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Abstract

The Determination of an Optimal Hedge Ratio and a Generalized Measure of Risk
Gang Li

The use of futures contracts as hedging instruments to reduce risk has been the focus
of much research. Various risk measures have been developed and have subsequently
been employed in an effort to create hedging strategies and to calculate optimal hedge
ratios. This thesis proposes a more generalized risk model to measure the risk of hedged
assets. The five-parameter model presented herein assumes that each investor has a
different target return, level of risk aversion, and degree of sensitivity to lower and higher
partial moments. The optimal hedging activity for each investor should then seek to
minimize the unique generalized risk measure. This paper utilizes an out-of-sample test
on a hedged position in the S&P500 index in the period from December 1982 to
December 2004. Tests are conducted to determine whether the change of target returns
and sensitivity parameters will affect optimal hedge ratios. In addition, whether hedging
effectiveness changes significantly in-sample versus out-of-sample, and between each
model and a naive hedging strategy is investigated. Also, mean returns of hedged
portfolios are compared for various models.

This thesis makes three important contributions. First, this study is the first to
implement both higher and lower partial moments in the determination of optimal hedge
ratios. Second, an out-of-sample test is considered while most studies use only in-sample
tests. Third, this thesis is the first to use discontinuous sample periods to separate market

conditions and to analyze hedging performance in bull and bear markets.
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The Determination of an Optimal Hedge Ratio and a

Generalized Measure of Risk

1. INTRODUCTION

A futures contract is a promise to deliver a specific amount of a commodity (or asset)
at a preset time in the future. Futures contracts are popular in financial markets where
they are used as hedging instruments although they are also employed for speculative
purposes. As a hedging tool, futures contracts are important for risk reduction. The most
widely used risk measure appearing in the finance literature is the standard deviation or
variance. These statistics are two-sided in their application as they take into account both
positive and negative deviations from the sample mean. A survey by Adams and Montesi
(1995), however, indicates that corporate managers are more concerned with variability
in losses than they are regarding variability in gains. This finding is consistent with that
of Mao (1970). A negative deviation from the mean may be called “downside risk” while
a positive deviation may be termed “upside potential” (Lee and Rao, 1988).

One appropriate measure of downside risk is the Fishburn risk measure (Fishburn,
1977), which is also known as the lower partial moment (Bawa, 1975, 1978). Herein risk
is measured as a probability-weighted power function of the shortfall from a specific
target return. The power applied in the calculation is called the “order” of the lower

partial moment (LPM). According to this approach, if a derivative instrument is to reduce



risk, it should result in a smaller LPM rather than a smaller standard deviation or
variance.

Previous articles argue that although downside risk may be the main concern of
investors, it is inappropriate to ignore higher partial moments totally. As a result, a more
generalized risk model is proposed to measure the risk of hedged assets. A five-parameter
model developed in this thesis assumes that each investor has a different target return, a
different level of risk aversion and a different degree of sensitivity to lower and higher
partial moments. The hedging activity for each investor should minimize this unique
generalized risk and the process of determining an optimal hedge ratio should follow this
guideline.

The purpose of this thesis is fourfold. The first purpose is to determine whether the
optimal hedge ratio obtained by minimizing the generalized risk model is significantly
different from the one obtained through the minimum-variance model. Here the two risk
sensitivity parameters vary from 0 to 1, and then the change of proportion of hedge ratios
is compared to that of the minimum-variance ratio. The power term, or risk-aversion
parameter, is fixed and set to 2. This means the investor is assumed to exhibit equal
risk-aversion for returns below and above target returns while sensitivities to risks are
permitted to vary.

The second purpose of the thesis is to investigate whether the change in the target

return will affect the optimal hedge ratio. Daily target returns in the model vary from



-0.001 to 0.001 and optimal hedge ratios are compared with those of optimal hedge ratios
when the target return is 0.

The third purpose is to compare the hedging effectiveness using in-sample data with
that of out-of-sample data. Most previous research applies an in-sample approach
exclusively. This procedure makes the questionable assumption that the futures position
that produces the optimal hedge ratio and the measure of hedging effectiveness can be
determined in the same period. Because in-sample hedging is impossible in practice,
investors are more interested in out-of-sample hedging performance. This thesis assumes
that a hedger first uses a specific period to calculate the model-based hedge ratio. Then
the ratio is applied to hedge a position in the following period. The hedging performance
between in-sample and out-of-sample positions is subsequently compared.

The final purpose of this study is to examine the out-of-sample returns for each
model. Although all of the models applied in the thesis focus on risk reduction, it will be
of interest to observe the return performance of each model and to compare the return of
each model with that of a naive hedge.

The remainder of this thesis is organized as follows. Section 2 briefly reviews
previous theoretical and empirical research. Section 3 introduces the models used in this
thesis. Section 4 explains the methodology and describes the data. Section 5 discusses the
most important results. Finally, Section 6 gives a summary and outlines future potential

research directions.



2. LITERATURE REVIEW

Hedging relies on the combination of a position in the spot market with one in the
futures market in order to form a portfolio that will reduce the fluctuation in value. For
example, if a portfolio consisting of C, units of a long spot position and C, units of a
short futures position is created, and S, and F, are defined as the spot and futures prices at
time 7 respectively, then a hedged portfolio can be created. The portfolio return R, , is

R,=(C,S,R,~C,FR,)/C,S, = R~ IR,

where h = C,F/CS,, is the hedge
ratio.

One of the key theoretical issues in hedging is the determination of the optimal hedge
ratio. The specification of this ratio depends on how the concept of “optimization” is
defined. For example, the most widely used hedging strategy is based on the assumption
that investors only care about the risk associated with hedging and that the variance of the
underlying asset is the appropriate method of measuring risk. Thus the minimum variance
(MV) hedge ratio is estimated by minimizing the variance of the hedged portfolio.

It is clearly unrealistic to assume that all investors have a unique preference in the
determination of the hedged portfolio. The expected return has also been incorporated
along with the risk (variance) to form new strategies. These strategies are consistent with
the expected utility maximization principle assuming a quadratic utility function or that
returns are jointly normal. Other scholars (Cheung et al. (1990), Kolb and Okunev (1992),

Lien and Luo (1993a), Shalit (1995), and Lien and Shaffer (1999)) have attempted to

eliminate the assumptions regarding the utility function and return distribution, and
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accordingly, the method of minimization of the mean extended-Gini (MEG) coefficient
was introduced.

Recently the generalized semi-variance (GSV) or lower partial moment was
proposed as a possible approach to be used in hedging. The hedge ratios based on these
concepts are consistent with the concept of stochastic dominance and the risk perception
of investing managers. But when returns of spot and futures are jointly normally
distributed and follow a pure martingale process, the minimum GSV ratio reduces to t the
MYV ratio.

Apart from considering various measures of risk and employing returns in the
derivation of the optimal hedging ratio, researchers also differ on whether hedge ratios
should be considered as being static or dynamic. Static hedge ratios are typically
estimated using unconditional probability distributions, while dynamic ratios are
estimated using conditional models such as ARCH (autoregressive conditional
heteroscedastic, Engle (1982)) and GARCH (generalized autoregressive conditional

heteroscedastic, Bollerslev (1986)).

2.1 Classical Theory

Traditional hedging theory emphasizes the risk avoidance potential that futures
markets can provide. Hedgers believe that futures markets and spot markets are highly
correlated and move in the same direction with similar magnitudes. Thus investment risk

is eliminated if an equal contract value of the opposite sign is invested in the futures
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market for each unit of value held in the spot market. In this case, when the hedge ratio
equals 1 the strategy is called “naive hedging.”

Working (1953 and 1962) challenged the view of hedgers as simply being risk
minimizers. He argued that hedgers may also function as speculators and are concerned
with relative price changes of spot and futures markets. According to Working, holders of
long positions in the spot market will hedge if the basis (the difference between spot and

futures prices) is expected to fall and will not hedge if the basis is expected to rise.

2.2 Minimum-Variance Theory

Johnson (1960) and Stein (1961) are the first to view hedging as a simple application
of basic portfolio theory. Ederington (1979) developed the theory further in estimating
the optimal hedge ratio required to minimize the variance of a portfolio.

In Ederington’s (1979) model, let R be the return on a portfolio including both spot
holdings C, , and futures holdings, C, , and let Rs and R, be returns in the spot and futures
markets, respectively. Then:

ER)=CR +C/R,
Let hedgeratioh =—C, /C, , thus
Var(R)=Clo} +C 0} —2C,C,Con(R R,)=C? (o? + o} —2ho,, ),
where o? and 0'} represent the respective variances of the spot and futures prices

and o, represents the covariance between spot and futures prices.

Then by taking the derivative with respect to A, Ederington (1979) obtained the
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optimal hedge ratio as: 4" = p—=,

Oy

where p is the correlation coefficient between R and R, .

2.3 The Optimal Mean-Variance Hedge Ratio
Hsin et al. (1994) assume that the hedger has a negative exponential utility function
with constant absolute risk aversion (ARA; Pratt (1964)) and determine the optimal
hedge ratio by maximizing the following utility function:
UR)=E(R,)-0.540;,
where A is the risk aversion parameter.
The hedge ratio considers both risk and return and is consistent with the

mean-variance framework. The optimal ratio is given by:

__liE(Rf)_pfi]‘

2
Ao, o,
Different investors have different risk aversion parameters thereby producing

different hedge ratios in the mean-variance framework.

2.4 The Sharpe Hedge Ratio

Another way of incorporating the portfolio return into the hedging strategy is to use
the Sharpe ratio. Howard and D’Antonio (1984) assume only mean and variance are
relevant in choosing a portfolio, and that an optimal hedge ratio can be obtained by

maximizing the ratio of the portfolio’s excess return to its volatility:



E(Rg)—RF.

0,

max @ =

Here R, is the risk-free interest rate. In this case, the optimal hedge ratio be:

(o, /Gf)[(o's /O'/’)(E(Rf)/E(Rs)‘RF)—P] .
[1-(c./2,)(E(, ) o/ E(r)-R)]

h=-

Hsin et al. (1994) point out that the Sharpe ratio is a valid approach only when the
excess return is positive. This can lead to problems since negative returns are common in
hedging activities. Chen et al. (2001) point out that the Sharpe ratio is a highly non-linear
function of the hedge ratio and the ratio derived by equating the first derivative to zero
may lead to a ratio that minimizes rather than maximizes the Sharpe ratio. Moreover, the

Sharpe ratio may also be monotonically increasing with the hedge ratio.

2.5 The Minimum Mean Extended-Gini Coefficient Hedge Ratio and The Optimum
Mean MEG Hedge Ratio
The Minimum mean extended-Gini coefficient approach of deriving the optimal
hedge ratio is consistent with the concept of stochastic dominance and involves the use of
the MEG coefficient. Cheung et al. (1990), Kolb and Okunev (1992), Lien and Luo

(1993a), Shalit (1995), and Lien and Shaffer (1999) all apply this approach.

The approach minimizes the MEG coefficient I' (R,) defined as follows:
I',(R,)=-v Cov(R,, (1-G(R,)),,)

where G is the cumulative probability distribution and v is the risk aversion parameter.



Note that 0 < v <1 is consistent with risk seekers, v =1 is consistent with risk-neutral
investors, and v > 1 is consistent with risk-averse investors. Shalit (1995) has shown that
if the futures and spot returns are jointly normally distributed, then the minimum-MEG
hedge ratio would be the same as the MV hedge ratio.

Instead of minimizing the MEG coefficient, Kolb and Okunev (1993) consider
maximizing the utility function defined as follows:

U(R,)=E(R,)-T,R,)

This is called as the M-MEG hedge ratio. The difference between the MEG and M-MEG
hedge ratios is that the MEG hedge ratio ignores the expected return on the hedged

portfolio.

2.6 Thea-t Model and the Mean-Generalized Semi-Variance Hedge Ratio
Crum et al. (1981) argue that managers perceive risk as the failure to obtain a
specific target. Fishburm (1977) formalizes this perception of risk in his a-t model. He
considers a utility function under the target return, ¢, weighted by a measure for risk
aversion, « . The model can be written as:
Ve (Rh): ,[w(t_Rh)a dF(Rh)
where F (Rh) is the probability distribution function of the returns of the hedged

portfolio.



In this model risk is defined in such a way that investors regard only the returns
below ¢ to be risky. « <1 represents a risk-seeking investor and a >1 represents a
risk-averse investor.

The hedge ratio determined by minimizing the «-t model is called the minimum
Generalized Semi-Variance (GSV) hedge ratio. Both Fishburn (1977) and Bawa (1978)
conclude that the GSV hedge ratio is consistent with the concept of stochastic dominance.
Lien and Tse (1998) showed that the GSV ratio would be the same as the MV ratio when
futures and spot returns are jointly normally distributed and futures prices follow a pure
martingale process.

Chen et al. (2001) convert the GSV hedge ratio into a mean-GSV (M-GSV) hedge
ratio by incorporating the mean return in the a-t model. The M-GSV hedge ratio is
obtained by maximizing the following mean-risk utility function, which is similar to the

conventional mean-variance-based utility function and is given by:

U(Rh)zE(Rh)“'Va (Rh)

2.7 The Dynamic Hedge Ratio

In all of the methodologies summarized above the optimal hedge ratio is determined
during the hedging period, but dynamic theory argues that it could be beneficial to
change the hedge ratio over time. This involves calculating the hedge ratio based on

conditional information instead of unconditional information.



The adjustment to the hedge ratio based on new information can be implemented
using conditional models such as ARCH and GARCH, (e.g. Kroner and Sultan (1993)).
Alternatively, Lien and Luo (1993b) calculate the hedge ratio by considering the

investors’ wealth level at the end of the hedging activity via a multi-period model.

3. MODELS

Stone (1973) proves that risk measures such as VaR, variance, semi-variance, or
mean absolute deviation are all related to the same generalized loss function - a
monotonic concave utility function. Possibly for reasons of mathematical simplicity,
Markowitz (1952) chose the standard deviation as the appropriate measure of risk and
demonstrates that in the absence of perfect positive correlation, the standard deviation of
a portfolio is less than a direct weighted linear combination of the standard deviations of
the respective stocks taken individually. Since then the standard deviation and/or variance
have become the most widely used measures of risk.

What the Markowitz approach may not capture is the fact that some investors
seemingly exhibit a taste for risk. This is true in particular for gamblers. Other
researchers have attempted to account for the observed attraction to risk by developing a
theory of the gambling effect. The most famous of them is Fishburn (1980) who
developed a series of axioms on this topic, which beyond the focus of this thesis.

Prospect Theory, formulated by Kahneman and Tversky (1979), represents a further

development in the use of subjective probabilities. The basic tenets of Prospect Theory
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are that individuals view gains and losses not simply as mirror equivalents of each other
but as entirely different experiences. The other inherent difference between Prospect
Theory and Expected Utility Theory is that the reference point of Prospect Theory is
dependent on the preference of individual investors. Kahneman and Tverksy conduct
numerous surveys and find that individuals suffer greater “aggravation” from a loss than
from a gain. Thaler (1985) conducts additional surveys within both the general student
population and amongst MBA students who have been educated in economics. Findings
in the two cases are similar. The survey of Adams and Montesi (1995) suggests that
corporate managers are mostly concerned with one-sided risk, in which case only the
shortfall from a target level is regarded as risk. Benartzi and Thaler (1995) also argue that,
based on the psychology of decision making, individuals are more sensitive to reductions
in their levels of wealth than they are to similar increases.

Many researchers indicate that investors treat gains and losses differently. Thus it
may be more appropriate to measure risk asymmetrically. An investor may be risk-averse
with respect to losses but risk-loving with respect to gains. For example, a manager of an
investment fund may be stimulated by a potential bonus and knowingly take on more risk
to achieve this goal. At the same time the manager might be very conservative with
respect to losses because an extreme negative result could lead to a loss of employment.

Even though a manager may be risk-averse with respect to both losses and gains,
sensitivity to these two alternatives may be different. For instance, even though a

variance in profit is not welcome to a financial controller, greater sensitivity to possible
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loss is likely because the consequences of unexpected losses can be disastrous. It seems
that there are undesirable aspects to both variance and semi-variance in that variance
measurement assumes that investors are indifferent between gains and losses, and the
semi-variance model ignores gains completely. A more generalized risk model is
provided below:

U(0)=a[ (r-Y(A)) dFY()+b [ (r-Y(©)Y dGY(0)
where r=target return, Y(A)= returns belowr, Y (€)= returns abover,
and and B are respective measurements of risk aversion below and above the target
return. If a (fB) > 1, then the investor is risk-averse with respect to losses (gains). If
a () < 1, then the investor is risk-loving with respect to losses (gains). Finally, risk
neutrality is implied when a () =1.

In the model, a and b are rates of value either acquired or lost per marginal unit of
gain and loss. When a > b, the investor is more sensitive to losses than to gains, and vice
versa.

FY(A) and GY(0) are the probability distributions of Y(A)and Y(6).

When a = b = 1, r is the expected return of Y, == 2, and FY(1)=GY(0), the
familiar variance becomes the risk measure. When a = 1 and b = 0, the semi-variance
measure obtains.

In this thesis, optimal hedge ratios are obtained by minimizing the generalized risk

model. Numerically, the model tested is:
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o =%{ag[r—1€,]z U(r—R,)+biZj;[r—R,]2 U'(r—-R,)}, (1)

Lr<R . Lr2R
, U(E(R)-R)= , and N refers to the number of
0,r>R 0,r<R

t

where U(r—Rt)={

> ¢
returns.

The values of a and b are set to 0, 0.25, 0.5, 0.75 and 1, respectively, and # (the daily
return) is set to -0.001, -0.0005, 0, 0.0005 and 0.001 respectively (which correspond to
annual returns of -0.223, -0.118, 0, 0.134 and 0.286 respectively). The risk-aversion
parameters o and £ are set to 2. The impact of changes to the optimal hedge ratios and
the degree of hedging effectiveness can then be observed.

Analogous to the model of hedging effectiveness in Ederington (1979), the measure

for the generalized risk model is also defined as the proportional reduction in risk:

2

O'rp
HE =1-—% )

rs

where afp is the risk of the portfolio, hedged by futures contracts and o is the risk of

the spot position without hedging.

4. SAMPLE AND METHODOLOGY

Most of the empirical studies summarized earlier assume that the model-based hedge
ratio and hedging effectiveness are based on data from the same period. This is not a
realistic assumption. Therefore this study deals with this deficiency by utilizing an

out-of-sample test. Malliaris and Urrutia (1991b), Benet (1992), and Geppert (1995) also
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test hedging effectiveness with out-of-sample tests, but they all use a moving-window
approach, which allows parts of previous sample periods to overlap subsequent sample
periods. This thesis does not use a moving-window approach, thus the
overlapping-samples problem is avoided.

Ideally, a hedger would first use an estimation period to calculate the model-based
hedge ratio by minimizing equation (1), and would then apply the ratio in the following
period. In each sample period, 32 models are applied and a hedge ratio for each model is
obtained. The first two models are variance and semi-variance models, in whicha = b =
1, and a = 1, b = 0 respectively, and r is set to 0. In the other thirty models a and b in (1)
vary over the range of values 0.25, 0.5, 0.75 and 1 respectively, and r varies over the
range of values -0.001, -0.0005, 0, 0.0005 and 0.001. The hedging effectiveness and
returns are calculated in- and out-of-sample after an optimal hedge ratio is obtained, as
well as for a naive hedge, where hedge ratio % is set to 1. Finally the hedge ratios in
different models are compared, and the hedging effectiveness and returns are compared
in- and out-of-sample.

Daily data on spot and futures prices of the S&P 500 index in the International
Monetary Market (IMM) of the Chicago Mercantile Exchange (CME) are used. The data
are obtained from Datastream International Limited. Six-month T-bill rates are obtained
from the web site of the Federal Reserve Bank of St. Louis. For the hedges, data are from
December 1982 to December 2004. For each contract, prices three months before the

delivery month are used. Model-based hedge ratios are calculated by using daily data for
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the first two months of a period. Subsequently, a hedge ratio is determined for the last
(third) month. This approach is illustrated in Figure 1. Model-based hedge ratios are
calculated by using (1).

The data set consists of 89 non-overlapping observations. Tests are conducted to
determine whether model-based hedge ratios follow a random walk, and whether the
change of a, b and r affect optimal hedge ratios. Tests are also conducted to determine
whether hedging effectiveness changes significantly in-sample versus out-of-sample, and
between each model and a naive hedging strategy. Also, the average returns of the
hedged portfolios are compared across various models and out-of sample.

To check the robustness of the results, the whole period is divided into three parts
and the tests are repeated in the sub-periods. The first sub-period is called the steadily
rising period (Figure 2), which is from December 1982 to December 1994. In this period
the S&P 500 rose steadily from 138.72 to 459.27, that is, the index increased by a factor
of 2.31 in 12 years (an annualized compound growth rate of 7.23 percent). The standard
deviation of daily returns for this period was 0.0096 (0.1524 annually). The second
sub-period is denoted as the rapidly rising period, which extends from March 1995 to
September 2000 (Figure 3). In this period the S&P 500 index increased rapidly from
485.64 to 1436.51, a 1.96 fold increase in five years (an annualized compound growth
rate of 14.41 percent). The standard deviation of daily returns is also slightly higher than
that of the first period, at 0.0105 (0.1559 annually). The third sub-period is called the

fluctuating period, which begins in December 2000 and ends in December 2004. In this
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period the market experienced both upward and downward fluctuations with the index
beginning at 1315.23 and ending at 1211.92 (Figure 4). The standard deviation of daily
returns is largest in this period, at 0.0123 (0.1953 annually).

Because markets fluctuate, it is very possible that hedging activity in the rapidly
rising period may still be occurring during a bear market. Thus in the second robustness
test the condition of the market is inspected every six months. Subsequently a bull (bear)
market is defined as one whose return is higher (lower) than that of the six-month T-bill
rate in the same period.' Then the bull (bear) samples from discontinuous periods are
combined together and the hedging performances are compared. In summary, there are 53

samples extracted from bull markets and 36 from bear markets.

5. EMPIRICAL RESULTS

Results are reported in this section for the thirty-two models and five target returns.
Model-based hedging is compared with naive hedging in the whole period, the three
sub-periods and both bull and bear market conditions. Three issues are addressed. First, it
is to be determined whether different models and different target returns produce hedge
ratios that are different from the naive hedge. Second, whether or not out-of-sample
hedging effectiveness will decline compared with in-sample hedging is investigated.
Finally, the issue of whether or not returns of model-based hedging are found to be

reasonable is examined.

! Jog (1997) used a similar approach in their study.
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5.1 Hedge Ratios Determined by Various Risk Sensitivity Parameters and Target Returns
This section reports the hedge ratios of different risk sensitivity parameters and target
returns. The absolute proportional difference of each model compared with a naive hedge
is calculated in the three sub-periods and two market conditions, and is reported in Tables

1to7.

5.1.1 Hedge Ratios Determined by Various Risk Sensitivity Parameters

In this part the optimal hedge ratios are obtained by minimizing Equation (1). The
target return is set to 0, and sensitivity parameters a and b vary from 0 to 1. When a = 1
and b = 0, the minimum semi-variance model results. Similarly when a = b = 1, the
minimum-variance (MV) model is obtained. The statistical properties of the optimal
hedge ratios of each model are reported in Table 1.

The minimum and maximum hedge ratios are 0.59 (semi-variance model) and 1.09
(a = 1 b = 0.5) respectively. The standard deviation of hedge ratios is about 0.09. This
suggests that the optimal hedge ratios fluctuate over time. Since optimal hedge ratios are
used in an out-of-sample setting, variations in the optimal hedge ratios will decrease
hedging effectiveness.

Table 1 also indicates that the null hypotheses that the first three autocorrelation

coefficients, p,, p, and p, are zero can be rejected in all cases. This finding implies
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that hedge ratios are autocorrelated and models such as ARCH and GARCH may be
considered in future research.

Malliaris and Urrutia (1991a) use an augmented Dickey-Fuller test to test the random
walk hypothesis. They cannot reject the hypothesis that hedge ratios follow a random
walk. The results of the unit root tests in Table 1, however, suggest that the random walk
hypothesis can be rejected for all cases. This implies that the hedge ratios do not follow a
random walk, and the shocks on hedge ratios will have a transitory effect rather than a
permanent impact.

Table 2 reports the proportional changes of hedge ratios of each model compared
with the MV model. Because this research is concerned primarily with whether the
optimal hedge ratios of generalized risk models are different from the Minimum-variance
model, the difference of means is not an appropriate measure in that the ratio obtained
from the generalized risk model is sometimes higher than that of the MV model and is
sometimes lower than that of the MV model, even though their means may be very close.
Thus Table 2 I still set the target return to 0, and compares the proportional difference of
other models against the MV model. With H denoting the hedge ratio, the absolute

proportional difference is measured with the following formula:

R

Proportion = I(H othermodel H MV model ) / H MV model

Although the mean difference of the hedge ratios for each model is trivial (smaller
than 0.01 according to table 1), the absolute proportional difference is much larger. The

average difference between the MV and semi-variance models is 4 percent, and the
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maximum difference is over 20 percent. For both the a = 1, b = 0.25 model and the a =
0.25, b = 1 model, the average difference is above 2 percent. The closest model to that of
the MV model is when a = 0.75, b = 1, with a mean proportional difference of only 0.4
percent. For all models the absolute proportional change is significantly different from
zero for both ¢ and sign tests.”

Results in Table 2 show that all of the optimal hedge ratios obtained from generalized
risk models are statistically different from those obtained in the MV model, and that most
of the differences are large enough to generate a material impact on the hedged portfolios
(average differences are 2 to 4 percent, and the maximum difference is 20 percent). The
findings have practical implications in that if an investor indeed has an asymmetrical
risk-aversion sensitivity to lower and higher partial moments, then the MV model is far
from optimal since differences between the MV and generalized models are material.

Table 3 reports proportional changes of hedge ratios in the three sub-periods. The
results in the three panels are very consistent with those displayed in Table 2. For all
three periods the semi-variance model deviates from the MV model by the widest margin
with the mean difference being about 4 percent. This amount is large enough to have a
significant economic impact. For example, if a portfolio manager of a mutual fund uses
minimum-variance models to hedge a one billion dollar portfolio, he may need to sell

futures contracts worth on average $40,000,000 more in terms of underlying value than

2 Sign test values are the same in this and succeeding tables due to high correlations between models noted in Table 1.
This tends to produce the exact same number of data points above and below the mean thereby yielding identical sign
test values.
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the amount he would need if generalized models were employed. The a = 1, b = 0.25 and
a = 0.25, b = 1 models follows next with a mean difference of about 2 percent. The a =
0.75, b = 1 model is the one that is closest to the MV model with a difference of only
about 0.4 percent. The difference in all cases for all three sub-periods departs
significantly from 0 for both ¢ and sign tests.

Table 4 reports the results in bull and bear market conditions. Again the results are
consistent with those of Table 2. Most of the models generate deviations from the MV
model large enough to be materially important to hedged portfolios. In conclusion, the
results in Table 2 are robust with respect to the different sub-periods examined and to

varying market conditions.

5.1.2 Hedge Ratios Determined By Various Target Returns

Table 5 reports the proportional difference in hedge ratios under various target

returns compared with the ratio when » equals 0. The formula used in the comparison is:
Ry oportion = ’(HI=R 'Hr=0)/Hr=o’

From Table 5 it can be observed that for all models the difference in hedge ratio
performance between the » = R model and » = 0 model is significantly different from 0
for both ¢ and sign tests. The model with » = 0.001 always deviates the most from the r =
0 model, and the deviation of the » = 0.005 model is always smallest. Even though the
differences are statistically significant, the economic significance of the differences is

minor. For instance, the largest deviation occurs when » = -0.001 for the a = 0.25, b =1
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model, and the average difference is only 0.55 percent. Investment managers will not
adjust their portfolios for such trivial deviations. Thus it appears that the selection of the
target return is not a key factor in the determination of optimal hedge ratios.

Tables 6 and 7 report the proportional difference of returns compared with the R = 0
model in continuous sample periods (steadily rising, rapidly rising, and fluctuating) and
discontinuous sample periods (bear and bull). The proportional change is still different
from O statistically but again does not have any strong economic impact. For example, the
largest deviation in continuous and discontinuous sample periods is only 0.0067 (during

the rapidly rising period) and 0.0057 (in the bull market) respectively.

5.2 Comparisons of Hedging Effectiveness

In this section three kinds of hedging effectiveness for various models are calculated
by using Equation (2). The first one is in-sample hedging effectiveness and is determined
in the period in which optimal hedge ratios are estimated. The second one is
out-of-sample hedging effectiveness, which is obtained by applying the optimal hedge
ratios in the testing period. The last one is out-of-sample naive effectiveness, which is
calculated by setting the optimal hedge ratio to 1 in the testing period.

The statistical properties of three categories of hedging effectiveness are reported in
Table 8. All of the hedging approaches listed are above or slightly below 90 percent. This
implies that significant risk reduction has been achieved compared with unhedged

portfolios. Of the three hedging scenarios, the effectiveness of out-of-sample naive

22



hedging is the poorest, and its standard deviation is also the largest. This outcome was
expected a priori.

Table 9 uses a t-test to compare the mean difference between the out-of-sample
hedging scenario and the out-of-sample naive hedging alternative as well as the mean
difference between the out-of-sample and the in-sample hedging scenarios. From Panel A
of Table 9 it can be observed that the difference of means between model effectiveness
and naive effectiveness is positive for all models with mean differences ranging from
0.0098 (in the a = 1, b = 0.75 model) to 0.0375 (in the semi-variance model). All the
differences in means are significantly different from zero. The results suggest that hedge
ratios obtained from generalized risk models do improve the hedging effectiveness
compared with that of a naive hedge. Moreover, because the results are obtained from
out-of-sample tests, they are more convincing than results obtained from in-sample tests.

The second part of Table 9 displays the mean difference between in-sample hedging
effectiveness and out-of-sample hedging effectiveness and permits the examination of
whether or not hedging effectiveness declined in the out-of-sample period. As forecast,
the difference in means between the two is positive. However, except for the
semi-variance model, in which difference reaches 0.0289, the differences for all other
models is much smaller than the difference between model effectiveness and naive
effectiveness and ranges from 0.0003 (in the a = 0.75, b = 1 model) to 0.0062 (in the a =
0.25, b = 1 model). Again except for the semi-variance model, the mean difference of

other models is not significantly different from zero. These results imply that if an
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investor uses a two-month sample period to estimate the optimal hedge ratio and
proceeds to apply the estimated hedge ratio in the third month, hedging effectiveness will
not change dramatically compared to that of in-sample hedging.

Table 10 repeats the above tests in the three sub-periods. For the steadily rising
period (Panel A), the results are similar to those of the whole period. However, for the
rapidly rising period and the fluctuating period, results are somewhat inconsistent. The
improvements for model hedging effectiveness compared with the naive out-of-sample
hedge in the rapidly rising period (Panel B) are all small and not significantly different
from 0. On the other hand, the difference between in-sample hedging effectiveness and
out-of-sample hedging effectiveness is relatively large compared with other periods (four
of them are significantly different from 0). These results imply that in this period hedging
effectiveness not only declined in the out-of-sample period but also did not outperform
naive hedging. In the fluctuating period (Panel C) both the improvement of
model-hedging effectiveness and the difference between in-sample and out-of-sample
results are not significantly different from O.

Table 11 reports the results from bull and bear market conditions. The bull market
(Panel A) shows favourable results for model hedging, in that there are improvements for
model hedging while out-of-sample means are similar to similar means compared with
in-sample results. Bear markets (Panel B) also provide evidence to support the position
that there is no decline in out-of-sample hedging effectiveness, but the comparison

between the model hedge and naive hedge show mixed results - only three models
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(variance, a =1, b =0.25 and a = 1, b = 0.5) outperform the naive hedge.

Table 10 and Table 11 report conflicting results about bull markets. In table 10,
hedging in rapidly rising markets provides unfavourable results for model hedging.
However, Table 11 shows that model hedging performs rather well in bull markets. Two
possible reasons may explain the difference. The first is that in the rapidly rising period
there are some bear market periods and these results may have affected the whole period.
The second possible explanation is that the small sample size (23) makes the #-test
somewhat unreliable.

In summary, the out-of-sample model hedging performance seems to do well in bull

markets but may not outperform the naive hedge in bear markets for some models.

5.3 Returns of Each Model

Although the main purpose of hedging is to reduce risk, the return of hedged
portfolios is also an important factor to be considered by investment managers. Table 12
reports the average daily returns of the S&P 500 index and the hedged portfolios in the
various hedging periods.

All of the returns are positive, and the null hypothesis that the mean daily return is
equal to 0 is rejected for all models. The return of the index is highest among all
portfolios. It reached a level of 0.0498 percent, while the return for the naive hedge, at
around 25 percent of the index return, is the poorest performer. The returns for all other

models are similar and are about 40 percent of the index return.
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The risk of each model is measured according to the formula specified by each
model. In Table 12 the row marked “standard deviation” is not the usual meaning of
standard deviation but instead represents the square root of the generalized risk measure.
The index return is the highest of all portfolios with the highest risk, thus it is difficult to
judge whether it is superior to other models. It seems clear that the model hedge is much
better than the naive hedge because the return of the naive hedge is only one half of that
of the model hedge but its risk is still higher than that of the model hedge. In conclusion,
although generalized risk models are designed to minimize risk, the returns of the hedged

portfolios based on these models in out-of-sample tests are still reasonable.

6. Conclusions and Suggestions for Further Research

This thesis points out the inherent flaws of the two most widely used measures of
risk, namely variance/standard deviation and semi-variance. These measures are used
extensively in hedging activities. A more generalized measure of risk is proposed in an
effort to obtain improved hedging results.

This study is the first attempt to consider both higher partial moments and lower
partial moments in a hedging perspective. Two risk sensitivity parameters are provided to
show the asymmetrical risk preference for the two moments, and the models are applied
in out-of-sample tests to determine optimal hedge ratios for S&P 500 index portfolios.

This thesis also considers out-of-sample tests and non-overlapping windows while

most other studies use in-sample tests exclusively. Finally, this thesis uses discontinuous
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sample periods to separate market conditions in an attempt to assess hedging performance
under different market settings.

The main purpose of the thesis is to study whether the optimal hedge ratio obtained
by minimizing the set of generalized risk models is significantly different from those
obtained from the minimum-variance model. The results from 89 samples suggest that
the absolute proportional differences between the MV model and the generalized risk
models are significantly different from zero (the average difference reached 2 to 4 percent,
and the maximum reached 20 percent), with the results being consistent in the three
sub-periods as well. The results lend support to the position that if an investor’s
risk-aversion sensitivities to lower and higher partial moments are not equal, the MV
model should not be considered as a preferred approach in obtaining optimal hedge
ratios.

This thesis also investigates whether changing target returns can have an influence
on optimal hedge ratios. Daily target returns in the model vary from -0.001 to 0.001 and
their optimal hedge ratios are compared to a scenario where the target return is 0. The
largest deviation is only 0.45 percent, which will not affect the hedged portfolio
materially. Thus target returns levels do not appear to be a primary factor in the
determination of optimal hedge ratios.

In this thesis, comparisons are made between differences in hedging effectiveness
in-sample versus out-of-sample. The results show that over the whole period, tests of the

difference between out-of-sample model hedging effectiveness and the out-of-sample
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naive hedging effectiveness are positive and significantly different from zero for all
models. This suggests that hedge ratios obtained from the generalized risk models
improve the hedging effectiveness compared with that of naive hedging. On the other
hand, in-sample hedging effectiveness is not significantly different from that of
out-of-sample hedging effectiveness (except for the semi-variance model), which implies
that if an investor uses a two-month estimation period to determine the optimal hedge
ratio and hedges in the third month, the hedging effectiveness will not change materially
compared with that of in-sample hedging. However, the robustness test concludes that the
previous finding is more likely to be valid in bull markets. Moreover model-based
hedging performance is not particularly good and may not outperform a naive hedge in
bear markets.

Finally, this paper examines out-of-sample returns for each model, and finds that the
generalized risk model outperforms the naive hedge when target returns are considered.

Two suggestions are offered for further research. For reasons of simplicity, this
thesis fixes the power variable (« and 3, i.e. the risk-aversion parameters), to two, and
only investigates the impact brought about by the change in sensitivity parameters (a and
b) and target returns. In the future it would be interesting to study the impact of these
risk-aversion parameters.

In a previous study, Bera, Garcia and Roh (1997) consider the hedge ratio to be time
varying and adopt a random coefficient approach in their regression model. Additionally,

bivariate GARCH models have been more widely adopted in an effort to examine
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dynamic hedging strategies (Baillie and Myers (1991); Myers (1991); Lien and Luo
(1994)). Considering the finding that three orders of autocorrelation coefficients for
hedge ratios (Table 1) are significantly different from zero, it would be useful in
subsequent work to employ conditional models such as ARCH and GARCH to examine

the generalized risk model.
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Figure 1. Illustration of Procedure Used in Sample Collection and the
Calculation of Optimal Hedge Ratios
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Figure 2. Steadily Rising Period 1982/12-1994/12 (49 Obs) (Index rose from
138.72 to 459.27)
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Figure 3: Rapidly Rising Period 1995/01-2000/09 (23 Obs) (Index rose from
459.27 to 1436.51)
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Figure 4. Fluctuating Period 2000/10-2004/12 (17 Obs) (Index decreased from
1436.23 to 1211.92)
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