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Abstract

On Ideal Class Groups of Cyclotomic Fields

Adolfo Ria, Ph.D.

Concordia University, 2006

Let m be an integer > 3 and let F' be one of the fields Q((m)t or Q({n). Denote
the Galois group Gal(F/ Q) by A and let p be an odd prime such that p { |A|, where
|A] denotes the order of A. Let A denote the p-part of the ideal class group of F
and (E/C), denote the p-part of the group E of units of F modulo the subgroup
C of cyclotomic units. |

For F = Q((n)", the equality |e,A| = |e,(E/C)p| is proven, where e, is the
idempotent corresponding to an irreducible higher dimensional character p of A
into Zy, . Furthermore, it is shown that e,(£/C), is a principal Z,[A]-module.

For F = Q((m), assuming certain conditions for m and p, the equality |e,A| =
(By,p-1)p is obtained, where e, is the idempotent corresponding to an irreducible
higher dimensional odd character p of A into Z, distinct from the Teichmiiller
character and (Bj ,-1)p is the highest power of p dividing the p-adic integer By ,-1,
which is defined in terms of generalized Bernoulli numbers.

The method applied is an extension of Rubin’s early treatment of Kolyvagin’s

Euler systems.

iii




Acknowledgements

I express my thanks to the Department of Mathematics of Concordia University
and ISM for the financial support during my studies in the Ph.D. Program.

I also express my gratefulness to professors of the above-mentioned department
and CICMA for transmitting to me fundamental knowledge in number theory.

I am specially grateful to Professor Francisco Thaine, who has supervised this
thesis, for valuable guidance, willing help, and long-standing financial support.

My warmest thanks go to my family for their patience, affection, unconditional

help, and constant encouragement.

iv



Table of Contents

List of Symbols vii
Introduction : v 1
1 Preliminaries 5
1.1 Unramified extensions of the p-adic field 5
1.2 p-adic characters 6
1.3 Gauss sums 10
1.4 The inflation-restriction exact sequence 12
1.5 Dirichlet density 12
1.6 Minkowski units ' 13

2 On the Ideal Class Group of the Maximal Real Subfield

of a Cyclotomic Field 14
2.1 Basic elementé 14
2.2 The induction property 7 ( 18
2.3 First application of the Chebotarev density theorem 21

2.4 Main results 21




3 On the Minus Part of the Ideal Class Group

of a Cyclotomic Field

3.1 Bésic elements

3.2 An application of the inflation-restriction exact sequence

3.3 Kolyvagin’s lemma

3.4 The induction property

3.5 Second application of the Chebotarev density theorem

3.6 The main result

References

vi

28

29

34

37

41

47

53

61



a(L)
a(L, L)
A
A(L)
AL
Bix
By p-1
C
condition C
o(L)

A
A(L)

A

List of Symbols

the order of a group or the cardinality of a set
greatest common divisor of two integers
exactly divides

p-part of a number

p-part of the ideal class group of F'

p-part of the ideal class group of F'(L)

generalized Bernoulli number

II Bux—

X€X,
group of cyclotomic units

Gal(F/Q)
Gal(F(L)/Q)

group of p-adic characters of A

vii

Section 1.2, page 9

Section 3.6, page 58
Section 2.1, page 15
Section 2.1, page 15
Section 3.1, page 30
Introduction, page 3
Chapter 3, page 28

Section 2.1, page 17
Section 3.6, page 56

Section 3.6, page 58

Chapter 2, page 14
Section 3.5, page 50
Section 3.1, page 34
Introduction, page 3
Chapter 3, page 28

Section 1.2, page 6



Dy

F(L)

GL
H’(G,N)
Imy

ind>\ s indg

w(L)

1>

¢L

idempotent corresponding to x

an element of Z[A] satisfying e, = e, mod M

reduction of e, mod p
group of units of F'

p-part of E/C

Q6m) ™
Q(¢6m)

F((L)

finite field with ¢ elements

Gal(F(L)/F)

j th cohomology group of G with

coefficients in N

image of x

viii

Section 2.1, page 16
Section 3.1, page 29

Section 2.1, page 16
Section 3.1, page 29

Section 1.2, page 6

Chapter 2, page 14

Chapter 3, page 28
Section 1.2, page 8
Chapter 2, page 14
Chapter 2, page 14
Section 3.4, page 42
Section 3.4, page 41

Chapter 2, page 14
Chapter 3, page 28

Section 2.1, page 15
Chapter 3, page 28

Section 2.1, page 15
Chapter 3, page 29

Section 2.4, page 25
Section 3.5, page 47

Section 3.4, page 41

Section 2.1, page 17



k(L,\)

Ox

Qp

a prime of F above £

an odd rational prime satisfying

[Elm()de

a prime of F(£L) above )
a prime of F'(L) above A

a product of distinct rational primes ¢
set of products L

group of Mth roots of unity
an integer satisfying m > 3, m # 2 mod 4

p-[(E/C)yl- 4|
p'r‘(l)+1 . lepAI

I1»

¢|L

Teichmiiller character of (Z/mZ)* into Z,

~ set of irreducible higher dimensional

characters p
integer ring of Qp(X,)
an odd rational prime not dividing |A|

field of p-adic numbers

ix

Section 3.1, page 34

Section 2.2, page 18
Chapter 3, page 28

Section 2.1, page 15
Chapter 3, page 28

Section 2.2, page 18
Chapter 3, page 29

Section 2.1, page 15
Chapter 3, page 28

Section 2.1, page 15
Chapter 3, page 28

Chapter 3, page 28
Introduction, page 2

Chapter 2, page 14
Section 3.6, page 53

Section 2.1, page 16
Section 3.1, page 29

Section 2.1, page 16
J
Section 3.1, page 29

Section 1.2, page 6

Section 1.2, page 7
Section 3.6, page 56

Introduction, page 3



Qp(X,)

s(L)
s'(L,8)
S(L,¢)
S ¢
(L)

0'(L, )

-an irreducible higher dimensional character

of A into Z,

a generator of Gy

a primitive root mod £

a Gauss sum

trace of F,/F,

valuation at A, valuation at £

" a p-adic character of A

orbit of p
a primitive mth root of unity

ring of p-adic integers

Section 3.5, page 47

Section 1.2, page 7
Chapter 2, page 14
Chapter 3, page 28

Section 3.6, page 53

Section 2.1, page 15
Section 3.1, page 29

Section 2.1, page 15
Section 3.1, page 29

Section 3.1, page 31
Section 3.3, page 39
Section 3.1, page 30
Section 1.3, page 10
Section 3.1, page 31
Section 3.3, page 39

Section 1.3, page 10

Section 1.2, page 6

Section 1.2, page 7



Introduction

The purpose of this thesis is to study ideal class groups of cyclotomic fields by using
higher dimensional p-adic characters of the corresponding Galois groﬁps. Specifi-
cally, p being an odd prime, the order of the p-component of the p-part of the class
group of a field F' with Galois group A over Q is determined for an irreducible higher
dimensional character p of A into Z, in two situations: when F is the maximal real
subfield of a cyclotomic field (Chapter 2), and when F is a cyclotomic field and the
character p is odd (Chapter 3). Both situations are developed in the semisimple
case, that is, assuming that p does not divide the order of A. In the second situa-
tion, an additional condition is adopted, which will be defined in Section 3.5. These
results (without assuming the additional condition) were conjectured by Gras [G1]
for abelian number fields in 1977.
Furthermore, in Chapter 2 the structure of the p-component of the p-part of the
group of units of F' modulo cyclotomic units is determined.
- This work is detailed and based only on fundamental results in number theory,
which are stated in Chapter 1.
The results mentioned in the first paragraph have counterparts in terms of one-
dimensional p-adic Dirichlet characters x . These analogous results, assuming that
p{ordy, were obtained first as consequences of the main conjecture of Iwasawa
theory for abelian number fields by Mazur-Wiles [MW] in 1984. In this manner,
the Gras conjectures became proven. The methods used by Mazur and Wiles relied
on modular constructions of unramified extensions of abelian number fields. In
comparison, the methods in the present thesis are much simpler and the results are

obtained directly.



In 1988, Kolyvagin [K2| introduced Euler systems, which have become a very
important tool with several applications in number theory. Kolyvagin used Euler
systems to provide direct proofs of the results mentioned in the first paragraph in.
the case m = p, among other advances. He also suggested that Euler systems could

be used to obtain another proof of the main conjecture for abelian number fields.

Detaﬂed versions of the results of Kolyvagin mentioned above were giveh by
Rubin. The situation F = Q((,)* was presented in an appendix to [L] in 1990 and
the situation F' = Q((,) was treated in [R1] in 1991. These works are generalized

by the results referred in the first paragraph.

Besides relying on the works of Rubin mentioned above, the methods in this
thesis require the repeated application of a congruence for elements in Zy[Ale,,
given in Proposition 1.4. This application originated in an idea of Rubin, which
appears in the appendix of the paper of Thaine [T] of 1988, where it is used to find

annihilators for the p-part of the ideal class group of a real abelian number field.

In 1990, in the appendix to [L] already mentioned, Rubin used Euler systems
to prove the main conjecture for Q((,e) for an odd prime p. By the same means,
in 1992, Greither [G2] proved the main conjecture for any abelian number field
including the case p = 2. Moreover, Greither derived from the main conjecture the
results for one-dimensional characters x referred above, including the case p = 2
and dropping the condition p t ord x .

Direct proofs of the results for one-dimensional Dirichlet characters y , maintain-
ing the condition p { ord x with p odd, were achieved by Rubin [R2] in 2000 by
using Euler systems of cohomology classes of p-adic representations. By contrast,
the inethod of higher dimensional characters presented in this thesis uses only one
result in group cohomology (the inflation-restriction exact sequence).

Throughgut this thesis, m is a fixed integer satisfying the conditions m > 3 and

m # 2mod 4, and A denotes the Galois group Gal(F/Q) in the two situations

2



F =Q((n)t and F = Q({m). In addition, p represents an odd prime not dividing
|A|, and A denotes the p-part of the ideal class group of F.

This work is based on the following fundamental results: Proposition 1.4, re-
sults on unramified extensions of the p-adic field Q, , the inflation-restriction exact
“sequence, the Chebotarev density theorem, Stickélberger’s theorem, properties of
Gauss sums including the Davenport-Hasse distribution theorem, and the existence
of Minkowski units. These results are taken from the books [C], [J], [K1], [L], [W1],
[W2] and are presented briefly in Chapter 1.

In Chapter 2, where F = Q({m)™, the equality |e,A| = |e,(E/C),| is obtained,
where p is an irreducible higher dimensional character of A intb Zy, and (E/C),
denotes the p-part of the group F of units of F' modulo the subgroup C of cyclotomic
units. Furthermore, it is shown that the p-component of the p-part of the group of
units of ' modulo cyclotomic units is a principal Z,[A]-module. The exposition is
based on Chapter 15 of Washington’s book [W1], where the particular case m =p

is considered.

Chapter 3, where F' = Q((m), is devoted to proving the equality |e,A| =
(B1,,-1)p, where p is an irreducible higher dimensional odd character of A into
Zy, distinct from the Teichmiiller character, and (B, ,-1), is the p-part of the num-
ber By ,-1 to be defined in Section 3.6. This result is obtained assuming condition
C, which will be defined in Section 3.5. The discussion géneralizes and closely fol-
lows Rubin’s paper [R1], which presents a detaiied exposition of Kolyvagin’s theory
for Gauss sums and gives the equality above in the case m = p. Some difficulties had
to be overcome in order to attain such generalization, as the handling of the group
A when it is not cyclic and the extension of Theorem 3.1 in [R1] to Proposition

3.14.

Concerning notation, if H is a subgroup of an abelian group G, the class aH

of an element a in G will sometimes be denoted simply by a. The congruence

3



a = 8 mod p, where p is a prime ideal of a number field X and o, € K*, will
mean that ¢~ = 1 mod m,,, where m,, is the maximal ideal of the local ring at
fo. Furthermore, group ring actions on multiplicative groups will often be written

additively; for example (o — 1)o will stand for a°~! = ga/o.



CHAPTER 1
Preliminaries

1.1 Unramified Extensions of the p-adic Field

The brief explanation that follows about finite unramified extensions of the p-adic
field Q,, is relevant for Section 3.6. The results presented are fully developed in [C],
Chapter 8, Section 2, and [K1], Chapter 3, Section 3.

Consider the extension Qp((q) of the p-adic field Q, . Denote the ring of integers
of Q,(¢a) by O. There is a unique prime p of O above p. The prime p is a maximal
ideal, so the quotient O/p is a field. The degree f = [O/p : Z,/pZ,] is known as
the residual degree of the extension Q,((q)/Qp, while the ramification index e is
defined by the equality pO = p°. Denoting n = [Qp((q) : Qp], an important relation
~ is given by the equality n = ef.

In »the case p { d, the extension Q,({a) /Qp is unramified , that is, e = 1. Thus
n = f, in view of the equality n = é f. This extension is clearly Galois, so the equality
n = f implies the group isomorphism Gal(Qy(Ca)/Qp) ~ Gal((O/p) / (Zp/pZy)).
Hence the extenéion Qp(¢a)/Qp is cyclic.

Assuming that p { d, the prime p is inert in the field Q,({q), that is, pO = p. In
consequence, p is also inert in any subfield K of Q,({s). Thus p is a prime element

of the integer ring O of K and the quotient O /pOf is a field.

t Conversely, every finite unramified extension of (J,, is obtained by adjoining a root of unity
of order prime to p.



1.2 p-adic Characters

Recall the notation defined in the Introduction: m is a fixed integer satisfying
m>3, m#2mod4, F=Q(¢(n)" or F=Q(¢n), A= Gal(F/Q), p represents an
odd prime not dividing |A|, and A denotes the p-part of the class group of F.

Some results in this section, as well as most results in the rest of this chapter, are
given with references, where the corresponding sources and }proofs can be found.

This section is based on Section 15.2 of [W1]. The properties of the idempotents
presented bélow, especially Propositior‘l\ 1.4, will be repeatedly applied in the next
chaﬁters.

Let x be a p-adic character of A, that is, a character of A into Zp [€ia)] - Define
the idempotent correspondmg to x by

ex = 1A D X(0) 07t € Zp[Gia][A):

g€EA

The group of characters of A into Z,[¢,4]* will be denoted by A. In the situatién
when F' = Q({m), it will be usual to identify characters in A with characters of
(Z/mZ)* into Zy[{a))* by means of the isomorphism A =~ (Z/mZ)*.

If F = Q((m), then the condition p { |A| = ¢(m) implies that p || m or p { m.
When p || m, there exists a unique character w : (Z/mZ)* — Z, satisfying the
congruence

w(@)=a mod p,

which is called the Teichmiiller character of (Z/mZ)* into Z, .

Basic properties of characters in A are given in the following proposition.
Proposition 1.1.

(1) €2 = ey for every x € A.

(2) exrex, =0 for any x1,x2 € A, x1 # Xa -
(3) era ex =1



(4) oey = x(0)ey for any o € A, x € A.
Proof. Item 4 is shown first and then used to prove the other items.

o6 = By Ereax0)er = Extr
|A| Z x(T) 77 = x(o)ey.

(1) &= I_i—l YoeaX(0)o ey = T/lfl YeeaXx(0) x(07 ) ex
= W(ZU ey = ey.

) ~eX1exz B TXTZ"EA x1(0) 0 ey = %(Z x1(0) x2(0)~ )€X2
= A1(Zox1x37(0))ex, = 0.

(8) yealx = Xxea A wea X(@) 0T = 21,2, x(0) o7
=@, l=1 0O

The orbit of a character x is a subset of A defined by

X = {TX 7 € Gal(Qp(¢1a))/Qp) }

where 7 denotes the compositipn of the character x and the automorphism 7. Two
distinct orbits as above are disjoint, so the set of all orbits is a partition of A.

Let p be the sum of the characters in a given orbit X. It is said that the orbit X
has sum p. By linear independence of characters, distinct orbits have distinct sums.
Thus the orbit X is characterized by its sum p, so X will be conveniently denoted

by X, and p will be written as |

p= > x.

x€X,p
It is easily seen that the orbit X, is preserved by Gal(Qp((a;)/Qp). The same is
true for the sum p. This implies that for o € A, p(0) € Qp, so p(o) € Zy, as p(o) is
- integral over Z, .
Sums p as above will be called irreducible higher dimensional characters of A

into Zp, and the set which they form will be denoted by 2. The set of characters

7



{x1:x € X,} is easily seen to be an orbit. The corresponding irreducible higher
dimensional character will be denoted by p 1.

It is clear that any two characters in the same orbit are either both even or both
odd. An irreducible higher dimensional character is said to be even or odd according
as the characters in its orbit are even or odd.

The idempotent corresponding to p € €2 is given by

ep = Z ey = ﬁ Z p(o)o™! = T}Tl Z Z x(o) o™t € Z,[A].
' x€X, ceA X€X, cEA
The following properties of idempotents e, , p € Q, are analogous to properties |
1, 2, and 3 in Proposition 1.1 for idempotents ex, X € A.
bProposition 1.2.
(1) €2 =e, for every p € Q.
(2) ep,ep, =0 for any p1,p2 € Q, p1 # p2.
(3) 2pener =1
Proof. Items 1, 2, and 3 of Proposition 1.1 are applied.
(1) 6}2; = erx,, €x Zx'ex,, Ex' = 2.ux e;2< = Zx €x =€p-
(2) epep, = erx,,l €x Ex/ex,,z Ex' = Zx,xf ex ex = 0.

3) ZpEQ €p = EpEQ erX,, €x = er3 ey =1 01

Observe that there is no analogous of property oe, = x(o)e, of idempotents e,
for idempotents e, . This deficiency will be rectified by Proposition 1.4,
The properties in Proposition 1.2 imply that a Z,[A]-module N can be decom-

posed as a direct sum
N=> e,N.

Denote the reduction of an element 6 € Z,[A] mod p by 8. It is clear that &, is an

idempotent in IF,,[A], which satisfies properties analogous to those in Proposition 1.2.

8



Lemma 1.3 ([W1], Chapter 15, Proposition 15.5). F,[A]é, is an irreducible F,[A]-

module.

Observe that for 6 = Y A€o0 € Zp[A], p" | 0 means that p” | c, for every
o € A. The notation p” || @ will mean thoughout this thesis that p” I 6 but p™t1 44,
The proof of the following proposition differs from the proof in the reference

given. See the reference for a proof using Nakayama’s Lemma.

Proposition 1.4 ([W1], Chapter 15, Proposition 15.6). If6 € Z,[A] and p" || be,,
then there exists §' € Z,[A] such that p~"00'e, = e,. Consequently, if M is a power
of p, @ € Z[A] and p" || Oe,, then there exists 8’ € Z[A] such that p~"00'e, =
e, mod M. |

Proof. In order to show the first part of the proposition, observe that by Lemma
1.3, p~"0e, Fy[Ale, = F,[A]é, . Then, if ¢ € Z,[A] is given, p~"0e, &, = P&, for

some ¢ € Zp[A], which can be written as

p_r9¢6p =1e, +p¢’ep’

where ¢’ € Z,[A].
Let ¢¥; = 1. Apply the observation above with ¥ = 1,19, ... , ¥, consecutively
to obtain the equalities

e

P O0¢ie, =Yie, +pPiy1e, for i=1,2,...,n,
where ¢; ,v; € Z,[A]. Multiplying the ith equality by (—p)*~! and summing over
1 < i < n, there result;s that
p~ o0, ep=¢€p~ (=p)"Yni1€p,

where 0;, = > 1cicn (—p)i~'¢;. Taking limits as n — oo yields the equality
p00'e, = e,, where ' = lim6;, € Zy[A]. This shows the first part. The sec-

ond part then follows inmediately. [l



1.3 Gauss Sums

Let £ be a rational prime and let ¢ = ¢/ with f > 1. Write Tr for the trace of the
extension F,/F, . Define the Gauss sum

ST = £a) & € 2y,

acFy

‘where £ is a character of Fy'.
Proposition 1.5, Theorem 1.7, and Proposition 1.8 below are used in the proof
of Proposition 3.2. Proposition 1.6 is needed for Lemma 3.9 and Theorem 1.9 is

applied in Theorem 3.20.
Proposition 1.5 ([L], Chapter 1, Section 1, GS2). |S(§,QT’") | =/q for £+#1.

Assume that m I g — 1. Let X be a prime of Q({,,) above £, A be a prime of
Q(¢q—1) above A, and A be a prime of Q(Ce(q—1)) above A. ,

The reéidual degree of A over ¢ is f, so the residual field Oq(¢,—1)/A; Where
Og(¢,-.) denotes the integer ring of Q({,—1), is isomorphic to I, . Since the ¢ — 1st
roots of unity in Q((,—1) are pairwise incongruent mod A, it follows that there is a
unique character w of (Fg)* >~ (Og(¢,_,)/A)* such that w(a) = a mod A for every
a€ OQ(Cq_l)' This character is called the Teichmiiller character.

Let k be an integer satisfying 0 < k < q— 1. Let
k=ko+kil+...+kjqgef!
be the f-adic expansion of k£ with 0 < k; < £ for 0 < i < f — 1. Define
Bky=ko+ki+...+ kf_; and y(k) = kolki! ... k1!

Extend the definitions above to any integer k by (g — 1)-periodicity, that is, 8(k) =
B({k)) and (k) = v((k)), where (k) denotes the least nonnegative residue of k

mod ¢q — 1.

10



Proposition 1.6 (|L], Chapter 1, Theorem 2.1). For every integer k,
Sw™,6™) / (¢~ 1P® = -1/ (k) mod A.

In particular, vz (S(w™*,¢™")) = B(k).

Theorem 1.7 (Davenport-Hasse distribution theorem, [L], Chapter 2, Theorem
10.1). Let £ and ¥ be characters of F;. Then

II 58,¢™) =8¢ &™) ém™) T 9@, ¢™).
#m=1 dm=1
Define the Stickelberger element by

Y ac; QA

1<a<m
(a,m)=1

where o, € A is defined by 04 (¢m) = (%, . For every integer r satisfying 1 < r < m,

(r,m) = 1, define the element

Y {%}o?

1<a<m
(a,m)=1

~ where {-} denotes the fractional part.

Proposition 1.8 ([L], Chapter 1, Theorem 2.2). Assume that f is the order of ¢
‘mod m. Let r sat1sfy 1<r< m, (r,m) = - 1, and let k = (¢g—1)r/m. Then the sum

S(w=*,¢(™") can be factored as
(S(w™*,¢™)) = A%

Define the Stickelberger ideal of Z[A] as Z[A] N OZ[A)].

Theorem 1.9 (Stickelberger’s theorem, [W1], Chapter 6, Theorem 6.10). The

Stickelberger ideal annihilates the ideal class group of Q((m).

11



1.4 The Inflation-Restriction Exact Sequence

The following result of homological algebra is used in the proof of Lemma 3.5.

Proposition 1.10 (Inflation-restriction exact sequence, [W2], Chapter 6, Subsec-
tion 6.8.3). Let G be a group and let H be a normal subgroup of G. Let N be a

G-module. The following sequence is exact:

0 — HYG/H,N¥) 2 gl(@,N) =5 HY(H,N)%/H —

— H*(G/H,N¥) 2 g2(G, N),

where inf and res denote the inflation map and the restriction map respéctively.

1.5 Dirichlet Density

Let K be a number field. Let P be a Set of nonzero prime ideals of K and denote

the norm of an ideal B by N B. If the limit

1
lim ——————-———Z‘OGP il

1
s—1+ ].Ogm

exists, then its value is called the Dirichlet density of P and is denoted by Dd(P).
The Dirichlet density of a set of primes, if it exists, is a number in the interval [0,1].

The following results are used in the proof of Theorem 3.14.

Proposition 1.11 ([J], Chapter 4, Subsection 4.6). Let P and @ be sets of primes
of K having Dirichlet densities. Let P, be the set of primes of K having absolute
degree 1. |

(a) If Dd(P) > 0, then P is an infinite set.

(b) Dd(P) = Dd(P N Py).

(c) If P C Q, then Dd(P) < Dd(Q).

12



Theorem 1.12 (Chebotarev density theorem, [J], Chapter 5, Theorem 10.4). Let
E/K be a Galois extension of a number field with Galois group G. Let o € G and
supposé that o has c conjugates in G. The set of primes of K that are unramified

in E and have a prime divisor in E whose Frobenius automorphism in G is equal

to o has Dirichlet density c/|G|.

1.6 Minkowski Units

The following proposition is applied in the proof of Proposition 2.8.

Proposition 1.13 ([W1], Chapter 5, Lemma 5.27). Let K/Q be a finite Galois
extension. If K is real, write Gal(K/Q) = {01, ... ,0p041}. If K is complex, write
Gal(K/Q) = {01, ... y0p+1,01, - - ,0r+1}. Then there exists a unit € of K such
that the set {o;e : 1 < i < r} is multiplicatively independent, hence generates a
subgroup of finite index in the group of all units. Such a unit is called a Minkowski

unit.
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CHAPTER 2

On the Ideal Class Group
of the Maximal Real Subfield
.of a Cyclotomic Field

Consider the maximal real subfield F = Q(({x,)* of the mth cyclotomic field for
m > 3. Without loss of generality, it is assumed tha£ m # 2 mod 4. Denote A =
Gal(F/Q) and let p be an odd prime not dividing |A| = ¢(m)/2.

Let E be the group of units of F' and let C be the subgroup of cyclotomic units,
i.e., units of the form + [T, ¢;cpm_1 (1 = ¢5)(1—¢77))% . The p-part of the quotient
group E/C and the p-part of the ideal class group of F' will be denoted by (E/C),
and A respectively.

Consider a nontrivial irreducible higher dimensional character p of A with values
in Z, , and let e, be the corresponding idempotent, defined in Section 1.2.

Let M =p - |(E/ C)pl - |A|. The notation e}, will stand for a fixed element of the

/

group ring Z[A] satisfying the congruence e,

=e, mod M.

2.1 Basic Elements

In this section, basic definitions and properties are given of elements appearing
repeatedly in this chapter, such as the cyclotomic units a(L), the operators Ny, and

- Dy, , and the numbers (L) and Fr, for integer numbers L of a special form.
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Let L denote the set of products (the empty product included) of distinct odd ra-
tional primes /¢ satisfying the congruence £ = 1 mod mM. Throughout this chapter,
L and ¢ will denote a number in L and a prime in L respectively.

For every £, fix a primitive £th root of unity {y. For every L, define a primitive
L th root of unity by {5, = He|L ¢¢ and denote F(L) = F(Cr). If £ L, write Ny /y,
for the norm of F(¢L)/F(L). Furthermore, let ' |

o= :I:ngjgm_l((l — 21— ¢7))% = a cyclotomic unit of F,

o(L) = £ [Tigjqm-1((1 = ¢5¢r)(1 = (7¢L))% with the same sign as o.
In this manner, a(L) is a cyclotomic unit of F'(L), since the number 1— ¢, in Q(¢,)
is a unit if n has at least two distinct prime factors. The cyclotomic units a(L)

form an Euler system.

Lemma 2.1. Let £1 L.
(a) NeL/L (L) = o(L)™°Pe~1, where Froby is the Frobenius of £ in F(L)/Q.
(b) a(¢L) = a(L) mod all primes of F({L) above {.

Proof. (a) Since Npr/r(1 ~ ¢hler) = icoce1(1 — ¢hrél) = 1 = §ict)/
(1-¢2.¢r) = (1 — ¢ ,¢)FoPe=1 the required equality follows.

(b) The congruence a((L) = a(L) mod (1 — ¢;) follows from the definition of
a(¢L). Then the stated congruences hold because the ideal (1 — (;) of F(/L) equals

the product of all primes above ¢. [

Denote G, = Gal(F(L)/F). Thus G is isomorphic to [], ;, Ge.

- Fix a primitive root s, mod £, define a generator o5, of the cyclic group G by
0s,(¢e) = {;*, and extend oy, to fields F(L) with £ | L so that o,, acts as the
identity on roots of unity of order prime to £. When there is no risk of confusion,
s¢ will be denoted simply by s and correspondingly o,, will be denoted by o .

Define elements in Z[Gy] by
Ny = Z ol , Dy= Z joi,
: 02 1gise-2
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and elements in Z[G] by

NL:HNg, DL=HDg.

¢|L ¢|L

Then, if £{ L, N; coincides with the norm Ny, 7, . The elements Ny and D, satisfy
the equality (o5 — 1) Dy = £ — 1 — N, . Indeed,

(s —1)Dp=(0s—1) Y gjoi= Y (-Dof- > jo!

1<ise-2 AV A 1Sise-2
={—-2— E O'gze—l—Ne.
1<i<e~2

Lemma 2.2.
(a) (6 —1) Dy o(L) € (F(L)*)M forallo € Gf,.
(b) The function ¢ : G, — F(L)* given by c(c) = ((6 — 1) Dy o(L))'/™ is well

defined and satisfies the cocycle relation c(ro) = c() - 7(c(0)).

Proof. (a) The case L = 1 is trivial because G; = 1. Assume by induction that
L > 1 and that the statement is true for all proper divisors of L. Let £ be a prime
factor of L and L = £L'. Then, for s = s;,

(0'3 - 1) DL a(L) = (0'3 - 1) Dng a(@L’)
=({~1~Ng)Dpra(fL') because (os—1)D,=£—1— N,

= Dy a(¢L') ™/ (Frob, — 1) Dy, a(L') by item (a) of Lemma 2.1,

so (05 — 1) DL a(L) € (F(L)*)™ by induction hypothesis and because M | £ — 1.
Since Gy, is generated by the o, = o,, with £ | L, the étatement is valid for all
o €GL. |

(b) Since Q(Cpy¢m) NQ(¢L) = Q (because L is prime to pm) and F C F((p)
C Q(6ps$m)s F(¢p) NQ(¢L) = Q and FNQ(¢z) = Q. Then [F(L)(¢p) : QCL)] =
[F(¢) : Q] and [F(L) : Q)] = [F : Q], so [F(L)({p) : F(L)] = [F(&) = F,
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whence , ¢ F(L) (as ¢, ¢ F'). Hence the pth root of a number in F(L) is unique if
exists, and so is the M th root. Thus c(c) = ((¢ — 1) Dy a(L))/M is well defined.

The cocycle relation ¢(7o) = ¢(7) - 7(c(0)) follows from the equalities

c(tro)M = (re —1)Dpa(L) = (1 — 1+ 7(¢ — 1)) Dy (L)

=(r=1)Dra(L) -7(6c —1) Dy o(L) = c(r)™ . 7(c(o))M.

This concludes the proof. [
The following proposition defines the numbers (L) and Sy, .

Proposition 2.3. There exist k(L) € F* and 81, € F(L)* such that

(a) ((6 —1)Dg a(L)YM = (6 — 1) By, for all 0 € Gy, ;
(b) Dy a(L) = r(L) BY.

Proof. (a) By the linear independence of characters, there exists § € F(L)* such
that v = > _c(0)o(d) # 0, where c is the function of Lemma 2.2. Thus, by item

(b) of the same lemma,
TY = ZC(TO‘) c(r)tre(@) =c(r)"ly forall 7€Gy.

Setting Br, = v71, it follows that ¢(7) = (r—1)8 with 8 € F(L)*, which amounts
to the required equality.

(b) The equality shown in item (a) implies that

(e —1) (_@#}) =1 forall oc€@Gy.
Bt

This means that (L) = Dy a(L)/BM € FX, which yields the result. This con--

cludes the proof. [J
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2.2 The Induction Property

This section consists of Propositions 2.4 and 2.5. Proposition 2.4 presents the
induction property of the numbers k(L) and serves to prove Proposition 2.5. The
latter proposition will be used in Proposition 2.8 as an essential element to obtain
the main results.

Let X be a prime of F' above £ and £ be a prime of F(£L) above A. This notation
will be used in the rest of this chapter.

Observe that if £ = 1 mod mM L, then £ splits completely in F'(L) and ramifies
totally in F((L)/F(L). Then, since s = s, is a primitive root mod ¢, s is also a

primitive root mod A and mod L.

Proposition 2.4. Let £ =1 mod mML. If k(L) = s* mod )\, a € Z, then

vA(k({L)) = —a mod M.

Proof. Assume that k(L) = s* mod A with ¢ € Z. D, o(L) being a unit, D, (L)
= s mod L for some a’ € Z. In general, if s = s/ mod £, then s = s mod £ and
i=jmod £ — 1. Thus o’ = a mod M by item (b) of Proposition 2.3.

Since £ = 1 mod mML, the Frobenius of £ in F(L)/Q is equal to the identity.
Then Ny a(£L) = 1 in view of item (a) of Lemma 2.1. Hence, item (a) of Proposition

2.3 and item (b) of Lemma 2.1 imply that

(0'3 - ].) ,BZL = ((0'3 - 1) DZL a(fL))l/M = ((E —-1- Ne) DL a(éL))l/M

= Dy, a(0L)# VM = pp o(L)ED/M = 0" (E-D/M pod £
Thus, if (05 — 1) Bez, = s° mod L, b € Z, there results the congruence

b

i

14-1 — €1 _
av.—_aMmOdf 1.

Let ¢ = vz (Ber). Since ve(1 — {¢) =1, Ber, can be expressed as Bor, = (1 — ()¢
with vy € F((L)*, ve(y) = 0. Also, since £ is totally ramified in F(¢L)/F(L), o5
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is in the inertia group of £, so o,y = v mod L. On the other hand, the congruence

(¢ = 1 mod £ implies that

1-¢ 1
=14+¢+...+¢ " =smodL.
1—¢e ¢ G :
Therefore
1— (5o, c
sbz(as—l)ﬂng(T:—%) —’ylzs mod L,

50 b = ¢ mod £ — 1. It then follows that ¢ = a £3! mod £ — 1, that is,
ve(Ber) = a% mod £ — 1.

Since the ramification index of £ over X is equal to £—1 and Dz, «(£L) is a unit,

by item (b) of Proposition 2.3 there results that
ua(K(EL)) = 725 ve(w(¢L)) = — 725 ve(BL) = —M5v2(Ber) = —a mod M,

as required. [l

»Recall that e, is an element in Z[A] satisfying €], = € mod M, where M =p -

[(E/C)y| - |A].

Proposition 2.5. Let £ = 1 mod mML. Suppose that the class € of A is in e, A
and that |
(1) the group B generated by the classes of the primes of F' dividing L is included
in-epA; _ |
(2) € k(¢L) € (F*)P" with p" < M and p~"M annihilates A;
(3) if k(L) is a unit at o\ for every o € A and e;,E(L) = s mod A\ with p" || a,

then prl <M.

Then r < r' and p™ ~" annihilates € in e,A/B.
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Proof. Let €, = ) A Co 07, ¢, € Z. For every o € A, s is a primitive root
mod o, s0 k(L) = s% mod o for some a, € Z. Thus 0~'x(L) = 5% mod A and
e,k(L) = 5% mod A, where a =} _as¢s .

In view of Proposition 2.4, the congruence (L) = s* mod o) implies that

ver(k(LL)) = —a, mod M. Hence,
v,\(el'o/s(ZL)) = Z cova(oIk((L)) = Z o Vo (K(£L))

= —Zaaca = —a mod M.

o

If q is a prime of F' not dividing L, then q does not rarriify in F(4L). Thus, since
Dyr, a(£L) is a unit of F(¢L) and Dgr, a(¢L) = x(£L) B by item (b) of Proposition
2.3, (K(¢L)) = (B, )M as ideals of F(¢L), so M | vg (n((ZL)) Therefore,

(k(¢L)) = X? - (primes dividing L) - BM,

where § € Z[A] and B is an ideal of F' whose class is in A (this follows from the

stated equality). Applying €], yields the equality

(e,k(LL)) = A% . (primes dividing L) - B'™,

where the ideal B/ = B has its class in A.

Since the left side is a p"th power, thé exponent of every prime on the right side
is a multiple of p”, so the p"th root of the equality can be taken. The ideal B'? M
being principal as p~" M annihilates A, there results that e? "%, ¢ B,

Let p™ || a, p* || 0¢}, , and write fe), = Y, b;o™1. Then 7 < t because p” | 6e,,,
and t < r' because b; = vx(e,x(¢L)) = —a mod M. Thus r < r'.

By Proposition 1.4, there exists §' € Z[A] such that p~*08'e), = e/, mod M. Since

/

- Hence,

€ € e,A, e, preserves €, and so does e
e = P = (ePTT0)0 ¢ B,
as B is preserved by A. This means that p*~" annihilates €. Thus, since ¢t < 7/,

there results that p™ —" annihilates €, as required. O
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2.3 First Application of the Chebotarev Density
Theorem

The only result in this section, Theorem 2.6, is an application of the Chebotarev
density theorem (Theorem 1.12) and is, as Proposition 2.5, an important element
" to obtain the main results in the next section. Theorem 2.6 is Proposition 15.4 in
[W1], Chapter 15, and is presented here for convenience of the reader. Theorem 2.6
is stated for a generalized case in which the field F is a real abelian extension of Q.

This is the only exception to the notation F' = Q({)* adopted in this chapter.

Theorem 2.6. Let F be a real abelian extension of Q and let € be an ideal class
of F of order prime to [F : Q|. Let b and ¢ be positive integers such that c l b.
XSuppose that 8 € F* is a cth power mod A for all except possibly a finite set of
the prime ideals A € € of absolute degree 1, lying over rational primes £ = 1 mod b.

Then 3 € (F*)¢ if ¢ is odd, and 8 € i(Fx)C/‘2 if ¢ is even.

2.4 Main Results

The main results of this chapter are presented in Theorems 2.9 and 2.11. An im-

portant prelude to these theorems is Proposition 2.8, which applies all the material

-

in previous sections.

The following easy lemma is used in Proposition 2.8 and Theorem 2.11.

Lemma 2.7. Let B be a submodule of the Z,[A]-module e,(E/C), (resp. e,A)
and £ € e,(E/C)p (resp. § € e,A). Let f be the order of € in e,(E/C),/B (resp.
e,A/B). Then for 0 € Zy[Ale,, ¢° € B if and only if f | 6.

Proof. Suppose that £¢° € B. By Proposition 1.4, there is §' € Z,[A] such that
p~'00’e, = e, mod M with p* | 6. Thus,
é‘Pt — fp’e,, — 500'6,, — 606' € B.
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It follows that f l p® by definition of f, so f ] 0. This shows one implication. The

other implication is clear. This concludes the proof. [

In the rest of this chapter, the following notation will be adopted: (n) will denote
the cyclic group generated by 71, and (€, ...,¢;) will denote the multiplicative

module generated over Z,[A] by €, ...,¢;.

Proposition 2.8. Let H be a maximal principal submodule of e,(E/C), over
Zy|A]. Then |e, Al | |H]|.

Proof. Let H = (nC) with € E. It will be shown that (nC) is a maximal cyclic
subgroup of e,(E/C), . Suppose the contrary, that is, (nC) G (eC) C e,(E/C), for
some & € E. This clearly implies that nC = (¢C)® with p | a and that (nC) C (¢C).
From the last relation it follows that (nC) = (eC), as (nC) is a maximal principal
submodule of e,(E/C), . Thus, eC = (nC)? with 8 € Z,[A], whence nC = (eC)* =
(nC)*®. Since p | a, the order of nC fnust be 1,50 nC = C. Hence, eC = (nC)? = nC,
which contradicts that (nC) # (eC). This shows the claim.

Let p™ be the order of (nC) and let « = 7P"° € C. Since nC € e,(E/C),,
ep(nC) = nC, and since M annihilates (E/C),, e,(nC) = e,(nC), so nC = |
ep(nC) = e,(nC) = (e,n)C. The unit n will be chosen so that r, is the largest
integer verifying e,a € (F X)P" . First assume that e,(E/C), is nontrivial. In this
case, take any ) € E such that H = (nC). Clearly e,a = (e,n)?" € (F*)P™. Su_p—y
pose that €,a = e?™"" with ¢ € E. Then e,n = €P (as the pth root in F' is unique if
exists), so ((e,e)C)P = (e,eP)C = (e,n)C = nC with (e,e)C = e,(eC) € e,(E/C),
(eC € (E/C)p as (eC)? = (e[n)C € (E/C)p). Thus ((e,€)C) is a cyclic subgroup of
e,(E/C)p of order p™*! containing (nC)) properly, which contradicts the maximality
of (nC). Now assume that e,(E/C), is trivial. In this case, ro =0, a = n € C, and
it is enbugh to find a unit n € C such that e,n ¢ (F*)P. By Proposition 1.13, there
exists a Minkowski unit € € E. Tt is not difficult to show that EP"NZ[A]e C Z[A]eP

for n sufficiently large. Choose é, € Z[A] such that é, = e, mod p". If for every
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v € E, é;y € EP, then é,7y € E?" (by applying é, repeatedly), so in particular
é,6 € EP". This implies that é,e € EP" N Z[Ale C Z[Al]e?, whence e = &P9 for
some 6§ € Z[A], so é, = pf + be; for some b € Z. Since p # 1, multiplying this
equality by e, yields p | e, , which is impossible. Hence, there exists v € E such
that &,y ¢ E?, or equivalently e,y ¢ E?. Let n = e,y?  Z¢l with p* || [E : C.
- Thus nC = e,(nC) € e,(E/C), (as n?° € C). Since e,(E/C), is trivial, there
results that n € C. Moreover, e,n ¢ EP because e,y ¢ EP. It then follows easily
that e,n & (F*)P, as needed. |

Choose classes €;, ... ,& in e, A such that e,A = (€1, ...,€) and €; has
\ order f; > 1 in the group e, A/ (€1, ... ,¢y) for 1 < i< k.

Starting with k(Ly) = a (L, = 1), the elements x(L1),... ,x(Lk) of F* will
be obtained, where L; = £; ---¢; € L with ¢; = 1 mod mML;_ . In addition, the
prime ); of F' above ¢; will be in the class €;.

For 1 <4 < k, write r;_; for the largest integer such that ej,x(L;-1) is a pli-ith
power mod A;, and r; for the largest integer such that e)x(L;) € (F*)P™, Tt will
be shown inductively that r; < ri_; <73 <7, and f; [ pri-17 " for 1 < i<k, by
choosing the primes A ,...,Ag suitably.

Fix i, 1 <7 < k, and assume ;1 < 7o, Which is trivial for ¢ = 1. Apply Theorem
26 with€ =¢;,b=mML;_1,c=p"*, and 8 = e;,n(Li_l), considering the
.prime ideals in €; at whose conjugatés k(Li-1) is a unit,: to show by absurd that
there exists a prime \; € €; of absolute degree 1, lying over a rational prime
£; =1 mod mML,;_,, and such that r}_; < r;_; and &(L;—1) is a unit at o); for
every o € A. Since obviously }_; > r;—1, it follows that r;_; = r;_1.

Let 7; be the largest integer < 7, + 1 such that e),x(L;) € (F* )™ . The hypothe-
ses of Proposition 2.5 are satisfied by £ = ¢;, L = L;_1, B = (€1, ...,¢_3),
r = 7;, and 7 = r;_;. Indeed, the subgroup generated by the classes of the

primes dividing L;_; equals (€, ...,€;_1), which is included in e,A (condition
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(1)); o™ < pt < p-[(E/C)pl < M, and p™M > pT" 7'M > |4, s0 pT*M
annihilates A (condition (2)); e,x(Li—1) = s* mod A; implies pii-1 || @ by def-
inition Qf rj_y, and 7,1 < 7, (induction hypothesis) and r,_, = 7;_; imply
pli-t < pro < |(B/ O),| < M (condition (3)). In consequence, 7; < r;_, and p"i-1~
annihilates €; in e, A/(€y, ... ,€1), s0 f; | p"i-17™, Since r}_; = ri_1 < 7o,
i < 1. Then r; < 1, because r; = 1, + 1 would imply #; = r, + 1, which is
/

impossible. Hence, 7#; = r;, and so r; < 7}

i1 = Ti—1 < 7o and f; |p”—1_“.

f As a consequence of the last relation, it will be obtained in the next paragraphs
that [(C1, ..., €)1 (€1, oy Cit)] | [((O)) : (O™ )],

It is easy to show that (nC)?™ has order p™~*~™ in e,(E/C),/((nC)?"~"). This
amounts to showing that the least integer ¢ such that (nC)*™ ™ € ((nC)P™) equals
ri—1—7;.Indeed, t < r;_1—7; obviously, and since |(nC)| = p™, (770’)1°Ti+t+m_ri_1 =
C, and so r; +i+ro—Tic1 Z To, 1€t Z Ty In this manner, Lemma 2.7 can be
used to show that the kernel of the surjective Z,[A]-homomorphism from Z,[Ale, to
(nC)P™)/((nC)P™"") defined by 8 +— (nC)P™? is equal to p"-*~"Z,[Ale, . Hence,
Z,[Aley /57" Ty [Ale, = (nCF )/ (CF™ ).

Analogously, the kernel of the surjective Z,[A]-homomorphism from Z,[Ale, to
(€1,...,€)/(C1, ...,€_1) given by 0 — € equals f; Z,[Ale, , as f; is the order of
¢ ine,A/(€y, ..., €_1). Thus Zy[Ale,/fi Zo[Ale, ~ (€1, ..., €)/(E1, ..., Ci1).

The rela,tiqn fi | pTi=17"¢ obtained above implies that
‘IZP[A]eP/fi Zp‘[A]epl | IZPIA]eP/pTi_l—rin[A]ep"
Thus, by the stated isomorphisms, it follows that
(€1, @) (€1, s €)1 [(O)) = (O™ )],

Finally, since

|e,,A|:| (@1,...,@]9) |= H [(Cl,...,Qli):(ﬁl,...,&_l)],

1<i<k
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there results that
lepAl l I (@™ - (@C)P" )] = [(nC)P™)I | |(nC)] = |H],
1<igk

- as required.
Theorem 2.9. e, A| = |e,(E/C),| and e,(E/C)y is a principal module over Zy[A].

Proof. For every nontrivial irreducible higher dimensional character p of A with
values in Z, , take a maximal principal submodule H, of e,(E/C), . Then |e,A| | |H,|
by Proposition 2.8, so |e,A| < [Hp| < |ep(E/C)pl. Since 1A =1 and el(E‘/C’)p =
C, the group decompositions A = [ ,e,A and (E/C), ~ ][, €,(E/C), hold. Hence,

Al = [Tle, 4l < TT1H,| < [T leo(E/C),| = I(E/C),l.

Furthermore, the equality |[A| = |(E/C),| follows from the formula [E : C]| = 2%h,
where h is the ideal class number of F, b =0if g =1,b=29"24+1—gif g > 2, and
g is the number of distinct prime factors of m (cf. [S], Theorem on p. 107).

There results that for every p, |e,A| = |Hy| = |e,(E/C)pl, and e,(E/C), is a

principal module as e,(E / C)p = H,. This concludes the proof. [

Let Imy denote the image of x € X,. Observe that if x1,x2 € X,, then
Qp(Imx1) = Q,(Im x2). Indeed, the Galois group Gal(Qp(Cv(,ﬁ)/2) /Qp) acts tran-
sitively on the orbit X,, so this group contains an automorphism 7 such that
v'rxl = X2, and hence 7Q,(Im x1) = Q,(Im x2). But since Q,(Im x1)/Q, is a subex-
tension of the abelian (in fact cyclic) extension Qp(Cp(m)/2)/Qp, Qp(Imx1)/Qy is
Galois (in fact cyclic), so 7TQp(Im x1) = Qp(Im x1). Thus the claimed equality fol-
lows.

Fix a character x, in the orbit X,, and denote G = Gal(Qp(Cp(m)/2)/Qp) and
H={r€G : TXo = Xo} It is clear that H is a subgroup of G and |X,| =[G : H|

(orbit stabilizer theorem). Note that 7 € G fixes Q,(Im x,) pointwise if and only
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if 7 € H, s0 H = Gal(Qp({p(m)/2)/Qp(Imx,)). Hence, by Galois theory, |X,| =
[Qp(Im xo) : Qp]-

Since the image Im X, is a subgroup of the cyclic group generated by (,(m)/2,
it is also a cyclic group. Fix o, € A such that x,(0,) generates Imy,. Then
Qp(Im xo) = Qp(x0(00))-

The next propositidn will permit to determine the structure and the order of the

groups e,(E/C)p and (€) with € € e,A in terms of their exponents.
Proposition 2.10. Z,[Ale, is a free Z,-module with base o5’e, for 0 < j < |X,|.

Proof. It is enough to show that every element in Z,[A]e, can be uniquely written
in the form ZOSKIX,A cj aojep with ¢; € Z, .

Let 8 =) cabo 0 € Zy[A]. Then

e, = Z bs o Z ey = ZZbaX(")ex’

cEA XEX, X
because oe, = x(o)ey for all 0 € A and x € X,,. Since Y byx0(0) € Qp(Im x,) =

Qp(x0(00)) and [Qp(Im xo) : Qp] = |X,], X, boXo(o) can be written as a polyno-
mial in X,(0,) of degree less than |X,| with coefficients in Z;, say > boXo(0) =
> ogi<|x,| CiXo (0,)7. This equality is then valid for any x in X, , that is,

Sbxi@)= Y (o),

o€l 0<5<| X, '
by applying the automorphism that takes x, into x. As x(0o)e, = x(od ey =
odey, it follows that

e, = ZZ cix(0o) ey = ZZ cjoje, = Z cjoley,
X X . J

as required.

To show uniqueness, assume that ZK i<IX,| cjraoJ e, = 0. Then, by applying e, ,
it follows that }_. cjos exy = 0, which amounts to writing i €iXo(0o) ex, = 0.
Thus Y ; ¢jXo(d)’ = 0, whence all the c; are 0, since Xo(0,) has degree |X)| over

Qyp . This concludes the proof. [
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Theorem 2.11. The following group decompositions and formulas hold:
(a) e,(E/C)p ~ H0<j<IXpI(U°j"C)’ where nC' is a generator of e,(E/C), as
Z,[A]-module, and |e,(E/C),| = |(nC)|*el;
(b) (€) ~ H0<j<|Xp|(aoj€) for every € € e, A, and |(€)] = |(€)|!Xel.

Proof. (a) By Proposition 2.9 there is a generator nC of e,(E/C), as Z,[A]-
module. Thus it will be enough to show that the classes o/ nC for 0 < j < | X, | are

multiplicatively independent. For this purpose, assume that
' o d
(nC)Z°<J'<'XP‘CJU° =C with ¢;€7Z,.

Then }; CjO'oj ep is an annihilator in Zy[Ale, of nC, so it is divisible by |(nC)| by
Lemma 2.7 with B = (1) as submodule of e,(E/C), . Hence the coefficients c; are
all divisible by [(nC)| in view of their uniqueness in Proposition 2.10. It then follows
that o

(nC)cJ"’oj =C forevery j, 0<j<|X,l|,

as required.

The equality |e,(E/C),| = |(nC)|1¥¢! follows readily from the group decomposi-
tion shown above, because |(o5'1nC)| = |(nC)] for every j, 0 < j < |X,|.

(b) The proof is analogous to that of item (a). This concludes the proof of the

theorem. O
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CHAPTER 3

The Minus Part
of the Ideal Class Group
of a Cyclotomic Field

Consider the m th cyclotomic field F' = Q(Cm) for m > 3. Without lost of generality,
it is assumed that m # 2 mod 4. Denote A = Gal(F/Q) and let p be an odd prime
not dividing |A| = ¢(m). This assumption implies that p || m or p{ m.

Characters of A will be defined on (Z/mZ)* via the canonical isomorphism
A~ (Z/mZ)*.

Fix an irreducible higher dimensional odd character p of (Z/mZ)* with values
in Z,, and assume, if p || m, that p # w, where w is the Teichmiiller character of
(Z/mZ)* into Z. Let e, be the idempotent corresponding to p, defined in Section
1.2. |

In general, the group of bth roots of ﬁnity will be‘denoted by us and ( will stand
for a primitive bth root of unity. Denote F'(L) = F(CL) and A(L) = Gal(F(L)/Q).
Write A(L) for the p-part of the ideal class group of F(L) and let A = A(1).

/

Let M be a power of p greater than 1 to be defined in Section 3.6. The notation e o

will stand for a fixed element of the group ring Z[A] such that e/, = e, mod M. Let
LL denote the set of products (the empty product included) of distinct odd rational
primes £ satisfying the congruence £ = 1 mod mM. Henceforth L and ¢ will denote

an integer and a prime in L. respectivély. In addition, A will denote a prime of F
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above £, and £ a prime of F'(L) above A.

Let Gr, = Gal(F(L)/F). Thus G, is isomorphic to ][, ;, G¢ and to Gal(Q(¢z)/Q),
and A(L) is isomorphic to AGy,.

Any automorphism in A, A(L), and G, will be extended as necessary so that it
acts as the identity on roots of unity of order prime to m, mL, and L respectively.

When the notation for an automorphism over QQ carries a subindex, it will be
understood that the automorphism ra,isés the appropriate root of unity to the index.
For example, 7, € A(L) will mean that 7, is defined by 75(¢mr) = ¢, 5, - However,

this convention will not stand for extensions of automorphisms.

3.1 Basic Elements

In this secfion, definitions are stated and basic properties are shown of important
elements, such as Gauss sums S(L,(;), numbers (L, £), and operators Ny, Dy, ,
- é(L), 6(L), and §(L), which will be utilized repeatedly in this chapter. Proposition
3.2 applies thé Davenport-Hasse distribution theorem (Theorem 1.7).
Fix a primitive root s, mod ¢. Then o,, € G, generates G,. When there is no
risk of confusion, s; will be denoted simply by s. Define elements in Z[G,] by
Ny = Z of, Dyp= Z jol |
0<j<l-2 1<j<e-2
and elements in Z|GL] by
Ny=]INe, Dr=]]D:.
¢|L ¢|L
It is easﬂy shown, as in Chapter 2, that Ny and D, verify the equality (o5 —1)D, =
£—1—Ny.
Let £ =1 mod mM L. Consider the Gauss sum
SEC) =D &) € Zye-),
a€(Z/4Z)x
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where ¢ is a character of (Z/£Z)* into pe—; . Define

S(L,¢)=S(,¢)= Y. e(a)¢f € F(LL),

a€(Z/eZ)*

where € : (Z/LZ)* — pmr is the character satisfying e(a) = a~¢"1/mL mod £
for all a € (Z/¢Z)*. The uniqueness of this character follows from the pairwise
incongruence of the mL th roots of unity mod £, which derives from the relation
£tmL (as £ =1 mod mML).

The first simple properties of the sum S(L£, {¢) are given in the next lemma.

Lemma 3.1. Let £ = 1 mod mML and let ¢ : (Z/£Z)* — pm1 be the character
satisfying €(a) = a~¢~Y/mL mod L for all a € (Z/¢Z)*. Then

(a) oS(L,¢e) = S(L,0¢) = e(b)™1S(L, &) for every o = gy, € Gy;
(b) 0S(L,¢e) = S(oL, () for every o € Gr .

Proof. (a) Let 0 = 0, € G;. Thus 0S(L, () = o(3, e(a)(f) = 3., e(a)(0¢r)® =
5, (@) = e(6) 1 T, e(ab) (3 = e(6)1S(L, Co).

(b) Let ¢ € Gr. Then ge(a) = a~ ¥~ YV/™L mod oL for all a € (Z/LZ)*, so
0S5(L,Ce) = 0 (Xoa e(a)(y) = 2oq 0e(a)(y = S(0L, (). O

For a € (Z/mZ)*, extend the automorphism o, € A to F({asz) so that oo(pr =

Awl(a) if p || m, 0ol = {umr if p t m, and 0,{; = {7 . This extension will be

standard throughout this chapter except vin a part of the proof of Theorem 3.14.
Let n € (Z/mZ)* satisfy n # 1 mod m, and for every n, fix an integer n, such
that on (mmr = (gL - Tfms, n, = nmodm; n, = wn)mod M if p || m,
n, =1mod M if p{m; and n, = 1 mod L. (The integer n will be suitably chosen
in the proof of Proposition 3.19.)

For L and { satisfying £ = 1 mod mM L, define -

O‘(Iﬁ ‘C) = (o'n - nL) S(E, 42)
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Since oy, — n,, annihilates pmr, , item (a) of Lemma 3.1 implies that oL, £) is in
F(L)* and does not depend on the choice of ¢;. The numbers a(L, £) form an
Euler system of Gauss sums.

Define elements in Z[A(L)] by

s(L) = Z at;t, O(L)= L (on — n.) s(L).
1<a<mlL
(a,mL)=1

It is easily shown that (L) € Z[A(L)]. Indeed, (- ) standing for the least nonnega-

tive residue mod mL,

(an—nL)E atl= E AT, Tyt — E an,T,
a a a

= ({an.) —an,) 7, ' € mLZ[A(L)],

so the claim follows. |

Proposition 3.2. Let { =1 mod mML.
(a) If L = {'L’, then Ny o(L, L) = (1 — Frob,') a(L', Ny L) M, where Froby
is the Frobenius of ' in F(L')/Q, and B € F(L')*.
(b) (L, £)) = L5,

Proof.. (a) In order to prove the required equality, Ny S(L, {;) will be expressed in |
terms of S(Ny L, ().
By definition of S(L,(;),
NeS(EW) =Ne( Y e@)=JI > ocl@c,
a€(Z/LL)x 0€Gy aE(Z/LL)%

where & : (Z/mZ)* — fim is the character satisfying e(a) = a~¢~1/™L mod L for
all a € (Z/0Z)x. |

There exists a generator g of (Z/£Z)* such that &(g) = {1 (o - Define a char-
acter ¢ : (Z/LZ)* — pe by ¥(g9) = (. It follows that oe(g) = (mrr oG =
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Cmr Co o071 = e(g)¥(9)° 1, and so oe(a) = e(a)¥(a)’~! for all 0 € Gy and
a € (Z/LZ)*. Hence

NeS(L,0) =[] Y c@uvie ¢ = [I (X e@v@ic)

ogisl-2  a
' ~1,a -1 j
= (Ye@v@¢) II (Xe@uv@ye).
a : o<t -1 @
The character £¢~! of (Z/£Z)* takes values in f,1’, so Froby can be applied
to it, yielding Froby(e¢~1) = €. This character satisfies the congruence € (a) =

a~@-1/mL" mod Ny L for all a € (Z/£Z)*, because it satisfies the same congruence

mod £ and € (a) € pmr C F(L'). Thus,

>~ (@) (@)1 = Frob! (3 e (a) (8 ) = Froby* S(N; £,¢{).

a

On the other hand, the Davenport-Hasse distribution theorem (Theorem 1.7)

yields the equality

[T Sew¢)=-S6" e [ 5@, é).

0<ji<e—1 0<i</~1

The product on the right side can be evaluated by applying Proposition 1.5:

II s@.¢=50¢ I S&.¢)S@™,¢)

0<j<e/~1 1< (0 ~1)/2

(X @) II s@.o¥Enswo

a€(Z/LL)x 1<5<(#-1)/2

- II  1s@w|

1<<(@-1)/2

- H ¢ = —p&-1/2

18 -1)/2

Thus,

I @@ =T[5,
0<ige-1 a j
= S(¥, ¢ e(e) Y 0112
= S(NuL, o) e(€)~¢ & -172,
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Replacing the results of the last two paragraphs in the previous formula for

NpS(L,¢,) leads to
Ny S(L,Ce) = S(Ne L, Ce) e(€) ¢ 6 =172 | Frob* S(Np L, (F).

The required equality follows by applying an¥n L,a8 (op—ny) S(L, () = a(L, L),
(0n — 1) S(NgL,¢e) = oL/, Ny L) S(Ne L, Ce)™ ™2, (0 — 1) S(Ne £, ¢E) =
a(L',Neg L) S(Ney L, Ce')”ﬁ"”L, (on—n.)e() =1, M | ny—n, ,and M | (€'~1)/2.

(b) By Proposition 1.8, the principal ideal generated by the Gauss sum S(L, Q)
‘can be factored as

(S(£,¢)) = LmesD),

Then applying o, — n, yields the factorization
(e(L, £)) = LD,

as required. [J

Lemma 3.3. Let £ =1 mod mML.
(@) (¢ —1) Dy a(L, L) € (F(L)*)M for every o € Gy
(b) (¢ — 1) Dy (L) € MZ[A(L)] for every o € Gy,.

~ (c) DLO(L) € NL(Z/MZ)[A].

Proof. (a) The case L = 1 is trivial because G; = 1. Assume by induction that
L > 1 and that the statement is true for all proper divisors of L. Let ¢ be a prime
factor of L and L = ¢’L’. Then, considering the equality (ocp» — 1) Dg = £' — 1 — Ny

and item (a) of Proposition 3.2,

(O'g/ - 1) DL a(L,L) - (O'e/ - 1) DE’L’ a(L, ,C)
= (El —-1- Ng/) DL/ a(L,L)
= Dy a(L, £)¥ ! /(1 - Frob;') Dy oL/, N L) B™,
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where Froby is the Frobenius of ¢ in F(L')/Q and 8 € F(L')*. It follows that
(0 —1) Dy oL, L) € (F(L)*)™ by induction hypothesis and because M | ¢ —1.
Since G'f, is generated by the oy with £ I L, the statement is valid for all o € G ..

(b) By item (a), the principal ideal (o0 — 1) D (a(L, L)) is the Mth power of
an ideal of F(L), and by item (b) of Proposition 3.2, (a(L,L£)) = L£%L), Hence
L~ DLé(L) js the Mth power of an ideal of F(L) Since £ splits completely in
F(L), (o — 1) D1, (L) must be divisible by M. This shows the result.

(c) Since A(L) ~ AGL, Dy, 6(L) € Z[A(L)] can be written in the form

Dp (L) = Z Z agr 0T with a,r € Z.
c€ATEGE

Thus item (b) implies that for o fixed, all the coefficients a,, for T € G are
congruent mod M. Choosing a representative a, of their common class mod M, it

follows that

D 6(L) EZZ(LUUTZ ZTZGUUZNLZGGG mod M,

which means that Dy, (L) € Ny, (Z/MZ)[A]. This concludes the proof. [1
Define 6(1) = 0(1)e, € Z[Ale,. For L > 1, define §(L) to be the element in
- (Z/MZ)[Ale, satistying the congruence

Np6(L) = ’DL‘G(L) e, mod M ‘ (%)

‘The existence of §(L) is guaranteed by item (c) of Lemma 3.3, and its uniqueness

is clearly seen. It is also clear that 6(1) satisfies the congruence above with L = 1.

3.2 An Application of the Inflation -Restriction Exact
Sequence

This section consists of Lemmas 3.4 and 3.5, the definition of the numbers x(L, A),

and Proposition 3.6. Lemma 3.4 is a basic tool in this chapter; it is used in Lemma
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3.5 and in later sections. Lemma 3.5 is an application of the inflation-restriction ex-
act sequence (Proposition 1.10) and is the unique result in this thesis requiring meth-
ods of homological algebra. This lemma is needed to define the numbers (L, A).
Proposition 3.6 gives a fundamental relationship between the numbers x(L, A) and

the operators §(L), and will be utilized in Theorem 3.12 and Proposition 3.15.
Lemma 3.4. e, (p = 1.

Proof. Let p || m. Then the Teichmiiller character w is defined but is not contained
in X,, 80 3 pcz/mzyx X~ (a)w(a) = 0 for every x € X,. Thus, a and x running
over (Z/mZ)* and X, respectively, and writing e, = p(m)™"* ¥, 3 x"'(a)ga, it

follows that

ep C™ = (2, Ty X H@) 0a) St = (T Yo x (@) w(a) Car = 1.

Let ptm. Then Y, x™*(a) = 0 for every x € X,, as p is odd. Thus,

ep S = (La Xy X 7M@) 0a) G = (X Tax 7M@) = 1.
In both cases, there results that e, (3r = 1, as required. [

Lemma 3.5. Let F' be an abelian number field containing F. Then the canonical

map

ep (FX[(FX)M) — e, [P /(F<)M] 40
is an isomorphism.

Proof. Let F be an algebraic closure of F' containing F'. Consider the partial

inflation -restriction exact sequence
HYG/H,py) — H'(G, pae) — H'(H, pa) /" — H*(G/H, ),

where G = Gai(F/F) and H = Gal(F/F') (see Proposition 1.10). The cohomology

groups in this sequence will be evaluated.
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It is clear that G/H ~ Gal(F'/F) and p}f = p, N F'. The short exact sequence

of G-modules
1— pyy — FX L FX 1,
where the map F* —% F* rises to the Mth power, yields the long exact sequence
1 —H%G, py) — HY (G, F*) 25 HYG,F*) —
HNG, pae) — HYG, FX) 25 HY(G, FX) — ... .

Thus, since H(G, FX) = (F*)¢ = F*, and H!(G, F*) = 1 by Hilbert’s The-
orem 90, it follows that HY(G, py) ~ F* J(F*)M_ Similarly it is obtained that
H(H, i)  F™ [(FP)M.

Therefore, the partial inflation-restriction exact sequence becomes

HY(Gal(F"/F), ptag N F') — FX J(F*)M — [F/* j(F)M]CE/D)
— H*(Gal(F'/F), pa N F').
Let Gal(F'/F) = [; C; be a decomposition in cyclic groups. Then

HY(Gal(F'/F),pn NF') = [[ H(Cj ,paa N F') for i=1,2.

Since for a cyclic group C,

_ (Bae NF')°

H*(C,uu NF') = N 0 F)’

HYC,uny N F') =
M
where ¢ is a generator of C and N = 1+o0+...40'°7%, these cohomology groups are
quotients of subgroups of pM NF'. Thus, by Lemma 3.4, e, H*(Gal(F'/F), pM) =1
fori=1,2.
Hence, applying e, to the exact sequence above concludes the proof. [J
Let £ =1 mod mM L. As a consequence of item (a) of Lemma 3.3, Dy (L, L) €
[F(L)* /(F(L)*)M] G, Thus, in view of Lemma 3.5 with F' = F(L), there exists
a unique (L, \) € e,(F* /(F*)M) satisfying the congruence
#(L,\) = Dy (L, L) e, mod (F(L)*)M. (%)
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The relation o (L, L) = a(L,0L) for every o € G, which follows from item (b)
of Lemma 3.1, justifies the notation «(L, \), indicating dependence on L and A but

not on L.

Proposition 3.6. Let £ =1 mod mML. Then

(k(L,\)) = XoD) . ( primes dividing L) - BM,

where B is an ideal of F.

Proof. Applying D;, e; to the equality in item (b) of Proposition 3.2 and using con-
gruence (x) of Section 3.1 and congruence (*x) above, the principal ideal (k(L, \))

of F(L) can be factored in the form
(H(L, )\)) — ﬁNL &(L) | BIM,

where B' is an ideal of F(L) such that B'™ is the lift of an ideal of F.
If q is a prime of F' not dividing L, then q does not ramify in F(L). Thus, if
q # A, vg(x(L,A)) = 0 mod M. Since LV= = ), the prime factorization of (L, \)

" in F must have the form

(&(L,N)) = A0 . (primes dividing L) - BM, |

where B is an ideal of F, as required. [J

3.3 Kolyvagin’s Lemma

In this section, the map ind, is defined and a notable property of it is given in
Lemma 3.7. In addition, the operators s'(L,£) and 6'(L,¢) are introduced, and
an important relationship between the operators Ny, Dy, 8(¢L), and 0'(L,{) is

presented in Proposition 3.8.
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Lemma 3.7, proven first by Kolyvagin in [K2], is a generalization of the case
m = p given by Rubin in [R1]. This lemma serves to prove Proposition 3.8.

Proposition 3.8 will be used in the next section to prove Proposition 3.10, which
leads to the important induction property given in Theorem 3.12.

For b € Z satisfying vy(b) = 0, define ind,(b) € Z/(¢ — 1)Z by the congruence
b= s"e®  mod £

Lemma 3.7. Let £ = 1 modmML and t = (¢ — 1)/mL. Then for every a,

1< a<mL, (a,mL) =1, the congruence

Z bindy(b) = v + mLinde(—1/(at)!) mod (£ —1)/2

1<b<miéL
b=a renol;:l mL

* holds with u independent of a.

Proof. The notation (- ) will stand for the least nonnegative residue mod mL. Since
mL|€—1,{1<b<mlL:b=amod mL, £1b} ={c+Ll{a—c):1<c<L~1}
Thus,

> bind(®) = indy (J]0*) sinde( ] (c+8a—)ettie)

1<bs<méL b 1€ege-1
b=a rlpolfl mL

Einde( H cc+(a_°)) mod £ — 1.
1€ee-1

It is easy to see that

0 if a > (c),
mL if a < {c).

@=o-(a- ) ={

Hence, ¢ running over the interval 1 <e¢ < -1,

HCC+(G c)‘“Hcc (C>Hc H ™ mod 4.

c {c)>a
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The first product on the right side is independent of a. The second is (£ - 1)!¢ =
(—=1)® mod £ by Wilson’s Theorem, so its valuation is ind,((—1)*) = a({—1)/2=0
mod (£ — 1)/2. In order to evaluate the third product, consider the sets

C’={c:1<c<€——1, (c)>a}={j+kmL:a<j<mL, 0<k<t},

C'={cd:at<d<l-1-t}={jt—k:a<j<mL, 0<k<t}.
Multiplication by ¢ gives a bijection from C to C' mod £. Thus,

H c= H ¢ =t~tml=1-a) H ¢ =¢~tml-1=a) (¢ _ 1 _¢)!1/(at)! mod L.
{c}>a ceC c'eC’

Hence, up to a constant independent of a, ind,( [Ligsa ™) is
mLind,(t*/(at)!) = a (£ — 1) inde(t) + mLinde(1/(at)!)

= mLindy(—1/(at)!) mod (£ —1)/2.
This concludes the proof. [

For £ = 1 mod mM L, define elements in (Z/MZ)[A(L)] by

$'(L,g)= Y indy(~1/(at)l) 7" mod M,

1<a<mL
(a,mL)=1

6'(L,¢) = (6, — n.) s'(L,£) mod M,
where t = (£ —1)/mL.
Proposition 3.8. Let £ =1 mod 2mML. Then

D,0(¢L)e, = Ny 0'(L,£)e, mod M.

Proof. The element Dg = Y cicp_o 507 € Z[Gy, satisfies the congruence Dy =
2 be(z/ezyx inde(b) op mod £ — 1. Denoting the usual extension of o3 to F(¢L) by

Ty , the congruence becomes

D, Y inde(t)ny mod £—1.

b €(Z/meLT)>
¥'=1mod mL
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In the rest of the proof, @ and b will run over the set {¢: 1 < ¢ < mlL, (¢, méL)=1}

with additional conditions indicated. Thus,

D, S(KL)‘E Z ind(b) 7 Za'rgl = Z Z {ab)inde(b) 7, mod £—1,

b=1 mod mL a b=1modmL
where 7, ,7, € A(¢L), and (-) stands for the least nonnegative residue mod méL.

The inner sum can be evaluated as follows.

D> (ab)inde(})= )  bind(a'd)

" b=1mod mL b=1 mod mL

= indy(a™?) Z b+ Z bindy(b) mod £ — 1,
b=1mod mL b=1mod mL
where a~! denotes the inverse of a mod m£L. Furthermore, it is elementary to show

that Z b=melL({—1)/2. Hence

b=1 mod mL
> (ab)inde())= ) binde(b) mod (¢—1)/2.
b=1 mod mL b=1 mod mL
Therefore

Des(¢L)=)_ > bindg(b)7; ' mod (€—1)/2.
a b=1modmlL

Applying Lemma 3.7, it follows that

Dys(¢L) =Y (u+mLindy(—1/({a)t)!) 7,* mod (£ - 1)/2,

where u is independent of @, t = (£—1)/mL, and (- ) stands for the least nonnegative

residue mod mL. Then

Dys({L)=uNy, » o +mLNgs'(L,{) mod mML.
: cEA
Since 1 ¢ X, (for p is odd), €,> ,can0 = @(m)e,e; = 0. Thus, as 6((L) =

L (0n — Ts) 5(EL), applying =7 (07 — ny) €, yields
Dg0(¢L) e, = 3 Ny (on —ner) s'(L,£) e, mod M.
Since £ = 1 mod M, n,, = n, mod M, and ¢'(L,£) = (o, — n.)s'(L,€) mod M, it
follows that
D,0(¢L)e, = Ne60'(L,£)e, mod M,

as required. [J
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3.4 The Induction Property

The induction property of the operators §(L) is presented in Theorem 3.12, which
is qtilized in Proposition 3.15 as an essential element to obtain the main result.

The map ¢, is introduced in the following paragraphs and its basic properties
are stdted in Lemma 3.9. This lemma and the subsequent two propositions serve
to prove Theérem 3.12.

Observe that if £ has degree 1 in F'(L), then the primitive root s mod £ is also a
primitive root mod 7L for every 7 € A(L). |

Suppose that £ has degree 1 in F(L) and By € F(L)* is a unit at L, i.e,,
v2(Bo) = 0. Then Gy = s* mod L for a unique a € Z/(£ — 1)Z. Thus, one can define
indz(Bo) € Z/MZ by the congruence ind.(8y) = a mod M. If 8 € F(L)* satisfies
that v, (6) = 0 mod M, then there is By € F(L)* such that 8 = 8y mod (F(L)*)M
and vz (Bp) = 0. Thus, one can define ind(8) € Z/M Z by the congruence

indz(B) = ind,(6o) mod M.

Extend this definition to the class of 8 mod (F(L)*)™ in the obvious manner. It

is clear that the map ind, has the property
indz(88') = indg(B) + indg(8') mod M,

and that the definition of ind; includes that of indy by taking L = 1.

Suppose that £ has degree 1 in F(L) and 8 € F(L)* verifies that v,2(8) = 0 mod
M for every 7 € A(L). Then there is By € F(L)* such that 8 = B mod (F(L)*)¥
and vr£(0o) = 0 for every 7 € A(L). Thus, one can define ¢(8) € (Z/MZ)[A(L)]
by ' )

ec(B) = Z ind,¢(8) T mod M.

TEA(L)
The map ¢, will be said to be defined at g if the condition v,-(8) = 0 mod M for

every 7 € A(L) is satisfied. Extend this definition to the class of 8 mod (F(L)*)M
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in the obvious manner. It is easily seen that the map ¢, has the property

0c(8,8") = oc(B) + oc(6) mod M,

and that the definition of ¢, includes that of py by taking L = 1.

Lemma 3.9. Let ¢, be defined at 8 € F(L)*.

(a) For 6 € Z[A(L)], ¢ is defined at 63 and wc(6B8) = 9(,0:‘(,8) mod M.
(b) Let L' | L and let L' be the ideal of F(L') below L. If 8 € F(L')* and ¢z
is defined at 3, then ¢ (8) = N1 ¢c(8) mod M.

Proof. Since ¢ is defined at 3, v,.(68) = 0 mod M for every 7 € A(L).
(a) Let 6 = 3 ca(r) Cr T With ¢; € Z. For 7' € A(L),

v (08) = 'UT’L(H T8) = Z cr vpr(TB) = ZCT Vr—172(B).

Then v,/ ¢(08) = 0 mod M for every 7/ € A(L), so ¢ is defined at 8. Thus, 7 and

' running over A(L),
0c(08) = oc ( HTﬁCT) =2 ere(rh)
= ECT Zmd e(rB) T = ZcT Zmd 172 (B) T
= ZCT Zmd,-/g = ZCTTZmd e (B) T

- =0¢c(B) mod M.
(b) Considering the isomorphism A(L) ~ Gy 1 A(L'), it follows that |
ecB)= > inde(B)r= Y. Y. indgor(f)o’o

TEA(L) o'€GL 1 c€A(L)

= ZZindggl (B)o' o= Za' Zindgy B)o

= NL/L’ <PL'(/6) mod M.
This completes the proof. [J
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The following proposition is due to Kolyvagin [K2].

Proposition 3.10. Let ¢ = 1 mod 2mM L. There exists m € F* satisfying the

congruence

or(k(L,N) /§(L) ) = 6(¢L) mod M.

Proof. It will be assumed throughout this proof that the integer a satisfies the
conditions 1 < a < mL and (a,mL) = 1. Let 7 € A(L) and extend 7, to F({L)
with the same notation. Let £ be the prime ideal of F(£L) above L.

Choose a number IT € F({L)* satisfying

oI=¢ -1 modfz, T=1 modr,L for every a#1.
Setting ¢ = (¢ — 1)/mL, the property of Gauss sums in Proposition 1.6 yields
S(e%,¢e) [ (¢e —1)* = —1/(at)! mod L for every a,

where € : (Z/mZ)* — pimy, is the character satisfying (b) = b~¢~1)/™L mod L for
all b. Then
S(e% ¢e) / T = —1/(at)! mod L,

because ((¢ — 1)/IT = 1 mod L. Applying 7,1, considering item (b) of Lemma 3.1,

and using the congruences IT = 1 mod oL for a # 1, it follows that
S(L,¢e) / s(L) IT* = 771 (S(e% ¢) / I®) = ~1/(at)! mod 7, L for every a.
Thus, since L is totally ramified in F((¢L), £ is unramified in F'(L),and 1 < at < £-1,

v,-17(S(L,¢e) / (L) T*) = v, 1 2(~1/(at)l) = (¢ — 1) v, o(~1/(at)!)
= (0= 1) vg(~1/(at)!) = 0.

This implies that ¢z is defined at S(L, () / s(L) IT*, as £ has degree 1 in F(¢L) and

the primes 7~ 17 are all the conjugates of L.
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Considering the isomorphism A({L) ~ G;A(L), from the last congruence it

follows that

0z(S(L,¢0) [s(L) M) =Ne Y ind cap(=1/(at)) 7
(1<a<'SnL
a,mL)=1

=N Y _ indg(—1/(at)l) 7' = Ngs'(L,£) mod M.
By item (a) of Lemma 3.9, multiplying by o,, — n,, yields
pz(a(L, L)/ 6(L) T) = N, ¢'(L,£) mod M.
A number I, € F(L)* satisfying IIo/IT** = 1 mod 7,L for every a will be
determined. Let IT; € F(L)* satisfy
I =¢ mod£? and II; =1 mod L forevery a # 1.

Then v (M) = 1, so vp(II) = £ — 1, vz(II,/II*7Y) = 0 (for vz(II) = 1), and
IL/IT*! = ¢ # 0 mod L with ¢ € Z. In addition for every a # 1, IT; = 1 mod 7, L,
so IT;/IT*~' = 1 mod TaE. Choosing IT, € F(L)* such that IT; = ¢! mod £ and
I, =1 mbd 7L for every a # 1, the number IIy = II1II; € F(L)* satisfies the

desired congruences. Therefore,
goz(a(L, ﬁ) /H(L) HO) =Ny 9/(L, e) mbd M.

Since for every T € A(¢L), v 7(S(L,¢e) / s(L) IT*) = 0 and v, z(ITo/IT*1) =0,
it follows that v,_z(a(L, L) /(L) IIo) = 0. Then v,(a(L, L) /(L) IIy) = 0 for
every 7, as a(L, L) /(L) ITy € F(L), so ¢, is defined at this number. Using item
(b) of Lemma 3.9, there results the congruence

Neee(a(L, L) /0(L) ITo) = Ny 6'(L,£) mod M.
By item (a) of Lemma 3.9, congruence (*) of Section 3.1, congruence (*x) of Section
3.2, and Proposition 3.8, multiplying by Dy, e;, yields
Ng <p£(lﬁ',(L, X) /NL J(L) Ho) = DZL 9(6[/) e;, = NgL (5(£L) mod M
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Let # = Np Ily € F*. Since ) is unramified in F(L), @x is defined at x(L,X) /6(L)
€ F(L)*. Then item (b) of Lemma 3.9 implies that

Nyp, (p,\(n(L,)\)/é(L) 7r) = Ny, 6(4L) mod M.
Finally, on cancelling Nz, there results the congruence in Z[A|
ox(k(L,X) /6(L)7) = 6({L) mod M,

as required. [J

Proposition 3.11. Let £ =1 mod 2mML. Let £ # { be a rational prime satisfying
the same congruence £' = 1 mod 9mML. Let X be a prime of F' above £, and L’
be a prime of F(L) above X'. Assume that the projections of L and L' into e, A(L)
are equal. Then

&(L,X') / K(L,X) =6(L)B mod (F*)M
for some 3 € F*.

Proof. The equality of the projections of £ and £’ in e, A(L) can be expressed as
eplLlp = €,[L']p , where the ideal class is denoted by [-], and its p-part, by [-], . Let
é, denote a fixed element in Z[A] satisfying the congruence é, = e, mod Mhy, -
with by = |A(L)|. Thus [8,(C/L))], = 1, so [¢,(£/L)] is an Mhyth power
in the class group of F(L). Then there is f;, € F(L)* such that (81)é,(L/L')
is an Mhy th power in the ideal group of F(L), and so is é,((8z)L/L'). Apply-
ing O(L) and using item (b) of Proposition 3.2, it follows that the principal ideal
(é,(6(L) B o(L, L) /a(L, L") is the Mhy th power of an ideal of F(L), and it is
theh the Mth power of a principal ideal of F(L). Hence

&,(0(L) Br (L, L) [ (L, L)) =n mod (F(L)*)™

for some unit 7 in F(L).
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It will be shown that e,n € (F(L)*)™. Write €, = 3, c(2/mz)x Ca 05 " With cq €
Z. Then ¢, = p(a)/p(m) mod M, so c_, = —c, mod M as p is odd. Thus e, =
L cao)n= (L caolt) (n/7) mod (F(L)*)M, where 3" and 3" denote sum-
mation as a runs over (Z/mZ)* and over (Z/mZ)* /{—1) respectively. It will then
be enough to show that e),(n/7) € (F(L)*)™. Since all the conjugates of 5/7j have
absolute value 1, n/7 is a root of unity. Thus 5/7 = £(mr = Cp’jr mod (F(L)* )M
with p" || m, b € Z. Hence, by Lemma 3.4, e,(n/7) = e;,Cgr = 1 mod(F(L)*)M.
This means that e},(1/7) € (F(L)*)™, which shows the claim.

Therefore,

e, (6(L) BLa(L, L) [ (L, L)) € (F(L)*)M.
Thus, by definition of x(L,A) and §(L),
&(L,X) / k(L,\) = Dy e, (a(L, L") / o(L, L))
= D 0(L)e, B = Ni,§(L) B mod (F(L)*)M.
Setting 8 = N, 81, € F*, by Lemma 3.5 there results that
K(L, X') [ 6(L,\) = 6(L) B mod (F*)M,

as required. [

Theorem 3.12. Let { =1 mod 2mML. Let £' # £ be a rational prime satisfying
the same congruence £’ = 1 mod 2mM L. Let X' be a prime of F above ¢, and L'
be a prime of F(L) above X'. Assume that the projections of L and L' into e, A(L)

are equal. Then

ox(5(L, X)) = 6(L) mod §(L)(Z/MZ)[A.

Proof. By Proposition 3.10,

ex(w(L,A) /6(L)w) = 6(¢L) mod M

46



for some 7 € F*. Since A # o) for every 0 € A and A { L (as £ # ¢ and
£ t L), the map ¢, is defined at x(L,)\’) by Proposition 3.6, so it is defined at
(L) m &(L,N') / k(L, X). Thus, by Proposition 3.11 and Lemma 3.9,

ox(8(L) ™KL, X) / 5(L, V) = o2 (8(L) 7 (L) B) = 6(L) pa(Br) mod M,

where 8 € F*. Hence

ex(k(L, X)) = oa ((8(L,X) / 8(L) w) - (§(L) 7 k(Ly ') / (L, N)))
= pa(K(L, A) / 8(L) ) + ox(6(L) w (L, X') / &(L, X))

= d(€L) + 0(L) pA(Bm) mod M,

S0

ex(R(L, X)) = 6(¢L)  mod 8(L)(Z/MZ)[A],

as required. [

3.5 Second Application of the Chebotarev Density
Theorem

This section is dedicated to Theorem 3.14, which is an extension of Theorem 3.1 in
[R1] and includes an application of the Chebotarev density theorefn (Theorem 1.12).
Theorem 3.14, as well as Theorem 3.12, will be crucial in the proof of Proposition
3.15 to obtain thé main result. Lemma 3.13, stated in order to abbreviate the proof
of Theorem 3.14, reveals the purpose of condition C, which is defined after the
‘lemma.

In a similar manner as in Chapter 2 before lProposition 2.10, it can be shown
that |X,| = [Qp(Im x) : Qp] for every character x € X,, where Im is the image
of x. Moreover, Qp,(Imx1) = Qp(Imyx2) for ahy characters x1,x2 € X,. Denote
this field by Qp(X,). Thus | X,| = [Qx(X,) : Q).
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Lemma 3.13. If m is not a power of a prime congruent to 5 mod 8 or if (p(m),
p—1) > 2, then there exists a character ¢ : (Z/mZ)* — Z) such that X, # Xy,-1.
Conversely, if m is a power of a prjmé congruent to 5 mod 8 and (p(m),p—1) = 2,
then there exists an irreducible higher dimensional odd character py of (Z/mZ)*

into Zy such that X,, = X, -1 for every character ¢ : (Z/mZ)* — Zy.

Proof. In order to prove the contrapositive of the first part of the lemma, assume
that X, = Xy,-1 for every character ¢ : (Z/mZ)* — Zy.

For a character ¢ as above (with values in Z) and a fixed character x, € X,,
¢xs! € Xgp-1 = Xp, 50 ¢xg = T4 xo for some 74 € Gal(Qp(X,)/Qp). Applying
the automorphisms in Gal(Q,(X,)/Qp) to the last equality, it follows that for every
X € Xp,

px P =T14x.

The equality above implies that 77 = 1, because 72x = ¢(14x) ™" = ¢(¢x 1)
= x for every x € X, . In addition, it is easily seen that ¢ is even. Thus there are
only two possible values for 74, as Gal(Q,(X,)/Qp) is cyclic. Since it is clear that
there is a character ¢ # 1 and the map ¢ — 74 is injective, it follows that there are
exactly two distinct characters ¢.

Let m = [],¢icx @i° be the prime factorization of m. If 4 | m, then (-1) is
a direct factor of (Z/mZ)*, so there is an odd character ¢ defined as —1 at —1
and as 1 at the othe;r direct factors, which is absurd. The sarhe result is ob-
tained if ¢; = 3 mod 4 for some j, 1 < j < k. In this case, (Z/mZ)* has the
direct factor (Z/q;?Z)* = (g;), where g; is a primitive root mod ¢;”, so the char-
acter ¢ defined as —1 at g; and as 1 at the other direct factors is odd, since
H-1) = o(gf @

form ¢; = 1 mod 4.

) = (=1)(%~1)/2 = _1. Hence, every prime g¢; has the

If £ > 2, then (Z/mZ)* has at least two non-trivial direct factors, so at least

four characters ¢ with values 1 and —1 can be defined, which is absurd. Thus m
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has the form m = ¢* for some prime ¢ = 1 mod 4.

If (p(m),p — 1) > 2, then, setting { = ((y(m),p-1) € Z, and g being a primitive
root mod ¢°, more than two characters ¢ can be defined by ¢(g) = ¢7 for 0 < j <
(¢(m),p — 1), which is absurd. Thus (¢(m),p—1) = 2.

Suppose that 74 = 1 for ¢ = 1. It then follows from the equation ¢x~! = 74 %
that x ' = x, i.e., x* = 1, for every x € X,. Thus Im x C ZY, so the odd character
¢ = x is defined, which is absurd. Hence 74 7é idforg=1,sofordp #1, 75 =1
and ¢ = x? for any x € X,,.

Let g be a generator of (Z/mZ)x = (Z/q°Z)*. Suppose that ¢ = 1 mod 8 and
consider the character ¢ # 1. On the one hand ¢(g) = —1 as (¢(m),p — 1) = 2,
so ¢(g(a~1)/4) = (—1)(a=1)/4 = 1. On the other hand ¢ = x? for any x € X,, so
P(g' /%) = x(¢1971/2) = x(~1) = —1, which is absurd. Hence ¢ = 5 mod 8.

It has been shown that m = ¢® for a prime ¢ = 5 mod 8, and (p(m),p — 1) = 2.
This proves the first part of the lemma.

Conversely, assume that m = ¢° for a prime ¢ = 5 mod 8, and (¢(m),p—1) = 2.
Define a character x : (Z/mZ)* — Zp[Com)]* by x(g9) = {4, where g is a gen-
erator of (Z/mZ)*. This character is well defined as 4 | ¢(m) = ¢*~1(q - 1),
and it is odd because x(—1) = x(g?™)/?) = (Za—l(q_l)/z = (£({4)? = —1. Since
Gal(Qp(¢a)/Qp) = {1,7} with 7({s) = ¢; ', the other character in the orbit of x is
given by 7x(g) = 7(¢s) = (7! = x"1(g), so it is x 1. Thus the highér dimensional
character pg with orbit X, = {x, x~1} is odd and irreducible.

Since (p(m),p — 1) = 2, the only possible values for a character ¢ are 1 and —1.
Then 1 and the character ¢, defined by ¢.(g) = —1 are the only characters of
(Z/mZ)* into Z;. In addition, x*(g) = {7 = —1 = ¢.(9g), s0 ¢« = x*. Thus the

characters 1 and ¢, satisfy the required equalities

Xpor = {X7Hx = Xpo, Xygpor = {0 ™Hbx} = {6 = {6, X7} = X -
This concludes the proof. [J
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If m is not a power of a prime congruent to 5 mod 8 or if (¢(m),p — 1) > 2,

m and p will be said to satisfy condition C.

Theorem 3.14. Assume that m and p satisfy condition C. Let € € e,A(L),
k€Z k >1, and B € e,(F*/(FX)M). Let t be the largest integer such that
B € (FX)"/(F*)M and suppose that p* < M. Then there exist infinitely many

primes A of F' such that

(1) there is a prime L of F(L) above XA whose projection into e,A(L) equals €;
(2) the rational prime £ below A has the form £ = 1 mod kmML; |
(3) vA(B) = 0mod M and p* || indx(B8) .

Proof. Let d be the order of Bin F* /(F*)M. Tt will be shown that d = p~*M. From
the condition 8 € (F*)? /(F*)M it follows that Br M ¢ (FX)M g0 d | p~tM.
Since B¢ € (F*)™, 8 =M/} with v € F*, b € Z. Applying €/, and using Lemma,
3.4 yields 8 € e,yM/4(F*)M, whence M/d < p* by the maximality of ¢. Since
d | p~*M, there results that d = p~*M, as claimed.

Let H be the subfield of the Hilbert class field of F(L) such that Gal(H/F(L))
is isomorphic to e, A(L) by class field theory, and denote F' = F({kasr,). Consider
the extension F'(BYM)/F' and let G = Gal(F'(3Y™)/F"). By Kummer theory
and Lemma 3.5, G ~ (8), where {8) denotes the subgroup of F* /(F*)M generated
by 8. Thus G is a cyclic group of order p~*M. In addition, a nondegenerate pairing
G x (B) = pur is given by (7,6) — (7, 8) = Ta/c, where a is an Mth root of §.

If p || m, then the Teichmiiller character w verifies X, # X, ,-1, because p is
odd while wp~! is even. In this case, let ¢ = w. If p{ m, then by Lemma 3.13 there
exists a character ¢ : (Z/mZ)* — Zy such that X, # Xy,-1. For a € (Z/mZ)*,
extend o, € A to F' so that o,y = X’,}a) and 0,(r, = {1 . This extension coincidés
on F'(L) with the standard extension, defined after Proposition 3.1, and will be used
only to obtain the equality HNF’(8Y/M) = F(L) in the next paragraphs. Extend o,
further to HF'NF'(3/M), and then to HF' and F'(3'/M) separately. Thus A acts
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on Gal(HF'/F') and G by the same formula 0,7 = 0, 70, *. Adopting the notation
(00 +08) - T = (04 T)(0p - T), since Gal(HF'/F') — Gal(H/F(L)) ~ e, A(L), it
follows that e, - 7 = 7 for every v € Gal(HF'/F").

The pairing G x (8) — uam is easily shown to have the property o,(r,8) =
(07,04 B). (Recall that 8 € F* /(F*)M 5o the notation (r, 8°) is well defined for

7€ G, c€Z,.) Then, a running over (Z/mZ)*,

(Tad@)p(a)o5?) -7,8) = ([, 057 - 7#@¢7 @, g) = T (o7 - 7, BH@ ")
ot (rouB?@ @) =[] <aﬂ 0o g0 @y
~TLr0a ™) = (r [ ous™ )
= <i, (Za p~a)a,) B) = <%, (Xapa)a?)B),

whence (eg,-1 -7, 8) = (T, €,8). Thus {eg,-1 - 7, 8) = (1, B) as f € e,(F*/(F*)M),
which implies that e;,-1 - 7 = 7 for every 7 € G.

Since the extension of o, € A to F'(3/M) satisfies the equality a0l = 0ap Cur
(as ¢ is a homomorphism), aa_bl 0, 0p commutes with every 7 € G, 80 04 0p'T = 0gp'T.
This equality then holds for every 7 € Gal(HF' N F'(3/™)/F"). Hence, for such T,
€pepp-1 - T =1, a8 X, # Xy,-1. Thus the equalities e, - 7 = 7 and ey,-1 - 7 = 7 for

T € Gal(HF' N F'(6Y/M)/F") imply that
T=€ T =¢€€pp~1 T =1,

so HF' N F'(3/™) = F'. On the other hand, since Gal(F'/F(L)) is generated
by inertia groups, there is no nontrivial unramified extension of F(L) in F', so

HNF' = F(L). Hence,
HNF'(BYMy=HNHF NF'(BYM)=HNF = F(L).

Choose 7 € Gal(HF'(BYM)/F(L)) that restricts to the Artin symbol [€, H/F(L)]
on H and to a generator of G on F(3'/™). By the Chebotarev density theorem (The-
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orem 1.12), there are infinitely many primes £ of F(L) of absolute degree 1, unrami-
fied in HF'(3'/M)/Q, whose Frobenius conjugacy class in Gal(HF'(8Y/M)/F(L))
contains 7. Then the Frobenius of such a prime £ in H/F(L) equals [¢, H/F(L)],
which means that £ € €, so the projection of £ into e, A(L) equals €. This shows
item (1).

Let £ be a prime of HF'(3Y/M) above £ whose Frobenius in HF'(3*/™)/F(L)
equals 7. Denote the prime of F'(3'/M) below L by £, and the prime of F' below
L" by L'. Since the Frobenius of £” in F'(8Y/M)/F(L) is the restriction of ¥ to

F' (61/ M) it generates G, so it restricts to the identity on F’ and it is also the

Frobenius of £” in F'(8Y/™)/F’; in addition, the Frobenius of £’ in F’/F(L) is the

identity. Denoting the prime of F' below £ by A, and the rational prime below A by £,
it follows that the Frobenius of £ in F'/Q is the identity, as £ has absolute degree 1.
Hence, £ splits completely in F' = Q(Cemarr), which means that £ = 1 mod kmM L.
This shows item (2). |

Since £ is unramified in F'(8/M)/Q, X is unramified in F(3/M), so vx(8) = 0
mod M. In view that the Frobenius of £ in F'(3/M)/F' generates G and this

group is cyclic of order p~* M, the extension

(Op+(grrma)/ L")/ (Op: /L) = (Or/ L')(BY™)/(0p /L)

is cyclic of degree p~*M. In addition, Op /L' ~ Op /) because £ splits completely
in F', and it is clear that char(Op//L') = £t p. Then, by Kummer theory, >has
order p~tM in (Op/X\)* /((Or/A)*)™. Hence ind,(8) = p*u mod M with p{u. As
pt < M, it follows that p® || ind)(8), which shows item (3). This concludes the

proof. in)
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3.6 The Main Result

Propositions 3.15 tb 3.19 in this section are aimed to obtain Theorem 3.20, which
presents the main result of this chapter. Initially, the integers r(L) and the constant
M are defined. In addition, the generalized Bernoulli numbers B, are defined be-
fore Proposition 3.19 and the numbers B; ,-1 are introduced before Theorem 3.20.

Define r(L) as the integer satisfying p"(%) || §(L) and let M = p™()+1 . |e, A|.

Proposition 3.15. Assume that m and p satisfy condition C and that r(L) < r(1).
Let B be the subgroup of e, A generated by the projections of the primes of F

dividing L. If € € e,A — B, then there exists a prime A\ of F whose projection
| into e, A equals € and that liés above a rational prime £ = 1 mod mML such that

r(¢L) < r(L) and p"(F)~"(L) annihilates € in e, A/B.

Proof. By Theorem 3.14, there exists a prime )\’ of F whose projection into e A
equals € and that lies above a rational prime ¢ = 1 mod 2mM L.
Let ¢ be the largest integer such that &(L,\) € (FX)P"/(F*)M, By Proposition
3.6,
(k(L, X)) = X *P) . (primes dividing L) - BM,

where B is an ideal of F. Since the left side is a p’th power, the p‘th root of the
equality éan be taken. Then p | 6(L), so t < r(L) < r(1) (as p"® || 6(L)) and
_ p~tM annihilates e,A. Projecting the primes in the equality into e,A, it follows
that €770 ¢ B,
By Proposition 1.4, there exists &' € (Z/MZ)[A] such that p~™L)§(L)d'e, =
ep, mod M. Thus,

r(L)—t r(L)—-te

cP — P P — q:P’t5(L)5'ep € B,

that is, p"(X)~* annihilates € in e,A4/B. Since € ¢ B, it follows that ¢ < r(L).
Let £’ be a prime of F(L) above ). Express the projection of £’ into e, A(L)

by €,[L']p, where the p-part of the ideal class is denoted by [-], . By Theorem 3.14
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with € = ¢,[L'],, k = 2, 8 = &(L,)'), having that p* < M as ¢t < r(1), there
exists a prime A of F such that a prime £ of F(L) above ) satisfies the equality
eolLlp = €,[L']p, the rational prime £ below X is distinct front ¢’ and has the form
£ = 1 mod 2mML, vy(s(L,\')) = 0mod M, and p* || indx(x(L,N)). Thus the
prime ¢ satisfies the required congruence £ = 1 mod mM L.

By Theorem 3.12, @x(x(L, X)) = 6(¢L) mod 0(L)(Z/MZ)[A], so indx(k(L, X))
= d(¢L) mod p"1), where d(¢L) denotes the coefficient of the identity in §(¢L).
Since p* || indx(s(L,\')) and t < (L), it follows that p® || d(¢L). Thus r(¢L) < t
because p’"(a’)‘! d(£L) (as pm(¢L) | 8(¢L)). Therefore r(¢L) < (L), and pr(L)—r(L)
annjhilates € in e, A/B as so does priD)-t,

Finally, since the projection of A\’ into e, A equals €, applying Ny, to the equality
eolLlp = €p[L']p yields e,[A], = e,[N'], = €. This concludes the proof. [

Fix x, € X, . The image Im, is a cyclic group, as it is a subgroup of () -

Let xo(0,) with o, € A be a generator of Im x,. Then Q,(X,) = Q,,(Irﬁ Xo) =
Qp(x0(00))-

The next two propositions are analogous to Propositions 2.7, 2.10, 2.11 of the

previous chapter.
Proposition 3.16. Z,[Ale, is a free Z,-module with base ade, for 0 < j < |X,|.

Proof. The same as the proof of Proposition 2.10 with necessary changes related
to the isomor_phism A~ (Z/mz)*. O

In the rest of this chapter, (¢;, ..., ¢;) will denote the multiplicative module
over Z,[A] generated by €, ..., ;.
Proposition 3.17. Suppose that B is a submodule of the Z,[A]-module e, A. Let
€ € e,A and let f be the order of € in e,A/B.

(a) 0 € Zy[Ale, annihilates € in e,A/B if and only if 6 € f Z,[Ale,.

(b) [B-(¢) : B] = f 1%,

54



Proof. (a) Assume that 0 € Z,[A]e, annihilates € in e,A/B, that is, €% € B. Let
pt || 6. By Proposition 1.4, there exists 8’ € Z[A] such that 66'e, = p‘e, mod M.
As M annihilates e, A, it follows that ¢r' = ¢P’e = ¢%’¢ ¢ B. Then f l pt, so
f | 6. Hence 0 € f Zp[Ale, . This shows one implication. The converse is clear.

(b) The kernel of the surjective Z,[A]-homomorphism from Z,[Ale, to B- (€)/B
defined by 0 — €9 is equal to f Z,[Ale, by item A(a). Hence

B-(€)/ B ~Zy[Ale, [ f Zy[Ale, .
This isomorphism implies by Proposition 3.16 that

[B-(€) : B] = [Zy[Ale, : f Zp[Ales ]

[ Z Zyole,: f Z Zpaojep]

05 <] X,| 0<j<|X,|
= [Zzl)Xp’ :sz!)Xpl] = [Zyp : prllx"l = f1%el,

as required. [J

Proposition 3.18. If m and p satisfy condition C, then |e,A| l prW1Xel

Proof. Choose classes €;, ... ,& in e, A such that e, A = (&;,...,&) and €;
has order f; > 1 in the group e,A/( €y, ...,&;_q) for 1 < i< k. |

Applying Proposition 3.15, suitable primes ); of F' will be obtained for 1 <i < k
so that the projection of )\i‘intove,,‘A equals €; and the rational prime £; below \;
satisﬁe_s £; =1mod mML;_, with L; = £, ---£; and Ly = 1. In addition, it will be
shown induc;tively that r(L;) < r(L;_1) < r(1) and f; | prEi-0)=4) for 1 < 4 < k.

Fix 4, 1 < i < k, and assume that r(L;—1) < r(1), which is trivial for i = 1
(as Lo = 1). According to the notation introduced above, the subgroup of e, A4
generated by the projections of the primes of F' dividing L;_; equals (€5, ... ,€;_1).
Apply Proposition 3.15 with L = L;—; € L, B = (&, ...,¢_1),and € = ¢; to

show that there exists a prime \; of F whose projection into e, A equals €; and that
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lies above a rational prime ¢; = 1 mod mML;_y such that r(L;) = r(€; L;—1) <
r(L;i—1) and p"(Li-1)=r(Ls) apnihilates €; in e,A/(€1,...,€;1). Thus r(L;) <
r(Li-1) < r(1) and f; | p"Zi-1)=(L4), a5 claimed.
Since €; has order f; in e,A/(€;, ... ,€;_1), by item (b) of Proposition 3.17 it
follows that
[(C1y.en s @) (€, ..., € y)] = £%eL

Therefore

lepAl= [ [(€1s.. @) (&, . ,€iy)]

1<igk
=117 | Xl
= AN

i i

= pr)—r(L)) IX

Hp("'(Li—l)“'r(Li)) | Xl

el l pr(l)IXpI ,

~ asrequired. O

Denote the integer ring of the field Q,(X,) by Ox, or simply by O. Then, since
the extension Qp({y(m))/Qp is unramified (as p { ¢(m)), so is the subextension
Qp(X,)/Qp . Thus pOx, is a prime ideal and Ox,/pOx, is a field (see Section 1.1).

For a character x of (Z/mZ)* into Zy[(,(my|* define the generalized Bernoulli

number

Bl’x = % Z aX(a).

1<a<m
(a,m)=1
It is not difficult to show that B,y € Ox , except when x = w™!. In particular,
B, -1 € Ox, for every x € X, .
If x1,x2 € X,, then x2 = 7x1 with 7 € Gal(Q,(X,)/Qp), and thus Byt =

7B, -1, which means that B, ,-: and B, , . are conjugate over Q.
Proposition 3.19. p™® || B, , -1 for every x € X,,.

Proof. The next computation, where the relation o,.e, = x(a)ey is applied, gives
an expresion for §(1) in terms of the generalized Bernoulli numbers B, ,-: for
x € X,:
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5(1) = 6(1) ¢y = & (00 —m) s(1) e,

=1 (on —n1) Z ao;t Z ey

1<a<m x€X,
(a,m)=1

=23 (x(n) - m) Y ax7Ha) ey
= oty O (x(n) —n1) By Y x(a) 03!

a

= 5 3 Biyer(x(n) — m) x(a) o5

Setting ¢, = B ,-1(x(n) —ny) for x € X, the last equality can be written as

(1) = ;’;ﬁ Z Z ex x(@)ot.

a€(Z/mZ)* x€X,

Let p" || By -1 for some x, € X,. This notation is well defined because pO is
a prime ideal, so p is a prime element in O. Then p" || B; ,-1 for every x € X,
since the numbers B ,-1 are conjugate over Q,. Hence p" ] cy for every x, so
| > ¢ X(a) for every a. It will thus be enough to show that p" || >_, ¢x x(b) for
- some b € (Z/mZ)*, as this implies that p" || §(1) and p"() || §(1) by definition.

Write 7 for the class of y € O mod p, that is, for the image of y by the canonical
homomorphism O — O/pQ. Similarly, write X for the composition of a character
x of (Z/mZ)* into O and the canonical homomorphism O* — (O/p0O)*. Thus
X is a character of (Z/mZ)* into (O/pO)*.

It will be shown that ¥%; = X, implies x; = x2 for characters x1 , x2 of (Z/mZ)*"
into 0. Suppose that ¥; = X, and x1 # X2 . Then there is a € (Z/mZ)* such that
X1 (a) # x2(a) and x1(a) = x2(a) mod p. Multiplying these relations by xz2(a)~1, it
follows that ¢ = 1 mod p for some ¢(m) th root of unity ¢ # 1. Applying the poly-
nomial function z¢(™) —1/2—1=x%™~1 4+ 4z +1 to the last congruence,
there results that 0 = ¢(m) mod p, whence p | ¢(m), which contradicts the general

hypothesis p { |A] = ¢(m). This shows the claim.
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Since the characters X for x € X, are distinct, they are linearly independent
over O/pO. Thus erx,, p~"c, X # 0 provided that p~Tc,, # 0, i.e., p" || ¢y, , for
some X, € (Z/mZ)*. It will be shown that this is the case when the integer n is
suitably chosen. |

Fix xo € X,,. If p || m, then n; = n mod p, the Teichmiiller character w is defined,
and x, # w. Thus %, # @ and n can be chosen so that fo (n) # wW(n). It follows that
Xo(1) — 11 = Xo(n) — 1 = xo(n) — w(n) #Z 0 mod p. If p { m, then n; = 1 mod p.
Choosing n = ~1, it equally follows that x,(n) —n1 = xo(—1) — 1 = —2 # 0 mod p.
Hence p1 xo(n) — 1 50 1" || By o1 (xo(m) — 1) = o

It has been shown that 3 . X, p"cy X # 0. Then PN p~"c, x(b) # 0 for some
b € (Z/mZ)*, which means that p" HZX ¢y x(b). This concludes the proof. [

Define the number

Bl,p—l - H Bl,x"l .
x€Xp

Since the nurﬁbérs By ,-1 with x € X, are conjugate over Q, and |X,| = [Q,(X)) :
Qp), it follows that By ,-1 = erxplBl,X—-l = Ng,(x,)/Q,B1 -1 » Where Ng,(x,)/q,
denotes the norm of Q,(X,) over Q, and x, is any character in X,. Moreover,
B, -1 € Zy as By -1 € Ox, for every x € X,.

Denote the p-part of 8 € Q,(X,) by (8),, that is,

B)p = pdr (),

Theorem 3.20. If m and p satisfy condition C, then |e,A| = (By p-1)p.

Proof. Consider the analytic formula for the minus part of the class number of
F =Q(¢m),
B =Qw [ (-3Bix),

x odd

where () = 1 if m is a prime power and @) = 2 otherwise; w denotes the number of

roots of unity in F, so w = m if m is even and w = 2m if m is odd; and the product
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extends over the odd characters of (Z/mZ)* into Zp[(,(my]™ (cf. [L], Chapter 3,
Section 3, CNF ™). Taking the p-part of the formula above yields

(h7)p = (m)y [ (Bux)s-

x odd

In the rest of the proof, the sum ) is taken over the integers a satisfying
1< a<m,(a,m)=1, and the product [], will extend over the irreducible higher
dimensional odd characters p of A with values iﬁ Zy excluding the Teichmiiller
character w if p || m.

It will be shown that [],le,A| = [[,(B1,p-1)p considering the two cases p || m
and ptm separatély.

Assume that p || m. Then (h7), = |ew 4| [1, lepAl, (m)p = p, and ], ,aa(Bi,x)p
= (Brw-1)pll, erX,, (Bix-1)p = (Biw-1)p [1,(B1,p-1)p. Thus, the equality
() = (m)p Ty oaa(Bra)p becomes

lewA| ] lepAl = p (Brw-1)p [ [(Brp-1)p -
p

P

Let € € e, A. By Stickelberger’s theorem (Theorem 1.9), (3~ ao; ') € = 1. Thus,
celm = ¢?tmee = (3, w(a)og) €= (Ty a0, +pb) €=,

where 8 € Z,[A]. Since ord(€ (™)) = ord(€) (as p { p(m)), and ord(¢) > 1 would
imply ord(€??) < ord(€), which is absurd, it follows that ord(€) = 1, so € = 1.
Hence e,A =1, so |e,A| = 1.

- By definition, B; -1 = L3 aw(a). Since > aw™Ha) = >, 1 = <p(m)

# 0 mod p, it follows that (B; ,-1), = p~'. Hence, there results the equality

H lePAl = H(Bl,p—l)p )
P 3

as claimed.
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- Assume that p t m. Then (h7), = [],le,Al, (m)p = 1, and [] qa(B1,x)p =
Hp erx,, (Biyx-1)p = Hp(Bl,p-l)p- Thus the equality (A7), = (m), ondd(Bl,x)p

can be written as
H lep Al = H(Bl,p‘l)pa
I p

so the claim follows.
Finally, from Propositions 3.18 and 3.19 it is obtained that |e,A| < (Bj ,-1)p for

every p, so the equality shown above implies
lepA| = (Bi,p-1)p

as required. [J
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