk aversion, U" <0.

We define the set of all concave utility functions corresponding to risk aversion
by U,. Of course, U, c U, when U, corresponds to FSD. However, we have to keep in
mind that although all investors would agree that U €U, , not all would agree that

UelU, 0 Nevertheless, there is much evidence that for virtually all decision makers,

UeU,. The fact that the cost of capital of most firms is generally higher than the

riskless interest rate is an indication that stockholders are risk averse and require a risk

premium.

® There is some evidence of risk-seeking behavior by some people, as demonstrated by gambling and
lotteries.
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Theorem 2: Let F and G be two investments whose density functions are f(x) and g(x),
respectively. Then F dominates G by SSD denoted by FD,G (the subscript 2 indicates a

second order stochastic dominance) for all risk averters if and only if:
L(x)= [[G(t)- F()ldi 20 )

For all x €[a,b] and there is at least one x, for which there a strict inequality. This

theorem can also be stated as follows:

X

I[G(t) — F())dt >0 for all x with at least one strict inequality for some x,

= E,U(x)-E,U(x)=0 for all U eU, with at least one U, € U, for which there is

a strict inequality.

C. Third-degree Stochastic Dominance (TSD)
TSD is accordance with the set of utility functions U e U, whereU'>0, U"<0,

and U">0. The assumptions U'>0and U"<0 are easier to grasp: U’ >0 simply
assumes that investors prefer more money to less money (which stems from the
monotonicity axiom), and U” <0 assumes risk aversion: other things being equal,
decision makers dislike uncertainty or risk. But what is the meaning of the assumption of
U">20?

Arrow and Pratt have defined the absolute risk aversion measure “in the small” as
the risk premium z(w) given by m(w)=-U"(w)/U'(w), where w is the investor’s

on(w)

< 0. This property is
a(w) property

wealth. It is claimed that investor’s behavior reveals that
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called the decreasing absolute risk aversion (DARA), which implies thatU"” 2 0. 7 In the

TSD theory, U" refers to the distribution skewness.

Theorem 3: Let F(x) and G(x) be the cumulative distributions of two investments under
consideration whose density functions are f(x) and g(x), respectively. Then F dominates

G by TSD if and only if the following two conditions hold:
L(x) = [ [[6G@)- F0)kidz 20 (9a)

(for the sake of brevity, we denote the double integral by 7,(x); hence, it is required that
I, >20).
E.(x)=2E;(x) or 1,(b)=0 (9b)
and there is at least one strict inequality, namely:
L(x)20 and 1,(b)>0 < E,U(x)2E;U(x) forall UeU,.
To have a dominance we require that either 7,(x,) >0 for some x, or 1,(b) >0,
which guarantees that a strong inequality holds for some U, € U, (recall that U e U, if

U'>20,U"<0, and U">0). Further, if that F dominates G by TSD, we write it

as FD,G where the subscript 3 indicates a third order stochastic dominance.

7 The quadratic utility function obviously violates the DARA property.
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V. Linear Programming Tests

The Linear Programming (LP) Tests developed by Post (2003) are
computationally tractable methods for determining whether SSD efficiency holds for a
given portfolio. Therefore, we apply the Post’s (2003) LP tests to our empirical study. In
this section, we present the two Post’s LP tests for SSD efficiency: i) a primal test, and ii)
an equivalent dual test.

We consider a single-period, portfolio-based model of investment that satisfies

the following assumptions: 8

Assumption 1: Investors are non-satiable and risk-averse, and they choose investment
portfolios to maximize the expected utility associated with the return of their portfolios.

Throughout the text, we will denote utility functions byu:R — P,ueU,, with U, for

the set of increasing and concave, continuously differentiable, von Neumann-

Morgenstern utility functions, and P for a nonempty, closed, and convex subset of R g

Assumption 2: The investment universe consists of N assets, associated with
returns x € R" . Throughout the text, we will use the index set / = {1,...,N } to denote the

different assets. The return vector is a random vector with a continuous joint cumulative

2

8 The assumptions here are not entirely accordance with the assumptions in Post (2003). Rather, some parts
have been modified in accordance with the working paper of Post and Versijp (2006) for the purpose of our
empirical study.

® Throughout the text, we will use R" for an N-dimension Euclidean space, and Riv denotes the positive

orthant. We also use x for the transpose of x .
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distribution function (CDF)G :R" —[0,1]. Further, the returns have a vector of means

E[x]= p and a variance-covariance matrix E[(x — z)(x — w'1=Q.

Assumption 3: Investors may diversify between the assets, and we will use 4 € R for a
vector of portfolio weights. We consider the case where short sales are not allowed,
because short selling typically is difficult to implement in practice due to margin
requirements and explicit or implicit restrictions on short selling for institutional

investors. In addition, the portfolio weights belong to the portfolio possibilities
setA = {/1 eRY e ———1}, where e indicates a unity of dimension N. A given portfolio

7 €A is optimal for an investor with utility # € U if and only if

Ju(x"7)dG(x) = max fu" 2)dG(x) (10)

Assumption 4: The observations are serially independently and identically distributed

(IID) random draws from the CDF. Throughout the text, we will represent the
observations by the matrix X =(x,---x,), withx, =(x,---x,,)" . Since the timing of the
draws is inconsequential, we are free to label the observation by their ranking with
respect to the evaluated portfolio, that is, x/ 7 <x)z <---<x/7.

Using the observations, we can construct the empirical distribution function
(EDF):

F(x)=card{te®:x, <x}/T (11)
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with ® ={L,...,T} for the index set of ranked observations, and card {o} for the number of

elements of a set. Our empirical tests will use the EDF in place of the CDF. Based on

these assumptions, we define SSD for pairwise comparisons as follows:

Definition 1: Portfolio 1€ A dominates portfolio 7 € Aby SSD if and only if, for all

utility functions u € U, , A has a higher expected utility thant , that is,
ju(xTﬁ,)dF(x) - ju(xTr)dF(x) >0 VYueU, o (12)

D lux A -ux/)/T>0 VuelU, (13)

te®

In Post (2003) this definition of SSD uses strict inequalities for all ueU,. By
contrast, the traditional definition'® uses weak inequalities with a strict inequality for at
least oneu U, . The theoretical differences between those two definitions can be

illustrated by the example in Post (2003). For example, using Definition 1, 4 € A does
not dominate mean-preserving spreads of A , because risk-neutral investors are
indifferent between alternatives that have identical means. On the other hand, dominance
does exist using the traditional definition, because all strictly risk-averse investors do
prefer A to its mean-preserving spreads. However, as Post has stated, from an empirical
perspective, thé definitions are indistinguishable, because arbitrary small data
perturbations to the evaluated portfolio can make the classification consistent. Related to
this, data sets where this theoretical issue has a decisive impact are extremely unlikely for

return distributions that are continuous by approximation.

9 See Levy (1998).
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The following is a straightforward generalization of Definition 1 to the case where

full diversification is allowed.

Definition 2: Portfolio 7 € A is SSD-inefficient if and only if some portfolio A€ A SSD
dominates it. Alternatively, portfolio 7 € A is SSD-efficient if and only if no portfolio
A e A SSD dominates it.

Post (2003) also rephrases this definition in terms of a minimax formulation.

Theorem 4: Portfolio reA is SSD-inefficient if and only if, for all utility
functionsu € U, , the maximum expected utility of A is greater than the expected utility

of 7, that is,

Igellijn{n}e}\xu‘u(xTﬂ)dF(x) - ju(xTr)dF(x)}} >0 (14)
min{n}ax{z [u(x" A)—u(x! r)]/T}} >0 (15)
uel, eA 10

Alternatively, portfolio 7 € A is SSD-efficient if and only if it is optimal relative

to some utility functionsu € U, , that is,

uel,

min{ralg\x{ju(xT A)dF (x) - Iu(xTr)dF (x)}} =0 (16)

0 (17)

uel te®

min{ralaAX{Z[u(x,’ A —-ulx! /T }}
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A. Primal Test

The primal test verifies whether we can construct piecewise-linear utility

functions p € U, that rationalize the evaluated portfolior € A. All relevant piecewise-
linear utility functions p € U, can be constructed from a series of T linear support lines
characterized by intercept coefficients a=(c,---e;)" e R’ and normalized slope

coefficients /)’eBE{ﬂein Bzp =2 p =1} as

p(xja,p)=min(e, + f,x) (18)

Based on this central idea, Post (2003) develops the primal test statistics as

follows:
éf(r)Eg}i}g{@:;ﬂ,(xfr—x,,)/T+0_>_O‘v’ieI} (19)

subject to Bzp =226 =1

Post (2003) interprets the primal test statistics £(r) as the “least amount of
disutility” that any non-satiated and risk-averse investor would suffer by holding on to
the evaluated portfolio r .  The primal problem involves 7 variables and

N +T —1constraints. According to Post (2003), a possible primal solution is S =e,

associated with upper bound §(‘r)=ma}x{2(x,, -x/ 1)/ T}. This solution effectively

te®
represents the utility function u(x)=x or the risk-neutral investor who cares about

expected return only.
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B. Dual Test

The dual test involves the Ordered Mean Difference (OMD) introduced by

Bowden (2000). The formula is:

p(AT)=D . (x[A=xT)/t te® (20)

s=1
The OMD represents a running mean for the difference between the return of the
evaluated portfolio 7 and a benchmark portfolio A€ A. The dual test statistic is

presented as follows:

w(r)= ril&}\X{pT (A,7): p, (A7) 20Vt €1l,..,.T -1} 1)

N
subjectto D 4 =1, 4,20,i=1,...,N

i=l
The dual problem involves N +7 —1variables and T constraints. A possible dual
solution is A =7, associated with the lower bound y(zr)=0. The dual test statistic
w (1) gives the maximum possible increase in average return, that is, p,(4,7), achieved

by a benchmark portfolio 4 € A that outperforms the evaluated portfolio in terms of the
OMDs. These test statistics give necessary and sufficient conditions that can separate
efficient portfolios from inefficient ones. The central theorem developed by Post (2003)

states the following:

Theorem 5: Portfolio 7 € A is SSD-inefficient if and only if&(z) >0 or, equivalently,
w(r)>0. Alternatively, portfolio 7€ A is SSD-efficient if and only if £(z)=0 or,

equivalently, y(7)=0.
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VI.  Polynomial Utilities

Perrakis has developed a series of inequality conditions on the portfolios’ central
moments arising out of SSD and TSD. The following discussion of the relations arising
out of polynomial utilities follows the notation from Perrakis’ unpublished paper.

Let y denote the one-period random terminal wealth of an investor whose utility
function is u(y). In our discussion, we consider only investment prospects whose
terminal wealth distributions have finite ranges. Given such assets, it is always possible
to normalize'! the distributions of their random returns to make them lie between 0 and 1.
Without loss of generality it will be assumed that such normalization has already been
carried out.

The behavioral postulates in the stochastic dominance imply some restrictions on
the shape of the utility function, which is assumed continuous and differentiable and
whose first, second, and third derivatives are assumed to exist almost everywhere. These

are u' 20, u"<0,and u” >0 for all y in the [0,1] interval. The utilities that we consider
will satisfy either the first two or all three of the above restrictions.'”> We denote by {U : },
i=2, 3 the corresponding sets of utility functions, i.e. u e {U 2} if u'>20, u"<0, and
ue{U3} ifue{Uz} and u” >0.

Suppose that the normalization has been carried out, and that the random return of

any asset in the choice set is equal to K+y, where K >0 is the normalized smallest

possible return for all assets in the choice set and y €[0,1]. Then, it may be possible to

" Such normalization involves dividing each return by the largest possible return for all assets in the choice
set; if K now denotes the smallest possible return for the assets in the choice set, then all random returns are
equal to K+y, where y has a [0,1] domain.

2 FSD is ignored here. In our opinion, it is too weak a condition to impose on admissible investors’
utilities.
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expand an investor’s utility function u(y) in a Taylor series around u(K):

r 2 m.3
u(y)-——u(K)+u'y+y—§i—+E3L+... , where all derivatives have been evaluated at K.

Such an expansion, if it converges, can be truncated at any desired degree of
approximation.
A polynomial utility of degree n must belong to the set {U 2} or {U 3}. This

means that its coefficients obey some restrictions. These can be expressed by the

following results.

Definition 3: A polynomial utility of degree n belongs to { i} if it can be written in the
form P!,i=2, 3, where

n-2

JZ( +1)( ) 2 4 by+u,, n=2,3... (222)

+2)y-y

n-3

U+ 1)(J + 2)( 3)

J+3

. . 1. )
[G+DG +3y =2 +3) +2)y" + 3714 by —b,y* +u,,

n=3,4... (22b)

where the coefficients are such that

>0, 520, b 22b,20, > a,y’ 20, forall ye[0,] (23)

Jj=0
Definition 3 allows us to represent by polynomials admissible utility functions
within {U 2} or {U 3} up to any desired degree of accuracy. The truncation of the

polynomials after the nth power means that the moments of order higher than n are

irrelevant to the investor’s decision-making. An investor with a utility within the set
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{Rf} or {Pn"’} is represented by a set of coefficients satisfying (23), in which case the
behavioral postulates are satisfied.

Since {P,f}e {U ;}, i=2, 3, it follows that if asset A is preferred to asset B by all

investors with u(y)e {U ! }, then the preference is also going to hold for all u(y)e {Pn’ }

Consequently, if a given condition on the assets’ moments is necessary for the SSD (TSD)

of A over B for u(y)e {P,f} ({Pn3 }), it will also be necessary for the SSD (TSD) over

{U 2} ({U } }). Hence, the use of the polynomial representation allows us to derive general

results that are valid for dominance over the entire set of utilities. For this to be true,
however, an inequality relationship on the assets’ moments must hold for all possible

coefficients satisfying (23).

Hereafter we use the general notation u, to denote the i” moment from the origin
E[y'], i=2, 3, 4,.... The unsubscripted x denotes E[y], the portfolio mean, o’ is the
portfolio variance, S=E[(y—u)’] is the third central moment or skewness, and

K =E[(y-pu)"] is the fourth central moment or kurtosis. Subscripts A and B on the

central moments denote two portfolios, one of which may dominate the other over the
appropriate utility set.

If A stochastically dominates B in the second or third degree, it is well-known
that this implies that g, >y, , and that the following necessary condition must be

satisfied [Jean (1984) and Whitmore (1970)]:

04 =05 S (i = )2 = (p + p15)] (24)
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Note that this inequality allows dominance to exist even if o is larger than o,
provided x,> 4, and the difference of variance does not exceed the right-hand-side

(RHS). The moment inequalities to be derived in the next subsections are similar in spirit

to (24), involving the second, third, and fourth central moments.
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A. Quadratic Utility and SSD Efficiency on the EV Frontier

Perrakis and Zerbinis (1978) have provided an exact theoretical justification
showing that a portioﬁ of the EV frontier is a subset of the SSD-efficient set. This
theoretical proof is based on the empirical findings that the upper portion of the EV
frontier involves the portfolios which are also SSD-efficient; however, the portfolios on
the lower tier of the EV frontier where they have lower-mean and lower-variance may be
SSD-inefficient.

As we mentioned before, U, denote the class of increasing and concave utility
functions, on which SSD is normally defined. For the case where portfolio returns are

bounded above by b, the following class of quadratic utility functions is contained inU, .

U, ={u(x) u(x) =x—Kx2,Ke[O,—21;)}. (25)

The portfolios that maximize uniquely E[u(x)] for all u(x) e U, are both EV- and

SSD- efficient.
In the case of an EV frontier that is continuous, differentiable, and strictly convex

everywhere within its domain of definition.
o’ = f(u), [ piece-wise continuous and increasing, (26)
where 1 and o’ are the portfolio’s mean and variance respectively. The necessary and

sufficient conditions on points of the EV frontier so that the corresponding portfolios

would be quadratic utility-efficient are developed as follows:
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Theorem 6: Given a point (u, f(u)) on the EV frontier, a necessary and sufficient
condition for the corresponding portfolio to be quadratic utility-efficient is:
f'>2(b-p). 27

Note that this result (27) can be easily extracted from inequality (24) in Perrakis’
unpublished paper: first we normalize the returns by dividing all of them by b, so that
they now lie in the interval [0,1]; then we denote the variance along the EV frontier as
f(u) and set u, — u, equal to Au; last, we divide both sides by Au and take the limit
for Au tending to zero. Then (27) becomes f'<2(1- ), which is a condition for

quadratic utility dominance of two adjacent portfolios on the EV frontier. Hence, its

reversed form:

S>20-p) (28)
is the condition for the absence of dominance, thus establishing the above result (28) for

the normalized returns.
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B. The Preferencé for Skewness

From (22a) and (22b), eliminating the constants and simplifying, we get:

Efu()u(y) e {P2 1= (ay + S+ byu= " == 11 29)
) e P fi= bt bt + 2 (30)

where the coefficients in (29) and (30) obey the restrictions in (23).  Setting
w, =p*+0’, and pu, =S+’ +3uc’, we get the expected utilities in terms of the third
central moments:

2
3 (o2 al
———(a,+a,u)——S 31
5 o M 2(0 M) 5 (31

E[u()u(y) e 4P f1 = (ay + =+ b

G

2
3_0 4 '
——[=A-p)+b)]+—S (32
e U DR s (32)

L) e P fi= (G +b)pu~(G+by)u’ +
The restrictions in (23) imply that, with the exception of q,, all coefficients must be non-
negative in (31) and (32), and that b, >2b,. On the other hand, even though a, can be
negative, we must have a, +a,y =20 for all y€[0,1].

Jean (1984) has proved the following necessary condition'® for SSD and TSD of

A over B:

3:”3(1"113)‘*‘,“133 _302(1_/13)4"33 = 3#,4(1_/1/1)"'/‘3 _'30-/21(1_IUA)+SA (33)
An additional moment condition for SSD of A over B has been proven by Perrakis in the

following theorem.

13 The form of the condition proven by Jean (1984) is slightly different from (33) because the random
returns of A and B were not normalized.
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Theorem 7: If A and B are portfolios with , >z, , then necessary conditions for

second-degree stochastic dominance of A over B are that (33) must hold, together with
3uy(1=03) = py =S, <3p,(1-03)— 13 -5, (34)

Together with (24), (33), and (34) are also sufficient conditions for A to be preferred over

B by all investors with utilities u(y) € {1[’32 }, as defined in Definition 3.
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C. The Fourth Central Moment

From (22a) and (22b) we get, after eliminating the constants and simplifying:

a a a a a
E[u(y)‘u(y) € {Pf }] =(a, +—2—1+72+b)/1——22,u2 —leu3 ——ém (35)
a a a a a a
Efu(pfu(y) e P fl= (G4 S b= (4 by + "Lt g (36)

These results can be expressed in terms of the central moments, which are linked to the

3

M’s, the moments from the origin, by the following relations: u, =y’ +02,

Wy =S+ +3u0’  and p, = K+4uS+6u’c* +u'. We get:

a a a a a
E[u(y)‘u(y) elPPli=(a+ B+ L ypyu-2o 2 G yp 2y
2 3 2 6 12 37
2

o ) a,
—~—(a, +au+a ——(a,+2a,u4)——=K
5 (@, +apu+apu) 6( 1 24) D

Elu(lu(») e PP =@+ Dy pyu— (G s Spp yu? + 20 3 L 48
ety e (Pl = (G S b= (ot S by + 2t 4 Do

2 (38)
(o2

a S a
a1+ A=) b))+ (g +ap)+ 2 K

where the restrictions (23) on the coefficients imply, among others, that
a,+a,y+a,y’ >0 forall ye[0,1] in (37)and a, +a,y >0 for all y[0,1] in (38).

From Perrakis’ unpublished paper, the necessary conditions for SSD are

expressed as follows:
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Theorem 8: If A and B are assets or portfolios with u, >y, then if A dominates B in

the second degree and relation (24) holds as a strict inequality we must have:

s — P
3

(44 +,u3)]+ o,=04 (39a)
2 2

2

+A[S g —Sppp— (1 — Ly )]"',uj "ﬂg +6(O-A/'lj —O'f“u;)

S, -S
3[%+ (O, —Opty)—(fy — py)+

K,-K,=

(g —pp)ll-

240y =241y + pry =60 541, (1=p1,) =28, (1~ )+ K,

3 4 2 (39b)
22y =2pp + pp —60 (1= pp) =28, (1= p1p) + K
Together with (24), (33), and (34), the above conditions are also sufficient for A to be

preferred over B by all investors with utilities u(y) e {Pf} defined in Definition 3.

Theorem 9: 1If A and B are assets or portfolios with u, > u,, then necessary conditions

for third-degree stochastic dominance of A over B are:

8u, —6/1123 +,ng _60-12;(1_1u32)+4SBIuB +K, (40a)
<8, —6p+ py —60(1-p3) +4S 1, + K,

Aty =6y + 4y — pry —60 5 (1= p1y)" +4S,(1- 1)~ K,

2 34 2 2 (40b)
SAp,—6py+Apy—puy—60,(1-p,) +45,(d-p,)-K,

Together with (24) and (33), these necessary conditions are also sufficient for A to be

preferred over B by all investors with utilities u(y) e {Pf} as in Definition 3.
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VII. SSD Efficiency of the EV Frontier — A New Test

In this section, we are going to apply the results of the third and fourth degree
moment inequalities derived from polynomial utility functions and try to find some new
optimal portfolios which may or may not be on the EV frontier.

In Perrakis’ unpublished paper, a third degree polynomial utility satisfying the
appropriate restrictions (23) has the form given by equation (31). Then, the moment
inequalities (33) and (34) are extracted, which are the necessary conditions for the
second-degree stochastic dominance of A over B on the third central moment. For
ﬁotational convenience, we first define the following functions from inequalities (33) and
(34):

Bu(l— @)+ 4’ =30 (1- ) +8 = 4, (1) (41a)

3u(-o?)—p’ =S = 4,(w) (41b)
These inequalities imply that portfolio A dominates by SSD portfolio B if the above
moment functions are higher for A than for B.

Suppose now that we consider portfolios along the EV frontier, in which
case 0° = f(u) . Let S(u) denote the third central moment or skewness of these
portfolios. By the same reasoning as in the derivation of the quadratic utility-efficient

portion, we must have either one of d4,/du, i=1, 2, negative for absence of dominance

of two adjacent portfolios on the EV frontier. Setting again o’ = f(u) and

differentiating, we get:
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M 0B -y - - +2u-11=B, (42a)
du du
0B 30 oy - 1H)=8, (42b)
du du

If either one of B, or B, is verified along the entire EV frontier up to a given value of
4 then that portfolio of the frontier is undominated by higher mean portfolios on the
frontier. Unfortunately, this solution still leaves open the possibility that the lower-mean
frontier portfolios may be dominated by higher mean portfolios not on the frontier.
However, since there are no a priori restrictions on the sign of dS/du, it is
possible that inequalities (42a) and (42b) change direction along various parts of the
frontier. Therefore, we use the following programs to guarantee that its solutions would
generate SSD-undominated portfolios that may or may not be on the EV frontier. We
denote by M the dimension of the portfolio vector and by N the dimension of the
sample."* Let 4 = (4., 4y, ) denote the (unknown) portfolio vector that is potentially

SSD-efficient. Let also the moments be:

ii&xg
Mean=m(1) = %—— (43)
Z[Zﬂ’i'xlj _m(l)]

Variance = 0> (A) =[(R - p)*] =2 -

21 Ax, ~m(A)]
Skewness = S(A) =[(R - p)* =22

N

' Later in our empirical tests, M=45 and N=104 for our weekly data; M=24 and N=60 for our monthly data.
In general, M refers to the number of funds and N refers to the number of time periods.
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PAPIERTIEN)
Kurtosis = K(A) =[(R— p)*]= =

N

where x denotes the normalized returns in the interval [0, 1] in our sample.

Then, we solve the programs for descending values of x and f(x) along the EV
frontier, for 4,(x«) and 4,(x) given by (41ab), and with o*(A) and S(A) given by (43).

Max, {4,(m(A)}  k=1,2 (44)
subjectto  m() 4, (D)2 S, 420, Y, =1

The optimal portfolios A* are SSD-undominated. We want to determine whether they
also lie on the EV frontier beyond the quadratic utility-efficient segment identified earlier.
Let also 4 *(u) denotes the optimal values of the objective functions in these
maximizations.

For the kurtosis, the fourth central moment, the fourth degree polynomial utility is
reproduced from Perrakis® unpublished paper equation (37), where the coefficients must
meet the restrictions in equation (23) of that same paper. The necessary conditions are
inequalities (39a) and (39b) in the paper, which must be satisfied by the moments of two
portfolios A and B if A is to dominate B by SSD. While (39a) is too complex to generate
undominated portfolios by a program, we can extract the following function from (39b):

2p=24 + p' =60 u(l- p) =281 ) + K = D(p) (45)
Portfolio A dominates by SSD portfolio B if D(z) is higher for A than for B. Hence, we

proceed again as before, solving the following program for descending values of x and
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f () along the EV frontier, for D(x) given by (45) and with o*(1),S(4), and K(A)
given by (43).

Max , {D(m(1))} (46)

M
subject to m(A)zp, o* (D)2 f(), 4,20, > 4 =1

=l
The optimal portfolios given by (46) are also SSD-undominated. However, we notice
that the programs (44) and (46) may or may not generate new SSD-efficient portfolios.
This is what we are going to verify in our empirical applications. Also, we denote by
D, *(u) the optimal values of the objective functions in these maximizations.

An additional set of undominated portfolios may be determined by examining
necessary conditions for the third-degree stochastic dominance involving the fourth
central moment. According to Perrakis’ unpublished paper, the fourth degree polynomial
utility for u(y)e {Pf} is expressed by equation (38) in that paper, and the coefficients
must satisfy the restrictions in (23). Further, the necessary conditions for portfolio A
stochastically dominates B by TSD on the fourth central moment are presented in
inequalities (40a) and (40b) in the paper. We extract from inequalities (40a) and (40b)
the following expressions:

8u—6u’+u' —60°(1—-p*)+4Su+K =E (1) (47a)
du—6p> +4u° —pt —60*(1-p)* +4S(1-p)— K = E,(u) (47b)
These two functions also indicate that portfolio A dominates by TSD portfolio B if the

above two fourth central moment functions are higher for A than for B.
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As before, we solve the following programs for descending values of x and
f(1) along the EV frontier, for E,(u) and E,(x) given by (47ab) and with
6°(1),S(1), and K(A) given by (43).

Max, {E,(m(2)}  k=1,2 (48)

M
subject to m(A) > p, o> (A= f(u), 420, D 4 =1

i=1
The optimal portfolios given by (48) should be TSD-undominated. Since the lack of
dominance by TSD implies also lack of dominance by SSD, whatever portfolios we may

find by (48) belong also to the SSD-efficient set. We denote E, * () the optimal values

of the objective functions in these maximizations.
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VIII. Empirical Application

A. Data

In our empirical test, we have used two sets of data — weekly returns and monthly
returns of a sample of U.S. equity mutual funds.” In particular, the weekly data is
composed of returns adjusted for dividends of 45 U.S. equity funds from January, 2003 to
December, 2004. The monthly data consists of returns adjusted for dividends of 24 U.S.
equity funds from January, 2001 to December, 2005. We select these 24 funds from
those among the 45 funds for which 5-year data exists. Hence, the sample size for the
weekly data is: 45x104 = 4680 observations, while the sample size for the monthly data
is: 24 x 60 =1440 observations.

In addition, these funds are well-diversified and randomly chosen from different
fund categories (i.e. large blend, large growth, large value, mid-cap blend, mid-cap
growth, mid-cap value, small blend, small growth, and small value). They are also
considered to be popular funds due to their high ranking by Morning Star, usuaily among
the four or five star rankings.'® Therefore, our empirical results can provide investors
with typical and beneficial information to select their optimal portfolios.

The fund profiles of the weekly and monthly data are summarized in Table 1 and
Table 2, respectively. Also, their simple statistic descriptions are listed in Table 3 for
- weekly data and Table 4 for monthly data.

(Table 1, Table 2, Table 3, and Table 4)

15 Our source of data is from Yahoo, Finance.
' The exceptions are: 2 funds from our weekly data are ranked 3 stars.
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B. Results

1. The Mean-Variance (EV) Frontier

Using the Markowitz two-moment EV theory, we compute the EV frontier for
both sets of data during the sample period. The plots of the EV frontier with scattered
funds are shown in the Figure 1 for weekly data, and Figure 2 for monthly data.

(Figure 1 and Figure 2)

2. LP Tests for SSD Efficiency of the EV Efficient Portfolios

In this test, we select 17 portfolios on different parts of the EV frontier for each
set of data, in order to test whether these EV efficient portfolios are SSD-efficient by
using the LP tests, both the primal and the dual tests, developed by Post (2003). The
portfolios chosen for the SSD efficiency test on the EV frontier are plotted in Figure 3
and Figure 4 for our weekly and monthly data, respectively. The results from the LP tests
for each data set are reported in Table 5 and Table 6.

(Figure 3, Table 5, Figure 4, and Table 6)
According to Theorem 5 the tested portfolio is SSD-efficient if and only

if£(r) =0 ory(r) =0; otherwise, the portfolio is SSD-inefficient. The results show that

among the 17 EV efficient portfolios chosen for each set of data, there are 5 EV-efficient
portfolios in the weekly data and 6 EV-efficient portfolios in the monthly data that are
SSD-inefficient. . In other words, those 11 portfolios on the two EV frontiers are SSD-
inefficient or dominated by other portfolios. We notice that all those SSD-inefficient
portfolios are along the lower portion of the EV frontier where the portfolios have lower-

mean and lower-variance. This finding is consistent with Porter (1973), Porter and Bey
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(1974), Porter and Carey (1974), Porter and Gaumnitz (1972), and Perrakis and Zerbinis

(1978).

3. Quadratic Utility Efficiency

The Post (2003) tests evaluate SSD efficiency of a target portfolio by using the
historical sample distribution as the true distribution of the data. They also assume that
no short sales are allowed. For these reasons it is possible to convert our data into returns
lying within the interval [0,1]. In our next tests, we need first to convert all our returns to
be normalized within the entire [0,1] interval. Such normalization process involves
dividing each return by the largest possible return for all assets in the choice. In our case,
if b denotes the highest observed return in each set of data, then we

have b(weekly) =1.089674 and b(monthly)=1.248736 . Hence, we get all the random

returns g €[0,1]] , and corresponding variances o® or f(x) . The results for the

normalized data sets compared with the non-normalized data are shown in Table 7 and
Table 8. Please note that all the results in this and the following parts of our tests are
reported in the new normalized returns for both weekly and monthly data.

(Table 7 and Table 8)

Then, we plot the normalized means and variances by the function of o> = f(x)
which is continuous, differentiable, and strictly convex everywhere within its domain of
definition in Figure 5 for weekly data and Figure 6 for monthly data.

(Figure 5 and Figure 6)
Next, we conduct the quadratic utility efficiency tests for the chosen EV-efficient

portfolios. By the Perrakis-Zerbinis (1978) results, if /' <2(1- u) for a portfolio on the
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EV frontier then that portfolio is SSD-dominated. On the other hand, if /' > 2(1— ) 17
the portfolio on the EV frontier is SSD-undominated. In each case, f” is the slope of the

line tangent to the EV frontier passing at the tested portfolio. The results of our test are
shown in Table 9 and Table 10.
(Table 9 and Table 10)

From the two tables we can see that only the top portion of the EV frontier is
quadratic utility-efficient. In particular, 6 of 17 EV efficient portfolios are quadratic
utility-efficient for weekly data, while only 3 of 17 EV efficient portfolios are quadratic
utility-efficient for monthly data. We know that those quadratic utility-efficient
portfolios are also SSD-undominated and that such portfolios lie on the higher-mean and
higher-variance portion of the EV frontier. This is the result of Perrakis and Zerbinis
(1978). The LP tests and the quadratic utility efficiency of the EV frontier are shown in
Tables 11 and 12.

(Table 11 and Table 12)
Since the LP tests produce more SSD-efficient portfolios than the quadratic utility

test, we seek SSD-undominated portfolios by examining the third central moment.

4. SSD Efficiency Using the Third Central Moment

We provide the first four central moments which are the mean (normalized),
variance, skewness, and kurtosis'® of our sample EV efficient portfolios in each set of
data. The moments are evaluated according to (43). The results are shown in Table 13

for weekly data and Table 14 for monthly data.

' See inequality (28).
'8 In this test we only examine the first three central moments. We present the kurtosis here for use in our
following tests of the fourth degree polynomial utility.
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(Table 13 and Table 14)
According to the expressions in (42a) and (42b), if either B, or B, is satisfied
along the entire portion of the EV frontier up to a given value of x, then we can

conclude that portion of the EV frontiers is SSD-undominated. The results are shown in
Table 15 and Table 16.
(Table 15 and Table 16)

From these two tables we can see that the third moment test produces more SSD-
undominated portfolios along the EV frontier following the quadratic utility-efficient
portfolios, which means that the SSD-efficient portion along the EV frontier becomes
larger. This result indicates that although these portfolios are not SSD-efficient on the
basis of the quadratic utility function, they are efficient within the class of third degree
polynomial utilities which are also increasing and concave as required by the SSD
assumptions; consequently, these portfolios are also SSD-efficient and on the EV frontier.

In the tables below we provide a comparison of the results from our three tests:
the LP tests, the quadratic utility test, and the third moment test.

(Table 17 and Table 18)

5. New Maximization Programs on the Third and Fourth Central Moments

Here we derive SSD-undominated portfolios within the third degree polynomial
utility class by applying the formulas provided in (41a), (41b), (43), and (44). As defined,
the optimal portfolios created in this program are SSD-undominated, and may or may not
be on the EV frontier. Since we have already proved that some portfolios on the upper
part of the EV frontier are quadratic utility-efficient, here we exclude these portfolios

which have already satisfied the quadratic utility efficiency criterion , and focus our
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attention on the portfolios will be potentially satisfied with the higher degree polynomial

utility functions. The results of the maximization for SSD on the third central moment

are provided in Table 19 and 20 for weekly data, and Table 21 and 22 for monthly data.
(Table 19, Table 20, Table 21, and Table 22)

We find that for the weekly data, 4,(m(A1)) and 4,(m(A1)) retain the same values
given different values of ¢ in our program. As a result, there is only one new optimal
portfolios found in the weekly data, and it is portfolio (0.92459899, 0.00024802). In
terms of the monthly data, the program provides better results and produces more new
optimal portfolios.

Next, we apply a similar maximization program for SSD on the fourth central
moment. The formulas we use were introduced in (43), (45), and (46). The results are
shown in Table 23 for the weekly data and Table 24 for the monthly data.

(Table 23 and Table 24)

Similarly, we find that for the weekly data, D(m(A))retains the same value for
different 2. The only optimal portfolio found is the same as the one found on the third
central moment. It is portfolio (0.92459899, 0.00024802). As for the monthly data,
roughly 4 new optimal portfolios are found with this program.

To provide a better picture regarding the relative positions of the newly found
optimal portfolios compared with the portfolios on the EV frontier, we plot those new
SSD-efficient portfolios on the third and fourth central moments with the EV frontier.

The plots are provided in Figure 7 and Figure 8 for our weekly and monthly data,

respectively.

(Figure 7 and Figure 8)
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With the help of plots, we can see that although the polynomial utilities of the
new optimal portfolios are maximized, these SSD-undominated portfolios still seem to be
on the EV frontier. Such findings are consistent with the results of Kroll, Levy, and
Markowitz (1984).

For a further step, we also program the maximization for TSD on the fourth
central moment provided by the formulas in (43), (47a), (47b), and (48). Similarly, the
new optimal portfolios are TSD-undominated and may or may not be on the EV frontier.
The results for the weekly data are shown in Table 25 and 26, and for the monthly in
Table 27 and 28.

(Table 25, Table 26, Table 27, and Table 28)

From the tables we can see that for the weekly data, the maximization also
generates only one new TSD-undominated portfolio which is the same portfolio
generated for SSD on the third and fourth moments. However, the program generates
more new optimal portfolios for our monthly data.

We also plot the new TSD-undominated portfolios with EV frontier in Figure 9
and Figure 10 for the weekly and monthly data, respectively.

(Figure 9 and Figure 10)

All these newly TSD-efficient portfolios appear to be on the EV frontier, which is
not surprising given that they are also SSD-efficient portfolios. It is likely that even
though we have maximized the utilities of those portfolios without constraining them to
lie on the EV-efficient set, the actually maximized utilities are very close to the ones
generated with the EV-efficient set, which is only restricted to the first two moments, the

mean and the variance.
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We have also noticed that for the monthly data, the TSD-undominated portfolios
do move downwards on the EV frontier. Therefore, the SSD-efficient portion of the EV

frontier has been further extended.
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IX. Conclusions and Future Research

In this paper, we have examined the SSD efficiency of the EV frontier by both
theoretical and empirical arguments. The theory asserts that if the EV efficient portfolios
are quadratic utility-efficient, they are also SSD-efficient. Those SSD- (and quadratic
utility-) efficient portfolios have higher-means and higher-variances on the upper portion
of the EV frontier, which may indicate that investors with low risk aversion make similar
decisions in selecting their portfolios with the EV or the SD approach.

Then, we introduced the concept of polynomial utility functions on the central
moments. We used some of Perrakis’ unpublished results to develop the theoretical
inequalities on the central moments of return distributions of a pair of portfolios. These
are the necessary conditions for one portfolio to dominate the other in the second- or
third-degree. Based on these inequalities, we developed the conditions for SSD
efficiency on the third central moment, which can extend the SSD-efficient portion of the
EV frontier following the portion which is quadratic utility-efficient. We do a similar
extension with the fourth central moment without constraining the portfolios to lie on the
EV efficient set. Therefore, those new generated portfolios may or may not be on the EV
frontier.

Empirically, we used Post’s LP tests to examine the SSD efficiency for the
portfolios on the EV frontier. Our tests include the weekly returns of U.S. equity funds
from 2003 to 2004, and the monthly returns from 2001 to 2005. The LP tests show that
the higher portion of the EV frontier is SSD-efficient while the lower portion is not.
Then, our quadratic utility test confirms a very top portion of the EV frontier is SSD-

(and quadratic utility-) efficient. The test for SSD on the third central moment has found
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more undominated-portfolios on the EV frontier following the quadratic utility-efficient
portfolios, but there is still a portion of the EV frontier which has not been proven to be
SSD-efficient by the moment tests, even though they are SSD-efficient in the LP tests.
Finally, we conducted the maximization tests for SSD on the third and the fourth
moments and for TSD on the fourth moment. We found that the new optimal SSD- and
TSD-undominated portfolios appear to be very close to or on the EV frontier, but the
SSD-efficient portion of the EV frontier has been further extended. Presumably, higher
moment functions may be able to account for the remaining undominated portion of the

EV frontier.
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Table 1: Fund profiles for the 45 U.S. equity funds in our weekly data

Fund Name Symbol  Fund Family Category Morning Star Rating
Analytic Defensive Equity Instl ANDEX  Analytical Funds Large Blend 5 Stars
Cambiar Opportunity Inst CAMOX  Cambiar Funds Large Blend 5 Stars
Everest America EVAMX  Everest Large Blend 5 Stars
Exeter Equity EXEYX Exeter Funds Large Blend 4 Stars
Exeter Pro-Blend Maximum Term A EXHAX Exeter Funds Large Blend 5 Stars
Amana Mutual Funds Trust Growth AMAGX  Amana Large Growth 5 Stars
Brandywine Blue BLUEX Brandywine Large Growth 5 Stars
FMI Provident Trust Strategy FMIRX FMI Funds Large Growth 5 Stars
Fidelity Contrafund FCNTX Fidelity Group Large Growth 5 Stars
Gartmore U.S. Growth Leaders C GXXCX  Gartmore Large Growth 5 Stars
American Beacon Lg Cap Value AMR AAGAX  American Beacon Large Value 5 Stars
Diamond Hiil Large Cap A DHLAX Diamond Hill Funds Large Value 5 Stars
DFA U.S. Large Cap Value Il DFCVX Dimensional Investment Group  Large Value 5 Stars
Dodge & Cox Stock DODGX Dodge & Cox lLarge Value 5 Stars
AXA Enterprise Deep Vailue Y EDVYX Enterprise Large Value 3 Stars
CGM Focus CGMFX CGM Mid-Cap Blend 5 Stars
Fidelity Advisor Leveraged Co Stk A FLSAX Fidelity Advisor Funds Mid-Cap Blend 5 Stars
Kinetics Paradigm WWNPX  Kinetics Mid-Cap Blend 5 Stars
Kinetics Paradigm Adv A KNPAX Kinetics Mid-Cap Blend 5 Stars
Fidelity Advisor Leveraged Co Stk T FLSTX Fidelity Advisor Funds Mid-Cap Blend 5 Stars
Bridgeway Aggressive Investors 1 BRAGX  Bridgeway Mid-Cap Growth 4 Stars
First American Mid Cap Growth Opp B FMQBX  First American Mid-Cap Growth 5 Stars
Leuthold Select Industries LSLTX Leuthold Mid-Cap Growth 4 Stars
Rainier Small/Mid Cap Equity RIMSX Rainer Mid-Cap Growth 5 Stars
AFBA Five Star Mid Cap A AFMAX  AFBA Five Star Fund Mid-Cap Growth 3 Stars
Artisan Mid Cap Value ARTQX Artisan Mid-Cap Value 5 Stars
" Fidelity Select Construction&Housing FSHOX  Fidelity Group Mid-Cap Value 4 Stars
Goldman Sachs Mid Cap Value Instl GSMCX  Goldenman Sachs Mid-Cap Value 5 Stars
Goldman Sachs Mid Cap Value Service GSMSX  Goldenman Sachs Mid-Cap Value 5 Stars
AXP Mid Cap Value A AMVAX RiverSource Mid-Cap Value 5 Stars
Gartmore Small Cap C GSXCX  Gartmore Small Blend 5 Stars
Harbor Smalt Cap Value Instl HASCX Harbor Smali Blend 5 Stars
Keeley Small Cap Value KSCVX Keeley Small Blend 5 Stars
Oppenheimer Small & Mid Cap Value N QSCNX  Oppenheimer Funds Small Blend 5 Stars
RS Partners RSPFX RS Funds Small Blend 5 Stars
Bridgeway Micro-Cap Limited BRMCX  Bridgeway Small Growth 5 Stars
Managers AMG Essex Sm/Mic Cp Gr MBRSX  Managers Funds Small Growth 5 Stars
Turner Micro Cap Growth TMCGX  Turner Investment Partners Small Growth 5 Stars
Wasatch Micro Cap WMICX  Wasatch Small Growth 5 Stars
Bridgeway Ultra-Small Company BRUSX  Bridgeway Small Growth 5 Stars
Constellation TIP Small Cap Value Opp TSVOX Constellation Small Value 5 Stars
Hotchkis and Wiley Small Cap Value A HWSAX  Hotchkis and Wiley Small Value 5 Stars
Hotchkis and Wiley Small Cap Value C  HWSCX  Hotchkis and Wiley Small Value 5 Stars
Allianz NFJ Small Cap Value A PCVAX Allianz Funds Small Value 4 Stars
Allianz NFJ Small Cap Value Admin PVADX  Allianz Funds Small Value 4 Stars
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Table 2: Fund profiles for the 24 U.S. equity funds in our monthly data

Fund Name Symbol  Fund Family Category Morning Star Rating
Analytic Defensive Equity Instl ANDEX  Analytical Funds Large Blend 5 Stars
Exeter Pro-Blend Maximum Term A EXHAX Exeter Funds Large Blend 5 Stars
Amana Mutual Funds Trust Growth AMAGX  Amana Large Growth 5 Stars
Brandywine Blue BLUEX Brandywine Large Growth 5 Stars
FMi Provident Trust Strategy FMIRX FMi Funds Large Growth 5 Stars
Fidelity Contrafund FCNTX Fidelity Group Large Growth 5 Stars
American Beacon Lg Cap Value AMR AAGAX  American Beacon Large Value 5 Stars
DFA U.S. Large Cap Value Il DFCVX Dimensional Investment Group  Large Value 5 Stars
Dodge & Cox Stock DODGX  Dodge & Cox Large Value 5 Stars
CGM Focus CGMFX CGM Mid-Cap Blend 5 Stars
Kinetics Paradigm WWNPX  Kinetics Mid-Cap Blend 5 Stars
Bridgeway Aggressive Investors 1 BRAGX  Bridgeway Mid-Cap Growth 4 Stars
Rainier Small/Mid Cap Equity RIMSX Rainer Mid-Cap Growth 5 Stars
Fidelity Select Construction&Housing FSHOX  Fidelity Group Mid-Cap Value 4 Stars
Goldman Sachs Mid Cap Value Instl GSMCX  Goldenman Sachs Mid-Cap Value 5 Stars
Goldman Sachs Mid Cap Value Service GSMSX  Goldenman Sachs Mid-Cap Value 5 Stars
Keeley Small Cap Value KSCVX  Keeley Small Blend 5 Stars
RS Partners RSPFX RS Funds Small Blend 5 Stars
Bridgeway Micro-Cap Limited BRMCX  Bridgeway Small Growth 5 Stars
Turner Micro Cap Growth TMCGX  Turner Investment Partners Small Growth 5 Stars
Wasatch Micro Cap WMICX Wasatch Small Growth 5 Stars
Bridgeway Ultra-Small Company BRUSX  Bridgeway Small Growth 5 Stars
Alilianz NFJ Small Cap Value A PCVAX  Allianz Funds Smali Value 4 Stars
Allianz NFJ Small Cap Value Admin PVADX Allianz Funds Small Value 4 Stars
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Table 3: Simple statistic description for the weekly data

Fund Mean Std Dev Minimum Maximum Skewness Kurtosis
ANDEX 1.002680 0.011910 0.963160 1.042010 -0.157316 1.259687
CAMOX 1.004220 0.018840 0.955720 1.079670 0.201190 2.366611
EVAMX 1.003340 0.015440 0.963470 1.055200 -0.003877 0.838520
EXEYX 1.003210 0.018150 0.954110 1.069320 -0.032392 1.343178
EXHAX 1.003610 0.016120 0.958680 1.060690 -0.000519 1.015005
AMAGX 1.004810 0.018680 0.952460 1.048510 -0.203052 0.140037
BLUEX 1.004070 0.018580 0.948740 1.048700 -0.506343 0.820118
FMIRX 1.003780 0.016790 0.973930 1.072120 0.654917 1.488968
FCNTX 1.003660 0.016020 0.959010 1.053050 -0.027231 0.629467
GXXCX 1.005060 0.024600 0.940510 1.081630 0.080304 0.431946
AAGAX 1.004270 0.017920 0.950930 1.071120 0.154478 1.684610
DHLAX 1.004470 0.016680 0.958900 1.068590 0.026529 1.879961
DFCVX 1.004140 0.019580 0.949760 1.079210 0.106386 1.689832
DODGX 1.004250 0.017620 0.955570 1.069480 0.222784 1.449907
EDVYX 1.003280 0.017280 0.954970 1.072860 0.333034 2.170313
CGMFX 1.006160 0.031130 0.923800 1.084840 -0.127966 -0.270200
FLSAX 1.008280 0.026720 0.927660 1.078390 -0.218596 0.488926
WWNPX 1.005610 0.016810 0.966220 1.048670 -0.111659 -0.248492
KNPAX 1.005560 0.016850 0.965090 1.047970 -0.141481 -0.252886
FLSTX 1.008230 0.026730 0.926990 1.079030 -0.217782 0.521336
BRAGX 1.005400 0.031020 0.912140 1.074810 -0.241686 0.351272
FMQBX 1.004500 0.021500 0.939000 1.060170 -0.216117 0.788386
LSLTX 1.005380 0.024970 0.930970 1.060770 -0.275612 0.465621
RIMSX 1.005300 0.023640 0.934830 1.061610 -0.211054 0.353958
AFMAX 1.004940 0.025090 0.941130 1.084110 0.079510 0.641087
ARTQX 1.005080 0.015430 0.965920 1.054450 0.115920 0.406986
FSHOX 1.006140 0.023420 0.952230 1.086670 0.233610 0.964184
GSMCX 1.003890 0.017820 0.930390 1.059440 -0.466498 2.654938
GSMSX 1.003800 0.017830 0.929480 1.059560 -0.488136 2.782229
AMVAX 1.005810 0.022730 0.943790 1.089670 0.176138 1.239766
GSXCX 1.004780 0.026720 0.899880 1.059360 -0.594206 1.659173
HASCX 1.005730 0.020070 0.954960 1.053080 -0.017820 0.246085
KSCVX 1.006010 0.019450 0.944620 1.046670 -0.208171 0.347768
QSCNX 1.006010 0.018940 0.961270 1.057610 0.133173 -0.026064
RSPFX 1.007510 0.017240 0.963590 1.041430 -0.281116 -0.163914
BRMCX 1.006160 0.030890 0.912610 1.073730 -0.265355 0.255688
MBRSX 1.006460 0.029570 0.917860 1.065010 -0.103482 0.141389
TMCGX 1.006050 0.024970 0.936610 1.058870 -0.198363 0.353270
WMICX 1.005260 0.024310 0.940000 1.057550 -0.175573 -0.087828
BRUSX 1.008380 0.027080 0.920000 1.076830 -0.502744 0.775387
TSVOX 1.006360 0.020820 0.944960 1.052560 -0.125707 0.157873
HWSAX 1.007090 0.021150 0.955700 1.069470 -0.039428 0.347052
HWSCX 1.006950 0.021140 0.955670 1.069300 -0.030277 0.329713
PCVAX 1.004540 0.017480 0.962990 1.045750 0.086396 -0.116052
PVADX 1.004480 0.017440 0.963400 1.045430 0.105154 -0.104891
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Table 4: Simple statistic description for the monthly data

Fund Mean Std Dev Minimum Maximum Skewness Kurtosis
ANDEX 1.004360 0.027110 0.930300 1.058760 -0.572632 0.273508
EXHAX 1.002540 0.042700 0.892830 1.091740 -0.352407 0.404024
AMAGX 1.005230 0.051290 0.886380 1.110600 -0.549696 0.149544
BLUEX 1.002630 0.038640 0.914530 1.073440 -0.130299 -0.765256
FMIRX 1.003160 0.039680 0.859810 1.134770 -0.137022 3.429875
FCNTX 1.006410 0.030200 0.931760 1.064870 -0.447162 -0.336950
AAGAX 1.005840 0.040910 0.883060 1.086920 -0.562412 0.900881
DFCVX 1.006260 0.044270 0.888390 1.093750 -0.636883 0.911205
DODGX 1.009090 0.038460 0.902990 1.081620 -0.565732 0.920444
CGMFX 1.019760 0.088340 0.760180 1.248740 -0.494675 1.185555
WWNPX 1.012280 0.032630 0.940730 1.103870 0.192841 0.656755
BRAGX 1.006190 0.060320 0.862400 1.134000 -0.211542 -0.305014
RIMSX 1.008320 0.052410 0.891280 1.109650 -0.288130 -0.607590
FSHOX 1.014970 0.056360 0.867950 1.130540 -0.543479 0.450478
GSMCX 1.009430 0.035390 0.919040 1.074280 -0.603853 0.106137
GSMSX 1.009050 0.035320 0.918580 1.073840 -0.600438 0.096605
KSCVX 1.014540 0.045250 0.878090 1.116420 -0.639579 0.983352
RSPFX 1.016040 0.049330 0.856290 1.110750 -0.806119 1.413181
BRMCX 1.014670 0.063530 0.832950 1.116190 -0.625626 0.373735
TMCGX 1.012500 0.053330 0.833940 1.096640 -0.704132 1.008122
WMICX 1.013560 0.063310 0.830290 1.130100 -0.542006 0.134257
BRUSX 1.020040 0.061930 0.843900 1.177720 -0.289101 0.385919
PCVAX 1.012030 0.039350 0.800870 1.084640 -0.856156 1.282240
PVADX 1.011950 0.039300 0.899530 1.084980 -0.838780 1.295119
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Figure 3: EV frontier for the weekly data with of the selected EV efficient portfolios for SSD
efficiency test

EV Frontier (Weekly)

1.009

1.008

1.007

1.008

1.008

1.004

1.003 4

1.002

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008
Variance
Table 5: Results from the LP tests for the weekly data
H c? LP Tests: &(1), y(1) SSD Efficiency

1.008380 0.000734 0 Yes
1.008301 0.000634 0 Yes
1.008199 0.000572 0 Yes
1.008001 0.000466 0 Yes
1.007851 0.000401 0 Yes
1.007750 0.000364 0 Yes
1.007500 0.000297 0 Yes
1.007200 0.000276 0 Yes
1.006800 0.000253 0 Yes
1.006500 0.000237 0 Yes
1.006000 0.000214 0 Yes
1.005229 0.000184 0 Yes
1.005199 0.000183 0.000682 No
1.005000 0.000176 0.009641 No
1.004500 0.000163 0.032138 No
1.004000 0.000153 0.054642 No
1.002723* 0.000142* 0.111859 No

* The last portfolio is the minimum-variance portfolio (MVP) on the EV frontier
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Figure 4: EV frontier for the monthly data with the selected EV efficient portfolios for SSD efficiency
test
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Table 6: Results from the LP tests for the monthly data
H o’ LP Tests: &(1), y(1) SSD Efficiency

1.020040 0.003835 0 Yes
1.020001 0.003447 0 Yes
1.019001 0.002868 0 Yes
1.018001 0.002426 0 Yes
1.017001 0.002044 0 Yes
1.016001 0.001722 0 Yes
1.015001 0.001461 0 Yes
1.014001 0.001257 0 Yes
1.013001 0.001111 0 Yes
1.012000 0.001009 0 Yes
1.011000 0.000919 0 Yes
1.010000 0.000840 0.000885 No
1.009500 0.000806 0.012881 No
1.008500 0.000748 0.036870 No
1.007500 0.000708 0.060855 No
1.006500 0.000686 0.084856 No
1.005796* 0.000681* 0.101719 No

* The last portfolio is the minimum-variance portfolio (MVP) on the EV frontier
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Table 7: Comparison of the non-normalized weekly data with the normalized weekly data:

b=1.089674
Before Normalization After Normalization
ﬂ 0_2 ’u 0_2
1.008380 0.000734 0.925396 0.000612
1.008301 0.000634 0.925324 0.000529
1.008199 0.000572 0.925230 0.000478
1.008001 0.000466 0.925048 0.000388
1.007851 0.000401 0.924911 0.000334
1.007750 0.000364 0.924818 0.000303
1.007500 0.000297 0.924589 0.000247
1.007200 0.000276 0.924313 0.000230
1.006800 0.000253 0.923946 0.000211
1.006500 0.000237 0.923671 0.000198
1.006000 0.000214 0.923212 0.000178
1.005229 0.000184 0.922504 0.000153
1.005199 0.000183 0.922477 0.000152
1.005000 0.000176 0.922294 0.000147
1.004500 0.000163 0.921835 0.000136
1.004000 0.000153 0.921377 0.000127
1.002723 0.000142 0.920205 0.000118

Table 8: Comparison of the non-normalized monthly data with the normalized monthly data:

b=1.248736
Before Normalization After Normalization
lu 0_2 Iu O_Z
1.020040 0.003835 0.816858 0.002418
1.020001 0.003447 0.816827 0.002174
1.019001 0.002868 0.816026 0.001809
1.018001 0.002426 0.815225 0.001530
1.017001 0.002044 0.814424 0.001289
1.016001 0.001722 0.813623 0.001086
1.015001 0.001461 0.812823 0.000921
1.014001 0.001257 0.812022 0.000793
1.013001 0.001111 0.811221 0.000701
1.012000 0.001009 0.810419 0.000636
1.011000 0.000919 0.809619 0.000579
1.010000 0.000840 0.808818 0.000530
1.009500 0.000806 0.808417 0.000508
1.008500 0.000748 0.807617 0.000472
1.007500 0.000708 0.806816 0.000446
1.006500 0.000686 0.806015 0.000432
1.005796 0.000681 0.805451 0.000430
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Table 9: Results of the quadratic utility efficiency for the EV efficient portfolios (weekly data)

M f 2(1—p) f'=2(1-y) Quadratic Utility Efficiency
0.925396 1.7714172 0.149208 1.621964 Yes
0.925324 0.651571 0.149353 0.502218 Yes
0.925230 0.559800 0.149540 0.410261 Yes
0.925048 0.477207 0.149903 0.327304 Yes
0.924911 0.385436 0.150179 0.235258 Yes
0.924818 0.321197 0.150364 0.170833 Yes
0.924589 0.110125 0.150823 -0.040698 No
0.924313 0.056898 0.151374 -0.094476 No
0.923946 0.050474 0.152108 -0.101634 No
0.923671 0.045885 0.152658 -0.106773 No
0.923212 0.041297 0.153576 -0.112279 No
0.922504 0.032120 0.154991 -0.122871 No
0.922477 0.028449 0.155046 -0.126597 No
0.922294 0.027531 0.155411 -0.127880 No
0.921835 0.022025 0.156329 -0.134304 No
0.921377 0.016519 0.157247 -0.140728 No
0.920205 0.000143 0.159590 -0.159448 No

Table 10: Results of the quadratic utility efficiency for the EV efficient portfolios (monthly data)

H f! 2(1—- ) f'=2(1-p)  Quadratic Utility Efficiency
0.816858 76.773628 0.366284 76.407343 Yes
0.816827 1.585603 0.366347 1.219257 Yes
0.816026 0.384389 0.367948 0.016440 Yes
0.815225 0.336340 0.369550 -0.033210 No
0.814424 0.288291 0.371151 -0.082860 No
0.813623 0.248251 0.372753 -0.124502 No
0.812823 0.192194 0.374355 -0.182160 No
0.812022 0.144146 0.375956 -0.231811 No
0.811221 0.096097 0.377558 -0.281461 No
0.810419 0.080081 0.379161 -0.299080 No
0.809619 0.072073 0.380763 -0.308690 No
0.808818 0.056857 0.382364 -0.325507 No
0.808417 0.053654 0.383165 -0.329511 No
0.807617 0.042443 0.384767 -0.342324 No
0.806816 0.025626 0.386368 -0.360743 No
0.806015 0.008008 0.387970 -0.379962 No
0.805451 0.000596 0.389097 -0.388502 No
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Table 11: Comparison of the SSD efficiency from LP tests and quadratic utility test (weekly data)

u 2 SSD Efficiency SSD Efficiency
o (LP tests) (Quadratic utility)
0.925396 0.000612 Yes Yes
0.925324 0.000529 Yes Yes
0.925230 0.000478 Yes Yes
0.925048 0.000388 Yes Yes
0.924911 0.000334 Yes Yes
0.924818 0.000303 Yes Yes
0.924589 0.000247 Yes No
0.924313 0.000230 Yes No
0.923946 0.000211 Yes No
0.923671 0.000198 Yes No
0.923212 0.000178 Yes No
0.922504 0.000153 Yes No
0.922477 0.000152 No No
0.922294 0.000147 No No
0.921835 0.000136 No No
0.921377 0.000127 No No
0.920205 0.000118 No No

Table 12;: Comparison of the SSD efficiency from LP tests and quadratic utility test (monthly data)

U 2 SSD Efficiency SSD Efficiency
o (LP tests) (Quadratic utility)
0.816858 0.002418 Yes Yes
0.816827 0.002174 Yes Yes
0.816026 0.001809 Yes Yes
0.815225 0.001530 Yes No
0.814424 0.001289 Yes No
0.813623 0.001086 Yes No
0.812823 0.000921 ‘ Yes No
0.812022 0.000793 Yes No
0.811221 0.000701 Yes No
0.810419 0.000636 Yes No
0.809619 0.000579 Yes No
0.808818 0.000530 No No
0.808417 0.000508 No No
0.807617 0.000472 No No
0.806816 0.000446 No No
0.806015 0.000432 No No

0.805451 0.000430 No No




Table 13: The first four central moments of the tested EV efficient portfolios for the weekly data

K o’ S(p) K(u)
0.925396 0.000612 7 50E-06 1.38E-06
0.925324 0.000529 -6.47E-06 9.25E-07
0.925230 0.000478 -5.68E-06 7.49E-07
0.925048 0.000388 -4.16E-06 4.81E-07
0.924911 0.000334 -3.12E-06 3.45E-07
0.924818 0.000303 -2.46E-06 2.77E-07
0.924589 0.000247 -1.08E-06 1.70E-07
0.924313 0.000230 -1.05E-06 1.43E-07
0.923946 0.000211 9.74E-07 1.20E-07
0.923671 0.000198 -9.20E-07 1.06E-07
0.923212 0.000178 -8.29E-07 8.63E-08
0.922504 0.000153 -6.90E-07 6.58E-08
0.922477 0.000152 6.84E-07 6.53E-08
0.922294 0.000147 -6.48E-07 6.17E-08
0.921835 0.000136 -5.55E-07 5.53E-08
0.921377 0.000127 -4.61E-07 5.21E-08

0.9202056 0.000118 -2.12E-07 5.75E-08

Table 14: The first four central moments of the tested EV efficient portfolios for the monthly data

H o’ S(p) K(p)
0.816858 0.002418 -3.35E-05 1.90E-05
0.816827 0.002174 -5.66E-05 1.45E-05
0.816026 0.001809 -4.58E-05 9.97E-06
0.815225 0.001530 -3.04E-05 6.95E-06
0.814424 0.001289 -1.87E-05 4.88E-06
0.813623 0.001086 -1.00E-05 3.50E-06
0.812823 0.000921 -4.33E-06 2.61E-06
0.812022 0.000793 -8.96E-07 2.04E-06
0.811221 0.000701 1.16E-06 1.69E-06
0.810419 0.000636 5.00E-07 1.40E-06
0.809619 0.000579 -1.26E-07 1.14E-06
0.808818 0.000530 -7.01E-07 9.23E-07
0.808417 0.000508 -9.90E-07 8.33E-07
0.807617 0.000472 -1.76E-06 6.89E-07
0.806816 0.000446 -2.64E-06 5.94E-07
0.806015 0.000432 -3.31E-06 5.42E-07

0.805451 0.000430 -3.65E-06 5.30E-07
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Table 17: Comparison of the SSD efficiency from LP tests, quadratic utility test, and on the third
moment (weekly data)

1 o2 () SSD Efficiency SSD Eff_icier]gy SSI_:) Efficiency

(LP tests) {Quadratic utility) (Third moment)
0.925396 0.000612 Yes Yes Yes
0.925324 0.000529 Yes Yes Yes
0.925230 0.000478 Yes Yes Yes
0.925048 0.000388 Yes Yes Yes
0.924911 0.000334 Yes Yes Yes
0.924818 0.000303 Yes Yes Yes
0.924589 0.000247 Yes No Yes
0.924313 0.000230 Yes No No
0.923946 0.000211 Yes No No
0.923671 0.000198 Yes No No
0.923212 0.000178 Yes No No
0.922504 0.000153 Yes No No
0.922477 0.000152 No No No
0.922294 0.000147 No No No
0.921835 0.000136 No No No
0.921377 0.000127 No No No
0.920205 0.000118 No No No

Table 18: Comparison of the SSD efficiency from LP tests, quadratic utility test, and on the third
moment (monthly data)

r o2 (1) SSD Efficiency SSD Eff.icier_ngy SSI_) Efficiency

(LP tests) (Quadratic utility) {Third moment)
0.816858 0.002418 Yes Yes Yes
0.816827 0.002174 Yes Yes Yes
0.816026 0.001809 Yes Yes Yes
0.815225 0.001530 Yes No Yes
0.814424 0.001289 Yes No Yes
0.813623 0.001086 Yes No Yes
0.812823 0.000921 Yes No Yes
0.812022 0.000793 Yes No No
0.811221 0.000701 Yes No No
0.810419 0.000636 Yes No No
0.809619 0.000579 Yes No No
0.808818 0.000530 No No No
0.808417 0.000508 No No No
0.807617 0.000472 No No No
0.806816 0.000446 No No No
0.806015 0.000432 No No No
0.805451 0.000430 No No No
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Table 19: The maximization for SSD on the third central moment with weekly data: Results from
maximizing 4, (m(1)).

P f(w) 4, (m(A)) m(2) o’ (4)

0.92458854 0.00024734 0.99951414 0.92459899 0.00024802
0.92431322 0.00022999 0.99951414 0.92459899 0.00024802
0.92394617 0.00021091 0.99951414 0.92459899 0.00024802
0.92367088 0.00019777 0.99951414 0.92459899 0.00024802
0.92321198 0.00017810 0.99951414 0.92459899 0.00024802
0.92250442 0.00015324 0.99951414 0.92459899 0.00024802
0.92247689 0.00015241 0.99951414 0.92459899 0.00024802
0.92229429 0.00014713 0.99951414 0.92459899 0.00024802
0.92183541 0.00013584 0.99951414 0.92459899 0.00024802
0.92137658 0.00012733 0.99951414 0.92459899 0.00024802
0.92020479 0.00011827 0.99951414 0.92459899 0.00024802

Table 20: The maximization for SSD on the third central moment with weekly data: Results from

maximizing 4, (m(1)).

H f 4,(m(2)) m(4) o’ (4)
0.92458854 0.00024734 1.98268587 0.92459899 0.00024802
0.92431322 0.00022999 1.98268587 0.92459899 0.00024802
0.92394617 0.00021091 1.98268587 0.92459899 0.00024802
0.92367088 0.00019777 1.98268587 0.92459899 0.00024802
0.92321198 0.00017810 1.98268587 0.92459899 0.00024802
0.92250442 0.00015324 1.98268587 0.92459899 0.00024802
0.92247689 0.00015241 1.98268587 0.92459899 0.00024802
0.92229429 0.00014713 1.98268587 0.92459899 0.00024802
0.92183541 0.00013584 1.98268587 0.92459899 0.00024802
0.92137658 0.00012733 1.98268587 0.92459899 0.00024802
0.92020479 0.00011827 1.98268587 0.92459899 0.00024802
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Table 21: The maximization for SSD on the third central moment with monthly data: Results from
maximizing 4, (m(A4)) .

H S () 4,(m(1)) m(4) o’ (1)
0.81522509 0.00152972 0.99281350 0.81522542 0.00153066
0.81442428 0.00128885 0.99287305 0.81442453 0.00128955
0.81362347 0.00108616 0.99290854 0.81362300 0.00108664
0.81282266 0.00092143 0.99292069 0.81282300 0.00092220
0.81202185 0.00079288 0.99292069 0.81281709 0.00092113
0.81122098 0.00070052 0.99292068 0.81281706 0.00092112
0.81041945 0.00063604 0.99292069 0.81281706 0.00092112
0.80961863 0.00057924 0.99292069 0.81281704 0.00092112
0.80881781 0.00052972 0.99292069 0.81281704 0.00092112
0.80841741 0.00050801 0.99292069 0.81281707 0.00092112
0.80761660 0.00047159 0.99292069 0.81281704 0.00092112
0.80681579 0.00044626 0.99292069 0.81281708 0.00092113
0.80601498 0.00043242 0.99292069 0.81281707 0.00092112
0.80545140 0.00042957 0.99292069 0.81281707 0.00092112

Table 22: The maximization for SSD on the third central moment with monthly data: Results from

maximizing 4, (m(1)).

H S () 4,(m(4)) m(A) o’ (A)
0.81522509 0.00152972 1.90034520 0.81678891 0.00210993
0.81442428 0.00128885 1.90034525 0.81676028 0.00209801
0.81362347 0.00108616 1.90034525 0.81677088 0.00210242
0.81282266 0.00092143 1.90034526 0.81676346 0.00209934
0.81202185 0.00079288 1.90034519 0.81679238 0.00211138
0.81122098 0.00070052 1.90034518 0.81679212 0.00211127
0.81041945 0.00063604 1.90034519 0.81679213 0.00211127
0.80961863 0.00057924 1.90034519 0.81679186 0.00211116
0.80881781 0.00052972 1.90034519 0.81679199 0.00211122
0.80841741 0.00050801 1.90034519 0.81679213 0.00211127
0.80761660 0.00047159 1.90034519 0.81679186 0.00211116
0.80681579 0.00044626 1.90034519 0.81679225 0.00211133
0.80601498 0.00043242 1.90034519 0.81679225 0.00211133
0.80545140 0.00042957 1.90034519 0.81679213 0.00211127
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Table 23: The maximization for SSD on the fourth central moment with weekly data

M D, D(m(4)) m(A) )
0.92458854 0.00024734 0.999071555 0.92459899 0.00024802
0.92431322 0.00022999 0.999071555 0.92459899 0.00024802
0.92394617 0.00021091 0.999071555 0.92459899 0.00024802
0.92367088 0.00019777 0.999071555 0.92459899 0.00024802
0.92321198 0.00017810 0.999071555 0.92459899 0.00024802
0.92250442 0.00015324 0.999071555 0.92459899 0.00024802
0.92247689 0.00015241 0.999071555 0.92459899 0.00024802
0.92229429 0.00014713 0.999071555 0.92459899 0.00024802
0.92183541 0.00013584 0.999071555 0.92459899 0.00024802
0.92137658 0.00012733 0.999071555 0.92459899 0.00024802
0.92020479 0.00011827 0.999071555 0.92459899 0.00024802

Table 24: The maximization for SSD on the fourth central moment with monthly data

H S () D(m(4)) m(2) )
0.81522509 0.00152972 0.98718420 0.81522513 0.00152988
0.81442428 0.00128885 0.98724711 0.81442475 0.00128920
0.81362347 0.00108616 0.98727739 0.81362300 0.00108631
0.81282266 0.00092143 0.98728022 0.81329478 0.00101429
0.81202185 0.00079288 0.98728022 0.81329477 0.00101429
0.81122098 0.00070052 0.98728022 0.81329476 0.00101428
0.81041945 0.00063604 0.98728022 0.81329476 0.00101428
0.80961863 0.00057924 0.98728022 0.81329476 0.00101428
0.80881781 0.00052972 0.98728022 0.81329476 0.00101428
0.80841741 0.00050801 0.98728022 0.81329476 0.00101428
0.80761660 0.00047159 0.98728022 0.81329476 0.00101428
0.80681579 0.00044626 0.98728022 0.81329476 0.00101428
0.80601498 0.00043242 0.98728022 0.81329476 0.00101428
0.80545140 0.00042957 0.98728022 0.81329476 0.00101428

77



3L

6160
0

10000

__ . . - 20000

£000°0
acy'lwv = 5
Jsjuol AJ —e— 3
@

#0000

0000

1 90000

10000

ejeq Aploom

(e1ep AP9IM) JANUOIJ AT Y} M SPUIWOW [EI)UID Y)INO0J pue pAIy) 3y} uo soijojriod pajeurwiopun-(qSs PIziwixeu 3y) Jo sjojd :L dinsig



ueay

¥08°0
0
S000°0
1000
ayv . v ,‘ 34\ . M
v e ” , . , , . . - - 51000 &
Januoi A3 —e— ®
Z00'0
SZ000
£00°0

ejeq Alyjuoiy

(e3ep ATquour) 19N U0IJ AF Y} YHM SJUIWOW [EI)UID Y)IN0J PUB PATY) 3Y) UO Soljoj)10d pajeuimwopun-(SS PIZIWIXBW Y} JO $)0[J 8 NS



Table 25: The maximization for TSD on the fourth central moment with weekly data: Results from
maximizing £, (m(1)).

H f(u) E,(m(2)) m(4) o’ (D)

0.92458854 0.00024734 2.99809783 0.92459899 0.00024802
0.92431322 0.00022999 2.99809783 0.92459899 0.00024802
0.92394617 0.00021091 2.99809783 0.92459899 0.00024802
0.92367088 0.00019777 2.99809783 0.92459899 0.00024802
0.92321198 0.00017810 2.99809783 0.92459899 0.00024802
0.92250442 0.00015324 2.99809783 0.92459899 0.00024802
0.92247689 0.00015241 2.99809783 0.92459899 0.00024802
0.92229429 0.00014713 2.99809783 0.92459899 0.00024802
0.92183541 0.00013584 2.99809783 0.92459899 0.00024802
0.92137658 0.00012733 2.99809783 0.92459899 0.00024802
0.92020479 0.00011827 2.99809783 0.92459899 0.00024802

Table 26: The maximization for TSD on the fourth central moment with weekly data: Results from

maximizing £, (m(4)) .

I f () E,(m(2) m(A) " (4)
0.92458854 0.00024734 0.99995872 0.92459899 0.00024802
0.92431322 0.00022999 0.99995872 0.92459899 0.00024802
0.92394617 0.00021091 0.99995872 0.92459899 0.00024802
0.92367088 0.00019777 0.99995872 0.92459899 0.00024802
0.92321198 0.00017810 0.99995872 0.92459899 0.00024802
0.92250442 0.00015324 0.99995872 0.92459899 0.00024802
0.92247689 0.00015241 0.99995872 0.92459899 0.00024802
0.92229429 0.00014713 0.99995872 0.92459899 0.00024802
0.92183541 0.00013584 0.99995872 0.92459899 0.00024802
0.92137658 0.00012733 0.99995872 0.92459899 0.00024802
0.92020479 0.00011827 0.99995872 0.92459899 0.00024802

80



Table 27: The maximization for TSD on the fourth central moment with monthly data: Results from
maximizing £, (m(4)).

H f(w) E,(m(2)) m(4) o’ (4)

0.81522509 0.00152972 2.97276118 0.81522598 0.00153053
0.81442428 0.00128885 2.97296223 0.81442429 0.00128948
0.81362347 0.00108616 2.97307868 0.81362347 0.00108666
0.81282266 0.00092143 2.97311021 0.81293270 0.00094244
0.81202185 0.00079288 2.97311020 0.81294217 0.00094418
0.81122098 0.00070052 2.97311021 0.81293142 0.00094219
0.81041945 0.00063604 2.97311021 0.81293185 0.00094227
0.80961863 0.00057924 2.97311021 0.81293242 0.00094238
0.80881781 0.00052972 2.97311021 0.81293183 0.00094227
0.80841741 0.00050801 2.97311021 0.81293243 0.00094238
0.80761660 0.00047159 2.97311021 0.81293184 0.00094227
0.80681579 0.00044626 2.97311021 0.81293181 0.00094227
0.80601498 0.00043242 2.97311021 0.81293181 0.00094227
0.80545140 0.00042957 2.97311021 0.81293185 0.00094227

Table 28: The maximization for TSD on the fourth central moment with monthly data: Results from

maximizing £, (m(1)) .

7 () E,(m(A)) m(4) o’(A)
0.81522509 0.00152972 0.99849211 0.81522500 0.00153290
0.81442428 0.00128885 0.99852935 0.81442428 0.00129151
0.81362347 0.00108616 0.99855634 0.81362347 0.00108726
0.81282266 0.00092143 0.99857342 0.81282266 0.00092312
0.81202185 0.00079288 0.99858091 0.81202185 0.00079489
0.81122098 0.00070052 0.99858127 0.81181549 0.00076986
0.81041945 0.00063604 0.99858127 0.81181519 0.00076983
0.80961863 0.00057924 0.99858127 0.81181569 0.00076989
0.80881781 0.00052972 0.99858127 0.81181506 0.00076982
0.80841741 0.00050801 0.99858127 0.81181485 0.00076979
0.80761660 0.00047159 0.99858127 0.81181518 0.00076983
0.80681579 0.00044626 0.99858127 0.81181562 0.00076989
0.80601498 0.00043242 0.99858127 0.81181526 0.00076984
0.80545140 0.00042957 0.99858127 0.81181527 0.00076984
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