First Order Model Checking of

w-Automata using Multiway Decision
Graphs

Fang Wang

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montréal, Québec, Canada

Apirl 2005
© Fang Wang, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-05723-8
Our file Notre référence
ISBN: 0-494-05723-8
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

First Order Model Checking of w-Automata
using Multiway Decision Graphs

Fang Wang, Ph.D.
Concordia University, 2005

As the complexity of hardware digital systems increases, their correctness becomes
a major concern. Traditional verification by simulation is infeasible to exhaustively
test and guarantee correctness. More than a decade ago, however, formal verification
has been introduced as complemeht technique to simulation. Formal methods estab-
lish that a design implementation satisfies its specification by mathematical reasoning.
Among several techniques, model checking is one of the most successful technology,
which is based on the exploration of the design state space. In this thesis, we propose
a new model checking method based on the theory of w-automata and multiway de-
cision graphs (MDGs). Unlike reduced ordered binary decision diagrams (ROBDDs),
MDGs allow system models to be described using abstract state machines (ASMs)
through abstract data sorts and uninterpreted function symbols, hence enabling the
verification of larger designs independent of the datapath width.

Given an ASM and a first-order linear time temporal logic property, the model
checking problem proposed in this thesis is reduced to a language emptiness check-
ing of an w-automaton that accepts all w-words produced by the system violating
the property formula. The checking method comprises four steps: (1) transforming

the first-order property into a propositional formula by constructing ASMs for the -

iii

atomic formulas of the property; (2) generating an w-automaton from the negation of
the transformed propositional formula; (3) computing the product of the generated
automaton, the system model ASM and the constructed ASMs; and (4) applying a
language emptiness checking algorithm on the product automaton. Three different
checking algorithms have been developed, implemented, and proved correct in this
thesis.

To evaluate the performance of the proposed model checking method and im-
plemented tool, we conducted several experimentations and case studies. We also
compared the efficiency of our tool with an existing MDG regular model checking
application, as well as with popular ROBDD-based automata model checking tools

such as VIS. Our model checker was found to be outperforming the above tools.

v

Acknowledgments

First and foremost, I would like to express my heartfelt thanks to my supervisor,
Dr. Sofiéne Tahar, for his extensive time, extreme patience, valuable suggestions and
constant encouragement during my entire doctoral studies. It is he who looks after
me as an international student, academically, financially and socially, always with
great responsibility, which I appreciate so much and will always remain deeply in my
memory.

I am especially grateful to thank Dr. Otmane Ait Mohamed for many discussions
and helpful suggestions, which are invaluable to this thesis. I would like also to thank
my PhD committee members: Dr. J. Chen, Dr. Xiaoyu Song, Dr. J. Paquet, Dr.
V. Ramachandran, and Dr. O. Ait Mohamed for reviewing my thesis and giving me
invaluable feedbacks.

Furthermore, I would like to thank my friends and fellow graduate students in the
hardware verification group (HVG) for their help and discussions.

Last, but not least, I would like to thank all my family for their support and

encouragement for my studies.

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
14

Background
Related Work 0 o o e e
Scope of the Thesis o o v i i i
Outlineof the Thesis o o v i it e et e

2 Multiway Decision Graphs

2.1

2.2
2.3

24

2.5
2.6

Formal Logic
2.1.1 Syntax e e
2.1.2 Semantics
Directed Formulas oo
Multiway Decision Graphs
2.3.1 Basic MDG Algorithms.
Abstract State Machine (ASM)
2.4.1 Representing Sets using MDGs
2.4.2 Describing ASM with MDGs
2.4.3 State Exploration and Invariant Checking
MDG Verification Applications
Conclusion v v v v i e

3 Model Checking and w-Automata

3.1

3.2
3.3

Kripke Structure L
3.1.1 ROBDD Representation
3.1.2 -Bisimulation Relation.
w-Automata Theoryo o
Property Specification Language
3.3.1 Propositional Logic
3.3.2 First Order Logic Ce e

vi

.
1X

3.3.3 Temporal Logics 34

3.3.4 Comparison of Logics 45
3.4 w-Automata based Model Checking 46
3.4.1 Constructing Biichi Automaton from LTL 46
3.4.2 Product Operating of Biichi Automaton 48
3.4.3 Language Emptiness Checking Algorithms 48
35 Conclusion 49
MDG Language Emptiness Checking Approach 50
4.1 The Structure of the MDGLEC 50
A 52
4.3 Transformation Algorithm 99
4.3.1 Example: An Alarm Setting Controller 55
4.3.2 Transformation Algorithm 58
4.3.3 Proof of the Transformation Algorithm 64
4.4 An Example: Abstract Counter 66
45 Conclusion 68
MDG LEC Algorithms 70
5.1 Preliminarieso e 70
5.1.1 Generalized Biichi Automaton and MDG 70
51.2 Graphand SCC. 72
5.2 MDG EL/EL2 Algorithms, ..., 73
5.2.1 Generic SCC Hull Algorithm 74
5.2.2 EL/EL2 Algorithms 76
5.2.3 MDG EL/EL2 Algorithms 79
5.3 MDG Fair Cycle Detection Algorithm 87
53.1 FCD Algorithm, 88
5.3.2 MDG FCD Algorithm 90
5.3.3 An Example: MinMax, 92
54 Conclusion e e e 94
Case Studies 97
6.1 ATM Switch Fabric 97
6.1.1 System Description oo 97
6.1.2 System Model L L o 100
6.1.3 Verification 100
6.1.4 Discussiono e e 103
6.2 Island Tunnel Controller 104
6.2.1 System Description o . o 104
6.2.2 System Model L oo 106
6.2.3 Verification e 106

vil

6.2.4 Discussion
6.3 Conclusion.

7 Conclusions
7.1 Summary of the Thesis . .
7.2 Future Research Directions

Bibliography

viii

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8

4.9
4.10

9.1
9.2
5.3
9.4
55

6.1
6.2
6.3
6.4

AnMDGexample. e 15
The ASM of the Minmax 20
The MDG toolset i 23
The Kripke structure of a modulo-4 counter 28
An example of the bisimulation relation. 29
The comparison of temporal logics 45
The structure of MDGLEC 0. 51
An alarm setting controller oL 56
The ASMforin =T 57
The ASM for LET (v = 1) IN X(X(set(l,v,80)=T)) 58
The ASM foralarm =T, 58
The transition system for an atomic formula without X-operator . . . 59
The transition system for an atomic formula with X-operator 60
The constructed ASMs for atomic formulas in = T, LET (v = 1) IN

X(X(set(l,v,80) =T))and alarm=T. 63
The control flow of an abstract counter 67
The illustration of MDG LEC on Abstract Counter with Ly/pg* for-

mula G((state = fetch-st A input = inc2) — LET (v = pc) IN

X(X(X(pe))) = incline(pe))) . . o« v oo i 68
The MDG representationof a GBA 72
Anexampleof a GBA o o 74
Product automaton for MinMax 93
MDG FCD algorithm execution on MinMax 95
MDG FCD algorithm execution on MinMax(cont'd) 96
The Fairisle ATM Switch, 98
The header (routing tag) of a Fairisle ATM cell 98
The block diagram of the Fairisle ATM Switch Fabric 99
Model abstraction of the Switch Fabric 100

X

6.5
6.6
6.7
6.8

The ATM Switch Fabric environment 101

The Island Tunnel Controller, 104
The specification of the Island Tunnel Controller. 105
State transition graphs of the Island Tunnel Controller 109

List of Tables

6.1
6.2
6.3
6.4

Experimental results with MDG LEC using EL and EL2 for ATM . . 102

Experimental results with VIS using EL algorithm for ATM 103
Experimental results with VIS using EL2 algorithm for ATM 103
Experimental results with MDG FCD algorithm and MDG MC algo-

rithms for the ITC o i 107

xi

List of Acronyms

ASM
ATM
BTTL
CTL
DNF
FCD
FO
FOBTL
FOTL
FOLTL
FSM
GSH
GBA
ITC
LC
LEC
LHS
MC
MDG
PLTL
PTL
ReAn
RHS
ROBDD
RTL
SCC
TL

Abstract State Machine

Asynchronous Transfer Mode

Branching Time Temporal Logic
Computation Tree Logic

Disjunctive Normal Form

Fair Cycle Detection

First Order

First Order Branching time Temporal Logic
First Order Temporal Logic

First Order Linear time Temporal Logic
Finite State Machine

Generic SCC-Hull

Generalized Biichi Automata

Island Tunnel Controller

Language Containment

Language Emptiness Checking

Left Hand Side

Model Checking

Multiway Decision Graph

Propositional Linear time Temporal Logic
Propositional Temporal Logic
Reachability Analysis

Right Hand Side

Reduced Ordered Binary Decision Diagrams
Register Transfer Level

Strongly Connected Component
Temporal Logic

xii

Chapter 1

Introduction

During the last decades, technological advances in microelectronics have greatly
increased the complexity of digital hardware designs. Their correctness thus becomes
a major concern,-especially in critical applications where failure is unacceptable. Tra-
ditionally, simulation is the only tool to validate a design. Using simulation, the de-
signer needs to create a set of test vectors that represents the possible inputs to the
system. The outputs for each of these test vectors are compared with the expected
responses. This method is very costly and incomplete because of the large number
of input sequences. In almost all practical situations it is infeasible to exhaustively
simulate a design to guarantee its correctness.

As a complement to simulation, formal verification methods intend to establish
an implementation satisfies a specification by mathematical reasoning [42]. The im-
plementation refers to the hardware design to be verified and the specification refers
to the property with respect to which correctness is to be determined. Formal verifi-
cation conducts an exhaustive exploration of all the possible behaviors. Thus, when
a design is pronounced correct by a formal verification method, it implies that all
behaviors relative to the property have been explored [19].

Logic is a formalism to represent specification. The hierarchy of logics is arranged
according to the generality of their data types and operators. In propositional logic,
only propositional variables, Boolean operators and their derivations are allowed.

First-order logic is much more general than propositional logic in that it allows vari-

ables over one or more other types. It also allows constant operators, functions and
predicates over added types. Higher order logic is more general than first-order logic
in that it allows variables and operators over functions and predicates. Therefore,
functions and predicates can be defined and manipulated as objects by themselves.
Formal verification is a very broad and well studied research topic and numerous
achievements have been contributed to the literature. This thesis focuses on the
particular techniques of model checking based on the w-automata theory [79]. In this
introduction, we first describe the background of this thesis. We then survey the
literature and present related work. Finally, we summarize the scope of this thesis in

Section 1.3 and give an outline of the thesis in Section 1.4.

1.1 Background

Formal verification methods can be classified in two main categories: interactive
verification with a theorem prover and automated Finite State Machine (FSM) veri-
fication based on state enumeration [42].

Interactive verification with a theorem prover uses a powerful formalism such as
higher order logic that allows the verification problem to be stated at many levels of
abstraction. This approach has achieved significant successes in verifying micropro-
cessor designs. However, interactive verification has the drawback that the user is
responsible for coming up with the proof of correctness and feeding it to the theorem
prover, which requires great expertise [37].

Automated FSM verification based on state enumeration techniques provides au-
tomation for behavior comparison and model checking. Model checking works on
a finite-state model of the system to be verified and the logical specification of the
desired behavior of the system model. It algorithmically checks if the finite state
machine is a model of the specification formula. Since model checking can be com-
pletely automatic and has been used successfully to verify complex sequential circuit
designs and communication protocols, it is emerging as an industrial standard tool
for hardware design [58].

Model checking algorithms are based on exploring the reachable state space of

design models. The state space of a finite state model for a concurrent system,
however, grows exponentially as the number of components of the system increases.
This is known as the state explosion problem in automatic verification, which is the
main challenge of model checking.

The most promising approach to tackle the state explosion problem has been
the application of ROBDDs (Reduced Ordered Binary Decision Diagrams) to the
representation of state graphs [10]. ROBDDs encode the set of states as well as
transition and output relations and perform an implicit enumeration of the state
space, making it possible to verify finite state machines with a larger number of
states [5]. ROBDDs have been proved to be a powerful tool for automated hardware
verification. However, because they require a Boolean representation of the circuit,
ROBDD-based verification cannot be directly applied to circuits with complex and
large datapath [20].

To overcome this limitation, Multiway Decision Graphs (MDGs) [12] have been
proposed as a new class of decision graphs, of which ROBDDs are a special case.
MDGs efficiently represent a class of well formed formulas of a many-sorted first-
order logic with a distinction of abstract and concrete sorts [21]. In an MDG, a data
signal is represented by a single variable of abstract sort rather than by a vector of
Boolean variables, and a data operation is represented by an uninterpreted function
symbol. Therefore, MDGs are much more compact than ROBDDs for circuits having
complex and large datapaths.

Many ROBDD based (propositional) verification methods have been generalized
into a first order level and developed using MDGs. The MDG based verification
tools verify designs at the Register Transfer Level (RTL) using their models of ASM
(Abstract State Machine), where MDGs encode the sets of (abstract) states and tran-
sition/output relations. The current MDG verification tools include an MDG package,
a reachability analysis procedure, and applications for formal hardware verification.
The MDG package implements manipulation algorithms of MDGs, the reachability
algorithm checks that an invariant holds on the reachable states of an ASM using
abstract implicit enumeration techniques. The existing MDG tool set provides the

following verification applications: combinational verification, sequential equivalence

checking, invariant checking and a first-order model checking [1, 12, 21, 81].

To complete the MDG tools, this thesis proposes to lift the w-automata based
model checking method to a First-order Temporal Logic (FTL) model checking us-
ing MDGs. w-automata based model checking is a well studied and widely used
model checking technique. Many research tools, such as VIS [9], SMV [62], SPIN
[44] etc., have this application and the most successful commercial model checking
tool FormalCheck [58] was built on this idea. Model checking of w-automata accepts
a FSM modeling system design and a propositional formula as the property. Both
of them are transformed into w—automata [57], and the model checking reduces to
checking if the language (behaviors) of the system automaton L£(M) is contained in
the language (behaviors) of the property automaton £(Bg) [57]. By constructing an
w-automaton B, accepting all the language (behaviors) violating the specification,
the model checking is converted into a Language Emptiness Checking (LEC) on the
product automaton M x B-,. If the language is not empty, this means there is a
behavior produced by the design not accepted by the specification. In this case, the
specification fails on the design. Otherwise, all the behaviors produced by the system
are contained in the behaviors of the property, and the property is verified on the
design [7, 57, 79)].

In this thesis, we present a model checking based on the w—automata theory using
MDGs. Our approach checks a first-order temporal logic specification on an abstract
of the state machine model, where the data signal is described as a single variable of
abstract type rather than by a vector of Boolean variables, and a data operation is

represented by a function symbol rather than by vectors of Boolean variables.

1.2 Related Work

The application of symbolic techniques to the model checking using w-automata
theory has been a hot topic since 1980s, and thus numerous achievements have been
reported in the literature. However, lifting this method to the first-order logic is a
pretty new research direction. In this section we survey relevant first-order model

checking techniques available in the literature.

The most related work to our thesis is the MDG based regular model checking tech-
nique (MDG MC) developed by Xu et. al. [81]. They defined a first-order branching
time temporal logical with accepting existential quantifications and abstract vari-
ables, called Abstract_.CTL*. They then obtained a subset, called Ly pe [82], by
restricting Abstract_C'TL* to the universal quantification that can only appear at the
beginning of the formula, and using a limited nesting of temporal formulas. This
limited nesting of Laspe is defined by the following templates: A(P), AG(P), AF(P),
A(P)U(Q), AG(P = (F(Q)), and AG((P) = ((Q)U(R)), where P, Q, and R are
next-let-formulas. A next-let-formula is composed by well-typed equations, Boolean
connectives and temporal operator X (nexttime). To check an Ljpe formula ¢ on
an ASM M, for each next-let-formula p, MDG MC first constructs an abstract state
machine. It then composes M and all the constructed ASMs to produce a composed
machine P. It finally checks a simplified property on the composed machine. Both
MDG MC and our proposed MDG LEC, which will be described in Chapter 4, model
the system design using ASM and construct circuit descriptions for the formula to be
verified; however, there are significant differences between them: First, the MDG LEC
method is based on the theory of w-automata, and the approach uses an Language
Containment (LC) checking algorithm to check the satisfaction of any property, while
MDG MC uses a different checking algorithm for each property template. Second,
MDG LEC uses a broader FTL, which we will call Lj/pg*, to describe the property.
Lype® breaks the template limitation of £Lype and allows arbitrary temporal nest-
ing. For example, an Lype* formula G(a = 1 — F(b = 1) A F(c = 1)) is not allowed
by Lupa-

Bohn et. al [6, 50] presented an algorithm for checking a First Order (FO) ACTL
(a subset of computation tree logic restricted to universal quantification) specification
on FO Kripke structures. The FO Kripke structure is an extension of the “ordinary”
Kripke structures by transitions represented with conditional assignments. The FO
ACTL algorithm models data values and operations by means of FO predicates. The
algorithm separates the control parts of a system under verification from its data
parts and refines the resulting model into an intermediate description that contains

sufficient information about the property to be checked. The enrichment of the control

flow model introduces verification conditions, which can be generated automatically.
If a property does not contain predicates on data, then ROBDD model checking
is applicable. Otherwise, all FO predicates are substituted by true. If the model
checking procedure reports a failure, this failure will be part of the control flow and
occurs on the concrete model as well. If no failure can be found, correctness is
not guaranteed in the original model since failure in the abstracted data cannot be
detected. Therefore, the generated verification conditions have to be proven using a
theorem prover [6, 50]. Compared to this work, our logic is less expressive since Ly pe”*
cannot accept existential quantification. However, in our approach the property is
checked on the whole model automatically, while in [6, 50] a theorem prover is needed
to validate the first-order verification conditions. Besides, our method can be applied
to any finite state models, while their application was limited to designs with a clear
separation between data and control part and terminating data loops, where the
control parts only allow a bounded number of computation on data.

Namjoshi and Kurshan [66] presented an algorithm to verify an FO model by a
syntactic abstraction. The FO model is defined on a set of variables, and each vari-
able has an associated domain of values. The initial states and transition relation
of the model are defined as quantifier free first-order predicates. The property is
described as a formula composed of ACTL* (a subset of the branching time tem-
poral logic restricted to universal quantification) operator and first-order predicates.
To verify the FO model, they first transform it into a finite Kripke structure by
the syntactic abstraction, and then proceed the model checking with a propositional
model checker. The syntactic abstraction starts with the set of predicates from the
property formula, iteratively computes the predicates required for the abstraction
relating to that property, and represents these predicates by Boolean variables in
the finite model. Compared to this work, we model the system design as an ASM,
where abstract variables and uninterpreted function symbols can be used. Although
our property language cannot express quantifications, it is defined on atomic formu-
las within temporal operator X. Furthermore, our model checking implements an
on-the-fly method, namely, abstraction and model checking are proceeded in parallel.

There exists other work on abstract model checking [46, 17] which combine ab-

straction interpretation and model checking to improve the automatic verification of
infinite systems. Abstraction interpretation transforms the infinite system model M
into an finite model M*. Usually M™ is an over-approximation of the original model
M, which means that given a state s of M and a trace ¢ produced by M, it is possible
to find a state s* of M+ and a trace t* produced by M representing s and ¢, respec-
tively. However this transformation cannot preserve the negative correctness, that is,
the failure of a property in the finite model does not imply that the property will fail
in the original model. Two techniques have been successfully developed to construct
M*. The predicate abstraction [17] approach consists of substituting some selected
model expressions with Boolean variables, which leads to important simplification. In
contrast, the data abstraction [46] method reduces the type of certain data by trans-
forming its original domain into an approximate and simpler domain [17]. Compared
to these work, our method generates an approximation model which ensures both
negative preservation and positive preservation. Moreover, most of these approaches

are done manually, but ours is totally automatic.

1.3 Scope of the Thesis

This thesis explores a model checking based on w-automata using MDGs. While
traditional ROBDD based method accepts Finite State Machine (FSM) as the system
model, our method is based on Abstract State Machine(ASM), which uses abstract
variables to model the data signals and function symbols to model the data operations.
Due to the appearance of abstract variables and function symbols, we cannot directly
implant ROBDD based methods into the MDG tool set.

To develop this new application, we define the syntax and semantics of the first-
order specification language Lype*. We also propose an algorithm to transform a
Lype* formula into a Propositional Linear time Temporal Logic (PLTL) formula by
constructing the ASMs. The algorithm is implemented by building circuit descrip-
tions in MDG-HDL for the constructed ASMs. The constructed ASMs are further
composed with the system model ASM to produce a composed ASM. Finally, we
check the satisfaction of the PLTL on the composed ASM with an existing automa-

ton constructing procedure and three new developed language emptiness checking
algorithms.

The contributions of the thesis can be summarized as follows:

e The definition of a first-order specification language Lapc™.

¢ The development of an algorithm to translate a Lypg” formula into a PLTL

formula by constructing ASMs and proof of the correctness.
e The definition of rules for building the circuit descriptions for ASMs.

e The dévelopment of three language emptiness checking algorithms using MDG

operators.
e Implementation of the new MDG LEC application into the MDG tool set.

¢ Performing case studies and experimental work on a set of benchmarks such
as an ATM (Asynchronous Transfer Mode) switch fabric and Island Tunnel
Controller (ITC). '

1.4 Outline of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 introduces MDGs and the ASM system modeling technique. We also
present the existing ASM-based model checking method.

Chapter 3 reviews model checking techniques including Kripke structure models,
w-automata theory, property specification languages and w-automata model checking
techniques.

Chapter 4 proposes the MDG LEC structure. We describe the first-order temporal
specification language Liyrpe*. We also present the transformation algorithm which
constructs ASMs and builds the circuit descriptions in MDG-HDL language.

Chapter 5 presents three language emptiness checking algorithms and proves their

soundness.

In Chapter 6, several case studies are presented and some experimental results are
provided.

Finally, conclusions and future directions of research are stated in Chapter 7.

10

Chapter 2
Multiway Decision Graphs

Multiway Decision Graphs (MDGs) are a data structure introduced to symbol-
ically encode Abstract State Machines (ASMs) to model hardware designs at the
Register Transfer Level (RTL). MDG was first proposed by Corella, et. al [20, 21].
Using MDGs, a data value can be represented by a single variable of abstract type,
rather than by a vector of Boolean variables, and a data operation is represented by
an uninterpreted function symbol, rather than vectors of Boolean variables.

In this chapter, we review the basic concepts of MDGs and MDG-related verifi-
cation techniques. Section 2.1 describes the underlying formal logic of MDG. Section
2.2 introduces the directed formulas. In Section 2.3, we reviews the MDG data struc-
ture and describes a set of logic operators on MDGs. Section 2.4 gives the definition
of an ASM and its implicit state enumeration technique. This chapter is concluded

with the presentation of the MDG tool set.

2.1 Formal Logic

2.1.1 Syntax

The formal logic underlying MDG is a many-sorted first-order logic, augmented
with the distinction between abstract sorts and concrete sorts [20]. This distinction

is motivated by the natural division of datapath and control circuitry in RTL designs.

11

Concrete sorts have enumerations that are finite sets of individual constants, while
abstract sorts do not. Variables of concrete sorts are used for representing control sig-
nals, and variables of abstract sorts are used for representing datapath signals. Data
operations are represented by uninterpreted function symbols. An n-ary function
symbol has a type a1 X ... X an = @ny1,n > 1, where ay,.. ., any1 are sorts.

The distinction between abstract and concrete sorts leads to three kinds of function
symbols. Let f denote a function symbol of type aq X ... X op — omy1. If cpyy is an
abstract sort, then f is an abstract function symbol; If all the a; - - - a 41 are concrete,
f is a concrete function symbol; If ay,41 is a concrete sort, and at least one of the
sorts ay, . . . , &, is abstract, then we refer to f as a cross-operator. Abstract function
symbols are used to denote data operations; cross-operators are useful for modeling
feedback signals from the datapath to the control circuitry. Both abstract function
symbols and cross-operators are uninterpreted, i.e., their intended interpretations are
not specified.

The terms and their types (sorts) are inductively defined as follows: a constant
or a variable of sort « is a term of sort «; and if f is function symbol of type
QL X ... X0y = Ony1,n > 1and Ay, -+, A, are terms of o - - - o, then f(Ay, -+, Apn)
is a term of type amy1. A term consisting of a single occurrence of an individual
constant has multiple sorts (the sorts of the constant), but every other term has
a unique sort. The top symbol of a term is defined as follows: the top symbol of
f(Ay, -+, Ap) is f, and the top symbol of a term consisting of a single occurrence of
a variable or a constant is that variable or constant.

We say that a term, variable or constant is concrete (resp. abstract) to indicate
that it is of concrete (resp. abstract) sort. A term is concretely reduced iff it contains
no concrete terms other than individual constants. Thus a concretely reduced term
can contain abstract function symbols, abstract variables, abstract generic constants
and individual constants, but it can contain no cross-operators, concrete function
symbols, concrete generic constants, or concrete variables; and a concretely reduced
term that is itself concrete must be an individual constant. A term of the form
“f(A1,---,An)” where f is a cross-operator and A,..., A, are concretely-reduced .

terms is called a cross-term. For example, if f is an abstract function symbol, c is

12

an individual constant, z is a variable of concrete sort, and y is a variable of abstract
sort, then f(c,y) is a concretely-reduced term (assuming that it is well typed), while
f(z,y) is not.

A well-typed equation is an expression A; = A, where the left-hand side (LHS)
A, and the right-hand side (RHS) A; are terms of same type c. The atomic formulas
are the equations, plus T (truth) and F (falsity). The formulas are defined inductively
as follows: an atomic formula is a formula; if P and @ are formulas, then =P, PA Q)
and PV Q are formulas; if P is a formula and z is a variable, then (3z)P is a formula

(with = bound in P). We use the abbreviation P < Q for (P = Q) A (Q = P).

2.1.2 Semantics

An interpretation is a mapping ¢ that assigns a denotation to each sort, constant

and function symbol such that [21]:

1. The denotation () of an abstract sort « is a non-empty set.

2. If « is a concrete sort with enumeration {aj,---,an}, then ¥(a) = {¥(a1),
o, 1p(an)}, and ¥(a;) # P(a;) for 1 <i < j < m.

3. If c is a generic constant of sort ¢, then ¥(c) € ¥(a).

4. If f is a function symbol of type a; X -+ X ay, — @ny1, then ¥(f) is a function

mapping from 1(aq) X -+ X () into the set P(ani1).

5. Let X be a set of variables, a variable assignment with a i)—compatible inter-

pretation is a function ¢ that maps every variable z € X of sort o to an element

of ¢(z) of ¥(a).

The truth of a formula P under an interpretation v and)—compatible variable

assignment ¢ whose domain contains the variables that occur free in P, written

¥, ¢ = P is defined by induction:

o ,d = A = A, iff A; and A, have the same denotation

13

e), ¢ =P iff it is not the case ¥, ¢ = P
e), o EPAQIftY, ¢ Pand ¥, 9= Q
e Y, ¢ EPVQiff ¢ EPor, ¢ =Q

e 1,0 = (Jr)P iff ¢, ¢ = P for some ¢’ that assigns an arbitrary value to z and

otherwise coincides z with ¢.

We write @'f(for the set of 1)—compatible assignments to the variables in X.
Formula ¢ = P when v, ¢ |= P for every 1)—compatible assignment ¢ to the variables
that occur freely in P, and = P when v = P for all). Two formulas P and @ are
logically equivalent iff F P < Q. A formula P logically implies a formula @ iff

EP=Q.

2.2 Directed Formulas

MDG provide efficient representation to a class of well-formed first-order formulas
defined on well-typed equations. A well-typed equation is an expression A; = Ao,
where A; and A, are terms of the same sort. Given two disjoint sets of variables U
and V, a directed formula of type U — V is a formula in Disjunctive Normal Form

(DNF) such that:

1. Each disjunct is a conjunction of equations of the form

e A = a, where A is a term of concrete sort « of the form f(By,- -, By) (f
is thus a cross-operator) that contains no variables other than elements of

U, and a is an individual constant in the enumeration of «, or

e w = a, where w € (U UV) is a variable of concrete sort o, and a is an

individual constant in the enumeration of o, or

e v = A, where v € V is a variable of abstract sort a and A is a term of type

« containing no variables other than elements of U.

2. In each disjunct, LHSs of the equations are pairwise distinct.

14

3. Every abstract variable v € V appears as the LHS of an equation v = A in
each of the disjuncts. Note that there need not be an equation v = a for every

concrete variablev € V.

Intuitively, in a directed formula of type U — V, the U variables play the role of
independent variables, the V' variables play the role of dependent variables, and the
disjuncts enumerate possible cases. In each disjunct, the equations of the form u = a
and A = a specify a case in terms of the U variables while other equations specify
the values of (some of the) V' variables in that case. The cases need not be mutually
exclusive, nor exhaustive.

A directed formula is said to be concretely reduced iff every A in an equation A = a
is a cross-term, and every A in an equation v = A is a concretely reduced term. It is
easy to see that every directed formula is logically equivalent to a concretely reduced
direct formula, given complete specifications of the concrete function symbols and

concrete generic constants; the reduction can be accomplished by case splitting.

2.3 Multiway Decision Graphs

An MDG is a graphical representation of a directed formula as defined above.
Given a concretely reduced directed formula P of type U — V, a standard term
order, and a custom symbol order comprising all the variables in V' and all the cross-
operators in P, it is easy to construct an MDG representing a directed formula that

coincides with P.

Definition 2.3.1 A multiway decision graph is a finite directed acyclic graph G where
the leaf nodes are labeled by formulas, the internal nodes are labeled by terms, and the
edges issuing from an internal node N are labeled by terms of the same sort as the

label of N. Such a graph represents a formula defined inductively as follows:
e if G consists of a single leaf node labeled by a formula P, then G represents P;

e if G has a root node labeled A with edges labeled By, ..., By leading to sub-

graphs Gy, -+, Gy, and if each G; represents a formula P;, then G represents

15

the formula \/¢;c,((A = B;) A F).
To illustrate the above definitions, we give an example.

Example 2.3.1 Figure 2.1 shows the ALU of a microprocessor. The variables z1, x,
and y representing the data inputs and the output are of an abstract sort, while the
variable xo Tepresenting the control input is of concrete sort with the enumeration
{0,1,2,3}. Depending on the value of zo, the ALU can add, subtract, increment, or
produce zero. The operations are represented by function symbols add, sub, inc. The

symbol zero is a generic constant.
xl ——=

y
X2 ——=

2.3.1 Basic MDG Algorithms

(x0=0A ¥ =zero) V
x0=1A y =add(x1,x2))V
(x0=2A Y =sub(xlx2))v
incxl) *O=3AY= inc(x1))

Zero

Figure 2.1: An MDG example

The following basic MDG algorithms were implemented in the MDG package [85].
To simplify the description of the algorithms we identify an MDG with the directed

formula that it represents.

Disjunction: The disjunction algorithm is m-ary. It takes as inputs a set of
directed formulas P;, 1 < i < n, of type U; — V, and produces a directed formula
R = Disj({P;}1<i<n) of type (Ui<i<alUi) = V such that

= R (Vici<n B)-

16

Note that this algorithm requires that all the P;,;1 < ¢ < n, have the same set
of abstract primary variables. If two directed formulas P, and P do not have the
same set of abstract primary variables, then there is no directed formula R such that
ERe (PVPE).

Conjunction: The conjunction algorithm takes as inputs a set of directed for-

mulas P;,1 < i < n, of types U; — V; and produces a directed formula R =
COHJ({R}]SZSR) of type

(Ut<i<ali) \ (U1<i<nV5)) — (Ui<i<n Vi)

such that

E R & (Ai<i<n B)-
Note that for 1 < i < j < n, V; and V; need not have any abstract variables in

common, otherwise the conjunction cannot be computed.

Relational product: This algorithm takes as inputs a set of directed formulas
P,,1 < i< n,of types U; — V;, a set of variables E to be existentially quantified, and
a renaming substitution 7, and produces a directed formula R = Relp({ P;}1<i<n, E,7)
such that

= B (3B)(MgicnPy)) -).

The algorithm computes the conjunction of the P;, existentially quantifies the
variables in E, and applies the renaming substitution . For 1 < ¢ < j < n, V; and
V; must not have any abstract variables in common. The result of only computing

the conjunction is a directed formula of type

((Urcicali) \ (Ui<icnV2)) = (Uici<aVi)-

The set E of variables to be existentially quantified must be a subset of (U1<;<V;)-
The result of only computing conjunction and existential quantification would be a

directed formula of type

(Ur<i<ali) \ (Ui<i<aV2)) = ((Ui<i<aVi) \ E).

17

The domain 7 must be a subset of ((Ui<i<nVi) \ E). The type of the result R is
then
(Ui<i<nUi) \ (Ui<i<n Vi) = ((Ui<i<n Vi) \ E) -).

Pruning by subsumption: This algorithm takes as inputs two directed formulas
P and Q of types U — V4 and U — V5 respectively, and produces a directed formula
R = PbyS(P, Q) of type U — V; derivable from P by pruning (i.e., by removing some
of the disjuncts) such that

LRV @ANQ & PV (EV)Q. (2.1)

Remark 2.3.1 The name of the algorithm comes from the fact that the disjuncts

that are removed from P are subsumed by Q.

Since R is derived from P by pruning, after the formulas represented by R and P
have been converted to Disjunctive Normal Form (DNF'), the disjuncts in the DNF
of R are a subset of those in the DNF of P. Therefore, we obtain = R < P. And
from (2.1), it follows tautologically that

= PA-EU)Q = R, (2.2)
from which, we have
E(PA-(AU)Q = R)A(R= P). (2.3)

Hence, we can view R as an approximation to the logical difference of P and
(3U)Q. In general, there is no directed formula logically equivalent to P A =~(3U)Q.
If R is F, then it follows tautologically from (2.1) that |= P = (3U)Q.

Those basic algorithms are the building blocks of the procedures for MDG-based
verification. In MDG-based verification, abstract state machines (ASM) are used to
model the systems. In the next section, we introduce abstract state machines and

their related state exploration algorithm.

18

2.4 Abstract State Machine (ASM)

An ASM is a finite state machine given by an abstract description in terms of

directed formula [20).

2.4.1 Representing Sets using MDGs

Let P be an MDG of type U — V. Then, for a given interpretation 1, P can be
 used to represent the set of vectors Set?,(P) = {¢ € Y |1, ¢ = (3U)P}. In the next
section, directed formulas will thus be used in this fashion to represent sets of states
and sets of output vectors. We shall also see how MDG can be used to represent

relations.

2.4.2 Describing ASM with MDGs

An abstract state machine is defined as a tuple D = (X, Y, Z, Fy, Fr, Fp), where

1. X, Y and Z are pairwise disjoint sets of input symbols, state symbols and
output symbols, respectively. Let 1 be a one-to-one function that maps each
state variable y to a distinct variable n(y) obtained, for example, by adorning
y with a prime. The variables in Y’ = n(Y’) are used to denote the next-state

variables. X,Y and Z must be disjoint from Y.

Given an interpretation 1), an input vector of the state machine M represented
by D is a i-compatible assignment to the set of input variables X; thus, the
set of input vectors, or input alphabet, is <I>1)/’(. Similarly, <I>’§ is the set of output
vectors. A state is a 1-compatible assignment to the set of state variables Y;
hence, the state space is <I>'{}. A state ¢ can also be described by an assignment

¢ =dongle <I>§p,, to the next state variables.
A variable in X UY U Z is called an ASM _variable [82].
2. Fy is a directed formula representing the set of initial states, of type U — Y,

where U is a set of abstract variables disjoint from X UY UY'U Z. Typically,

F; is a one-disjunct directed formula representing the set of initial states.

19

. Given an interpretation 1, a state ¢ € quf, is an initial state iff ¢, ¢ = (3U) F7.

Thus, the set of initial states is

S = Set’(Fy) = {¢p € BY | ¥, ¢ |= QU) 1}

3. Fr is a directed formula of type (X UY) — Y’, representing the transition

relation.

Given an interpretation 1), an input vector ¢ € @1}/’(and a state ¢’ € @;”,, a state
¢" € ®Y is a possible next state iff 1, pU¢'U (4" on) = Fr. Thus the transition

relation of the state machine M represented by D is given by:
Rr={(¢,¢',¢") € D% x) x &} | ¢, pU¢' U(¢" 01) = Fr}.

4. Fg is a directed formula of type (X UY) — Z, representing the output relation.

Given an interpretation 1, the output relation of the state machine M repre-

sented by D is
Ro ={(4,4,¢") € ®% x 8} x 8} | $,6U# U4 |= Fo}.

To recapitulate, for every interpretation 3 of the sorts, constants and function
symbols of the logic, the abstract description D = (X,Y, Z, Fy, Fr, Fo) represents
the state machine M = (@’ﬁ,@ﬁ,@g, St, Rr, Ro) with the set of the input vectors
@Y, the state space ®Y, the set of output vectors ®Y, the set of initial states Sy, the
transition relation Ry, and the output relation Rp.

To illustrate the above definitions, we give an example.

Example 2.4.1 (MinMaz) The ASM shown as Figure 2.2 models a simple machine
to pick up the minimal and mazimal numbers from a set of natural numbers. The
circles in the figure correspond to the control states, and the arrows correspond to
the control transitions of the machine. The transition labels specify the conditions
under which each transition is taken and an assignment of values to the abstract
nezct state variables. The machine has 2 input variables v,z and 3 state variables

¢, m, M, where v describes the reset signal, x represents the input number, ¢ stands

20

for the states of machine, and m, M stores the minimal or mazimal number obtained
so far. v and ¢ are defined as variables of concrete sort and r,m, M are defined as
variables of abstract sorts wordn. There are no output variables in the machine. A
function symbol, leq, is an operator to compare two variables a and b of sort wordn.
leq(a,b) =1 if and only if a is less than or equal to b. The initial states are Fy : c =
1 Am=mazx AN M = min. The transition relation Frp is
(c=1AT=1Am =maz AM' =minAcd =1)V

(c=1ArT=0Am=zAM =zA=0)V

(c=0AT=1Am =maz AM =minAc =1)V

(c=0AT=0Aleq(z,m) =1Aleg(z, M) =1Am'=zAM =MAJ=0)V
(c=0AT=0Aleq(z,m) =0Aleq(z, M) =1Am =mAM =MAZ =0)V
(c=0Ar=0Aleg(z,m) =1Aleq(z, M) =0Am'=zAM =zAd=0)V
(c=0AT=0Aleq(z,m) =0Aleq(z, M) =0Am'=mAM =z A =0)

r=0
Ir; 1= max m= i‘f(leq(x, m) = 1) then x else m,
M = min M’ =if (leq(x, M) = 1) then M else x

r=1 mw=max M=mi

Figure 2.2: The ASM of the Minmax

2.4.3 State Exploration and Invariant Checking

Given an abstract state machine description D = (X,Y, Z, Fy, Fr, Fp), we can
compute the set of the reachable states of a state machine M = (®%, ®%, ®%, Si,
Rr, Ro) represented by D, for any interpretation 9 and 1-compatible assignments &,
using the MDG algorithms mentioned above. During the computation, the algorithm

checks if an invariant condition holds on all the reachable states. The invariant is

21

represented by an MDG C of type W — Z, where W is a set of abstract variables
disjoint from X,Y,Y,Z and U. For a given interpretation y, an output vector is
deemed to satisfy the invariant iff 1, ¢ = (3W)C; therefore, Set%(C) is the set of
output vectors that satisfy the invariant.

The Reachability Analysis (ReAn) algorithm [21] can be described by the following

pseudo-code:

Algorithm 2.4.1 (Reachability Analysis Algorithm)
1 ReAn(D,C)

2 R=F;; Q =F;; K:=0;

3 loop

4 K:= K+1;

5 I := Fresh(X, K);

6 O :=RelP({I, Q, Fo},XU Y, 0);

7 :=PbyS(0, C);

8 if P # Fthen return failure;

9 N :=RelP{I, Q, Fr},XU Y, Y'=»Y);
10 Q@ := PbyS(N, R);

11 if Q = Fthen return success;

12 R :=PbyS(R, Q);

18 R :=Disj(R, Q);

14 end loop;

15 end ReAn;

The variables I, N, P,Q and R represent sets of states, and O represents a set of
output vectors. Before each iteration, R contains the states reached so far, while @) is
the frontier set, i.e., a subset of @'{; (R) containing at least all those states that entered
®% (R) for the first time in the previous iteration. In line 5, Fresh(X, K) constructs
a one-disjunct directed formula representing a conjunction of equation z = u, one for
each abstract input variable z € X, where u is a fresh variable from the set of auxiliary

abstract variables U. The value of the loop counter K is used to generate the fresh

22

variables. This one-disjunct directed formula is assigned to I, which represents the set
of input vectors. In line 6, the relation product (RelP) operation is used to compute
the directed formula representing the set of output vectors produced by the states in
the frontier set. The resulting directed formula is assigned to O, Then, in line 7, the
pruning-by-subsumption (PbyS) operation is used to remove from O those disjuncts
that represent output vectors which satisfy the invariable C. The resulting directed
formula is assigned to P. In line 8, if P is not F, then the procedure stops and reports
failure. If P is F, then every output vector produced by a state in the frontier set
satisfies the invariant and the verification procedure continues. In line 9, the relational
product operation is used again; this time compute the directed formula representing
the set of states that can be reached in one step from the frontier set of states. Note
that the directed formula @ represents the frontier set. Lines 10 and 11 check whether
<I>'{i(N) C <I>$ (R) by the same method used in lines 7 and 8, respectively. If it is the
case, then every state reachable from the frontier set was already in <I>$(R). The
fixpoint has been reached and R represents all the reachable states. Therefore, the
procedure terminates and reports success. Otherwise, the directed formula assigned
to @ in line 10 represents the new frontier set. Line 12 simplifies R by removing it
any disjuncts that are subsumed by @), using PbyS. There may be such disjuncts
because () was not computed earlier as an exact difference. Line 13 then computes
the new value of R by taking the disjunction of R and @ which represents the set of
states ®% (R) U ®%(Q) and assigns it to R.

2.5 MDG Verification Applications

At present, there exists several MDG-based hardware verification applications,
which constitute an MDG tool set. Figure 2.3 depicts the components. The MDG
tools accept a Prolog-styled Hardware Description Language (HDL), called MDG-
HDL [85] which allows the use of abstract variables and uninterpreted function sym-
bols. MDG-HDL supports structural descriptions, behavioral descriptions, or the
mixture of structural descriptions and behavioral descriptions. A structural descrip-

tion is usually a netlist of components (predefined in MDG-HDL) connected by sig-

23

nals. A behavioral description is given by a tabular representation of the transi-
tion/output relation or truth table [83].

Besides circuit descriptions, a variety of information, such as sort and function
type definitions, symbol ordering and invariant specification, etc., has to be provided
in order to use the applications. All of these are organized into four kinds of input files:
that algebraic file, the symbol order file, the circuit description file, and the invariant
specification file. All these files are compiled into internal MDG data structures by
the MDG-HDL compiler. The MDG package supplies the MDG operation algorithms
described above. The reachability procedure implements the ReAn algorithm and
printing facility provides various printing options. On top of them are built a set of
verification application including combinational equivalence checking, safety property

invariant checking, sequential equivalence checking, and model checking.

Prolog-style
MDG-HDL

order file —1—(Symbol order)

Sort definitions

Combinational verification

Invariant checking

Equivalence checking

MDG-HDL
Compile

algebraic file—— Rewrite rules
specification —| Function types Model checking
or property file —
Structural description —
circuit tSilescription— Behavior description | Printing & ReAn l
ile Y
| MDG package I

Network of
component

@ Runs under Quintus Prolog V3.2

Figure 2.3: The MDG tool set

Combinational equivalence checking. Given two combinational circuits, an
MDG is computed for each of them to represent its input-output relation by combining
the MDGs of the components of the circuit using the relational product operations.

Because of the canonicity of MDG, comparing the functionality of two combinational

24

circuits reduces to computing the MDGs representing their input/output relations. If
the two circuits have the same functionality, the two MDGs must represent logically

equivalent formulas, and hence they must be isomorphic.

Invariant checking. This safety property checking is based on the reachability
analysis procedure. Given a state machine M and an invariant condition C, the pro-
cedure checks if C holds in all the reachable states of M. An invariant condition is
specified by a combinational circuit whose output signals are named by the variables
that occur in the condition. Pruning-by-subsumption is used to check that the in-

variant is satisfied for the states in each frontier set.

Sequential equivalence checking. One application of invariant checking is the
behavioral equivalence checking of two sequential circuits. To verify that two ASMs
produce the same sequence of outputs for every sequence of inputs, the same inputs
are feed to the two circuits, i.e., the product state machine is formed. Then, a reacha-
bility analysis is performed on this parallel composition using an invariant that asserts
the equality of the corresponding outputs in all the reachable states. For machines
with different time scales, it is possible to synchronize them first if they have cyclic

behaviors. Then the reachability analysis can be performed on the product machine

as usual.

Model checking. Model checking algorithms for a subset of Abstract-CTL*
called Ly/pc was developed by Xu [81]. It can verify both safety and liveness prop-
erties. To check a property p in Ly pe on an ASM M, additional ASMs M; are first
built for basic sub-formulas of p in which only the temporal operator X is allowed
(called Next_let-formulas), and then these additional ASMs are composed with M.

Finally, appropriate algorithms are applied to verify the transformed simplified prop-

erties on the composite machine. We will describe the details on £ppg in Chapter

3.

25

2.6 Conclusion

This chapter reviewed the basic concepts of Multiway Decision Graphs (MDGs),
which underlying logic is a many-sorted first-order logic and described by the well-
formed first-order formulas (directed formulas). We reviewed the MDG data structure
and basic operators. We also described the implicit abstract state enumeration pro-

cedure and various existing MDG based verification techniques.

26

Chapter 3

Model Checking and w-Automata

Model checking is a technique to algorithmically check whether a design model
satisfies its specification. The model is represented by a Kripke structure M, and
its specification is described as a formula p in some temporal logic. The satisfaction
problem can be expressed mathematically as the decision of M = p. The symbolic
model checking sets a new milestone in the development process of model checking
techniques. Symbolic model checking encodes the sets and the transition relations
with Reduced Ordered Binary Decision Diagrams (ROBDDs), which are canonical
representation of the Boolean characteristic function once an order on the variables
has been established. The implicit enumeration technique greatly increases the state
spaces that can be accepted by model checking [5].

In this chapter, we first introduce the notion of Kripke structure and its symbolic
representation, and also give the definition of bisimulation relation over two Kripke
structures. Then we give the different logics (propositional, first-order, and temporal
logics) for describing properties. Finally, we focus on the w-automata based model

checking method, which we intend to lift from propositional to first-order logic.

3.1 Kripke Structure

Model checking describes system design as a Kripke Structure. We will introduce

the definition and give the bisimulation relation over Kripke Structures in this section.

27

3.1.1 ROBDD Representation

For model checking, the system design is as a Kripke structure [54], which can be

viewed as a labeled Finite State Machine (FSM).

Definition 3.1.1 Let AP be a set of atomic propositions. A Kripke structure M
over AP is a four-tuple M = (S, So, R, L), where

e S is the set of states,
e Sy C S is the set of initial states,

e R C S xS is the transition relation, which must be total, i.e., for every state

s € S, there is a state s' € S such that R(s,s'), we write s — s' for clarity,

L : S — P(AP) is a function that labels each state with the set of atomic

propositions true in that state.

A path (computation) in M starting from a state s is an infinite sequence of states
T = 8095183 . .., such that so = s and for every ¢ > 0, s; — s;31. The suffix of 7 from
state s; is denoted 7.

A symbolic representation of the Kripke structure is implemented by describ-
ing the state set and transition relation with Boolean characteristic functions. Let
AP = {p1,--+,pn}. A state s is represented by a vector of Boolean variables X =
{z1,...,2n}, where z; = p; or z; =~ p; (the negation of p;). A set of states can be
represented by a Boolean characteristic function Q = {X|f(z1,...,2,) = 1}. Simi-
larly, the relation R C S x S can be represented by a Boolean characteristic function
of two sets of variables R = {(X, X)|f(z1,- .., Zn, 2}, ..., 2}) = 1}.

To illustrate the above definitions, we give an example.

Example 3.1.1 A modulo-4 counter counts 0,1,2,3,0,1,2,3,0,1,2, ---. Initially the
counter is zero. Let AP = {Hi, Low} be the set of two propositional variables to
encode the four states. The Kripke structure graph and its corresponding symbolic

representation are show in Figure 3.1.

28

AP = {Low, Hi)

0 1 -
$={0,1,2,3) S0={0) 0: ~Hi ~Low
R= {(071)’ (192)? (2’3)v (370)} 1: ~Hi Low
L) = L) ={L
0 ={} (1) = {Low} 2: Hi ~Low
L(2) = {Hi} L(3) = {Hi, Low}
3 2 3: Hi Low

Hi={2,3} Low={1,3}
Figure 3.1: The Kripke structure of a modulo-4 counter

3.1.2 Bisimulation Relation

Let AP be a set of atomic propositions and let M; = (S, So1, R1, L1) and My =
(S, Soz, Ry, Lo) be two Kripke structures. The bisimulation relation defined in [68] is
described as below:
Definition 3.1.2 (Bisimulation) A relation H C Sy x Sy is said to be a bisimulation
relation over My and My if the following conditions hold:

1. For every s; € Sy, there is sy € Spa such that H(sy,s2). Moreover, for every

89 € Sgg, there is 51 € So1 such that H(Sl, 82).
2. For every (s1,82) € H

o Li(s1) = Lo(s2) and
[th [Rl (51, tl) — atg [RQ(SQ, tz) A H(tl, tg)]]
e Vtg [RQ(SQ, tg) — gtl [Rl(Sl, tl) A H(tl, tz)]]

We write s, = sy for H(sy,s0). We call My and My are bisimular (denote

M, = M,) if there ezists a bisimulation relation H over My and M,.

To illustrate this concept, we give an example shown in Figure 3.2, where the

relation H is shown in the bottom.

Bisimulation relation produces both correct positives and correct negatives, which

is shown in the following theorem.

29

H={(1,1"),(2,4")(1,3°),(2,2")}

Figure 3.2: An example of the bisimulation relation

Theorem 3.1.1 (see [14]) Let My and My be two Kripke models. If My = My, then
for every CTL* formula f (with atomic propositions in AP), My = f if and only if
M E f.

3.2 w-Automata Theory

Model checking using w-automata theory transfers both the system and property
into w-automata, thus reduces the checking problem into a language containment
problem. Automaton can be viewed as a transition system structure with an ac-
ceptance condition. w-automata deviate from the traditional finite automaton by
interpretation of the acceptance conditions: there are no final states; instead, accep-
tance is determined with respect to the set of states that are visited infinitely often.
Different types of acceptance conditions are studied [76]. In the thesis, we mainly

focus on Biichi conditions.

Definition 3.2.1 A Biichi automaton B = (Q, I, 6, F') over an alphabet ¥ is given by
a finite set Q of states, a non-empty set I C Q of initial states, a transition relation
5 C Q%L xQ, and a set FF C Q of acceptance states. A run r of B over an w—word
W= apa ... € LY is an infinite sequence T = qoqy - - . of states q; € Q such that qo € I
and (g;,a;,q;41) € 6 hold for all i > 0. The run r is accepted iff there erists some
g € F such that q; = q holds for infinitely many times.

30

The language L£(B) C X¥ is the set of w-words, for which there exists some ac-
cepted run r of B. A language £ C X¥iff £ = L(B) for some Biichi automaton B.
The following are some properties of Biichi automaton that establish the founda-

tion of application in the w-automata based model checking [76, 79].

Proposition 3.2.1 For every LTL formula ¢ of length n, there exists a Bichi au-
tomaton B, = (Q,1,6,F) with 20 states, which accepts precisely w—words that

satisfy .

Proposition 3.2.2 For a Biichi automaton B with n states over alphabet o, there is

a Biichi automaton B with 20009 states such that L(B) = %, \ L(B).

Proposition 3.2.3 For a Biichi automaton B with n states, it is decidable in time

O(n) whether L(B) =0 or not.

The Biichi automaton type we considered is generalized Biichi automaton B. The
acceptance condition of Bis defined by a finite set F = {F},..., Fy,} of sets of states.
A run is accepted if some states from each F; are visited infinitely often. Note that
in the special case F = 0 all infinite runs of the generalized Biichi automaton B are

accepted.

Proposition 3.2.4 Let A be a generalized Biichi automaton (Q,Qo, 6, F) over the
alphabet set %, where F = {F, F, ..., F,}. We can construct a Bichi automaton B
that L(A) = L(B).

The construction is based on the sets in F, which is given as follows:
o F=0: B=(Q,Q0,6,Q),

o F={R}: B=(Q,Q,d)

o F={F,F,...,F}, wheren >2: B=(Q, Q40 F]), where

- QI:QX{LQ,...,’H,},
- QGZQOX{1}1

31

— ¢' is defined as follows: (¢',7) € 6((s,%),a) iff &' € §(s,a) and ((s ¢ F; and
j=1) V((s € F}) and j = (i mod n) + 1)), and

Note that the automaton for the system design Bjs should accept all paths pro-
duced by M, and a generalized Biichi automaton with F = @ accepts all infinite
runs of B. In particular, we assume the fairness conditions to be expressed as part
of the property formula. Thus, the automaton for the system design is a generalized
Biichi automaton without any acceptance condition. For simplicity, we will use M to

represent B, in the sequel.

3.3 Property Specification Language

Model checking checks the satisfaction of a Kripke structure with respect to prop-

erties given in some kinds of temporal logics, which we describe next.

3.3.1 Propositional Logic

Successful symbolic model checking is based on the propositional logic. A propo-
sitional logic [59] consists of a set of propositions AP = {p,q,...} and Boolean con-
nectives A, V, and -, representing and, or and not, respectively. The formulas are
composed of AP and Boolean connectives. The symbols — (implication) and <
(equivalence) can be interpreted as follows: p — ¢ abbreviates -p V ¢ and p + ¢
abbreviates p — ¢ and ¢ — p, respectively.

The semantics of the proposition formulas can be induced with following rules.

e —pis Trueiff p is False.
e pVqis Trueiff pis True or q is True.

p A q is True iff both p and g are True.

o p — qis Trueiff p is True then q is True.

e p <+ qis True iff both p — ¢ is True and ¢ — p is True.

32

3.3.2 First Order Logic

The developed model checking technique in this thesis is based on the first-order
logic. A first-order logic [30] language L consists of a set of signature symbols (count-
able sets of symbols for constant, functions, predicates, and variables), a set of stan-
dard Boolean connectives and quantifiers.

Symbols of £ are composed of a set of function symbols, a set of predicate sym-
bols and a set of individual variables. The 0-ary function symbols comprise the subset
of constant symbols; and the 0-ary predicate symbols are known as the propositional

symbols. The following notations are used to represent the above symbols:
1. ¢,¢,..., etc. for n-ary, n > 1, predicate symbols,
2. P,Q,..., etc. for propositional symbols,
3. f,9,...,etc. for n-ary, n > 1, function symbols,
4. ¢,d,..., etc. for constant symbols, and
5. 9,2,..., etc. for variable symbols.

6. Binary predicate symbols (the equality symbols) = is based in the standard

infix fashion.

7. Quantifier symbols V and 3, denoting universal and existential quantification,
are applied to individual variable symbols according to the usual rules regarding

scope of quantifiers.
Syntax of £ The terms of £ are defined inductively by the following rules:
1. Each constant c is a term.
2. Each variable ¥ is a term.

3. If ty,...,t, are terms and f is an n—ary function symbol, then f(t1,...,t,) is

a term.

The atomic formulas of £ are defined by the following rules:

33

1. Each 0-ary predicate symbol (i.e., atomic proposition) is an atomic formula.

2. If t;,...,t, are terms and ¢ is an n—ary predicate, then ¢(¢1,...,%,) is an

atomic formula.
3. If t; and ¢, are terms, then t1 & ¢ is also an atomic formula.
Finally, the (compound) formulas of £ are defined inductively as follows:
1. Each atomic formula is a formula.
2. If p, q are formulas then (p A q), —p are formulas.
3. If p is a formula and y is a free variable in p, then 3 y p is a formula.

Semantics of £. The semantics of £ is provided by an interpretation I over
some domain D. B represents the Boolean domain, which is a domain D with true
and false values. The interpretation I assigns an appropriate meaning over D to the

(non-logic) symbols L as follows:

e For an n-ary predicate symbol ¢, n > 1, the meaning I(v) is a function D" — B.
e For a proposition symbol P, the meaning I(P) is an element of B.

e For an n-ary function symbol f,n > 1, the meaning I(f) is a function D" — D.
e For an individual constant symbol ¢, the meaning I(c) is an element of D.

For an individual variable symbol y, the meaning I(y) is an element of D.

The interpretation I is extended to arbitrary terms inductively:

I(f(tla ---atn)) = I(f)(l(tl)a"'al(tn))

The truth meaning of a formula P under interpretation I, written I |= P, is

defined as follows:

e I |= P, where P is an atomic proposition, iff I(P) = true.

34

I & 9¥(ty,...,tn), where 9 is an n-ary predicate and ti,...,%, are terms,
I(WDYI(t), ..., I(tn)) = true.

I'Ztl’rb’tg lﬂI(tl)ZI(tQ)

IEpAqifI=pand I =q.

I = —p iff not the case the I |= p.

I = 3y p, where y is a free variable in p, iff there exists some d € D such that

Iy « d] = P, where I[y < d] is the interpretation identical to I except that y

is assigned a value d.

3.3.3 Temporal Logics

Properties of model checking are described as some kinds of temporal logics. A
temporal logic [30] is a formalism for describing sequences of transitions between
states in a reactive system. It provides a formal system for qualitatively describing

and reasoning about how the truth values of assertions change over time. There are

four basic operators in temporal logic:

e GP (“always P”, also read as “henceforth P”) is true in state s if P is true in

all future states from s (including s).

e FP (“sometimes P”, also read as “eventually P”) is true in state s if P is true

in some future states from s.
e XP (“nexttime P”) is true in state s if P is true in the next state from s.

e PUQ (“P until Q) is true in state s if either Q is true in s itself or it is true

in some future state of s and until then P is true at every intermediate state.
The following three classes of properties can be easily expressed in temporal logic:

o Safety properties - assert that nothing “bad” happens, typically represented as
k= GP , i.e., P holds at all times in all models;

35

e Liveness properties - assert that eventually something “good” happens, typically
represented as = P — FQ, i.e., in all models, if P is initially true, then Q will

eventually be true;

o Precedence properties - assert the precedence order of events, typically repre-

sented as = P U @Q, i.e., in all models, P will hold until Q) becomes true.

Based on the difference in viewing the notion of time, temporal logics can be
classified into two kinds. In the first, time is characterized as a single linear sequence
of events, leading to linear time temporal logic. In the second, a branching view of
time is taken, such that at any instant there is a branching set of possibilities into

the future. This view leads to Branching Time (Temporal) Logic.

Propositional Linear Temporal Logic

In a Propositional Linear Time Temporal Logic (PLTL) the underlying structure
of time is assumed to be isomorphic to the natural numbers with their usual order
(N, <) [30]. Let AP be an underlying set of atomic proposition symbols. A linear-
time structure M = (S, z, L) is defined such that S is a set of states, z : N — S'is an
infinite sequence of states, and L : S — 247 is a labeling of each state with the set of
atomic propositions in AP that are true in the state.

Usually, the notation z = (s0, s1,52,---) = (2(0),z(1),z(2),- -) is employed to
denote the timeline z, which is also referred to as a full path, or a computation
sequence, or a computation.

The basic temporal operators of PLTL are F |, G, X, and U. The syntax of PLTL

formulas is generated by the following rules:
e Each atomic proposition P is a formula;
e If p and ¢ are formulas, then p A ¢q and —p are formulas;
e If p and ¢ are formulas, then p U ¢ and X p are formulas.

The other formulas can be introduced as abbreviations in the usual way: For the

propositional connectives, pV g abbreviates =(=p A —¢); p — ¢ abbreviates —p V g¢;

36

p < g abbreviates (p = ¢) A (¢ — p); p R ¢ (release, the dual of U) abbreviates
=(=p U —¢). The Boolean constant true abbreviates p V —p, while false abbreviates
—true. Then the temporal connective F p abbreviates true U p, and Gp abbreviates
=F-p.

Semantics. The semantics of a formula p of PLTL with respect to a linear-
time structure M = (S,z,L) is defined as follows: We write M,z |= p to mean
that “in structure M, formula p is true on time line 2”, z* denotes the suffix path
SiySit1, Siz2, ... Although it is not explicitly stated, those PLTL properties are
checked on all paths.

1. M,z = piff p € L(sy), for atomic proposition p;

2. M,z = —piff not M,z = p;

3. Mz = pAqiff M,z =pand M,z |=g¢;

4. M,z = Xpiff £ = p;

5. M,z = (pUq) iff 3j(2’ k= q and V& < j(z* = p));

6. M,z |= (pRq) iff Vj(27 |= q or for some k < j(z* k= p));
7. M,z |= Fpiff Ej(mj = p);

8. M,z = Gpiff Vj(z? = p)

The duality between the linear temporal operators is illustrated by the following

assertions:
o =Gp = —Fp;
e EF-p = -Gp;
e EX-p = —Xp;

We say that a PLTL formula p is satisfiable if there exists a linear-time structure

M = (S, z, L) such that M,z |= p, and any such structure defines a model of p.

37

Computation Tree Logic

Different kinds of Branching Time Temporal Logic (BTTL) have been proposed,
depending on the exact set of operators allowed. Their common feature is that they
are interpreted over branching tree-like time structures, where each moment may have
many successor moments. The structure of time corresponds to an infinite tree. The
usual temporal operators (F, G, X, U) are regarded as state quantifiers. Additional
quantifier called the path quantifier is provided to represent all path (A) and some
path (E) from a given state. Here we only describe the Computation Tree Logic
(CTL), a restricted form of BTTL. CTL* extends CTL by allowing those operators
composed by a path quantifier followed by an arbitrary linear temporal operator
and propositional combinations and nesting of linear temporal operators. CTL* is
sometimes informally referred to as a full branching time logic.

CTL severely restricts the types of formulas that can appear after a path quantifier
— only single linear time operator F, G, X, or U can follow a path quantifier and time
operators cannot be combined directly with propositional connectives. The syntax of

CTL is:
e Every atomic proposition is a CTL formula.
o If p and ¢ are CTL formulas, then so are —p, (pAq), AXp, EXp, A(pUq), E(pUq).
The remaining operators are derived from these according to the following rules:
¢ pVyg=-(-pA-q).
e AFp = A(trueUp).

e EFp = E(trueUp).

AGp = —E(trueU-p).
e EGp = - A(trueU—p).

Because all operators are prefixed by A or E, the truth or falsehood of a formula

depends only on the given state s, and not on the particular branch. The semantics

38

of CTL is defined on a Kripke structure M. Given an M = (S, So, R, L) and an initial
state sg, an infinite computation tree T is generated with a root at sy, and expanded
with all possible nondeterministic transitions at every state. The truth of a CTL

formula is defined on T inductively as follows:
o (M,sq) = piff p € P(so), where p is an atomic proposition.
o (M, sy) = —piff not (M, so) = p.
o (M,s0) =pAqiff (M,s0) =pand (M,s0) Fq.
o (M, sp) = AXp iff for all states ¢ such that (so,t) € R, (M, 1) = p.
o (M,s0) EEXp iff for some states ¢ such that (sg,t) € R, (M,t) = p.

o (M, sq) = A(pUq) iff for all paths (s, s1, $2,-..), 3k > 0 such that (M, sz) = g,
and Vi,0 < i < k, (M, s;) = p.

o (M, s0) = E(pUq) iff for some paths (so, s1, S2,--.), 3k > 0 such that (M, sz) =
g, and V1,0 < i < k, (M, s;) E p.

PLTL versus PBTTL. In linear time logics, temporal operators are provided
for describing events along a single future time line. Although when a linear formula
is used for specification, there is usually an implicit universal quantification over all
possible futures. In contrast, in branching time logics the operators usually reflect
the branching nature of time by allowing explicit quantification over possible futures.
One argument presented by the supporters of branching time logic is that it offers
the ability to reason about existential properties in addition to universal properties

[42].

The Propositional ;—Calculus

Symbolic computations, operating on the sets of states, are conveniently described
by formulas of p-calculus. The p—calculus [27] is obtained from the first-order predi-

cate logic by adding the least (1) and the greatest (v) fixpoint operators. Given a set

39

of atomic propositions A and a set of variables V, we use the following syntax, which

corresponds to the propositional u—Calculus.

o If fe AUV, then f is a formula;
e if f € A, then —f is a formula;
e if f and g are formulas, so are f A g, EX f, EY f, AX f and AY f;

e if Z €V and f is a formula, then vZ. f and pZ. f are formulas.

The semantics of u—calculus are defined with respect to a labeled transition sys-
tem M = (S,I,R,L), where S is a set of states,] C S is a set of initial states,
R C S x S is a transition relation over S, and L : S — 24.

Let e = {e: V — 2°} be the set of environments, that is , the set of functions that
associate a set of states to each variable. Let ® be the set of u—calculus formulas
over A and V. The function Z : ® x ¢ — 25 associates a set of states to a formula
¢ € ® in a given e € e. Let e[S'/Z] be the environment that coincides with e, except

that e[S'/Z](Z) = S'. The function Z extends ¢ in a natural way, where

I(EX fe)={s€S:3(s,s) € R, ¢ € I(f,e)},
I(AX f,e)={s€S:¥(s,s) € R, ¢ €I(f e}
I(EY f,e)={se€ S:3(s,s) € R, € I(f,e)},
Z(AY f,e)={s€ S:V(s,s) € R, s € I(f, e)},
I(uZ. f,e) = ﬂ{S' C8:8DI(f,e[S'/Z]},and
I(v2. f,e) = J{S' € §: ' CI(f,elS'/Z]}.
The following abbreviations correspond to the future and past tense CTL opera-
tors:
EpUgq=uZ.qV (p AN EXZ), EpSq=pZ.qV (p AN EY Z)

EGp=vZ.p N EX Z, EHp=vZp NEY Z
EF p= F trueU p, EP p=FE true S p,

40

The EX (or preimage) operator maps a set of states to the set of their direct
predecessors. This corresponds to one step of backward symbolic breadth-first search.
Similarly, EY (image or a forward step) maps a set of states to the set of all their
direct successors. The operators EX, AX, and all the abbreviations defined in terms of
them are called future-tense or backward operators. EY, AY, and all the abbreviations

defined in terms of them are called past-tense or forward operators.

The First Order Temporal Logic

The First Order (FO) temporal logic is achieved by refining the propositions of
the proposition TL with the symbols of first-order language. The symbols, including
constants, variables, functions and predicates, are divided into two classes: the class
of global symbols and the class of local symbols. Each global symbol has the same
interpretation over all states; the interpretation of a local symbol may vary, depending
on the state at which it is evaluated. All function symbols and all n-ary predicate
symbols, for n > 1, are global. Propositional (0-ary predicates) symbols and variable
symbols may be local or may be global.

FOTL can be classified into FO Linear time TL (FOLTL) and FO Branching time
TL (FOBTL). The terms of FOLTL are composed by constants, variables, functions
and temporal operator X. The atomic formulas consist of predicates of the terms and
equation relations between the terms. The compound formulas are composed with
Boolean connective A, = and temporal operators U and X.

The semantics of FOLTL is provided by a first-order linear time structure M over
a domain D. M = {S,z,L}, where S is a set of states, z : N — S is an infinite
sequence of states, and L : S — 2 L associates with each state s an interpretation

L(s) of all the symbols at s. Global interpretation I of M assigns a meaning to
each global symbol, while the local interpretation L(—) associated with M assigns a
meaning to each local symbol. A formula p of FOLTL is valid if and only if for every
first-order linear time structure M = (S, z, L) we have M,z |= p. The formula p is
satisfiable iff there exists M = (S, z, L) such that M,z = p.

The FOBTL is obtained by combining the rules for generating a system of proposi-

41

tional Branching Temporal logic plus a first-order language. The underlying structure
is extended so that it associates with each state s an interpretation of local and global
symbols including in particular local variables as well as local atomic propositions.

The semantics is given by the usual definition of truth.

Abstract_CTL*

Abstract.-CTL* is a partial first-order branching temporal logic defined in [82],
and a subset is used to represent the properties in the MDG regular model checking.
A partial interpretation FOTL assumes a specific domain for each variable, but leaves
the function of symbols uninterpreted. The syntax and semantics of Abstract.CTL*

are defined as following [82].
Syntax of Abstract_.CTL*. Given an abstract description of an ASM D =

(X,Y, Z Fy, Fr.Fo) and a set of ordinary variables which are available for use in

the specification of the property, the syntax of an abstract.CTL* can be defined as

follows.

(s1) If ¢, is an ASM_variable, ¢; is an ASM_variable, or a constant, or an ordinary

variable, then equation t; = t5 is a state formula.

(s2) If p, q are state formulas, then so are !p (not p), p&q (p and q), plg (p or q),
p—q.

(s3) If ¢ is an ASM _variable, v is an ordinary variable, and p is a state formula, then

LET (v =t) INp is a state formula.
(s4) If p is a path formula, then Ap and Ep are state formulas.
The path formulas are defined as follows:

(p1) Each state formula is also a path formula.

(p2) If p, ¢ are path formulas then so are !p (not p), p&g (p and q), plg (p or q),
p — ¢, Xp, Gp, Fp and pUq.

42

(p3) If ¢ is an ASM_variable, v is an ordinary variable, and p is a path formula, then

LET (v =t) INp is a path formula.

Semantics of Abstract_CTL*. Given an interpretation ¢ and 1 —compatible
assignment ¢, the semantics of Abstract.CTL* is defined on the infinite computation

tree T' expanded by M = (S, R) descried by D = {X,Y, Z, Fy, Fr, Fo}, where
S={s=(5¢,0") € % x Y x ¥%|1h,pU ¢ U 4" = Fo}
the transition relation
R = {(si,8;) = (i, 81> 8"3), (b5, &}, 8”5, 41 U &' U (¢ o ™) |= Fr}.

A path 7 of T is an infinite sequence of sq, s1,-- - such that (s;,s;41) € R and
i > 0. m; = {s;,8i11, -} a suffix path starting from s;. A state formula (resp. path
formula) has a meaning relative to a state (or a path) and the assignment to the
ordinary variables. Let Val,,(t) denote the value of variable ¢ on the state s, and a

1)—compatible assignment o to the ordinary variables.

5,0 | t1 =ty iff Valy,(t) = Valus(ts).
s,0 = !p iff it is not the case that s,0 = p.
s,0 = p&q iff s,o0f=pands,ok=q.

s,0 & plq iff s,cl=pors,ok=q.

s,0 &= pogq iff s,aEpors,ok=q

s,0 E LET (v=1¢)INp iff s,0' |=p

where o/ = o \ {(v,0(¥))} U {(v, Valsus (%))}
s;,0 = Ap iff m,o [= p for every path m; = (s, Sit1,- . .).
s;,0 | Ep iff m,0 = p for some path m; = (84, Siv1,..-)-

urexy
m, O
T, O
rexe
ey
rexes
o
T, 0

T, T

T, O

Lupe

m T T " w T

T

p where p is a state formula, iff s;,0 = p.

Ip iff it is not the case that 7;,0 E p.
p&q iff m,0 k= pand 1,0 Eq.

plq iff myoEporm,olk=q.

p—q iff 7,0 Elporm,oEq.

Xp iff myq,0 =D

Gp iff mj,0 F=pforall j>i.

Fp iff 7,0 |= p for some j > .

pUq iff for some &k > 0,7, 0 = ¢,
and 7;,0 = p for all j(i < j < k).
LET (w=1t)INp iff m,0' =p

where o' = 0\ {{¢v,0(v))} U{(v, Valsus())}

43

Lype is a language proposed in [81] defined as a subset of Abstract.CTL* [82]

to describe the property in the MDG MC application. The syntax of Lypg is given

in BNF (Backus Normal Form). A terminal symbol is written in bold style, a nonter-

minal symbol is written in regular style, starting with an upper case letter. Square

brackets denote options. The start symbol is the Property-file.

Property-file ::=
Property;

Property ::=

A (Next-let-formula)

| AG(Next-let-formula)

| AF(Next-let-formula)

| A (Next-let-formula) U (Next-let-formula)

| AG((Next-let-formula) = (F(Next-let-formula)))

| AG((Next-let-formula)=> ((Next-let-formula) U (Next-let-formula)))

Next-let-formula ::=
X Next-let-formula
| LET (Let-equation) IN (Next-let-formula)
| Next-let-formula — Next-let-formula
(Note: the first Next-let-formula can only contain concrete variables)
| Next-let-formula & Next-let-formula
| Next-let-formula | Next-let-formula
| ! Next-let-formula
(Note: the Next-let-formula can only contain concrete variables)
| (Next-let-formula)

| Basic-formula

Basic-formula ::=

Lterm = Rterm | T | F

Lterm ::= ASM-variable
(Note: The input, output and state variables of the ASM)

Rterm ::= ASM-variable
| OrdVar
| IntegerConstant
| SymbolicConstant
| Function (only applies in a Next-let-formula prefixed by Let-equation)

Let-equation ::=
Let-equation & Let-equation
| (Let-equation)
| OrdVar = ASM-variable

44

45

Ly pe is constructed from Abstract . CTL* by imposing some restrictions. First,
Luypg only allows the universal path quantification and requires it appearing at the
beginning of the formula. Thus, £y/p¢ is built on Linear Time Temporal (LTL) struc-
ture. Recall that an LTL formula works on all paths of the structure with an implicit
universal quantification representation. Second, Ly pg restricts the application of
temporal operators by Next-let-formula, which can only accept temporal operator X.
Third, £y pe allows limited nesting of temporal operators, as shown in the expression
of property. Thus, Lypg defines a very restricted subset of Abstract CTL*. This

restriction is needed for the model checking algorithms proposed in [81, 82].

3.3.4 Comparison of Logics

To summarize the above kinds of temporal logics, we proceed a comparison as

shown in Figure 3.3.

Propositional Temporal Logic First-order Tempotal Logic

Figure 3.3: The comparison of temporal logics

Figure 3.3 shows the containment relation between various propositional temporal
logics and the containment relation between first-order temporal logics. However, this
graph does not show the containment between first-order temporal logics and their
corresponding propositional counterparts, since first-order temporal logics naturally
contain their propositional counterparts. The dashed circle on the right side of Figure
3.3 indicates the temporal logic, Larpc™, that will be developed in the remainder of

this thesis.

46

3.4 w-Automata based Model Checking

In this section, we describe the w-automata based model checking [18, 39] tech-
niques. Given a finite state machine M and a propositional Linear Temporal Logic
(LTL) formula ¢, one can construct an w—automaton B, accepting exactly the be-
haviors (time line structures) satisfying the formula ¢, and an By accepting all be-
haviors (paths) of M. We consider the behaviors as w—words over 247 since either
paths or time line structures can be viewed as a sequence of states, and each state is
labeled with a set L(AP) of propositions that s satisfies. The verification problem
thus is reduced to checking the language containment L£,(Bum) C L,(B,) [57). It
is equivalently to check that the automaton accepting L,(Bpy) N L, (B-yp) is empty
[18, 39, 57], where L, (B-p) =X — L,(B,) accepts all w—words that do not satisfy
© since a behavior satisfies either ¢ or —.

In summary, the w-automata based model checking procedure can be divided into

the following steps:

1. Build a generalized Biichi automaton B-p (accepting those behaviors violating
) for the negation of the formula ¢ (Negating the formula ¢ is simply done by

prefixing it with the negation operator.)

2. Compute the product of the system design automaton M and the automaton

B-.

3. Check if the language of this product automaton is non-empty.

Next, we will detail each step in the following subsections.

3.4.1 Constructing Biichi Automaton from LTL

The construction of Biichi Automaton from LTL is based on the intimate connec-
tion between LTL and automaton theory. The computation is defined as an infinite
sequence of states, and every state is described by a finite set of atomic propositions

in the verification application, so a computation can be viewed as an infinite word

47

over the alphabet of truth assignments to the atomic propositions. Therefore, tem-
poral logic formulas can be viewed as finite state acceptors. More precisely, given
any propositional temporal formula, one can construct a finite automaton on infinite
words that accepts precisely the computations satisfied by the formula.

Next, we show how to construct a generalized Biichi automaton B, for a given
LTL formula ¢ such that B, accepts precisely those runs over which ¢ holds.

The LTL formulas that one deals with are in negation normal form, which can be
transformed by pushing all negations inside until they precede only propositions. The

core of the algorithm is based on expanding the formula using two expansion rules:
Y1 U e =1V (1 A X (1 U o)),

Y1 R =92 A (1 V X (11 R afn)),
where 1;, 1o are LTL formulas.

Given a LTL formula ¢, these rules are applied to expand ¢ until the resulting
expression is a propositional formula in terms of elementary subformula of ¢, where
an elementary formula is referred to as a constant, an atomic proposition, or a for-
mula starting with X. The expanded formula, put in disjunctive normal form, is an
elementary cover of ¢. Each term of the cover identifies a state of the automaton.
The atomic propositions and their negations in the term define the label of the state.
The remaining elementary subformula of the term forms the next part of the term;
they are LTL formulas that identify the obligations that must be fulfilled to obtain
an accepting run. The expansion process is applied to the next part of each state,
creating new covers until new obligations are produced. In this way, a closed set of
the elementary covers is obtained. This set is closed in the sense that there is an
elementary cover in the set of the next part of each term of each cover in the set
[26, 39).

The automaton is built from the nodes obtained by connecting each state to the
states in the cover for its next. The states in the elementary cover of ¢ are the
initial states. Acceptance conditions are added to the automaton for each elementary
subformula of the form X(3; U 2). The acceptance condition contains all the states

s such that the label of s does not imply 1, U 15 or the label of s implies 1.

48

3.4.2 Product Operating of Biichi Automaton

The model checking of a LTL property ¢ on a system design M can be reduced to
check whether the language defined by the product of M and B¢ is empty or not.

Formally, assume that given a Kripke structure M = (S, Sy, R, L) over a set AP of
atomic propositions and B-p = (@, Qo, d, F) that accepts precisely those w—words
that do not satisfy ¢. The model checking algorithm operates on pairs (s, ¢) of system
states and automaton states. A pair (so, ¢o) is initial if sg € Sy and g € Qq are initial
states for M and B¢, respectively. A pair (¢',q’) is a successor of (s,q) if both
(s,8') € R and (¢,¢') € ¢ hold: M and (B)-¢ make joint transition. Thus, a pair
(s, q) is accepting if ¢ € F is an accepting automaton state; recall that M does not

define any accepting condition.

3.4.3 Language Emptiness Checking Algorithms

The language emptiness checking of a Biichi automaton, B = (Q, Qo,d, F), can
be reduced to a fair cycle detection problem. A fair cycle is a cycle reachable from
the initial states and has at least a state in the acceptance set. A trivial method
is as follows: for each s € F, check whether there is a cycle and if there is a cycle,
then further check if s is reachable from the initial states. The complexity of the
computation is high, the running time is at least |Q| o |F'| quadratic in the size of the
automaton.

Another way to detect fair cycles is to compute Maximal Strongly Connected
Components (MSCCs). C C Q is an SCC of B iff for all ¢,¢' € C we have ¢ =* ¢
(q’ is reachable from q); C is maximal if there does not exist an SCC C' such that
C C C'. Cis trivial iff C = {q} and ¢ -» ¢((g,q) & §). A Nested Depth First Search
(DFS) 23] algorithm is used to compute maximal strongly connected components in
the explicit model checking method. DFS mainly uses two phases either interleaved
or one by one. The first phase starts a depth-first search at each initial state (abort
at states that were visited previously during the first phase), number the states in
post order, and assign a number to state s when the search backtracks from s. The

second phase considers the accepting states in the post order imposed by the first

49

phase, and does the following for each accepting state ¢: starting a depth-first search
at ¢, cutting off the search at states visited previously during the second phase. If
the search “comes back” reaches ¢, a cycle around ¢ has been found. The running
time is linear in |@Q| + |T'| (each state and each transition are visited at most twice).
There is an implementation called “on-the-fly” model checking which constructs an
automaton during the depth-first search [39].

A symbolic approach to check the emptiness of a Biichi automaton was initially
based on the transformation to fair CTL model checking [19] and only recently SCC-
hull computation algorithms are presented {35, 73]. An SCC hull is a set of states
containing all MSCCs. These algorithms [35, 45, 48, 53] are based on the computation
of two fixpoints:

Reachability(S) = uZ. (SU image(Z2))

and
Elimination(S) = vZ. (SN image(Z))

where p and v are the least and the greatest fixpoint operators respectively.

The function Reachability(S) computes the set of states that are reachable from
the set S. The function Elimination(S) computes the set of all states either in any
cycles in S or reachable from any cycles. The complexity of the algorithm is quadratic,
since it involves computation of nested fixed points. We will detail these algorithms

in Chapter 6.

3.5 Conclusion

In this chapter, we reviewed the basic concepts on w-automata based model check-
ing. We first presented the system design model: Kripke structure and its ROBDD
representation. We then introduced w-automata theory. We also described the prop-
erty language: propositional logic, first-order logic and temporal logic. We finally
gave the principle of the w-automata model checking method. This chapter provides

a basic knowledge for the rest of this thesis.

a0

Chapter 4

MDG Language Emptiness
Checking Approach

Previous chapter described a verification method of using w-automata to check if a
finite state machine defines a model of a propositional temporal logic formula. In this
chapter, we propose to embody this method in the MDG tool set. Our method models
the system design as an Abstract State Machine (ASM) and describes the property in
a first-order temporal logic. To check the satisfaction of the temporal logic formula on
all computations of the ASM, we propose a transformation algorithm. This algorithm
constructs a bisimular state machine to the ASM to be checked with respect to the
property. We further check the property on the constructed state machine.

In this chapter, we start with describing the structure of our Language Emptiness
Checking (LEC) method and then present the specification language Lype®. After
that, we present the transformation algorithm and its proof. We finish this chapter

by illustrating our method using an example of Abstract Counter.

4.1 The Structure of the MDG LEC

The MDG based model checking using w-automata accepts a first-order temporal
logical (Lapg*) formula as a property and an ASM as the system model and answers

if the property is satisfied by all the computations of the system design or not. The

o1

task can be divided into four steps as shown in Figure 4.1.

1. Transform the £y pe* formula ¢ into a propositional LTL (PLTL) formula ¢ by
constructing an ASM for each atomic formula in ¢ and compose the constructed

ASMs with the original ASM model C.

. Generate a generalized Biichi automaton B4 from ¢ using an existing expan-

sion algorithm (see Section 3.4.2).

. Compose M and B, to produce a product automaton. The product is com-
posed of pairs (s, ¢) of transition machine states s, and the automaton states q.
A pair (sg, o) is an initial state if sg is in the initial states of M, and g is in
the initial states of B_g4 respectively. A pair (¢,p) is a successor of (s, q) if (s, 1)
is in the transition relation of M and (g,p) in the transition relation of B-,.

Thus, a pair (s, q) is accepted if ¢ is an accepting automaton state.

. Finally, check if the language of the product machine is empty or not using a

LEC algorithm, which will be discussed in the next chapter.

()))
Transformer ~ Algorithm
¢ 4 Langauge
ASM composing T
(Model) ‘ ASMs replacing Product TI/F
: atomic FSM M Emptiness
constructing
ASMs formular
with Building
hecki
: (ide—mifying W . PLTL § Automaton ﬂ_) Checking
Lypg Y atomic propositions Generator | B _|q)
(Property) formulas \
\))

Figure 4.1: The structure of MDG LEC

92

Next, we will detail the specification language Ly pc* and the transformation

algorithm. We start with Lypg*.

4.2 Lypc”

Lyupe” is a first-order temporal logic derived from a linear time structure M with
a many-sorted first-order language (see Chapter 2) interpretation to the states of M.
M = (S,z, L), where S is a set of states, z : N — S is an infinite sequence of states,
and L:S —2Lisa labeling of each state with the symbols.

Symbols of Ly pe* are composed of sorts, constants, variables and function
symbols. Sorts consist of concrete sorts and abstract sorts. Concrete sorts have
an enumeration while abstract sorts have not. Constants, variables and functions

symbols have sorts.

Syntax of Ly;pe* The terms of L are defined inductively by the following rules:
T1 Each constant a of sort « is a term of type a;

T2 Each variable y of sort « is a term of type «;

T3 If Ay,..., A, are terms of sort a1, ag, ..., &y, and f is an n—ary function symbol

01 X ... X Qp = Qpy1, then f(Aq, ..., Ap) is a term of sort any1.
The atomic formulas of £ are defined by the following rules:
A1 T(truth) and F(falsity) are atomic formulas;
A2 If A;, A, are terms of the same sort «, then A; = A, is atomic formula;
A3 If p is an atomic formula, then X p is an atomic formula (X-formula);

A4 If p is an atomic formula, then LET (v = #) INp is an atomic formula, where £ is

a variable of abstract sort and v is an ordinary variable used to remember the

value of ¢ at the current state.

Finally, the (compound) formulas are defined inductively as follows:

93

F1 Each atomic formula is a formula;
F2 If p and q are formulas, then (p A q), —p are formulas;
F3 If p, q are formulas, then so are p U ¢, X p.

Semantics of Ly pe*. The semantics of Ly pe” is defined on the linear-time
structure M = (S, z, L). Given an interpretation 1 and 1)—compatible assignment ¢
to all variables, the interpretation 1) assigns an appropriate meaning over each sort

domain to the Lype* symbols as follows:

e (M, z)(c) = (), where « is an abstract sort and 9(c) is a nonempty set.

o (M,z)(ca) = 9(c), where « is a concrete sort with enumeration {a,...,an},

P(a) = {¢¥(ay),...,¥(an)} and 9¥(a;) # ¥P(a;) for 1 <i < j < n.
e (M,z)(a) = ¥(a), where a is a constant of abstract sort o, ¥(a) € ¥(a).

e (M, z)(a) = 9(a), where a is a constant in the enumeration of sort o, ¥(a) is

the interpretation of a.

o (M,z)(y) = ¢(y), where y is a variable of sort a, and ¢(y) is an element of
P(a).

o (M,z)(f) = ¢(f), where f is a n-ary function symbol (n > 1) of oy x ... Xy

— any1, O(f) is an element of ¥ (any1).

o (M,z) E A, = Ay iff (M, z)(4;) = (M, z)(A2).

o (M,3) | (X p) iff (M,2")

o (M,z) = (LET (v = t)IN p) iff (M', z) = p, where M’ assign the value ¢ to v at

state sy and otherwise coincides with M; and z = (sps182. . .).

e (M,z) = —p iff not the case (M, z) = p.

o4

o (M,2) pAgift (M,5) = pand (M,3) |= g
e M,z k= (pUq)iff 3 j (M, = q and Vk < j(M, z* |= p)).

A formula f of Lype” is valid iff for every first-order linear time structure M, we
have M,z |= f. The formula of f is satisfiable iff there exists M such that M,z |= f.

Recall that properties in £L3/pe defined in Chapter 3.3.3 are composed of assigned
templates. On the other hand, £3pg* properties can be an arbitrary combination
of the atomic formulas with temporal operators. Thus, Ly pg* breaks through the
limitations of the nesting of temporal operators in Lypg. Also, for every Lypa
formula, we can find a corresponding £spe* formula, which have the same semantics.
However, there are some properties in Ly pg" that cannot be represented by Lypg-
For example, G(regq;; = 1 Areq = 1 = F (Dout; = Diny) A F (Douty = Diny))
cannot be written in Ly;pg. Thus, Lype™ is a superset of Lyspg-

Next, we give some examples of properties in Lypg*.

Example 4.2.1 From state fecth.st, if the input is inc2, then the counter pc has

been increased by two (twice increases by one) in three transition steps.
G((state = fectch_st A input = inc2) — LET (v = pe) IN X (X (X (pc = inc(inc(v))))),
where inc 1s an abstract function symbol to represent increase by one.

Example 4.2.2 From state fecth_st, if the input is inc2, then the machine always

reaches state inc2.st in two transition steps.
G((state = fectch.st A input = inc2) — X(X(state = inc2_st))).

Example 4.2.3 If there is a request (req = 1), then the (abstract) data at input port

Din will show up at outport Dout in -the next state.
G(reg=1 — LET (v = Din) IN X (Dout = v)

Example 4.2.4 If there is a request (req = 1), then an acknowledgment (ack = 1)

will be eventually generated.

G(req =1 — F(ack =1))

55

Example 4.2.5 Whenever a pedestrian presses the buiton of the traffic light (req =
1), he/she will receive the green light, light_color = green, within 8 clock cycles.

G(req = 1 — X(light_color = green)V
X(X(light-color = green)) V X(X(X(light_color = green))))

Example 4.2.6 If inport #1 requests output #1 (reqi; = 1) and inport #2 requests
output #2 (reqas = 1), then the (abstract) data at inport Diny will show up at outport
Douty and the data at inport Ding will show up at outport Douty in the future, but

the input data may not be shown up at the same time.

G(reqii = 1 Areqyy =1 — F (Dout; = Diny) A F(Douty = Diny))

4.3 Transformation Algorithm

To transform an ASM C into a state machine .4, the algorithm starts with the
set of atomic formulas P from the property ¢. We build an ASM T for each atomic
formula p € P. A key property of the construction is that for every path of C with
respect to p, there is a corresponding path in 7. We further compute the product
machine A and label the composed states with p. A and C are bisimular related
with respect to P. Thus, the verification of C with respect to V¢ is equivalent to
the verification of A with respect to V. We next illustrate this algorithm with an

example.

4.3.1 Example: An Alarm Setting Controller

Consider a controller [6] that sets an alarm if a frequently read-in input value
grows too fast.

The state machine has one input variable X = {z} and 4 state variables denoted
by Y = {l, k,in, alarm}, where in and alarm are of the Boolean sort B, a concrete
sort with enumeration {T,F}, and z,, k are of abstract sort S. The intended inter-

pretation of S is an infinite set equipped with a total order <, i.e, the set of natural

96

numbers. A graph representation of the controller state machine is shown in Figure
4.2. The circles correspond to the control transition of the machine. The transition
label specifies the conditions under which each transition is taken and an assignment

of values to the next-state variables I, alarm/, in’ and k'.

alarm’ = if (set(l,k 80) =T) then T else F

k=1, '=x, alarm’= F
Figure 4.2: An alarm setting controller

The machine stores in k the old input value and reads in [a new value. The
controller sets the alarm using an operator set(a,b,80) such that for any two values
a and b of sort S, set(a,b,80) = T if and only if a minus b is greater or equal to 80.
The intended denotation of set is the characteristic function of the ordering relation
> with (a — b) and 80.

In the abstract description of the controller state machine, the abstract sort S is
uninterpreted and set is an uninterpreted cross-operator of type S x S x § — B.
The initial states are represented by a directed formula Fi: in=F A l=1ly AN k=
ko A alarm = F, where [y and kg are two generic constants of sort S. The state
transition relation can be described by the directed formula Fr: (in = F A z =
z; Aalarm' =F Al=2;, ANK =1L Ain=T)V (in=T A set(l,k,80) =
1 Adlarm' =T Al=lANKE=kANin=F)V (in=T A set(l,k,80) =
0 Aalarm'=F Al'=1 AN K=k A in'=F).

The specification of the controller is

G(iin=T = (LET(v=1) IN XX set(l,v,80) = T = XXX(alarm =T))). (4.1)
The atomic formulas P from this property are pl, p2 and p3, where pl isen =T, p2
is LET (v = I) IN X(X(set(l,v,80) = T)), and p3 is alarm = T. The first step is to

construct an ASM for each atomic formula.

57

We construct an ASM T3 for pl that contains all computations Ry, where r € R, is
totitots ... such that L(r) = L(to) L(t1) L(t2)...and L(t;) € {in=T,-(in=T)}
for all ¢ > 0. The transition system Ty = {S, §, L} labeled with atomic formula
in = T is shown in Figure 4.3, where S = {sq, 1}, 0 is as shown in the figure, and

the labeling of the states are L(so) = {in = T} and L(s;) = {— (in = T)}.

ol O)

in=T “(in=T)
Figure 4.3: The ASM for in =T

We then construct an ASM T, for p2 that contains all computations Ry, where r €
Ry is totitats . .. such that L£(r) = L(to) L(t1) L(ta) ..., L(te) = L(t:1) = {LET (v =
) IN X(X(set(l,v,80) = T))}; and L(t;) € {LET (v =) IN X(X(set(l,v,80) =
), ~(LET (v = 1) IN X(X(set(l,v,80) = T)))} for all i > 2. The transition system
Ty, = {S,8,L} for the atomic formula LET (v = 1) IN X(X(set(l,v,80) = T)) is
shown in Figure 4.4, where S = {sqo, s1, S2, 3}, 0 is as shown in the figure, and the
labeling of the states are L(sg) = L(s1) = {LET (v =1) IN X(X(set(l,v,80) =T))}
and L(sy) = {LET (v = 1) IN X(X(set(l,v,80) = T))}, and L(ss) = {~(LET (v =
) IN X(X(set(l,v,80) = T)))}.
Finally, an ASM T3 is constructed for p3. T3, shown in Figure 4.5, is the same as
Ty except that the labeling in = T of states is replaced by alarm = T.
The transition systems 7j, 7, and 73 are composed into a transition system
T in a suitable way, which will be described in the next subsection, to comprise
all computations R in the three structures R;, Rs, and Rs; and each r € R is
totita. .., where t; = (t},12,1?) composed of states from T3, 75 and T3; and L(r) =
L(to) L(t1) L(t2)... and L(to) € {p1,-pl} x {p2} x {p3,—p3} fori =0andi=1.
L(t;) € {pl,—-pl} x {p2,-p2} x {p3, —p3} for all 1 > 2. T is further composed with

the system under verification C to construct a machine A and labels states with

58 .

LET (v=1) IN X(X(set(1,v,80) = T))

—() . T
LET (v=1) IN X(X(set(1,v,80) =T)) LET (v=1) IN X(X(set(l,v,80) = T))

—1(LET(v=1) IN X(X(Set(l,v,80) = T)))

Figure 4.4: The ASM for LET (v = 1) IN X(X(set(l,v,80) =T))

G TG

alarm=T (alarm =T)

Figure 4.5: The ASM for alarm =T

pl, p2 and p3.

4.3.2 Transformation Algorithm

The alarm setting controller illustrated the key ingredients of our transformation

algorithm, which is summarized as follows:

Algorithm 4.3.1 (Transformation Algorithm)
1. Identify the set of atomic formulas P = {p1,- -, pn} in the property formula;
2. Construct an ASM for each atomic formula;

3. Compose the constructed ASMs and the original ASM and label the composed

states with atomic formulas;

99

4. Replace each atomic formula p with a proposition b in both the composed ma-

chine and the property formula.

The main parts of the Algorithm 4.3.1 are step 2 and 3, which will be detailed in the

following.

The Construction of transition ASMs

We construct a transition ASM for each atomic formula in step 2 of algorithm
4.3.1. Recall that the atomic formulas of Lypg* can be classified into two classes:
X—formulas and formulas without X-operator. The system models differ with these
two classes.

The system model for an atomic formula p; without X—operator can be described

by a two-state structure as shown in Figure 4.6.

ol ©)

pi Tpi
Figure 4.6: The transition system for an atomic formula without X-operator

The system model for an atomic formula p; with X-operator is described as a
structure, shown in figure 4.7. The number of the states is determined by the maximal
number of the nesting of X. The labeling of sy, s, ..., s; are either {—-p;} or the {p;}
depending on the temporal operators it follows. If p; follows the temporal operator

F or U, the labeling are {—p;}. If p, follows operator G or in p;Ug,the labeling are
{p;}- |
The MDG-HDL components

Using MDG-HDL, we generate a circuit description for each constructed ASM. The
circuit description is described in a Prolog-style HDL, MDG-HDL, which allows the

60

Figure 4.7: The transition system for an atomic formula with X-operator

use of abstract variables for representing data signals. To construct the circuit model,
we use some predefined MDG-HDL components such as and, reg, or and transform.
and implements Boolean A operation of inputs of Boolean sort; or implements the
Boolean V operation of inputs of Boolean sort; reg stores the valuation of inputs for

one transition step; the syntax of reg is
reg(input(Input : Sort), output(Output : Sort)),

where Output is the state variable. The initial value of Qutput should be given. The
component transform is used to build uninterpreted function symbols. The syntax of

transform is
trans form(inputs(Inputs : [Sortl, Sort2, ..., Sortn]), function(Func_symbol),

output(Output : Sort)).

The declaration is viewed as a black-box, and the function is represented using
the uninterpreted function symbol Func_symbol. We define a most frequently used

function Comp with instantiation of the transform as
trans form(inputs(Inputs : [Sortl, Sortl,..., Sortl]), function(Comp),

output(Output : Boolean)).

The functionality of Comp is accomplished with the rewriting rule Comp(X, X) =T,
that is, if the denotations of two inputs are the same Comp outputs T. Otherwise,

Comp outputs F.

61

Note also that since the MDG package does not use the concrete function symbols,
we cannot build a component from transform to determine the truth of the atomic
formula of terms of concrete sorts. However, to support the circuit description, we
define a new component Equv as a tabular description. The functionality of the table
is

by = Bquo(Ay) = { T #%(41) = (),
F otherwise
where 1) is an interpretation, ¢ is a v-compactible assignment and A; and A, are

terms of concrete sort.

Rules for building circuit models

With these MDG components, the circuit construction for a constructed ASM can
be implemented by the following rules:

First, we describe the rules to build a circuit model for transition ASM as shown
in Figure 4.6, which is straightforward. We build a component Comp if the atomic
formulas are terms of abstract sort and build a component Equv if the atomic formula
are terms of concrete sort. The inputs of Comp or Equuv are the LHS and RHS of the
atomic formula; and the output is the atomic formula which goes to a component reg.
If the LHS is a function, we build a transform component whose inputs are terms
consisting of function symbols and output goes to Comp or Equv. For example, to
build a circuit for set(l, k,80) = T, we first build an Equv whose inputs are T and
set(lk,80). We further build a ¢transform with the inputs /, k and 80 of sort .S, function
symbol set and output connecting to the set(l, k, 80) input of Equv.

It is obvious that the constructed circuit model describes the ASM shown in Figure
4.6.

Second, we build a circuit model for the transition ASM shown in Figure 4.7,
where we have to consider how to label the states. To assume the property are not
failed before we get to the states assigned by temporal operator X, we write the

property accordingly. More specifically, we define the following rules:

I. Rewrite the atomic formula p with X—operator. If p follows the temporal oper-

62

ator F' or U, we rewrite p into p’ =T A p. If p follows operator G or in p U ¢,

we rewrite into p' = F V p.
II. Circuit Building.

ITa. Build the circuits for the atomic formulas without considering the X op-
erator and Let_equation. We build an and for A and an or for V, and
connect the signals accordingly. T and F are atomic formulas, which can

be represented by the MDG constant component constant_signal,
constant_signal(value(Const), signal(Signal : Sort)).

Signal takes Const as its constant value. If Sort is a concrete sort, then
Const must be an individual constant in the enumeration of Sort. Or if
Sort is an abstract sort, then Const must be a generic constant of sort Sort.
For example, for a Boolean constant F, we use an extra signal signal0 of
Boolean sort to represent it and use the following component to generate

signal0, constant_signal(value(F), signal(signal0))).

IIb. Count the number Num(X) of X operators and construct RegSeq, a se-
quence of Num(X) components reg. For Let_equation, we build a connec-
tion between the ordinary variable v and the abstract variable whose value
is remembered by v and add RegSeq between them. We also add RegSeq
to T (or F) and assign the initial states to F (or T).

It is obvious the above circuit model realizes the ASM shown Figure 4.7.

For the above property 4.1, we build circuit descriptions for atomic formulas in =
T, LET (v = DINX(X(set(l,v,80) = T)), and alarm = T. Figure 4.8 shows the
resulting descriptions according to the above rules. The construction follows directly

from the above rules.

Composition of the transition systems

Following the Algorithm 4.3.1, a product machine of the abstract state machine

C and the constructed ASMs T; will comprise all paths that are in C.

63

i R in=T
e =
T Equv g
F —{Reg — Reg
I__ set(L,X(X(L)80) =T
L — Reg —Reg Reg ——
L Set | T Comp
80
alarm R alarm =T
e =
T— Equv g

Figure 4.8: The constructed ASMs for atomic formulas in = T, LET (v = 1) IN
X(X(set(l,v,80) =T)) and alarm = T.

Let C = (S ¢, R, L ¢) be the system design model and T; = (St,, Rr;, L) be
the ASMs for p;, which is an element of the set P = {p1,--,pn} of atomic formulas
from property ¢. We use L(s)|p to denote L(s) N P.

Definition 4.3.1 Let n be the number of the transition ASMs and C be the system
ASM model. The product A= (S g, R 4, £ A) of them consists of

e Set of states

SAZ{(Sl,Sg,"',Sn,t)lsiGSTi,tGSC, anch(t)|p= U LT,(Sz)}

o Transition relation

RA:{(S1,..

o Labeling function

) S8ay), (S, ...

1<i<n

80, U85, 81) € Ry, and (¢, ') € R o}

LA(Sl,...,Sn,t): U LTi(Si)-

1<i<n

64

Remark 4.3.1 In MDG LEC, the product is implicitly computed in the procedure of
the language checking. To use it, we need represent the ASMs in MDG-HDL, which

are compiled into the internal MDG representations.

4.3.3 Proof of the Transformation Algorithm

The following theorem proves the correctness of the transformation algorithm.

Theorem 4.3.1 For every Lypg* formula ¢ and an ASM C C =V iff AV,
where A is transformed from C by the above transformation algorithm, V is the

universal quantifier.
In order to prove this theorem, we need the following lemma.

Lemma 4.3.1 The abstract state machine A generated by the above algorithm bisim-

ulates the original state machine C with respect to the set of atomic formulas P.

Proof. Note that both A and C are deterministic machines, it is sufficient
to prove the trace equivalence for the bisimulation relation between them, where a
trace (path, computation) is a sequence of states starting from an initial state and
the adjacent states are in the transition relation. Also the bisimulation relation H
over A and C is established by the Definition 4.3.1, from which it follows that H is
unique with a fixed property formula ¢. As a result, to prove Lemma 4.3.1 it suffices
to prove: (i) For each path in C, there is a path in A, and (ii) for each path in A,
there is a path in C.

Note that A is the product of C and the constructed ASM T;. By definition, the
product machine A contains all the paths in C. Therefore, for each path 7 in C
labeled by the atomic formulas P, we can find a path in A, which proves (i).

Next, we give the proof of (ii) by induction on the structure of the atomic formula

Di.

Case A). p; is an atomic formula without X-operator. If p; has not an X-operator,

then the ASM T7; shown in Figure 4.6 consists of 2 states sj and s. It is easy to

69

see that the transition relation R 4 is determined by R ¢ because the transition

relation Ry, is complete and total. Let 7' be a path #g,¢;,... in A, where

(tiyti—}—l) = {(82, 8i), (3;+1»5i+1) | L(sj) N L(é‘;) = L(Si) and
L(siy1) N L(si1) = L(siy,) and (si,s:41) € R ¢}

There is no restriction on the transition relation over sj and s;,; in the above
formula, which implies that there is a path 7 in C such that = = {sq, s1,...}.

Therefore, for every path in A, we can find a path in C.

Case B). p; is an atomic formula with X-operators and following operator G or in
p;Ug. In this case, the constructed ASM is shown in Figure 4.7, where the
number of states are determined by the number of X and all the states labeled
with {p;} except two states labeled with {p;} and {-p;}, respectively. Let 7’ be
apath {to,t1,...} in A, where t; = (s;, s}), s; € C, s; € Tj, and L(s;)|p = L(s;)-
The labeling of s; is L(s;)|p = {pi | i, ¥ E pi}, where s;,% |= p; iff the LHS and
RHS of p; have the same denotations with a interpretation 1, and 1-compatible
assignment ¢, (see definition in the Section 3.3.3). One problem of the labeling
is that we cannot check if s;, 7 = p; hold or not on those states appearing before
the states assigned by X-operator in the time structure since we have not the
valuation of variable. In order not to affect the property checking, we assign
the labels with p;. From the facts that: the labeling of s; and s; are the same
for i < Num(X) and the transition relation of T; over s;, 1 > Num(X) is total
and complete. We can conclude that for every path n’ = #gt1¢; ... in A, where
t; = (s4,5.), there is a path m = $9s182... in C. Thus, for every path 7' in A,
we can find a path 7 in C.

Case C). p; is an atomic formula with X-operator and following the temporal oper-
ator F' or U. The only difference between this situation and Case B) is labeling
of the states. Instead of using {p;} to label other states, we use {-p;} (see
Figure 4.6). Let 7’ be a path to,¢1,... in A, where ¢; = (s;,5;). Following
the assumption that the labeling of those states appearing before the states

assigned by X-operator in the time structure are —p;, we can conclude that for

66

every path 7/ in A, we can find a path 7 in C such that L(n") = L(m)|,. Thus,

in this situation, we prove ii).

Case D). The property consists of n atomic formulas. By induction on the number
of the ASMs and the definition 4.3.1, we obtain that for every path in A, there

is a corresponding path in C.

This completes the proof of lemma 4.3.1. Q.E.D.

Proof of Theorem 4.3.1: From lemma 4.3.1, we obtain A is bisimuliar to C
with respect to P. Theorem 4.3.1 is a direct consequence of theorem 3.1.1 with the

condition of A bisimuliar to C. Q.E.D.

4.4 An Example: Abstract Counter

We consider an example, called abstract counter [24], which sets a Program
Counter(pc) according to the input command. The state machine has one input vari-
able Inst = {incl,inc2,load,no — op} and 3 state variables Y = {state, pc, double},
where double is of the Boolean sort B; state is of concrete sort State with enumer-
ation {st_fetch, st-incl, st-inc2, st-load}; and pc is of abstract sort S. A graph
representation of the state machine is shown in Figure 4.9. Depending on the input
Inst, the counter pc will get a new value loadin (a generic constant of sort S), or
increase by one, inc(pc), where inc is an abstract function symbol of type S — S, or
keep the old value pc.

The initial states are described as the directed formula Fr: state = st_fetch A
double = 0 A pc = pcy, where pcg is a generic constant of sort S. The transition
relation can be described by the directed formula Fp:

(state = st_fetch A Inst = no_op A state' = st_fetch Apc’ = pc A double' = double) \/
(state = st_fetch A Inst = incl A state' = st_incl A double’ = 0 A pc’ = pc) \/

(state = st_fetch A Inst = inc2 A state’ = st_incl A double’ =1 A pc’ = pc) \/

(state = st_incl A double = 1 A state' = st_inc2 A double’ = 0 A pc’ = inc(pc)) \/

67

st_fetch ’

double = false

st_load
pc := loadin

double =inc2
pc :=pc+l

double = true

st_inc2
pc = pc+l

Figure 4.9: The control flow of an abstract counter

(state = st_incl A double = 0 A state’ = st_fetch A double’ = 0 A pc’ = inc(pc)) \/
(state = st.inc2 A state' = st_fetch A double’ = 0 A pc’ = inc(pc)) V
(state = st_fetch A Inst = load A state' = st_load A double’ =0 A pc' = pc) \/
(state = st_load A state’ = st_fetch A double’ = 0 A pc’ = loadin).

The property of the counter is

G(state = st_fetch A input =inc2) —
LET (v = pe)IN (X(X(X(pc))) = (tnc(inc(v))) (4.2)

To check the Property 4.2 on the ASM model C of the abstract counter, we fol-
low the MDG LEC procedure to generate a product automaton as shown in Figure
4.10. The procedure consists of three steps: Step 1 uses the transformation algo-
rithm to construct a state machine M as follows: identify a set of atomic formu-
las {state = fetch_st,input = inc2, LET (v = pc)IN (X(X(X(pc))) = (inc(inc(v))},
construct circuit models T' for them and compose with C to get .4, and replace
atomic formulas using propositions b1, b2 and b3 to generate the PLTL formula.

Step 2 transforms the PLTL formula into a generalized Biichi automaton B for

68

-Gl =T A B2=T = X(X(X(b3 =T)))). Step 3 composes the generalized Biichi

automaton with M to generate the product machine.

GBA for 0 GOI=T A b2 =T-> XXX 3=))))

M
st fetch sae=sifech T || g |
C state Equv Reg
=pv) IN:
System ((pe=
indinc(v))) [}
Model b3

b2

inc2

Figure 4.10: The illustration of MDG LEC on Abstract Counter with Ly pg* for-
mula G((state = fetch-st A input = inc2) — LET (v = pe) IN X(X(X(pc)))
= inc(inc(pc)))

4.5 Conclusion

In this chapter, we proposed a method of checking an ASM model C with respect
to an Lypg* property formula Vi based on a transformation algorithm. The trans-
formation algorithm transforms C into a state machine A by building an ASM for
each atomic formula and transforms ¢ into a propositional formula ¢ by replacing
each atomic formula from ¢ with a Boolean variable. The verification of Yy on C
is converted into a verification of Yy on 4. The ASM is modeled as a circuit using
those constructing rules.

To verify ¢ on the composed machine A, we replace every atomic formula that
labels A and in ¢ with a proposition, obtain a state machine M and a propositional
formula ¢. To check if M = V@, we first translate the LTL ¢ into a generalized Bichi

automaton B_¢ using the existing procedures, described in Section 3.4.2. We further

69

compute the product of M and B_¢, where M is viewed as a generalized Biichi
automaton without any acceptance condition. Therefore, the verification of the ¢
on the all computations ASM C is finally transformed into the Language Emptiness
Checking (LEC) on the generated product automaton. We will explain the three
algorithms using MDGs in the next chapter.

70

Chapter 5

MDG LEC Algorithms

In the previous chapter, we defined the specification language on structure of
our MDG based language emptiness checking approach. In this chapter we describe
the language emptiness checking algorithms for the generated w-automaton by our
method, which is defined with an ASM and generalized Biichi acceptance condition,
using the MDG operators. We propose three algorithms. The first two algorithms are
adapted from two existing SCC-hull algorithms: EL/EL2 [32, 35, 48], and the third
is based on the detection of the cycles. We also give several examples to illustrate
these algorithms, and prove their correctness. We start this chapter by introducing

some preliminaries.

5.1 Preliminaries

In this section, we describe some concepts, give the MDG representation of gen-

eralized Bilichi automaton.

5.1.1 Generalized Biichi Automaton and MDG

To develop the checking language algorithms, we first define generalized Biichi
automaton s MDG representation. A generalized Biichi automaton consists of a finite

state transition and an acceptance condition. The acceptance condition is defined as

71

a collection of sets of states.

Definition 5.1.1 [79] A generalized Biichi automaton B = (Q,Qq, 6, F) over an
alphabet T is given by a finite set Q) of states, a non-empty set Qo C Q of initial
states, a transition relation § C Q X X X @, and a collection of acceptance sets

F={F,F,...,F,}, where F; C Q is an acceptance set or a fairness condition.

A run (path, computation) r of B over an w-word w = apa; ... € L is an infinite
sequence r = qgq; . . . of states ¢; € Q such that gy € Qo and (g;, @i, gi+1) € 6 hold for
all : > 0. The run r is accepted iff for each acceptance set F;, there exists a state
¢; € F, such that ¢; occurs infinitely many times in r. The language L£(B) C =¥ is
the set of w-words, over which there exist some accepted runs of B. We say that a
state s can be reached from a state ¢ if there exists a word such that s = ¢ from s
to t. A cycle is a set of states in which each state can be reached from itself. The
fair cycle is a cycle C reachable from the initial states and for each acceptance set
F;,, C N F; # 0. The language of B is nonempty iff there is a fair cycle in it.

To represent a generalized Bichi automaton B, we use directed formulas to de-
scribe the sets of states, the transition relation and the fairness conditions. A directed
formula of type U — V is defined in Chapter 2. Let X, Y, Y’ be three sets of variables
of concrete sort (X denotes the set of alphabet, Y denotes the set of state variables,
and Y’ denotes the set of next-state variables). MDGs represent B = (Q,Qo,6, F)
as directed formulas , where Q, Qo, and F; € F are represented as directed formulas
over Y, and § is represented as the directed formula of type X x Y — Y'. Next, we

use an example to illustrate the above definitions.

Example 5.1.1 A generalized Biichi automaton B over alphabet ¥ = {p,q} is
shown in Figure 5.1. To represent B using MDGs, we first define a set of vari-
ables ASM variables ={p,q,state, state'}, where p and q are of concrete sort with
enumeration {T,F}; state and state' are of concrete sort with enumeration {0,1,2,3}.

We then define the following directed formulas to represent B.

e The directed formula for the states is

state = 0V state = 1V state = 2 V state = 3.

72

e The directed formula as initial states Qq is

state = 0.

e The directed formula of the transition relation is
state =0Ap=TAstate =1V
state = 0Ap=F A state’ =2V
state = 1A q=T A state' =3V

state =3 A q=F A state' =3 V.

o The directed formula of the acceptance set Fy 1s

state = 2 V state = 3.

The MDG for this latter directed formula is shown in the right side of the Figure

(1)

MDG for fairness condition

5.1.

A Genralized Buchi Automaton

Figure 5.1: The MDG representation of a GBA

5.1.2 Graph and SCC

A generalized Biichi automaton Bcan be interpreted as a graph G = {V, E},
where states are viewed as vertices, transition relations as edges, fairness conditions

as sets of vertices, and cycles as the Strongly Connected Components (SCCs) of G.

The transition graph of B is defined as follows.

73

Definition 5.1.2 A transition graph is a pair G = (V, E), with V = {v1,...,v,} a
finite set of states, and E C V X V the set of edges. A path from vy €V tov, € V
is a sequence (vq,...,vx) € V' such that (vi,viy1) € E for 1 <4 < k. If a path from
u to v exists, we say that u reaches v (denoted by u —> v). A Strongly Connected
Component (SCC) of G is a mazimal set of states U C V such that for each pair
(w,v) € U, u reaches v. An SCC U is trivial if the subgraph of G induced by U has
no edges. A fair SCC is an SCC that intersects with all the acceptance sets.

To illustrate the above defined concepts, we provide an illustration example.

Example 5.1.2 Given generalized Biichi automaton shown in Figure 5.2. The ac-
ceptance condition F = {Fy, F», F3} consists of fairness conditions defined by the

following sets
Fl = {112a3a4:576a 778a9}7

FQZ{(J,,C,d,e,f},

and
F3 = {11, 22, 33, 44, 55, 66, 77, 88}.

The generalized Biichi automaton has 8 SCCs and 5 fair SCCs. For ezample, the
set C = {1,a,11,temp3} is a fair SCC. In fact, C is an SCC because every state in it
can be reached from the other states in C. C is fair since CNFy = {1}, CNF, = {a},
and C N Fy = {11}.

5.2 MDG EL/EL2 Algorithms

The first two MDG based LEC algorithms have been adapted from two existing
SCC-hull algorithms: EL [32] and EL2 [48, 35]. Due to the appearance of the abstract
variables, no backward operators are available in the MDG package. Also the forward
operators ES; and EY cannot be implemented using MDGs because no conjunction
of two MDGs with the same primary abstract variables is possible. Thus, SCC-hull
algorithms cannot be directly used in MDGs. However, we implanted them into the

MDG package and developed an MDG implementation by adaptations. This section

74

Figure 5.2: An example of a GBA

section first introduces the EL and EL2 algorithms, then proposes respective version
based on MDGs. The correctness of the adaption is also proved in this section.

EL and EL2 can be viewed as instances of the GSH algorithm (70, 73], which is
a generalized SCC-Hull algorithm. In the following, we describe the GSH algorithm

and present EL and EL2 as two instantiations.

5.2.1 Generic SCC Hull Algorithm

The language emptiness checking algorithm of a generalized Biichi automaton B
is equivalent to the detection of the existence of fair SCC of its transition graph
G = (V,E). The computation of fair SCCs on G can be implemented by an im-
plicit enumeration technique [80], which is based on the observation that the SCC
containing a state v is the set of states with both a path to v and a path from v.
Several symbolic algorithms use the breadth-first search and compute a set of states
that contains all the fair SCCs, called SCC — Hull, without enumerating them. An
SCC-hull [32, 48, 75, 53] algorithm returns an empty set when there is no fair SCC
and computes an SCC-hull otherwise. The Generic SCC-Hull (GSH) algorithm is a

generalized algorithm, of which most of these algorithms can be instanced as special

75

cases [73].
To describe the GSH algorithm on a generalized Bichi automaton B = (Q,Qo,d, F),
where F = {Fy, Fy,..., Fi,}, we use the following denotations. Let

Tp = {ES, -, ESm, EY}

be a set of forward (past-tense) operators over V, defined by u-calculus (see Chapter
3), where ES; is defined as
M.EZS(Z N F)

and EY is defined as
MN.ZNEYZ.

Similarly, let
Tp = {EU,,- -, EUpn, EX}

be a set of backward (future-tense) operators over V, where EU; is defined as

A\ZEZU(Z A F)

and FX is defined as
M.IZNEXZ.

We further denote Tg = Tp U Tp.
Using these notations, the GSH algorithm can be described as follows [70, 73]:

Algorithm 5.2.1 (GSH Algorithm [73])

Step 1) Calculate the set of states Z reachable from the initial states.
Step 2) Fairly pick an operator T from Tp U Tr. Apply T to Z, and let Z = 7(Z).

Step 8) Check if Z is a fizpoint of all the operators in TpUTr. If yes, stop; otherwise,
go to Step 2.

Remark 5.2.1 In Step 2, “fairly pick” means the operator T is selected under the
following restriction: An operator ES (or EU) cannot be selected again unless other
operators in Tp (or Tp) make changes to Z, and the operator EY (or EX) cannot
be selected again if it makes no change to Z unless other operators in the set Tp (or

Tp) make changes to Z.

76

The GSH algorithm first computes the set of reachable states from the initial
states, and then recurrently removes the states that cannot be reached from the
fair SCCs and those that cannot reach the fair SCCs until a fixpoint is reached. The
forward operators in Tp remove the states that cannot be reached from the fair SCCs,
where ES; removes the states that cannot be reached from the accepting set C; within
the current set, and FY deletes the set of states that cannot be reached from a cycle
within the set. The backward operators remove the states that cannot reach any fair
SCCs, where EU; removes the states that cannot reach the accepting set C; within
the current set, and FX deletes states that cannot reach a cycle within the set.

The soundness of the algorithm is expressed in the following theorem.

Theorem 5.2.1 ([73]) The GSH algorithm returns the empty set if no fair SCC

exists. If a fair SCC exists, it returns a set containing all states on a fair SCC.

It is noted that by only using forward operator Tp, we can derive a set of states
with a path to a fair SCC. That is, GSH can be instanced by using only forward

operator as long as we ensure that each operator 7 € Tp is monotonic and downward

[73].

5.2.2 EL/EL2 Algorithms

EL and EL2 are two specializations of GSH by giving their schedules. They can
be described with the following schedules.

EL[32]: EU,EX,...,EUn, EX,EU,, EX, ...

EL2[48, 35]: EU, EUs, ..., EUn, EX, ..., EX, EUy, EUs, ...

Upon replacing each future tense operator with its past tense counterpart, we get

the following two instantiations. Their correctness follows from the proof of Theorem

5.2.1 (see [73]).

EL:ES,EY,...,ES,, EY,ES|,EY,... (5.1)

7

EL2: ES,ESs,...,ESm, EY,EY,...,ESy,ES,, ... (5.2)

We first illustrate the EL algorithm on the generalized Biichi automaton used in

Example 5.1.2.

Example 5.2.1 We first compute all reachable states from the initial state, which

includes all states of B.
Z =1{1,2,3,4,5,6,7,8,9,11,22, 33, 44, 55,66, 77,88, a, b, c,d, e, f, templ, temp2, temp3,

temp4, tempb, aa, bb
temp6, tempT, temp8, temp9, temp10, templ1, templ2, templ3, templ4, templ5}.

Applying the EL algorithm on B, we obtain the following result.
Z{ = ES\(Z) = Z — {templ, temp2}

73 = EY(Z]) = Z — {templ, temp2,2}
Z3 = ESy(Zy) = Z — {templ, temp2,2}
7} = EY(Z3) = Z — {templ, temp2, 2, b}
Zs = ES3(Z;) = Z — {templ, temp2, 2, b}
7% = EY(Z})) = Z — {templ, temp2,2,b,22}
since Z € Z2, we continue the iterative computation, and get the following results.
7? = ES1(Z%) = Z — {templ, temp2,2,b,22, }
72 = EY(Z?) = Z — {templ, temp2,2,b, 22}
72 = ESy(Z2) = Z — {templ, temp2,2,b,22, aa, 6, 88, temp13}
72 = EY (Z2%) = Z — {templ, temp?2,2, b, éz, aa, 6,88, templ3}

Z2 = ES3(Z2) = Z — {templ, temp?2,2,b, 22, aa, 6, 88, templ3}

78

73 = EY(Z2) = Z — {templ, temp2,2,b,22, aa, 6, 83, temp13}

since Z2 € Z3, we begin the third iteration, where we get Z3} = ES\(Z}) = EY(Z}) =
ESy(Z3) = ES3(Z3) = Z — {templ,temp2,2,b,22, aa, 6,88, templ3}, thus we get a
fizpoint. The algorithm terminates with returning a SCC-hull.

We then illustrate the EL2 algorithm on the same generalized Biichi automaton

used in Example 5.1.2 to show the difference with FL.

Example 5.2.2 We first compute all reachable states from the initial state, which

includes all states of B.
zZ =1{1,2,3,4,5,6,7,8,9,11, 22, 33, 44, 55,66, 77, 88, a, b, c, d, e, f, templ, temp2, temp3,

temp4, tempb, aa, bb
temp6, tempT, temp8, temp9, templ0, templ1, templ2, templ3, templ4, templ5}.

Applying the EL2 algorithm on B, we obtain the following results.
Z1 = ES(2) = Z — {templ, temp2}

Z3 = ESy(Z]) = Z — {templ, temp2,2, }
73 = ES3(Z;3) = Z — {templ, temp2, 2, b}
Z; = EY(Z3) = Z — {templ, temp?2,2,b, 22}
72=2Z =EY(Z}) =2}
Thus, we get a fizpoint of the EY operator. Since Z Z_ 7%, we begin the second
iterative computation, where we get

7% = ES|(Z%) = Z — {templ, temp2,2,b,22}

72 = ESy(72) = 7 — {templ, temp2,2,b,22, aa, 8, 6, templ3}
Z3 = ES3(23)

Z} = BY(Z})

79

73 =277

Thus, we reach the fizpoint of the EY operator. Since Z? € Z*, we start the third iter-
ative computation, where no changes are made by every operator. Thus, the algorithm

terminates with returning an SCC-hull.

5.2.3 MDG EL/EL2 Algorithms

The EL and EL2 algorithms work very efficiently [35]; however, it cannot be di-
rectly implanted in the MDG package because MDGs do not have backward operators
nor conjunction operation for MDGs with the same abstract variables. To overcome
these problems, we propose new algorithms derived from the EL/EL2 algorithms in
this subsection. We first discuss the derivation and its proof, then propose the MDG

based implementations.

MDG EL/EL2 Algorithms

The operations of ES; and EY are built on the conjunction computation of sets of
states. However, there is no conjunction operation for MDGs with the same abstract
primary variables, we cannot implement the operators ES; and EY in the MDG
package. [73] also concluded if a set Z of states is forward-closed, i.e., Z = EP Z,
then Z > EY Z and EY Z is forward-closed. A deeper observation reveals that
under the assumption of Z being forward-closed, the operators ES; can be replaced

by EP;, and the operator A\Z.Z A EY Z can be replaced by AZ.EY Z.
Following this observation, we propose MDG based EL/EL2 algorithms using

following schedules:
EL:FEP,EY,...,EP,,EY,EP,,EY, ...

EL2: EP,, EP,,...,EPn,EY,EY,...,EP, EP,, ...

where
EY =AM EYZ

30

and
EP, Z = \Z.(E true S(Z A F)). (5.3)

Note that in the above definition E'P; still contains a conjunction operation Z A F;.
However, since Z and F; do not have the same abstract variables, this conjunction
operation is feasible with MDGs. Recall that F; does not use any abstract variables.

The correctness of the MDG based EL/EL2 algorithms can be proved by the

following theorem, which implies that the adaptations are correct.

Theorem 5.2.2 If a set of states Z is forward-closed, then (i) \Z.Z AN EY Z can be
replaced by AZ.EY Z; (ii) the operators ES; can be replaced by EP;.

Proof. To prove (i), it suffices to show that AZ. Z A EY(Z) = AZ.EY(Z) and
MZ.EY (Z) is forward-closed. In fact, since Z is forward-closed, Z can be expressed

as
Z=ZNEY(Z)V---VEY(Z)V---, (5.4)
implying EY?(Z) < Z,Vj. Therefore, we get
\Z.Z NEY(Z) = M\Z.EY(2). (5.5)
On the other hand, letting EY(-) operate on the right side of (5.4) yields
EY(Z)=EY(2)VEY*Z)v-..= EP(EY(Z)),

which implies that EY(Z) is forward-closed and proves, (i).

Now, we proceed to prove (ii). By definition, to prove (ii) it suffices to show
EP(Z) = EP(ESi(Z)) = ESi(2). (5.6)
Note that

ES{(Z)=MZ.EZ S (ZAF) =) Z.uy(ZAF)V (Z AEYy)
= AZ.\/ ¢}(false),

>0

81

where ¢z(false) = (Z A F}) V (Z A EY(Y))ly=jase and ¢5(y) = ¢2(¢% ' (y)). So,
to calculate ES;(Z) we need to compute the value of ¢%(false),¥j > 0. A direct

computation gives

¢y (false) = (Z ANF)V (Z N EY (false)) = (Z N F})

8% (false) = ¢z(¢z(false)) = (ZAF)V(ZAEY(Z AF))
=(ZAF)VEY(ZAF).

The last equation is due to the fact that EY(Z A F;) C EY(Z) C Z since Z is
forward-closed.

Inductively, we obtain
¢ (false) = (ZAF,)VEY(ZAF)VEY*(ZAF)V---VEY"YZAF),

from which it follows that qﬁ’z(false) is increasing with respect to j. Therefore, we

have

\ ¢%(false) = (ZAF)VEY(ZAF)V - -EY7(ZAF)---

ZOEP(Z A F) (5.7)
Moreover, since EP(Z) = EP(EP(Z)), we obtain

EP(ES;(Z)) = EP(EP(Z AF,)) = EP(Z A F;) = ESi(Z) (5.8)

Combining (5.7) and (5.8) completes the proof of (ii). Q.E.D.

MDG Operators

To implement the MDG EL/EL2 algorithms, we first present the needed MDG

operators.

EY (image) - Relational Product (Relp)

82

Given a graph G = {V, E} and a set of states Z C V, EY operating on Z yields
a set of states EY (Z) = {t € V | 3(s,t) € E,s € Z}.

In the MDG package, the operation Relational Product (RelP) can be used to
compute the image of the set of abstract states Z. RelP takes as inputs a set of MDGs
P,1<i<n,oftypeU; = V; (for 1 <i<nandi#j, V; and V; must not have any
abstract variables in common), a set of variables F to be existentially quantified, and
a renaming substitution 7. It produces an MDG R = Relp({P;}1<i<n, E,) such that
= R < (((3E)(Ai<i<nPi)) - 1). The result is obtained by computing the conjunction
of the P;, existentially quantifying the variables in F, and applying the renaming
substitution 7 (see Chapter 2).

Given the ASM D = (X,Y,0,I,T, Fp), where X, Y, and O are the input, state,
and output variables, respectively; I is an MDG of type U — Y; T is an MDG of
type XUY — Y’; and Fp is an MDG of type X UY — O. We define FY Z as
Relp({Input, Z,T},(X UY),Y" — Y), where Input is an MDG of type U — X
representing the set of input vectors, Z is an MDG of type U — Y representing the
current set , and T is the MDG of transition relation. The result would be an MDG
of type U — Y.

Fixpoint checking operation: Pruning-by-Subsumption(PbyS)

To check if a fixpoint is reached or not, it is sufficient to check if both { C Z
and Z C (, where ¢ and Z are MDGs representing two successive results of the
computation.

Due to the appearance of abstract variables in MDGs, we cannot compute the
difference of two sets of abstract states. To alleviate this problem, in the MDG
package, PbyS (¢, Z) has been developed to approximate the logic difference of two
sets of abstract states, represented by MDGs ¢ and Z, by pruning the paths of ¢ from
Z. Let Dif f be the MDG representing the result of PbyS (¢, Z). Their relation can

be written as .
Set?(¢)\Set?(Z) C Set¥(Dif f) C Set¥(¢).

If Dif f = F, where F is an MDG for §, then Set¥(¢) C Set¥(2).

83

EP: ReAn*(G, Z)
Given a state transition G = (S, So, R) and a set of states Z, the EP operation
mainly implements the computation of the set of all reachable states from Z. The

EP 7 algorithm is described as follows.

Algorithm 5.2.2 (EP(Z))

1 begin

2 Frontier := 7, Reached := Z;

3 loop {

4 Image := EY(Frontier);

5 Frontier := Image - Reached,

6 Reached := Reached + Frontier;
7} until (Frontier = Q)

8 return Reached;

9 end

The EP Z algorithm first assigns the initial value of reachable states Reached
as Z, and the initial value of Frontier set Frontier as Z, then iteratively adds the
newly reached states Frontier (Image — Reached) to all the reached states Reached
(Reached + Frontier), where Image = EY (Frontier). The computation repeats
until Frontier = {.

In the MDG package, the procedure ReAn(D,C) has been developed to implicitly
enumerate all reachable states of D. During the procedure, ReAn also checks if an
invariant condition C holds at the output of every state (see Chapter 2). To develop
an EP algorithm using MDGs, we use a simplified version, ReAn* by removing the
invariant checking from ReAn.

Given an ASM D = (X,Y,0,1,T, Fo), the ReAn* algorithm used to compute all

the states reachable from a set of states Z is described as follows.

Algorithm 5.2.3 (ReAn*(G,Z))

84

1 begin

2 Reached := Z, Frontier := Z, K := 0;
3 Do { '
4 K :=K+1;

5 Input := Newlnputs(X,K);
6 Image := RelP ({Input, Frontier, T}, XU Y, Y' = Y);
8 Frontier := PbyS (Image, Reached);

9 Reached := Disj(Reached, Frontier);

10 '} until (Frontier =)

11 return R;

12 end

In the ReAn*(G,Z) procedure, Input, Frontier, Image, and Reached are MDGs
representing the input vectors, frontier set, image set and the set of all reached states,
respectively. In line 5, Newlnputs(X,K) constructs a one-path MDG representing a
conjunction of equations z = u, one for each abstract input variable x € X, where
u € U is a fresh variable depending on K. At line 6, RelP is used to compute Image
by taking the set of MDGs representing for input vector Input, Frontier set and
transition relation 7', respectively. Line 8 uses PbyS to get the difference of the set
Frontier and the set Reached. Line 9 uses Disj to add set Frontier to set Reached.
The algorithm terminates once Frontier = F, where F is an MDG representing an

empty set.

Remark 5.2.2 The algorithm may be non-terminating when the ReAn*(G,Z) proce-
dure reaches a set of states that cannot be represented by a finite MDG [86]. One
solution to this problem is initial state generalization, that is, to generalize the set of
initial states so as to obtain a larger set of reachable states that are representable by

a finite MDG while still satisfy the condition [64].

MDG based EL/EL2 Algorithms

The MDG based EL and EL2 algorithms take as their arguments a state transition
G = (X,Y,I,T), where X and Y are sets of input and state variables, respectively.

85

I is an MDG representing the set of initial states, T' is an MDG representing the
transition relation, and F = {Fj, ..., Fin} is a set of fairness conditions.

The algorithms work as follows: First compute the set of states Z reachable
from the initial states I, and then iteratively apply the operators EP;, EP;, ...,
EP,, EY,-.- EY (EL2) or the operators EP,, EY, EP,, EY, ..., EPy, EY (EL) until
no changes to Z can be made. Note that since the computation is decreasing, to
determine if the fixpoint is reached, it suffices to check Z' C Z2. If the fixpoint is
empty, the algorithm returns “Verified”; otherwise, it returns “Failed”.

The MDG EL algorithm can be described as follows, where ¢, F, Z, Input are sets

and K is an integer.

Algorithm 5.2.4 (MDG EL Algorithm (G = (X,Y,1,T), F = {F,F,...,F.})

1 begin

2 (=0,K:=0;

3 7 :=ReAn*(G, I);

4 Dof

5 ¢ :=7Z;

6 For each F € F {

7 Zp := Conj(Z,F);

8 Zg := ReAn* (G, Zr);

9 K := K+1;

10 Input :=Newlnputs(X,K);

11 Z :=RelP ({Input, Zg, T}, X UY,Y' - Y);
12 }

13 If (Z = F) then return “Verified”
14} untid PbyS(¢, Z) =F)

15 return “Failed”

16 end

In the above algorithm, line 3 computes the set of reachable states using ReAn*
(G, 1) to perform the operation EP(I). Lines 4 - 14 represent the main body of
the algorithm. Lines 7 - 8 compute the set of states reached from Z A Fj,7 < m.

86

Lines 9 - 11 compute the image of Z, where RelP essentially performs the operation
EY (Z). The operations are iteratively applied to Z until no changes can be made.
The fixpoint is reached if PbyS((, Z) = F. In case ¢(C Z, which means that there
exists at least one fair SCC, and thus the property fails. Otherwise, we continue the

computation until we get Z =). In this case, the property succeeds.

The EL2 algorithm can be obtained by playing another schedule on the same set
of forward operators. Let (, F, Z, I be sets and K an integer; the following is the EL2

algorithm.

1 MDG EL2 Algorithm (G = (X,Y,I,T), F ={F,F,...,Fa})
2 (=10, K :=0;

3 Z:=ReAn*(G, I);

4 Do {

5 ¢ =17

6 For each F € F {

7 Zp := Conj(Z,F);

8 Zx := ReAn*(G, Zr);

9 }

10 K = K+1;

11 Input:=NewlInputs(X,K);

12 Z1 :=RelP({Input, Zg, T}, X UY,Y' = Y);
13 While (PbyS(Z, Z1) # F) Do{

14 Z:=71;

15 Ki= K+1;

16 Input:=NewInputs(X,K);

17 71 :=RelP({Input, Z, T}, X UY,Y" — Y);
18 }

19 If (Z = F) then return “Verified”
20 } until (PbyS(¢, Z) = F)

21 return “Failed”;

87

Evidently, in the above algorithm there are some steps which appeared in MDG
EL. For the sake of conciseness, in the following we only describe the steps that are
not subsumed in MDG EL and omit the others since their descriptions are the same
as that of MDG EL. Lines 10 - 18 apply EY to Z until the fixpoint is reached. It is
obvious that Z; C Z in each iteration since the operation Relp removes some states
from the set Z. Therefore, to test if the fixpoint is reached it suffices to test Z C 7,
which is done at line 13 using PbyS(Z, Z;).

Remark 5.2.3 As pointed out in Remark 5.2.2, ReAn*(G, Z) may not terminate,
which may lead to the non-terminating on the EL and EL2 algorithms. We can

apply the same approaches mentioned earlier to solve the problem.

5.3 MDG Fair Cycle Detection Algorithm

The MDG EL/EL2 algorithms first compute all the reachable states, then remove
those states that cannot be reached from a fair SCC using EP and EY operations.
Combining these two steps into one signal procedure, we propose a Fair Cycle Detec-
tion (FCD) algorithm in this section. The FCD algorithm detects the existence of fair
cycles in the process of computing reachable states. More specifically, we compute
those states, that satisfy fairness conditions, on each path starting from a state in
the set of reachable states. Instead of getting all the states satisfying the fairness
condition on the path, we only compute the first one. Then we detect the existence
of the fair cycles using the sets of states. To see it clearly, let us assume that there is
only one path trace in the given state transition and one fairness condition F in the
acceptance condition. For this special case, FCD computes the state s! that satisfies
F and is the nearest to the initial state sq on trace. Then FCD computes the direct
successor ¢ of s'. After that, the FCD algorithm checks if ¢ = so. If it is the case,
the FCD terminates by returning “failed”. If this is not the case, FCD continues
computing s? that satisfies F' and is the nearest to ¢ on trace; and compute the next
state of s%. In the case there is no such state existing, the FCD algorithm terminates

with returning “verified”.

38

This section first describes the FCD algorithm. We then illustrate it by an example

and analyze its correctness.

5.3.1 FCD Algorithm

The FCD algorithm detects the existence of fair cycles by computing the states
satisfying the condition on each path; and checking the existence of cycles using those
states. Given a transition relation G = (X,Y,I,T) and a set of fairness conditions
F = {F,...,Fn}. FCD first searches every path that starts from an initial state
in I to obtain a state that satisfies fairness condition F;. These states compose a set
Z1. FCD then search every path that starts from a state in Z! to obtain a state that
satisfies the fairness condition Fy. These states compose a set Z;. FCD continues the
similar computation until it gets Z1. FCD then computes all direct successors Z? of
Z} and tests if either Z2 =) or Z' C Z?. If this is the situation, the FCD algorithm
terminates and returns verified (failed) if Z2 =0 (Z' C Z?).

Next we summarize the above procedure as an algorithm.

Algorithm 5.3.1 (FCD Algorithm(G = (X,Y,I,T), F = {F, Fs,...,Fn}))
1 begin

2 Z'=2}:=1,i:=1,j:=1;

3 loop

4 For each F; € F{

5 Z! .= {s|s is on a path that starts from a state in Z}_; and satisfies F}};
6 }

7 Z3+1 .= next states of Z3;

8 If (Z7+' = F) then return “Verified”;

9 If Z3 C Z3*! then return “Failed”;

10 j=441,i=1, 2 = 73;

11 end loop

12 end

89

We illustrate the FCD algorithm on a generalized Biichi automaton from Example
5.1.2.

Example 5.3.1 Assume an order of fairness condition Fy, Fy, F3, FCD runs on B

yielding the following results:
7' = 7§ = {templ},
71 =1{1,2,3,6,7},
Zy = {a,b,¢c,d},
Zy = {11,22,33, 44, 55,66, 77},
72 ={1,aa,3,bb,7,5,4, tempT}.
Since Z' L Z?, FCD starts the second iteration, yielding the following results:
Zf‘ ={1,3,4,5,6,7,8,9},
72 = {a,c,d,e, f},
72 = {11, 33,44, 55,66, 77},
73 ={1,3,bb,7,5,4, temp7}.
Since Z* € Z*, FCD starts the second iteration, producing the following results:
73 ={1,3,4,5,7,8,9},
73 = {a,c,d,e, f},
Z3 = {11, 33, 44, 55,66, 77},
Z* = {1,3,bb,7,5,4,tempT}.

Since Z3 C Z*, the FCD terminates and returns failed.

90

In order to compute the set Z/ of states from Z7 | used in Step 2 of the FCD
algorithm, we propose a method based on a fixpoint computation. We first split Zij
into two sets: one set Zp, containing all states that satisfy the condition F;, another
set Z-(r;) containing all states that do not satisfy the condition Fj. We then compute
all states Sg reachable from Z_g,) that do not satisfy F;. We further compute the
successors S of Sg and derive all states Zs(-p,) that satisfy Fj, which further joins
with Zp,.

The correctness of the algorithm can be proved by using the following lemma.

Lemma 5.3.1 For a transition graph G = {S, T} of a state machine, where S is the
set of states and T denotes the transition relation. Assume Z' C S and Z* C S are
two sets of states, and Z? is reached from Z' in n transition steps for somen > 1. If

ZY C 72, then there must be a state s € Z' such that there ezists a cycle from s — s.

Proof. Since Z2 is reached from Z', then for all ¢ € Z2, there must be a state
t € Z" such that ¢ —s ¢ (t reaches t'). We define a set T'= {¢|[t — ' and t' € Z,}.
Obviously, T' C Z'. Since Z' C Z2, T C Z*%. Consequently, every state ¢ € T has an
incoming edge. Let m be the number of states in T. Consider a path starting from
to € T and having length m + 1, denoted by 7 = tot; . .. t,,. Since there are at most
m different states in tg, %1, -, tm—1, there must exist 4y, 4, such that ¢;, = ¢;,. This

proves Lemma 5.3.1. Q.E.D.

5.3.2 MDG FCD Algorithm

To implement the FCD algorithm using MDGs, we develop an algorithm ReAn#
to compute, of the state transition G = (X,Y, I, T), all the states that are reachable

from a set Z of states and do not satisfy a fairness condition F.

Algorithm 5.3.2 (ReAn*(G,Z, F))

1 begin

2 Reached := Z; Frontier := Z; K := 0
3 Do{

91

K :=K+1;

Input := NewInputs(X,K);

Image := RelP ({Input, Frontier, T}, XU Y, Y' = Y);
NewUnsatStates := PbyS (Image,F);

Frontier := PbyS (NewUnsatStates, Reached);

Reached := Disj(Reached, Frontier);

10 '} until (Frontier = 0)

11 return R;

12 end

© 2 Sy & A

The ReAn¥ algorithm adds one more step (line 7) to the ReAn* algorithm de-
scribed earlier. Line 7 uses PbyS to compute the new states that do not satisfy the
condition F' in all the newly reachable states Image.

The MDG based FCD algorithm is implemented using the MDG operators: Conj,
PbyS, RelP, Disj, and ReAn# (G, Z, F). Assume the transition relation G = {X,Y,], T},
in which X and Y are sets of input and output variables, I is the initial state and T
is the transition relation. The acceptance condition F = {Fy,..., F,}, where F; is
the 7" fairness condition (acceptance set). The MDG based FCD algorithm is shown

as follows:

Algorithm 5.3.3 (MDG FCD Algorithm (G, F))

1 begin{

2 Z=IK:=0;

3 loop

4 Z-old:= Z;

5 For Fe F{

6 Zp := Conj(Z, F);

7 Ty = PbyS(Z, F);

8 Sg := ReAn* (G,Z_p, F);
9 K :=K+1;

10 Input := NewInputs(X,K);

11 S := RelP({Input, S¢9, T}, XUY,Y' = Y);

92

12 Zs-p := Conj(S, F);

18 Z := Disj(Zs-r, Zr);

14 }

15 K := K+1;

16 Input := Newlnputs(X,K);

17 Z:= RelP({Input, Z, T}, X UY,Y' = Y);
18 if (Z = F) then return ‘Verified';

19 Zv := PbyS (Z-0ld, Z);

20 if (Zv=F) then return ‘Failed’;

21 end loop
22 end

The algorithm begins with assigning the current state Z with the initial states
I. From lines 5 to 14, we compute the Zg for each fairness condition in the order
of F,...,F,. To derive the states satisfying the acceptance condition F' along all
paths, we distinguish the states satisfying Zp (line 6) and unsatisfying Z_r(line 7).
We compute all states Zs—r reachable from Z_p and satisfying F' (line 8 to 12); we
finally join Zsr and Zp together in line 13. The computation of Zx_r is done by a
reachability analysis to compute all states Sg reachable from Z_r and not satisfying F'
(line 8), a computation of the direct successor S of Sg (line 9 -11) and a conjunction
with F' (line 12). lines 15 -17 compute the direct successors Z of ZI, and line 18
checks if Z is empty and returns “Verified” if it is the case. Otherwise, we check
if Z — old C Z (line 19 - 20). If this is the case, the algorithm returns “Failed”;

Otherwise, we begin the next loop execution.

5.3.3 An Example: MinMax

We have introduced the MinMax [21] in Chapter 3 to illustrate the concept of
ASM. Here, we illustrate our FCD algorithm on it. The ASM of the MinMax, shown
in Figure 2.2, has 2 input signals: reset r and input z, and 3 state signals: ¢, m, M.
The machine works as the following: In reseting state ¢ = 1, if the reset signal r = 0,

then the machine goes into the running state (c = 0) and assigns the input values to

93

r=0
m’ = if(x =<m) then x else m,
M’ =if (x=< M) then M else x

minmax specification

Automaton for—(G(r=1->F(c=1)))

Figure 5.3: Product automaton for MinMax

M and m; if the reset signal 7 = 1, the machine remains in the reseting state and
assigns the initial values to M and m, respectively. In the running state ¢ = 0, if the
reset signal 7 = 0, then the machine remains in state ¢ = 0 and assigns m and M
new values depending on the less or equal (leq) cross-operator outcome; if the reset
signal r = 1, the machine goes to reseting state ¢ = 1 and assigns the initial values to
M and m, respectively. One property of the MinMax ASM says: In any states, if the
reset signal r = 1, the machine goes back to reseting state c = 1. An Ly pe* formula
¢ to represent this specification is G(r =1 — F(c=1)).

To verify ¢ on the MinMax ASM machine, we first generate a product automaton
which is shown in Figure 5.3. Then, we use the FCD algorithm to compute its
language. Figures 5.4 and 5.5 contain a collection of sample MDGs (a) to (1) generated
throughout the execution of the FCD algorithm on this example. Initially, acceptance

condition F = {F1} = {{2,3}}, where the fairness condition F} is represented by a

94

directed formula (aut_state = 2) V (aut_state = 3)(Figure 5.4(b)); and Z is the initial
states described by a directed formula (aut-state = 1) A(c = 1) A(m = maz) AN (M =
min) (Figure 5.4(a)).

In the first iteration, we restore Z into Z — old and compute the new value of
Z. For this purpose, we first compute all the states Zp that satisfy the condition F’
(Figure 5.4(c)) and all states Z-pthat do not satisfy the condition F' (aut-state =
1) A(c=1) A (m = maz) A(M = min)} = Z (Figure 5.4 (d)). Then, we compute
all states Sg (Figure 5.5 (e)) that do not satisfy the fairness condition F' using the
reachability analysis algorithm ReAn#. We further compute the states S (Figure 5.5
(f)) reachable from Sg by one step, and obtain all the states Zy-r (Figure 5.5 (g))
that satisfy F' in S; and finally we get Z by joining Zs.p with the satisfying states
Zp, (aut_state = 2) A (¢ = 1) A (m = maz) A (M = min).

Next, we update the value of Z by its direct successor set (Figure 5.5 (h)). Then
we proceed to check if Z —old C Z or Z = (), and both of them fail. Thus, we start
the second iteration, in which we get the following resulting MDGs: ZF is shown in
Figure 5.5(1), Z-r shown in Figure 5.5(h), S¢ shown in Figure 5.5(j), S shown in
Figure 5.5(k), Zs-r and Z are shown in Figure 5.5(1). Since Z = F, the algorithm

terminates with returning “Verified”.

5.4 Conclusion

In this chapter, we presented three MDG based language emptiness checking al-
gorithms: FCD, EL and EL2. The FCD algorithm implemented the reachability
analysis and the fair cycle detection at the same time; the MDG EL/EL2 algorithms
first computed the reachable states and then eliminated the states not reachable from
the fair SCCs. The correctness of the algorithms were also proved, and several exam-
ples were used to illustrated them. We will test the efficiency of this method in the

next chapter.

95

1 1

© ©

1 1

O (=

® ®
.-
© S ©® ®

Z@® F ®) Zr (o) 2 (g)

po
(o)

1000 yajopr X#1002

o

Figure 5.4: MDG FCD algorithm execution on MinMax

Z=Z—p)

ZE G

®

I3 =2@

Figure 5.5: MDG FCD algorithm execution on MinMax(cont’d)

96

97

Chapter 6

Case Studies

This chapter presents two case study: an ATM switch fabric verification and an

Island Tunnel Controller verification using the developed MDG LEC approaches.

6.1 ATM Switch Fabric

In this section we present the verification of a Fairisle 4 x 4 ATM (Asynchronous
Transfer Mode) switch fabric. The device was in use for real applications in the Cam-
bridge Fairisle network [47], designed at the Computer Laboratory of the University
of Cambridge. We first introduce the Fairisle ATM Switch fabric model. We then
give its hardware description. Finally, we explain the property checking of the ATM

model.

6.1.1 System Description

The 4 x 4 Fairisle switch consists of three types of components: the input port
controllers, the output port controllers and the switch fabric, as shown in Figure
6.1. An (Fairisle) ATM cell consists of a header (one-byte tag containing routing
information as shown in Figure 6.2) and a fixed number of octets. Cells are switched
from the input ports to the output ports according to their headers.

The behavior of the switch is cyclical. In each cycle or frame, the input port

98

fs

L din0 dout0
- aout0 ain®

+ dinl ATM doutl

I aoutl ainl
din2 Switch dout2
aout2 . ain2
Fabric
din3 dout3
aout3 ain3
input port controller output port controller

@)

Figure 6.1: The Fairisle ATM Switch

[I | !
route | priority i | active_i
| i 2.1 I!‘l_l

Bit 7 6 5 4 3 2 1 0

Figure 6.2: The header (routing tag) of a Fairisle ATM cell

controllers synchronize the incoming data cells, append the control information in the
front of the cells, and send them to the fabric. The fabric waits for cells to arrive, strips
off the headers, arbitrates between cells destined to the same port, sends successful
cells to the appropriate output port controllers, and passes acknowledgments from
the output port controllers to the input port controllers.

If different port controllers inject cells destined for the same output port controller
(as indicated by the route bits in the header) into the fabric at the same time, then
only one will succeed. The others must retry later. The routing tag also includes
priority information (priority bit) that is used by the fabric for arbitration, which
takes place in two stages. High priority cells are given precedence before the remain-
ing cells. The choice between cells of the same priority is made on a round-robin
basis. The input controllers are informed of whether their cells were successful using
acknowledgment signals. The fabric sends a negative acknowledgment to the unsuc-

cessful input ports, but passes the acknowledgment from the requested output port to

99

Aout) e AinQ
Aoutl le——— Ainl
Aout2 ACK jf=——Ain2
Aout3 < Ain3

' ‘
: outDis; |
! xGrant; |
1 1
T o) yGrant; ,
! % 32 g 5 :
—a &= i

Din0 E P @ —=Dout0
Dinl —= £ 3 . 8 —=Doutl
Din2) B DataSwitch By l—=Dout2
Din3—{ & 2 &' —=Dout3

Figure 6.3: The block diagram of the Fairisle ATM Switch Fabric

the successful input port. The port controllers and the switch fabric all use the same
clock, hence bytes are received synchronously on all links. They also use a higher-level
cell frame clock - the frame start signal fs. It ensures that the port controllers inject
data cells into the fabric synchronously so that the routing tags arrive at the same
time. If no input port raises the active bit throughout the frame then the frame is
inactive - no cells are processed. Otherwise it is active.

Figure 6.3 shows a block diagram of a 4 x 4 switch fabric. The inputs to the fabric
consist of the cell data lines, the acknowledgments that pass in the reverse direction,
and the frame start signal fs which is the only external control signal. The outputs
consist of the switched data, and the switched and modified acknowledgment signals.
The switch fabric is composed of an arbitration unit, an acknowledgment unit and a
dataswitch unit. The arbitration unit reads the headers, makes arbitration decisions
when two or more cells are destined for the same output port, passes the result to
the other modules using grant signals and controls the timing of the other units using
output disable signals. The dataswitch performs the actual switching of data from an
input port to an output port according to the most recent arbitration decision. The
acknowledgment unit passes appropriate acknowledgment signals to the input ports.
Negative acknowledgments are sent until arbitration is completed.

All the design units were repeatedly subdivided until eventually the logic gate

level was reached, providing a hierarchy of components. The design had a total of

100

AoutQ le—— o AinQ
Aoutl ACK Alﬂ 1
Aout2 [—Ain2
Aout3] Ain3
frame start \l,
4
- < | Arbitration ——
—r] Decoder T4,
] N L
AY
7 AN

—sDout(
l—=-Doutl
ga—=>Dout2
——=Dout3

ooy
EREE
T~ ~|Rgg1sters
=]
1
=3
T
) Redisters |
!
%
&
£
a
=

Figure 6.4: Model abstraction of the Switch Fabric

441 logic gates with two or more inputs and flip-flops. The switch fabric was built on

a 4200 gate equivalent Xilinx FPGA.

6.1.2 System Model

Figure 6.4 described the RTL implementation of the fabric based on the gate-level
description by describing the dataswitch using multiplexors instead of logic gates [60].
The data signals Din; / Dout; (i =0, 1, 2, 3) are modeled as n-bit words and assigned
an abstract sort wordn. The control fields contained in the cell headers, i.e. active,
priority and route bits, are extracted from the abstract data signals using cross-
operators (functions) act, pri of type wordn — bool and rou of type wordn — word2
(word2 = 0, 1, 2, 3) respectively. The ASM model is thus obtained by compiling the

abstract description of the RTL implementation.

6.1.3 Verification

The switch fabric interface with the port controllers can be modeled as a 14-
state finite state machine, as shown in Figure 6.7. Circles denote the environment

states (env_st) and arrows denote state transitions. States 1 to 5 are related to the

101

@@@@ ®

Figure 6.5: The ATM Switch Fabric environment

initialization of the fabric. States 6 to 14 denote the cyclic behavior of the fabric.
fs, h, a and d above the states designate that the frame start signal, the header
of an active cell, the acknowledgment and the data are, respectively, generated in
the states. After receiving the cell header, the fabric needs 3 clock cycles to send
acknowledgment signals and 4 clock cycles to send data.

In the following we discuss 5 sample properties that we verified on the RTL im-
plementation.
P1: After the switch starts, the default value ‘0’ is put on the acknowledge output
port 0 until the fabric makes a decision.
G(((env_st = 5) A (env.st = 6) A (env_st = T) A (env_st = 8) A (env_st = 14)) —
(aout0 = 0)));

P2: After the fabric makes a decision, valid acknowledge signal is put on the ac-
knowledge output port 0.

G(((env_st = 9) A (env_st = 10) A (env_st = 11) A (env_st = 12) A (env_st = 13)) —
((aout0 = ain0d) V (aout0 = ainl) V (aout0 = ain2) V (aout0 = ain3)));

P3: If the input port 0 chooses output port 0, it will eventually succeed to pass the
cell to (get the acknowledgment from) output 0.
G(((r1.0 = 0) A (2.0 = 0) A (active-0 = 1) A (env-st = 6)) — F(aout0 = ain0));

P4: If two inputs request the same output ports, eventually, these two inputs are all
passed to (acknowledgment from) that output.

G(((r1.0 = 0) A (r2.0 = 0) A (r1-1 = 0) A (r2-1 = 0) A (active-0 = 1) A (active_l =
1) A (env_st = 6)) — F(aout0 = ain0) A F'(aout0 = ainl)));

102

Table 6.1: Experimental results with MDG LEC using EL and EL2 for ATM
EL (n-bit) EL2 (n-bit)

Time | Memory | # MDG | Time | Memory | # MDG

(sec) (MB) Nodes (sec) (MB) Nodes
P1| 300 30 100325 312 32 100325
P2 | 288 32 100382 280 32 100382
P3| 254 41 129782 338 52 157739
P4 | 314 42 131132 346 54 159325
P5| 340 47 139255 329 46 131775

P5: If the input port 0 chooses output port 0 with priority bit set and no other port
set their priority bits, then after 5 clock the value of douty will be ding_delay, which
denotes the data input ding of 4 clock cycles earlier.

G(((r1.0 = 0) A (r2.0 = 0) A (active0 = 1) A (env.st = 6)) A (priority 0 =
1) A (priority_1 = 0) A (priority-2 = 0) A (priority-3 = 0) - X(X(X(X(X (dout0 =
din0-delay))))));

The experiments were carried out on a Sun Ultra-2 workstation with 296 MHZ
CPU and 768MB of memory. The experimental results of the verification of these
properties with the MDG EL/EL2 algorithms are summarized in Table 6.1, including
CPU time, memory usage and number of MDG nodes generated. To compare our
approach with the ROBDD based language emptiness checking methods, we also
conducted experiments on the same ATM switch fabric using the Itl.model.check
option of the VIS tool [7]. Since VIS requires a Boolean representation of the circuit,
we modeled the data input and output as Boolean vectors of 4-bit (which stores the
minimum header information), 8-bit, and 16-bit.

Experimental results (see Tables 6.2 and 6.3) show that the verification of P4
(8-bit) as well as the properties P3 - 5 (16-bit) did not terminate (indicated by a
“*7) while our MDG EL/EL2 algorithms were able to verify both in a few minutes
for n-bit (abstract) data. Thus, MDG EL/EL2 algorithms enlarge the systems can
be verified.

To compare the performance with the ROBDD based EL/EL2 algorithms, we

103

Table 6.2: Experimental results with VIS using EL algorithm for ATM
4-bit 8-bit 16-bit

Time | Mem | # BDD | Time | Mem | # BDD | Time | Mem | # BDD

(sec) | (MB) | Nodes | (sec) | (MB) | Nodes | (sec) | (MB) | Nodes

P1| 27.2 52 3064K | 31.2 52 3081K | 36.8 52 3096K

P2 11.7 45 1660K | 14.0 45 1670K | 21.8 46 1700K

P3| 124 40 1357K | 899.8 | 629 | 98707K * * *
P4 | 533 167 | 32771K * * * * * *
P5 | 14.7 44 1597K | 321.8 | 137 | 35106K * * *

Table 6.3: Experimental results with VIS using EL2 algorithm for ATM
4-bit 8-bit 16-bit

Time | Mem | # BDD | Time | Mem | # BDD | Time | Mem | # BDD
(sec) | (MB) | Nodes | (sec) | (MB) | Nodes | (sec) | (MB) | Nodes
P1 | 27.1 52 3064K 29.5 52 3081K 36.8 52 3096K
P2 | 11.5 45 1660K 14.1 45 1670K 21.7 46 1700K
P3| 125 40 1357K 899 628 | 98707K * * *
P4 | 533 166 32771K * * * * * *
P51 13.8 44 1597K | 317.6 | 137 | 35199K * *

%k

also conducted the experiments using MDG EL/EL2 algorithms on a concrete ATM
model of 4-bit, where the data signals are modeled as variables of concrete sort word4.
However, the verification did not terminate since the size of the model grew beyond
the available memory and no automated techniques, such as dynamic term reorder or
reduction algorithms, do exist in the current MDG package. On the other hand, VIS
uses very powerful cone-of-influence [57] model reduction algorithms and automatic
term reordering techniques. When we turned off this model reduction, VIS also failed

to verify any of the properties on the 4-bit, 8-bit and 16-bit models.

6.1.4 Discussion

The statistics shown in Table 6.1 demonstrate that MDG based model checking
of w-automata can verify properties on a parameterized implementation independent

of the datapath width. In our MDG based method, one ASM model and one set of

104

Figure 6.6: The Island Tunnel Controller

properties cover all possibile data widths. However, using the ROBDD based model
checker, we have to build separate models and develop separate sets of properties for
instances of different widths. From Tables 6.2 and 6.3, we can see with the width of
the data signal increasing, the model to be verify becomes large, as shown in columns
BDD Nodes and Memory. The execution time hence increases rapidly, leading to

some properties verification not terminating in a reasonable time.

6.2 Island Tunnel Controller

In this section we present the experiments on Island Tunnel Controller (ITC) ex-
ample, we describe the behavioral description of Island Tunnel Controller and explain

the verification of the ITC model.

6.2.1 System Description

The ITC controls the traffic lights at both ends of a tunnel based on the informa-
tion collected by the sensors installed at both ends of the tunnel, a single lane tunnel
connecting the mainland to the island, as shown in Figure 6.6. At each end of the
tunnel, there is a traffic light. There are four sensors for detecting the presence of
vehicles: one at the tunnel entrance (ie), one at the tunnel exit on the island side

(iz), one at the tunnel entrance (me) and one at the tunnel exit on the mainland side

105

In [36], the following constraint is imposed: “at most sixteen cars may be on the
island at any time”. The number “sixteen” can be taken as a parameter and it can be
any natural number. The constraint can thus be read as follows: “at most n(n > 0)
cars may be on the island at any time”.

The specification of ITC using three communicating controllers and two counters
proposed by [36] is shown in Figure 6.7. The state transition diagrams are shown
in Figure 6.7. The island light controller (ILC) (Figure 6.8) has four states: green,
entering, red and exiting. The outputs igl and irl control the green and red lights
on the island side, respectively; 7u indicates that the cars from the island side are
currently using the tunnel, and 77 indicates that the island is requesting the tunnel.
The input iy requests the island to yield control of the tunnel, and ig grants control
of the tunnel. A similar set of signals is defined for the mainland light controller
(MLC). The tunnel controller (T'C) processes the requests for access issued by the
ILC and MLC. The island counter and the tunnel counter keep track of the numbers
of cars currently on the island and in the tunnel, respectively. At each clock cycle,
the count tc of the tunnel counter is increased by 1 depending on signals itc+ and
mic+, or decremented by 1 depending on itc— and mtc—, unless it is already 0. The
island counter operates in a similar way, except that the increment and decrement

signals are ic+ and ic—, respectively.

mrl mg iu e
mgl Mainland my Tunnel . Isla'.nd ix
Light Light
me Controller| jo irl
Controller |__mu A — sl Controller
- MLO) | mr Ty (aLo) igl
et e te- tc+
ic tc
Island Counter Tunnel Counter

Figure 6.7: The specification of the Island Tunnel Controller

106

6.2.2 System Model

Both the island and the tunnel counters have each only one control state, ready,
hence no control state variable is needed. We can use a concrete variable to represent
the current counter number. The counter ic (tc) is now assigned a concrete sort
according to the counter width which is determined by the maximum number of cars
that are allowed on the island. We suppose the number of cars that are allowed on
the island and in the tunnel equals 2n where n is the counter width.

We can also use an abstract state variable ic (¢c) to represent the current counter
number. At each clock, the counter is updated according to the control signals. In
this abstract description, the count ic (tc) is of abstract sort wordn for n-bit words.
The control signals ic+, ic—, etc. are of sort bool. The uninterpreted function inc of
type wordn — wordn denotes the operation of increment by 1, and dec of the same
type denotes decrement by 1. The cross-term equz(tc) represents the condition tc = 0
and models the feedback from counter to the control circuitry; equz is a cross-function
symbol of type wordn — bool. Each of the controllers can have a single control state
variable which takes all the possible states as its values. Thus, the enumeration of
those states constitutes the (concrete) sort of the variables.

Let 7s, ms, and ¢s be the control state variables of the three controllers ILC, MLC
and TC, respectively, and let s, ms’ and ts’ be the corresponding next state variables.
We define a concrete sort mi_sort having the finite enumeration {green, red, entering,
exiting}. The variables is and ms (and also their next state variables is’ and ms’)
are then assigned to be of this sort mi_sort. Similarly, we let variables ts and ¢s’ be
of sort ts_sort which has the enumeration {dispatch,i_use; m_use;i_clear, m_clear}.
All other control signals ie, iz, me, mz, etc. are of sort bool. The condition ic < n
is represented by the cross-term lessN(ic), where the uninterpreted cross-function

lessN of type wordn — bool represents the operation < n.

6.2.3 Verification

In the following we discuss 4 sample properties that we verified on the RTL im-

plementation.

107

Table 6.4: Experimental results with MDG FCD algorithm and MDG MC algorithms
for the ITC

MDG FCD MDG MC Algorithms
time Memory | # of MDG | time Memory | # of MDG
(sec) (MB) nodes (sec) (MB) nodes
P1 5.51 5.45 7651 4.74 3.50 6613
P2 | 19.21 21.45 23286 7.70 5.93 10152
P3 | 6.03 5.83 7979 14.72 11.04 17909
P4 | 16.90 13.98 19696 139.4 66.28 97159

P1: Cars never travel in both directions in the tunnel at the same time
G(—(igl=1 A mgl =1)).

P2: The tunnel counter keeps the old value if ordered to increment and decrement

simultaneously
G((tc— =1 A te+=1) = LET (v =tc) IN X(tc = v)).
P3: The island will eventually release the control right of tunnel if the tunnel con-
troller requests
G((is = green) — (F(is = red)))

under the fairness constraint

—((is = green) — (iy =0)).
P4: The car at the island entrance will eventually pass the tunnel

G((ie = 1) = (F(igl = 1))).

All these properties were verified by the MDG LEC FCD algorithm. The experi-
ments were carried out on a Sun Ultra-2 workstation with 206MHZ CPU and 768MB
of memory. The experimental results are summarized in Table 6.4, including the
CPU time, memory usage and number of MDG nodes generated. For the purpose of
comparison, we conducted the same experiments on the existing MDG regular model

checking (MC) tool, whose experimental results are also shown in Table 6.4.

108

From the statistics in Table 6.4, we can see that the performance of MDG MC is
better than MDG LEC in verification of properties P1 and P2. MDG LEC is better
in P3 and P4. This is because the performance of w-automata based model checking

mainly dependent on the types of the generated automata [7].

6.2.4 Discussion

Usually, the performance of w-automata based model checking is worse than
that of regular model checking method [18]. However, depending on the types of
w-automata generated from the property, sometimes, the former performance out-
performs the latter, especially, when the generated automata are terminal or weak

automata [7]. This confirms our experimental results shown in Table 6.4.

6.3 Conclusion

In this chapter, we applied our MDG based language emptiness checking method
on two case studies: the ATM switch fabric, and the Island Tunnel Controller. We
compared MDG EL/EL2 algorithms with ROBDD based EL/EL2 algorithms, and
compared FCD algorithm with MDG MC algorithms. Using MDG based method,
we were able to use abstract variables to describe data signals and uninterpreted
function symbols to represent the data operations. Therefore, MDG based method
proceed the verification independent of the datapath widths. While, ROBDD based
method cannot directly used in such circuit since the state space explosion problem.
Hence, MDG based model checker enlarges the circuit can be verified by the existing
ROBDD-based method. Compared to the regular MDG model checking method, the
performance of MDG LEC is not always better than MDG MC. However, MDG LEC
can accept a broader property templates than MDG MC. MDG LEC also uses a
signal language checking algorithm for all property templates, while MDG MC builds

an algorithm for every template.

109

green red green red
w=T | =T —>{ M= e mi=T [
igl=T mgl=T

mic-

me
T
@ exiting

Island Light Controll Mainland Light Controller

dispatch Conventions:

state

(D

input

O

output

Tunnel Controller

Figure 6.8: State transition graphs of the Island Tunnel Controller

110

Chapter 7

Conclusions

7.1 Summary of the Thesis

w-automata based model checking is a very successful verification technique. How-
ever, existing ROBDD based implementations are not adequate for verifying circuits
with large and complex datapath because of the Boolean representation of circuits.
As a new class of decision graphs, Multiway Decision Graphs (MDGs) have been
proposed to use abstract variables to denote data values and uninterpreted function
symbols to denote daté operations. Furthermore, MDGs provide an Abstract State
Machine (ASM) to model the system design. MDG based verification applications
can hence handle larger hardware designs.

In this thesis, we explored w-automata based model checking using MDGs and
developed a new application to the MDG tool set. To this end, we defined a first-
order temporal logic (Lypg*) to describe the property. We further developed an
algorithm to transform the £ype” formula into a Propositional Linear time Temporal
Logic (PLTL) formula by constructing the ASMs for the property formula. We finally
developed three algorithms to check the language of a generalized Biichi automaton,
which can accept abstract variables to describe the transition system structure. The
procedure of our MDG based language emptiness checking is summarized as follows:

First, we presented Ly pg* as a property language based on a subset of a first-

order linear time temporal logic, which is obtained by adding the many-sorted (with

111

distinction of abstract sort and concrete sort) first-order logic on a linear time struc-
ture. Compared to a previously defined specification language Lypg, Lrpe” defines
a broader language by allowing arbitrary temporal nesting forms, which breaks the
template limitation of Ly/pg.

Second, we presented an algorithm to transform the satisfaction of a Lyrpg* for-
mula on all computations of an ASM into the satisfaction of a PLTL formula on all
computations of a composed state machine. The algorithm first identified the atomic
formulas P in the £)/pg* formula. It then constructed an ASM for each atomic for-
mula. After that, it composed the constructed ASMs with the original ASM, and the
generated ASM is bisimular to the original ASM with respect to P. It finally replaced
atomic formulas P with propositions in both the property formula and composed state
machine. The constructed ASMs were described by the circuits with MDG compo-
nents in MDG-HDL according to a set of proposed rules. We furthermore proved the
correctness of transformation.

Third, we presented three algorithms to check emptiness of the language of a gen-
eralized Bichi automaton, which accepts abstract variables and uninterpreted func-
tion symbols to describe the transition system structure. The first two algorithms
were adapted from the existing EL/EL2 algorithms to the MDG based approaches
(MDG EL/EL2). We proved their correctness through proving the correctness of
the adaptation. We further tested these algorithms using a case study on an ATM
(Asynchronous Transfer Mode) switch fabric. To compare with existing EL/EL2 al-
gorithms, we also conducted the case study with the EL/EL2 algorithms in VIS.
The results showed that the MDG EL/EL2 algorithms could handle larger system
designs than the exsting EL/EL2 algorithms. Furthermore, we developed a Fair Cy-
cle Detection (FCD) algorithm, which worked as follows: starting from the initial
states Z?, first for each fairness condition, computed a state satisfying the condition
on each path staring from Z* then computed the next states as the new reachable
states Zit!; finally checked if Z**! was empty or there existed a cycle by testing the
inclusion Z¢ C Z#*!. We also applied the FCD algorithm to the Island Tunnel Con-
troller (ITC) benchmark. The results showed that our FCD algorithm worked very
efficiently.

112

Finally, we implemented our method in the MDG tool set and developed a new
application. MDG LEC. Experimental results proved that the new application is
superior to the ROBDD based by increasing the range of circuits that can be verified.
MDG LEC also provides more property templates than the existing MDG regular

model checking application.

7.2 TFuture Research Directions

Although a lot of work has been accomplished on the MDG tool set, there are

still several areas in which the system could be extended.

e Solving the non-termination problem

It is well known that in some situations MDG based algorithms may suffer from
the non-termination problem, that is, the state enumeration procedure may not
be terminated. In the literature, there exist two approaches proposed to tackle
this problem. The first one uses p-terms that can finitely represent infinite
sets of states [64]. An extension of the syntax of MDG and MDG-based algo-
rithms could incorporate p-terms to solve the non-termination problem when
the generated set of states exhibit certain repetitive patterns. The second one
modifies the original ASM structural description according to certain rules to
avoid the non-termination problem [64]. It would be valuable to explore a more
general method that could automatically analyze the ASM description, modify
the design description and infer p-terms. Implementing these ideas in the MDG

package could extend the applicability of the MDG verification tools.

e Develop a counterexample facility in the MDG package

If a property fails on the system design model, the model checker should produce
a counterexample to give hints to the designers in order to catch the flaws in their
designs. This facility is only available in the invariant checking application in the
MDG tool set at present. Since the counterexample is critical to the designer,

development of this function is imperative. The counterexample application of

113

MDG invariant checking generates a counterexample by remembering all visited
states at each step from the initial states to states violating the condition (bad
states). Then back-trace a path that can reach a “bad” state from an initial
state. Although this method is feasible in the invariant checking method, it
cannot be used when a cycle needs to be detected, which is an necessary step in
finding the counterexample in MDG LEC. Moreover, our MDG algorithms may
produce false negatives. More specifically, when the algorithm reports failure,
which means the property is not true for all the interpretation, it is still possible
that the property holds for some specific interpretation. If it is the case, the

counterexample is spurious.

Develop the MDG package with C++

The MDG package is a prototype implemented in Prolog, which is a functional
language widely used in logic programming. The execution of the MDG tools
wastes a lot of time in the parsing of complex logic predicates. Thus, the MDG
tools cannot be superior to other tools implemented for example in C. The MDG
development group is aware of this problem and is currently rewriting the MDG

package in C++ to improve the MDG tools’ performance.

Experimental verification of the proposed method and tool in this thesis using

more elaborate industrial and academic benchmarks.

114

Bibliography

[

[2]

[3]

[4]

[7]

K. D. Anon, N. Boulerice, E. Cerny, F. Corella, M. Langevin, X. Song, S.
Tahar, Y. Xu and Z. Zhou. MDG Tools for the Verification of RTL Designs.
In Computer-Aided Verification, LNCS 1102: 433-436, Springer Verlag, 1996.

S. B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers, C-27:
509-516, June 1978.

M. C. Browne, E. M. Clarke, D.L. Dill and B. Mishra. Automatic Verification
of Sequential Circuits Using Temporal Logic. IEEE Transactions on Computers,
35(12): 509-516, December 1986.

J. R. Burch, E. M. Clarke, K. L. McMillan and D. L. Dill. Sequential Circuit Ver-
ification using Symbolic Model Checking. In Proceedings of the 27th ACM/IEEE
Design Automation Conference, pages 46-51, Orlando, USA, June 1990.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang. Symbolic
Model Checking: 10?° States and Beyond. Information and Computation, 98(2):
142-170, June 1992.

J. Bohn, W. Damm, O. Grumberg, H. Hungar, and K. Laster. First-Order-
CTL Model Checking. In Proc. of 18th International Conference Foundations of
Software Technology and Theoretical Computer Science, pages 283-294, Chennai,
December 1998.

R. Bloem, K. Ravi, and F.Somenzi. Efficient Decision Procedures for Model

8]

(9]

[10]

[11]

[13]

[14]

[15]

[16]

115

Checking of Linear Time Logic Properties. In Computer Aided Verification,
LNCS 1633: 222-235, Springer Verlag, 1999.

R. E. Bryant. Binary Decision Diagrams and Beyond: Enabling Technologies for
Formal Verification, In Proceedings of the International Conference on Computer-

Aided Design, pages 236-243, San Jose, USA, November 1995.

R. K. Brayton et. al. VIS: A System for Verification and Synthesis. In Computer
Aided Verification, LNCS 1102: 428-432, Springer Verlag, July 1996.

R. E. Bryant. Graph-based Algorithms for Boolean Function Manipulation.
IEEFE Transactions on Computers, 35(8): 677-691, August 1986.

J. R. Burch and D. L. Dill. Automatic Verification of Pipelined Microprocessor
Control. In Computer Aided Verification, LNCS 808: 68-80, Springer Verlag,
1994.

E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar and Z. Zhou. Automated
Verification with Abstract State Machines Using Multiway Decision Graphs. For-
mal Hardware Verification: Methods and Systems in Comparison, LNCS 1287:
79-113, Springer Verlag, 1997.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite
State Concurrent Systems using Temporal Logic Specifications. ACM Transac-

tions on Programming Languages and Systems, 8(2): 244-263, April 1986.

E. M. Clarke, M. C.Browne and O. Grumberg. Characterizing Kripke Structures
in Temporal Logic. Theoretical Computer Science, 59(1): 115-131, 1988.

E. M. Clarke, and E. A. Emerson. Design and Synthesis of Synchronization
Skeletons using Branching Time Temporal Logic. In Logics of Programs, LNCS
131: 52-71, Springer Verlag, 1981.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of Finite
State Concurrent Systems using Temporal Logic Specifications. ACM Transac-

tions on Programming Languages and Systems, 8(2): 244-263, April 1986.

[17]

18]

[19]

[20]

[21]

[22]

[23]

[25]

116

E. Clarke, O. Grumberg and D.E. Long. Model Checking and Abstraction. ACM
Transactions on Programming Languages and Systems, 16(16): 1512-1542, 1994.

E. Clarke, O. Grumberg and K. Hamaguchi. Another Look at LTL Model Check-
ing. Formal Methods in System Design, pages 47-71, February 1997.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

F. Corella, M. Langevin, E. Cerny, Z. Zhou and X. Song. State Enumeration with
Abstract Descriptions of State Machines. In Proceedings Conference on Correct
Hardware Design and Verification Methods, pages 146-160, Frankfurt, Germany,
October 1995.

F. Corella, Z. Zhou, X. Song, M. Langevin and E. Cerny. Multiway Decision
Graphs for Automated Hardware Verification. In Formal Methods in System
Design, 10(1): 7-46, February 1997.

P. Curzon. The Formal Verification of the Fairisle ATM Switching Element.
Technical Reports No. 328 & No. 329, Computer Laboratory, University of Cam-
bridge, UK, March 1994.

C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-Efficient
Algorithms for the Verification of Temporal Properties. Formal Methods n
System Design, 1(2): 275-288, 1992.

D. Cyrluk and P. Narendran. Ground Temporal Logic: A Logic for Hardware
Verification. In Compute Aided Verification, LNCS 818: 247-259, Springer Ver-
lag, 1994.

D. Cyrluk and M. K. Srivas. Theorem Proving: Not an Esoteric Division, but the
Unifying Framework for Industrial Verification. In Proceeding IEEE International
Conference on Computer Designs Autsin, USA, October 1995.

[26]

[27]

(28]

29]

(30]

(31]

[32]

[33]

[34]

[35]

117

M. Daniele, F. Giunchiglia, and M.Y. Vardi. Improved Automata Generation for
Linear Temporal Logic. In Computer Aided Verification, LNCS 1633: 249-260,

Springer Verlag, 1999.

D. R. Dams, R. Gerth, and O. Grumberg. Abstract Interpretation of Reactive
System ACM Transaction on Programming Language and Systems, 19(2): 253-
291, 1997.

D. R. Dams, O. Grunberg and R. Gerth. Generation of Reduced Models for
Checking Fragement of CTL. In Computer Aided Verification, LNCS 697: 479-
490, 1993.

R. Drechsler and B. Becker. Binary Decision Diagrams: Theory and Implemen-

tation. Kluwer Academic Publishers, 1998.

E. A. Emerson. Temporal and Modal logic. In Handbook of Theoretical Com-
puter Science, Volume B: 995-1072, Elsevier Science Publishers, 1990.

E. A. Emerson, C. L. Lei. Modalities for Model Checking: Branching Time Logic
Strikes Back. In Science of Computer Programming, pages 275-306, Elsevier
Science Publishers, 1987.

E.A. Emerson and C.-L. Lei. Efficient Model Checking in Fragments of the
Propositional p-calculus. In Proceedings of the First Annual Symposium on Logic

in Computer Science, pages 267-278. IEEE Computer Society Press, 1986.

E. A. Emerson, A. P. Sistla. Symmetry and Model Checking. In Computer Aided
Verification, LNCS 697: 463-478, Springer Verlag, 1993.

K. Etessami, G. Holzmann. Optimizing Biichi Automata, In Concurrency The-

ory, LNCS 1877: 153-167, Springer Verlag, 2000.

K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is There a Best Sym-
bolic Cycle-Detection Algorithm? In Tools and Algorithms for the Construction
and Analysis of Systems, LNCS 2031: 420-434, Springer Verlag, 2001.

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

118

K. Fisler and S. Johnson. Integrating Design and Verification Environments
through Logic Supporting Hardware Diagrams. In Proceeding of IFIP Confer-
ence on Hardware Description Languages and their Applications, pages 669-674,

Chiba, Japan, August 1995.

M. J. C. Gordon, T. F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, Cambridge,

UK, 1993.

M. J. C. Gordon. HOL: A Machine Oriented Formulation of Higher Order Logic,
Cambridge University, Computer Laboratory Technical Report No. 68, Cam-
bridge, England, 1985.

R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple On-the-fly Automatic
Verification of Linear Temporal Logic. In Protocol Specification, Testing, and
Verification, pages 3—-18, North-Holland, 1995.

O. Grumberg, D. Long. Model Checking and Modular Verification. ~ACM
Transaction on Programming Language and Systems, 16(3): 843-871, 1994.

O. Grumberg. Abstractions and Reductions in Model Checking. In NATO
Science Series, Vol. 62, 2001.

A. Gupta. Formal Hardware Verification Methods: A Survey. Formal Methods
in System Design. 1: 151-238, 1992.

G. D. Hachtel, F. Somenzi. Logic Synthesis and Verification Algorithms. Kluwer
Academic Publishers, 1996.

G.J. Holzmann. The Model Checker Spin. IEEE Transaction on software Engi-
neering, 23(5): 279-295, May 1997.

R. H. Hardin, Robert P. Kurshan, Sandeep K. Shukla, and Moshe Y. Vardi. A
New Heuristic for Bad Cycle Detection using BDDs. Formal Methods in System
Design, 18(2): 131-140, 2001.

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

119

R. Hojati and R. K. Brayton. Automatic Datapath Abstraction in Hardware
Systems. In Computer Aided Verification, LNCS 939: 98-113, Springer Verlag,
1995.

H. Liu. Congestion Control for ATM in Broadband ISDN. Master Thesis, Uni-
versity of Saskatchewan, Saskatoon, Canada, August 1992.

R. Hojati, H. Touati, R. P. Kurshan, and R. K Brayton. Efficient w-regular
Language Containment. In Computer Aided Verification, LNCS 663: 371-382,

Springer Verlag, 1992.

A. J. Hu. Formal Hardware Verification with BDDs: An Introduction. In Pro-
ceedings of IEEE Pacific Rim Conference on Communications, Computers, and

Signal Processing, pages 677-682, Victoria, Canada, August 1997.

H. Hungar,0. Grumberg, and W. Damm. What if Model Checking Must be
Truely Symbolic. In Workshop on Tools and Algorithms for the Construction
and Analysis of Systems, LNCS 1019: 1-20, 1995.

N. Ishiura, H. Sawada and S. Yajima. Minimization of Binary Decision Diagrams
based on Exchanges of Variables. In Proceedings of the International Conference

on Computer Aided Design, pages 473-475, Santa Clara, USA, November 1991.

C. Kern and M. R. Greenstreet. Formal Verification in Hardware Design: A
Survey. ACM Transactions on Design Automation of Electronic Systems, 4:

123-193, 1999.

Y. Kesten, A. Pnueli and L-o. Raviv. Algorithmic Verification of Linear Tmeporal
logic specification. In Automata, Languages, and programming, LNCS 1443: 1-
16, Springer Verlag, 1998.

S. A. Kripke. Semantical Considerations on Modal Logic. In Proceedings of
Colloguium on Modal and Many-Valued Logics, Helsinki, 1962.

T. Kropf. Benchmark-Circuits for Hardware Verification. In Theorem Provers

in Circuit Design, LNCS 901: 1-12, Springer Verlag, 1994.

[56]

[57]

[58]

[62]

[63]

[64]

[65]

120

R. P. Kurshan. Analysis of Discrete Event Coordination. In Proceedings of
Research and Education in Concurrent Systems Workshop, page 414-453, Mook,
The Netherlands, 1989.

P. Kurshan. Automata-Theoretic Verification of Coordinating Processes. Prince-

ton Unwversity Press, 1994.

R. P. Kurshan. Formal Verification in a Commercial Setting. In Proceedings
of the 34th Design Automation Conference (DAC’97), pages 258-262, Anaheim,
USA, July 1997.

D. Kelley. Automata and Formal Language. Princeton University Press, 1995.

I. Leslie and D. McAuley. Fairisle: an ATM Network for the Local Area. ACM
Communication Review, page 327-336, 1991.

M. C. McFarland. Formal Verification of Sequential Hardware: A Tutorial.
IEEE Transaction on Computer-Aided Design of Integrated Circuits and Sys-
tems, 12(5): 633-654, May 1993.

K. L. McMillan. Symbolic Model Checking. Kluwer Acardmeic Publishers, 1998.

S. Minato, N. Ishiura, and S. Yajima. Shared Binary Decision Diagram with
Attributed Edges for Efficient Boolean Function Manipulation. In Proceedings

of 27th Design Automation Conference, pages 52-57, Orlando, USA, June 1990.

O. Ait Mohamed, X. Song, and E. Cerny. On the Non-termination of MDG-
based Abstract State Enumeration. Theoretical Computer Science 300: 161-179,
2003. '

S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Logic
Verification using Binary Decision Diagrams in a Logic Synthesis Environment.
In Proceedings of International Conference on Computer-Aided Design, pages

6-9, Santa Clara, USA, November 1988.

[66]

[67]

68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

121

K. S. Namjoshi and R. P. Kurshan. Syntactic Program Transformations for
Automatic Abstraction. In Computer Aided Verification, LNCS 1855: 435-449,
Springer Verlag, 2000.

O. Ait Mohamed, E. Cerny, X. Song. MDG-based Verification by Retiming and
Combinational Transformations. In Proceedings of the IEEE 8th Great Lakes
Symposium on VLSI, pages 356-361, Louisiana, USA, February 1998.

D. Park. Concurrency and Automata on Infinite Sequences. Theoretical Com-

puter Science, pages 167-183, 1981.
Quintus Prolog Manual. Quintus Corporation, v. 3.1, 1991.

K. Ravi, R. Bloem, and F. Somenzi. A Comparative Study of Symbolic Algo-
rithms for the Computation of Fair Cycles. In Formal Methods in Computer-
Aided Design, LNCS 1954: 143-160, Springer Verlag, 2000.

C. Seger. An Introduction to Formal Hardware Verification. University of British

Columbia Technical Report 92-13, 1992.

F.Somenzi and R. Bloem. Efficient Biichi Automata from LTL Formulae. In
Computer Aided Verification, LNCS 1855: 247-263, Springer Verlag, 2000.

F. Somenzi, K. Ravi, and R. Bloem. Analysis of Symbolic SCC Hull Algorithms.
In Formal Methods in Computer Aided Design, LNCS 2517: 88-105, Springer
Verlag, 2002.

H. J. Touati, R. K. Brayton and R. P. Kurshan. Testing Language Containment
for w-automata Using BDDs. Information and Computation, 118(1): 101-109,

1995.

H. J. Touati, R. K. Brayton and R. Kurshan. Testing Language Containment
for w—automata Using BDD. Information and Computation, 118(1): 101-109,
1995.

[76]

[77]

(78]

[80]

[82]

(83]

[84]

[85]

122

W. Thomas. Automata on Infinite Objects. In Handbook of Theoretical Com-
puter Science, 2: 165-191 Elsevier Science Publishers, 1994.

S. Tahar, X. Song, E. Cerny, Z. Zhou, M. Langevin, and O. Ait-Mohamed.
Modeling and Verification of the Fairisle ATM Switch Fabric using MDGs. IEEE
Transactions on CAD of Integrated Circuits and Systems, 18(7): 956-972, 1999.

H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Implicit State Enumeration of Finite State Machines using BDDs. In Computer-
Aided Design, LNCS 430: 130-133, Springer Verlag, 1990.

M. Y. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic.
In Logics for Concurrency: Structure Versus Automata, LNCS 1043: 238-266,
Springer Verlag, 1996.

A. Xie, P. A. Beerel. Implicit Enumeration of Strongly Connected Components.
In Proceedings of the International Conference on Computer-Aided Design, pages

37-40, San Jose, USA, November 1999.

Y. Xu, E. Cerny, X. Song, F. Corella, and O. Ait Mohamed. Model Checking
for a First-order Logic using Multiway Decision Graphs. In Computer Aided
Verification, LNCS 1427: 219 - 231, Springer Verlag, 1998.

Y. Xu. Model Cheéking for a First-order Temporal Logic using Multiway Decision
Graphs. PhD Thesis, University of Montreal, 1999.

Z. Zhou and N. Boulericex. MD@G Tools (V1.0) User’s Manual. D’IRO, University
of Montreal, 1996.

7. Zhou. Multiway Decision Graphs and Their Applications in Automatic Formal
Verification of RTL Designs. PhD thesis, University of Montreal, 1997.

Z. Zhou, X. Song, F. Cdrella, E. Cerny and M. Langevin. Description and Ver-
ification of RTL Designs using Multiway Decision Graphs. In Proceedings of
the Conference on Computer Hardware Description Languages and their appli-

cations, pages 575-580, Chiba, Japan. August, 1995.

123

[86] Z. Zhou, X. Song, S. Tahar, F. Corella, E. Cerny and M. Langevin. Formal
Verification of the Island Tunnel Controller using Multiway Decision Graphs. In
Formal Methods in Computer Aided Design, LNCS 1166: 233-247, Spring Verleg,
1996.

