TOWARDS AN ASPECT-ORIENTED SOFTWARE
DEVELOPMENT MODEL WITH QUALITY
MEASUREMENTS

MOHAMAD KASSAB

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

DECEMBER 2005

© MoHAMAD KAssAB, 2006

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-14325-8
Our file Notre référence
ISBN: 0-494-14325-8
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Towards an Aspect-Oriented Software Development Model with

Quality measurements

Mohamad Kassab

An effective software development approach must harmonize the need to build
the functional behavior of a system with the need to clearly model the associated
nonfunctional requirements that affect parts of the system or the system as a whole.

Aspect-Oriented Software Development (AOSD) aims at providing a systematic
support for the identification, separation, representation (through proper modeling
and documentation), and composition of crosscutting requirements (both functional
and nonfunctional) as well as mechanisms that can make them traceable throughout
the software development. In this work, we discuss a sequence of systematic activities
towards an early consideration of specifying and separating crosscutting requirements.
This approach would make it possible to identify and resolve conflicts between the
crosscutting requirements earlier in the development cycle and to promote traceability
of broadly scoped requirements throughout system development, maintenance and
evolution.

In addition, we propose sets of quality measurements to be associated with the
AOSD activities in order to assist stakeholders with quantitative evidences on the
quality of the modeling decisions throughout the development process, and of the

final product.

il

Acknowledgments

I would like to thank my supervisor, Dr. Olga Ormandjieva, for her technical sup-
port throughout my studies. She guided my work with good advice and insightful
comments.

I would also like to thank my family for encouraging my pursuit of higher educa-
tion. They have always provided me with comfort and support whenever I encoun-

tered any problems.

v

Contents

List of Figures viii
List of Tables P
1 Introduction 1
1.1 Introduction 1
1.2 Major Contributions e 4
1.3 Thesis Outline. 4

2 Background 5
2.1 Crosscutting and separation of concerns 6
2.2 Aspect-Oriented Programming 12
2.2.1 AOP History 13

2.2.2 AOP mechanism 14

2.2.3 AOQOP Existing Frameworks 17

2.2.4 AOP example with Aspectd 19

2.3 Aspect-Oriented Software Development 23

3 Related Work, Open Problems and Motivation 25
3.1 Relatedwork 25
3.2 Openproblems 29
3.3 Motivation e 29

4 An AOSD model for specifying and separating concerns from re-

quirements to implementation

4.1 The AOSD Model« . e

4.2

4.1.1 Requirements Elicitation Phase
4.1.2 Analysis and Crosscuttings Realization
4.1.3 Composing Requirements
414 Design e
Casestudy
4.2.1 Requirements Elicitation
422 Identifying NFRs.
4.2.3 Analysis and Crosscutting Realization
4.2.4 Composing Requirements,
425 Design
426 Discussiono

5 Providing Quality Measurements for AOSD
5.1 Extended AOSD Model

5.2 Requirements Analysis Measurements

5.3

5.2.1
5.2.2
5.2.3

Background and Related Work on Cohesion and Coupling
Measurement of cohesion oL

Measurement of coupling

Interaction Points measurements

5.3.1
9.3.2
5.3.3
5.3.4
5.3.5

Relative Size

Local conflict
Interdependency o oL
Independency

Complexity Profile of the Interaction Points

5.4 Design Measurements Lo

vi

5.4.1 Separation of requirements Lo 80

54.2 Lackofcohesion 83

543 Coupling 83

55 CaseStudy 83
5.5.1 Requirements Analysis Measurements 84

5.5.2 Interaction Points Measurements 84

5.5.3 Design Measurements, 86

6 Conclusions 90
Bibliography 91

vii

List of Figures

1 Initial picture of crosscuttings
2 Initial picture of separation of concerns
3 Symptoms of crosscuttings
4 AOP weaving mechanism
5 Components, Aspects and JoinPoints
6 AOSDmodel
7 Softgoal Interdependency Grpah [CNYMOO]
8 Tracing the dynamic behavior: Requirements Elicitation level
9 Tracing the dynamic behavior: Analysis level
10 Tracing the static behavior: Analysislevel
11 Integrated Use Case model
12 Tracing the static behavior: Composing Requirements level

13 Operationalization in SIG
14 Tracing the dynamic behavior: Design level
15 Tracing the static behavior: Design level
16 Use Case diagram for the Invoice System
17 SSD for Place Order
18 SDD for View Pending Orders
19 (Partial) Domain Model for Invoicing System
20 Composed Use Case Model,

viil

21
22
23
24
25
26
27

Composed Domain Model, 62

Communication diagram for orderProduct() with crosscuttings 64
Communication diagram for viewOrders() with crosscuttings 65
Extended AOSD model 69
Invoicing System Domain Model: revisited 85
Requirements Scattering Over Classes 88
Lack of Cohesion in Component 89

1X

Chapter 1

Introduction

1.1 Introduction

The complexity of a software system is determined partly by its functionality and
partly by the quality constraints on its development. According to the software engi-
neering standard IEEE Std.830-1998 [83098], Functional Requirements (FRs) should
define the fundamental actions that must take place in the software in accepting
and processing the inputs and in processing and generating the outputs. These are
generally listed as shall statements starting with “The system shall...”.

On the other hand, Non-Functional Requirements (NFRs) presents a systematic
and pragmatic approach to building quality into software systems. According to IEEE
Std.830-1998, NFR is defined as a software requirement that describes not what the
software will do, but how the software will do it, for example, software performance
requirements, software external interface requirements, software design constraints,
and software quality attributes. During requirements engineering, NFRs tend to be
stated in terms of the qualities or the constraints on the tasks which are FRs as the

former affect the semantics of the latter.

An iterative software development process such as the one defined by the Uni-
fied Software Development Process (UP) [JBR99] is organized into a series of short
fixed-length mini-projects called iterations, where each iteration represents a complete
development cycle and is composed of a number of phases: requirements, analysis,
design, implementation and testing. In the Rational Unified Process (R)UP, NFRs
are listed in the Supplementary Specifications Document which starts during the
Inception phase and normally gets refined in the subsequent phases over a number
of iterations throughout development. However, the UP does not provide a special
vocabulary or notation to support requirements specifications. Similarly the IEEE
Standard 830-1998 describes a list of NFRs to be included in a Software Requirements
Document. The FURPS+ model [GB92] used by the (R)UP refers to the following
categories of requirements: Functional, Usability, Reliability (replaced by Depend-
ability), Performance, Supportability and others. NFRs that fall into the URPS cat-
egories (FURPS excluding functional requirements) are called quality requirements.
NFRs outside URPS are called constraints or pseudo-requirements.

Once a software system has been deployed, it is normally straightforward to ob-
serve whether or not a certain FR has been met, as the areas of success or failure in
their context can be rigidly defined. However, the same is not true for NFRs as these
can refer to quantities that can be interdependent and difficult to measure. A de-
composition approach proposed by [CNYMOO] encompasses the refinement of NFRs
into more detailed NFRs. Software quality models are used to determine to what
extent software components satisfy the requirements of a given context of use [HF97].
A quality model is defined by means of general characteristics of software, which is
further decomposed into sub-characteristics in a multilevel hierarchy; at the bottom
of the hierarchy appear measurable software attributes. Furthermore, an interde-
pendency may pose a tradeoff between NFRs. For example, as reliability increases,

performance or cost are affected. In cases where conflicts between NFRs tend to arise,

developers must work out a satisfactory level of balance (tradeoffs) between them.

Usually, NFRs are difficult to address in many applications, and are among the
most expensive requirements to deal with. This is particularly true since NFRs are
subjective in their nature and they have a broad impact on the system as a whole.
Most approaches including the ones we discussed above, handle NFRs separately
from FRs of a system. This shows evidence that the integration is difficult to achieve
and usually accomplished at the later phases of the software development process.
In addition, these approaches fail in addressing the presentation of how these NFRs
can affect several FRs simultaneously. Since this is not supported from the require-
ments phase to the implementation phase, some of the software engineering principles
such as abstraction, localization, modularization, uniformity and reusability, can be
compromised. Furthermore, the resulting system is more difficult to maintain and
evolve.

This discussion highlights the needs to think of a new approach that would be
capable of capturing and representing both FRs and NFRs from the requirement
phase and map them properly to next phases of the software development.

In this thesis, we propose a sequence of systematic steps under the umbrella of
the Aspect-Oriented Software Development (AOSD); would be introduced in the next
chapter, towards an early consideration of specifying and integrating FRs and NFRs.
Our approach makes it possible to identify and manage conflicts between NFRs earlier
in the development cycle and promotes traceability of broadly scoped requirements
throughout system development, maintenance and evolution.

In addition, we propose sets of quality measurements to be associated with the
AOSD activities in order to assist stakeholders with quantitative evidences to better
map or iterate system modules during the development process and to better set the

design decisions for the analyzed requirements.

1.2 Major Contributions

This thesis offers the following contributions:

e It proposes a new approach to identify, separate, and compose requirements

starting from early requirements elicitation to implementation phase.

o It provides clearly defined sets of measurements at three breakpoints during the

development process: Analysis, Composing Requirements and Design.

e It provides a new traceability mechanism through the software development
process that enables stakeholders from tracing requirements with static and

dynamic visions towards the developed software.

e It provides a new mechanism to compose requirements that assist in integrating

the captured main requirements with the crosscutting requirements.

Our work in AOSD and measurements has been published in [KCO05], [OKC05]
and [KOCO5].

1.3 Thesis Outline

This thesis is organized as follows:

e Chapter 2 provides the background.

Chapter 3 discusses the related work, highlights the open problems and provides

the motivation.

Chapter 4 presents our solution illustrated on a case study.

Chapter 5 extends our solution with sets of measurements.

Chapter 6 outlines the conclusions and the research directions.

Chapter 2

Background

“Let me try to explain to you, what to my taste is characteristic for all
intelligent thinking. It is, that one is willing to study in depth an aspect
of one’s subject matter in isolation for the sake of its own consistency,
all the time knowing that one is occupying oneself only with one of the
aspects. We know that a program must be correct and we can study it
from that viewpoint only; we also know that is should be efficient and we
can study its efficiency on another day [...] But nothing is gained — on
the contrary — by tackling these various aspects simultaneously. It is what
I sometimes have called the separation of concerns”, Edsger W. Dijkstra

[Dij76].

A software system is the realization of a set of concerns which are the primary
motivation for organizing and decomposing software into manageable and comprehen-
sible parts. Concerns come from a variety of sources, for example clients, developers,
managers, administrators, firmware or hardware portions of a system and business
context. Different viewpoints can have the same concerns, but the associated require-
ments may differ. For example, in a banking application the teller and loan officer

may be concerned about access control. For a teller, the requirement maybe “teller

should not access loan information”. For loan officer the requirement maybe “loan
officer should not manipulate loan amount”. Even though both view points have
access control concern, the requirements are different.

When Object-Oriented Programming (OOP) entered the mainstream of software
development, it had a great impact on how software was developed as developers
tackle larger systems with less time by modeling their concerns as groups of interact-
ing objects and classes, which are generally derived from the entities in the require-
ments specification and use-cases. However, OOP is essentially static as a change
in requirements can have an implication on development timelines. As discussed in
the previous chapter, some requirements like NFRs need to be addressed in multiple
modules of the system or they may need to be addressed in the system as a whole.
Consequently, the code to handle these requirements may be mixed in with the core
logic of a huge number of modules, resulting in bad implications on the software
quality.

Aspect-Oriented Programming (AOP) is a new promising programming paradigm
that allows programmers to separate concerns and thus allows them to dynamically
modify the static behavior of the object-oriented model. Just as objects in the real
world can change their states during their lifecycles, an application can adopt new
characteristics as it develops.

This chapter aims to provide the background of the basic concepts associated with

the AOP paradigm.

2.1 Crosscutting and separation of concerns

Despite the success of object-orientation in the effort to achieve separation of concerns,
current OOP techniques support one dimensional decomposition of the problem fo-

cusing on the notion of a class. Such decomposition is not a good candidate to handle

Component 1 Component 2 Component 3

e
RS SRR RS

Figure 1: Initial picture of crosscuttings

the complex interaction of components as it leaves certain properties without being
localized in single modular units and as a result their implementation cuts across the
decomposition of the system. This is the phenomenon of crosscutting. An initial
picture of crosscutting is shown in Figure 1.

The limitation in the modularization techniques that imposes only one way at a
time on how the program could be modularized is called the tyranny of the dominant
decomposition [TOHSMS99]. Multi-dimensional separation of concerns is aimed at
breaking the tyranny to reduce software complexity and improve comprehensibility;
promote traceability; facilitate reuse, non-invasive adaptation, customization, and
evolution; and simplify component integration. With separation of concerns we would

like to move from the picture in Figure 1 to one in Figure 2.

Component 1 Component 2 Component 3

i

|
7

~
d

\

il
/

1]

U/ARN

/

11
/1

R

i

Figure 2: Initial picture of separation of concerns

As an illustrative example for the crosscutting, the code below is used based on
the Observer design pattern.

Class Point1 implements a geometrical point with x and y coordinates as instance
variables and get/set methods. Class Subject is the part of the Observer pattern that
maintains the list of observers for each subject, using the vector observers. This class

is responsible for the notification of the observers by the method Notify().

class Pointl extends Object{

private int_x, _y;

x;}

void setX(int xx} {_x

int getX() {return _x;}

void setY (int y) {_y = y;}

int getY () {return _y;}

class Subject{

private Vector observers;

public Subject() {/x ... */}

public void attach (Observer o)

{ observers.add(o);}

public void Notify()

{ /* foreach observer.update() */}

class Point2 extends Subject { (1)
public void setX(int x)
{ _x=x;
Notify(); } (2)
public void setY(int y)
{y=y;
Notify();} (3

Class Point2 displays a possible enhancement of class Pointl, named Point2, to
incorporate the subject role using inheritance. This class has the following responsi-

bilities:

1. After the execution of each method that changes the state of the object, the

notification of the registered observers must take place. This is shown by lines

(2) and (3).

2. This class inherits from class Subject to make the method Notify accessible for

class Pointl.

As the source shows, the adaptation of the subject role results in crosscutting
code (lines 2 and 3). To avoid this problem, other modularization and composition
techniques should be used.

Crosscutting is not a property of the implementation only but it propagates up to

10

Requirements

Implementation

scattering

tangling

Figure 3: Symptoms of crosscuttings

early stages of the software development. The conflict that tends to arise in Object-
Oriented Software Development (OOSD), when we map requirements from its N-

dimensional space to the single dimensional solution space constitutes the original

source of crosscuttings (see Figure 3).

Crosscutting imposes two symptoms on software development:

1. Code scattering: implementation of some concerns not well modularized but

cuts across the decomposition hierarchy of the system.

2. Code tangling: a module may contain implementation elements (code) for var-

10uS concerns.

As a result of crosscutting, the benefits of OOP cannot be fully utilized, and

developers are faced with a number of implications:

1.

Poor tractability of requirements: Mapping from n-dimensional space to a single

dimensional implementation space.

Lower Productivity: Simultaneous implementation of multiple concerns in one

module breaks the focus of developers.

Strong coupling between modular units in classes that are difficult to understand

and change.

Low degree of code reusability. Core functionality impossible to be reused with-

out related semantics, already embedded in component.

. Low level of system adaptability.

Changes in the semantics of one crosscutting concern are difficult to trace among

various modules that it spans over.

Programs are more error prone.

. Difficult evolution.

2.2 Aspect-Oriented Programming

Aspect-Oriented Programming is a collective term that refers to a growing family of

approaches and technologies that provide better linguistic mechanism for separation

of concerns by supplying the process of software development with a second axis of

decomposition that enables the identification and separation of core functionality and

crosscutting requirements. Implementation of an AOP language seeks to encapsulate

crosscutting concerns through the introduction of a new construct called an aspect.

So, we can define an aspect as a modular unit of crosscutting implementation that

encapsulates behaviors that affect multiple classes into reusable modules.

12

2.2.1 AOP History

It is hard to choose where to begin a history of AOP as many researchers were working
on improving modularity for decades [FECAQ4]. The first main approach to improve
software modularization under the “Aspect” umbrella is the one popularized by Xe-
rox PARC team in 1997, led by Gregor Kiczales who is currently at the University
of British Columbia, where he works on software modularity research. The team
had invented AspectJ which is the most popular AOP language nowadays. The Xe-
rox group’s work was integrated into the Eclipse Foundation’s Eclipse Java IDE in
December 2002. This helped Aspect] become one of the most widely-used aspect-
oriented languages. The team of Xeroc PARC had worked previously on metaobject
and reflection with ideas evolving to the modularization of ”crosscutting” concerns.

Meanwhile, in 1993, a work titles “Subject-Oriented Programming” was published
by a team from IBM T.J. Watson Research Center, led by William Harrison and
Harold Ossher. Subject-oriented programming is an extension of OOP that supports
building systems with different subjective perspectives on the objects of the system.
For an example, an employee in the domain (perspective) of a payroll application
may be quite different from an employee in the domain of a contact information
system. Subject-oriented programming is a program composition technology that
creates object-oriented system integrating these subjective perspectives. It can also
add extensions to an existing system in a non invasive way.

At the University of Twente in The Netherlands, Mehmet Aksit and his team
had been working on Composition Filters since the early 1990s. With this approach,
behavior is modularized in “filters” that can be used to capture and enhance the
execution of object behavior.

Karl Lieberherr at Northeastern University in the US defined the Demeter Method
and the adaptive programming in the mid 1990s that provides abstractions of the

class structure and navigation to support better separation of this knowledge from

13

an operation’s behavior.
Today, AOP technologies are rapidly expanding and successively applied to cross-
cuttings. In spite of that, AOP is still quite a new paradigm, as there are lots of

places where AOP can bring improvement.

2.2.2 AOP mechanism

The steps to successful aspect-oriented programming comprise:

1. Aspectual decomposition: identify core functionality and crosscutting concerns

(aspects).
2. Implement each concern (relatively) separately.
3. Provide rules of composition between components and aspects.

4. Composition: can be achieved by a number of ways; the most dominant way is

a linguistic approach:

(a) linguistic mechanisms (constructs) to explicitly capture aspects.

(b) provide special compilers (weavers) to combine components and aspects

based on the rules provided in step 3.

The sequence of steps results in an easy-to-use solution woven from smaller solu-
tions. Figure 4 illustrates the weaving process. In this process, the original code does
not need to know about any functionality the aspect has added; it needs only to be
recompiled without the aspect to regain the original functionality.

In that way, AOP complements OOP, not replacing it, by facilitating another type
of modularity that pulls together the widespread implementation of a crosscutting
concern into a single unit: aspect. Composition rules that would be specified in step

3 define two things:

14

Weaver

Executable

Composition Rules

Figure 4: AOP weaving mechanism

15

C1 c2 C3 Cn

M ®
A2
~O— O
A3 -~
J
An O) ,J\ N
N N N

(:) JOIN POINTS

Figure 5: Components, Aspects and JoinPoints

1. Points of communication between components and aspects (joinpoints).
2. The semantics of aspects to be performed on certain joinpoints.

The relationship between components, aspects and joinpoints is illustrated in Figure
5.

Aspect-oriented technology has many potential benefits. It improves performance
because the operations are more succinct and it allows programmers to spend less
time rewriting the same code. As a sequence of the modularity improvement, AOP
facilitates providing less tangled and less scattered code. In addition, it prompts good
maintenance and higher level of adaptability. AOP may also be a great addition to
quality professionals’ toolboxes. Using an AOP language, we might be able to test

application code automatically without disturbing the code. This would eliminate

16

a possible source of error. Overall, AOP enables better encapsulation of distinct

procedures and promotes future interoperation.

2.2.3 AOP Existing Frameworks

The concept of AOP is not bound to a specific programming language, and even
not to OOP paradigm. Proposals for AOP with functional, logical and procedural
programming can be found in the literature. The following is a list of tools that

support AOP with the different languages:

Tools for Java

1. Aspect]

2. The AspectBench Compiler for AspectJ (abc)
3. dynaop

4. JBOSS

5. AspectWerkz

6. The Spring Framework
7. JMangler

8. MixJuice

9. PROSE

10. ArchJava

11. JAC

12. Hyper/J

17

Tools for C/C++

1. AspectC++

2. XWeaver project

Tools for Cf / VB.NET

1. AspectDNG

2. Aspectf

Tools for PHPaspect

1. Aspect-Oriented PHP

Tools for Common Lisp

1. AspectL

Tools for Cocoa

1. AspectCocoa

Tools for Python

1. LightWeight Python AOP

2. Logilab’s aspect module

3. Python /Transwap AOP Tutorial
4. PEAK

5. Pythius

Even though AOP has been implemented in different languages, the language that
gains a great interest of the research community is the Java language. Currently,
AspectJ is the most notable AOP technology. Aspect] was created at Xerox PARC
as a seamless aspect-oriented extension to the Java programming language. AspectJ

is a superset of Java, so each valid Java program is also a valid AspectJ program.

2.2.4 AOP example with AspectJ

In this subsection we will show how to use AspectJ to trace the code. The code below
depicts the bounded buffer example. A class Buffer contains mutator and accessor

methods:

1. Mutators : put(), get()

2. Accessors: isFull(), isEmpty()

public class Buffer {

private String[] BUFFER;

int putPtr; //keep track of puts
int getPtr; //keep track of gets
int counter;

int capacity;

Buffer (int capacity){}

public boolean isEmpty() {}

public boolean isFull() {}

public void put (String s) {
if (isFull())
System.out.println(Error: Buffer full);

elseq{

19

BUFFER [putPtr++] = s;

counter++;

public String get(){
if (isEmpty())
return Error: Buffer empty;
else{
counter—-—;

return BUFFER[getPtr++];

Every time we call a mutator method we want to display a message before the
call for tracing purposes.

We have to take three steps to implement, our solution in AspectJ:

1. Identify places in the code where we want to insert the tracing method. This is

called defining join points in AspectJ.
2. Write the tracing code which is displaying a message in this example.

3. Compile the new code and integrate into the system.

Define the join points

A joinpoint is a well-defined point in the code at which our concerns crosscut the

application. In this example, we need to define two join points to capture any calls

20

to put() or get() in Buffer class. The joinpoint captures an execution point after it

evaluates a method’s arguments, but before it calls the method itself.

call(public void Buffer.put(String)).
call(public String Buffer.get()).

In AspectJ, we group join points into pointcuts. We may use logical operators in

the definition of pointcuts in order to combine join points:

1. (OR operator): True if either one (or both) join points are captured by the

expression.
2. (AND operator): True only if both join points are captured by the expression.

3. I (NOT operator): Specifies a pointcut not captured by the specified join point.

We define a pointcut named “mutators” that combines both join points:

pointcut mutators() : call(public void Buffer.put(String)) ||

call(public String Buffer.get()) ;

Write the tracing code

The code to implement the tracing is similar to any method in Java, but it is placed
with a new type, called an aspect. The aspect is the mechanism we use to encapsulate

code to a specific concern. The implementation for the the tracing is shown below:

public aspect Tracer{
pointcut mutators(): call(public void Buffer.put(String)) ||
call(public String Buffer.get());
before() :mutators(){

System.out.println("----- Mutator method called");

21

The aspect structure is similar to a class in Java. The aspect is typically placed
in its own file, just like Java class. Following the pointcuts, we have a section code
that is similar to a method in regular Java code. This is called advice in Aspectl.
An advice must be defined with respect to a pointcut, in this example we define an

advice to mutators. There is three ways to associate an advice with a pointcut:

1. Before: runs just before the pointcut.

2. After: runs just after the pointcut(maybe after normal return, after throwing

an exception or after returning either way from a joinpoint).

3. Around: runs instead of the pointcut, with the provision for the pointcut to

resume normal execution through proceed().

In AspectJ, pointcuts and advice together define the composition (weaving) rules.

Compile the code

Now that we have written the code, we need to compile it and integrate it into the
existing system. For our example, we have a simple test class “BufferDemo” with a

main method as shown below:

public class BufferDemo{ public static void main(String[] args){

Buffer buffer = new Buffer(10); buffer.put("Hello");

Buffer.put("there"); System.out.println(buffer.get());

System.println(buffer.get()); }

22

In order to incorporate our aspect into the system, we add the aspect source code
to the project and build with the AspectJ compiler, ajc. The compiler takes the
aspect and creates class files that contain the advice code. Then, calls to the appro-
priate methods in these class files are woven into the original application code. With
the current release of AspectJ, this weaving process takes place at the Java bytecode
level. The output displayed out of executing BufferDemo with integration of aspect

Tracer is shown below:

————— Mutator method called.
————— Mutator method called.
————— Mutator method called.
Hello

————— Mutator method called.

there

2.3 Aspect-Oriented Software Development

While AOP supports separation of concerns at the code level, AOSD has extended
AQP to provide a systematic support for the identification , separation , representa-
tion (through proper modeling and documentation), and composition of crosscutting
concerns as well as mechanism that make them traceable throughout software devel-
opment.

Although, initially the focus was merely on aspects at the programming level,

recently a considerable amount of research has been focusing to identify and model

23

aspects in the early phases of software development. In the next chapter, we will

provide an overview for selected researches on AOSD.

24

Chapter 3

Related Work, Open Problems and

Motivation

Despite a common and stable notion of aspects in the implementation level, the
notion of aspect in the early levels of the development, also called early aspects, is
not consolidated yet. In this chapter we will present an overview of the different
techniques around early aspects modeling. This chapter aims at defining the open
research issues in current AOSD techniques and providing motivation to work on our

solution.

3.1 Related work

Current aspect-oriented approaches either concentrate on serving as a general purpose
architecture modeling language within a particular domain, or support the analysis
of one specific NFR of a system (e.g., performance or security) in a way that is not
necessarily applicable to other NFRs and with an ignorance to possible existence
of crosscutting FRs. In addition, these approaches do not fully support a smooth
transition among the requirements, analysis and the design phases.

In [RSMAO2] and [RMAO3], the authors propose an approach for modularizing

25

and composing crosscutting concerns. The approach involves identifying require-
ments using stakeholder’ viewpoints, use-cases/scenarios, goals or problem frames.
The approach basically uses a set of matrices consisting of viewpoints and concerns
represented in XML. Even though the authors show that some NFRs can crosscut
viewpoint Speciﬁéations, it is not clear how NFRs arise. The identification of the
dimension of a candidate aspect (its influence on certain aspects of the system) is
not performed in a systematic way in the paper. Scenarios tend to be treated as
single modules (or black boxes) that have to be composed with crosscutting concerns.
However, simple composition rules between scenarios and crosscutting requirements
cannot be always applicable as relationships between them are normally not clean-
cut, this approach does not show the propagation of a scenario into a potentially
large set of components inside analysis and design and the (normally complex) rules
of composition between individual components and aspects. In fact, the influence of
a single aspect policy on different sets of components that collectively implement the
same scenario may be different. Similarly, the same aspect may influence the same
set of components in a number of different ways. In this approach , resolving conflicts
among concerns is recommended through negotiation with stakeholders, which may
not always be applicable as; with the exception of developers, stakeholders are not
interested in system concerns and they may not have the necessary expertise to be
involved in these matters. They would merely want their requirements implemented.

In [BM04], the authors propose an approach to identify and compose crosscutting
concerns. The approach consists of four defined steps: identify concerns , specify
concerns , identify crosscutting concerns and compose concerns. The composition of
concerns is defined using the formal method LOTOS. The approach focuses on the
requirements analysis phase, and contains no traceability support to other phases of
the software development life cycle. It is not clear how we can map the LOTOS

specification to the design and the implementation components. Resolving conflicts

26

among concerns is recommended through negotiation with stakeholders, which may
not always be applicable as we discussed earlier. The approach recommends to de-
fine a dominant concern among the crosscutting concerns at certain joinpoint. The
notion of a dominant concern cannot always be applicable. In complex systems (such
as concurrent systems) two or more (aspects) may affect the same joinpoints with
changing priorities to the execution of the behavior of some component (e.g. method
body), so assigning a hard-coded prioritization will not follow the correct semantics.

In [MABO2] , [PKO04] and [AMBRO02] composition of concerns is accomplished by
extending UML models to integrate the candidate aspects to the functional behav-
ior. Although the composition process must be considered at the meta-level, these
approaches only model certain NFRs in a way that is not necessarily applicable for
other requirements. There is no single formal method available that is well suited for
defining and analyzing numerous NFRs for a system.

In [CDDDO03], the authors provide an approach to support one NFR, namely per-
formance, using the UML and the formal architectural description language Rapide.
Although the authors describe how they plan to extend their approach to support
two or more NFRs, it is an open issue how to consider crosscutting FRs within their
solution.

In [TBBO04], the authors adopt model analysis to detect semantic conflicts between

aspects. The authors introduce two levels of conflicts among aspects:

1. Direct conflict: two or more aspects sharing the same joinpoint or an aspect is

having a joinpoint in another aspect.

2. Indirect conflict: the aspects don’t share a common joinpoint but one aspect

can have an impact on the behavior of the second.

This approach is dedicated to serve the detection of direct conflicts only. Resolving

conflicts is recommended through a process of correction and refinement of the model,

27

which is not clearly investigated.

In [BB99] and [MRG*04], the obliviousness property was adopted to model or-
thogonal aspects independently from each other and from the functional requirements.
The deployment of formal methods in these approaches (e.g. GAMMA, LOTOS, Time
Temporal Logic) to specify the functional behavior and the associated aspects helps
to enable formal validation and facilitates a specification-driven design. On the other
hand, the weaving process is not presented in a precise systematic way and it is limited
to a specific type of requirements that could not necessary be applicable for others.
In addition, it is not clear where and how the formalism is to be placed within the
AOSD framework or how to integrate it with the traditional iterative development
process.

In [NABO4], the authors reason about the semantics of the composition mecha-
nisms of the programming language through an approach that is based on a single
meta-model: Composition Graphs meta-model. While these graphs may provide
a sufficient homogeneous comprehension for the semantics among different program-
ming languages that make them easier to compare and to be transformed, the process
to construct such graphs without existing tools can be tedious. In addition, the graphs
are generated from an existing implementation that we don’t usually have when we
initially develop the application.

There is little work discussed in the literature on measurement in AOSD or AOP.
The first set of object-oriented measures have been introduced in [CK94a]; their AOP
counterparts are reported in [SGF+03]. Both are applicable at a class level from the
design phase. In [Aha02], [ZX04] and [ZX03] the authors introduce a set of measures

for aspect-oriented code complexity based on program dependency analysis.

28

3.2 Open problems

Based on the previous overview, we summarize the open problems in the current

AOSD approaches as follows:

1. No clear defined activity on how to achieve integration among orthogonal /

non-orthogonal FRs and NFRs at certain defined joinpoint.

2. No traceability support: Most of the approaches have a strong focus on a dedi-

cated phase of the software life cycle with no traceability among the phases.

3. No clear and systematic activity to identify and resolve direct and indirect

conflicts among aspects.

4. Strong focus on aspect identification and less work investigating how to model

aspects through the different phases of the development.
5. No clear description on how NFRs arise within AOSD model.

6. Current approaches fail in addressing the crosscutting nature of some NFRs

(i.e. reliability , portability , etc.)

7. Strong focus on considering the crosscutting nature of NFRs without addressing

the possibility of having crosscutting FRs.

3.3 Motivation

To fill the gap raised from the previous open problems, we need to develop a systematic
and precisely defined Aspect-Oriented model that supports not only capturing the
requirements but also analysis and design of multiple functional and non-functional

properties. Our model aims at achieving the following:

1. Eliminate the gap generated out of the diverse nature of FRs and NFRs.

29

2. Establish a systematic way to identify and resolve conflicts among crosscuttings.

3. Establish a smooth transition from requirements phase to the analysis and de-

sign phases.

4. Assist stakeholders with a quantitative analysis of quality in the analysis, design

and implementation models of the software under the development.

In the next two chapters, we will introduce our proposal and illustrate it within a

case study.

30

Chapter 4

An AOSD model for specifying and
separating concerns from

requirements to implementation

An effective software development approach must harmonize the need to build the
functional behavior of a system with the need to clearly model the associated NFRs.
In this chapter, our goal is to develop a systematic and precisely defined aspect-
oriented model towards an early consideration of specifying and separating crosscut-
ting FRs and NFRs. This approach would make it possible to identify and resolve
conflicts between NFRs earlier in the development cycle and can promote traceabil-
ity of broadly scoped requirements through system development, maintenance and

evolution. Our approach is illustrated within a case study.

4.1 The AOSD Model

Qur proposed aspect-oriented model is depicted in Figure 6. The iterative and incre-

mental nature of development is implied even though it is not explicitly captured in

31

] Reqguirements Elicitation

B R

RS - e
WG FRE Y e e e Identifying NFRs
Q Identifying FiRs /)«— ,7—;(\ fying >

- o
—
—. - - — p
‘\, 4‘! ~,
i
. It e

s

L o ~
<~ Specitying FRs }/7 - ,k. Spacifying NEFRs >

—

i S

I

i s

_J L ‘ Analysis and Crosscutting Realization

....... e v -
/"’—_M --..."__._‘\ o m’"'\a
(OO0 Analysis)M’@sscuthng Reahzalion\)
\\ﬁ"*w-..___w_‘__uﬂ’__,,u/" et e e it __,/
™}
J l ; Composing Requirements

i P

(/ Iden!;fylnq Interaction ™ \‘ .,(Défining Conflicts ™
Points S P 9)

S—

L Output L‘.xecutable
‘——J = (\)‘

ey se— N L S N
Design F f Impiemantation)

T Gl S

Figure 6: AOSD model

the diagram. In our discussion, use-case driven activities will be adopted to model the
system. Use-case modeling is a technique for capturing the functional requirements
of the system. A use-case describes the typical interactions between the users of a
system and the system itself that yield a result of value to the user. We argue that
use-cases tend to be more concrete in their representation of the system as they ex-
plicitly state series of interactions between actors and the system. Furthermore, their
representations tend to be easy to map to the next phases in development. Use-cases
are also widely used as part of the de facto standard UML [Lar04].

On other hand, our approach is also applicable with goal-oriented and viewpoint-
oriented driven activities. The supporting templates must be refined though to match

the accompanying nature of activities.

32

In the following list, we will define some terms that we will refer to in our descrip-

tion of the AOSD model:

e Activity: A named process or task that occurs over time and has recognizable
results. In our model, the activity is the constructive unit. Each activity is

having a specific input and output.

e Phase: We refer to phase as a group of one or more activities within the AOSD
model. The phase is a mean to categorize activities based on the general target
they tend to achieve. Our AOSD model is composed of five phases: require-
ments elicitation, analysis and crosscutting realization, composing requirements,

design and implementation.

e Proposal: We refer to proposal as a detailed presentation to the project devel-
oped in response to specified requirements and/or motivation. In our work, we

may use the term “proposal” for our AOSD model.

In this section we will describe the activities and phases that form part of the

model.

4.1.1 Requirements Elicitation Phase

Requirements Elicitation phase is composed of four activities: identifying FRs, spec-
ifying FRs, identifying NFRs and specifying NFRS.

Identifying FRs

Functional requirements capture the intended usage of the system. This usage may
be expressed as services, tasks or functions which the system is required to perform.
The context diagram could be an excellent starting point for capturing the system’s

boundaries, users and FRs. Identifying FRs is a process that involves discussions with

33

stakeholders, reviewing proposals, building prototypes and arranging requirements

elicitation meetings.

Specifying FRs

In this activity, we further refine each usage of the system into a detailed functional
behavior described as a use-case with textual description. Thus, at this stage, each
FR is mapped to one or more use-cases. The outcome of this activity is the comple-
tion of a use-case description for each use-case (Table 1.). Table 1 is similar to the

fully dressed format [Lar04].

34

Table 1. Template to specify use-cases
Use Case No. Unique to the use-case.
Name The name of the use-case.
Priority Importance of the use-case.
Actors Primary and secondary actors.
Precondition Textual description of the condition

that must be satisfied before the use-

case is executed.

Main Scenario

A single and complete sequence of steps
describing an interaction between a

user and a system.

Alternative Sce-

Extensions or alternate courses of main

nario scenario.

Postcondition Textual description of the condition
that must be satisfied after the use case
is executed.

Related Use | Use-cases related to the current use-

Cases case.

Identifying NFRs

Nonfunctional requirements that are relevant to the problem domain are captured
in parallel to the identification of FRs. Even though the elicitation of NFRs can be
accomplished by a number of existing techniques, it is recommended to adopt the
NFR catalog mechanism [CNYMOO] where each entry in the catalog is crosslisted
against the decision of whether it is applicable for the system or not.

We propose the adoption of a matrix (Table 2) that relates the identified NFRs

to the FRs they affect. In the case where an NFR would affect the system as a whole

35

(e.g. portability), all entries in the corresponding column must be checked.

Table 2. Matrix to relate NFRs to FRs
NFR; | NFRy | . . . NFR,

FR, v
FRy | v

FR,

Specifying NFRs

Since NFRs often invite many different interpretations from different people, they
need to be clarified as much as possible through refinements in discussions with the
stakeholders. Consider the development of a simple electronic order processing sys-
tem. The system should receive orders from the customers, issue invoices, ship the
goods, accept payments and issue receipts. In addition to these FRs, the system
should also meet NFRs - good performance, easily extensible, user-friendly, security
and highly reusable. The stakeholders represent NFRs explicitly as softgoals to be
satisfied, i.e., goals to be satisfied not in a clear-cut sense but within acceptable
limits. The best approach to specify NFRs is by using Softgoal Interdependency
Graphs (SIG) [CNYMO0O]. SIG is a hierarchy graph of softgoals (i.e. NFRs) that
shows the interdependencies between them(see Figure 7). Nodes of SIG are NFRs,
and are represented by clouds, and the lines represent decompositions. When all
sub-requirements of a given NFR are needed to achieve that requirement , an AND
relationship is defined with an arc connecting the lines; otherwise, an OR relationship
is defined with two arcs linking the decomposition lines.

By the end of this activity, we further refine table 2 to show the relation of NFRs

defined at the low level of the SIG and use-cases.

36

Security

Integrity
Confidentialty Availabilty
Completeness Accuracy

Figure 7: Softgoal Interdependency Grpah [CNYMO0O]

37

e TEANGIION

~~~~~ » Dependency

Use Case

NFR

Scenario

Figure 8: Tracing the dynamic behavior: Requirements Elicitation level

Table 3. Matrix to relate NFRs to use-cases

NFR; | NFR; | . . .| NFR,
Use-Case; | +/
Use-Cases | +/ v

Use-Case,,

From Requirements Elicitation to Analysis

By the end of this phase, we are supposed to have successfully managed capturing
and specifying FRs and NFRs of the system. We will use a hierarchy structure to
trace the dynamic behavior of the system through the development process. By the
end of this phase, the hierarchy should look similar to what we propose in Figure 8.

We consider a use-case to be a set of scenarios describing instances of the usage

of the system. Each scenario shows the real world concepts (including the system)

38



and the events interchanged between them, ordered in a time sequence. We map the
scenarios to sequence of events that we will define further in the next chapter.

The arrows between high level NFRS and FRs are extracted from the dependencies
described in Table 2; while the arrows between low level NFRs and use-cases are
extracted from Table 3. The arrow signifies that FRs or use-cases are to be provided
through the system with the constraints implied by the associated NFRs. Having a
high level NFR (e.g. X) been associated with a certain FR (e.g. Y) implies that at
least one of the low level NFRs under the hierarchy of X is to be associated with at
least one of the use-cases under the hierarchy of Y.

It is important to keep in mind that the purpose of this hierarchy is to trace the
dynamic behavior of the system and not to model system’s requirements. Modeling

is to be accomplished within the next activities of the AOSD.

4.1.2 Analysis and Crosscuttings Realization

Software requirements analysis is a critical phase of the software development process,
as errors at this stage inevitably lead to later problems in the system design and
implementation. In our AOSD model, the analysis phase is composed of two activities:

OO Analysis and Crosscutting realization.

00 Analysis

The objective of the OO analysis activity is to understand the textual descriptions
(requirements) that have been inducted in previous activities and to abstract the soft-
ware under development into an OO analysis model. Analysis modeling is the formal
or semi-formal presentation of the specification, through which the knowledge and
information included in the textual description of the requirements are transmitted
to the elements of the OO analysis model. The appropriate elements for OO analysis

modeling are: use-case model diagram, System Sequence Diagrams (SSDs), domain

39



model diagram, activity diagram and state charts. In this discussion, we choose to
focus on the first three diagrams to present the static and dynamic visions of the
system. A domain model represents the static view and it illustrates meaningful (to
other modelers) conceptual classes in a problem domain; it is the most important
artifact to create during the OO analysis [Lar04]. On other hand, at this activity, we
model each sequence of events that are mapped from a successful scenarios through
an SSD. An SSD treats a system as a black box, placing emphasis on events that
cross the system boundary from actors to the system and vice-versa. The set of all
required system operations within a SSD is determined by identifying the system

events [CS04].

Crosscutting Realization

To identify the crosscutting nature of certain use-cases we need to take into consid-
eration the information contained in row Related Use Cases in Table 1. If a use-case
is included in several use-cases, then it is crosscutting. In spite of that, it is quite
important to recognize that a certain use-case may seem to be crosscutting when
defined at a certain abstract level, and then it could turn to be not crosscutting if
we break it down to a finer level. It is hard to precisely define the level on which we
shall be standing when defining and specifying use-cases. This issue will be further
discussed in the case study.

On the other hand, the identified NFRs are classified as crosscuttings as they are
considered as global properties of the system and they always crosscut at different
spots of it.

In this phase, crosscutting requirements are not modeled. They are only identified.
These requirements will be modeled at the integration activity during composing

requirements phase.

40



@) Use Case

183, : @ NFR

o . (S) Scenario
Functional crosscutting
realization

Figure 9: Tracing the dynamic behavior: Analysis level

From Analysis to Composing Requirements

The hierarchy structure we proposed before is a good candidate to trace the require-
ments from a dynamic point of view; and it should be updated by the end of this
phase as shown in Figure 9. An arrow between two use-cases explains that the use-
case at the tail of the arrow relies on the use-case at the head of the arrow to be
accomplished.

In order to trace requirements from a static point of view, we need a second
hierarchy structure similar to one proposed in Figure 10. The diagram is built by
relating the concepts modeled in domain model to use-cases they belong to. The
diagram also shows that one concept could be shared among different use-cases. To
see the relationships among the concepts themselves, we must refer to the domain

model diagram.

41



U kr‘

PANR s N

ORGHONG] .
Use Case
NFR
Scenario
Concept

Figure 10: Tracing the static behavior: Analysis level

4.1.3 Composing Requirements

The goal of composing requirements phase is to integrate identified crosscuttings (both
functional and nonfunctional) with the use-case model and the domain model. This
is achieved in a series of four activities: (1) identifying the interaction points at which
crosscutting requirements affect the system, (2) identifying possible conflicts among
requirements at each interaction point, (3) resolving conflicts, and (4) integrating

requirements.

Identifying interaction points

Based on requirements crosscuttings (defined in 4.1.2), we can identify interaction
points in the system where crosscuttings will manifest themselves. We start by defin-
ing the set of requirements R = {UseCases}U {NFRs} , and the set of crosscuttings
C = { crosscutting requirements (CCRs)}C R. We also define the function A which
maps R to set of CCRs as A: R — p(c) , where p is a Powerset. A is supposed to

track those requirements that traverse several other requirements captured by this

42



level of the development cycle. Let » € R, ¢ C C. We define A as: A(r) = ¢, if there
are no crosscutting requirements at r, and A (r) = ¢ otherwise. The set of Interaction
Points 1 is defined as : I = R — {r|A(r) = ¢}

We can illustrate the mapping of each element in I to a list of CCRs (Table 4),

which is provided by function A.

Table 4: Mapping Interaction Points to CCRs

P, Py | .. Py
CCRs | CCRs | ... CCRs

Defining conflicts

Hardly any requirements manifest in isolation, and normally the provision of one
crosscutting requirement may affect the level of provision of another. We refer to this
mutual dependency as non-orthogonality.

W “on

We define a function B for mapping of pairs of CCRs to values “+7, “n op
“?7’:
B . C X C — { “__‘_7?7“_77,(4 ” )“?,, }.

The rules for assigning the signs to the pairs of CCRs are as follows:

1. The value “-” is assigned to a pair of CCRs originating from the set of NFRs that
contribute negatively at the same Interaction Point. This means that one CCR
in the pair is having a negative (damage) effect on the other. The assignment

is based on the experts judgment of the developers.

2. The value “+” is assigned to a pair of CCRs originating from the set of NFRs
that contribute positively if they meet at the same Interaction Point. This
means that one CCR in the pair is having a positive (constructive) effect on the

other. The assignment is based on the experts judgment of the developers.

43



3. The value “” is assigned to a pair of CCRs originating from the set of NFRs
that do not interact. The assignment is based on the experts judgment of the

developers.

4. The “?” value would indicate a lack of information on the contribution; this
might be updated in later phase of the software development lifecycle, or a

subsequent iteration.

5. We assign “” to all pairs of CCRs where at least one CCR originates from the
set of Use-Cases. The rational is that NFRs are usually constraints on Use-
Cases, they do depend on each other, but the nature of this dependency cannot

be positive or negative.

We use Table b as a matrix presentation of the function B.

Table 5. Requirements contribution matrix
i (I (... Iy

I +

Io -

I, | +

Resolving conflicts

For each interaction point P; € I we analyze the set ¢ = A(F;), and study the
contribution among its elements. We are essentially interested in those elements (re-
quirements) that have a mutual negative interaction. We manage conflict resolution
by assigning priorities of execution of the crosscuttings by mapping A(F;) to a se-
quence C,eq, where P; € I . An element in the sequence is either a crosscutting or a

set of crosscuttings. The set notation within C,., indicates that the elements within

44



“{ '} are free to execute in any order relative to this position in the sequence, as
there is no negative contribution identified. The process of mapping is guided by the

expert’s opinion.

Integration

In the integration activity, we compose and model all requirements based on the
collected information from previous activities. We extend the standard UML use-
case diagram with a new stereotype ((CCR)) to abstract the crosscuttings integrated
into the model, and use the ({(include)) relation stereotype to indicate which use-cases

are crosscut by the crosscuttings (see Figure 11).

T ,
( N <<inchide=>
Y )
e i K‘m
'w\“\\
e,
Use Casel I
T e
Ve )
<<include>> }”‘K\% |

/

pr—— T
. - \“‘)'M «<<CCR>>

S aspect]
Use Case2

Figure 11: Integrated Use Case model

The knowledge required for creating the extended use case model is extracted from
Table 4. In Figure 11 , use-casel , use-case2 € [ and aspectl € (A(use-casel) N

A(use-case2)). The algorithm for extending the standard use case model is as follows:

For each use case Pi ,

45



For all crosscutting belongs to A(Pi) {
If crosscutting is not in the use case model,
1- add it with the stereotype << CCR >>.

2- add << include >> relationship from Pi to the crosscutting.}

We extend domain model to include all NFRs that have been elicited earlier. In
Figure 10, we showed how each use-case is mapped to set of concepts. In this activity,
we realize that for each NFR (e.g. X) affects a use-case (e.g. Y), X affects at least
one defined concept under the hierarchy of Y. We have to define which concepts to

be affected by which NFRs without breaking this rule.

From Composing Requirements to Design

The hierarchy structure for the static trace is to be updated by the end of this phase

to look similar to what we propose in Figure 12.

i FR
',;i:ﬁ:
“ @ Use Case
Integféting NFRs in '>
the domain model <O NFR

@ Scenario
N
@ Concept

Figure 12: Tracing the static behavior: Composing Requirements level

46



4.1.4 Design

For each use case in the analysis model, we refine further the system operations
specified in its SSD into communication diagrams showing the design level details on
the interaction between the objects involved in one system operation.
Operationalizations are added further to SIG. Operationalization is defined as a
possible design solution to satisfy the requirement [CNYMOO] and it is represented
with thick dark cloud with an arrow with a positive sign (See Figure 13). In case

the operationalization is chosen to be a method to be implemented then we have to

define:

1. The communication diagrams at which the operatioanlization will be involved.

2. Points of communication between the operationalization and objects in each

communication diagram.

3. Semantics of communication between the Operationalization and objects in each
communication diagram (before, after or around). We refer to this semantics

as composition operators.

If two operationalizations are intended to interact at the same point with the same
composition operator, then we have to assign priorities to avoid a direct conflict. Pri-
orities could be assigned based on c,, defined earlier. If two operationalizations are
defined for the same NFR are to contribute at the same communication point (mes-
sage) with same composition operator, then a further discussion with stakeholders is
required to re-assign priorities.

On other hand, if two use-cases (e.g. X and Y) having a common related use-
case (e.g. Z), then it is of high probability (but not necessary true) that a common
messages exchanged within communication diagrams defined under the hierarchy of

use-case Z exist as common messages exchanged within communication diagrams

47



Security

- Q e

»»»»» Confldentlahty Availability
/’/ \
Completeness Accuracy
Authorize

Figure 13: Operationalization in SIG

defined under the hierarchy of use-cases X and Y. Those common messages will be
recognized in communication diagrams as they present a form of crosscuttings.
We propose to present operationalizations and common messages generated out of
a common functional behavior within communication diagrams using special notation:.
Class diagram is built next using the domain model, and the composed commu-

nication diagrams. The approach is further illustrated on the case study

From Design to Implementation

We choose to map the design components to (Aspect J) code. The hierarchy diagrams
used to trace the static and dynamic vision of the system are further extended to look
similar to what we propose in Figures 14, 15 respectively.

If an NFR is affecting a use-case then one or more of the operatioanlizatins defined
under the hierarchy of that NFR will be affecting the messages defined under the
hierarchy of the use-case.

We are ready to map the design to implementation using the following rules:

48



(e o i 3 b o

e S e et

Ly N

op Operationalization
m Message

Crosscutting

Figure 14: Tracing the dynamic behavior: Design level

. For each class defined in the class diagram, it will be mapped to a class in the

implementation.

. For each operationalization that appears in a communication diagram, it will

be mapped to an aspect.

. For each common message within two or more collaboration diagrams recognized

out of a common functional behavior, it will be mapped to an aspect.

. For each rule in the design that defines at which point in a communication
diagram an operationalization or a common message will be involved (point of

communication), it will be mapped to a joinpoint.

. For each rule in the design that defines the composition operator for an opera-

tionalization or a common message, it will be mapped to an advice.

49



b OP
.. OP

L..0p

op Operationalization

" \ . /4,; o
Crosscuttings m  Method

Figure 15: Tracing the static behavior: Design level

4.2 Case study

This section will illustrate how to apply the proposal in the context of a real system.
The case study is chosen to be a web-based invoicing system. The system is capable
of receiving multiple orders or cancellation requests at the same time. Multiple tellers
can access the system to process orders and change their status from “Pending” to
“Invoiced” if there is a sufficient quantity available; otherwise, the requested order
will wait in a queue until the required quantity becomes available and a teller process
the request. We assume that no multiple products are allowed to be requested in one
order. The system requires its users to have a certain level of privileges to access any
of the above functionalities except when searching for a product. The privileges are

granted automatically upon successful authentication.

50



4.2.1 Requirements Elicitation
Identifying functional requirements

Based on the requirements provided above, we can identify two actors:
1. Customer: Interested in searching the catalog, placing and canceling requests.
2. Teller: Tracks requests from customers and processes orders.

We also identify the following FRs: (1) Search, (2) Place Order, (3) Cancel Order,
(4) View Orders , (5) Process Order and (6) Process Payment.

Specifying functional requirements

In this presentation, we will map each FR to a use-case with the same name. Tables
6 and 7 show how the template described in the model is used for the use-cases Place
Order and View Pending Order. In the rest of this illustration , we will continue

focusing on these two use-cases.

o1



Table 6: Place Order specification

Use Case No. 2

Name Place Order.

Priority Maximum.

Actors Customer.

Precondition Ensure that the Customer is authenticated.

Main Scenario

The user accesses the terminal in order to place an order
for one product. The user specifies the product numbers
to be purchased along with the required quantity. The
customer specifies his payment information at this stage
to be verified and accessed in the process payment use

case.

Alternative Sce-

If the product number placed is wrong, then the proper

nario error message will be displayed and the user will be
asked to search for the products using the search engine
provided.

Postcondition Ensure that a new invoice is created and it is assigned
to a unique invoice number

Related Use | Process Payment.

Cases

92




Table 7: View Pending Orders specification

Use Case No. 5

Name View pending orders.

Priority Maximum,

Actors teller.

Precondition Ensure that the teller is authenticated.

Main Scenario

The teller accesses the system and chooses to view all

pending orders. A list of the pending orders will be

displayed.
Alternative Sce- | None.
nario
Postcondition Ensure that all invoices displayed are in Pending status.
Related Use | None.
Cases
4.2.2 Identifying NFRs

For each entry in the NFR catalog, we decide whether or not it is related to the
invoice system. In this case study, we will present the contribution of the following
NFRs: Scheduling (SCH), Synchronization (SYN), Performance (PER), Multi Access
(MA) and Security (SEC). In Table 8, we relate these requirements to the main FRs

(use-cases in our case).

53



Table 8: Relating NFRs to FRs

SCH | SYN | PER | MA | SEC
FR, vV | V|V
FRo| v | V| V| V]|V
FRs | v | V | V |V |V
FRe | v | v | V[ V]V
FRs | vV | V | V |V |V
PR v vl

Specifying NFRs

As discussed earlier, we further decompose NFR softgoals to a finer level. For ex-
ample, security requirement is broad and abstract, to effectively deal with security
we need to break it down into smaller components, so that the effective solution can
be found. Security can be decomposed into sub-softgoals for the: integrity, confiden-
tiality(CON) and availability (AVA) (see Figure 7). Similarly, performance can be
broken down into space performance and response time (RT). In this study, we will
present the contribution of response time , confidentiality and availability (See Table

9).

Table 9: Relating NFRs to Use-Cases
SCH | SYN | RT | MA | CON | AVA
FR, v | Y Vv
FR, | v | V IV |V |V | V
FR | v | V [V IV |V | V
FRe | v | V IV IV [V |V
FRe | v | vV (V[ V| V |V
FRe VI VIV |V




4.2.3 Analysis and Crosscutting Realization
OO Analysis

The use-case model in Figure 16 illustrates the context of the system in terms of FRs
and how they relate to the actors. Use-cases Place Order and Cancel Order have

been refined to factorize the Process Payment as a common functionality.

N\
\
Process Order

Figure 16: Use Case diagram for the Invoice System

The corresponding SSDs for Place Order and View Pending Orders use-cases are
shown in Figures 17 and 18. The corresponding (partial) domain model is illustrated

in Figure 19.

99



:Customer :System :Bank

| Authentication(ID ,password) — |
Message l

""‘E_— “““““““““““
orderProduct(productID, Qty, billingInfo) || |
verify(billingInfo) !

B Informative Message __U

. confirmation Message |
] |
T | |
|

Figure 17: SSD for Place Order

Crosscutting Realization

We can identify crosscutting FRs by analyzing the Related Use Cases row in the
above use-case definitions. For example, Process Payment is a crosscutting use-case
as it is included in both Place Order and Cancel Order use cases. It is important
to make it clear that a crosscutting use-case at this level is not necessarily going to
be mapped to an aspect at later stages of the development process. On the other
hand it could be mapped to more than one aspect. This would depend on the level
of abstraction at which we choose to model the functionality. For instance, use-
case Process Payment could be further broken down to a finer level: Verify Payment
Information, Make Debit Payment, and Process Refund. At the refined level, only
Verify Payment Information use-case is a crosscutting component while Make Debit
Payment only affects Place Order and Process Refund only affects the Cancel Order
use-case.

All defined NFRs are crosscuttings as each of them affects many interaction points

o6



:Customer :System

Authentication(ID,password)

Message
]
viewOrders() |
< Informative Message

Figure 18: SDD for View Pending Orders

or the system as a whole as we will illustrate next.

4.2.4 Composing Requirements

In the following, we will illustrate the required series of activities in order to compose

requirements.

Identifying interaction points

Based on the last activity, we identify the set of crosscutting requirements as: {Process
Payment, Synchronization, Scheduling, Response Time, Availability, Multi Access,

Confidentiality}. The interaction Points are illustrated in Table 10.

57



Cugtomey

Payment. AccotttmgTrmsection
La PlaceOrderSession 1
1 1
acedsses s Ln
captures ﬁ,./ Ln gocdsses
/// -
-
1 1
OrdetingSystem Otder Catalouge
t 1
S
captures accessgs 1
p Iivoice
//' L.n
1n /{..n order
ViewOrdersSession 1 !
covtfains
1
Product

Figure 19: (Partial) Domain Model for Invoicing System

Table 10: Interaction Points

Search Place Or- | Process Cancel Or- | View Process
der Payment der Orders Order
RT UCs RT UCs SCH SCH
AVA SCH AVA RT SYN SYN
MA SYN MA AVA RT RT
RT CON MA AVA AVA
AVA CON MA MA
CON SCH CON CON
MA SYN

o8




Identifying conflicts

For each crosscutting requirement, we must identify its contribution to other cross-
cutting requirements and fill the matrix that we defined before. Based on the NFR
catalogue, we could recognize that Availability has a positive contribution with Multi-
Access and a negative contribution with Response Time. Table 11 illustrates the

contribution (positive, negative or none) between crosscutting requirements.

Table 11: Candidate aspects contributions

UCg | SYN | SCH | RT | AVA | MA | CON

UCs
SYN

SCH
RT
AVA -
MA - +
CON - -

Resolving conflicts

We reduce the conflict by assigning priorities for the negatively contributed require-
ments at each Interaction Point. We present below the ordered list of crosscutting
concerns ¢y for each Interaction Point. A set within the list indicates that the set
elements are free to execute in any order as there is no negative contribution identified.

A (Search) = [AVA, RT, MA]

A (Place Order) = [CON, AVA, MA {RT, SCH, SYN, UCS6 }]

A (Process Payment) = [CON, AVA, RT, MA]

A (Cancel Order) = [CON, AVA, MA {RT, SCH, SYN, UC6 }]

A (View Orders) = [CON, AVA, MA, {RT, SCH, SYN }]

99



A (Process Order) = [CON, AVA, MA, {RT, SCH, SYN }]

Integration

During integration FRs and NFRs are combined to obtain the whole system. The
UML is used at this high level of abstraction to model the composition. In the new
composed use-case diagram, we use the ((include)) stereotype for each NFR and have
the set of initial crosscutting use-cases include the new ones. Figure 20 shows a partial
use-case diagram that includes the following use cases: Place Order, Cancel Order,
View Orders and Process Payment while interacting with Response Time, Scheduling
and Synchronization.

Figure 21 shows the composed domain model with NFRs : CON, MA, AVA,
SCH, SYN. Because CON is affecting Place Order use-case , then it must affect at
least one concept under the hierarchy of Place Order as we discussed before. After
analyzing the defined concepts, we found out that CON must be associated with the
PlaceOrderSession. CON is affecting ViewOrdersSession in a similar way.

AVA and MA are properties that affect the system as a whole and thus they are
associated with the OrderingSystem concept.

Because the system allows multi-access, we recognize readers-writers concurrency
protocol to synchronize and schedule the write functionality(Place Order) and the
read functionality (View Pending Orders). Scheduling and Synchronization are asso-
ciated with the common “resource” that is accessed by both functionalities: Order-

Catalogue.

4.2.5 Design

We will deploy operation contracts for orderProduct() and viewOrders() system op-
erations specified within the Place Order and View Pending Order use-cases respec-

tively.

60



operationalization “Authorize”.

T ; /,,M""”"“mx'

“ { ) s ) /)
Lo Z5e, J CEcIades™ :
_(j:i e N ‘ S

N Place Order »‘ e Process Payment
\.‘ \-\ "“'“«-.._"w . L
custotner’s, W méﬂimchjﬁé’g}
\ . \' \*« \""m K4
r“w hY \\\ ;‘v«.\
\\ Y . T
\,\ “, . B B {(mm d@:’:’
N e — \.\ S N e
5 s N ; fincluder> . ¢
, " y.) kY 7 S =
"‘x, St ‘\) v "~ SR
T | N inchydéFs .
N View Orders S e Response Time
N Y
T s, e 5, r"‘j \
- \\ ‘\& T <,
o e h r,
(\‘x /’f ", ,f’/ e T \‘\
g \\1 /« e \.\ (qmém;de;,;;,
- ", r el \ i,
i T~ N & y' " o
; N -—»—-..,,,M.—w . .:; ;,' P \‘.\ :; .
. ~ —»-.:\%.{ ‘”ﬂ"\ et 3 g l/ j
wRiptudess
teller . Mf” \,\ —
. T, . ,
R e T, , . )
Cancel Order e, N Scheduling
i,
T, AN
"‘-u,% ,

»,\

- n

T <<mc}a&de>}
. q‘""“- \‘\

<<includedxy

J—

Py
-

Synchronization

Figure 20: Composed Use Case Model

We further consider the appropriate operationalizations to be added in order to
satisfy the specified NFRs. Only those Operationalizations that are chosen to be
methods to be implemented will be integrated with the operation contracts and com-

munication diagrams. In the invoicing system , CON will be possible through the

tionalizations “Schedule” and “Synchronize”.

For both operations: orderProduct() and viewOrders(), the system initially au-

thenticates the corresponding actor to be eligible to use the service (addressed by

61

Both SCH and SYN are satisfied through opera-



AVA CON SYN
Custatner
Lo FlaceOrderSession
accdses - Tn
caphilres 7 L0 pocds sas
Pl
-
-
1  e 1
Orderingdysten Order Catalouge
Y . ! i
e
kS i 1
%ras acaesw.s/
\ S Lo
\l..n Via ofder
1

)
MA

the synchronization aspect) before establishing what should be considered as the
race condition between multiple actors due to the multi-access nature of the system
(addressed by the scheduling aspect).

Tables 12 and 13 show the operation contracts for orderProduct() and viewOrders()

followed by the corresponding communication diagrams which illustrate the crosscut-

Payment

AccountingTransaction

ViewOrdersSession

corfains

-«f '
Pioduet

SCH

Figure 21: Composed Domain Model

!

1
nvoice

ting view of CON, SYN and SCH (Figures 22, and 23 respectively).

62




Table 12: Operation contract for orderProduct()

Operation orderProduct()

Cross-reference UC2: Place order

Precondition (CON,SYN,SCH)

Postcondition

1. An order instance ord has been

created (instance creation).

2. ord is associated with the order

queue(formation of association).

3. (SCH,SYN)

Table 13: Opeartion contract for viewOrders()

Operation viewOrders

Cross-reference | UC5: view Pending Orders

Preconditions (CON,SYN).

Post-conditions

1. (SCH,SYN) .

2. Ensure that the appropriate
records displayed for all pending

mnvoices.

Class diagram will be similar to the composed domain model, with addition of
attributes and functionalities that will be added after analyzing the corresponding
communication diagrams. NFRs will be replaced with corresponding operationaliza-

tions if these operationlizations are chosen to be methods (Authorize , Schedule and

63



OrderProduct()

PlaceOrderSession

Ordering Systermn

2.makeOQrder()

hori < 4

Authorizet) w - j

- P ;

- o ot

Syneronize() (ZQM”‘ . - P A
> o

:Order Catalouge

r .
:Order

Figure 22: Communication diagram for orderProduct() with crosscuttings

Synchronize in our case). Other NFRs that are mapped to other forms of design

solutions will not appear in the class diagram.

To illustrate the mapping from design to implementation, we consider “Authorize”
operationalization and “PlaceOrderSession” , “ViewOrdersSession” classes. Following

the rules that we have specified in 4.1.4, we manage to map “Authorize” from the

design domain to the solution space as follows:

1. “Authorize” is an operationalization that will be mapped to an aspect.

2. “Authorize” is invoked on either: calling makeOrder() message that will be
implemented in PlaceOrderSession class OR calling view() message that will be

implemented in ViewOrdersSession class. This rule defines the pointcut.

3. “Authorize” is to be invoked “before” the calls of the methods as the user must
be authenticated before he is eligible to place an order or view orders as specified

the use-case description at Tables 6 and 7.

Using the above data, “Authorize” aspect is to be implemented as follows :

64



viewOrders()

1.View (order}

; ViewQrdersSession

:Ordering System

) 2.view(order) A

Authorize() <><> > P

- e '//-’:"'“ // ;

i . o

Syncronize() @/‘J:’ I +
/aa'/”

Schedule() (gi)//"//’

Order Catalouge

Figure 23: Communication diagram for viewOrders() with crosscuttings

public aspect Authorize{

pointcut toAuthorize():

call(public void PlaceOrderSession.makeQOrder (*))
|1 call(public void ViewOrdersSession.view(*))
before() :toAuthorize (){
// Authentication Code

}

4.2.6 Discussion

Tangling and scattering are symptoms that do not exclusively affect implementation,
but they also propagate to early stages of the development process. Identifying and
modeling crosscuttings earlier in the software development process has a great im-
pact on improving the general quality of the system and reducing complexity by (1)
prompting understandability and reusability, (2) enhancing the process of detecting

and removing defects, and (3) reducing development time.

65



In this chapter, we discussed a sequence of systematic activities towards an early
consideration of identifying, specifying and separating broadly scoped requirements
that are traceable throughout system development process. We addressed both FRs
and NFRs as candidate crosscutting requirements. To compose requirements, we pro-
vided a fine grained approach to define interaction points and relate them to the level
of use-cases. Our approach makes it possible to early recognize and resolve conflicts
within the activity of composing requirements. We also provided traceability from
static and dynamic points of views throughout the development process and we man-
aged having one-to-one mapping from the requirements domain to the implementation
space.

On the other hand, we are aware that some crosscutting requirements are not easily
captured through the development process; and thus stakeholders are in need for a
feedback on the existence of crosscutting requirements that yet to be captured. In the
next chapter, we propose sets of measurements applied at different breakpoints of the
development process to help realizing early crosscutting implications in the system

and thus help indicating possible crosscutting requirements that are not captured yet.

66



Chapter 5

Providing Quality Measurements

for AOSD

Adopting aspect-oriented technologies for software development requires revisiting the
entire software lifecycle in order to identify and represent occurrences of crosscutting
during software requirements engineering and design, and to determine how these
requirements are composed. The consequence of that is a more interleaving of the
software engineering processes and better specifications that map the problem and
the solution components.

In the previous chapter, we proposed a systematic and precisely defined aspect-
oriented model that supports capturing of the requirements as well as analysis and
design of FRs and NFRs. This chapter builds on the proposed AOSD model while
focusing and treating exclusively the subject matter of measurements. The intended
goal is to assist stakeholders with quantitative evidences on the quality of the modeling

decisions throughout the development process, and of the final product.

67



51 Extended AOSD Model

Throughout the development process, stakeholders are in need to verify that they
managed capturing and specifying all related crosscutting requirements properly. To
achieve this target, we choose to extend our AOSD model by proposing sets of quality
measurements at different breakpoints during development. These measurements
will assist stakeholders to better map or iterate the requirements of the system by

providing them with quantitative evidences as a feedback on the following :

1. The existence of crosscutting requirements yet to be captured.

2. Decisions to be taken when setting the design strategies for the analyzed re-

quirements.
The proposed sets of measurements are as follows:

1. Requirements analysis measurements: A set of measurements applied on the
specified requirements to help realizing early crosscutting implications in the

system.

2. Interaction Points measurements: A set of measurements inducted to optimize
the activity of composing requirements and to help setting better design strate-

gies.

3. Design measurements: A set of measurements inducted at the end of the design
activity to obtain quantitative evidence on the degree at which the crosscutting
requirements have been separated, and thus to determine whether a further
iteration would be required to generate a better modularized version of the

system.

The extended model is illustrated in Figure 24. In the following sections, we will

present and discuss these sets of measurements.

68



i
1 Redquirements Elicitation nput
T — e ——
( menitying Frs ><- cmmmemo Identifying NERs b
. e P e
e . e ~ -~ 4 - — <
MM Iﬁ._ o —
e N, e —
(" Specitying FRs W "2 f” spacifying NFRs )
N o R -

Requirements
Analysis
Measurements

- e
s

e -
Integcation )
interaction Points Output : Executable
Measurements Code
Design 7 > Implementation o - “-( A)
*’“——],,/I -~ e
O

% Design
Meastrements

Figure 24: Extended AOSD model

5.2 Requirements Analysis Measurements

Analysis modeling is the formal presentation of the specification, through which the
knowledge and information included in the textual description of the requirements
are transmitted to the elements of the object-oriented analysis models. In the AOSD
model, the analysis model consists of a use-case model, system sequence diagram
(SSD) (dynamic view on the system under development) and a domain model (static
view). We see the set of use-cases in the resulting use-case model as a set of abstrac-
tions of the usages in the domain model reflecting the properties of the domain object
they are to represent. One way to determine the quality of the software usage parti-
tioning into use-cases is to look at how the activities between use-cases are related to

one another. This is the criterion of lack of cohesion in the use-case model.

69



Another important way to evaluate the partitioning of the analysis model is by
how the real-world concepts are related and depend on each other in the domain
model. That is the criterion of coupling.

Cohesion of the use-case model and coupling in the domain model are both ways of
measuring the quality of partitioning in the analysis model. Associating the analysis
with these measurements leads to early feedback on the existence of the crosscuttings
yet to be captured and thus an early possible treatment.

In this section, we proceed by introducing the notions of coupling and cohesion,
summarizing the related work on coupling and cohesion measurements in the OOSD
and AOSD, and then describing our proposal for obtaining early feedback on the

levels of coupling and cohesion in the analysis model.

5.2.1 Background and Related Work on Cohesion and Cou-
pling
Cohesion.

According to the IEEE Standard Terminology, “cohesion is the degree to which the
tasks performed by a single module are functionally related”. A software module
is said to exhibit a high degree of cohesion if the elements in that unit exhibit a
high degree of semantic relatedness. The high cohesion software development pattern
suggests keeping the highest level of cohesion possible in software modules. In other
words, each element in the module shall be essential for that module to achieve its
purpose.

A comprehensive survey of cohesion measurement approaches and measures is
provided in [LB97]. The classical OO measure of class cohesion, LCOM, has been
introduced in [CK94b]; its AOP counterpart is reported in [SGF*03]. The LCOM

measurement attempts to measure structural cohesion rather than semantic cohesion,

70



thus dealing with the physical connections between the elements of a design compo-
nent identified with an internal coupling. An attempt to provide a more precise OO
cohesion measure for classes is presented in [WAW™05]. The common characteris-
tics of all surveyed QOO cohesion measures is that they target the cohesiveness of a
class in the OO design / code. Our goal is to develop a mechanism dealing with
the semantic relationship between the elements of a component and a single, overall
abstraction (i.e., single, well-defined purpose) applicable to the analysis model, thus

differing considerably from the existing work.

Coupling.

By definition, coupling is a measure of the interdependence among components in a
software system that describes the nature, and the extend of the connections between
the elements in the system. The motivation behind the low coupling pattern is to
increase the predicting and controlling the scope of changes to a system. Complex-
ity can be reduced by designing systems with the weakest possible coupling between
classes, thus improving modularity and promoting encapsulation. The goal of cou-
pling control is to limit any form of coupling to two kinds: a) which is inherent in the
problem domain; b) which limits the type and scope of changes to as small a portion
of the design as possible. The control is achievable through a software measurement
mechanism providing feedback on the quality characteristics being measured. The
classical OO measures of coupling have been introduced in [CK94b]; their AOP coun-
terparts are reported in [SGF*03]. Both are applicable to a class level. An example
of system-level OO design measurement is the MOOD set of measures [HCN98], in-
cluding the Coupling Factor (CF). Our goal is to obtain a feedback on the level of
coupling in the analysis model, that is, the coupling inherent in the problem domain,
during the requirements analysis activity.

The following subsections introduce the OO analysis measures in the AOSD model.

71



The proposed cohesion measurement mechanism is new and it allows for identifying
crosscutting functional requirements at a fine-grained level during the elicitation of the
use-case models. The proposed coupling measurement is an adoption of the existing

0O design measure Coupling Factor introduced in [HCN98].

5.2.2 Measurement of cohesion

In the analysis phase we target the cohesion of the behavior description in the use-case
model. Each use-case contains a set of scenarios representing instances of a usage of
the system. A scenario is a set of paths and conditions that are of interest for the
analysis of the system’s performance. Each scenario defines the expected behaviour
of the system for a high-level system operation.

We see the set of scenarios in the specified use-case model as a set of abstractions
of the system usages reflecting the properties of the system functionality they are to
represent. A scenario related to one goal of usage might include subgoals, or steps
required to achieve the goal that by themselves qualify for a system usage abstraction.
For instance, the goal of “booking a trip” might include the subgoals of a booking of a
flight and reservation of a hotel which are triggered by the corresponding requests for
reservation and resulting in approval of the reservation, therefore being classified as
usage abstractions themselves. Intuitively, this is an example of a low cohesion as two
usage goals (booking a flight and booking a hotel) which semantically independent
are related in one usage goal (booking a trip) by the sequence of actions in time. On
the other hand, another use-case named “registering for a conference” might include
the “booking a hotel” usage goal extended with options related to a specific category
of customers. In this case, we say that the subgoal of “booking a hotel” is crosscutting
both use cases “booking a trip” and “registering for a conference”.

Our goals are to measure the cohesion of a use-case model. The cohesion measure-

ment mechanism allows for identification of the crosscutting (sub)goals (or concerns)

72



in the use-case model. The crosscutting subgoals are lowering the level of cohesion in
the use-case model, as described before, and their identification is crucial for the fur-
ther phases of the AOSD. The proposed cohesion measurement mechanism is based

on the notion of similarities among different scenarios as described below.

Measurement Method

We formally specify a scenario S as S = (SE, Zgg, SO, MEO, MET), where SE rep-
resents all the environmental (Input/Output) events participating in the scenario,
Lsg is an order imposed on the events in time, SO is the set of domain concepts
participating in the scenario, MEQ is a mapping from SE to the pairs of objects that
exchange events, and MET is a mapping from SE to the time axis. The environmental
Input/Output events in a scenario are observable. The ordering /g always produces
a legal sequence of events, where legal means that the first event is an environmental
Input event which is unconstrained, the last event is an environmental output event,
and the partial order between the events satisfy the ordering Zsg. The term legal

sequence has been first introduced in [AOL04].

We state that a crosscutting concern is a subgoal corresponding to a legal subse-
quence common to at least two scenarios belonging to different use cases. Let two
different use-cases Uy and Ug be defined by the sets of scenarios 31 and X2 respec-
tively where each scenario is a legal sequence of events. We say that ¥1 and X2
operate on a common legal subsequence ¢ of events when ¢ is a subsequence of both
a scenario S; € X1 and Sy € X2.Intuitively, the existence of similar legal subsequences
of events within scenarios of different use-cases indicates a low modularity, i.e., low
level of partitioning quality.

The Cohesion Level in the Use-Case Model measure is defined on the set of all

scenarios belonging to all use-cases in the use-case model:

73



|QM]

CLUCM =1- |PM|

(1)

where QM is the set of the pairs of scenarios that operate on a common legal
subsequence of events, each pair containing scenarios belonging to different use-cases,
and PM is the set of all pairs of scenarios (same condition apply). The following steps

are defined for our measurement method:

e Step 1. Map each scenario in ¥ to a timed sequence of events .
e Step 2. Identify the set R of legal subsequences for each sequence .

e Step 3. At this step, the set QM is identified. For each pair of scenarios (order
is not important to avoid duplication of the results) find the intersection of
the corresponding sets of legal subsequences. If the intersection is nonempty,
add the pair to the set QM. The non-empty intersections not only indicate the

presence of candidate crosscutting concerns, but also identify them.
e Step 4. Calculate |PM|.

e Step 5. Calculate CL_UCM.

The unit of cohesion in the CL_UCM measure is a crosscutting concern abstracted
as a pair of scenarios whose goals are related by the given crosscutting concern.
The scale type of CL_.UCM is absolute since the only allowable transformations are
identities, and there exist an absolute zero indicating a lack of the quality attribute
(cohesion) in the use-case model.

The range of the values for the measure CL_UCM is [0..1], where 1 indicates the
highest level of cohesion (there is no intersection between the scenarios from different
use-cases), and 0 indicates the lack of cohesion (all pairs of scenarios are crosscut).

Higher CL_UCM values indicate that possible crosscuttings are to be identified.

74



Formal Properties of Cohesion

The CL_UCM measurement is theoretically validated against the set of axioms pro-

posed in [Whi97}:

1.

Cohesion is non-negative.
Yes. Discussion: the ranges of values is [0..1], therefore negative values are not

allowed.

Cohesion is independent of size
Yes. Discussion: CL_UCM targets the usage model of the system without

accounting for the size aspects.

Cohesion can be null
Yes. Discussion: the 0 value for the cohesion indicates lack of it in the use-case

model.

Cohesion of a collection of elements or properties is independent of the internal
structure of the collection of its components.
Yes. Discussion: CL_UCM targets the usage of the system without taking into

account the domain model representing its structure.

. Cohesion forms a weak order.

Yes. Discussion: we can always compare and order the use cases model in terms

of their CL_UCM values.

5.2.3 Measurement of coupling

In the analysis activity, we target the coupling in the domain model. We have adopted

the MOOD Object-Oriented Software measurements [HCN98] Coupling Factor mea-

sure to quantify the existing level of coupling in the domain model due to associations

between the conceptual classes.

75



Coupling Factor (CF) is a measurement of the level of coupling in the (partial)

domain model and is defined as follows:

_ YIS s client(Cy, Cy)]
N TC?* -TC

CF

where TC is the toal number of concepts (classes) and

1,iffC.= C, NC, # C;
is_client(C,, C;) = i # (2)

0, oherwise.
and C, = C represents the relationship between a client class C, and a supplier

class Cs. The range of the values for the CF is [0..1], where 0 indicates lack of coupling,
and 1 is corresponding to the highest possible level of coupling. As a higher value
of CF would indicate higher level of coupling between the concepts in the (partial)
domain, this value may be considered as an implication of crosscutting requirement(s)
to be realized.

The unit of measurement in our version of the CF measure is an abstraction of
the coupling unit, namely, an association between two concepts in the domain model
expressed as an ordered pair of concepts (C;, C;).

The scale type of the CF measure is absolute since the only allowable transforma-
tions are identities, and there exist a hypothetical absolute zero indicating a lack of
the quality attribute (coupling) in the domain model.

We have validated theoretically the proposed coupling measure against the axioms

for coupling proposed in [Whi97], as discussed below.

Formal Properties of Coupling

1. Coupling is non-negative.
Yes. Discussion: the range of CF values is [0..1], therefore negative values are

not allowed.

2. Coupling can be null.

76



Yes. Discussion: theoretically, the domain model can exhibit 0 coupling corre-

sponding to the lack of it in the model.

. Adding an intercomponent relationship does not decrease coupling.

Yes. Discussion: adding one more association would increase the value of CF.

. Merging two components does not increase coupling.
Yes. Discussion: the number of coupled pairs of concepts will remain the same
or decrease (if duplicated), the number of classes might increase, therefore the

CF value would eventually decrease.

. Merging two unconnected components does not change coupling.
No. Discussion: the number of coupled pairs of concepts will remain the same,
the number of classes might increase, therefore the CF value would in general

change.

. Coupling forms a weak order.

Yes. Discussion: domain models can be ordered in terms of their coupling.

5.3 Interaction Points measurements

As described in chapter 4, Interaction Points are the identified requirements in
the system where other requirements may crosscut. In this section we propose
set of measurements to obtain a quantitative analysis of the characteristics of
Interaction Points such as size, cohesiveness, local conflict, interdependency,
independency and complexity. These measurements intend to assist the effort
required for the composition of the requirements, and to provide a solid ground
for making decisions and setting priorities while mapping candidate elements
through the next activities of the development process. In these measurements,

we will refer to functions A and B that we have defined in the chapter 4.

7



5.3.1 Relative Size

The relative size of the Interaction Point is a measurement for how many cross-
cuttings affect a given Interaction Point P, € I in relative to other Interaction

Points defined in the system (set I):

RelativeSize(P;) = E_QEA% (3)

where n is the cardinality of the set I. The relative size is a non-negative value

in the interval [0..1] interpreted as a relative weight of a given Interaction Point.

5.3.2 Local conflict

The effort required for the integration process would highly depend on the level
of interdependency between the crosscutting requirements, and more specifi-
cally on the defined conflicts at Table 5. We propose to use the local conflict
measure which reports the level of conflict LLC (Local Level of Conflict) for

each Interaction Point P; € I based on the list of crosscutting requirements

(F)-

LLC(P)) = |{(CCRy,CCR,)-CCRy,CCR; € A(P,)AB(CCRy,CCR)) ="-"}|/n
(4)

where n is the cardinality of the set of all pairs of CCRs in A(P;) (the order is

ignored to avoid duplications).

5.3.3 Interdependency

Similar to LLC, we propose to track the level of interdependency LLI (Local
Level of Interdependency) for each Interaction Point P, € I based on the list of

cross cutting requirements A(5):

78



LLI(H) = |{(00Rk,CCRl>CCRk, CCR; € A(H)/\B(CORk,CCRZ) = ”+”}|/n
(5)
where n is the cardinality of the set of all pairs of CCRs in A(F;) (the order is

ignored to avoid duplications).

5.3.4 Independency

We use this term to indicate to which level crosscutting requirements are inde-
pendent from each other at a certain Interaction Point. So for each Interaction
Point P, € I based on the list of crosscutting requirements A(P;), we define

Local Level of Independency:

LLI(P,) = [{(CCRy,CCR;)-CCRy,CCR;, € A(PYAB(CCR;,CCRl)=" "}|/n
(6)
where n is the cardinality of the set of all pairs of CCRs in A(P;) (the order is

ignored to avoid duplications).

5.3.5 Complexity Profile of the Interaction Points

At this level of abstraction, we propose that source of complexity at an arbitrary
Interaction Point rises up from negative contribution among requirements. We
relate complexity of an arbitrary Interaction Point to other Interaction Points

complexities in the system using the following formula:

79



Complexity (P;) = |{(CCRy,CCR))-CCRy, CCR, € A(F) AB(CCRy,CCR;) =
» —"}|/ iy [{(CORy, CCRy) - CCR,,CCR, € A(P;) A B(COR,,CCR,) =
" =" H)

The figures obtained at this level from the above proposed measurements are
supposed to direct the effort towards a better design strategies and decisions.
For example, an Interaction Point with a high complexity or a relative size value
requires more effort to configure and design; consequently, a more brains, time,

and money are to be dedicated.

5.4 Design Measurements

Within object-oriented software development, the design phase takes place when
the functionality of the set of entities defined in the domain model is modeled as
a set of interacting software classes with a clearly defined properties and behav-
ior. In AOSD, the design phase extends this transformation to map candidate
aspects defined in earlier stages to a 1) design decision, 2) defined function or
3) a real aspect. In this section, we define set of measurements for separation of
requirements, cohesion and coupling for the system. These measurements are
applicable to both phases: design and implementation. We use a template (See

Table 14) to clarify the relations.

5.4.1 Separation of requirements

Separation of requirements measurement quantifies the degree to which a single
requirement in the system maps to the design components (classes and aspects)
and to the operations defined within the methods and the advices. We define

the separation of requirements in terms of:

80



e Requirement scattering over classes and aspects (RSCA): counts the num-
ber of classes and aspects from Table 14 whose main purpose is to con-

tribute to the implementation of the requirement.

e Requirements scattering over methods and advices (RSMA): counts the
number of class methods and aspect advices and methods from Table 14
whose main purpose is to contribute to the implementation of the require-

ment.

High RSCA and/or RSMA values for a specific requirement signals low modu-

larity and thus a high probability of an existence of crosscuttings to be captured.

81



Table 14: Requirements tracing among classes, aspects and operations

rl | r2 | .. Tn

classes

class; m v

m(Numbero fmethodsinclassl) v

class, ™my

mg

m(Numbero fmethodsinclass2)

class; )

Aspects

Aspecty advicey

advicey

advice Numbero f advicesinaspectl)

my

mo

m(Numbero fthemethodsintheaspect

82



5.4.2 Lack of cohesion

We use an inverse measure of cohesion, lack of cohesion, to measure how much
the responsibilities are tangled within a certain component (class/aspect) or

operation (method / advice).

e Lack of cohesion in component (LOCC): counts the number of require-

ments from table 14 that are implemented within certain class or aspect.

e Lack of cohesion in operation (LOCO): counts the number of requirements

from table 14 that are implemented within certain operation.

Higher LOCC and/or LOCO values indicate low of cohesion for a certain com-
ponent or operation due to the low level of modularity. A further iteration is

required to achieve a better separation of requirements.

5.4.3 Coupling

We propose to apply the same coupling measurement we used in the analy-
sis level on both classes and aspects separately. According to this, we define
CFlgsses; CFuspects- As in the analysis phase, high values for CF could be an

implication of a bad design separating the contributed requirements.

5.5 Case Study

This section will illustrate how we have applied our proposed measurements in
the context of real system. We will use the same invoicing system case study
we used in the previous chapter. We have developed an application to assist
the effort of generating the design measures automatically. We will illustrate

the results of the application in this section as well.

83



5.5.1 Requirements Analysis Measurements

The requirements analysis measurements are illustrated in the context of Place
Order and View Pending Orders usages. We are concerned with the main
(successful) scenarios. The main scenarios for these use-cases are represented

graphically through SSDs in Figures 17 and 18.

If we apply our measurement mechanism described to the Place Order and
View Pending Orders use-cases, we obtain that set PM is equivalent to QM
due to the (Authentication(), Message()) legal sequence. A common sequence
results in reducing the cohesion level in the use-case model as it increases QM
values and thus reduces CL.UCM value. Therefore, the above two use-cases
are considered as candidates for crosscutting FRs in our AOSD model. In such
a case, it is recommended to restructure the use-case model to have “login” as

a separate use-case.

To be able to calculate the CF value for the domain model 19, we need to
identify the “is_client” relation among the concepts. We update the domain
model in Figure 19 to specify the navigation through the relations among the

concepts (Figure 25).

The total number of concepts (TC) is 10. Applying the CF measures in the
context of this domain model , generates the value of 0.1 which is considered a

good level of necessary coupling.

5.5.2 Interaction Points Measurements

Table 15 summarizes the set of measurements we proposed for the Interaction
Points in the invoicing system. All figures in the table are intended to be

followed with % sign.

84



Customer

I.n

acegsses

OrdaingBystem

&mms

BN

PlaceOrdetSession

7

-~
~capmV L8 perdsses
1 / y

T'n

1

Order Catalouge

7
acceﬁe-/

1

1n

// 4
7

Paynienit |,

Accomﬂ;ingT:ansaction

ViewOrdersSession

confains

1

Product

{

sl 1
Invoice

Figure 25: Invoicing System Domain Model: revisited

Table 15 provides the designers with figures to assist in building design strate-
gies based on stakeholders and environmental requirements. For example, it
could be possible that designers are interested in starting with the most com-
plex requirement to build or they would like to assign the reasonable resources
to requirements based on complexity and relative size. In our case, Place Or-

der, View Pending Orders and Cancel Order are the FRs with the highest

Table 15: Interaction Points measurements
FR; | FRe | FRs | FRy | FR; | FRg
Relative_Size | 9.7 | 22.6 | 16.1 | 19.4 | 194 | 12.9
LLC 66.7 1143 | 30 | 20 | 20 | 50
LLI 333|136 | 6.7 | 48 | 48 | 10
LLInd 0 |821|633|752|752]| 40
Complexity | 11.8 | 17.6 | 17.6 | 17.6 | 17.6 | 17.6

85




Relative_Size and complexity values; thus more resources and time are to be
dedicated for them. Choosing which of these measurements are to be taken
into consideration is left for the expert’s judge upon the environmental con-
straints. For example, LLC value for “Search” use-case indicates a high value
of conflict among CCRs; but at this Interaction Point we have only three CCRs
so the value of LLC is not efficient by itself to build the strategy for assigning
resources and thus it is important to consider the values of Relative_Size and
Complexity as well. LLI could be considered if the stakeholders would like to
build their strategies based on the collaborative contribution rather than the

damage contribution among CCRs.

5.5.3 Design Measurements

To assist the effort of applying the design measurements, we have developed an
application with multi-tapped form. The output of the application is a specific
report generated upon the user’s choice of applying one of the supported design

measurements. The user has to specify the following inputs:

e Use-Cases: A unique number will be assigned automatically for each use-

case.
e NFRs: A unique number will be assigned automatically for each NFR.

e Classes: While entering the classes that appears in the class diagram, the
user has to specify the “parent” classes that exist for each class to enable
calculating the CF measurement. The user has to specify the methods for

each class. A unique number will be assigned for each method.

e Operationalizations: The user has to specify the operationalizations that

appear in the composed class diagram. He/She further has to specify at

86



which class and which method each operationalization will affect and when

(before, after or around).

¢ Requirements-Components-Level: For each use-case and NFR, the user
specifies which of the existing classes and/or aspects are involved in its

implementation.

¢ Requirements-Operation-Level: For each use-case and NFR, the user spec-
ifies which of the existing methods and/or advices are involved in its im-

plementation.

After specifying the above inputs, the user chooses which measures to apply on

the data : RSCA , RSMA, LOCC, LOCO or CF.

For the invoicing system case study, applying the requirements scattering among
classes and aspects (RSCA), the application generates the diagarm at Figure 26
counting how many classes/aspects are involved in implementing each require-
ment. The diagram shows the measures applied for Place Order, View Pending

Orders, Cancel an Order, Make Payment, Scheduling , and Synchronization.

The diagram clearly shows that having SCH and SYN been separated as indi-
vidual modules (aspects) is reducing the RSCA values for these NFRs to one
for each. Otherwise, two classes will be involved in implementing each of them:

(PlaceOrderSession) and (ViewOrdersSession).

Applying the lack of cohesion in component (LOCC), the application gener-
ates the diagram at Figure 27 counting how many requirements will be (par-
tially) implemented per each class or aspect. We show the results for the
classes: viewOrderSession and OrderCatalogue and for the operationalizations

(aspects): SCH , SYN and CON.

87



Place Order  View Cancel Order  Place SCH SYN
Pending Payment
Orders

Figure 26: Requirements Scattering Over Classes

Choosing not to encapsulate SCH and SYN as a separate aspects will increase

the number for the class OrderCatalouge by 2 as these NFRs will be imple-

mented within the code of this class by then; thus reducing the cohesion level.

88



CON

SYN

SCH

viewDrdersSession  OrderCatalouge

Figure 27: Lack of Cohesion in Component

89



Chapter 6

Conclusions

The increasing trend to develop complex software systems has highlighted the
need to consider software quality as an integral part of software system devel-
opment. Separation of Concerns is fundamental software engineering that is
aimed at breaking the tyranny of dominant decomposition. Despite the suc-
cess of object-orientation in the effort to achieve separation of concerns, both
functional and nonfunctional, certain properties in OO software system cannot
be directly mapped from the problem domain to the solution space, and thus
they cannot be localized in single modular units. These properties have been
studied under the name of crosscutting concerns (or aspects). The symptoms
imposed by the existence of crosscutting concerns manifest themselves as the
scattering of concerns across the decomposition hierarchy of the system and the
tangling of concerns within modular units. AOP is a term adopted to describe
an increasing number of technologies and approaches that support the explicit
capture of crosscutting concerns (or aspects) whereby the implementation of
functional components and aspects is performed (relatively) separately, and
their composition and coordination (referred to as weaving) is specified by a set

of rules. Aspect-Oriented Software Development (AOSD) has extended AOP to

90



provide a systematic support for the identification, separation, representation
(through proper modeling and documentation), and composition of crosscutting
concerns as well as mechanisms that make them traceable throughout software
development. In this thesis, we introduced a sequence of systematic activities
towards an early consideration of specifying and separating crosscutting FRs
and NFRs. We also introduced different sets of measurements based on the
notion of crosscutting concerns to assist the identification and modeling of the

early crosscutting implications in the system.

Our work in AOSD and measurements has been published in [KCO05] where
we proposed the AOSD model and in [OKCO05] where we proposed the require-
ments analysis measurements and in [KOCO05] where we proposed the rest of

the measurements.

There are several avenues of future work that we could effectively pursue. Our

main interests are in:

Establishing a formal way to identify conflicts among aspects at certain
join point. The main target will not be limited to direct conflicts only but

will include the indirect conflicts as well.

o Establishing a formal methodology to resolve the conflict with minimal

contribution from stakeholders.

e Establishing formal one-to-one mapping with the matching components at

later stages of the development.
e Applying our sets of measurements in a general context of AOSD.

e considering an aspect as a crosscutting in another aspect.

91



Bibliography

83008]

[Aha02]

[AMBRO?2]

[AOLO04]

[BBY9)]

[EEE Std. 830-1998. IEEE recommended practice for software
requirements specifications. IEEE Transactions on Software En-

gineering, 1998.

J. Ahao. Towards A Metrics Suite for Aspect-Oriented Software.
Technical Report SE-186-25, Information Processing Society of
Japan (IPSJ), 2002.

J. Araujo, A. Moreira, I. Brito, and A. Rashid. Aspect-Oriented
Requirements With UML in Conjunction with 1st International
Conference on Aspect-Oriented Software Development. In Work-
shop on FEarly Aspects in Conjunction with 3rd International

Conference on Aspect-Oriented Software Development, Enshede,
Netherlands, 2002.

V.S Alagar, O. Ormandjieva, and Shi Hui Liu. Scenario-Based
Performance Modelling and Validation in REal-Time Reactive
Systems. In Processing of Software Measurement European Fo-
rum(SMEF2004), 2004.

L. Blair and G. Blair. A Tool Suite to Support Aspect-Oriented
Specification. In Aspect-Oriented Programming Workshop in
Conjunction with the 13th Furopean Conference on Object-
Oriented Programming, pages 7-10, Lisbon, Portugal, 1999.

92



[BMO04]

[CDDDO03]

[CK94a]

[CK94b]

[CNYMOO]

[CS04]

[Dij76]

[FECA04]

I. Brito and A. Moreira. Integration the NFR Framework in a RE
Model. In Workshop on Early Aspects in Conjunction with 3rd
International Conference on Aspect-Oriented Software Develop-

ment, Lancaster, UK, 2004.

Kendra Cooper, Lirong Dai, Yi Deng, and Jing Dong. Towards an
Aspect-Oriented Architectural Framework. In 2nd International
Workshopon Aspect-Oriented Requirements Engineering and Ar-

chitecture Design (Early Aspects), Boston, MA, 2003.

S. Chidamber and C. Kemerer. A Metrics Suite For Object-
Oriented Design. IEEE Transactions on Software Engineering,
20(6):476-493, 1994.

S. Chidamber and C. Kemerer. A Metrics Suite for Object-
Oriented Design. IEEE Transactions on Software Engineering,
20(6):476-493, 1994.

L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Nonfunc-

tional Requirements in Software Engineering. Kluwer Academic

Publishing, 2000.

Constantinos Constantinides and Therapon Skotiniotis. The Pro-
vision of Contracts to Enforce System Semantics Throughout
Software Development. In Proceedings of the 8th IASTED Inter-
national Conference on Software Engineering and Applications

(SEA2004), Cambridge, MA, 2004.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, En-
glewood Cliffs, NJ, 1976.

Robert Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit.
Aspect-Oriented Software Development. Addison-Wesley, 2004.

93



[GB92]

[HCNOS]

[HF97]

[JBRYY]

[KCO05)

[KOCO05]

[Lar04]

[LBY7]

Grady and Robert B. Practical Software Metrics for Project Man-

agement and Process Improvement. NJ:Prentice-Hall, 1992.

R. Harrison, S. J. Counsell, and R.V. Nithi. An Evslustion of the
MOOD Set of Object-Oriented Software Metrics. IEEE Trans-
actions on Software Engineering, 24(6):491-496, 1998.

Tracy Hall and Norman E. Fenton. Implementing Effective Soft-
ware Metrics Programs. IEEE Software, 14(2):55-65, 1997.

1. Jacobson, G. Booch, , and J. Rumbaugh. The Unified Software
Development Process. Addison-Wesley, 1999.

Mohamad Kassab, Constantinos Constantinides, and Olga Or-
mandjieva. Specifying and Separating Concerns From Require-
ments to Design: a Case Study. In The IASTED International
Conference on Software Engineering (ACIT-SE 2005), pages 18—
27, Novosibirsk, Russia, 2005.

Mohamad Kassab, Olga Ormandjieva, and Constantinos Con-
stantinides. Providing Quality Measurements for Aspect-
Oriented Software Development. In Accepted at First Asian
Workshop on Aspect-Oriented Software Development, Taipei,
Taiwan, 2005.

C. Larman. Applying UML and Patterns; An Introduction to
Object-Oriented Analysis and Design and the Unified Process,
3rd edition. Upper Saddle River, NJ: Prentice Hall Inc., 2004.

J. Wust L. Birand, J. Daly. A Unified Framework for Cohesion
Measurement in Object-Oriented System. 4th International Soft-
ware Metrics Symposium (METRICS’97), pages 43-53, 1997.

94



IMABO?]

[MRG*04]

[NABO4]

[OKCO05]

[PKO4]

[RMAO3]

A. Moreira, J. Araujo, and I. Brito. Crosscutting Quality At-
tributes for Requirements Engineering. In 14th International
Conference on Software Engineering and Knowledge Engineer-

ing, pages 167-174, Ischia, Italy, 2002.

M. Mousavi, G. Rusello, M. Ghaudron, M. Reniers, T. Basten,
A. Corsaro, S. Shukla, R. Gupta, and D. Schmidt. ASpects +
GAMMA = AspectGAMMA: A Formal Framework for ASpect-
Oriented Specification. In Workshop on Aspect-Oriented Model-
ing with UML in Congunction with 1st International Conference
on Aspect-Oriented Software Development, Enshede, Nether-
lands, 2004.

I. Nagy, M. Aksit, and L. Bergmans. Composition Graphs: A
Foundation for Reasoning About Aspect-Oriented Composition.
In 5th Aspect-Oriented Modeling Workshop in Conjunction with
UML 200/, Lisbon, Portugal, 2004.

Olga Ormandjieva, Mohamad Kassab, and Constantinos Con-
stantinides. Measurement of Cohesion and Coupling in OO Anal-
ysis Model Based on Crosscutting Concerns. In Proceedings of the
International Workshop on Software Measurements, pages 209-

226, Montreal, Quebec, 2005.

D. Park and S. Kand. Design Phase Analysis of Software Per-
formance Using Aspect-Oriented Programming. In 5th Aspect-
Oriented Modeling Workshop in Conjunction with UML 2004,
Lisbon, Portugal, 2004.

A. Rashid, A. Moreira, and J. Araujo. Modularisation and Com-
position of Aspectual Requirements. In 2nd International Con-

ference on Aspect-Oriented, pages 11-20, Boston, MA, 2003.

95



[RSMA02

[SGF+03]

[TBBO4]

[TOHSMS99]

[WAW+05]

[Whi97]

[ZX03]

[ZX04]

A. Rashid, P. Sawyer, A. Moreira, and J. Araujo. Early As-
pects: A model for Aspect-Oriented Requirements Engineering.
In IEEE Joint International Conference on Requirements Engi-

neering, pages 199-202; IEEE Computer Press, 2002.

C. Sant’Anna, A. Garcia, A. Fabricio, C. Chavez, V.F.Garcia,
C. Lucena, and V. Staa. On the Reuse and Maintenance of
Aspect-Oriented Software: An Assessment Framework. Simposio

Brasiliero de Engenharia de Software, pages 19-34, 2003.

F. Tessier, L. Badri, and M. Badri. Towards a Formal Detec-
tion of Semantic Conflicts Between Aspects: A Model Based Ap-

proach. In 5th ASpect-Oriented Modeling Workshop in Conjunc-
tion with UML 2004, Lisbon, Portugal, 2004.

Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley
M. Sutton. N Degree of Separation of Concerns. In Proceedings
of the 21st International Conference on Software Engineering,

pages 107-119, Los Angeles, CA, USA, 1999.

J. Wang, Y. Ahou, L. Wen, Y. Chen, H. Lu, and B. Xu. DMC:
a More Precise Cohesion Measure for Classes. Information on

Software Engineering Technology, 47(3):167-180, 2005.

Whitmire. S.A. Object Oriented Design Measurement. John Wi-
ley Sons, 1997.

J. Zhao and B. Xu. Coupling Measurement in Aspect-Oriented
Systems. Technical Report SE-142-6, Information Processing So-
ciety of Japan (IPSJ), 2003.

J. Zhao and B. Xu. Measuring Aspect Cohesion. Fundamental

96



Approaches to Software Engineering: Tth International Confer-

ence (FASE 2004), pages 54-68, 2004.

97



